This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized square function estimates for curves and their conical extensions

Robert Schippa
Abstract.

We show sharp square function estimates for curves in the plane whose curvature degenerates at a point and estimates sharp up to endpoints for cones over these curves. To this end, for curves of finite type we extend the classical Córdoba–Fefferman biorthogonality. For cones over degenerate curves, we analyze wave envelope estimates via High-Low-decomposition. The arguments are subsequently extended to the cone over the complex parabola.

Key words and phrases:
square function estimates, finite-type curves, complex cone, High-Low-method
2020 Mathematics Subject Classification:
42B25, 42B37.

1. Introduction

We consider square function estimates for curves with degeneracy and for their conical extensions. Let Γ\Gamma be a non-degenerate curve Γ={(ξ,h(ξ)):ξ(1,1)}\Gamma=\{(\xi,h(\xi)):\xi\in(-1,1)\} with hC2(1,1)h\in C^{2}(-1,1), h(0)=h(0)=0h(0)=h^{\prime}(0)=0, and h′′(ξ)1h^{\prime\prime}(\xi)\sim 1. Let F𝒮(2)F\in\mathcal{S}(\mathbb{R}^{2}) with supp(F^)𝒩δ(Γ)\text{supp}(\hat{F})\subseteq\mathcal{N}_{\delta}(\Gamma) with 𝒩δ(Γ)\mathcal{N}_{\delta}(\Gamma) denoting the δ\delta-neighbourhood of Γ\Gamma. Let Θδ\Theta_{\delta} denote a covering of Γ\Gamma with rectangles θ\theta of size Cδ12×CδC\delta^{\frac{1}{2}}\times C\delta, the short side pointing into normal direction, and the long side pointing into tangential direction. CC is chosen large enough such that θΘδ\theta\in\Theta_{\delta} cover 𝒩δ(Γ)\mathcal{N}_{\delta}(\Gamma). The classical Córdoba–Fefferman square function [4, 5, 6] estimate reads

(1) FL4(2)(θΘδ|Fθ|2)12L4(2).\|F\|_{L^{4}(\mathbb{R}^{2})}\lesssim\big{\|}\big{(}\sum_{\theta\in\Theta_{\delta}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{2})}.

Above FθF_{\theta} denotes a mollified Fourier projection to θ\theta, which comprises a smooth partition of unity on 𝒩δ(Γ)\mathcal{N}_{\delta}(\Gamma). Whereas the proof consists of a simple geometric observation, this estimate is of immense significance for estimating Fourier multipliers and exemplarily yields (in a well-known combination with maximal function estimates) the sharp estimate for Bochner–Riesz multipliers in two dimensions, as pointed out in the aforementioned references. We refer to [14] for further reading.

Here we shall look into variants for degenerate curves. We shall analyze in detail the model case: γk={(ξ,ξk):ξ[1,1]}\gamma_{k}=\{(\xi,\xi^{k}):\xi\in[-1,1]\} for k2k\in\mathbb{N}_{\geq 2}. For k=2k=2 this is a non-degenerate curve and the classical estimate applies. For k3k\geq 3, the curvature degenerates at the origin and the decomposition of γk\gamma_{k} into rectangles of size δ12×δ\delta^{\frac{1}{2}}\times\delta does not seem to be appropriate anymore. A decomposition into longer intervals of length δ1k\delta^{\frac{1}{k}} upon projection to the first coordinate was pointed out by Biggs–Brandes–Hughes [2]; see also Gressman et al. [8] highlighting the connection between counting and square function estimates and references therein. However, the δ1k\delta^{\frac{1}{k}}-intervals see some part of the curvature away from the origin, so the curve does no longer fit into rectangles of size δ1k×δ\delta^{\frac{1}{k}}\times\delta.

Indeed, the rectangles θ\theta occuring in the square function estimate in (1) linearize the curve on the largest possible scale with an error of size δ\delta. This will be the guiding principle for us.

Let Θδ,k\Theta_{\delta,k} be a covering of γk\gamma_{k} with rectangles as follows: One rectangle of size comparable to Cδ1k×CδC\delta^{\frac{1}{k}}\times C\delta centered at the origin, and for |ξ|δ1k|\xi|\gtrsim\delta^{\frac{1}{k}}, choose a rectangle centered at (ξ,ξk)(\xi,\xi^{k}) of length δ1k/|ξ|k22\delta^{\frac{1}{k}}/|\xi|^{\frac{k-2}{2}} into tangential direction and length δ\delta into normal direction. C1C\geq 1 is chosen large enough such that Θδ,k\Theta_{\delta,k} forms a covering of 𝒩δ(γk)\mathcal{N}_{\delta}(\gamma_{k}). We show the following:

Theorem 1.1.

Let k2k\in\mathbb{N}_{\geq 2}, and F𝒮(2)F\in\mathcal{S}(\mathbb{R}^{2}) with supp(F^)𝒩δ(γk)\text{supp}(\hat{F})\subseteq\mathcal{N}_{\delta}(\gamma_{k}). Then the following estimate holds:

(2) FL4(2)(θΘδ,k|Fθ|2)12L4(2).\|F\|_{L^{4}(\mathbb{R}^{2})}\lesssim\big{\|}\big{(}\sum_{\theta\in\Theta_{\delta,k}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{2})}.

In the proof we consider second order differences, by which already Biggs–Brandes–Hughes proved the estimate with a coarser decomposition mentioned above. The present analysis can be regarded as extension of the argument to show the square function estimate with a decomposition into the canonical scale, which depends on the curvature.

In the next step we consider square function estimates for cones over these curves. For k3k\in\mathbb{N}_{\geq 3} we define

𝒞γk={(ω1,ω2,ω3)3:|ω1|1,ω3[1/2,1],ω2=ω1k/ω3k1}.\mathcal{C}\gamma_{k}=\{(\omega_{1},\omega_{2},\omega_{3})\in\mathbb{R}^{3}:|\omega_{1}|\leq 1,\;\omega_{3}\in[1/2,1],\;\omega_{2}=\omega_{1}^{k}/\omega_{3}^{k-1}\}.

Let Θδ,k𝒞\Theta^{\mathcal{C}}_{\delta,k} denote the conical extension of the canonical covering of the curve {(ω1,ω2)2:ω2=ω1k}\{(\omega_{1},\omega_{2})\in\mathbb{R}^{2}:\omega_{2}=\omega_{1}^{k}\}. Roughly speaking, we take the covering of the δ\delta-neighbourhood into canonical rectangles linearizing the curve on the largest possible scale and then take its conical extension. The detailed definition will be provided in Section 3.

We show the following:

Theorem 1.2.

Let δ>0\delta>0, k3k\in\mathbb{N}_{\geq 3}, F𝒮(3)F\in\mathcal{S}(\mathbb{R}^{3}) and supp(F^)𝒩δ(𝒞γk)\text{supp}(\hat{F})\subseteq\mathcal{N}_{\delta}(\mathcal{C}\gamma_{k}). Then the following square function estimate holds:

FL4(3)εδε(θΘδ,k𝒞|Fθ|2)12L4(3).\|F\|_{L^{4}(\mathbb{R}^{3})}\lesssim_{\varepsilon}\delta^{-\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{\delta,k}^{\mathcal{C}}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})}.

This extends the square function estimate for non-degenerate cones due to Guth–Wang–Zhang [10]. We analyze Kakeya estimates for planks θ~=θθ\tilde{\theta}=\theta-\theta via a High-Low-decomposition. After fixing a height hσ2h\sim\sigma^{2}, σ[δ12,1]\sigma\in[\delta^{\frac{1}{2}},1], by considering their overlap, the planks can be sorted into smaller centred planks. This corresponds to a sorting into larger sectors τθ\tau\supseteq\theta. In case of the circular cone the resulting expressions are highly symmetric. In the generalized case we show overlap estimates via more perturbative arguments. It turns out that there is an additional overlap between regions, where the base curve has significant different curvature. So, we cannot recover the same Kakeya estimate like in case of the circular cone, but slicing into regions of approximately constant curvature seems necessary. This is different from the square function estimates for curves, where we can consider all the different curvatures simultaneously and still recover the estimate (2) on the canonical scale without loss.

We remark that Gao et al. [7] showed another stability result by extending the constant-coefficient analysis from [10] to variable coefficients. In this case, on small spatial scales the analysis for non-degenerate cones can be utilized. Then, by rescaling and using the self-similar structure of wave envelope estimates (see [1] for a variant of this argument in the context of decoupling), the estimate can be propagated to large spatial scales.

For the circular cone, the square function estimate combined with maximal function estimates yielded the sharp range of local smoothing estimates with ε\varepsilon-derivatives for solutions to the wave equations ([3, 13, 12]). In a different direction, Maldague and Guth–Maldague recently proved sharp square function estimates for moment curves t(t,t2,t3,,tk)t\mapsto(t,t^{2},t^{3},\ldots,t^{k}) of cubic [11] and higher order [9]. It is conceivable that arguments related to the present analysis allow for the proof of sharp square function estimates for curves of finite type t(t,ta2,,tak)t\mapsto(t,t^{a_{2}},\ldots,t^{a_{k}}), 1<a2<a3<ak1<a_{2}<a_{3}\ldots<a_{k}.

The “local” arguments to show the central Kakeya estimate extend to the complex cone:

Γ2={(z,z2/h,h)××:|z|1,h[1/2,1]},\mathbb{C}\Gamma_{2}=\{(z,z^{2}/h,h)\in\mathbb{C}\times\mathbb{C}\times\mathbb{R}:\,|z|\leq 1,h\in[1/2,1]\},

which, by identifying 2\mathbb{C}\equiv\mathbb{R}^{2}, can be regarded as subset of 5\mathbb{R}^{5}. Let Θδ,\Theta_{\delta,\mathbb{C}} denote the conical extension of the “complex” rectangles canonically covering the complex base curve z(z,z2)z\mapsto(z,z^{2}). The precise definitions are deferred to Section 4.

Extending the multiscale analysis of Guth–Wang–Zhang [10] to the complex cone, we can show the following square function estimate:

Theorem 1.3.

Let F𝒮(5)F\in\mathcal{S}(\mathbb{R}^{5}) with supp(F^)𝒩δ(Γ2)\text{supp}(\hat{F})\subseteq\mathcal{N}_{\delta}(\mathbb{C}\Gamma_{2}). Then the following estimate holds:

FL4(5)εδε(θΘδ,|Fθ|2)12L4(5).\|F\|_{L^{4}(\mathbb{R}^{5})}\lesssim_{\varepsilon}\delta^{-\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{\delta,\mathbb{C}}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{5})}.

In [11] and [9], High-Low-decompositions were applied in a sophisticated induction-on-dimension scheme to show sharp square function estimates for moment curves, cones over moment curves, and generalizations referred to as mmth order Taylor cones. Whereas the present induction scheme is far less sophisticated, to the best of the author’s knowledge, Theorem 1.3 is the first example of a square function estimate for and moreover the first application of the High-Low-method to a cone over a two-parameter base curve.

Outline of the paper. In Section 2 we show square function estimates for curves of finite type. Here we extend the Córdoba–Fefferman biorthogonality by considering second order differences. In Section 3 we show the square function estimates for the conical extensions. By a more local argument compared to [10], we show a generalized Kakeya estimate, which in the degenerate case deviates logarithmically from the case of the non-degenerate cone. By dyadic pigeonholing and rescaling, we can reduce the square function estimate for the degenerate cones to the case of non-degenerate cones. In Section 4 we show Theorem 3.1 building on the local analysis from the previous section.

2. Square function estimates for curves of finite type

In this section we prove Theorem 1.1. We begin with the motivating case k=3k=3, which can be carried out very explicitly.

Proof of Theorem 1.1k=3k=3.

By symmetry and finite decomposition we can suppose that the Fourier support of FF is contained in 𝒩δ({(ξ,ξk):ξ[0,1]})\mathcal{N}_{\delta}(\{(\xi,\xi^{k}):\xi\in[0,1]\}).

By Plancherel’s theorem, we find

(3) θFθL4(2)=2|(θFθ)2|2=2|θ1F^θ1θ2F^θ2|2=θ1,θ2,θ3,θ42(F^θ1F^θ2)(F^θ3F^θ4)¯.\begin{split}\big{\|}\sum_{\theta}F_{\theta}\big{\|}_{L^{4}(\mathbb{R}^{2})}&=\int_{\mathbb{R}^{2}}\big{|}\big{(}\sum_{\theta}F_{\theta}\big{)}^{2}\big{|}^{2}\\ &=\int_{\mathbb{R}^{2}}\big{|}\sum_{\theta_{1}}\hat{F}_{\theta_{1}}*\sum_{\theta_{2}}\hat{F}_{\theta_{2}}\big{|}^{2}\\ &=\sum_{\begin{subarray}{c}\theta_{1},\theta_{2},\\ \theta_{3},\theta_{4}\end{subarray}}\int_{\mathbb{R}^{2}}\big{(}\hat{F}_{\theta_{1}}*\hat{F}_{\theta_{2}}\big{)}\overline{\big{(}\hat{F}_{\theta_{3}}*\hat{F}_{\theta_{4}}\big{)}}.\end{split}

So, for θ1,,θ4Θδ,3\theta_{1},\ldots,\theta_{4}\in\Theta_{\delta,3} making a contribution, we have solutions to the system for ξi0\xi_{i}\geq 0, (ξi,ξi3)θi(\xi_{i},\xi_{i}^{3})\in\theta_{i}:

(4) {ξ1+ξ2=ξ3+ξ4,ξ13+ξ23=ξ33+ξ43+𝒪(δ).\left\{\begin{array}[]{cl}\xi_{1}+\xi_{2}&=\xi_{3}+\xi_{4},\\ \xi_{1}^{3}+\xi_{2}^{3}&=\xi_{3}^{3}+\xi_{4}^{3}+\mathcal{O}(\delta).\end{array}\right.

We shall establish that the above can only be satisfied in case of essential biorthogonality: Let D>1D>1 denote a fixed dilation factor. Then essential biorthogonality refers to

(5) (θ1Dθ3θ2Dθ4)(θ1Dθ4θ2Dθ3).(\theta_{1}\subseteq D\cdot\theta_{3}\wedge\theta_{2}\subseteq D\cdot\theta_{4})\vee(\theta_{1}\subseteq D\cdot\theta_{4}\wedge\theta_{2}\subseteq D\cdot\theta_{3}).

Once (5) is verified, the claim follows from (3) by applying the Cauchy-Schwarz inequality.

We turn to the analysis of (4): Taking the third power of the first line and subtracting the second line we find

{ξ1+ξ2=ξ3+ξ4,3ξ1ξ2(ξ1+ξ2)=3ξ3ξ4(ξ3+ξ4)+𝒪(δ).\left\{\begin{array}[]{cl}\xi_{1}+\xi_{2}&=\xi_{3}+\xi_{4},\\ 3\xi_{1}\xi_{2}(\xi_{1}+\xi_{2})&=3\xi_{3}\xi_{4}(\xi_{3}+\xi_{4})+\mathcal{O}(\delta).\end{array}\right.

For max(ξi)δ13\max(\xi_{i})\leq\delta^{\frac{1}{3}} we clearly have that (ξi,ξi3)(\xi_{i},\xi_{i}^{3}) all belong to the rectangle of size Cδ13×CδC\delta^{\frac{1}{3}}\times C\delta centered at the origin, which settles (5).

So, we suppose that max(ξi)δ13\max(\xi_{i})\geq\delta^{\frac{1}{3}} and obtain by dividing through 3(ξ1+ξ2)=3(ξ3+ξ4)3(\xi_{1}+\xi_{2})=3(\xi_{3}+\xi_{4}):

{ξ1+ξ2=ξ3+ξ4,ξ1ξ2=ξ3ξ4+𝒪(δmaxiξi).\left\{\begin{array}[]{cl}\xi_{1}+\xi_{2}&=\xi_{3}+\xi_{4},\\ \xi_{1}\xi_{2}&=\xi_{3}\xi_{4}+\mathcal{O}\big{(}\frac{\delta}{\max_{i}\xi_{i}}\big{)}.\end{array}\right.

Squaring the first line and subtracting the second line multiplied by 22, we are led to the system

{ξ1+ξ2=ξ3+ξ4,ξ12+ξ22=ξ32+ξ42+𝒪(δmaxiξi).\left\{\begin{array}[]{cl}\xi_{1}+\xi_{2}&=\xi_{3}+\xi_{4},\\ \xi_{1}^{2}+\xi_{2}^{2}&=\xi_{3}^{2}+\xi_{4}^{2}+\mathcal{O}\big{(}\frac{\delta}{\max_{i}\xi_{i}}\big{)}.\end{array}\right.

Now we are in the position to apply the classical Córdoba–Fefferman square function estimate, which yields a finitely overlapping decomposition into rectangles of length comparable to δ12(maxiξi)12\frac{\delta^{\frac{1}{2}}}{(\max_{i}\xi_{i})^{\frac{1}{2}}}, which for any (ξi,h(ξi))θi(\xi_{i},h(\xi_{i}))\in\theta_{i} is smaller than the tangential length of θi\theta_{i}. This completes the proof in case k=3k=3. ∎

Remark 2.1 (Mitigating effect of transversality).

The fact that for maxiξiminξi\max_{i}\xi_{i}\gg\min\xi_{i} the estimate improves reflects that, also in the degenerate case, transversality allows for improved bilinear estimates. Recall the following bilinear version of the Córdoba–Fefferman square function estimate (1) for supp(F^i)𝒩δ((ξ,ξ2):0ξ1)\text{supp}(\hat{F}_{i})\subseteq\mathcal{N}_{\delta}((\xi,\xi^{2}):0\leq\xi\leq 1) and dist(supp(F^1,F^2))1\text{dist}(\text{supp}(\hat{F}_{1},\hat{F}_{2}))\gtrsim 1, which yields a decomposition of the Fourier support into squares θΘδ×δ,2\theta\in\Theta_{\delta\times\delta,2} of size Cδ×CδC\delta\times C\delta:

F1F2L2(2)(θ1Θδ×δ,2|Fθ1|2)12(θ2Θδ×δ,2|Fθ2|2)12L2(2).\|F_{1}F_{2}\|_{L^{2}(\mathbb{R}^{2})}\lesssim\big{\|}\big{(}\sum_{\theta_{1}\in\Theta_{\delta\times\delta,2}}|F_{\theta_{1}}|^{2}\big{)}^{\frac{1}{2}}\big{(}\sum_{\theta_{2}\in\Theta_{\delta\times\delta,2}}|F_{\theta_{2}}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{2}(\mathbb{R}^{2})}.

We turn now to the proof of the general case. The following observation will be used repeatedly:

Lemma 2.2.

Let 1ξaξb01\geq\xi_{a}\geq\xi_{b}\geq 0. If ξbδ1p\xi_{b}\geq\delta^{\frac{1}{p}}, then

(6) ξa=ξb+𝒪(δ12ξbp22)\xi_{a}=\xi_{b}+\mathcal{O}\big{(}\frac{\delta^{\frac{1}{2}}}{\xi_{b}^{\frac{p-2}{2}}}\big{)}

implies

(7) ξa=ξb+𝒪(δ12ξap22).\xi_{a}=\xi_{b}+\mathcal{O}\big{(}\frac{\delta^{\frac{1}{2}}}{\xi_{a}^{\frac{p-2}{2}}}\big{)}.
Proof.

For ξbδ1p\xi_{b}\geq\delta^{\frac{1}{p}} it follows δ12ξbp22δ1p\frac{\delta^{\frac{1}{2}}}{\xi_{b}^{\frac{p-2}{2}}}\leq\delta^{\frac{1}{p}}, consequently (6) implies ξaξb\xi_{a}\sim\xi_{b}. ∎

Proof of Theorem 1.1.

By symmetry and finite decomposition we can suppose that the Fourier support of FF is contained in 𝒩δ({(ξ,ξk):ξ[0,1]})\mathcal{N}_{\delta}(\{(\xi,\xi^{k}):\xi\in[0,1]\}). Let h(ξ)=ξkh(\xi)=\xi^{k}. By the same argument as in (3), we are led to the following system for (ξi,h(ξi))θi(\xi_{i},h(\xi_{i}))\in\theta_{i}:

{ξ1+ξ2=ξ3+ξ4,h(ξ1)+h(ξ2)=h(ξ3)+h(ξ4)+𝒪(δ).\left\{\begin{array}[]{cl}\xi_{1}+\xi_{2}&=\xi_{3}+\xi_{4},\\ h(\xi_{1})+h(\xi_{2})&=h(\xi_{3})+h(\xi_{4})+\mathcal{O}(\delta).\end{array}\right.

We turn to the verification of the essential biorthogonality in the above case.

We suppose by symmetry that

(8) ξ1ξ2 and ξ3ξ4 and ξ1ξ3.\xi_{1}\geq\xi_{2}\text{ and }\xi_{3}\geq\xi_{4}\text{ and }\xi_{1}\geq\xi_{3}.

In the following we suppose that

(9) ξ1ξ3ξ2ξ4\xi_{1}\geq\xi_{3}\geq\xi_{2}\geq\xi_{4}

because the other possibility ξ1ξ2ξ3ξ4\xi_{1}\geq\xi_{2}\geq\xi_{3}\geq\xi_{4} immediately gives ξ1=ξ2=ξ3=ξ4\xi_{1}=\xi_{2}=\xi_{3}=\xi_{4} assuming (8).

We rewrite

h(ξ1)h(ξ3)+h(ξ2)h(ξ4)=(ξ1k1+ξ1k2ξ3++ξ1ξ3k2+ξ3k1)(ξ1ξ3)+(ξ2k1++ξ4k1)(ξ2ξ4).\begin{split}&\quad h(\xi_{1})-h(\xi_{3})+h(\xi_{2})-h(\xi_{4})\\ &=(\xi_{1}^{k-1}+\xi_{1}^{k-2}\xi_{3}+\ldots+\xi_{1}\xi_{3}^{k-2}+\xi_{3}^{k-1})(\xi_{1}-\xi_{3})+(\xi_{2}^{k-1}+\ldots+\xi_{4}^{k-1})(\xi_{2}-\xi_{4}).\end{split}

Since ξ1ξ3=ξ4ξ2\xi_{1}-\xi_{3}=\xi_{4}-\xi_{2}, this can be rewritten as

(10) (ξ1ξ3)(ξ1k1+ξ1k2ξ3++ξ3k1ξ2k1ξ2ξ4k2ξ4k1)=𝒪(δ).(\xi_{1}-\xi_{3})(\xi_{1}^{k-1}+\xi_{1}^{k-2}\xi_{3}+\ldots+\xi_{3}^{k-1}-\xi_{2}^{k-1}-\ldots-\xi_{2}\xi_{4}^{k-2}-\xi_{4}^{k-1})=\mathcal{O}(\delta).

The second factor can be estimated by (9) as

(11) (ξ1k1++ξ3k1ξ2k1ξ4k1)kξ3k1kξ2k1=k(ξ3ξ2)(ξ3k2++ξ2k2).(\xi_{1}^{k-1}+\ldots+\xi_{3}^{k-1}-\xi_{2}^{k-1}-\ldots\xi_{4}^{k-1})\geq k\xi_{3}^{k-1}-k\xi_{2}^{k-1}=k(\xi_{3}-\xi_{2})(\xi_{3}^{k-2}+\ldots+\xi_{2}^{k-2}).

Case A: ξ25δ1k\xi_{2}\leq 5\delta^{\frac{1}{k}}.
Case A1: ξ310δ1k\xi_{3}\leq 10\delta^{\frac{1}{k}}. In this case ξ1δ1k\xi_{1}\lesssim\delta^{\frac{1}{k}}, so all points (ξi,h(ξi))(\xi_{i},h(\xi_{i})) belong to the rectangle Cδ1k×CδC\delta^{\frac{1}{k}}\times C\delta at the origin.

Case A2: ξ310δ1k\xi_{3}\geq 10\delta^{\frac{1}{k}}. We find in this case

(11)ξ3k1.\eqref{eq:AuxEstimateII}\gtrsim\xi_{3}^{k-1}.

Consequently, from (10) follows

ξ1=ξ3+𝒪(δξ3k1).\xi_{1}=\xi_{3}+\mathcal{O}\big{(}\frac{\delta}{\xi_{3}^{k-1}}\big{)}.

For ξ310δ1k\xi_{3}\geq 10\delta^{\frac{1}{k}} it follows

δξ3k1δ12ξ3k22,\frac{\delta}{\xi_{3}^{k-1}}\lesssim\frac{\delta^{\frac{1}{2}}}{\xi_{3}^{\frac{k-2}{2}}},

which shows that

ξ1=ξ3+𝒪(δ12ξ3k22).\xi_{1}=\xi_{3}+\mathcal{O}\big{(}\frac{\delta^{\frac{1}{2}}}{\xi_{3}^{\frac{k-2}{2}}}\big{)}.

Since ξ3δ1k\xi_{3}\geq\delta^{\frac{1}{k}}, we can invoke Lemma 2.2 to infer

ξ1=ξ3+𝒪(δ12ξ1k22).\xi_{1}=\xi_{3}+\mathcal{O}\big{(}\frac{\delta^{\frac{1}{2}}}{\xi_{1}^{\frac{k-2}{2}}}\big{)}.

Consequently, as well (ξ1,h(ξ1))(\xi_{1},h(\xi_{1})), (ξ3,h(ξ3))(\xi_{3},h(\xi_{3})) as (ξ2,h(ξ2))(\xi_{2},h(\xi_{2})), (ξ4,h(ξ4))(\xi_{4},h(\xi_{4})) belong to essentially the same θi\theta_{i} (the latter two essentially the one at the origin).

Case B: ξ25δ1k\xi_{2}\geq 5\delta^{\frac{1}{k}}.
Case B1: |ξ3ξ2|(δξ2k2)12.|\xi_{3}-\xi_{2}|\lesssim\big{(}\frac{\delta}{\xi_{2}^{k-2}}\big{)}^{\frac{1}{2}}. Invoking again Lemma 2.2 we find that ξ2,ξ3\xi_{2},\xi_{3} belong to essentially the same rectangle, and moreover

(12) ξ1=ξ4+𝒪((δ/ξ2k2)12).\xi_{1}=\xi_{4}+\mathcal{O}((\delta/\xi_{2}^{k-2})^{\frac{1}{2}}).

Case B1I: ξ4δ1k\xi_{4}\gg\delta^{\frac{1}{k}}. In this case we have by (12)

ξ1=ξ4+𝒪(δ12ξ4k22).\xi_{1}=\xi_{4}+\mathcal{O}\big{(}\frac{\delta^{\frac{1}{2}}}{\xi_{4}^{\frac{k-2}{2}}}\big{)}.

Invoking Lemma 2.2 we obtain that (ξ1,h(ξ1))(\xi_{1},h(\xi_{1})), (ξ4,h(ξ4))(\xi_{4},h(\xi_{4})) belong essentially to the same θi\theta_{i}.
Case B1II: ξ4δ1k\xi_{4}\lesssim\delta^{\frac{1}{k}}. It follows from (12) and ξ25δ1k\xi_{2}\geq 5\delta^{\frac{1}{k}} that ξ1δ1k\xi_{1}\lesssim\delta^{\frac{1}{k}}. Consequently, all (ξi,h(ξi))(\xi_{i},h(\xi_{i})) belong essentially to the same θi\theta_{i} at the origin.

Case B2: |ξ3ξ2|(δξ2k2)12|\xi_{3}-\xi_{2}|\gtrsim\big{(}\frac{\delta}{\xi_{2}^{k-2}}\big{)}^{\frac{1}{2}}.

Taking (10) and (11) and the assumption (9) in this case together gives

|ξ1ξ3|δ/((δξ2k2)12ξ3k2)(δ12/ξ3(k2)/2).|\xi_{1}-\xi_{3}|\lesssim\delta/(\big{(}\frac{\delta}{\xi_{2}^{k-2}}\big{)}^{\frac{1}{2}}\cdot\xi_{3}^{k-2})\lesssim\big{(}\delta^{\frac{1}{2}}/\xi_{3}^{(k-2)/2}\big{)}.

Since ξ3ξ25δ1k\xi_{3}\geq\xi_{2}\geq 5\delta^{\frac{1}{k}}, we can invoke Lemma 2.2, which shows indeed that ξ1,ξ3\xi_{1},\xi_{3} belong to essentially the same rectangle. Consequently, we have

|ξ2ξ4|(δ12/ξ3(k2)/2)(δ12/ξ4(k2)/2).|\xi_{2}-\xi_{4}|\lesssim\big{(}\delta^{\frac{1}{2}}/\xi_{3}^{(k-2)/2}\big{)}\lesssim\big{(}\delta^{\frac{1}{2}}/\xi_{4}^{(k-2)/2}\big{)}.

This underlines that as well ξ2\xi_{2}, ξ4\xi_{4} belong to essentially the same rectangle. The proof is complete.

3. Square function estimates for cones over degenerate curves

In the following we extend the square function estimate from the previous section to cones. Let k2k\in\mathbb{N}_{\geq 2}. Presently, we denote the base curve by γk={(ω1,ω2)2:ω1(1,1),ω2=fk(ω1)}\gamma_{k}=\{(\omega_{1},\omega_{2})\in\mathbb{R}^{2}:\,\omega_{1}\in(-1,1),\,\omega_{2}=f_{k}(\omega_{1})\}, which generates the truncated cone:

𝒞γk={ω3(ω1/ω3,ω2,1)3:ω2=fk(ω1/ω3),0|ω1|1,12ω31}.\mathcal{C}\gamma_{k}=\{\omega_{3}\cdot(\omega_{1}/\omega_{3},\omega_{2},1)\in\mathbb{R}^{3}:\omega_{2}=f_{k}(\omega_{1}/\omega_{3}),\quad 0\leq|\omega_{1}|\leq 1,\;\frac{1}{2}\leq\omega_{3}\leq 1\}.

By finite decomposition and rigid motion, we suppose in the following that ω10\omega_{1}\geq 0. We require that fkCk(0,1)C([0,1])f_{k}\in C^{k}(0,1)\cap C([0,1]) with fk(0)=0f_{k}(0)=0 and there are Cm1C_{m}\geq 1, m=1,,km=1,\ldots,k such that for all ω(0,1)\omega\in(0,1):

(13) Cm1fk(m)(ω)/ωkmCm for 1mk.C_{m}^{-1}\leq f_{k}^{(m)}(\omega)/\omega^{k-m}\leq C_{m}\text{ for }1\leq m\leq k.

The estimates will be uniform in 𝒞γk\mathcal{C}\gamma_{k} upon imposing a bound CmCmC_{m}\leq C_{m}^{*}.

Let δ>0\delta>0. We parametrize the canonical covering of 𝒩δ(γp)\mathcal{N}_{\delta}(\gamma_{p}), which covers the δ\delta-neighbourhood with rectangles of maximal tangential length: An unnormalized tangential vector is given by 𝐭(ω)=(1,fk(ω))\mathbf{t}(\omega)=(1,f^{\prime}_{k}(\omega)). An inner normal vector is given by 𝐧(ω)=(fk(ω),1)\mathbf{n}(\omega)=(-f^{\prime}_{k}(\omega),1).

For |ω1|δ1k|\omega_{1}|\lesssim\delta^{\frac{1}{k}}, we choose 𝒪(1)\mathcal{O}(1) rectangles of length Cδ1kC\delta^{\frac{1}{k}} into the tangential direction and length CδC\delta into normal direction.

For |ω1|δ1k|\omega_{1}|\gg\delta^{\frac{1}{k}} we carry out a dyadic decomposition |ω1|K2|\omega_{1}|\sim K\in 2^{\mathbb{Z}} and choose points ω1\omega_{1} separated of length δ12Kk22\frac{\delta^{\frac{1}{2}}}{K^{\frac{k-2}{2}}}. The rectangles are then chosen of length Cδ12Kk22\frac{C\delta^{\frac{1}{2}}}{K^{\frac{k-2}{2}}} into tangential direction and of length CδC\delta into normal direction. Note that to cover the dyadic region of the curve with |ξ1|K|\xi_{1}|\sim K, we require K/(δ12/Kk22)Kk2/δ12K/(\delta^{\frac{1}{2}}/K^{\frac{k-2}{2}})\sim K^{\frac{k}{2}}/\delta^{\frac{1}{2}} rectangles.

We denote a collection of centers for the rectangles obtained from this process as (δ)2\mathcal{R}(\delta)\subseteq\mathbb{R}^{2} and 1(δ)=π1((δ))\mathcal{R}_{1}(\delta)=\pi_{1}(\mathcal{R}(\delta)).

Now we consider with the above parametrization the conical extension: For ξγk\xi\in\gamma_{k}111Here we abuse notation and denote the mapping and its image synonymously., we define the central line and normal vectors via

𝐜(ξ)=(ξ1,ξ2,1),𝐧γ(ξ)=(fk(ξ1),1,0),𝐧3=(0,0,1).\mathbf{c}(\xi)=(\xi_{1},\xi_{2},1),\qquad\mathbf{n}_{\gamma}(\xi)=(-f^{\prime}_{k}(\xi_{1}),1,0),\quad\mathbf{n}_{3}=(0,0,1).

Note that these are not normalized, but have Euclidean norm comparable to 11. We choose as tangent vector of the base curve (ξ1,ξ2,1)(\xi_{1},\xi_{2},1), ξγk\xi\in\gamma_{k}: 𝐭(ξ)=(1,fk(ξ1),0)\mathbf{t}(\xi)=(1,f_{k}^{\prime}(\xi_{1}),0). Note again that 𝐭\mathbf{t} is unnormalized but has modulus comparable to 11. We can cover 𝒩δ(𝒞γk)\mathcal{N}_{\delta}(\mathcal{C}\gamma_{k}) with rectangles

θ(δ,ξ)={a𝐜(ξ)+b𝐭(ξ)+c1𝐧γ(ξ)+c2𝐧3:12a1,|b|c0δ12|ξ1|k22,|c1|,|c2|c0δ}\theta(\delta,\xi)=\{a\mathbf{c}(\xi)+b\mathbf{t}(\xi)+c_{1}\mathbf{n}_{\gamma}(\xi)+c_{2}\mathbf{n}_{3}:\;\frac{1}{2}\leq a\leq 1,\;|b|\leq c_{0}\frac{\delta^{\frac{1}{2}}}{|\xi_{1}|^{\frac{k-2}{2}}},\;|c_{1}|,|c_{2}|\leq c_{0}\delta\}

for |ξ1|δ1k|\xi_{1}|\gtrsim\delta^{\frac{1}{k}} and some c0>1c_{0}>1. For ξγk\xi\in\gamma_{k} with |ξ1|δ1k|\xi_{1}|\lesssim\delta^{\frac{1}{k}} we consider

θ(δ,ξ)={a𝐜(ξ)+b𝐭(ξ)+c1𝐧γ(ξ)+c2𝐧3:12a1,|b|c0δ1k,|c1|,|c2|c0δ}.\theta(\delta,\xi)=\{a\mathbf{c}(\xi)+b\mathbf{t}(\xi)+c_{1}\mathbf{n}_{\gamma}(\xi)+c_{2}\mathbf{n}_{3}:\;\frac{1}{2}\leq a\leq 1,\;|b|\leq c_{0}\delta^{\frac{1}{k}},\;|c_{1}|,|c_{2}|\leq c_{0}\delta\}.

In the following θ\theta^{*} denotes the polar set.

We define based on the canonical covering of the δ\delta-neighbourhood of γk\gamma_{k}:

Θδ={θ(δ,ξ):ξ(δ)}.\Theta_{\delta}=\{\theta(\delta,\xi):\xi\in\mathcal{R}(\delta)\}.

We sort the θ\theta according to sections of comparable curvature: For K2K\in 2^{\mathbb{Z}} with Kδ1kK\gtrsim\delta^{\frac{1}{k}} we define

(14) Θδ(K)={θ(δ,ξ):ξ(δ),ξ1K}.\Theta_{\delta}(K)=\{\theta(\delta,\xi):\xi\in\mathcal{R}(\delta),\;\xi_{1}\sim K\}.

Additionally, we let for the 𝒪(1)\mathcal{O}(1)-sectors close to the origin:

Θδ(0)={θ(δ,ξ):ξ(δ),|ξ1|δ1k}.\Theta_{\delta}(0)=\{\theta(\delta,\xi):\xi\in\mathcal{R}(\delta),\;|\xi_{1}|\lesssim\delta^{\frac{1}{k}}\}.

We show the following:

Theorem 3.1.

Let 0<δ10<\delta\ll 1 and F𝒮(3)F\in\mathcal{S}(\mathbb{R}^{3}) with supp(F^)𝒩δ(𝒞γk)\text{supp}(\hat{F})\subseteq\mathcal{N}_{\delta}(\mathcal{C}\gamma_{k}). Then the following estimate holds:

FL4(3)εδε(θΘδ|Fθ|2)12L4(3).\|F\|_{L^{4}(\mathbb{R}^{3})}\lesssim_{\varepsilon}\delta^{-\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{\delta}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})}.

For the proof we shall extend the High-Low-method pioneered in [10]. This establishes a Kakeya-type estimate for the overlap of the planks θ~=θ(ξ)θ(ξ)\tilde{\theta}=\theta(\xi)-\theta(\xi), which is the Fourier support of |fθ|2|f_{\theta}|^{2}.

3.1. A generalized Kakeya estimate

We prove the following estimate, which generalizes [10, Lemma 1.4]:

Proposition 3.2.

Let r1r\gg 1, δ=r2\delta=r^{-2}, and k2k\geq 2. Suppose that supp(f^)𝒩δ(𝒞γk)\text{supp}(\hat{f})\subseteq\mathcal{N}_{\delta}(\mathcal{C}\gamma_{k}). Then the following estimate holds:

(15) 3(θΘδ|fθ|2)2log(r1)r1s1τΘs2UUτ,r2|U|1SUfL2(U)4\int_{\mathbb{R}^{3}}\big{(}\sum_{\theta\in\Theta_{\delta}}|f_{\theta}|^{2}\big{)}^{2}\lesssim\log(r^{-1})\sum_{r^{-1}\leq s\leq 1}\sum_{\tau\in\Theta_{s^{2}}}\sum_{U\parallel U_{\tau,r^{2}}}|U|^{-1}\|S_{U}f\|^{4}_{L^{2}(U)}

with Uτ,r2=conv(θΘr2,θτθ)U_{\tau,r^{-2}}=\text{conv}(\bigcup_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq\tau\end{subarray}}\theta^{*}).

Remark 3.3.

For k=2k=2, the analysis yields that the estimate holds without logarithmic loss; see Remark 3.6 (2).

Like in the case of the circular cone, we shall obtain incidence estimates for dyadic heights 2h=σ22^{\mathbb{Z}}\ni h=\sigma^{2}, r1σ1r^{-1}\leq\sigma\leq 1. In the following, to simplify notations, we let δ=r2\delta=r^{-2}. We define centered planks at scale σ\sigma: these are taylored such that at height h=σ2h=\sigma^{2} the centered planks cover canonically the r2r^{-2}-neighbourhood of the degenerate curve. To this end, we rescale the small height to unit height: This inflates the r2r^{-2}-neighbourhood to the r2σ2r^{-2}\sigma^{-2}-neighbourhood of the degenerate cone at unit length. Now we choose ξ(r2σ2)\xi\in\mathcal{R}(r^{-2}\sigma^{-2}), i.e., the spacing associated with the canonical covering of the neighbourhood of size r2σ2r^{-2}\sigma^{-2}.

But the length of the rectangles has to be rescaled again by σ2\sigma^{2}. This leads to the following: For ξ(r2σ2)\xi\in\mathcal{R}(r^{-2}\sigma^{-2}) with |ξ1|(rσ)2k|\xi_{1}|\lesssim(r\sigma)^{-\frac{2}{k}} consider

Θ(σ,ξ)={a𝐜(ξ)+b𝐭(ξ)+c1𝐧γ(ξ)+c2𝐧3:|a|σ2,|b|C(rσ)2kσ2,|c1|,|c2|Cr2}.\begin{split}\Theta(\sigma,\xi)&=\{a\mathbf{c}(\xi)+b\mathbf{t}(\xi)+c_{1}\mathbf{n}_{\gamma}(\xi)+c_{2}\mathbf{n}_{3}:\;|a|\leq\sigma^{2},\;|b|\leq C(r\sigma)^{-\frac{2}{k}}\sigma^{2},\\ &\quad|c_{1}|,|c_{2}|\leq Cr^{-2}\}.\end{split}

For ξ(r2σ2)\xi\in\mathcal{R}(r^{-2}\sigma^{-2}) with |ξ1|(rσ)2k|\xi_{1}|\gg(r\sigma)^{-\frac{2}{k}}, |ξ1|K2|\xi_{1}|\sim K\in 2^{\mathbb{Z}}, K1K\ll 1 consider

Θ(σ,ξ)={a𝐜(ξ)+b𝐭(ξ)+c1𝐧γ(ξ)+c2𝐧3:|a|σ2,|b|Cr1σKk22,|c1|,|c2|Cr2}.\Theta(\sigma,\xi)=\{a\mathbf{c}(\xi)+b\mathbf{t}(\xi)+c_{1}\mathbf{n}_{\gamma}(\xi)+c_{2}\mathbf{n}_{3}:\;|a|\leq\sigma^{2},\;|b|\leq C\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}},\;|c_{1}|,|c_{2}|\leq Cr^{-2}\}.

CC will be chosen C=C(c0,Cm)C=C(c_{0},C_{m}) with CmC_{m} given by (13).

These centered planks at scale σ\sigma form a mild dilation of the canonical covering of the r2r^{-2}-neighbourhood of hγ4h\gamma_{4}. We denote the collection by

𝐂𝐏σ={Θ(σ,ξ):ξ(r2σ2)}.\mathbf{CP}_{\sigma}=\{\Theta(\sigma,\xi):\xi\in\mathcal{R}(r^{-2}\sigma^{-2})\}.

For a set AA we denote the collection of its subelements by

A={x|yA:xy}.\bigcup A=\{x\;|\;\exists y\in A:x\in y\}.

In the High-Low-decomposition we will consider differences

(16) 𝐂𝐏σ\𝐂𝐏σ/2.\bigcup\mathbf{CP}_{\sigma}\backslash\bigcup\mathbf{CP}_{\sigma/2}.

The union will cover the Fourier support of θΘδ|fθ|2\sum_{\theta\in\Theta_{\delta}}|f_{\theta}|^{2} and on each union we shall obtain a certain almost orthogonality decomposition into coarser planks.

Define for r1σ1r^{-1}\leq\sigma\leq 1, σ2\sigma\in 2^{\mathbb{Z}}:

Ωσ=𝐂𝐏σ and Ωσ=Ωσ\Ωσ/2.\Omega_{\leq\sigma}=\bigcup\mathbf{CP}_{\sigma}\text{ and }\Omega_{\sigma}=\Omega_{\leq\sigma}\backslash\Omega_{\leq\sigma/2}.

Note that θ~ξ(r2)Θ(1,ξ)\bigcup\tilde{\theta}\subseteq\bigcup_{\xi\in\mathcal{R}(r^{-2})}\Theta(1,\xi) (the θ~\tilde{\theta} correspond to Θ(1,ξ)\Theta(1,\xi) up to a mild dilation).

Let ξ,ξγk\xi,\xi^{\prime}\in\gamma_{k}. We associate θ(ξ)\theta(\xi^{\prime}) to Θ(σ,ξ)\Theta(\sigma,\xi) as follows: For |ξ1|(rσ)2k|\xi_{1}^{\prime}|\lesssim(r\sigma)^{-\frac{2}{k}} choose ξ\xi with |ξ1ξ1|(rσ)2k|\xi_{1}-\xi_{1}^{\prime}|\leq(r\sigma)^{-\frac{2}{k}}. For |ξ1|K(rσ)2k|\xi_{1}^{\prime}|\sim K\gg(r\sigma)^{-\frac{2}{k}}, choose ξ\xi with |ξ1ξ1|r1σ1Kk22|\xi_{1}-\xi_{1}^{\prime}|\leq\frac{r^{-1}\sigma^{-1}}{K^{\frac{k-2}{2}}}. We write θ(ξ)Θ(σ,ξ)\theta(\xi^{\prime})\in\Theta(\sigma,\xi).

Proof of Proposition 3.2.

With the above sorting of sectors (14), we write

θΘδ|fθ|2K[δ1k,1]{0}θΘδ(K)|fθ|2.\sum_{\theta\in\Theta_{\delta}}|f_{\theta}|^{2}\lesssim\sum_{K\in[\delta^{\frac{1}{k}},1]\cup\{0\}}\sum_{\theta\in\Theta_{\delta}(K)}|f_{\theta}|^{2}.

By dyadic pigeonholing we obtain for some K[δ1k,1]{0}K\in[\delta^{\frac{1}{k}},1]\cup\{0\}:

(17) θΘδ|fθ|2log(r1)θΘδ(K)|fθ|2.\sum_{\theta\in\Theta_{\delta}}|f_{\theta}|^{2}\lesssim\log(r^{-1})\sum_{\theta\in\Theta_{\delta}(K)}|f_{\theta}|^{2}.

In the case Kr2kK\lesssim r^{-\frac{2}{k}} there are only 𝒪(1)\mathcal{O}(1)-sectors and the conclusion of the argument follows from a simple variant of the arguments below. In the following we suppose that Kr2kK\gg r^{-\frac{2}{k}}.

Let g(x)=θΘδ(K)(|fθ|2)(x)g(x)=\sum_{\theta\in\Theta_{\delta}(K)}\big{(}|f_{\theta}|^{2}\big{)}(x). Following the pigeonholing, we can refine the definition of 𝐂𝐏σ\mathbf{CP}_{\sigma}. Let

𝐂𝐏σ={Θ(σ,ξ):ξ1K}\mathbf{CP}^{\prime}_{\sigma}=\{\Theta(\sigma,\xi):\,\xi_{1}\sim K\}

and correspondingly, for σr1Kk22\sigma\sim\frac{r^{-1}}{K^{\frac{k-2}{2}}} we have that #{Θ(σ,ξ):Θ(σ,ξ)𝐂𝐏σ}1\#\{\Theta(\sigma,\xi):\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}\}\lesssim 1. This suggests to carry out the decomposition into Ωσ\Omega_{\sigma} up to a dyadic scale σ0r1Kk22\sigma_{0}\gg\frac{r^{-1}}{K^{\frac{k-2}{2}}}. We define for σ0σ1\sigma_{0}\leq\sigma\leq 1, σ2\sigma\in 2^{\mathbb{Z}}:

Ωσ=𝐂𝐏σ and Ωσ=Ωσ\Ωσ/2.\Omega^{\prime}_{\leq\sigma}=\bigcup\mathbf{CP}_{\sigma}^{\prime}\text{ and }\Omega^{\prime}_{\sigma}=\Omega^{\prime}_{\leq\sigma}\backslash\Omega^{\prime}_{\leq\sigma/2}.

We shall prove a High-Low-estimate after invoking Plancherel’s theorem:

3|g(x)|2=3|g^(ω)|2=3|θΘδ(K)(|fθ|2)^(ω)|2=Ω1|θΘδ(K)(|fθ|2)^(ω)|2.\int_{\mathbb{R}^{3}}|g(x)|^{2}=\int_{\mathbb{R}^{3}}|\hat{g}(\omega)|^{2}=\int_{\mathbb{R}^{3}}\big{|}\sum_{\theta\in\Theta_{\delta}(K)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}=\int_{\Omega_{\leq 1}}\big{|}\sum_{\theta\in\Theta_{\delta}(K)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}.

The pigeonholing carried out in (17) will be implicit in the following to lighten the notation. Moreover, for σr1Kk22\sigma\sim\frac{r^{-1}}{K^{\frac{k-2}{2}}} we have that #{Θ(σ,ξ):Θ(σ,ξ)𝐂𝐏σ}1\#\{\Theta(\sigma,\xi):\Theta(\sigma,\xi)\in\mathbf{CP}_{\sigma}\}\lesssim 1. This suggests to carry out the decomposition (16) up to a dyadic scale σ0r1Kk22\sigma_{0}\gg\frac{r^{-1}}{K^{\frac{k-2}{2}}}. We abuse notation and denote Ωσ0\Omega^{\prime}_{\leq\sigma_{0}} by Ωσ\Omega^{\prime}_{\sigma} again.

We consider the dyadic partition:

(18) Ω1|(θΘδ(K)|fθ|2(ω)|2=σ0σ1Ωσ|θΘδ(K)(|fθ|2)^(ω)|2𝑑ωA(σ).\int_{\Omega^{\prime}_{\leq 1}}\big{|}\big{(}\sum_{\theta\in\Theta_{\delta}(K)}|f_{\theta}|^{2}(\omega)\big{|}^{2}=\sum_{\sigma_{0}\leq\sigma\leq 1}\underbrace{\int_{\Omega^{\prime}_{\sigma}}\big{|}\sum_{\theta\in\Theta_{\delta}(K)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}d\omega}_{A(\sigma)}.

We sort the sum over θ\theta into Θ(σ,ξ)\Theta(\sigma,\xi):

A(σ)=Ωσ|Θ(σ,ξ)𝐂𝐏σθΘ(σ,ξ),θΘδ(K)(|fθ|2)^(ω)|2.A(\sigma)=\int_{\Omega^{\prime}_{\sigma}}\big{|}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}}\sum_{\begin{subarray}{c}\theta\in\Theta(\sigma,\xi),\\ \theta\in\Theta_{\delta}(K)\end{subarray}}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}.

We shall see, extending the crucial observation from the non-degenerate case, that for ωΩσ\omega\in\Omega_{\sigma}^{\prime}, the overlap of Θ(σ,ξ)\Theta(\sigma,\xi) is finite. This allows us to apply the Cauchy-Schwarz inequality without significant loss:

(19) Ωσ|Θ(σ,ξ)𝐂𝐏σθΘ(σ,ξ)(|fθ|2)^(ω)|2ΩσΘ(σ,ξ)𝐂𝐏σ|θΘ(σ,ξ)(|fθ|2)^(ω)|2.\int_{\Omega_{\sigma}^{\prime}}\big{|}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}}\sum_{\theta\in\Theta(\sigma,\xi)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}\lesssim\int_{\Omega^{\prime}_{\sigma}}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}}\big{|}\sum_{\theta\in\Theta(\sigma,\xi)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}.

For σσ0\sigma\sim\sigma_{0}, we have |𝐂𝐏σ|1|\mathbf{CP}^{\prime}_{\sigma}|\sim 1 by |ξ|K|\xi|\sim K. Consequently, (19) is immediate for σσ0\sigma\sim\sigma_{0}. In the following we suppose that σσ0\sigma\gg\sigma_{0}.

It will be crucial to understand the set Ωσ{ω3=h}\Omega^{\prime}_{\sigma}\cap\{\omega_{3}=h\}. Note that for θ=θ(ξ)\theta=\theta(\xi) with ξ(r2)\xi\in\mathcal{R}(r^{-2}) we obtain for θ~(ξ){ω3=h}\tilde{\theta}(\xi)\cap\{\omega_{3}=h\} a rectangle centered at hγ4(ξ1)h\gamma_{4}(\xi_{1}) with length r1Kk22\frac{r^{-1}}{K^{\frac{k-2}{2}}} into the tangential direction and r2r^{-2} into the normal direction:

π12(supp((|fθ|2)){ω3=h})={hγ4(ξ1)+γ˙4(ξ1)+cr2𝐧γ(ξ1):||r1Kk22,|c|2}.\begin{split}&\quad\pi_{12}(\text{supp}(\mathcal{F}(|f_{\theta}|^{2}))\cap\{\omega_{3}=h\})\\ &=\{h\gamma_{4}(\xi_{1})+\ell\dot{\gamma}_{4}(\xi_{1})+cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}):|\ell|\lesssim\frac{r^{-1}}{K^{\frac{k-2}{2}}},\;|c|\leq 2\}.\end{split}

By π12:32\pi_{12}:\mathbb{R}^{3}\to\mathbb{R}^{2} we denote the projection to the first two coordinates, which will often be implicit in the following when intersecting with {ω3=h}\{\omega_{3}=h\}. In the following to unify notation in the above display, we let 𝐧γ(ξ1)=𝐧γ(ξ)\mathbf{n}_{\gamma}(\xi_{1})=\mathbf{n}_{\gamma}(\xi). By symmetry ω3ω3\omega_{3}\to-\omega_{3} we restrict in the following to non-negative hh.

To show (19), we begin with the following lemma, which states that for hσ2h\ll\sigma^{2}, if a point lies in the tangential neighbourhood of hγk(η1)h\gamma_{k}(\eta_{1}) with a tangential distance much smaller than (Θ(σ,η))\ell(\Theta(\sigma,\eta)), then it lies in 𝐂𝐏σ/2\mathbf{CP}_{\sigma/2}.

For this we do not have to require |η1|K|\eta_{1}|\sim K or a minimum size condition σσ0\sigma\gg\sigma_{0}.

Lemma 3.4.
  1. Let σ2[r1,1]\sigma\in 2^{\mathbb{Z}}\cap[r^{-1},1], 0hσ20\leq h\leq\sigma^{2}, and |η1|1|\eta_{1}|\ll 1.

  2. (1)

    Let

    (20) p=hγk(η1)+γ˙k(η1)+cr2𝐧γ(η1)p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})

    with |η1|(rσ)2k|\eta_{1}|\ll(r\sigma)^{-\frac{2}{k}}, ||(rσ)2kσ2|\ell|\ll(r\sigma)^{-\frac{2}{k}}\sigma^{2}, and |c|c0|c|\leq c_{0}. Then we have

    (21) p=hγk(0)+1γ˙k(0)+Cr2𝐧γ(0)p=h\gamma_{k}(0)+\ell_{1}\dot{\gamma}_{k}(0)+Cr^{-2}\mathbf{n}_{\gamma}(0)

    with |C|C(c0,Cm)|C|\leq C^{*}(c_{0},C_{m}) with CmC_{m} given in (13) and |1|(rσ)2kσ2|\ell_{1}|\ll(r\sigma)^{-\frac{2}{k}}\sigma^{2}. Furthermore, for pp defined by (20) with |η1|(rσ)2k|\eta_{1}|\ll(r\sigma)^{-\frac{2}{k}}, ||(rσ)2kσ2|\ell|\sim(r\sigma)^{-\frac{2}{k}}\sigma^{2}, we obtain (21) with |1|(rσ)2kσ2|\ell_{1}|\sim(r\sigma)^{-\frac{2}{k}}\sigma^{2}.

  3. (2)

    Let pp be defined by (20) with |η1|(rσ)2k|\eta_{1}|\gtrsim(r\sigma)^{-\frac{2}{k}}, ||r1σ|η1|k22|\ell|\ll\frac{r^{-1}\sigma}{|\eta_{1}|^{\frac{k-2}{2}}}, and |c|c0|c|\leq c_{0}. Then there is ξ(r2(σ/2)2)\xi\in\mathcal{R}(r^{-2}(\sigma/2)^{-2}) with |ξ1η1|r1σ1|η1|k22|\xi_{1}-\eta_{1}|\lesssim\frac{r^{-1}\sigma^{-1}}{|\eta_{1}|^{\frac{k-2}{2}}} and

    (22) p=hγ4(ξ1)+1γ˙4(ξ1)+Cr2𝐧γ(ξ1)p=h\gamma_{4}(\xi_{1})+\ell_{1}\dot{\gamma}_{4}(\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1})

    with |C|C(c0,Cm)|C|\leq C^{*}(c_{0},C_{m}) and |1|r1σ/|ξ1|k22|\ell_{1}|\ll r^{-1}\sigma/|\xi_{1}|^{\frac{k-2}{2}}, which implies for hσ2h\ll\sigma^{2}:

    pΘ(σ/2,ξ){ω3=h}.p\in\Theta(\sigma/2,\xi)\cap\{\omega_{3}=h\}.

    Furthermore, for pp defined by (20) with |η1|(rσ)2k|\eta_{1}|\lesssim(r\sigma)^{-\frac{2}{k}}, ||r1σ|η1|k22|\ell|\sim\frac{r^{-1}\sigma}{|\eta_{1}|^{\frac{k-2}{2}}}, and |c|2|c|\leq 2 we have (22) with |C|C|C|\leq C^{*} and |1|r1σ|ξ1|k22|\ell_{1}|\sim\frac{r^{-1}\sigma}{|\xi_{1}|^{\frac{k-2}{2}}}.

Proof.

We can suppose that σr1\sigma\gg r^{-1} since for σr1\sigma\sim r^{-1} there are only finitely many ξ(r2σ2)\xi\in\mathcal{R}(r^{-2}\sigma^{-2}).

Proof of (1): We compute under the above assumptions by Taylor expansion:

hγ4(η1)+γ˙4(η1)+cr2𝐧γ(η1)=h(γk(0)+η1kk!γk(k)(ξ¯a))+(1,fk(η1))+cr2𝐧γ(η1)\begin{split}&\quad h\gamma_{4}(\eta_{1})+\ell\dot{\gamma}_{4}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})\\ &=h(\gamma_{k}(0)+\frac{\eta_{1}^{k}}{k!}\gamma^{(k)}_{k}(\bar{\xi}_{a}))+\ell(1,f_{k}^{\prime}(\eta_{1}))+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})\end{split}

and recall that |fk(η1)||η1|k1|f_{k}^{\prime}(\eta_{1})|\sim|\eta_{1}|^{k-1}, |fk(k)|1|f_{k}^{(k)}|\sim 1.

Consequently, for |η1|(rσ)2k|\eta_{1}|\ll(r\sigma)^{-\frac{2}{k}}, ||(rσ)2kσ2|\ell|\ll(r\sigma)^{-\frac{2}{k}}\sigma^{2}, and |c|2|c|\leq 2, we find

hγ4(η1)+γ˙4(η1)+cr2𝐧γ(η1)=(hη1++cr2𝐧γ,1(η1),h+c1r2)h\gamma_{4}(\eta_{1})+\ell\dot{\gamma}_{4}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})=(h\eta_{1}+\ell+cr^{-2}\mathbf{n}_{\gamma,1}(\eta_{1}),h+c_{1}r^{-2})

with |c1||c0|+1|c_{1}|\leq|c_{0}|+1. This yields the representation

hγ4(η1)+γ˙4(η1)+cr2𝐧γ(η1)=h(0,1)+1(1,0)+Cr2(0,1)h\gamma_{4}(\eta_{1})+\ell\dot{\gamma}_{4}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})=h(0,1)+\ell_{1}(1,0)+Cr^{-2}(0,1)

with |1|(rσ)2kσ2|\ell_{1}|\ll(r\sigma)^{-\frac{2}{k}}\sigma^{2} and |C|C(c0,Cm)|C|\leq C^{*}(c_{0},C_{m}).

The same computation shows that for |η1|(rσ)2k|\eta_{1}|\lesssim(r\sigma)^{-\frac{2}{k}} and |1|(rσ)2kσ2|\ell_{1}|\sim(r\sigma)^{-\frac{2}{k}}\sigma^{2} we obtain a representation as

hγk(0)+γ˙k(0)+Cr2𝐧γ(0)h\gamma_{k}(0)+\ell\dot{\gamma}_{k}(0)+Cr^{-2}\mathbf{n}_{\gamma}(0)

with ||(rσ)2kσ2|\ell|\sim(r\sigma)^{-\frac{2}{k}}\sigma^{2}. On the other hand, for |η1|(rσ)2k|\eta_{1}|\lesssim(r\sigma)^{-\frac{2}{k}} and |1|(rσ)2kσ2|\ell_{1}|\gg(r\sigma)^{-\frac{2}{k}}\sigma^{2} we have that pΘ(σ,0){ω3=h}p\notin\Theta(\sigma,0)\cap\{\omega_{3}=h\}.

Proof of (2): Let p=hγk(η1)+γ˙k(η1)+cr2𝐧γ(η1)p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1}) with |η1|(rσ)2k|\eta_{1}|\gtrsim(r\sigma)^{-\frac{2}{k}}, ||r1σ|η1|k22|\ell|\ll\frac{r^{-1}\sigma}{|\eta_{1}|^{\frac{k-2}{2}}}, and |c|c0|c|\leq c_{0}. To show the representation (22), we carry out a Taylor expansion at ξ1η1\xi_{1}\sim\eta_{1} with |Δξ1|r1σ|ξ1|k22|\Delta\xi_{1}|\sim\frac{r^{-1}\sigma}{|\xi_{1}|^{\frac{k-2}{2}}} to find

hγk(ξ1+Δξ1)+γ˙k(ξ1+Δξ1)+cr2𝐧γ(ξ1+Δξ1)=h(γk(ξ1)+(Δξ1)γ˙k(ξ1)+𝒪(h(Δξ1)2γ¨k(ξ1))+(γ˙k(ξ1)+𝒪((Δξ1)γ¨k(ξ1))+cr2𝐧γ(ξ1).\begin{split}&\quad h\gamma_{k}(\xi_{1}+\Delta\xi_{1})+\ell\dot{\gamma}_{k}(\xi_{1}+\Delta\xi_{1})+cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}+\Delta\xi_{1})\\ &=h(\gamma_{k}(\xi_{1})+(\Delta\xi_{1})\dot{\gamma}_{k}(\xi_{1})+\mathcal{O}(h(\Delta\xi_{1})^{2}\ddot{\gamma}_{k}(\xi_{1}))+\\ &\quad\ell(\dot{\gamma}_{k}(\xi_{1})+\mathcal{O}((\Delta\xi_{1})\ddot{\gamma}_{k}(\xi_{1}))+cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}).\end{split}

Recalling that |γ¨k(ξ1)||ξ1|k2|\ddot{\gamma}_{k}(\xi_{1})|\sim|\xi_{1}|^{k-2} such that by hypothesis we have

|h(Δξ1)2γ¨k(ξ1)|r2 and |(Δξ1)γ¨k(ξ1)|r2.|h(\Delta\xi_{1})^{2}\ddot{\gamma}_{k}(\xi_{1})|\ll r^{-2}\text{ and }|\ell(\Delta\xi_{1})\ddot{\gamma}_{k}(\xi_{1})|\ll r^{-2}.

This allows us to write

hγk(η1)+(+h(Δη1))γ˙k(η1)+Cr2𝐞,h\gamma_{k}(\eta_{1})+(\ell+h(\Delta\eta_{1}))\dot{\gamma}_{k}(\eta_{1})+Cr^{-2}\mathbf{e},

with |𝐞|1|\mathbf{e}|\leq 1 and |C|C|C|\leq C^{*}. 𝐞\mathbf{e} can then be decomposed into tangential and normal vector, which yields the desired representation.

In the following we rely on σσ0\sigma\gg\sigma_{0} and |η1|K|\eta_{1}|\sim K. We shall see that the points pθ~(η)Ωσ{ω3=h}p\in\tilde{\theta}(\eta)\cap\Omega^{\prime}_{\sigma}\cap\{\omega_{3}=h\} for hσ2h\ll\sigma^{2} with the above representation

p=hγk(η1)+γ˙k(η1)+cr2𝐧γ(η)p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta)

actually satisfy ||r1σKk22|\ell|\sim\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}}. Together with the previous lemma, we have the following representation:

Lemma 3.5.

Let |η1|K|\eta_{1}|\sim K, hσ2h\leq\sigma^{2}, pθ~(η1){ω3=h}Ωσp\in\tilde{\theta}(\eta_{1})\cap\{\omega_{3}=h\}\cap\Omega^{\prime}_{\sigma} and σσ0r1Kk22\sigma\gg\sigma_{0}\sim\frac{r^{-1}}{K^{\frac{k-2}{2}}}. We have the representation

(23) p=hγk(ξ1)+γ˙k(ξ1)+Cr2𝐧γ(ξ1)p=h\gamma_{k}(\xi_{1})+\ell\dot{\gamma}_{k}(\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1})

with ξ11(r2σ2)\xi_{1}\in\mathcal{R}_{1}(r^{-2}\sigma^{-2}), |ξ1η1|2r1σ1|ξ1|k22|\xi_{1}-\eta_{1}|\leq 2\frac{r^{-1}\sigma^{-1}}{|\xi_{1}|^{\frac{k-2}{2}}}, ||r1σKk22|\ell|\lesssim\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}}, and |C|C(c0,Cm)|C|\leq C^{*}(c_{0},C_{m}). For hσ2h\ll\sigma^{2} (23) holds with ||r1σKk22|\ell|\sim\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}}.

We remark that as a consequence of the assumptions, it follows that |η1|(rσ)2k|\eta_{1}|\gtrsim(r\sigma)^{-\frac{2}{k}} and that ξ1\xi_{1} is always bounded away from zero.

A consequence of the lemma is that Ωσ\Omega^{\prime}_{\sigma} at height hσ2h\ll\sigma^{2} for σσ0\sigma\gg\sigma_{0} consists entirely of a mild dilation of the ends of Θ(σ,ξ){ω3=h}\Theta(\sigma,\xi)\cap\{\omega_{3}=h\}.

Under the above assumptions on |ξ||\xi| and σσ0\sigma\gg\sigma_{0}, we define the right end of Θ(σ,ξ){ω3=h}\Theta(\sigma,\xi)\cap\{\omega_{3}=h\} as collection of points:

RE(Θ(σ,ξ),h)={hγk(ξ1)+γ˙k(ξ1)+Cr2𝐧γ(ξ1):r1σ|ξ1|k22,|C|C(c0,Cm)}.\text{RE}(\Theta(\sigma,\xi),h)=\{h\gamma_{k}(\xi_{1})+\ell\dot{\gamma}_{k}(\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1})\,:\,\ell\sim\frac{r^{-1}\sigma}{|\xi_{1}|^{\frac{k-2}{2}}},\quad|C|\leq C^{*}(c_{0},C_{m})\}.

The left end of Θ(σ,ξ){ω3=h}\Theta(\sigma,\xi)\cap\{\omega_{3}=h\} is correspondingly defined as

LE(Θ(σ,ξ),h)={hγk(ξ1)+γ˙4(ξ1)+Cr2𝐧γ(ξ1):r1σ|ξ1|k22,|C|C}.\text{LE}(\Theta(\sigma,\xi),h)=\{h\gamma_{k}(\xi_{1})+\ell\dot{\gamma}_{4}(\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1})\,:\,\quad\ell\sim-\frac{r^{-1}\sigma}{|\xi_{1}|^{\frac{k-2}{2}}},\quad|C|\leq C^{*}\}.

We turn to the proof of Lemma 3.5:

Proof of Lemma 3.5.

We shall see that a point

p=hγk(η1)+γ˙k(η1)+cr2𝐧γ(η)p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta)

with ||r1σKk22|\ell|\gg\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}} cannot be covered with any Θ(σ,ξ)\Theta(\sigma,\xi). For hσ2h\sim\sigma^{2} recall that

𝒩c1r2(hγk)𝐂𝐏σ{ω3=h}𝒩c2r2(hγk),\mathcal{N}_{c_{1}r^{-2}}(h\gamma_{k})\subseteq\bigcup\mathbf{CP}^{\prime}_{\sigma}\cap\{\omega_{3}=h\}\subseteq\mathcal{N}_{c_{2}r^{-2}}(h\gamma_{k}),

but p=hγk(η1)+γ˙k(η1)𝒩c2r2(hγk)p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})\notin\mathcal{N}_{c_{2}r^{-2}}(h\gamma_{k}) for ||r1σKk22|\ell|\gg\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}} as a consequence of Taylor’s theorem.

In the following we turn to hσ2h\ll\sigma^{2} and suppose that there exists a point

p=hγk(η1)+γ˙k(η1)+cr2𝐧γ(η1)Ωσ{ω3=h}p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})\in\Omega_{\sigma}^{\prime}\cap\{\omega_{3}=h\}

with ||r1σKk22|\ell|\gg\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}}. We shall see that the right side of θ~(η)\tilde{\theta}(\eta) at this length cannot be covered by the right nor the left side of Θ(σ,ξ)\Theta(\sigma,\xi).

Case 1: r1σKk22\ell\gg\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}}. We shall see that the “long” right side can neither be covered by the right nor the left side of Θ(σ,ξ)\Theta(\sigma,\xi).

Case 1a: We exclude the case that pp is covered by the right side of some Θ(σ,ξ)\Theta(\sigma,\xi), for which we argue by contradiction. Suppose that for 10\ell_{1}\geq 0:

(24) hγk(η1)+γ˙k(η1)+cr2𝐧γ(η1)=hγk(ξ1)+1γ˙k(ξ1)+Cr2𝐧γ(ξ1).h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})=h\gamma_{k}(\xi_{1})+\ell_{1}\dot{\gamma}_{k}(\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}).

We can suppose that 1r2\ell_{1}\gg r^{-2} since otherwise, p𝒩Cr2(hγk)p\in\mathcal{N}_{Cr^{-2}}(h\gamma_{k}) but 𝒩Cr2(hγ4)\mathcal{N}_{Cr^{-2}}(h\gamma_{4}) is covered by 𝐂𝐏σ/2\mathbf{CP}^{\prime}_{\sigma/2}, in which case pΩσp\notin\Omega^{\prime}_{\sigma}.

Since 1r1σKk22\ell_{1}\lesssim\frac{r^{-1}\sigma}{K^{\frac{k-2}{2}}}, hσ2h\ll\sigma^{2}, by projection to the first coordinate we have |ξ1η1|r1σ1Kk22|\xi_{1}-\eta_{1}|\gg\frac{r^{-1}\sigma^{-1}}{K^{\frac{k-2}{2}}}. We shall see that necessarily the right ends of Θ(σ,ξ)\Theta(\sigma,\xi) are essentially disjoint.

Refer to caption
Figure 1. Essential disjointness of the ends of Θ(σ,ξ)\Theta(\sigma,\xi).

Let Δξ1=C¯r1σ1Kk22\Delta\xi_{1}=\bar{C}\frac{r^{-1}\sigma^{-1}}{K^{\frac{k-2}{2}}} for C¯1\bar{C}\gg 1 to find by Taylor expansion with Lagrange remainder

(25) hγk(ξ1+Δξ1)+γ˙k(ξ1+Δξ1)+Cr2𝐧γ(ξ1+Δξ1)=h(γk(ξ1)+(Δξ1)γ˙k(ξ1)+(Δξ)22γ¨k(ξ¯a))+(γ˙k(ξ1)+Δξ1γ¨k(ξ1)+(Δξ)22γk(3)(ξ¯b))+Cr2𝐧γ(ξ1+Δξ1).\begin{split}&\quad h\gamma_{k}(\xi_{1}+\Delta\xi_{1})+\ell\dot{\gamma}_{k}(\xi_{1}+\Delta\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}+\Delta\xi_{1})\\ &=h(\gamma_{k}(\xi_{1})+(\Delta\xi_{1})\dot{\gamma}_{k}(\xi_{1})+\frac{(\Delta\xi)^{2}}{2}\ddot{\gamma}_{k}(\bar{\xi}_{a}))\\ &\quad+\ell(\dot{\gamma}_{k}(\xi_{1})+\Delta\xi_{1}\ddot{\gamma}_{k}(\xi_{1})+\frac{(\Delta\xi)^{2}}{2}\gamma_{k}^{(3)}(\bar{\xi}_{b}))+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}+\Delta\xi_{1}).\end{split}

We estimate by the derivative bounds for fkf_{k}:

|h(Δξ)22γ¨k(ξ¯a)|+|(Δξ1)22γk(3)(ξ¯b)|r2.\big{|}\frac{h(\Delta\xi)^{2}}{2}\ddot{\gamma}_{k}(\bar{\xi}_{a})\big{|}+\big{|}\frac{\ell(\Delta\xi_{1})^{2}}{2}\gamma_{k}^{(3)}(\bar{\xi}_{b})\big{|}\ll r^{-2}.

Moreover,

𝐞2,(Δξ1)γ¨k(ξ1)𝐧γ(η1),(Δξ1)γ¨k(ξ1)r2.\langle\mathbf{e}_{2},\ell(\Delta\xi_{1})\ddot{\gamma}_{k}(\xi_{1})\rangle\sim\langle\mathbf{n}_{\gamma}(\eta_{1}),\ell(\Delta\xi_{1})\ddot{\gamma}_{k}(\xi_{1})\rangle\gg r^{-2}.

This shows that the right end of Θ(σ,ξ)\Theta(\sigma,\xi) has too much distance to hγk(η1)+γ˙k(η1)h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1}) in the direction of 𝐧γ(η1)\mathbf{n}_{\gamma}(\eta_{1}) for ξ1=η1+Δξ1\xi_{1}=\eta_{1}+\Delta\xi_{1} to intersect with θ~(η)\tilde{\theta}(\eta).

Case 1b: Next, we shall exclude the case that pp can be covered by the left side of Θ(σ,ξ)\Theta(\sigma,\xi). Suppose that for pΩσ{ω3=h}p\in\Omega_{\sigma}\cap\{\omega_{3}=h\}:

(26) hγk(η1)+γ˙k(η1)+cr2𝐧γ(η1)=p=hγk(ξ1)+1γ˙k(ξ1)+Cr2𝐧γ(ξ1).h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})=p=h\gamma_{k}(\xi_{1})+\ell_{1}\dot{\gamma}_{k}(\xi_{1})+Cr^{-2}\mathbf{n}_{\gamma}(\xi_{1}).
Refer to caption
Figure 2. We shall see that in case the long end of θ~(η)\tilde{\theta}(\eta) touches the other end of Θ(σ,ξ)\Theta(\sigma,\xi) the distance to the curve is 𝒪(r2)\mathcal{O}(r^{-2}).

Suppose that r1σ|η1|k22|1|\ell\gg\frac{r^{-1}\sigma}{|\eta_{1}|^{\frac{k-2}{2}}}\gtrsim|\ell_{1}|. We carry out a Taylor expansion of the right hand side of (26) to find

hγk(ξ1)+1γ˙k(ξ1)=h(γk(η1+Δξ1))+1γ˙k(η1+Δξ1)=h(γk(η1)+Δξ1γ˙k(η1)+(Δξ1)22γ¨k(η1)++(Δξ1)kk!γk(k)(ξ¯a))+1(γ˙k(η1)+Δξ1γ¨k(η1)++(Δξ1)k1(k1)!γk(k)(ξ¯b)).\begin{split}&\quad h\gamma_{k}(\xi_{1})+\ell_{1}\dot{\gamma}_{k}(\xi_{1})\\ &=h(\gamma_{k}(\eta_{1}+\Delta\xi_{1}))+\ell_{1}\dot{\gamma}_{k}(\eta_{1}+\Delta\xi_{1})\\ &=h(\gamma_{k}(\eta_{1})+\Delta\xi_{1}\dot{\gamma}_{k}(\eta_{1})+\frac{(\Delta\xi_{1})^{2}}{2}\ddot{\gamma}_{k}(\eta_{1})+\ldots+\frac{(\Delta\xi_{1})^{k}}{k!}\gamma_{k}^{(k)}(\bar{\xi}_{a}))\\ &\quad+\ell_{1}(\dot{\gamma}_{k}(\eta_{1})+\Delta\xi_{1}\ddot{\gamma}_{k}(\eta_{1})+\ldots+\frac{(\Delta\xi_{1})^{k-1}}{(k-1)!}\gamma_{k}^{(k)}(\bar{\xi}_{b})).\end{split}

Projecting to the first coordinate yields

(27) =hΔξ1+1+𝒪(r2) and consequently, hΔξ1|1|.\ell=h\Delta\xi_{1}+\ell_{1}+\mathcal{O}(r^{-2})\text{ and consequently, }\ell\sim h\Delta\xi_{1}\gg|\ell_{1}|.

Projecting to the second coordinate yields

(28) (hΔξ12+1)Δξ1γ¨k(η1)+(hΔξ13!+12)(Δξ1)2γk(3)(η1)++(hΔξ1k!γk(k)(ξ¯a)+1(k1)!γk(k)(ξ¯b))(Δξ1)k1=𝒪(r2).\begin{split}&\quad\big{(}\frac{h\Delta\xi_{1}}{2}+\ell_{1}\big{)}\Delta\xi_{1}\ddot{\gamma}_{k}(\eta_{1})+\big{(}\frac{h\Delta\xi_{1}}{3!}+\frac{\ell_{1}}{2}\big{)}(\Delta\xi_{1})^{2}\gamma_{k}^{(3)}(\eta_{1})+\ldots\\ &+\big{(}\frac{h\Delta\xi_{1}}{k!}\gamma_{k}^{(k)}(\bar{\xi}_{a})+\frac{\ell_{1}}{(k-1)!}\gamma_{k}^{(k)}(\bar{\xi}_{b})\big{)}(\Delta\xi_{1})^{k-1}=\mathcal{O}(r^{-2}).\end{split}

By further finite subdivision of the dyadic range |η1||ξ1|K|\eta_{1}|\sim|\xi_{1}|\sim K we can arrange that |Δξ1|K|\Delta\xi_{1}|\ll K. Together with the derivative bounds of fkf_{k} we obtain from plugging (27) into (28) that

h(Δξ1)2γ¨k(η1)r2.h(\Delta\xi_{1})^{2}\ddot{\gamma}_{k}(\eta_{1})\lesssim r^{-2}.

Now we obtain from another Taylor expansion that

hγk(η1)+h(Δξ1)γ˙k(η1)+cr2𝐧γ(η1)=hγk(η1+Δη1)+h(Δξ1)22γ¨k(ξ¯c)+cr2𝐧γ(η1)=hγk(η1+Δξ1)+𝒪(r2).\begin{split}&\quad h\gamma_{k}(\eta_{1})+h(\Delta\xi_{1})\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})\\ &=h\gamma_{k}(\eta_{1}+\Delta\eta_{1})+\frac{h(\Delta\xi_{1})^{2}}{2}\ddot{\gamma}_{k}(\bar{\xi}_{c})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})\\ &=h\gamma_{k}(\eta_{1}+\Delta\xi_{1})+\mathcal{O}(r^{-2}).\end{split}

By convexity, this gives for the left hand side of (26) for hΔξ1\ell\leq h\Delta\xi_{1}:

lhs(26)=hγk(η1)+γ˙k(η1)+cr2𝐧γ(η1)𝒩Cr2(hγk),\text{lhs}\eqref{eq:Case1bOverlap}=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})+cr^{-2}\mathbf{n}_{\gamma}(\eta_{1})\in\mathcal{N}_{Cr^{-2}}(h\gamma_{k}),

but recalling that 𝒩Cr2(hγk)𝐂𝐏σ/2\mathcal{N}_{Cr^{-2}}(h\gamma_{k})\subseteq\bigcup\mathbf{CP}_{\sigma/2}, this shows that pΩσp\notin\Omega_{\sigma}.

Case 2: The case of pθ~(η)Ωσp\in\tilde{\theta}(\eta)\cap\Omega_{\sigma} being located on the long left side of θ~\tilde{\theta} can be ruled out by mirroring the above arguments.

Remark 3.6.
  1. (1)

    The Taylor expansion in (25) shows the essential disjointness of the right ends of Θ(σ,ξ)\Theta(\sigma,\xi) and likewise for the left ends, mutatis mutandis.

  2. (2)

    It is for this lemma we require the dyadic pigeonholing |ξ1|K|\xi_{1}|\sim K. If we do not impose this constraint, there can be an unfavorable additional overlap between different scales:

    Refer to caption
    Figure 3. Non-trivial interaction between regions with significantly different curvature.

    It becomes possible that a long left side of θ~(η1)\tilde{\theta}(\eta_{1}) at a scale η1ξ1\eta_{1}\gg\xi_{1} touches the right end of Θ(σ,ξ1)\Theta(\sigma,\xi_{1})

    hγk(ξ1)+1γ˙k(ξ1)=p=hγk(η1)+γ˙k(η1)h\gamma_{k}(\xi_{1})+\ell_{1}\dot{\gamma}_{k}(\xi_{1})=p=h\gamma_{k}(\eta_{1})+\ell\dot{\gamma}_{k}(\eta_{1})

    with

    ||1r1σ|ξ1|k22r1σ|η1|k22.|\ell|\sim\ell_{1}\sim\frac{r^{-1}\sigma}{|\xi_{1}|^{\frac{k-2}{2}}}\gg\frac{r^{-1}\sigma}{|\eta_{1}|^{\frac{k-2}{2}}}.

    This can happen because the “canonical” scale of Θ(σ,η1)\Theta(\sigma,\eta_{1}) is much smaller than the one of Θ(σ,ξ1)\Theta(\sigma,\xi_{1}) due to a significant change of the curvature. It is conceivable that this interaction between different scales corresponds to a logarithmic loss compared to the case of the circular cone. Indeed, the base curve of the circular cone has constant curvature, for which reason the pigeonholing into regions with comparable curvature is not necessary for the above argument. This moreover points out that in case k=2k=2, the estimate (15) holds without logarithmic loss.

The following is immediate from the inclusion property Θ(σ,ξ)MΘ(σ,ξ)\Theta(\sigma,\xi)\subseteq M\Theta(\sigma,\xi^{\prime}) for neighbouring base points ξ\xi, ξ\xi^{\prime}.

Corollary 3.7.

Let |η|K|\eta|\sim K, σσ0\sigma\geq\sigma_{0}, and ωθ~(η)Ωσ\omega\in\tilde{\theta}(\eta)\cap\Omega^{\prime}_{\sigma}.

Then, we have ωSΘ(σ,ξ)\omega\in S\Theta(\sigma,\xi) for θ(η)Θ(σ,ξ)\theta(\eta)\in\Theta(\sigma,\xi). SS depends on CC^{*} and MM.

Secondly,

Corollary 3.8.

Let ωΩσ\omega\in\Omega^{\prime}_{\sigma} with ω3=hσ2\omega_{3}=h\ll\sigma^{2} and σσ0\sigma\gg\sigma_{0}. Then

π12(ω)SEnds(h)=S(ξ(r2σ2)LE(Θ(σ,ξ),h)ξ(r2σ2)RE(Θ(σ,ξ),h)).\pi_{12}(\omega)\in S\text{Ends}(h)=S\big{(}\bigcup_{\xi\in\mathcal{R}(r^{-2}\sigma^{-2})}\text{LE}(\Theta(\sigma,\xi),h)\cup\bigcup_{\xi\in\mathcal{R}(r^{-2}\sigma^{-2})}\text{RE}(\Theta(\sigma,\xi),h)).

We complete the first step of the proof of (19) invoking Corollary 3.7:

(29) Ωσ|Θ(σ,ξ)𝐂𝐏σ|θΘ(σ,ξ),ξK(|fθ|2)^(ω)||2Ωσ|Θ(σ,ξ)𝐂𝐏σ,ωSΘ(σ,ξ)|θΘ(σ,ξ),ξK(|fθ|2)^(ω)||2.\int_{\Omega^{\prime}_{\sigma}}\big{|}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}}\big{|}\sum_{\begin{subarray}{c}\theta\in\Theta(\sigma,\xi),\\ \xi\sim K\end{subarray}}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}\big{|}^{2}\lesssim\int_{\Omega^{\prime}_{\sigma}}\big{|}\sum_{\begin{subarray}{c}\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma},\\ \omega\in S\Theta(\sigma,\xi)\end{subarray}}\big{|}\sum_{\begin{subarray}{c}\theta\in\Theta(\sigma,\xi),\\ \xi\sim K\end{subarray}}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}\big{|}^{2}.

In the second step we shall see that there are only finitely many Θ(σ,ξ)\Theta(\sigma,\xi) which are contributing:

Lemma 3.9.

Let ωΩσ\omega\in\Omega^{\prime}_{\sigma}. Then the following estimate holds:

#{Θ(σ,ξ):ωSΘ(σ,ξ)}1.\#\{\Theta(\sigma,\xi):\omega\in S\Theta(\sigma,\xi)\}\lesssim 1.
Proof.

Note again that we can suppose σσ0\sigma\gg\sigma_{0}, since for σσ0\sigma\sim\sigma_{0} it holds

#{Θ(σ,ξ)𝐂𝐏σ}1.\#\{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}\}\lesssim 1.

Firstly, suppose hσ2h\sim\sigma^{2}. Rescaling to unit height, we find that h1(Θ(σ,ξ){ω3=h})h^{-1}(\Theta(\sigma,\xi)\cap\{\omega_{3}=h\}) forms a canonical covering of γk\gamma_{k} at scale r2σ2r^{-2}\sigma^{-2}. Since the canonical covering is finitely overlapping, this settles the case hσ2h\sim\sigma^{2}.

Next, we turn to hσ2h\ll\sigma^{2}. We are in the position to invoke Corollary 3.8. Then the finite overlap is a consequence of the finite overlap of the right ends and left ends separately. This follows from the Taylor expansions (25) already carried out in Lemma 3.5.

We can now prove (19). We obtain for ωΩσ\omega\in\Omega_{\sigma}^{\prime}:

|Θ(σ,ξ)𝐂𝐏σθΘ(σ,ξ),ξK(|fθ|2)^(ω)||Θ(σ,ξ)𝐂𝐏σ,ωSΘ(σ,ξ)θΘ(σ,ξ)(|fθ|2)^(ω)|(Θ(σ,ξ)𝐂𝐏σ,ωSΘ(σ,ξ)|θ(|fθ|2)^(ω)|2)12.\begin{split}\big{|}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}}\sum_{\begin{subarray}{c}\theta\in\Theta(\sigma,\xi),\\ \xi\sim K\end{subarray}}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}&\lesssim\big{|}\sum_{\begin{subarray}{c}\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma},\\ \omega\in S\Theta(\sigma,\xi)\end{subarray}}\sum_{\theta\in\Theta(\sigma,\xi)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}\\ &\lesssim\big{(}\sum_{\begin{subarray}{c}\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma},\\ \omega\in S\Theta(\sigma,\xi)\end{subarray}}\big{|}\sum_{\theta}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}\big{)}^{\frac{1}{2}}.\end{split}

So integrating the above over Ωσ\Omega_{\sigma}^{\prime} we obtain

Ωσ|Θ(σ,ξ)𝐂𝐏σθΘ(σ,ξ),ξK(|fθ|2)^(ω)|2𝑑ωΩσΘ(σ,ξ)𝐂𝐏σ,ωSΘ(σ,ξ)|θΘ(σ,ξ)(|fθ|2)^(ω)|23Θ(σ,ξ)𝐂𝐏σ|θΘ(σ,ξ),ξK(|fθ|2)^(ω)|2Θ(σ,ξ)𝐂𝐏σ3|θΘ(σ,ξ)|fθ|2|2.\begin{split}\int_{\Omega^{\prime}_{\sigma}}\big{|}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma}}\sum_{\begin{subarray}{c}\theta\in\Theta(\sigma,\xi),\\ \xi\sim K\end{subarray}}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}d\omega&\lesssim\int_{\Omega_{\sigma}^{\prime}}\sum_{\begin{subarray}{c}\Theta(\sigma,\xi)\in\mathbf{CP}^{\prime}_{\sigma},\\ \omega\in S\Theta(\sigma,\xi)\end{subarray}}\big{|}\sum_{\theta\in\Theta(\sigma,\xi)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}\\ &\lesssim\int_{\mathbb{R}^{3}}\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}_{\sigma}}\big{|}\sum_{\begin{subarray}{c}\theta\in\Theta(\sigma,\xi),\\ \xi\sim K\end{subarray}}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}\\ &\lesssim\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}_{\sigma}}\int_{\mathbb{R}^{3}}\big{|}\sum_{\theta\in\Theta(\sigma,\xi)}|f_{\theta}|^{2}\big{|}^{2}.\end{split}

The final estimate is again due to Plancherel’s theorem. We can omit the localization to scales ξK\xi\sim K in the following.

We let Θ(σ,ξ)𝐂𝐏σ\Theta(\sigma,\xi)\in\mathbf{CP}_{\sigma} bijectively correspond to τΘr2σ2\tau\in\Theta_{r^{-2}\sigma^{-2}} via the base points and we can dominate

θΘ(σ,ξ)|fθ|2θSτ|fθ|2.\sum_{\theta\in\Theta(\sigma,\xi)}|f_{\theta}|^{2}\leq\sum_{\theta\subseteq S\tau}|f_{\theta}|^{2}.

θΘ(σ,ξ)\theta\in\Theta(\sigma,\xi) corresponds to θSτ\theta\subseteq S\tau. Consequently, we can estimate

Θ(σ,ξ)𝐂𝐏σ3|θΘ(σ,ξ)|fθ|2|2τΘr2σ23|θΘr2:θSτ|fθ|2|2.\sum_{\Theta(\sigma,\xi)\in\mathbf{CP}_{\sigma}}\int_{\mathbb{R}^{3}}\big{|}\sum_{\theta\in\Theta(\sigma,\xi)}|f_{\theta}|^{2}\big{|}^{2}\lesssim\sum_{\tau\in\Theta_{r^{-2}\sigma^{-2}}}\int_{\mathbb{R}^{3}}\big{|}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}}:\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}\big{|}^{2}.

We have proved after pigeonholing (17), carrying out the sum over σ[σ0,1]\sigma\in[\sigma_{0},1], and changing notation (rσ)1=s(r\sigma)^{-1}=s that

(30) 3|θΘr2|fθ|2|2𝑑xlog(r1)r1σ1τΘr2σ23|θΘr2:θSτ|fθ|2|2log(r1)r1s1τΘs23(θΘr2:θSτ|fθ|2)2.\begin{split}\int_{\mathbb{R}^{3}}\big{|}\sum_{\theta\in\Theta_{r^{-2}}}|f_{\theta}|^{2}\big{|}^{2}dx&\lesssim\log(r^{-1})\sum_{r^{-1}\leq\sigma\leq 1}\sum_{\tau\in\Theta_{r^{-2}\sigma^{-2}}}\int_{\mathbb{R}^{3}}\big{|}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}}:\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}\big{|}^{2}\\ &\lesssim\log(r^{-1})\sum_{r^{-1}\leq s\leq 1}\sum_{\tau\in\Theta_{s^{2}}}\int_{\mathbb{R}^{3}}\big{(}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}}:\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}\big{)}^{2}.\end{split}

It remains to divide up the final integral into the dual regions of the Fourier support, which is a consequence of the uncertainty principle.

To this end, choose a smooth function ητ\eta_{\tau}, which is identical to one on Sτ~S\tilde{\tau} and rapidly decaying away from Sτ~S\tilde{\tau}. Moreover, we require that the inverse Fourier transform ηˇτ\check{\eta}_{\tau} is supported on Cτ~Uτ,r2C\tilde{\tau}^{*}\approx U_{\tau,r^{2}} and satisfies |ηˇτ(x)||τ|1|\check{\eta}_{\tau}(x)|\lesssim|\tau^{*}|^{-1}. By Plancherel’s theorem and Fourier inversion we can break the integral into translates of Uτ,r2U_{\tau,r^{2}} to find

3|ηˇτ(θΘr2,θSτ|fθ|2)|2=UUτ,r2U|ηˇτ(θΘr2,θSτ|fθ|2)|2𝑑x.\int_{\mathbb{R}^{3}}\big{|}\check{\eta}_{\tau}*\big{(}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}\big{)}\big{|}^{2}=\sum_{U\parallel U_{\tau,r^{2}}}\int_{U}\big{|}\check{\eta}_{\tau}*\big{(}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}\big{)}\big{|}^{2}dx.

We have for each xUx\in U:

|ηˇτθΘr2,θSτ|fθ|2(x)||U|1ηUθΘr2,θSτ|fθ|2(x)dx,\big{|}\check{\eta}_{\tau}*\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}(x)\big{|}\lesssim|U|^{-1}\int\eta_{U}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}(x)dx,

where ηU\eta_{U} denotes an LL^{\infty}-normalized bump function supported in CUCU.

We obtain

(31) UUτ,r2U|ηˇτ(θΘr2,θSτ|fθ|2)|2𝑑xUUτ,r2|U|1(ηUθΘr2,θSτ|fθ|2(x))2UUτ,r2|U|1SUfL2(U)4.\begin{split}\sum_{U\parallel U_{\tau,r^{2}}}\int_{U}\big{|}\check{\eta}_{\tau}*\big{(}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}\big{)}\big{|}^{2}dx&\lesssim\sum_{U\parallel U_{\tau,r^{2}}}|U|^{-1}\big{(}\eta_{U}\sum_{\begin{subarray}{c}\theta\in\Theta_{r^{-2}},\\ \theta\subseteq S\tau\end{subarray}}|f_{\theta}|^{2}(x)\big{)}^{2}\\ &\lesssim\sum_{U\parallel U_{\tau,r^{2}}}|U|^{-1}\|S_{U}f\|^{4}_{L^{2}(U)}.\end{split}

The ultimate estimate follows from the support of ηU\eta_{U} being comparable to UU. Plugging (31) into (30), we find

3(θΘr2|fθ|2)2log(r1)r1s1τΘs2UUτ,r2|U|1SUfL2(U)4.\int_{\mathbb{R}^{3}}\big{(}\sum_{\theta\in\Theta_{r^{-2}}}|f_{\theta}|^{2}\big{)}^{2}\lesssim\log(r^{-1})\sum_{r^{-1}\leq s\leq 1}\sum_{\tau\in\Theta_{s^{2}}}\sum_{U\parallel U_{\tau,r^{2}}}|U|^{-1}\|S_{U}f\|^{4}_{L^{2}(U)}.

The proof of (15) is complete.

3.2. A slicing argument

In the following we prove the conical square function estimate for the degenerate cone:

𝒞γk={(ξ1,ξ1k/ξ3k1,ξ3):|ξ1|1,ξ3[1/2,1]}.\mathcal{C}\gamma_{k}=\{(\xi_{1},\xi_{1}^{k}/\xi_{3}^{k-1},\xi_{3}):|\xi_{1}|\leq 1,\quad\xi_{3}\in[1/2,1]\}.

Θδ\Theta_{\delta} denotes the canonical covering of the δ\delta-neighbourhood introduced previously.

Instead of following the roadmap from Guth–Wang–Zhang [10], we rely on pigeonholing, rescaling, and the stability result for Kakeya estimates for non-degenerate cones discussed above. This incurs a logarithmic loss compared to the square function estimate for degenerate curves, but already for the circular cone it is currently not clear whether the loss can be removed.

This corresponds to the observation recorded in Remark 3.6 that we do not expect the generalized Kakeya estimate to hold globally for cones over finite-type curves. We have the following stability result of [10, Theorem 1.1]:

Theorem 3.10.

Let f2C2(1,1)f_{2}\in C^{2}(-1,1) with

(32) f2(0)=0 and c2,C2:ξ(0,1):c2f2′′(ξ)C2.f_{2}^{\prime}(0)=0\text{ and }\exists c_{2},C_{2}:\forall\xi\in(0,1):\,c_{2}\leq f_{2}^{\prime\prime}(\xi)\leq C_{2}.

Let 𝒞γ2={ω3(ω1/ω3,f2(ω1/ω3),1):ω1[1,1],ω3[1/2,1]}\mathcal{C}\gamma_{2}=\{\omega_{3}(\omega_{1}/\omega_{3},f_{2}(\omega_{1}/\omega_{3}),1):\,\omega_{1}\in[-1,1],\;\omega_{3}\in[1/2,1]\} denote the cone with base curve γ2={(ξ,f2(ξ)}\gamma_{2}=\{(\xi,f_{2}(\xi)\}. Let f𝒮(3)f\in\mathcal{S}(\mathbb{R}^{3}) with supp(f^)𝒩R1(𝒞γ2)\text{supp}(\hat{f})\subseteq\mathcal{N}_{R^{-1}}(\mathcal{C}\gamma_{2}). Then the following estimate holds:

fL4(3)ε,c2,C2Rε(θΘR1|fθ|2)12L4(3).\|f\|_{L^{4}(\mathbb{R}^{3})}\lesssim_{\varepsilon,c_{2},C_{2}}R^{\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{R^{-1}}}|f_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})}.

Now we establish the square function estimate for the degenerate cone 𝒞γk\mathcal{C}\gamma_{k}, k3k\geq 3.

Proof of Theorem 3.1.

To apply Theorem 3.10, we carry out a dyadic pigeonholing into sectors. Let M2[R1k,1]M\in 2^{\mathbb{Z}}\cap[R^{-\frac{1}{k}},1], and let

νM={(ξ1,ξ2,ξ3)𝒞γk:|ξ1ξ3ν|M}.\nu_{M}=\{(\xi_{1},\xi_{2},\xi_{3})\in\mathcal{C}\gamma_{k}:\big{|}\frac{\xi_{1}}{\xi_{3}}-\nu\big{|}\lesssim M\}.

Additionally, we let

ν0={(ξ1,ξ2,ξ3)𝒞γk:|ξ1ξ3|R1k},\nu_{0}=\{(\xi_{1},\xi_{2},\xi_{3})\in\mathcal{C}\gamma_{k}:\big{|}\frac{\xi_{1}}{\xi_{3}}\big{|}\lesssim R^{-\frac{1}{k}}\},

which contains 𝒪(1)\mathcal{O}(1)-sectors θΘR1\theta\in\Theta_{R^{-1}} close to the origin.

By dyadic pigeonholing, it suffices to establish a square function estimate for one of the dyadic regions defined above. Let M(2[R1k,1]){0}M\in(2^{\mathbb{Z}}\cap[R^{-\frac{1}{k}},1])\cup\{0\} such that

(33) fL4(3)log(R)fML4(3)\|f\|_{L^{4}(\mathbb{R}^{3})}\lesssim\log(R)\|f_{M}\|_{L^{4}(\mathbb{R}^{3})}

with fMf_{M} denoting the Fourier projection of ff to the R1R^{-1}-neighbourhood of νM\nu_{M}.

Clearly, for MR1kM\lesssim R^{-\frac{1}{k}}, since only finitely many θΘR1\theta\in\Theta_{R^{-1}} are contributing, it is immediate from the Cauchy-Schwarz inequality that

(34) fML4(3)(θΘR1|fθ|2)12L4(3).\|f_{M}\|_{L^{4}(\mathbb{R}^{3})}\lesssim\big{\|}\big{(}\sum_{\theta\in\Theta_{R^{-1}}}|f_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})}.

We turn to the case MR1kM\gg R^{-\frac{1}{k}}: The key tool will be a generalized Lorentz rescaling, mapping νM\nu_{M} to a full non-degenerate cone Γ2\Gamma_{2}^{\prime}. By finite subdivision we can suppose that the coordinates for νM\nu_{M} satisfy for M=cνM=c\nu with c1c\ll 1 to be chosen later:

(35) |ξ1ξ3ν|M.\big{|}\frac{\xi_{1}}{\xi_{3}}-\nu\big{|}\leq M.
Lemma 3.11.

Let M[R1k,1]2M\in[R^{-\frac{1}{k}},1]\cap 2^{\mathbb{Z}}. There is a linear map Λν:νMΓ2\Lambda_{\nu}:\nu_{M}\to\Gamma_{2}^{\prime}, which maps the sector νM\nu_{M} to a non-degenerate cone

Γ2={ω3(ω1/ω3,f2(ω1/ω3),1):|ω1|1,ω3[1/2,1]}\Gamma_{2}^{\prime}=\{\omega_{3}\cdot(\omega_{1}/\omega_{3},f_{2}(\omega_{1}/\omega_{3}),1):|\omega_{1}|\leq 1,\,\omega_{3}\in[1/2,1]\}

with base curve given by

f2(ω1)=ω12+=3kdk,c2ω1,f_{2}(\omega_{1})=\omega_{1}^{2}+\sum_{\ell=3}^{k}d_{k,\ell}c^{\ell-2}\omega_{1}^{\ell},

which satisfies (13) uniform in MM. Λν\Lambda_{\nu} maps the R1R^{-1}-neighbourhood of 𝒞γk\mathcal{C}\gamma_{k} to the MkR1M^{-k}R^{-1}-neighbourhood of Γ2\Gamma_{2}^{\prime}.

Secondly, the sectors at scale δ\delta contained in τ\tau, which satisfy

|ξ1ξ3νθ|(δMk2)12\big{|}\frac{\xi_{1}}{\xi_{3}}-\nu_{\theta}\big{|}\leq\big{(}\frac{\delta}{M^{k-2}}\big{)}^{\frac{1}{2}}

are mapped to δ/Mk\delta/M^{k}-sectors of Γ2\Gamma_{2}^{\prime}:

|ξ1ξ3νθ|(δMk)12.\big{|}\frac{\xi_{1}^{\prime}}{\xi_{3}^{\prime}}-\nu_{\theta^{\prime}}\big{|}\leq\big{(}\frac{\delta}{M^{k}}\big{)}^{\frac{1}{2}}.
Proof.

We define ξ1=M1(ξ1νξ3)\xi_{1}^{\prime}=M^{-1}(\xi_{1}-\nu\xi_{3}), ξ3=ξ3\xi_{3}^{\prime}=\xi_{3}, which transforms (35) to

|ξ1ξ3|1.\big{|}\frac{\xi_{1}^{\prime}}{\xi_{3}^{\prime}}\big{|}\leq 1.

We compute the effect for the degenerate cone:

τ=(Mξ1+νξ3)kξ3k1==0k(kl)Mlνk(ξ1)ξ31.\tau^{\prime}=\frac{(M\xi_{1}^{\prime}+\nu\xi_{3})^{k}}{\xi_{3}^{k-1}}=\sum_{\ell=0}^{k}{k\choose l}\frac{M^{l}\nu^{k-\ell}(\xi_{1}^{\prime})^{\ell}}{\xi_{3}^{\ell-1}}.

By a linear transformation ττ+Lin(ξ1,ξ3)\tau^{\prime}\to\tau^{\prime}+\text{Lin}(\xi_{1}^{\prime},\xi_{3}^{\prime}), we find

ττ==2k(kl)Mlνk(ξ1)ξ31.\tau^{\prime}\to\tau^{\prime}=\sum_{\ell=2}^{k}{k\choose l}\frac{M^{l}\nu^{k-\ell}(\xi_{1}^{\prime})^{\ell}}{\xi_{3}^{\ell-1}}.

We rescale now with ((k2)M2νk2)1Mk\big{(}{k\choose 2}M^{2}\nu^{k-2}\big{)}^{-1}\sim M^{-k} to find

τ=(ξ1)2ξ3+=3k[(k)/(k2)]dk,c2(ξ1)ξ31.\tau^{\prime}=\frac{(\xi_{1}^{\prime})^{2}}{\xi_{3}}+\sum_{\ell=3}^{k}\underbrace{\big{[}{k\choose\ell}/{k\choose 2}\big{]}}_{d_{k,\ell}}c^{\ell-2}\frac{(\xi_{1}^{\prime})^{\ell}}{\xi_{3}^{\ell-1}}.

We have obtained a linear transformation Λν:νMΓ2\Lambda_{\nu}:\nu_{M}\to\Gamma_{2}^{\prime}, (ξ1,τ,ξ3)(ξ1,τ,ξ3)(\xi_{1},\tau,\xi_{3})\mapsto(\xi_{1}^{\prime},\tau^{\prime},\xi_{3}^{\prime}) which maps the sector to a non-degenerate cone:

Λν(νM)=Γ2={ω3(ω1/ω3,f2(ω1/ω3),1):|ω1|<1,ω3[1/2,1]}\Lambda_{\nu}(\nu_{M})=\Gamma_{2}^{\prime}=\{\omega_{3}\cdot(\omega_{1}/\omega_{3},f_{2}(\omega_{1}/\omega_{3}),1):\,|\omega_{1}|<1,\;\omega_{3}\in[1/2,1]\}

with base curve given by

f2(ω1)=ω12+=3kdk,c2ω1.f_{2}(\omega_{1})=\omega_{1}^{2}+\sum_{\ell=3}^{k}d_{k,\ell}c^{\ell-2}\omega_{1}^{\ell}.

Choosing c=c(k)1c=c(k)\ll 1 we find that (32) holds. Moreover, Λν\Lambda_{\nu} maps the R1R^{-1}-neighbourhood of 𝒞γk\mathcal{C}\gamma_{k} to the MkR1M^{-k}R^{-1}-neighbourhood of Γ2\Gamma_{2}^{\prime}. Verifying the correspondence of the δ\delta-sectors νθ\nu_{\theta} contained in νM\nu_{M} to the δ/Mk\delta/M^{k}-sectors of Γ2\Gamma_{2}^{\prime} is straight-forward. ∎

Let hMh_{M} denote the function obtained from pulling back the Fourier transform of ff, which satisfies supp(h^M)𝒩CMkR1(Γ2)\text{supp}(\hat{h}_{M})\subseteq\mathcal{N}_{CM^{-k}R^{-1}}(\Gamma_{2}^{\prime}) and let J(M)J(M) denote the Jacobian from the change of variables. We can apply Theorem 3.10 to find

(36) fML4(3)=J(M)hML4(3)εRεJ(M)(θΘ2,MkR1|hM,θ|2)12L4(3)εRε(θΘk,R1|fθ|2)12L4(3).\begin{split}\|f_{M}\|_{L^{4}(\mathbb{R}^{3})}&=J(M)\|h_{M}\|_{L^{4}(\mathbb{R}^{3})}\\ &\lesssim_{\varepsilon}R^{\varepsilon}J(M)\big{\|}\big{(}\sum_{\theta\in\Theta_{2,M^{-k}R^{-1}}}|h_{M,\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})}\\ &\lesssim_{\varepsilon}R^{\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{k,R^{-1}}}|f_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})}.\end{split}

Taking (33), (34), and (36) together, we find

fL4(3)εlog(R)Rε(θΘR1|fθ|2)12L4(3),\|f\|_{L^{4}(\mathbb{R}^{3})}\lesssim_{\varepsilon}\log(R)R^{\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{R^{-1}}}|f_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{3})},

which completes the proof.

4. A square function estimate for the complex cone

The argument presented above to show the Kakeya estimate allows for generalization to the complex cone:

Γ2={h(z/h,(z/h)2,1)××:h[1/2,1],z:|z|1}.\mathbb{C}\Gamma_{2}=\{h\cdot(z/h,(z/h)^{2},1)\in\mathbb{C}\times\mathbb{C}\times\mathbb{R}:h\in[1/2,1],\;z\in\mathbb{C}:\,|z|\leq 1\}.

By the canonical identification 2\mathbb{C}\equiv\mathbb{R}^{2} this can be regarded as cone in 5\mathbb{R}^{5}:

Γ2={h(s/h,t/h,(s2t2)/h2,2st/h2,1)5:h[1/2,1],|(s,t)|1}.\mathbb{C}\Gamma_{2}=\{h\cdot(s/h,t/h,(s^{2}-t^{2})/h^{2},2st/h^{2},1)\in\mathbb{R}^{5}:\,h\in[1/2,1],\,|(s,t)|\leq 1\}.

In the following we will frequently identify complex numbers with elements of 2\mathbb{R}^{2} by their real and imaginary part.

4.1. Set-up

We denote the base curve by

γ2,:[1,1]×[1,1](s,t)(s,t,s2t2,2st)4.\gamma_{2,\mathbb{C}}:[-1,1]\times[-1,1]\ni(s,t)\mapsto(s,t,s^{2}-t^{2},2st)\in\mathbb{R}^{4}.

More concisely, we can express this as γ2,(z)=(z,z2)2\gamma_{2,\mathbb{C}}(z)=(z,z^{2})\in\mathbb{C}^{2} for z2z\in\mathbb{C}\equiv\mathbb{R}^{2}. For 0<δ10<\delta\ll 1 we introduce the canonical covering of 𝒩δ(γ2,)\mathcal{N}_{\delta}(\gamma_{2,\mathbb{C}}). Let z=(s,t)δ12(0×0)[0,1]2z=(s,t)\in\delta^{\frac{1}{2}}(\mathbb{N}_{0}\times\mathbb{N}_{0})\cap[0,1]^{2}. We define

θz={(s,t,s2t2,2st)+1(1,0,2s,2t)+2(0,1,2t,2s)+c1r2(2s,2t,1,0)+c2r2(2t,2s,0,1):i[dδ12,dδ12],ci[dδ,dδ]}\begin{split}\theta_{z}&=\{(s,t,s^{2}-t^{2},2st)+\ell_{1}(1,0,2s,2t)+\ell_{2}(0,1,-2t,2s)\\ &\quad+c_{1}r^{-2}(-2s,2t,1,0)+c_{2}r^{-2}(-2t,-2s,0,1)\,:\\ &\quad\quad\ell_{i}\in[-d\delta^{\frac{1}{2}},d\delta^{\frac{1}{2}}],\;c_{i}\in[-d\delta,d\delta]\}\end{split}

for some d>1d>1.

Let Θδ={θz:z=(s,t)δ122[1,1]2}\Theta_{\delta}=\{\theta_{z}:z=(s,t)\in\delta^{\frac{1}{2}}\mathbb{Z}^{2}\cap[-1,1]^{2}\}. Clearly, the θz\theta_{z} form a finitely overlapping cover of 𝒩δ(γ2,)\mathcal{N}_{\delta}(\gamma_{2,\mathbb{C}}). In complex notation this can be expressed concisely as

θz={γ2,(z)+γ˙2,(z)+c(γ˙2,(z)):,c,||dδ12,|c|dδ}2.\theta_{z}=\{\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+c\wedge(\dot{\gamma}_{2,\mathbb{C}}(z)):\,\ell,c\in\mathbb{C},\,|\ell|\leq d\delta^{\frac{1}{2}},\;|c|\leq d\delta\}\subseteq\mathbb{C}^{2}.

We denote with (a,b)=(b¯,a¯)\wedge(a,b)=-(\overline{b},\overline{a}) for (a,b)2(a,b)\in\mathbb{C}^{2} the vector spanning the “complex” orthogonal complement.

The following is a consequence of complexification of the “real” Córdoba–Fefferman square function estimate and was proved by Biggs–Brandes–Hughes [2]:

Proposition 4.1.

Let F𝒮(4)F\in\mathcal{S}(\mathbb{R}^{4}) with supp(F^)𝒩δ(γ2,)\text{supp}(\hat{F})\subseteq\mathcal{N}_{\delta}(\gamma_{2,\mathbb{C}}). Then the following estimate holds:

FL4(4)(θΘδ|Fθ|2)12L4(4).\|F\|_{L^{4}(\mathbb{R}^{4})}\lesssim\big{\|}\big{(}\sum_{\theta\in\Theta_{\delta}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{4})}.

We turn to the complex planks on the scale RR for Γ2\mathbb{C}\Gamma_{2}. Let (R1)=R12(×)[1,1]2\mathcal{R}_{\mathbb{C}}(R^{-1})=R^{-\frac{1}{2}}(\mathbb{Z}\times\mathbb{Z})\cap[-1,1]^{2}222The base points of (δ)\mathcal{R}_{\mathbb{C}}(\delta) are corresponding to base points for a covering of the δ\delta-neighbourhood of γ2,\gamma_{2,\mathbb{C}}, like in Section 3., which can be regarded as a subset of \mathbb{C} as well.

Let z=(s,t)(R1)z=(s,t)\in\mathcal{R}_{\mathbb{C}}(R^{-1}). The central line is given by

𝐜(s,t)=(s,t,s2t2,2st,1).\mathbf{c}(s,t)=(s,t,s^{2}-t^{2},2st,1).

We define the (real) tangential vectors as

𝐭s(s,t)=(1,0,2s,2t,0),𝐭t(s,t)=(0,1,2t,2s,0)\mathbf{t}_{s}(s,t)=(1,0,2s,2t,0),\quad\mathbf{t}_{t}(s,t)=(0,1,-2t,2s,0)

and the normal vectors as

𝐧s(s,t)=(2s,2t,1,0,0),𝐧t(s,t)=(2t,2s,0,1,0),𝐧5=(0,0,0,0,1).\mathbf{n}_{s}(s,t)=(-2s,2t,1,0,0),\quad\mathbf{n}_{t}(s,t)=(-2t,-2s,0,1,0),\quad\mathbf{n}_{5}=(0,0,0,0,1).

Note that the complex derivative of the base curve z(z,z2)z\mapsto(z,z^{2})\in\mathbb{C} is given by γ˙2,(z)=(1,2z)2\dot{\gamma}_{2,\mathbb{C}}(z)=(1,2z)\in\mathbb{C}^{2}. From this we can read off the tangential vectors as

𝐭s(s,t)=(γ˙2,(z)1,γ˙2,(z)1,γ˙2,(z)2,γ˙2,(z)2),𝐭t(s,t)=(γ˙2,(z)1,γ˙2,(z)1,γ˙2,(z)2,γ˙2,(z)2).\begin{split}\mathbf{t}_{s}(s,t)&=(\Re\dot{\gamma}_{2,\mathbb{C}}(z)_{1},\Im\dot{\gamma}_{2,\mathbb{C}}(z)_{1},\Re\dot{\gamma}_{2,\mathbb{C}}(z)_{2},\Im\dot{\gamma}_{2,\mathbb{C}}(z)_{2}),\\ \mathbf{t}_{t}(s,t)&=(-\Im\dot{\gamma}_{2,\mathbb{C}}(z)_{1},\Re\dot{\gamma}_{2,\mathbb{C}}(z)_{1},-\Im\dot{\gamma}_{2,\mathbb{C}}(z)_{2},\Re\dot{\gamma}_{2,\mathbb{C}}(z)_{2}).\end{split}

Let F:24F:\mathbb{C}^{2}\to\mathbb{R}^{4} denote the identification (z1,z2)(z1,z1,z2,z2)(z_{1},z_{2})\mapsto(\Re z_{1},\Im z_{1},\Re z_{2},\Im z_{2}). We clarify how linear combinations of 𝐭s\mathbf{t}_{s} and 𝐭t\mathbf{t}_{t} correspond to complex multiples of (1,2z)2(1,2z)\in\mathbb{C}^{2}. Compute for c+id+ic+id\in\mathbb{R}+i\mathbb{R}, (1,2z)2(1,2z)\in\mathbb{C}^{2}:

F((c+id)(1,2z))=cF(1,2z)+dF(i(1,2z))=c𝐭s(z)+d𝐭t(z).F((c+id)(1,2z))=cF(1,2z)+dF(i(1,2z))=c\mathbf{t}_{s}(z)+d\mathbf{t}_{t}(z).

This will be very useful to perceive the linear combinations a𝐭s(s,t)+b𝐭t(s,t)a\mathbf{t}_{s}(s,t)+b\mathbf{t}_{t}(s,t) for |a|,|b|M|a|,|b|\lesssim M as complex multiple λ(1,2z)\lambda\cdot(1,2z) with λ\lambda\in\mathbb{C}, |λ|M|\lambda|\lesssim M. Further, we let

𝐧(z)=(2z¯,1)2,\mathbf{n}_{\mathbb{C}}(z)=(-2\bar{z},1)\in\mathbb{C}^{2},

from which the real normal vectors can be read off: 𝐧s=F(𝐧)\mathbf{n}_{s}=F(\mathbf{n}_{\mathbb{C}}) and 𝐧t=F(i𝐧)\mathbf{n}_{t}=F(i\mathbf{n}_{\mathbb{C}}).

Clearly, {𝐭s,𝐭t,𝐧x}\{\mathbf{t}_{s},\mathbf{t}_{t},\mathbf{n}_{x}\}, x{s,t,5}x\in\{s,t,5\} are orthogonal and we cover 𝒩R1(Γ2)\mathcal{N}_{R^{-1}}(\mathbb{C}\Gamma_{2}) with θz\theta_{z}, z=s+it(R1)z=s+it\in\mathcal{R}_{\mathbb{C}}(R^{-1}) defined as follows:

θz={a𝐜(s,t)+b1𝐭s(s,t)+b2𝐭t(s,t)+c1𝐧s(s,t)+c2𝐧t(s,t)+e𝐧5:12a1,bi,ci,e,|bi|dR12,|ci|,|e|dR1}\begin{split}\theta_{z}&=\{a\mathbf{c}(s,t)+b_{1}\mathbf{t}_{s}(s,t)+b_{2}\mathbf{t}_{t}(s,t)+c_{1}\mathbf{n}_{s}(s,t)+c_{2}\mathbf{n}_{t}(s,t)+e\mathbf{n}_{5}:\\ &\quad\frac{1}{2}\leq a\leq 1,\;b_{i},c_{i},e\in\mathbb{R},\,|b_{i}|\leq dR^{-\frac{1}{2}},\;|c_{i}|,|e|\leq dR^{-1}\}\end{split}

for some d>1d>1.

Let ΘR1={θz:z(R1)}\Theta_{R^{-1}}=\{\theta_{z}:z\in\mathcal{R}_{\mathbb{C}}(R^{-1})\}. We recall the statement of Theorem 1.3:

Theorem 4.2.

Let F𝒮(5)F\in\mathcal{S}(\mathbb{R}^{5}) with supp(F^)𝒩R1(Γ2)\text{supp}(\hat{F})\subseteq\mathcal{N}_{R^{-1}}(\mathbb{C}\Gamma_{2}). Then the following estimate holds:

FL4(5)εRε(θΘR1|Fθ|2)12L4(5).\|F\|_{L^{4}(\mathbb{R}^{5})}\lesssim_{\varepsilon}R^{\varepsilon}\big{\|}\big{(}\sum_{\theta\in\Theta_{R^{-1}}}|F_{\theta}|^{2}\big{)}^{\frac{1}{2}}\big{\|}_{L^{4}(\mathbb{R}^{5})}.

The proof follows the roadmap from [10] with the crucial incidence estimates proved via the local arguments from Section 3.

We turn to the notions involved in formulating the Kakeya estimate: In the following we consider f𝒮(5)f\in\mathcal{S}(\mathbb{R}^{5}) with supp(f^)𝒩r2(Γ2)\text{supp}(\hat{f})\subseteq\mathcal{N}_{r^{-2}}(\mathbb{C}\Gamma_{2}) for notational convenience and for τΘs2\tau\in\Theta_{s^{2}}, 1sr11\leq s\leq r^{-1} we consider

Uτ,r2=conv(θτθ),U_{\tau,r^{2}}=\text{conv}\big{(}\bigcup_{\theta\subseteq\tau}\theta^{*}\big{)},

and let for UUτ,r2U\parallel U_{\tau,r^{2}}:

SUf=(θτ|fθ|2)12|U.S_{U}f=\big{(}\sum_{\theta\subseteq\tau}|f_{\theta}|^{2}\big{)}^{\frac{1}{2}}|_{U}.

We consider the complexification of centred planks. For σ[r1,1]2\sigma\in[r^{-1},1]\cap 2^{\mathbb{Z}}, we define for z(r2σ2)z\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2}) the centred plank

Θ(σ,z)={a𝐜(s,t)+b1𝐭s(s,t)+b2𝐭t(s,t)+c1𝐧s(s,t)+c2𝐧t(s,t)+e𝐧5:σ2aσ2,bi,ci,e,|bi|Dr1σ,|ci|,|e|Dr2}\begin{split}\Theta(\sigma,z)&=\{a\mathbf{c}(s,t)+b_{1}\mathbf{t}_{s}(s,t)+b_{2}\mathbf{t}_{t}(s,t)+c_{1}\mathbf{n}_{s}(s,t)+c_{2}\mathbf{n}_{t}(s,t)+e\mathbf{n}_{5}:\\ &\quad-\sigma^{2}\leq a\leq\sigma^{2},\;b_{i},c_{i},e\in\mathbb{R},\,|b_{i}|\leq Dr^{-1}\sigma,\;|c_{i}|,|e|\leq Dr^{-2}\}\end{split}

for some DdD\gg d (say d=3d=3, D=30D=30).

Like above, we are guided by the idea that at the height hσ2h\sim\sigma^{2} the intersection zΘ(σ,z){ω5=h}\bigcup_{z}\Theta(\sigma,z)\cap\{\omega_{5}=h\} is supposed to canonically cover the r2r^{-2}-neighbourhood of the complex curve hγ2,(z)h\gamma_{2,\mathbb{C}}(z).

We denote the collection of centred planks by

𝐂𝐏σ={Θ(σ,z):z(r2σ2)}\mathbf{CP}_{\sigma}=\{\Theta(\sigma,z)\,:\,z\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2})\}

and, analogous to the previous section, for 2σ>r12^{\mathbb{Z}}\ni\sigma>r^{-1}:

Ωσ=𝐂𝐏σ\𝐂𝐏σ/2,\Omega_{\sigma}=\bigcup\mathbf{CP}_{\sigma}\backslash\bigcup\mathbf{CP}_{\sigma/2},

and Ωr1=𝐂𝐏r1\Omega_{r^{-1}}=\bigcup\mathbf{CP}_{r^{-1}}. With 𝐂𝐏1\mathbf{CP}_{1} corresponding to Θr2\Theta_{r^{-2}}, we have

(37) z(r2)θ~(z)σ[r1,1]Ωσ.\bigcup_{z\in\mathcal{R}_{\mathbb{C}}(r^{-2})}\tilde{\theta}(z)\subseteq\bigcup_{\sigma\in[r^{-1},1]}\Omega_{\sigma}.

4.2. A Kakeya estimate for the complex cone

We can now formulate the Kakeya estimate for the complex cone:

Proposition 4.3.

Let r1r\gg 1. The following estimate holds:

(38) 5|θΘr2|fθ|2|2r1s1τΘs2UUτ,r2|U|1SUfL2(U)4.\int_{\mathbb{R}^{5}}\big{|}\sum_{\theta\in\Theta_{r^{-2}}}|f_{\theta}|^{2}\big{|}^{2}\lesssim\sum_{r^{-1}\leq s\leq 1}\sum_{\tau\in\Theta_{s^{2}}}\sum_{U\parallel U_{\tau,r^{2}}}|U|^{-1}\|S_{U}f\|^{4}_{L^{2}(U)}.
Proof.

We use Plancherel’s theorem and the decomposition (37) to write

5|θΘr2|fθ|2|2r1σ1Ωσ|θΘr2(|fθ|2)^(ω)|2.\int_{\mathbb{R}^{5}}\big{|}\sum_{\theta\in\Theta_{r^{-2}}}|f_{\theta}|^{2}\big{|}^{2}\leq\sum_{r^{-1}\leq\sigma\leq 1}\int_{\Omega_{\sigma}}\big{|}\sum_{\theta\in\Theta_{r^{-2}}}(|f_{\theta}|^{2})\widehat{\,}(\omega)\big{|}^{2}.

Given σ\sigma, we associate the sectors θzΘr2\theta_{z}\in\Theta_{r^{-2}} to centred planks according to the complex distance: For z(r2)z\in\mathcal{R}_{\mathbb{C}}(r^{-2}) let z(r2σ2)z^{\prime}\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2}) with |zz|2r1σ1|z-z^{\prime}|\leq 2r^{-1}\sigma^{-1} and write θzΘ(σ,z)\theta_{z}\in\Theta(\sigma,z^{\prime}).

It turns out that after changing to the complex description, the arguments from Section 3 can be applied to obtain the desired almost orthogonal decomposition at scale σ\sigma. Write for ωΩσ\omega\in\Omega_{\sigma}:

|θΘr2(|fθ|2)^(ω)|2=|Θ(σ,z)𝐂𝐏σθΘ(σ,z)(|fθ|2)^(ω)|2,\big{|}\sum_{\theta\in\Theta_{r^{-2}}}(|f_{\theta}|^{2})\widehat{\,}(\omega)\big{|}^{2}=\big{|}\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\sum_{\theta\in\Theta(\sigma,z)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2},

and we shall show the finite overlap for Θ(σ,z)\Theta(\sigma,z):

(39) |Θ(σ,z)𝐂𝐏σθΘ(σ,z)(|fθ|2)^(ω)|2Θ(σ,z)𝐂𝐏σ|θΘ(σ,z)(|fθ|2)^(ω)|2.\big{|}\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\sum_{\theta\in\Theta(\sigma,z)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}\lesssim\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\big{|}\sum_{\theta\in\Theta(\sigma,z)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}.

In the first step to prove (39) we show the following lemma:

Lemma 4.4.

Let ωΩσθ~(z)\omega\in\Omega_{\sigma}\cap\tilde{\theta}(z). Then there is Θ(σ,z)𝐂𝐏σ\Theta(\sigma,z^{\prime})\in\mathbf{CP}_{\sigma} with ωΘ(σ,z)\omega\in\Theta(\sigma,z) and |zz|4r1σ1|z-z^{\prime}|\leq 4r^{-1}\sigma^{-1}.

To this end, we employ the local analysis from the previous section. We analyze the set Ωσ{ω5=h}\Omega_{\sigma}\cap\{\omega_{5}=h\} as before. For θ=θ(z)\theta=\theta(z) with z(r2)z\in\mathcal{R}_{\mathbb{C}}(r^{-2}) we can regard θ~(z){ω5=h}\tilde{\theta}(z)\cap\{\omega_{5}=h\} as a complex rectangle centered at hγ2,(z)h\gamma_{2,\mathbb{C}}(z) with complex length r1r^{-1} into the tangential direction and r2r^{-2} into the normal direction. Identifying 42\mathbb{R}^{4}\equiv\mathbb{C}^{2} we find

π12,(supp((|fθ|2)){ω5=h})={hγ2,(z)+γ˙2,(z)+cr2𝐧(z):,c,||dr1,|c|d}.\begin{split}&\quad\pi_{12,\mathbb{C}}(\text{supp}(\mathcal{F}(|f_{\theta}|^{2}))\cap\{\omega_{5}=h\})\\ &=\{h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+cr^{-2}\mathbf{n}_{\mathbb{C}}(z)\,:\ell\in\mathbb{C},c\in\mathbb{C},|\ell|\leq dr^{-1},\;|c|\leq d\}.\end{split}

By π12,:52×2\pi_{12,\mathbb{C}}:\mathbb{R}^{5}\equiv\mathbb{C}^{2}\times\mathbb{R}\to\mathbb{C}^{2} we denote the projection onto the first two complex coordinates.

We have the following complex variant of Lemma 3.4:

Lemma 4.5.

Let σ[r1,1]2\sigma\in[r^{-1},1]\cap 2^{\mathbb{Z}}, hσ2h\leq\sigma^{2}, and |z|1/8|z|\leq 1/8. Let

p=hγ2,(z)+γ˙2,(z)+cr2𝐧(z)p=h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+cr^{-2}\mathbf{n}_{\mathbb{C}}(z)

with ||r1σ|\ell|\lesssim r^{-1}\sigma, and |c|d|c|\leq d. Then we have

p=hγ2,(z)+1γ˙2,(z)+Cr2𝐧(z)p=h\gamma_{2,\mathbb{C}}(z^{\prime})+\ell_{1}\dot{\gamma}_{2,\mathbb{C}}(z^{\prime})+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime})

for some z(r2σ2)z^{\prime}\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2}) with |zz|2r1σ2|z-z^{\prime}|\leq 2r^{-1}\sigma^{-2}, 1,C\ell_{1},C\in\mathbb{C} with |1||||\ell_{1}|\sim|\ell|, and |C|C(d)|C|\leq C^{*}(d).

The lemma is proved like its real counterpart for k=2k=2 via Taylor expansion, apart from the formal difference that the Taylor expansion is carried out in the complex plane. We omit the details to avoid repetition.

Next, we show the following extension of Lemma 3.5:

Lemma 4.6.

Let hσ2h\leq\sigma^{2}, pθ~(z){ω5=h}Ωσp\in\tilde{\theta}(z)\cap\{\omega_{5}=h\}\cap\Omega_{\sigma} and σr1\sigma\gg r^{-1}. We have the representation

(40) p=hγ2,(z)+γ˙2,(z)+Cr2𝐧(z)p=h\gamma_{2,\mathbb{C}}(z^{\prime})+\ell\dot{\gamma}_{2,\mathbb{C}}(z^{\prime})+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime})

with z(r2σ2)z^{\prime}\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2}), |zz|2r1σ1|z-z^{\prime}|\leq 2r^{-1}\sigma^{-1}, ||r1σ|\ell|\lesssim r^{-1}\sigma, and CC\in\mathbb{C} with |C|C|C|\leq C^{*}.

For hσ2h\ll\sigma^{2} (40) holds with ||r1σ|\ell|\sim r^{-1}\sigma.

Proof.

Suppose we have the representation

(41) p=hγ2,(z)+γ˙2,(z)+cr2𝐧(z)=hγ2,(z)+1γ˙2,(z)+Cr2𝐧(z)p=h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+cr^{-2}\mathbf{n}_{\mathbb{C}}(z)=h\gamma_{2,\mathbb{C}}(z^{\prime})+\ell_{1}\dot{\gamma}_{2,\mathbb{C}}(z^{\prime})+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime})

for pΩσ{ω5=h}p\in\Omega_{\sigma}\cap\{\omega_{5}=h\} with ||r1σ|\ell|\gg r^{-1}\sigma and |1|r1σ|\ell_{1}|\lesssim r^{-1}\sigma, |c||C|1|c|\ll|C|\lesssim 1.

We let z=z+Δzz^{\prime}=z+\Delta z. By Taylor expansion we find

(42) hγ2,(z+Δz)+1γ˙2,(z+Δz)+Cr2𝐧(z+Δz)=hγ2,(z)+hΔzγ˙2,(z)+h(Δz)22γ¨2,(z)+1(γ˙2,(z)+Δzγ¨2,(z))+Cr2𝐧(z+Δz).\begin{split}&\quad h\gamma_{2,\mathbb{C}}(z+\Delta z)+\ell_{1}\dot{\gamma}_{2,\mathbb{C}}(z+\Delta z)+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z+\Delta z)\\ &=h\gamma_{2,\mathbb{C}}(z)+h\Delta z\dot{\gamma}_{2,\mathbb{C}}(z)+\frac{h(\Delta z)^{2}}{2}\ddot{\gamma}_{2,\mathbb{C}}(z)+\ell_{1}(\dot{\gamma}_{2,\mathbb{C}}(z)+\Delta z\ddot{\gamma}_{2,\mathbb{C}}(z))\\ &\quad+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z+\Delta z).\end{split}

Plugging (42) into (41) and separating the first and second complex coordinate, this yields the conditions

{=1+hΔz+𝒪(r2),(hΔz2+1)Δz=𝒪(r2).\left\{\begin{array}[]{cl}\ell&=\ell_{1}+h\Delta z+\mathcal{O}(r^{-2}),\\ \big{(}\frac{h\Delta z}{2}+\ell_{1}\big{)}\Delta z&=\mathcal{O}(r^{-2}).\end{array}\right.

Since by assumption |||1||\ell|\gg|\ell_{1}|, we have ||h|Δz||\ell|\sim h|\Delta z|. The second identity implies h|Δz|2=𝒪(r2)h|\Delta z|^{2}=\mathcal{O}(r^{-2}). If hσ2h\sim\sigma^{2}, then |Δz|r1σ1|\Delta z|\lesssim r^{-1}\sigma^{-1}. This in turn implies by the first identity

|||1|+h|Δz|+𝒪(r2)r1σ,|\ell|\lesssim|\ell_{1}|+h|\Delta z|+\mathcal{O}(r^{-2})\lesssim r^{-1}\sigma,

which settles the case hσ2h\sim\sigma^{2}.

In the following suppose that hσ2h\ll\sigma^{2}. In this case we obtain from a Taylor expansion

hγ2,(z+h)=hγ2,(z)+γ˙2,(z)+h22h2(0,2)=hγ2,(z)+γ˙2,(z)+𝒪(r2).\begin{split}h\gamma_{2,\mathbb{C}}(z+\frac{\ell}{h})&=h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+\frac{h\ell^{2}}{2h^{2}}(0,2)\\ &=h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+\mathcal{O}(r^{-2}).\end{split}

This shows that pp given by the left hand side of (41) satisfies p𝒩Cr2(hγ2,)p\in\mathcal{N}_{Cr^{-2}}(h\gamma_{2,\mathbb{C}}), but since 𝒩Cr2(hγ2,)𝐂𝐏σ/2\mathcal{N}_{Cr^{-2}}(h\gamma_{2,\mathbb{C}})\subseteq\bigcup\mathbf{CP}_{\sigma/2}, we obtain pΩσp\notin\Omega_{\sigma}, which contradicts our assumption. ∎

This concludes the first part of the proof of (39):

|Θ(σ,z)𝐂𝐏σθΘ(σ,z)(|fθ|2)^(ω)|2|Θ(σ,z)𝐂𝐏σ,ω4Θ(σ,z)|θΘ(σ,z)(|fθ|2)^(ω)||2.\big{|}\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\sum_{\theta\in\Theta(\sigma,z)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}^{2}\lesssim\big{|}\sum_{\begin{subarray}{c}\Theta(\sigma,z)\in\mathbf{CP}_{\sigma},\\ \omega\in 4\Theta(\sigma,z)\end{subarray}}\big{|}\sum_{\theta\in\Theta(\sigma,z)}\big{(}|f_{\theta}|^{2}\big{)}\widehat{\,}(\omega)\big{|}\big{|}^{2}.

We note that for hσ2h\ll\sigma^{2} the set Ωσ{ω5=h}\Omega_{\sigma}\cap\{\omega_{5}=h\} essentially consists of the (complex) ends of Θ(σ,z){ω5=h}\Theta(\sigma,z)\cap\{\omega_{5}=h\}, which are defined as follows:

Ends(Θ(σ,z),h)={hγ2,(z)+γ˙2,(z)+Cr2𝐧(z):,||r1σ,|C|C}.\text{Ends}(\Theta(\sigma,z),h)=\{h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z):\,\ell\in\mathbb{C},\,|\ell|\sim r^{-1}\sigma,\,|C|\leq C^{*}\}.

To conclude (39), we require the following version of Lemma 3.9:

Lemma 4.7.

Let ωΩσ\omega\in\Omega_{\sigma}. Then the following estimate holds:

#{Θ(σ,ξ):ω10Θ(σ,ξ)}1.\#\{\Theta(\sigma,\xi):\omega\in 10\Theta(\sigma,\xi)\}\lesssim 1.

We show the following:

Lemma 4.8.

Let hσ2h\ll\sigma^{2} and σr1\sigma\gg r^{-1}, let X{,}X\in\{\Re,\Im\}, and μ{1,1}\mu\in\{1,-1\}. Let pΩσ{ω5=h}p\in\Omega_{\sigma}\cap\{\omega_{5}=h\} and suppose that for |||1|r1σ|\ell|\sim|\ell_{1}|\sim r^{-1}\sigma, |C|,|C1|1|C|,|C_{1}|\lesssim 1, and for Δz=zz\Delta z=z^{\prime}-z, |Δz|r1σ1|\Delta z|\gg r^{-1}\sigma^{-1}, it holds

(43) hγ2,(z)+γ˙2,(z)+Cr2𝐧(z)=hγ2,(z)+1γ˙2,(z)+C1r2𝐧(z).h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z)=h\gamma_{2,\mathbb{C}}(z^{\prime})+\ell_{1}\dot{\gamma}_{2,\mathbb{C}}(z^{\prime})+C_{1}r^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime}).

Then we have

X()μr1σX(1)μr1σ.X(\ell)\sim\mu r^{-1}\sigma\Rightarrow X(\ell_{1})\sim-\mu r^{-1}\sigma.
Proof.

We carry out a Taylor expansion of the right hand side of (43) to obtain:

0=(hΔz+1)γ˙2,(z)+(h(Δz)22+1Δz)γ¨2,(z)+𝒪(r2).0=(h\Delta z-\ell+\ell_{1})\dot{\gamma}_{2,\mathbb{C}}(z)+(\frac{h(\Delta z)^{2}}{2}+\ell_{1}\Delta z)\ddot{\gamma}_{2,\mathbb{C}}(z)+\mathcal{O}(r^{-2}).

Taking the exterior product with γ˙2,(z)\dot{\gamma}_{2,\mathbb{C}}(z) or γ¨2,(z)\ddot{\gamma}_{2,\mathbb{C}}(z), we find

{hΔz+1=𝒪(r2),(h(Δz)/2+1)Δz=𝒪(r2).\left\{\begin{array}[]{cl}h\Delta z-\ell+\ell_{1}&=\mathcal{O}(r^{-2}),\\ (h(\Delta z)/2+\ell_{1})\Delta z&=\mathcal{O}(r^{-2}).\end{array}\right.

The second identity gives by the minimum size assumption on Δz\Delta z that

|h(Δz)/2+1|r1σ.|h(\Delta z)/2+\ell_{1}|\ll r^{-1}\sigma.

Plugging this into the first identity, we find

|h(Δz)/2|r1σ|h(\Delta z)/2-\ell|\ll r^{-1}\sigma

Consequently,

|X(h(Δz)/2)|r1σ,|X(h(Δz)/2+1)|r1σ.|X(h(\Delta z)/2-\ell)|\ll r^{-1}\sigma,\quad|X(h(\Delta z)/2+\ell_{1})|\ll r^{-1}\sigma.

This necessitates X()X(1)X(\ell)\sim-X(\ell_{1}), which completes the proof. ∎

We can now conclude the proof of Lemma 4.7:

Proof of Lemma 4.7.

Suppose that hσ2h\sim\sigma^{2}. Since 𝐂𝐏σ{ω5=h}\mathbf{CP}_{\sigma}\cap\{\omega_{5}=h\} (after projection to 2\mathbb{C}^{2}) forms a canonical covering of the r2r^{-2}-neighbourhood of hγ2,h\gamma_{2,\mathbb{C}}, the finite overlap is immediate.

We turn to hσ2h\ll\sigma^{2}: In this case it suffices to analyze the overlap of the ends of Θ(σ,ξ\Theta(\sigma,\xi. Since there are only finitely many z(r2σ2)z^{\prime}\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2}) such that |zz|r1σ1|z-z^{\prime}|\lesssim r^{-1}\sigma^{-1} it suffices to check the overlap of the ends Θ(σ,z)\Theta(\sigma,z) and Θ(σ,z)\Theta(\sigma,z^{\prime}) with |zz|r1σ1|z-z^{\prime}|\gg r^{-1}\sigma^{-1}. So, suppose that π12(ω)=pEnd(Θ(σ,z),h)End(Θ(σ,z),h)\pi_{12}(\omega)=p\in\text{End}(\Theta(\sigma,z),h)\cap\text{End}(\Theta(\sigma,z^{\prime}),h) like in (43). We can invoke Lemma 4.8 to find that for X()μr1σX(\ell)\sim\mu r^{-1}\sigma with μ{1,1}\mu\in\{1,-1\} it holds X(1)μr1σX(\ell_{1})\sim-\mu r^{-1}\sigma. Now suppose that there is a third z′′(r2σ2)z^{\prime\prime}\in\mathcal{R}_{\mathbb{C}}(r^{-2}\sigma^{-2}) for which pEnds(Θ(σ,z′′),h)p\in\text{Ends}(\Theta(\sigma,z^{\prime\prime}),h) such that we have the representations

hγ2,(z)+γ˙2,(z)+Cr2𝐧(z)=hγ2,(z′′)+2γ˙2,(z′′)+C2r2𝐧(z′′),h\gamma_{2,\mathbb{C}}(z)+\ell\dot{\gamma}_{2,\mathbb{C}}(z)+Cr^{-2}\mathbf{n}_{\mathbb{C}}(z)=h\gamma_{2,\mathbb{C}}(z^{\prime\prime})+\ell_{2}\dot{\gamma}_{2,\mathbb{C}}(z^{\prime\prime})+C_{2}r^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime\prime}),

and

hγ2,(z)+1γ˙2,(z)+C1r2𝐧(z)=hγ2,(z′′)+2γ˙2,(z′′)+C2r2𝐧(z′′).h\gamma_{2,\mathbb{C}}(z^{\prime})+\ell_{1}\dot{\gamma}_{2,\mathbb{C}}(z^{\prime})+C_{1}r^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime})=h\gamma_{2,\mathbb{C}}(z^{\prime\prime})+\ell_{2}\dot{\gamma}_{2,\mathbb{C}}(z^{\prime\prime})+C_{2}r^{-2}\mathbf{n}_{\mathbb{C}}(z^{\prime\prime}).

Then two applications of Lemma 4.8 yield that

|z′′z|r1σ1 or |z′′z|r1σ1.|z^{\prime\prime}-z|\lesssim r^{-1}\sigma^{-1}\text{ or }|z^{\prime\prime}-z^{\prime}|\lesssim r^{-1}\sigma^{-1}.

So, z′′z^{\prime\prime} must be either neighboring zz or zz^{\prime}, which completes the proof. ∎

Now we can conclude the proof of the Kakeya estimate for the complex cone:

Conclusion of the Proof of Proposition 4.3: We have proved (39), which yields

Ωσ|θΘr2|fθ|2|2=Ωσ|Θ(σ,z)𝐂𝐏σθΘ(σ,z)|fθ|2|2ΩσΘ(σ,z)𝐂𝐏σ|θΘ(σ,z)|fθ|2|2.\begin{split}\int_{\Omega_{\sigma}}\big{|}\sum_{\theta\in\Theta_{r^{-2}}}|f_{\theta}|^{2}\big{|}^{2}&=\int_{\Omega_{\sigma}}\big{|}\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\sum_{\theta\in\Theta(\sigma,z)}|f_{\theta}|^{2}\big{|}^{2}\\ &\lesssim\int_{\Omega_{\sigma}}\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\big{|}\sum_{\theta\in\Theta(\sigma,z)}|f_{\theta}|^{2}\big{|}^{2}.\end{split}

This yields

5|θΘr2|fθ|2|2σ[r1,1]Θ(σ,z)𝐂𝐏σ5|θΘ(σ,z)|fθ|2|2,\int_{\mathbb{R}^{5}}\big{|}\sum_{\theta\in\Theta_{r^{-2}}}|f_{\theta}|^{2}\big{|}^{2}\lesssim\sum_{\sigma\in[r^{-1},1]}\sum_{\Theta(\sigma,z)\in\mathbf{CP}_{\sigma}}\int_{\mathbb{R}^{5}}\big{|}\sum_{\theta\in\Theta(\sigma,z)}|f_{\theta}|^{2}\big{|}^{2},

from which the right hand side of (38) follows by the same means as above, i.e., using the essentially constant property. We omit the details and refer to Section 3 to avoid repetition. ∎

4.3. Induction-on-scales

In this section we indicate how the Kakeya estimate from Proposition 4.3 implies the square function estimate. This closely follows the roadmap from [10] and for the sake of brevity, we shall focus on defining and showing the analogs and extensions of the estimates used to carry out the induction-on-scales. With these at hand, the proof can be concluded like in [10].

For r1r\geq 1 let 𝒰r\mathcal{U}_{r} denote a finitely overlapping covering of 5\mathbb{R}^{5} with rr-balls. Let f𝒮(5)f\in\mathcal{S}(\mathbb{R}^{5}) with supp(f^)𝒩R1(Γ2)\text{supp}(\hat{f})\subseteq\mathcal{N}_{R^{-1}}(\mathbb{C}\Gamma_{2}). For 1rR1\leq r\leq R define the two-scale-quantity S(r,R)S(r,R) as infimum over C1C\geq 1 such that:

(44) Br𝒰r|Br|1SBrfL2(Br)4CR1σ1τΘσUUτ,R|U|1SUfL2(U)4.\sum_{B_{r}\in\mathcal{U}_{r}}|B_{r}|^{-1}\|S_{B_{r}}f\|^{4}_{L^{2}(B_{r})}\leq C\sum_{R^{-1}\leq\sigma\leq 1}\sum_{\tau\in\Theta_{\sigma}}\sum_{U\parallel U_{\tau,R}}|U|^{-1}\|S_{U}f\|^{4}_{L^{2}(U)}.

Like in [10], Theorem 1.3 is a consequence of S(1,R)εRεS(1,R)\lesssim_{\varepsilon}R^{\varepsilon}.

We formulate the Kakeya estimate in terms of the two-scale-quantity:

Proposition 4.9.

Let 1rRr21\leq r\leq R\leq r^{2}. Then the following estimate holds:

S(r,R)C.S(r,R)\lesssim C.

For IK[1/2,1]I_{K}\subseteq[1/2,1] a closed interval with length 1/K1/K we define

Γ2,K={(z,z2/h,h)2×:|z|1,hIK}.\mathbb{C}\Gamma_{2,K}=\{(z,z^{2}/h,h)\in\mathbb{C}^{2}\times\mathbb{R}\,:\,|z|\leq 1,\;h\in I_{K}\}.

For R1R\gg 1 we shall eventually choose K=RδK=R^{\delta}. For f𝒮(5)f\in\mathcal{S}(\mathbb{R}^{5}) with supp(f^)𝒩R1(Γ2)\text{supp}(\hat{f})\subseteq\mathcal{N}_{R^{-1}}(\mathbb{C}\Gamma_{2}) we consider the quantity SK(r,R)S_{K}(r,R) defined as infimum over CC such that (44) holds.

On the one hand, we have by decomposing the height into 1/K1/K-intervals:

(45) S(r,R)KSK(r,R).S(r,R)\lesssim KS_{K}(r,R).

Secondly, the introduction of SKS_{K} allows us to jump start the induction-on-scales by noting that for supp(f^)𝒩R1(Γ2,K)\text{supp}(\hat{f})\subseteq\mathcal{N}_{R^{-1}}(\mathbb{C}\Gamma_{2,K}) we have

(46) (5|f|4)14(5(θΘK1|fθ|2)2)14.\big{(}\int_{\mathbb{R}^{5}}|f|^{4}\big{)}^{\frac{1}{4}}\lesssim\big{(}\int_{\mathbb{R}^{5}}\big{(}\sum_{\theta\in\Theta_{K^{-1}}}|f_{\theta}|^{2}\big{)}^{2}\big{)}^{\frac{1}{4}}.
Proof.

Writing

5|f|4=5(θ1ΘK1fθ1θ2ΘK1fθ2)(θ3ΘK1fθ3θ4ΘK1fθ4)¯.\int_{\mathbb{R}^{5}}|f|^{4}=\int_{\mathbb{R}^{5}}\big{(}\sum_{\theta_{1}\in\Theta_{K^{-1}}}f_{\theta_{1}}\cdot\sum_{\theta_{2}\in\Theta_{K^{-1}}}f_{\theta_{2}}\big{)}\overline{\big{(}\sum_{\theta_{3}\in\Theta_{K^{-1}}}f_{\theta_{3}}\cdot\sum_{\theta_{4}\in\Theta_{K^{-1}}}f_{\theta_{4}}\big{)}}.

and applying Plancherel’s theorem, like in the proof of Theorem 1.1 we are led to analyzing solutions to the system for hiIKh_{i}\in I_{K} and (zi,zi2/hi,hi)θi(z_{i},z_{i}^{2}/h_{i},h_{i})\in\theta_{i}:

{z1+z2=z3+z4,z12h1+z22h2=z32h3+z42h4+𝒪(K1).\left\{\begin{array}[]{cl}z_{1}+z_{2}&=z_{3}+z_{4},\\ \frac{z_{1}^{2}}{h_{1}}+\frac{z_{2}^{2}}{h_{2}}&=\frac{z_{3}^{2}}{h_{3}}+\frac{z_{4}^{2}}{h_{4}}+\mathcal{O}(K^{-1}).\end{array}\right.

Since hiIKh_{i}\in I_{K}, the above implies

{z1+z2=z3+z4,z12+z22=z32+z42+𝒪(K1),\left\{\begin{array}[]{cl}z_{1}+z_{2}&=z_{3}+z_{4},\\ z_{1}^{2}+z_{2}^{2}&=z_{3}^{2}+z_{4}^{2}+\mathcal{O}(K^{-1}),\end{array}\right.

and now, the biorthogonality follows from the complex extension of the Córdoba–Fefferman square function estimate (see [2]). With the biorthogonality at hand, (46) follows from applying the Cauchy-Schwarz inequality. ∎

Combining (46) with Proposition 4.9, we record the following lemma.

Lemma 4.10.

The following estimate holds:

SK(1,K)1.S_{K}(1,K)\lesssim 1.

The final ingredient in the induction-on-scales from [10] is the Lorentz rescaling, which enlarges small sectors from the real cone to the full cone. Presently, we map dd-sectors τΓ2\tau\subseteq\mathbb{C}\Gamma_{2} defined by

(47) τ={(z,ζ=z2/h,h):h[1/2,1],|zhν|d},\tau=\{(z,\zeta=z^{2}/h,h):\,h\in[1/2,1],\;\big{|}\frac{z}{h}-\nu\big{|}\leq d\},

to the full cone Γ2\mathbb{C}\Gamma_{2}.

The complex generalization is straight-forward, and we record its properties in the following:

Lemma 4.11.

Let τΓ2\tau\subseteq\mathbb{C}\Gamma_{2} be a sector centered at ν\nu\in\mathbb{C}, |ν|1|\nu|\leq 1 with aperture dd given by (47). There is a linear transformation (z,ζ,h)(z,ζ,h)(z,\zeta,h)\mapsto(z^{\prime},\zeta^{\prime},h^{\prime}) given by

z=d1(zνh),ζ=d2ζ+Lin(z,h),h=h,z^{\prime}=d^{-1}(z-\nu h),\quad\zeta^{\prime}=d^{-2}\zeta+\text{Lin}(z^{\prime},h^{\prime}),\quad h^{\prime}=h,

which extends to a map 𝒩R1(τ)𝒩d2R1(Γ2)\mathcal{N}_{R^{-1}}(\tau)\to\mathcal{N}_{d^{-2}R^{-1}}(\mathbb{C}\Gamma_{2}) and establishes a correspondence between ΘR1θ𝒩R1(τ)\Theta_{R^{-1}}\ni\theta\subseteq\mathcal{N}_{R^{-1}}(\tau) and θΘd2R1\theta^{\prime}\in\Theta_{d^{-2}R^{-1}}.

With the Lorentz rescaling at disposal, we record the following analog of [10, Lemma ]:

Lemma 4.12.

For any 1r1<r2r31\leq r_{1}<r_{2}\leq r_{3}, it holds

SK(r1,r3)log(r2)SK(r1,r2)maxs[r212,1]SK(s2r2,s2r3).S_{K}(r_{1},r_{3})\leq\log(r_{2})S_{K}(r_{1},r_{2})\max_{s\in[r_{2}^{-\frac{1}{2}},1]}S_{K}(s^{2}r_{2},s^{2}r_{3}).
Proof of Theorem 1.3.

Like in [10] it suffices to show for 1r<R1\leq r<R

S(r,R)Cε(Rr)ε.S(r,R)\leq C_{\varepsilon}\big{(}\frac{R}{r}\big{)}^{\varepsilon}.

Choosing K=RδK=R^{\delta}, by (45) it is enough to show

SK(r,R)Cε(Rr)ε.S_{K}(r,R)\leq C_{\varepsilon}\big{(}\frac{R}{r}\big{)}^{\varepsilon}.

Taking Lemmas 4.10, Proposition 4.9, and Lemma 4.12 together, this follows from the same arguments as in the proof of [10, Proposition 3.4]. This finishes the proof of Theorem 1.3. ∎

Acknowledgements

Financial support from the Humboldt foundation (Feodor-Lynen fellowship) and partial support by the NSF grant DMS-2054975 is gratefully acknowledged.

References

  • [1] David Beltran, Jonathan Hickman, and Christopher D. Sogge. Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds. Anal. PDE, 13(2):403–433, 2020.
  • [2] Kirsti D. Biggs, Julia Brandes, and Kevin Hughes. Reinforcing a Philosophy: A counting approach to square functions over local fields. arXiv e-prints, page arXiv:2201.09649, January 2022.
  • [3] J. Bourgain. Averages in the plane over convex curves and maximal operators. J. Anal. Math., 47:69–85, 1986.
  • [4] A. Córdoba. A note on Bochner-Riesz operators. Duke Math. J., 46(3):505–511, 1979.
  • [5] Antonio Córdoba. Geometric Fourier analysis. Ann. Inst. Fourier (Grenoble), 32(3):vii, 215–226, 1982.
  • [6] Charles Fefferman. A note on spherical summation multipliers. Israel J. Math., 15:44–52, 1973.
  • [7] Chuanwei Gao, Bochen Liu, Changxing Miao, and Yakun Xi. Square function estimates and local smoothing for Fourier integral operators. Proc. Lond. Math. Soc. (3), 126(6):1923–1960, 2023.
  • [8] Philip T. Gressman, Shaoming Guo, Lillian B. Pierce, Joris Roos, and Po-Lam Yung. Reversing a philosophy: from counting to square functions and decoupling. J. Geom. Anal., 31(7):7075–7095, 2021.
  • [9] Larry Guth and Dominique Maldague. A sharp square function estimate for the moment curve in n\mathbb{R}^{n}. arXiv e-prints, page arXiv:2309.13759, September 2023.
  • [10] Larry Guth, Hong Wang, and Ruixiang Zhang. A sharp square function estimate for the cone in 3\mathbb{R}^{3}. Ann. of Math. (2), 192(2):551–581, 2020.
  • [11] Dominique Maldague. A sharp square function estimate for the moment curve in 3\mathbb{R}^{3}. arXiv e-prints, page arXiv:2210.17436, October 2022.
  • [12] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. (2), 136(1):207–218, 1992.
  • [13] Christopher D. Sogge. Propagation of singularities and maximal functions in the plane. Invent. Math., 104(2):349–376, 1991.
  • [14] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.