This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Trace Submodules and Centers of Endomorphism Rings

Justin Lyle [email protected] https://jlyle42.github.io/justinlyle/
Abstract.

Let RR be a commutative Noetherian local ring and MM a finitely generated RR-module. We introduce a general form of the classically studied trace map that unifies several notions from the literature. We develop a theory around these objects and use it to provide a broad extension of a result of Lindo calculating the center of EndR(M)\operatorname{End}_{R}(M). As a consequence, we show under mild hypotheses that in dimension 11, the canonical module of Z(EndR(M))Z(\operatorname{End}_{R}(M)) may be calculated as the trace submodule of MM with respect to the canonical module of RR.

Key words and phrases:
trace submodule, tensor product, endomorphism ring, center
2020 Mathematics Subject Classification:
Primary 13C13,16S50; Secondary 13H99

1. Introduction

Let (R,𝔪,k)(R,\mathfrak{m},k) be a Noetherian local ring and let MM be a finitely generated RR-module. The map HomR(M,R)RMR\operatorname{Hom}_{R}(M,R)\otimes_{R}M\to R given by fxf(x)f\otimes x\mapsto f(x) is known as the trace map of MM whose image trR(M)\operatorname{tr}_{R}(M) is the corresponding trace ideal of MM. These classically studied objects have received a renewed attention in recent years, and have been applied to the study of several famous and longstanding open conjectures. For instance, [Lin17a] uses the theory of trace ideals to show the Auslander-Reiten conjecture holds for ideals in an Artinian Gorenstein ring, while [Lin17b] uses them to show the Huneke-Wiegand conjecture holds for an ideal of II of positive grade if the commutative ring EndR(I)\operatorname{End}_{R}(I) is Gorenstein. A key point in the theory of trace ideals is a result of Lindo that shows Z(EndR(M))EndR(trR(M))Z(\operatorname{End}_{R}(M))\cong\operatorname{End}_{R}(\operatorname{tr}_{R}(M)) when MM is faithful and reflexive [Lin17b, Theorem 3.9].

In this paper, we introduce a broad generalization of the trace map and study it via the natural left module structure of EndR(M)\operatorname{End}_{R}(M) on MM. Concretely, we develop a theory around the natural map

ϕL,NM:HomR(M,N)EndR(M)HomR(L,M)HomR(L,N)\phi^{M}_{L,N}:\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M)\to\operatorname{Hom}_{R}(L,N)

of EndR(N)EndR(L)\operatorname{End}_{R}(N)-\operatorname{End}_{R}(L) bimodules and its corresponding image which we denote by trL,N(M)\operatorname{tr}_{L,N}(M) (see Definition 2.4). The map ϕL,NM\phi^{M}_{L,N} and its image trL,N(M)\operatorname{tr}_{L,N}(M) generalize and unify several disparate and well-studied notions from the literature (see Example 2.7). Our main theorem regarding these objects provides a vast extension of [Lin17b, Theorem 3.9] mentioned previously. The following is a key special case of our main theorem (Theorem 3.3):

Theorem 1.1.

Suppose MM is NN-reflexive, i.e., the natural map MHomEndR(N)(HomR(M,N),N)M\to\operatorname{Hom}_{\operatorname{End}_{R}(N)}(\operatorname{Hom}_{R}(M,N),N) is an isomorphism, and suppose for all 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R), that one of R𝔭R_{\mathfrak{p}} or N𝔭N_{\mathfrak{p}} is a direct summand of M𝔭n𝔭M_{\mathfrak{p}}^{\oplus n_{\mathfrak{p}}} for some n𝔭n_{\mathfrak{p}}. Then Z(EndR(M))EndEndR(N)(trR,N(M))Z(\operatorname{End}_{R}(M))\cong\operatorname{End}_{\operatorname{End}_{R}(N)}(\operatorname{tr}_{R,N}(M)) as RR-algebras.

As a consequence of Theorem 1.1, we show that if RR is Cohen-Macaulay with canonical module ω\omega, and MM is maximal Cohen-Macaulay, then under a mild local condition, e.g., MM has rank, we have Z(EndR(M))EndR(trR,ω(M))Z(\operatorname{End}_{R}(M))\cong\operatorname{End}_{R}(\operatorname{tr}_{R,\omega}(M)). If moreover RR has dimension 11, then we also obtain that trR,ω(M)\operatorname{tr}_{R,\omega}(M) is a canonical module for Z(EndR(M))Z(\operatorname{End}_{R}(M)) (see Corollary 3.6). Through our work, we offer some insights on the famous Huneke-Wiegand conjecture (see Conjectures 3.8 and 3.9 and Proposition 3.10).

2. Preliminaries

Throughout, we let (R,𝔪,k)(R,\mathfrak{m},k) be a commutative Noetherian local ring, and we let MM, NN, and LL be finitely generated RR-modules. We note that MM carries a natural left module action of EndR(M)\operatorname{End}_{R}(M), given by fx=f(x)f\cdot x=f(x). Further, HomR(M,N)\operatorname{Hom}_{R}(M,N) carries the structure of an EndR(N)EndR(M)\operatorname{End}_{R}(N)-\operatorname{End}_{R}(M) bimodule by function composition in the natural way. We recall the RR-module MM is said to have rank rr if M𝔭R𝔭rM_{\mathfrak{p}}\cong R_{\mathfrak{p}}^{\oplus r} for all 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R). We let μR(M)\mu_{R}(M) denote the minimal number of generators of MM over RR. We write ():=HomR(,R)(-)^{*}:=\operatorname{Hom}_{R}(-,R) and, if RR is Cohen-Macaulay with a canonical module ω\omega, we write ():=HomR(,ω)(-)^{\vee}:=\operatorname{Hom}_{R}(-,\omega). If EE is a possibly noncommutative ring, we let Z(E)Z(E) denote the center of EE. We note that Z(EndR(M))=EndEndR(M)(M)Z(\operatorname{End}_{R}(M))=\operatorname{End}_{\operatorname{End}_{R}(M)}(M).

The following two definitions provide key notions in our study of generalized trace maps:

Definition 2.1.
  1. (1)

    We say MM covariantly generates NN with respect to LL if there is an nn and a map p:MnNp:M^{\oplus n}\to N such that Hom(L,p)\operatorname{Hom}(L,p) is surjective.

  2. (2)

    We say MM contravariantly generates NN with respect to LL if there is an nn and a map q:NMnq:N\to M^{\oplus n} so that HomR(q,L)\operatorname{Hom}_{R}(q,L) is surjective.

We simply say that MM generates NN if MM generates NN covariantly with respect to RR, and this is equivalent to the existence of a surjection p:MnNp:M^{\oplus n}\to N for some nn. We say MM is a generator with respect to LL if MM covariantly generates every RR-module NN with respect to LL, and we refer to MM as a generator if it is a generator with respect to RR. When RR is local, we note MM is a generator if and only if RR is a direct summand of MM.

Definition 2.2.

We let

ϵM,NL:HomR(M,N)HomEndR(L)(HomR(L,M),HomR(L,N))\epsilon_{M,N}^{L}:\operatorname{Hom}_{R}(M,N)\to\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N))

be the natural map of EndR(N)EndR(M)\operatorname{End}_{R}(N)-\operatorname{End}_{R}(M) bimodules given by ϵM,NL(f)=HomR(L,f)\epsilon_{M,N}^{L}(f)=\operatorname{Hom}_{R}(L,f). We let

πM,NL:HomR(M,N)HomEndR(L)(HomR(N,L),HomR(M,L))\pi_{M,N}^{L}:\operatorname{Hom}_{R}(M,N)\to\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(N,L),\operatorname{Hom}_{R}(M,L))

be the natural map of EndR(N)EndR(M)\operatorname{End}_{R}(N)-\operatorname{End}_{R}(M) bimodules given by πM,NL(f)=HomR(f,L)\pi_{M,N}^{L}(f)=\operatorname{Hom}_{R}(f,L). We define the following conditions for the ordered pair of RR-modules (M,N)(M,N) with respect to the RR-module LL:

  1. (1)

    (M,N)(M,N) is said to be covariantly LL-torsionless if ϵM,NL\epsilon^{L}_{M,N} is injective.

  2. (2)

    (M,N)(M,N) is said to be contravariantly LL-torsionless if πM,NL\pi^{L}_{M,N} is injective.

  3. (3)

    (M,N)(M,N) is said to be covariantly LL-reflexive if ϵM,NL\epsilon^{L}_{M,N} is an isomorphism.

  4. (4)

    (M,N)(M,N) is said to be contravariantly LL-reflexive if πM,NL\pi^{L}_{M,N} is an isomorphism.

When M=RM=R, the map πR,NL\pi^{L}_{R,N} may be identified, through the natural isomorphisms HomR(R,N)N\operatorname{Hom}_{R}(R,N)\cong N and HomR(R,L)L\operatorname{Hom}_{R}(R,L)\cong L, with the natural evaluation map πNL\pi^{L}_{N}. That is to say,

πNL:NHomEndR(L)(HomR(N,L),L)\pi^{L}_{N}:N\to\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(N,L),L)

is the map of EndR(N)R\operatorname{End}_{R}(N)-R bimodules given by πNL(x)=αx\pi^{L}_{N}(x)=\alpha_{x}, where αx:HomR(N,L)L\alpha_{x}:\operatorname{Hom}_{R}(N,L)\to L is given by αx(g)=g(x)\alpha_{x}(g)=g(x). We simply say that NN is LL-torsionless (resp. LL-reflexive) if πNL\pi^{L}_{N} is injective (resp. is an isomorphism). We note that NN is RR-torsionless (resp. RR-reflexive) if and only if it is torsionless (resp. reflexive) is the traditional sense.

We let mod(R)\operatorname{mod}(R) be the category of finitely generated RR-modules, and we let AddR(M)\operatorname{Add}_{R}(M) be the full subcategory of mod(R)\operatorname{mod}(R) consisting of finite direct sums of direct summands of MM. So NN is an object of AddR(M)\operatorname{Add}_{R}(M) if and only if NN is a summand of MnM^{\oplus n} for some nn.

Remark 2.3.

We remark that the maps ϵM,NL\epsilon^{L}_{M,N} and πM,NL\pi^{L}_{M,N} are in a sense more natural than the canonical maps ιM,NL:HomR(M,N)HomR(HomR(L,M),HomR(L,N)\iota^{L}_{M,N}:\operatorname{Hom}_{R}(M,N)\to\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N) and κM,NL:HomR(M,N)HomR(HomR(N,L),HomR(M,L))\kappa^{L}_{M,N}:\operatorname{Hom}_{R}(M,N)\to\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(N,L),\operatorname{Hom}_{R}(M,L)) studied by several in the literature (see e.g. [LT23, Definition 3.11]). Indeed, the maps ιM,NL\iota^{L}_{M,N} and κM,NL\kappa^{L}_{M,N} factor through ϵM,NL\epsilon^{L}_{M,N} and πM,NL\pi^{L}_{M,N}, respectively, to begin with, and images of the latter are meaningfully closer to HomR(M,N)\operatorname{Hom}_{R}(M,N) in most circumstances. For example, if RR is a domain and the rank of LL is positive, then the RR-modules HomR(M,N)\operatorname{Hom}_{R}(M,N), HomEndR(L)(HomR(L,M),HomR(L,N)\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N), and HomEndR(L)(HomR(N,L),HomR(M,L))\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(N,L),\operatorname{Hom}_{R}(M,L)) all have the same rank by Morita considerations, but the ranks of the modules HomR(HomR(L,M),HomR(L,N))\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N)) and HomR(HomR(N,L),HomR(M,L))\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(N,L),\operatorname{Hom}_{R}(M,L)) will agree with that of HomR(M,N)\operatorname{Hom}_{R}(M,N) if and only if the rank of LL is 11. In particular, one cannot hope for ιM,NL\iota^{L}_{M,N} or κM,NL\kappa^{L}_{M,N} to be an isomorphism in such a situation.

The following definition gives the main object of consideration for this work.

Definition 2.4.

We let ϕL,NM:HomR(M,N)EndR(M)HomR(L,M)HomR(L,N)\phi_{L,N}^{M}:\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M)\to\operatorname{Hom}_{R}(L,N) be the natural map of EndR(N)EndR(L)\operatorname{End}_{R}(N)-\operatorname{End}_{R}(L) bimodules given on elementary tensors by ϕL,NM(fg)=fg\phi_{L,N}^{M}(f\otimes g)=f\circ g, and we refer to it as the trace map of MM with respect to the pair (L,N)(L,N). We let trL,N(M)\operatorname{tr}_{L,N}(M) denote the image of ϕL,NM\phi^{M}_{L,N} and refer to it as the trace submodule of HomR(L,N)\operatorname{Hom}_{R}(L,N) associated to MM.

We give context to these objects through some remarks and examples.

Remark 2.5.

We note that trL,N(M)\operatorname{tr}_{L,N}(M) can be described as

trL,N(M)={fHomR(L,N)f factors through Mn for some n}.\operatorname{tr}_{L,N}(M)=\{f\in\operatorname{Hom}_{R}(L,N)\mid f\mbox{ factors through }M^{\oplus n}\mbox{ for some }n\}.
Remark 2.6.

The map ϕL,NM\phi^{M}_{L,N} is the special case of the familiar Yoneda Ext\operatorname{Ext}-map

ExtRp(M,N)EndR(M)ExtRq(L,M)ExtRp+q(L,N)\operatorname{Ext}^{p}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Ext}^{q}_{R}(L,M)\to\operatorname{Ext}^{p+q}_{R}(L,N)

(see e.g. [Oor64, Section 2] for the definition) with pp and qq taken to be 0. The behavior of ϕL,NM\phi^{M}_{L,N} is much more predictable when compared with Yoneda maps for higher values of pp and qq, due to the nature of higher extensions.

The map ϕL,NM\phi^{M}_{L,N} unifies several objects of consideration from the literature. The following are some natural contexts in which ϕL,NM\phi^{M}_{L,N} and trL,N(M)\operatorname{tr}_{L,N}(M) have been studied:

Example 2.7.
  1. (1)(1)

    When L=RL=R, the map ϕR,NM\phi^{M}_{R,N} can be naturally identified, through the canonical isomorphisms HomR(R,L)L\operatorname{Hom}_{R}(R,L)\cong L and HomR(R,N)N\operatorname{Hom}_{R}(R,N)\cong N, with the map ϕNM:HomR(M,N)EndR(M)MN\phi^{M}_{N}:\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}M\to N given on elementary tensors by ϕNM(fx)=f(x)\phi^{M}_{N}(f\otimes x)=f(x). We let trN(M)\operatorname{tr}_{N}(M) denote the image of ϕNM\phi^{M}_{N}, which is an EndR(N)R\operatorname{End}_{R}(N)-R subbimodule of NN.

  2. (2)(2)

    When L=N=RL=N=R, the map ϕRM:MEndR(M)MR\phi^{M}_{R}:M^{*}\otimes_{\operatorname{End}_{R}(M)}M\to R is the usual trace map from the literature whose image trR(M)\operatorname{tr}_{R}(M) is the corresponding trace ideal of MM; see e.g. [Lin17b, Fab20].

  3. (3)(3)

    When M=RM=R, the map ϕL,NM\phi^{M}_{L,N} may be identified, similar to Part (1)(1), with the map θL,N:NRLHomR(L,N)\theta_{L,N}:N\otimes_{R}L^{*}\to\operatorname{Hom}_{R}(L,N) given on elementary tensors by xfαx,fx\otimes f\mapsto\alpha_{x,f}, where αx,f:NN\alpha_{x,f}:N\to N is given by αx,f(y)=f(y)x\alpha_{x,f}(y)=f(y)x. This map has been studied extensively in the context of stable module theory as developed by Auslander-Bridger [AB69].

  4. (4)(4)

    If RR is Cohen-Macaulay with canonical module ω\omega, the case where L=RL=R and N=ωN=\omega has been studied in the context of generalizations of the well-known Huneke-Wiegand conjecture (Conjecture 3.8). See [GTTLT15, Conjecture 1.3], [GT17, Remark 2.5], and [CGTT19, Question 4.1] (cf. the discussion after Conjecture 3.8 below).

  5. (5)(5)

    If CC is a semidualizing module, i.e., ExtRi(C,C)=0\operatorname{Ext}^{i}_{R}(C,C)=0 for all i>0i>0 and the natural homothety map REndR(C)R\to\operatorname{End}_{R}(C) is an isomorphism, then the condition that ϕMC\phi_{M}^{C} be an isomorphism is part of the requirements for MM to belong to the Bass class of CC; see [SW, Definition 3.1.4] or [TW10, 1.8].

The following is well-known, but we provide a short proof due to lack of a suitable reference.

Proposition 2.8.

If MM is torsionless, then MM is faithful if and only if R𝔭AddR𝔭(M𝔭)R_{\mathfrak{p}}\in\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) for all 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R).

Proof.

It’s clear that if R𝔭AddR𝔭(M𝔭)R_{\mathfrak{p}}\in\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) for all 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R) that MM must be faithful. For the converse, suppose MM is faithful so that there is an injection j:RMrj:R\to M^{\oplus r} for some rr. As MM is torsionless, there is an injection M𝑖RnM\xrightarrow{i}R^{\oplus n} for some nn. Then there is an exact sequence of the form 0RirjRnrC00\rightarrow R\xrightarrow{i^{\oplus r}\circ j}R^{\oplus nr}\to C\to 0, so pdR(C)1\operatorname{pd}_{R}(C)\leq 1. In particular, C𝔭C_{\mathfrak{p}} has finite projective dimension for all 𝔭Ass(R)\mathfrak{p}\in\operatorname{Ass}(R), but as R𝔭R_{\mathfrak{p}} has depth zero, the Auslander-Buchsbaum formula forces C𝔭C_{\mathfrak{p}} to be a free R𝔭R_{\mathfrak{p}}-module. In particular irji^{\oplus r}\circ j is a split injection locally at every 𝔭Ass(R)\mathfrak{p}\in\operatorname{Ass}(R). Then so is jj, and so R𝔭AddR𝔭(M𝔭)R_{\mathfrak{p}}\in\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) for all 𝔭Ass(R)\mathfrak{p}\in\operatorname{Ass}(R), as desired. ∎

3. Main Results

We begin this section by recording some of the key properties of the map ϕL,NM\phi^{M}_{L,N} and its corresponding trace submodules, most of which will be needed for the proof of our main theorem.

Proposition 3.1.

For any RR-modules A,B,L,M,NA,B,L,M,N, we have

  1. (1)(1)

    trL,N(AB)=trL,N(A)+trL,N(B)\operatorname{tr}_{L,N}(A\oplus B)=\operatorname{tr}_{L,N}(A)+\operatorname{tr}_{L,N}(B).

  2. (2)(2)

    If LL or NN is in AddR(M)\operatorname{Add}_{R}(M), then ϕL,NM\phi^{M}_{L,N} is an isomorphism. In particular, if MM is a generator then ϕNM\phi^{M}_{N} is an isomorphism.

  3. (3)(3)

    If AA generates BB covariantly with respect to LL or contravariantly with respect to NN, then trL,N(B)trL,N(A)\operatorname{tr}_{L,N}(B)\subseteq\operatorname{tr}_{L,N}(A).

  4. (4)(4)

    If MM generates NN covariantly with respect to LL or if MM generates LL contravariantly with respect to NN then ϕL,NM\phi_{L,N}^{M} is surjective.

  5. (5)(5)

    Let i:trL,N(M)HomR(L,N)i:\operatorname{tr}_{L,N}(M)\to\operatorname{Hom}_{R}(L,N) denote the natural inclusion. If the pair (M,N)(M,N) is covariantly reflexive with respect to LL (resp. the pair (L,M)(L,M) is contravariantly reflexive with respect to NN), then HomEndR(L)(trL,N(M),i)\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{tr}_{L,N}(M),i) (resp. HomEndR(N)(trL,N(M),i)\operatorname{Hom}_{\operatorname{End}_{R}(N)}(\operatorname{tr}_{L,N}(M),i)) is an isomorphism.

  6. (6)(6)

    If SS is a flat RR-algebra, then ϕL,NMRS\phi^{M}_{L,N}\otimes_{R}S may be identified with ϕLRS,NRSMRS\phi^{M\otimes_{R}S}_{L\otimes_{R}S,N\otimes_{R}S}, and we have trL,NMRS=trLRS,NRSMRS\operatorname{tr}^{M}_{L,N}\otimes_{R}S=\operatorname{tr}^{M\otimes_{R}S}_{L\otimes_{R}S,N\otimes_{R}S} upon identifying HomR(L,N)RS\operatorname{Hom}_{R}(L,N)\otimes_{R}S with HomS(LRS,NRS)\operatorname{Hom}_{S}(L\otimes_{R}S,N\otimes_{R}S). In particular, ϕL,NM\phi^{M}_{L,N} and trL,NM\operatorname{tr}^{M}_{L,N} respect localization and completion over RR.

Proof.

Note (1)(1) is immediate given Remark 2.5. For (2)(2), if LAddR(M)L\in\operatorname{Add}_{R}(M), then there is a split injection i:LMni:L\to M^{\oplus n} for some nn, with retraction p:MnLp:M^{\oplus n}\to L. There is a commutative diagram:

HomR(M,N)EndR(M)HomR(Mn,M){{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(M^{\oplus n},M)}}HomR(Mn,N){{\operatorname{Hom}_{R}(M^{\oplus n},N)}}HomR(M,N)EndR(M)EndR(M)n{{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{End}_{R}(M)^{\oplus n}}}HomR(M,N)n{{\operatorname{Hom}_{R}(M,N)^{\oplus n}}}ϕMn,NM\scriptstyle{\phi^{M}_{M^{\oplus n},N}}η\scriptstyle{\eta}a\scriptstyle{a}b\scriptstyle{b}

where a,ba,b and η\eta are the natural isomorphisms. In particular, ϕMn,NM\phi^{M}_{M^{\oplus n},N} is an isomorphism. But there is also a commutative diagram

HomR(M,N)EndR(M)HomR(L,M){{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M)}}HomR(L,N){{\operatorname{Hom}_{R}(L,N)}}HomR(M,N)EndR(M)HomR(Mn,M){{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(M^{\oplus n},M)}}HomR(Mn,N){{\operatorname{Hom}_{R}(M^{\oplus n},N)}}HomR(M,N)EndR(M)HomR(L,M){{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M)}}HomR(L,N){{\operatorname{Hom}_{R}(L,N)}}ϕL,NM\scriptstyle{\phi^{M}_{L,N}}ϕMn,NM\scriptstyle{\phi^{M}_{M^{\oplus n},N}}HomR(M,N)EndR(M)HomR(i,M)\scriptstyle{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(i,M)}HomR(i,N)\scriptstyle{\operatorname{Hom}_{R}(i,N)}ϕL,NM\scriptstyle{\phi^{M}_{L,N}}HomR(p,N)\scriptstyle{\operatorname{Hom}_{R}(p,N)}HomR(M,N)EndR(M)HomR(p,M)\scriptstyle{\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(p,M)}

As ii is a split injection the commutativity of the top square forces ϕL,NM\phi^{M}_{L,N} to be injective, while that of the bottom square forces it to be surjective, so it is an isomorphism. The case where NAddR(M)N\in\operatorname{Add}_{R}(M) instead follows from a nearly identical argument.

For (3)(3), suppose AA generates BB covariantly with respect to LL, so there is a map p:AmBp:A^{\oplus m}\to B such that HomR(L,p)\operatorname{Hom}_{R}(L,p) is a surjection. Suppose we have gtrL,N(B)g\in\operatorname{tr}_{L,N}(B), so that there is a commutative diagram

L{L}N{N}Bn{{B^{\oplus n}}}t\scriptstyle{t}s\scriptstyle{s}g\scriptstyle{g}

for some nn. Since HomR(L,p)\operatorname{Hom}_{R}(L,p) is surjective, so is HomR(L,pn)\operatorname{Hom}_{R}(L,p^{\oplus n}), and thus there is a map qHomR(L,Amn)q\in\operatorname{Hom}_{R}(L,A^{\oplus mn}) so that pnq=tp^{\oplus n}\circ q=t. Then there is a commutative diagram

L{L}N{N}Amn{{A^{\oplus mn}}}q\scriptstyle{q}spn\scriptstyle{s\circ p^{\oplus n}}g\scriptstyle{g}

which shows gtrL,N(A)g\in\operatorname{tr}_{L,N}(A). The case where AA generates BB contravariantly with respect to NN follows similarly.

For (4)(4), from part (3) we have either trL,N(L)trL,N(M)\operatorname{tr}_{L,N}(L)\subseteq\operatorname{tr}_{L,N}(M) when MM generates NN covariantly with respect to LL or trL,N(N)trL,N(M)\operatorname{tr}_{L,N}(N)\subseteq\operatorname{tr}_{L,N}(M) when MM generates LL contravariantly with respect to NN. But from part (2)(2), we have trL,N(L)=trL,N(N)=HomR(L,N)\operatorname{tr}_{L,N}(L)=\operatorname{tr}_{L,N}(N)=\operatorname{Hom}_{R}(L,N), so ϕL,NM\phi^{M}_{L,N} is surjective.

For (5)(5), suppose the pair (M,N)(M,N) is covariantly reflexive with respect to LL. Let t1,,tnt_{1},\dots,t_{n} be a minimal generating set for HomR(M,N)\operatorname{Hom}_{R}(M,N) as a right EndR(M)\operatorname{End}_{R}(M)-module and let p:(EndR(M))nHomR(M,N)p:(\operatorname{End}_{R}(M))^{\oplus n}\to\operatorname{Hom}_{R}(M,N) be the surjection mapping each standard basis element eie_{i} to tit_{i}. For each i=1,,ni=1,\dots,n, let ji:HomR(L,M)(EndR(M))nEndR(M)HomR(L,M)j_{i}:\operatorname{Hom}_{R}(L,M)\to(\operatorname{End}_{R}(M))^{\oplus n}\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M) be given by ji(a)=eiaj_{i}(a)=e_{i}\otimes a. Now pick fHomEndR(L)(trL,N(M),HomR(L,N))f\in\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{tr}_{L,N}(M),\operatorname{Hom}_{R}(L,N)). We claim ff factors through the map ii, equivalently, that imftrL,N(M)\operatorname{im}f\subseteq\operatorname{tr}_{L,N}(M). For this, it suffices to show the images under ff of the generators fiaf_{i}\circ a for aHomR(L,M)a\in\operatorname{Hom}_{R}(L,M) are contained in trL,N(M)\operatorname{tr}_{L,N}(M). For each i=1,,ni=1,\dots,n, set wi=fϕL,NM(pidHomR(L,M))jiw_{i}=f\circ\phi^{M}_{L,N}\circ(p\otimes\operatorname{id}_{\operatorname{Hom}_{R}(L,M)})\circ j_{i}. Then each wiHomEndR(L)(HomR(L,M),HomR(L,N))w_{i}\in\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N)), and as (M,N)(M,N) is covariantly reflexive with respect to LL there are unique maps siHomR(M,N)s_{i}\in\operatorname{Hom}_{R}(M,N) so that wi=HomR(L,si)w_{i}=\operatorname{Hom}_{R}(L,s_{i}). Now given a generator fiaf_{i}\circ a of trL,N(M)\operatorname{tr}_{L,N}(M), we have fia=ϕL,NM((pidHomR(L,M))(ji(a)))f_{i}\circ a=\phi^{M}_{L,N}((p\otimes\operatorname{id}_{\operatorname{Hom}_{R}(L,M)})(j_{i}(a))), so f(fia)=wi(a)=HomR(L,si)(a)=siatrL,N(M)f(f_{i}\circ a)=w_{i}(a)=\operatorname{Hom}_{R}(L,s_{i})(a)=s_{i}\circ a\in\operatorname{tr}_{L,N}(M), and the claim follows. The case where (L,M)(L,M) is contravariantly reflexive with respect to NN instead follows from a similar argument.

The claims of (6)(6) follow from the commutative diagram

(HomR(M,N)EndR(M)HomR(L,M))RS{{(\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M))\otimes_{R}S}}HomR(L,N)RS{{\operatorname{Hom}_{R}(L,N)\otimes_{R}S}}HomS(MRS,NRS)EndS(MRS)HomS(LRS,MRS){{\operatorname{Hom}_{S}(M\otimes_{R}S,N\otimes_{R}S)\otimes_{\operatorname{End}_{S}(M\otimes_{R}S)}\operatorname{Hom}_{S}(L\otimes_{R}S,M\otimes_{R}S)}}HomS(LRS,NRS){{\operatorname{Hom}_{S}(L\otimes_{R}S,N\otimes_{R}S)}}ϕL,NMRS\scriptstyle{\phi^{M}_{L,N}\otimes_{R}S}ϕLRS,NRSMRS\scriptstyle{\phi^{M\otimes_{R}S}_{L\otimes_{R}S,N\otimes_{R}S}}

whose vertical arrows are the natural isomorphisms owed to the flatness of SS.

Remark 3.2.

Proposition 3.1 recovers several well-known facts about trace ideals, and clarifies that many of the familiar properties of trace ideals are owed to the freeness of LL and/or NN in considering trL,N(M)\operatorname{tr}_{L,N}(M).

We now present the main theorem of this section, from which we will derive several Corollaries, including Theorem 1.1. The statement of this theorem carries some technicality, but allows for a great deal of flexibility in hypotheses.

Theorem 3.3.

Suppose, for all 𝔭SuppR(N)AssR(L)\mathfrak{p}\in\operatorname{Supp}_{R}(N)\cap\operatorname{Ass}_{R}(L), that one of L𝔭L_{\mathfrak{p}} or N𝔭N_{\mathfrak{p}} is in AddR𝔭(M𝔭)\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}). Then:

  1. (1)(1)

    If the pair (M,N)(M,N) is covariantly reflexive with respect to LL, then there is an isomorphism of rings EndEndR(L)(trL,N(M))EndEndR(M)(HomR(M,N))\operatorname{End}_{\operatorname{End}_{R}(L)}(\operatorname{tr}_{L,N}(M))\cong\operatorname{End}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(M,N)).

  2. (2)(2)

    If the pair (L,M)(L,M) is contravariantly reflexive with respect to NN, then there is an isomorphism of rings EndEndR(N)(trL,N(M))EndEndR(M)(HomR(L,M))\operatorname{End}_{\operatorname{End}_{R}(N)}(\operatorname{tr}_{L,N}(M))\cong\operatorname{End}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(L,M))

Proof.

There is a short exact sequence of EndR(N)EndR(L)\operatorname{End}_{R}(N)-\operatorname{End}_{R}(L) bimodules

ϵ:0KHomR(M,N)EndR(M)HomR(L,M)ϕL,NMtrL,N(M)0.\epsilon:0\rightarrow K\rightarrow\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M)\xrightarrow{\phi^{M}_{L,N}}\operatorname{tr}_{L,N}(M)\rightarrow 0.

By Proposition 3.1 (2) and (6), the hypotheses force ϕL,NM\phi^{M}_{L,N} to be an isomorphism locally at every 𝔭SuppR(L)AssR(N)=AssR(HomR(L,N))\mathfrak{p}\in\operatorname{Supp}_{R}(L)\cap\operatorname{Ass}_{R}(N)=\operatorname{Ass}_{R}(\operatorname{Hom}_{R}(L,N)). In particular, K𝔭=0K_{\mathfrak{p}}=0 for all 𝔭AssR(HomR(L,N))\mathfrak{p}\in\operatorname{Ass}_{R}(\operatorname{Hom}_{R}(L,N)), and it follows that HomR(K,HomR(L,N))=0\operatorname{Hom}_{R}(K,\operatorname{Hom}_{R}(L,N))=0. As the RR-modules HomEndR(N)(K,HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(N)}(K,\operatorname{Hom}_{R}(L,N)) and HomEndR(L)(K,HomR(M,N))\operatorname{Hom}_{\operatorname{End}_{R}(L)}(K,\operatorname{Hom}_{R}(M,N)) are submodules of HomR(K,HomR(L,N))=0\operatorname{Hom}_{R}(K,\operatorname{Hom}_{R}(L,N))=0, it follows they are 0 as well.

For (1)(1), we apply HomEndR(L)(,HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(L)}(-,\operatorname{Hom}_{R}(L,N)) to ϵ\epsilon to see that HomEndR(L)(ϕL,NM,HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\phi^{M}_{L,N},\operatorname{Hom}_{R}(L,N)) gives an isomorphism HomEndR(L)(trL,N(M),HomR(L,N))HomEndR(L)(HomR(M,N)EndR(M)HomR(L,M),HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{tr}_{L,N}(M),\operatorname{Hom}_{R}(L,N))\to\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N)). By Hom-tensor adjointness, the right hand term is naturally isomorphic to

HomEndR(M)(HomR(M,N),HomEndR(L)(HomR(L,M),HomR(L,N)).\operatorname{Hom}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(M,N),\operatorname{Hom}_{\operatorname{End}_{R}(L)}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N)).

But as the pair (M,N)(M,N) is covariantly reflexive with respect to LL, this term is naturally isomorphic to EndEndR(M)(HomR(M,N))\operatorname{End}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(M,N)). The claim then follows from Proposition 3.1 (5), noting the composition EndEndR(L)(trL,N(M))EndEndR(M)(HomR(M,N))\operatorname{End}_{\operatorname{End}_{R}(L)}(\operatorname{tr}_{L,N}(M))\to\operatorname{End}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(M,N)) is a map of rings.

For (2), we follow a similar approach; applying HomEndR(N)(,HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(N)}(-,\operatorname{Hom}_{R}(L,N)) we observe that HomEndR(N)(ϕL,NM,HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(N)}(\phi^{M}_{L,N},\operatorname{Hom}_{R}(L,N)) gives an isomorphism HomEndR(N)(trL,N(M),HomR(L,N))HomEndR(N)(HomR(M,N)EndR(M)HomR(L,M),HomR(L,N))\operatorname{Hom}_{\operatorname{End}_{R}(N)}(\operatorname{tr}_{L,N}(M),\operatorname{Hom}_{R}(L,N))\to\operatorname{Hom}_{\operatorname{End}_{R}(N)}(\operatorname{Hom}_{R}(M,N)\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{R}(L,N)) and Hom-tensor adjointness shows the right hand term is isomorphic to

HomEndR(M)(HomR(L,M),HomEndR(N)(HomR(M,N),HomR(L,N)).\operatorname{Hom}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(L,M),\operatorname{Hom}_{\operatorname{End}_{R}(N)}(\operatorname{Hom}_{R}(M,N),\operatorname{Hom}_{R}(L,N)).

Since the pair (L,M)(L,M) is contravariantly reflexive with respect to, this term is naturally isomorphic to EndEndR(M)(HomR(L,M))\operatorname{End}_{\operatorname{End}_{R}(M)}(\operatorname{Hom}_{R}(L,M)), and we have the claim.

Corollary 3.4.

Suppose, for all 𝔭SuppR(N)AssR(R)\mathfrak{p}\in\operatorname{Supp}_{R}(N)\cap\operatorname{Ass}_{R}(R), that one of R𝔭R_{\mathfrak{p}} or N𝔭N_{\mathfrak{p}} is in AddR𝔭(M𝔭)\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}). If MM is reflexive with respect to NN, then there is a ring isomorphism EndEndR(N)(trN(M))Z(EndR(M))\operatorname{End}_{\operatorname{End}_{R}(N)}(\operatorname{tr}_{N}(M))\cong Z(\operatorname{End}_{R}(M)).

Proof.

The claim follows immediately from Theorem 3.3 (2) with L=RL=R.

Applying Corollary 3.4 we immediately recover the result of Lindo mentioned in the introduction.

Theorem 3.5 ([Lin17b, Theorem 3.9]).

Suppose MM is faithful and reflexive. Then there is a ring isomorphism EndR(trR(M))Z(EndR(M))\operatorname{End}_{R}(\operatorname{tr}_{R}(M))\cong Z(\operatorname{End}_{R}(M)).

Proof.

It follows from Proposition 2.8 that R𝔭AddR𝔭(M𝔭)R_{\mathfrak{p}}\in\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) for all 𝔭Ass(R)\mathfrak{p}\in\operatorname{Ass}(R). The claim thus follows from Corollary 3.4 with N=RN=R.

A significant special case of Theorem 3.3 is the following which also serves as a variation on Theorem 3.5.

Corollary 3.6.

Suppose RR is Cohen-Macaulay with canonical module ω\omega and set ()=HomR(,ω)(-)^{\vee}=\operatorname{Hom}_{R}(-,\omega). Suppose MM is reflexive with respect to ω\omega, e.g. MM is maximal Cohen-Macaulay, and suppose for every 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R) that one of M𝔭M_{\mathfrak{p}} or M𝔭M^{\vee}_{\mathfrak{p}} is a generator. Then there is an isomorphism of rings Z(EndR(M))EndR(trω(M))Z(\operatorname{End}_{R}(M))\cong\operatorname{End}_{R}(\operatorname{tr}_{\omega}(M)). If moreover RR has dimension 11, then we have trω(M)\operatorname{tr}_{\omega}(M) is a canonical module for Z(EndR(M))Z(\operatorname{End}_{R}(M)).

Proof.

For the first claim, it suffices from Theorem 3.3 to show, for every 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R), that one of R𝔭R_{\mathfrak{p}} or ω𝔭\omega_{\mathfrak{p}} is in AddR𝔭(M𝔭)\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}). But this follows immediately from noting that R𝔭AddR𝔭(M𝔭)R_{\mathfrak{p}}\in\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) when M𝔭M_{\mathfrak{p}} is a generator and that w𝔭AddR𝔭(M𝔭)w_{\mathfrak{p}}\in\operatorname{Add}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) when M𝔭M^{\vee}_{\mathfrak{p}} is a generator, since we may dualize a splitting M𝔭R𝔭M^{\vee}_{\mathfrak{p}}\to R_{\mathfrak{p}}. So we have EndR(trω(M))Z(EndR(M))\operatorname{End}_{R}(\operatorname{tr}_{\omega}(M))\cong Z(\operatorname{End}_{R}(M)). If RR has dimension 11, then we note Z(EndR(M))Z(\operatorname{End}_{R}(M)) embeds in a direct sum of copies of MM, so is maximal Cohen-Macualay. Note that EndR(trω(M))HomR(trω(M),ω)\operatorname{End}_{R}(\operatorname{tr}_{\omega}(M))\cong\operatorname{Hom}_{R}(\operatorname{tr}_{\omega}(M),\omega) from Proposition 3.1 (5), since any pair (M,N)(M,N) is covariantly reflexive with respect to RR. So from [BH93, Theorem 3.3.7 (b)], we have that a canonical module for Z(EndR(M))Z(\operatorname{End}_{R}(M)) is HomR(Z(EndR(M)),ω)HomR(EndR(trω(M),ω)HomR(HomR(trω(M),w),ω)trω(M)\operatorname{Hom}_{R}(Z(\operatorname{End}_{R}(M)),\omega)\cong\operatorname{Hom}_{R}(\operatorname{End}_{R}(\operatorname{tr}_{\omega}(M),\omega)\cong\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(\operatorname{tr}_{\omega}(M),w),\omega)\cong\operatorname{tr}_{\omega}(M), with the last isomorphism owed to the fact that trω(M)\operatorname{tr}_{\omega}(M) embeds in ω\omega, and is thus maximal Cohen-Macaulay when RR has dimension 11. ∎

Remark 3.7.

The condition that one of M𝔭M_{\mathfrak{p}} or M𝔭M^{\vee}_{\mathfrak{p}} be a generator for every 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R) is required since a module that is reflexive with respect to ω\omega need not be torsionless without additional hypotheses, unlike reflexivity with respect to RR. This condition is quite mild and can be guaranteed by assuming, for instance, that MM is torsionless locally at every associated prime of RR. This holds, for example, if RR is generically Gorenstein.

Our work provides some perspective on the famous Huneke-Wiegand conjecture. We recall the Huneke-Wiegand conjecture may be stated in one of its more general forms as follows:

Conjecture 3.8.

Suppose RR is a Cohen-Macaulay local ring of dimension 11. If MM is a torsion-free RR-module with rank such that MRMM^{*}\otimes_{R}M is torsion-free, then MM is free.

The assumption that MM be torsion-free is not really needed, as one may reduce to this case, but it is convenient technically. Conjecture 3.8 is generally considered more mysterious, and less is known, if we do not assume RR to be Gorenstein. Indeed, if RR is Gorenstein then RR is its own canonical module and so its duality properties are better behaved. It has thus not been clear whether the formulation of Conjecture 3.8 is suitable for this level of generality, and there have been some attempts at providing alternate variations. For instance, a version was considered by[GTTLT15] for ideals where the hypothesis that HomR(I,R)RI\operatorname{Hom}_{R}(I,R)\otimes_{R}I is torsion-free is replaced by the hypothesis that HomR(I,ω)RI\operatorname{Hom}_{R}(I,\omega)\otimes_{R}I is torsion-free, and the conclusion that II is free is replaced by the conclusion that either II is free or IωI\cong\omega. A counterexample was provided in [GTTLT15, Example 7.3], however, that shows this conjecture need not hold in general, even for a reasonably well-behaved numerical semigroup ring. Our purpose for the remainder of this section is to provide some indication that the statement of Conjecture 3.8 is natural even outside the Gorenstein setting. To this end, we pose the following:

Conjecture 3.9.

Suppose RR is a Cohen-Macaulay local ring of dimension 11. If MM is a torsion-free RR-module with rank such that MRHomR(ω,M)M^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega,M) is torsion-free, then MωnM\cong\omega^{\oplus n} for some nn.

The naturality of this conjecture is evidenced by the existence of the map MRHomR(ω,M)HomR(ω,ω)RM^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega,M)\to\operatorname{Hom}_{R}(\omega,\omega)\cong R which factors through the map ϕω,ωM\phi^{M}_{\omega,\omega} introduced above, and whose image trω,ωM\operatorname{tr}^{M}_{\omega,\omega} may be identified with an ideal of RR that serves as a type of twisted trace ideal for MM. In the case where MM is an ideal of RR, the hypothesis that MRHomR(ω,M)M^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega,M) be torsion-free will force MEndR(M)HomR(ω,M)M^{\vee}\otimes_{\operatorname{End}_{R}(M)}\operatorname{Hom}_{R}(\omega,M) to be torsion-free which in turn will force ϕω,ωM\phi^{M}_{\omega,\omega} to be injective, since it is so at every 𝔭AssR(R)\mathfrak{p}\in\operatorname{Ass}_{R}(R) from Proposition 3.1 (2)(2) and (6)(6). Our claim that Conjecture 3.8 is natural comes then from the following observation:

Proposition 3.10.

Conjectures 3.8 and 3.9 are equivalent.

Proof.

Since MM is torsion-free with dimR=1\dim R=1, it is maximal Cohen-Macaulay, so MM is reflexive with respect to ω\omega. Then, by Hom-tensor adjointness, we observe

MRHomR(ω,M)MRHomR(ω,M)MRHomR(ωRM,ω)MR(M).M^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega,M)\cong M^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega,M^{\vee\vee})\cong M^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega\otimes_{R}M^{\vee},\omega)\cong M^{\vee}\otimes_{R}(M^{\vee})^{*}.

Thus, the requirement that MRHomR(ω,M)M^{\vee}\otimes_{R}\operatorname{Hom}_{R}(\omega,M) be torsion-free is equivalent to the hypotheses that (M)RM(M^{\vee})^{*}\otimes_{R}M^{\vee} is torsion-free, and MωnM\cong\omega^{\oplus n} for some nn if and only if MM^{\vee} is free. So the two conjectures are equivalent, as desired. ∎

References

  • [AB69] Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, vol. No. 94, American Mathematical Society, Providence, RI, 1969. MR 269685
  • [BH93] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
  • [CGTT19] Olgur Celikbas, Shiro Goto, Ryo Takahashi, and Naoki Taniguchi, On the ideal case of a conjecture of Huneke and Wiegand, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 3, 847–859. MR 3974971
  • [Fab20] Eleonore Faber, Trace ideals, normalization chains, and endomorphism rings, Pure Appl. Math. Q. 16 (2020), no. 4, 1001–1025. MR 4180237
  • [GT17] Shiro Goto and Ryo Takahashi, On the Auslander-Reiten conjecture for Cohen-Macaulay local rings, Proc. Amer. Math. Soc. 145 (2017), no. 8, 3289–3296. MR 3652783
  • [GTTLT15] Shiro Goto, Ryo Takahashi, Naoki Taniguchi, and Hoang Le Truong, Huneke-Wiegand conjecture and change of rings, J. Algebra 422 (2015), 33–52. MR 3272067
  • [Lin17a] Haydee Lindo, Self-injective commutative rings have no nontrivial rigid ideals, arXiv e-prints (2017), arXiv:1710.01793.
  • [Lin17b] Haydee Lindo, Trace ideals and centers of endomorphism rings of modules over commutative rings, J. Algebra 482 (2017), 102–130. MR 3646286
  • [LT23] Haydee Lindo and Peder Thompson, The trace property in preenveloping classes, Proceedings of the American Mathematical Society, Series B 10 (2023), no. 05, 56–70.
  • [Oor64] F. Oort, Yoneda extensions in abelian categories, Math. Ann. 153 (1964), 227–235. MR 162836
  • [SW] Keri Sather-Wagstaff, Semidualizing modules, ”https://ssather.people.clemson.edu/DOCS/sdm.pdf”.
  • [TW10] Ryo Takahashi and Diana White, Homological aspects of semidualizing modules, Math. Scand. 106 (2010), no. 1, 5–22. MR 2603458