This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Pitaevskii relation between rectifying and linear responses:
its application to reciprocal magnetization induction

Hikaru Watanabe 0000-0001-7329-9638 [email protected] Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan    Akito Daido 0000-0003-4629-7818 Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
Abstract

Nonlinear optics has regained attention in recent years, especially in the context of optospintronics and topological materials. Nonlinear responses involved in various degrees of freedom manifest their intricacy more pronounced than linear responses. However, for a certain class of nonlinear responses, a connection can be established with linear-response coefficients, enabling the exploration of diverse nonlinear-response functionality in terms of the linear-response counterpart. Our study quantum-mechanically elucidates the relation between such nonlinear and linear responses we call the Pitevskii relation and identifies the condition for the relation to hold. Following the obtained general formulation, we systematically identify the Pitaevskii relations such as the inverse magnetoelectric effect and inverse natural optical activity unique to systems manifesting the space-inversion-symmetry breaking. These results provide a systematic understanding of intricate nonlinear responses and may offer further implications to ultrafast spintronics.

I introduction

Interaction between light and matter has been a subject of extensive research. The interaction gives rise to a plethora of diverse physical phenomena stemming from the breaking of symmetry such as magneto-optical responses (e.g., Faraday effect). In particular, the development in laser technology allows for high-intensity light sources and thereby makes it feasible to explore the optical responses of matter in more detail. For instance, intense light induces nonlinear effects like the rectification phenomena driven by the oscillating stimuli. The phenomena include rectified electric polarization (optical rectification) [1, 2, 3], magnetization (inverse Faraday and Cotton-Mouton effects) [4, 3, 5, 6, 7, 8, 9, 10, 11], and mechanical rotation (Sadovskii effect) [12, 13, 14] responses to the irradiating light. The formula is explicitly given by

Mi=κijk(ω)Ej(ω)Ek(ω),M_{i}=\kappa_{ijk}(\omega)E_{j}(\omega)E_{k}(-\omega),

for the rectified magnetization response 𝑴\bm{M} to the double electric field 𝑬2\bm{E}^{2}.

Further advancements in optical technology enable time-resolved spectroscopy of materials stimulated by the pulsive light, namely pump-probe spectroscopy. Combined with the nonlinear light-matter interaction, the methodology has paved the way for ultrafast control of the phase of matter such as magnetism, garnering significant interest in the realm of ultrafast spintronics [15, 16, 17]. It is noteworthy that nonlinear light-matter coupling, being in sharp contrast to the thermalization-driven control [18, 19, 20, 21, 22], is expected to open a route to highly efficient manipulation of magnetic states with minimizing Joule dissipation [23, 24, 25, 26, 27, 28].

In the field of nonlinear magneto-optics, it has been confirmed that the non-absorption condition leads to nontrivial relationships bridging linear and nonlinear responses. For instance, in the case of the Faraday effect, the response is determined by the off-diagonal elements of the optical dielectric susceptibility χij(ω)\chi_{ij}(\omega), that is the optical Hall susceptibility. As uncovered by Pitaevskii [4, 29], the optical Hall susceptibility is correlated with the response function of the inverse Faraday effect κijk\kappa_{ijk} in the absence of the absorption as

κijk(ω)=12lim𝑩𝟎Biχjk(ω),\kappa_{ijk}(\omega)=\frac{1}{2}\lim_{\bm{B}\to\bm{0}}\partial_{B_{i}}\,\chi_{jk}(\omega),

with the external magnetic field 𝑩\bm{B}. Here let us call the nontrivial relation between the linear and rectification responses Pitaevskii relation. The original derivation is carried out with the classical treatment of electrodynamics of matter and subsequently grounded in arguments based on effective free energies or perturbation analysis of the atom Hamiltonian [5, 7]. Furthermore, the effect of absorption has been elucidated in recent works including those for two-dimensional systems and first-principles calculations of bulk materials [30, 31].

Despite extensive research, the relation has hitherto not been formulated in a full-quantum manner to cover that between various degrees of freedom other than the electric and magnetic polarizations [7]. Furthermore, the microscopic conditions for the Pitaevskii relation to hold remain elusive, though the absence of absorption is considered to be essential. By considering the fact that the spintronic applications have been explored on the basis of theoretical and experimental findings delving into inverse magneto-optical effects [15], generalized Pitaevskii relations may allow us to explore crucial insights for future investigations of the optoelectronics.

In this study, we present a quantum derivation of Pitaevskii relations in a general formulation utilizing the Lehmann representation and auxiliary-field method [32] without specific assumptions such as the independent-particle approximation. Employing Kubo’s response theory, we derive the conditions under which Pitaevskii relations hold among various degrees of freedom through calculations of linear and nonlinear responses. We analytically and numerically demonstrate that Fermi surface effects may lead to the violation of Pitaevskii relations, even when the non-absorption condition is satisfied. The obtained relations are systematically classified based on the system’s space-time symmetry. As an example, we extensively investigate the phenomena such as inverse magnetoelectric and inverse natural optical activity, which are unique to systems with broken space-inversion symmetry.

The organization is the following. In Sec. II.1, we elucidate the non-absorption condition concerning the responses to the external stimuli up to the second order. Performing full-quantum calculations, we derive the condition for the Pitaevskii relation to hold in Sec. II.2. In Sec. III.1, after revisiting the Pitaevskii relation of the inverse Faraday effect, we generalize the relation to cover diverse correlations between the linear and rectification responses. The systematic classification of the relations is presented in Sec. III.2, and a tabulation of them is in Sec. III.3. Our formulation is further demonstrated in Sec. IV by taking the specific example, that is reciprocal magnetization induction. Numerical results are in agreement with the analytical results. Finally, we summarize the contents in Sec. V.

II Quantum-mechanical formulation of Pitaevskii relation

We derive the relation between the rectification and linear responses by following Kubo’s response theory. We first discuss the non-absorption condition required to validate the Pitaevskii relation (Sec. II.1). After the perturbative calculations, we formulate the non-absorptive rectification and (generalized) Pockels responses and thereby derive the Pitaevskii relation (Sec. II.2).

II.1 Non-absorption condition

The variation of total energy is given by the expectation value of the time-derivative of the total Hamiltonian H(t)H(t) as

ddtH(t)=Tr(H(t)dρ(t)dt+ρ(t)dH(t)dt),\frac{d}{dt}\Braket{H(t)}=\text{Tr}\left(H(t)\frac{d\rho(t)}{dt}+\rho(t)\frac{dH(t)}{dt}\right), (1)

where we introduced the density matrix ρ(t)\rho(t) denoting the quantum state of the system. Considering a closed system, one can see that the first term vanishes by the von Neumann equation idρ(t)/dt=[H,ρ(t)]id\rho(t)/dt=\left[H,\rho(t)\right]. This indicates that the heat production is zero and the variation of energy is attributed to the work WW done by the external stimuli. Then, we recast Eq. (1) as

ddtH(t)=WTr(ρ(t)dH(t)dt).\frac{d}{dt}\Braket{H(t)}=W\equiv\text{Tr}\left(\rho(t)\frac{dH(t)}{dt}\right). (2)

With the coupling between the stimuli and system written by Hex=iFi(t)Xi+O(F2)H_{\text{ex}}=\sum_{i}F_{i}(t)X_{i}+O(F^{2}), the work is given by

W=Tr[ρ(t)Xi(F(t)]dFi(t)dt,Xi(F(t))=HexFi(t),W=\text{Tr}\left[\rho(t)X_{i}(F(t)\right]\frac{dF_{i}(t)}{dt},\quad X_{i}(F(t))=\frac{\partial H_{\rm ex}}{\partial F_{i}(t)}, (3)

where the summation over the stimuli ii is implicit. The response to the external stimuli is expanded with respect to FF;

X=Tr(ρ(t)Xi(F(t)))\displaystyle\Braket{X}=\text{Tr}\left(\rho(t)X_{i}(F(t))\right) =Xieq+𝑑tχij(tt)Fj(t)\displaystyle=\Braket{X_{i}}_{\text{eq}}+\int_{-\infty}^{\infty}dt^{\prime}\chi_{ij}(t-t^{\prime})F_{j}(t^{\prime})
+𝑑t𝑑t′′κijk(tt,tt′′)Fj(t)Fk(t′′)+O(F3).\displaystyle+\int_{-\infty}^{\infty}dt^{\prime}\int_{-\infty}^{\infty}dt^{\prime\prime}\kappa_{ijk}(t-t^{\prime},t-t^{\prime\prime})F_{j}(t^{\prime})F_{k}(t^{\prime\prime})+O(F^{3}). (4)

eq\Braket{\cdot}_{\text{eq}} denotes the averaging by the density matrix ρ=ρeq\rho=\rho_{\text{eq}} under no external fields. Note that each susceptibility tensor satisfies the causality as χij(s)θ(s)\chi_{ij}(s)\propto\theta(s) and κijk(s,s)θ(s)θ(s)\kappa_{ijk}(s,s^{\prime})\propto\theta(s)\theta(s^{\prime}), where θ(s)\theta(s) is the Heaviside step function.

After subtracting the expectation value in equilibrium as XXXeq\Braket{X}\to\Braket{X}-\Braket{X}_{\text{eq}}, the work is obtained in a perturbative manner. It is given by

W(1)=𝑑ttFi(t)χij(tt)Fj(t),W^{(1)}=\int_{-\infty}^{\infty}dt^{\prime}\partial_{t}F_{i}(t)\chi_{ij}(t-t^{\prime})F_{j}(t^{\prime}), (5)

up to the linear response. We are interested in the work averaged over a sufficiently long period TT and therefore take the average of WW

W¯(1)=1TT/2T/2𝑑tW(1)dω2πiωFi(ω)χij(1)(ω)Fj(ω).\overline{W}^{(1)}=\frac{1}{T}\int_{-T/2}^{T/2}dtW^{(1)}\to\int\frac{d\omega}{2\pi}i\omega F_{i}^{\ast}(\omega)\chi_{ij}^{(1)}(\omega)F_{j}(\omega). (6)

On the rightmost side, we took the limit of TT\to\infty. We here define the non-absorption condition that the total work W¯\overline{W} done by the external stimuli F(t)F(t) is zero,

W¯=0.\overline{W}=0. (7)

In Eq. (6), the non-absorption condition is satisfied when the susceptibility tensor χ(ω)\chi(\omega) is hermitian as χij(ω)=χji(ω)\chi_{ij}^{\ast}(\omega)=\chi_{ji}(\omega). This can be proved by the fact that the stimuli Fi(t)F_{i}(t) is real and thereby Fi(ω)=Fi(ω)F_{i}^{\ast}(\omega)=F_{i}(-\omega). For the case of dielectric susceptibility, the non-absorption condition is the vanishing imaginary part.

Similarly, we obtain the time-averaged work up to the second order. The second-order correction is

W¯(2)\displaystyle\overline{W}^{(2)} =dωdω1dω2(2π)2δ(ωω1ω2)iωFi(ω)κijk(ω;ω1,ω2)Fj(ω1)Fk(ω2).\displaystyle=\int\frac{d\omega d\omega_{1}d\omega_{2}}{(2\pi)^{2}}\delta(\omega-\omega_{1}-\omega_{2})i\omega F_{i}^{\ast}(\omega)\kappa_{ijk}(-\omega;\omega_{1},\omega_{2})F_{j}(\omega_{1})F_{k}(\omega_{2}). (8)

We here defined the second-order susceptibility tensor in the frequency domain by

κijk(ω1ω2;ω1,ω2)=𝑑t𝑑tκijk(s,s)eiω1s+iω2s.\kappa_{ijk}(-\omega_{1}-\omega_{2};\omega_{1},\omega_{2})=\int dtdt^{\prime}~{}\kappa_{ijk}(s,s^{\prime})e^{i\omega_{1}s+i\omega_{2}s^{\prime}}. (9)

W¯(2)\overline{W}^{(2)} is rewritten as

W¯(2)\displaystyle\overline{W}^{(2)} =13dωdω1dω2(2π)2δ(ωω1ω2)iFi(ω)Fj(ω1)Fk(ω2){ωκijk(ω;ω1,ω2)ω1κjik(ω1;ω,ω2)ω2κkij(ω2;ω,ω1)},\displaystyle=\frac{1}{3}\int\frac{d\omega d\omega_{1}d\omega_{2}}{(2\pi)^{2}}\delta(\omega-\omega_{1}-\omega_{2})iF_{i}(\omega)F_{j}(\omega_{1})F_{k}(\omega_{2})\left\{\omega\kappa_{ijk}(-\omega;\omega_{1},\omega_{2})-\omega_{1}\kappa_{jik}(\omega_{1};-\omega,\omega_{2})-\omega_{2}\kappa_{kij}(\omega_{2};-\omega,\omega_{1})\right\}, (10)
=13dωdω1dω2(2π)2iFi(ω)Fj(ω1)Fk(ω2)κ~ijk(ω,ω1,ω2).\displaystyle=-\frac{1}{3}\int\frac{d\omega d\omega_{1}d\omega_{2}}{(2\pi)^{2}}iF_{i}(\omega)F_{j}(\omega_{1})F_{k}(\omega_{2})\tilde{\kappa}_{ijk}(-\omega,\omega_{1},\omega_{2}). (11)

In the final line, we defined the tensor

κ~ijk(ωi,ωj,ωk)=δ(ωi+ωj+ωk){ωiκijk(ωi;ωj,ωk)+ωjκjik(ωj;ωi,ωk)+ωkκkij(ωk;ωi,ωj)}.\tilde{\kappa}_{ijk}(\omega_{i},\omega_{j},\omega_{k})=\delta(\omega_{i}+\omega_{j}+\omega_{k})\left\{\omega_{i}\kappa_{ijk}(\omega_{i};\omega_{j},\omega_{k})+\omega_{j}\kappa_{jik}(\omega_{j};\omega_{i},\omega_{k})+\omega_{k}\kappa_{kij}(\omega_{k};\omega_{i},\omega_{j})\right\}. (12)

Owing to the intrinsic permutation symmetry of the second-order susceptibility tensor, that is κijk(ωi;ωj,ωk)=κikj(ωi;ωk,ωj)\kappa_{ijk}(\omega_{i};\omega_{j},\omega_{k})=\kappa_{ikj}(\omega_{i};\omega_{k},\omega_{j}), the tensor κ~ijk(ωi,ωj,ωk)\tilde{\kappa}_{ijk}(\omega_{i},\omega_{j},\omega_{k}) is totally symmetric under any permutation between (i,ωi)(i,\omega_{i}), (j,ωj)(j,\omega_{j}), and (k,ωk)(k,\omega_{k}). As a result, the second-order averaged work W¯(2)\overline{W}^{(2)} vanishes when the totally symmetric tensor κijk(ωi,ωj,ωk)\kappa_{ijk}(\omega_{i},\omega_{j},\omega_{k}) is zero.

The vanishing second-order correction is related to the full permutation symmetry [33], that is

κijk(ωi;ωj,ωk)=κjik(ωj;ωi,ωk)=κkij(ωk;ωi,ωj).\kappa_{ijk}(\omega_{i};\omega_{j},\omega_{k})=\kappa_{jik}(\omega_{j};\omega_{i},\omega_{k})=\kappa_{kij}(\omega_{k};\omega_{i},\omega_{j}). (13)

When the full-permutation symmetry holds, one can straightforwardly find that the totally symmetric part is zero; κ~ijk(ωi,ωj,ωk)=0\tilde{\kappa}_{ijk}(\omega_{i},\omega_{j},\omega_{k})=0. Note, on the other hand, that the full permutation symmetry may not always be satisfied when the totally-symmetric tensor κ~ijk(ωi,ωj,ωk)\tilde{\kappa}_{ijk}(\omega_{i},\omega_{j},\omega_{k}) is zero. Thus, the full permutation symmetry is a sufficient condition for the non-absorption, though is not necessary.

Let us elaborate on the non-absorption condition and the full permutation symmetry in the case of the rectification response, which is of primary interest. They are given by,

κ~ijk(0,ω,ω)=0,\tilde{\kappa}_{ijk}(0,-\omega,\omega)=0, (14)

and

κijk(0;ω,ω)=κjik(ω;0,ω)=κkij(ω;0,ω).\kappa_{ijk}(0;-\omega,\omega)=\kappa_{jik}(-\omega;0,\omega)=\kappa_{kij}(\omega;0,-\omega). (15)

The full permutation symmetry indicates that the rectification response is related to the Pockels effect denoted by κjik(ω;0,ω)\kappa_{jik}(-\omega;0,\omega) and κkij(ω;0,ω)\kappa_{kij}(\omega;0,-\omega), that is DC-field (FiF_{i}) correction to the linear susceptibility concerning Fj(ω)F_{j}(-\omega) and Fk(ω)F_{k}(\omega). Note that the Pockels effect is for the DC-electric-field correction to the electric permittivity, which is reproduced by taking (Fi,Fj,Fk)=(Ep,Eq,Er)(F_{i},F_{j},F_{k})=(E_{p},E_{q},E_{r}), where the indices pp, qq, and rr are for the real-space coordinates. In the following, we call the second-order responses of the form κijk(±ω;0,ω)\kappa_{ijk}(\pm\omega;0,\mp\omega) Pockels effects regardless of whether the external stimuli is the electric field.

In closing this section, we note that the stimulus FiF_{i} in the above discussion is assumed to be invariant under the gauge transformation. For instance, the electric current 𝑱\bm{J} is conjugated to the vector potential 𝑨\bm{A}, and thus in the case of the electric current response to the quadratic electric field, the fields are taken as (Fi,Fj,Fk)=(Ap,Eq,Er)(F_{i},F_{j},F_{k})=(A_{p},E_{q},E_{r}) with the electric field 𝑬\bm{E} in Eq. (8). In this case, it is more physically transparent to replace the vector potential with the electric field as 𝑨(ω)=𝑬(ω)/(iω)\bm{A}(\omega)=\bm{E}(\omega)/(i\omega), to make the gauge invariance of W¯(2)\overline{W}^{(2)} manifest. Then, we rewrite the second-order contribution to the averaged work W¯\overline{W} as

W¯JPP(2)\displaystyle\overline{W}_{JPP}^{(2)} =dωdω1dω2(2π)2δ(ωω1ω2)κijk(ω;ω1,ω2)Ei(ω)Ej(ω1)Ek(ω2).\displaystyle=\int\frac{d\omega d\omega_{1}d\omega_{2}}{(2\pi)^{2}}\delta(\omega-\omega_{1}-\omega_{2})\kappa^{\prime}_{ijk}(-\omega;\omega_{1},\omega_{2})E_{i}^{\ast}(\omega)E_{j}(\omega_{1})E_{k}(\omega_{2}). (16)

Here PP in the subscript of W¯JPP(2)\overline{W}_{JPP}^{(2)} denotes the electric polarization conjugate to the electric field. Accordingly, the totally-symmetric tensor defined from κ\kappa^{\prime} is given by

κ~ijk(ωi,ωj,ωk)=δ(ωi+ωj+ωk){κijk(ωi;ωj,ωk)+κjik(ωj;ωi,ωk)+κkij(ωk;ωi,ωj)},\tilde{\kappa}^{\prime}_{ijk}(\omega_{i},\omega_{j},\omega_{k})=\delta(\omega_{i}+\omega_{j}+\omega_{k})\left\{\kappa^{\prime}_{ijk}(\omega_{i};\omega_{j},\omega_{k})+\kappa^{\prime}_{jik}(\omega_{j};\omega_{i},\omega_{k})+\kappa^{\prime}_{kij}(\omega_{k};\omega_{i},\omega_{j})\right\}, (17)

with which finite work is obtained through the second-order current response. The obtained non-absorption condition κ~ijk=0\tilde{\kappa}^{\prime}_{ijk}=0 is consistent with Refs. [34] and [35] where the DC current response to the AC and DC electric fields are discussed, respectively. In this way, when the output is conjugate to the gauge-covariant field, one can discuss the non-absorption condition with the totally-symmetric tensor such as κ~ijk(ωi,ωj,ωk)\tilde{\kappa}^{\prime}_{ijk}(\omega_{i},\omega_{j},\omega_{k}) of Eq. (17) instead of κ~ijk(ωi,ωj,ωk)\tilde{\kappa}_{ijk}(\omega_{i},\omega_{j},\omega_{k}) of Eq. (12).

II.2 Derivation of Pitaevskii relation

We formulate the rectification and the Pockels effects. Following the established perturbative calculation [32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], we obtain the nonlinear susceptibility in the Lehmann representation as

X(2)i(ω)=dω1dω2(2π)22πδ(ωω1ω2)κijk(ω;ω1,ω2)Fj(ω1)Fk(ω2),X^{i}_{(2)}(\omega)=\int\frac{d\omega_{1}d\omega_{2}}{(2\pi)^{2}}2\pi\delta(\omega-\omega_{1}-\omega_{2})\kappa_{ijk}(-\omega;\omega_{1},\omega_{2})F_{j}(\omega_{1})F_{k}(\omega_{2}), (18)

where

κijk(ω;ω1,ω2)\displaystyle\kappa_{ijk}(-\omega;\omega_{1},\omega_{2}) =lim𝑭𝟎[a12Xaaijkfa\displaystyle=\lim_{\bm{F}\to\bm{0}}\Biggl{[}\sum_{a}\frac{1}{2}X^{ijk}_{aa}f_{a} (19)
+a,b12XabijXbakfabω2+iηϵba+12XabikXbajfabω1+iηϵba\displaystyle+\sum_{a,b}\frac{1}{2}\frac{X^{ij}_{ab}X^{k}_{ba}f_{ab}}{\omega_{2}+i\eta-\epsilon_{ba}}+\frac{1}{2}\frac{X^{ik}_{ab}X^{j}_{ba}f_{ab}}{\omega_{1}+i\eta-\epsilon_{ba}} (20)
+a,b12XabiXbajkfabω+2iηϵba\displaystyle+\sum_{a,b}\frac{1}{2}\frac{X^{i}_{ab}X^{jk}_{ba}f_{ab}}{\omega+2i\eta-\epsilon_{ba}} (21)
+a,b,c12Xabiω+2iηϵba(XbcjXcakfacω2+iηϵcaXcajXbckfcbω2+iηϵbc)\displaystyle+\sum_{a,b,c}\frac{1}{2}\frac{X^{i}_{ab}}{\omega+2i\eta-\epsilon_{ba}}\left(\frac{X^{j}_{bc}X^{k}_{ca}f_{ac}}{\omega_{2}+i\eta-\epsilon_{ca}}-\frac{X^{j}_{ca}X^{k}_{bc}f_{cb}}{\omega_{2}+i\eta-\epsilon_{bc}}\right) (22)
+a,b,c12Xabiω+2iηϵba(XbckXcajfacω1+iηϵcaXcakXbcjfcbω1+iηϵbc)].\displaystyle+\sum_{a,b,c}\frac{1}{2}\frac{X^{i}_{ab}}{\omega+2i\eta-\epsilon_{ba}}\left(\frac{X^{k}_{bc}X^{j}_{ca}f_{ac}}{\omega_{1}+i\eta-\epsilon_{ca}}-\frac{X^{k}_{ca}X^{j}_{bc}f_{cb}}{\omega_{1}+i\eta-\epsilon_{bc}}\right)\Biggr{]}. (23)

Here, η=+0\eta=+0 represents the adiabaticity parameter. We defined the operators

Xi\displaystyle X^{i} =H(𝑭)Fi,\displaystyle=\left.\frac{\partial H(\bm{F})}{\partial F_{i}}\right., (24)
Xij\displaystyle X^{ij} =2H(𝑭)FiFj,\displaystyle=\left.\frac{\partial^{2}H(\bm{F})}{\partial F_{i}\partial F_{j}}\right., (25)
Xijk\displaystyle X^{ijk} =3H(𝑭)FiFjFk,\displaystyle=\left.\frac{\partial^{3}H(\bm{F})}{\partial F_{i}\partial F_{j}\partial F_{k}}\right., (26)

where the Hamiltonian H(𝑭)H(\bm{F}) includes the coupling to the stimuli. In the case of the vector potential (𝑭=𝑨\bm{F}=\bm{A}), for instance, XiX^{i} and XijX^{ij} denote the paramagnetic and diamagnetic current operators in the limit of 𝑭𝟎\bm{F}\to\bm{0}, respectively. We also introduced the energy eigenvalue ϵa\epsilon_{a} for the many-body Hamiltonian including HexH_{\text{ex}} and the Boltzmann factor fa=eϵa/T/(beϵb/T)f_{a}=e^{-\epsilon_{a}/T}/\left(\sum_{b}e^{-\epsilon_{b}/T}\right), and accordingly defined ϵab=ϵaϵb\epsilon_{ab}=\epsilon_{a}-\epsilon_{b} and fab=fafbf_{ab}=f_{a}-f_{b}. While we here consider general interacting systems, we can show for non-interacting electron systems that the equations of the same form as the following ones hold by replacing H(𝑭)H(\bm{F}) in the definition of XiX^{i}, XijX^{ij} and XijkX^{ijk} with the single-particle Hamiltonian and accordingly reinterpreting energy eigenstates and eigenvalues, as well as replacing faf_{a} with the Fermi distribution function.

First, we consider the rectification response κijk(0;ω,ω)\kappa_{ijk}(0;-\omega,\omega). Following the parallel discussions in Ref. [32], we arrive at the expression including no resonant contribution;

κijkna(0;ω,ω)=12lim𝑭𝟎{Fi[aXaajkfaa,bXbajXabkfab1ω+ϵba]aXaajkFifaa,bXabjXbak1ω+ϵabFifab}.\displaystyle\kappa_{ijk}^{\text{na}}(0;-\omega,\omega)=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\left\{\partial_{F_{i}}\left[\sum_{a}X^{jk}_{aa}f_{a}-\sum_{a,b}X^{j}_{ba}X_{ab}^{k}f_{ab}\frac{1}{\omega+\epsilon_{ba}}\right]-\sum_{a}X^{jk}_{aa}\partial_{F_{i}}f_{a}-\sum_{a,b}X^{j}_{ab}X_{ba}^{k}\frac{1}{\omega+\epsilon_{ab}}\partial_{F_{i}}f_{ab}\right\}. (27)

Similarly, the off-resonant Pockels response is given by

κijkna(ω;ω,0)=12lim𝑭𝟎{Fk[aXaaijfaa,bXbajXabifab1ω+ϵba]aXaaijFkfaa,bXabjXbai1ω+ϵabFkfab}.\kappa_{ijk}^{\text{na}}(\omega;-\omega,0)=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\left\{\partial_{F_{k}}\left[\sum_{a}X^{ij}_{aa}f_{a}-\sum_{a,b}X^{j}_{ba}X_{ab}^{i}f_{ab}\frac{1}{\omega+\epsilon_{ba}}\right]-\sum_{a}X^{ij}_{aa}\partial_{F_{k}}f_{a}-\sum_{a,b}X^{j}_{ab}X_{ba}^{i}\frac{1}{\omega+\epsilon_{ab}}\partial_{F_{k}}f_{ab}\right\}. (28)

Here we divided the total second-order susceptibility into terms with and without resonant contributions by κijk(ωi;ωj,ωk)=κijka(ωi;ωj,ωk)+κijkna(ωi;ωj,ωk)\kappa_{ijk}(\omega_{i};\omega_{j},\omega_{k})=\kappa_{ijk}^{\rm a}(\omega_{i};\omega_{j},\omega_{k})+\kappa_{ijk}^{\rm na}(\omega_{i};\omega_{j},\omega_{k}). The resonant contribution κijka\kappa_{ijk}^{\rm a} is defined to include delta functions that appear from factors like (ω+iηϵ)1(\omega+i\eta-\epsilon)^{-1}. The derivations are given in Appendix A. It turns out that κna\kappa^{\text{na}} is responsible for the Pitaevskii relation and thus we focus on this component.

The obtained response functions satisfy

κijkna(0;ω,ω)=κkjina(ω;ω,0).\kappa_{ijk}^{\text{na}}(0;-\omega,\omega)=\kappa_{kji}^{\text{na}}(\omega;-\omega,0). (29)

One can straightforwardly derive other relations such as κijkna(0;ω,ω)=κjikna(ω;0,ω)\kappa_{ijk}^{\text{na}}(0;-\omega,\omega)=\kappa_{jik}^{\text{na}}(-\omega;0,\omega) by using the intrinsic permutation symmetry. These relations indicate that the full-permutation symmetry of Eq. (15) is satisfied for κijkna\kappa^{\rm na}_{ijk}. Thus, we conclude that the off-resonant rectification- and Pockels-response functions satisfy the non-absorption condition. The response functions (27) and (28) consist of two contributions; the first term enclosed by auxiliary-field derivative and the second term including the distribution-modulation effect (𝑭fa\partial_{\bm{F}}f_{a}).

Linear-response functions are similarly obtained as

χij(ω)=aXaaijfa+a,bXabiXbajω+iη+εabfab.\chi_{ij}(\omega)=\sum_{a}X_{aa}^{ij}f_{a}+\sum_{a,b}\frac{X_{ab}^{i}X_{ba}^{j}}{\omega+i\eta+\varepsilon_{ab}}f_{ab}. (30)

The non-absorptive part is given by the hermitian component

χijna(ω)=12{χij(ω)+χji(ω)}=aXaaijfa+a,bPXabiXbajωϵbafab,\chi_{ij}^{\text{na}}(\omega)=\frac{1}{2}\left\{\chi_{ij}(\omega)+\chi_{ji}^{\ast}(\omega)\right\}=\sum_{a}X_{aa}^{ij}f_{a}+\sum_{a,b}\mathrm{P}\frac{X_{ab}^{i}X_{ba}^{j}}{\omega-\epsilon_{ba}}f_{ab}, (31)

where P\mathrm{P} denotes the Cauchy principal value. This means that the non-absorption condition for the linear response means the absence of resonant contributions. Finally, we can relate the rectification response with the linear response as

κijkna(0;ω,ω)=12lim𝑭𝟎{Fiχjkna(ω,𝑭)+κijkdm}.\kappa_{ijk}^{\text{na}}(0;-\omega,\omega)=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\left\{\partial_{F_{i}}\chi_{jk}^{\text{na}}(-\omega,\bm{F})+\kappa_{ijk}^{\text{dm}}\right\}. (32)

The auxiliary-field (𝑭\bm{F}) dependence of the linear-response function is explicitly shown as χij(ω,𝑭)\chi_{ij}(\omega,\bm{F}) and

κijkdmaXaajkFifaa,bXabjXbak1ω+ϵabFifab,\kappa_{ijk}^{\text{dm}}\equiv-\sum_{a}X^{jk}_{aa}\partial_{F_{i}}f_{a}-\sum_{a,b}X^{j}_{ab}X_{ba}^{k}\frac{1}{\omega+\epsilon_{ab}}\partial_{F_{i}}f_{ab}, (33)

is the contributions including the modulation of the distribution function. Thus, we have proved that an equation similar to the Pitaevskii relation generally holds between off-resonant contributions of linear and nonlinear susceptibilities. The Pitaevskii relation holds as

κijk(0;ω,ω)=12lim𝑭𝟎Fiχjk(ω,𝑭),\kappa_{ijk}(0;-\omega,\omega)=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\partial_{F_{i}}\chi_{jk}(-\omega,\bm{F}), (34)

when there is neither κijkdm\kappa^{\rm dm}_{ijk} nor the resonant contributions of the linear and nonlinear susceptibilities, which are given by κijka(0;ω,ω)\kappa^{\rm a}_{ijk}(0;-\omega,\omega) and the anti-hermitian part χija(ω)=(χij(ω)χji(ω))/2\chi_{ij}^{\text{a}}(\omega)=(\chi_{ij}(\omega)-\chi^{*}_{ji}(\omega))/2, respectively.

In summary, the full-quantum derivation of the rectification and Pockels effects clarified the condition for the Pitaevskii relation to hold beyond arguments based on the steady-state free energy [5] and on the atom Hamiltonian [7]. Our formulation is based on the Lehmann representation of the response functions without considering specific approximations such as independent-particle approximation. Pitaevskii relation (34) holds if and only if the frequency ω\omega is in the off-resonant regime and the distribution-modulation factor is negligible (𝑭fa=0\partial_{\bm{F}}f_{a}=0); i.e., the rectification, Pockels, and linear responses are related with each other when interband-like or intraband-like excitation is absent.

It is noteworthy that the non-absorption condition does not always ensure the Pitaevskii relation. For example, let us take the band-electron system where electrons partially occupy a single band well isolated from other bands. If the frequency of the external field is sufficiently larger than the bandwidth but does not give rise to interband transition, the rectification-response and linear-response functions are given by the non-absorptive contributions of Eqs. (14), (31), whereas Pitaevskii relation is violated due to the Fermi-surface effect of Eq. (33). Note that the summation over the eigenstates may result in the vanishing distribution-modulation effect in some situations [47, 48]. In the following subsections, we will mainly work on cases satisfying the non-absorption conditions (χija=0\chi_{ij}^{\text{a}}=0, κijka=0\kappa_{ijk}^{\text{a}}=0) as well as κijkdm=0\kappa_{ijk}^{\text{dm}}=0 to corroborate Pitaevskii relations. Then, the superscript ‘na’ will be suppressed unless explicitly mentioned.

III Generalized Pitaevskii relation and symmetry

III.1 General remarks

Our formulation covers diverse Pitaevskii relations including known results for the inverse Faraday, inverse Cotton-Mouton, and optical rectification effects. One can take various fields for each auxiliary field such as electric field 𝑬\bm{E}, spin and orbital Zeeman field 𝑩sp/orb\bm{B}_{\text{sp/orb}}, stress σij\sigma_{ij}, and so on. Furthermore, the auxiliary field may be taken as what is related to the spontaneous symmetry breaking such as the spatial gradient of the phase of the condensate of Cooper pairs [49, 32, 50], which is equal to the vector potential 𝑨\bm{A} in the London gauge.

We here investigate cases where the Pitaevskii relation holds as

κijk(0;ω,ω)=12lim𝑭𝟎Fiχjk(ω,𝑭).\kappa_{ijk}(0;-\omega,\omega)=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\partial_{F_{i}}\chi_{jk}(-\omega,\bm{F}). (35)

The distribution-modulation contribution is assumed to be zero. Pitaevskii relations are classified by the preserved symmetry of the unperturbed Hamiltonian. Let us take a known example, that is the magnetization response to the double electric field. The induced magnetization is

Mi=κijkBEE(ω)Ej(ω)Ek(ω)=κijkBEE(ω)Ej(ω)Ek(ω),M_{i}=\kappa_{ijk}^{BEE}(\omega)E_{j}(-\omega)E_{k}(\omega)=\kappa_{ijk}^{BEE}(\omega)E_{j}^{\ast}(\omega)E_{k}(\omega), (36)

where we explicitly show the auxiliary fields (Fi,Fj,Fk)=(𝑩,𝑬,𝑬)(F_{i},F_{j},F_{k})=(\bm{B},\bm{E},\bm{E}) related to the response in the superscripts of the susceptibility κijk(ω)κijk(0;ω,ω)\kappa_{ijk}(\omega)\equiv\kappa_{ijk}(0;-\omega,\omega). According to the Pitaevskii relation, κijkBEE\kappa_{ijk}^{BEE} is related to the electric permittivity defined by the formula Pj(ω)=χjkEE(ω)Ek(ω)P_{j}(\omega)=\chi_{jk}^{EE}(\omega)E_{k}(\omega). The Pitaevskii relation is explicitly written as

κijkBEE(ω)=12lim𝑩0BiχjkEE(ω,𝑩).\kappa_{ijk}^{BEE}(\omega)=\frac{1}{2}\lim_{\bm{B}\to 0}\partial_{B_{i}}\chi_{jk}^{EE}(-\omega,\bm{B}). (37)

The anti-unitary symmetry such as the time-reversal (𝒯\mathcal{T}) symmetry is convenient to decompose the relation. When the 𝒯\mathcal{T}-symmetry is intact in the unperturbed state, the Onsager reciprocity relation leads to

χjkEE(ω,𝑩)=χkjEE(ω,𝑩),\chi_{jk}^{EE}(\omega,\bm{B})=\chi_{kj}^{EE}(\omega,-\bm{B}), (38)

by which only the antisymmetric component (χjkEE=χkjEE\chi_{jk}^{EE}=-\chi_{kj}^{EE}) contributes to the Pitaevskii relation of Eq. (37). It follows that the DC magnetization is induced by the cross-product of the double electric fields;

Mi=12κijkBEE(ω)ϵjkl(𝑬(ω)×𝑬(ω))l,M_{i}=\frac{1}{2}\kappa_{ijk}^{BEE}(\omega)~{}\epsilon_{jkl}\left(\bm{E}^{\ast}(\omega)\times\bm{E}(\omega)\right)_{l}, (39)

in 𝒯\mathcal{T}-symmetric systems. Since 𝑬(ω)×𝑬(ω)𝟎\bm{E}^{\ast}(\omega)\times\bm{E}(\omega)\neq\bm{0} when the light has the circular-polarized component [51], the obtained formula represents the DC magnetization response to the circularly-polarized light, so-called the inverse Faraday effect [4, 6]. As a result, the Pitaevskii relation of Eq. (37) points to the correlation between the inverse Faraday effect and optical Hall conductivity. When the 𝒯\mathcal{T} symmetry is not kept in the unperturbed Hamiltonian, the Onsager reciprocity relation [Eq. (38)] does not hold. Then, DC magnetization can respond to the non-circular part of the double electric fields (unpolarized and linearly-polarized lights) satisfying Ej(ω)Ek(ω)=Ek(ω)Ej(ω)E_{j}^{\ast}(\omega)E_{k}(\omega)=E_{k}^{\ast}(\omega)E_{j}(\omega), that is the inverse Cotton-Mouton effect [8, 9] 111 The Cotton-Mouton effect is magnetic birefringence proportional to the square of magnetization 𝑴\bm{M}. We note that this magnetic birefringence is attributed not only to the magnetic correction to the symmetric part of the electric permittivity (ΔχijEE=+ΔχjiEE𝑴2\Delta\chi_{ij}^{EE}=+\Delta\chi_{ji}^{EE}\propto\bm{M}^{2}) but also that to the antisymmetric part (ΔχijEE=ΔχjiEE𝑴\Delta\chi_{ij}^{EE}=-\Delta\chi_{ji}^{EE}\propto\bm{M}) in the Voigt optical arrangement. We here consider the Cotton-Mouton in a narrow sense, that is the magnetic birefringence arising from corrections to the symmetric part. .

Note that the permutation symmetry between the indices of double electric fields (j,k)(j,k) is in close relation to the property as the complex number; the antisymmetric part (𝑬(ω)×𝑬(ω)\bm{E}^{\ast}(\omega)\times\bm{E}(\omega)) is pure imaginary while the symmetric part (Ej(ω)Ek(ω)+(jk)E_{j}^{\ast}(\omega)E_{k}(\omega)+(j\leftrightarrow k)) is real. Accordingly, the rectification-response function κijkBEE\kappa_{ijk}^{BEE} is divided into the imaginary and real parts for the inverse Faraday and Cotton-Mouton effects, respectively. The decomposition is explicitly given as

Mi\displaystyle M_{i} =12Re[κijkBEE(ω)]{Ej(ω)Ek(ω)+(jk)}+i2Im[κijkBEE(ω)]{Ej(ω)Ek(ω)(jk)}.\displaystyle=\frac{1}{2}\text{Re}\left[\kappa_{ijk}^{BEE}(\omega)\right]\left\{E_{j}^{\ast}(\omega)E_{k}(\omega)+\left(j\leftrightarrow k\right)\right\}+\frac{i}{2}\text{Im}\left[\kappa_{ijk}^{BEE}(\omega)\right]\left\{E_{j}^{\ast}(\omega)E_{k}(\omega)-\left(j\leftrightarrow k\right)\right\}. (40)

If the non-absorption condition is satisfied, the real-imaginary decomposition of κijkBEE\kappa_{ijk}^{BEE} is consistent with the symmetry of the non-absorptive linear response whose response function is hermitian (χij(ω)=χji(ω)\chi_{ij}^{\ast}(\omega)=\chi_{ji}(\omega)), and thereby the permutation symmetry of indices determines whether the response function is real or purely imaginary as

Re[χij(ω)]=Re[χji(ω)],Im[χij(ω)]=Im[χji(ω)].\text{Re}\left[\chi_{ij}(\omega)\right]=\text{Re}\left[\chi_{ji}(\omega)\right],~{}\text{Im}\left[\chi_{ij}(\omega)\right]=-\text{Im}\left[\chi_{ji}(\omega)\right]. (41)

Note that the symmetry of the Pitaevskii relation does not change when the electric fields are replaced by the magnetic fields in Eq. (36[52] or when the induced magnetization is replaced with another magnetic multipolar degree of freedom having the ferromagnetic symmetry such as magnetic octu-polarization in Mn3Sn [53].

The classification is straightforwardly generalized. Let us take the 𝒯\mathcal{T}-symmetric system and define the 𝒯\mathcal{T} parity of the physical field FiF_{i} by τθFi\tau_{\theta}^{F_{i}}. The Onsager reciprocity relation reads as

χjk(ω,Fi)=τθFjτθFkχkj(ω,τθFiFi),\chi_{jk}(\omega,F_{i})=\tau_{\theta}^{F_{j}}\tau_{\theta}^{F_{k}}\chi_{kj}(\omega,\tau_{\theta}^{F_{i}}F_{i}), (42)

due to which only the antisymmetric double fields (ϵjklFjFk\epsilon_{jkl}F_{j}^{\ast}F_{k}) is relevant to Pitaevskii relation if the total parity is odd as τθtotτθFiτθFjτθFk=1\tau_{\theta}^{\text{tot}}\equiv\tau_{\theta}^{F_{i}}\tau_{\theta}^{F_{j}}\tau_{\theta}^{F_{k}}=-1. Conversely, only the symmetric components (FjFk+(jk)F_{j}^{\ast}F_{k}+(j\leftrightarrow k)) are relevant if the total parity is even as τθtot=+1\tau_{\theta}^{\text{tot}}=+1. Once the 𝒯\mathcal{T} symmetry is violated in the unperturbed state, the symmetric and anti-symmetric parts also make contributions to the Pitaevskii relation for the cases of τθtot=1\tau_{\theta}^{\text{tot}}=-1 and τθtot=+1\tau_{\theta}^{\text{tot}}=+1, respectively. One can reproduce the symmetry of the DC magnetization response to the double electric fields from the above-mentioned classification by taking τθtot=τθ𝑯(τθ𝑬)2=1\tau_{\theta}^{\text{tot}}=\tau_{\theta}^{\bm{H}}(\tau_{\theta}^{\bm{E}})^{2}=-1. We summarize the symmetry of the Pitaevskii relation in Table 1 222 One can find the correspondence between the permutation symmetry of indices and 𝒯\mathcal{T} parity (Table 1) even when including Eq. (33) as in Eq. (32). Note that, if one adopts Eq. (32), the Pitaevskii relation does not hold. .

Table 1: Classification of Pitevskii relation based on the total time-reversal parity. The non-absorptive rectification-response function κijkna\kappa_{ijk}^{\text{na}} is classified by the permutation symmetry for (j,k)(j,k) and the total time-reversal parity τθtot\tau_{\theta}^{\text{tot}}. The symmetric and antisymmetric parts are real and pure imaginary, respectively.
Symmetric (κijkna=κikjna\kappa_{ijk}^{\text{na}}=\kappa_{ikj}^{\text{na}}) Anti-symmetric (κijkna=κikjna\kappa_{ijk}^{\text{na}}=-\kappa_{ikj}^{\text{na}})
τθtot=+1\tau_{\theta}^{\text{tot}}=+1 𝒯\mathcal{T}-even 𝒯\mathcal{T}-odd
τθtot=1\tau_{\theta}^{\text{tot}}=-1 𝒯\mathcal{T}-odd 𝒯\mathcal{T}-even

III.2 Odd-parity response and 𝒯\mathcal{T}-𝒫𝒯\mathcal{PT} classification

Every system satisfies the 𝒯\mathcal{T} symmetry if there is no external field or spontaneous symmetry breaking. Among the responses classified in Table 1, 𝒯\mathcal{T}-even responses may exist in general, while the 𝒯\mathcal{T}-odd contributions are admixed with them only when the 𝒯\mathcal{T} symmetry is lost in the unperturbed state. On the other hand, the 𝒯\mathcal{T}-odd response can occur without admixed with the 𝒯\mathcal{T}-even part if another symmetry forbids the latter. For instance, the combined symmetry for the 𝒯\mathcal{T} and the space-inversion (𝒫\mathcal{P}) operations, namely 𝒫𝒯\mathcal{PT} symmetry, is convenient to classify the physical phenomena induced by the 𝒫\mathcal{P}-breaking effect [54]. Similarly to Eq. (42), the 𝒫𝒯\mathcal{PT} symmetry leads to a kind of the Onsager reciprocity relation of the linear-response function as

χjk(ω,Fi)=τθIFjτθIFkχkj(ω,τθIFiFi),\chi_{jk}(\omega,F_{i})=\tau_{\theta I}^{F_{j}}\tau_{\theta I}^{F_{k}}\chi_{kj}(\omega,\tau_{\theta I}^{F_{i}}F_{i}), (43)

with τθIF\tau_{\theta I}^{F} denoting the 𝒫𝒯\mathcal{PT} parity. Since τθIF=τθFτIF\tau_{\theta I}^{F}=\tau_{\theta}^{F}\cdot\tau_{I}^{F} (τIF\tau_{I}^{F} is the 𝒫\mathcal{P} parity), the 𝒫𝒯\mathcal{PT}-symmetry constraint on the linear response is contrasting to that demanded by the 𝒯\mathcal{T} symmetry if one consider the odd-parity response in which τθtot=τθItot\tau_{\theta}^{\text{tot}}=-\tau_{\theta I}^{\text{tot}}. For instance, the symmetric part κijk=κikj\kappa_{ijk}=\kappa_{ikj} is allowed in 𝒯\mathcal{T}-symmetric systems but is absent in the 𝒫𝒯\mathcal{PT}-symmetric systems if τθtot=+1\tau_{\theta}^{\text{tot}}=+1 and τθItot=1\tau_{\theta I}^{\text{tot}}=-1, whereas it is forbidden by the 𝒯\mathcal{T} symmetry but can be finite in the 𝒫𝒯\mathcal{PT}-symmetric if τθtot=1\tau_{\theta}^{\text{tot}}=-1 and τθItot=+1\tau_{\theta I}^{\text{tot}}=+1. Following the parallel discussions, we obtain the 𝒯\mathcal{T}-𝒫𝒯\mathcal{PT} classification of the anti-symmetric part (κijk=κikj\kappa_{ijk}=-\kappa_{ikj}). One may obtain a similar classification by making use of the combined operation of the 𝒯\mathcal{T} and another unitary operation such as θ2\theta 2 comprised of the two-fold rotation operation, which may work for the classification of 𝒫\mathcal{P}-even responses as well.

Let us consider an example where the 𝒯\mathcal{T} and 𝒫𝒯\mathcal{PT} symmetries play contrasting roles. To this end, we consider an odd-parity rectification response written by

Mi\displaystyle M_{i} =κijkBEB(ω)Ej(ω)Bk(ω)+κijkBBE(ω)Bj(ω)Ek(ω),\displaystyle=\kappa_{ijk}^{BEB}(\omega)E_{j}^{\ast}(\omega)B_{k}(\omega)+\kappa_{ijk}^{BBE}(\omega)B_{j}^{\ast}(\omega)E_{k}(\omega), (44)
(κ^iBEB(ω))jkEj(ω)Bk(ω)+(κ^iBBE(ω))jkBj(ω)Ek(ω),\displaystyle\equiv\left(\hat{\kappa}_{i}^{BEB}(\omega)\right)_{jk}E_{j}^{\ast}(\omega)B_{k}(\omega)+\left(\hat{\kappa}_{i}^{BBE}(\omega)\right)_{jk}B_{j}^{\ast}(\omega)E_{k}(\omega), (45)

that is the DC magnetization response to the bilinear product of electric and magnetic fields. The induced magnetization is flipped under inversion of the incident light, different from the response of Eq. (36). Thus, the response formula denotes the reciprocal magnetization induction (RMI). We compare the response with the known 𝑬\bm{E}-induced DC magnetization of Eq. (36) in Fig. 1 where we make use of Faraday’s law for the monochromatic field (𝑩=𝒌×𝑬/ω\bm{B}={\bm{k}}\times\bm{E}/\omega). RMI may be overwhelmed by the inverse Faraday and Cotton-Mouton effects since the photo-magnetic field is typically smaller than the photo-electric field. It is evident from the fact that its experimental observation remains elusive [55]. The observation, however, may be feasible by careful estimation of the magnetization induced by the lights propagating in the forward and backward directions.

Refer to caption
Figure 1: DC magnetization responses to (a) unpolarized or linearly-polarized light and (b) circularly-polarized light. Blue arrows are the induced magnetization and orange arrows are the propagating electromagnetic fields. The induced magnetization is not flipped and flipped under inversion of incident light for the 𝒫\mathcal{P}-even and 𝒫\mathcal{P}-odd rectification responses, respectively. In terms of reciprocity, panels are for (c) inverse Cotton-Mouton effect, (d) inverse magnetoelectric effect, (e) inverse Faraday effect, and (f) inverse natural optical activity.

To discuss the Pitaevskii relation, we rewrite the formula for RMI by

Mi\displaystyle M_{i} =Cj(ω)Θijk(ω)Ck(ω)\displaystyle=C_{j}^{\ast}(\omega)\Theta_{ijk}(\omega)C_{k}(\omega) (46)
𝑪(ω)(Oκ^iBEB(ω)κ^iBBE(ω)O)𝑪(ω),\displaystyle\equiv\bm{C}^{\dagger}(\omega)\begin{pmatrix}O&\hat{\kappa}_{i}^{BEB}(\omega)\\ \hat{\kappa}_{i}^{BBE}(\omega)&O\\ \end{pmatrix}\bm{C}(\omega), (47)

with the 3×33\times 3 zero matrix OO and 𝑪=(𝑬(ω),𝑩(ω))T\bm{C}=\left(\bm{E}(\omega),\bm{B}(\omega)\right)^{T}. The indices i=1,2,3i=1,2,3 and j,k=1,2,,6j,k=1,2,\cdots,6 for the response function Θijk\Theta_{ijk}. Then, the Pitaevskii relation for RMI is

Θijk(ω)\displaystyle\Theta_{ijk}(\omega) =12lim𝑩0BiχjkCC(ω,𝑩),\displaystyle=\frac{1}{2}\lim_{\bm{B}\to 0}\partial_{B_{i}}\chi_{jk}^{CC}(-\omega,\bm{B}), (48)

or equivalently

κijkBEB(ω)=12lim𝑩𝟎BiχjkEB(ω,𝑩),κijkBBE(ω)=12lim𝑩𝟎BiχjkBE(ω,𝑩).\kappa_{ijk}^{BEB}(\omega)=\frac{1}{2}\lim_{\bm{B\to 0}}\partial_{B_{i}}\chi_{jk}^{EB}(-\omega,\bm{B}),~{}\kappa_{ijk}^{BBE}(\omega)=\frac{1}{2}\lim_{\bm{B\to 0}}\partial_{B_{i}}\chi_{jk}^{BE}(-\omega,\bm{B}). (49)

Here we defined the magnetoelectric susceptibility

Pi(ω)=χijEB(ω)Bj(ω),Mi(ω)=χijBE(ω)Ej(ω)P_{i}(\omega)=\chi_{ij}^{EB}(\omega)B_{j}(\omega),~{}M_{i}(\omega)=\chi_{ij}^{BE}(\omega)E_{j}(\omega) (50)

representing the odd-parity coupling between electric and magnetic polarizations such as magnetoelectric effect and (magnetic-dipole-related) natural optical activity [56, 57, 58]. Specifically, the Pitaevskii relation of Eq, (48) has been partly elaborated in studies of isotropic and nonmagnetic media, for which the rectification response is termed with the inverse magnetochiral effect [59, 60, 61]. Equation (48) is the generalization of the inverse magnetochiral effect and is thus applicable to various cases such as the 𝒫𝒯\mathcal{PT}-symmetric materials and anisotropic media. Furthermore, 𝒯\mathcal{T}-𝒫𝒯\mathcal{PT} classification allows us to take a closer look at the response as follows.

By using the 𝒯\mathcal{T} and 𝒫𝒯\mathcal{PT} parities given by τθtot=+1,τθItot=1\tau_{\theta}^{\text{tot}}=+1,\tau_{\theta I}^{\text{tot}}=-1, we can decompose RMI into those allowed in the 𝒯\mathcal{T}-symmetric and 𝒫𝒯\mathcal{PT}-symmetric materials. In the 𝒯\mathcal{T}-symmetric case, following the parallel discussion on the inverse Faraday effect, only the symmetric part of the magnetoelectric susceptibility (χjkCC=χkjCC\chi_{jk}^{CC}=\chi_{kj}^{CC}) has a nonvanishing derivative with respect to the magnetic field 𝑩\bm{B}. Then, according to the Pitaevskii relation of Eq. (48), the formula for RMI satisfies

Θijk=Θikj,Im[Θikj]=0,\Theta_{ijk}=\Theta_{ikj},~{}\text{Im}\left[\Theta_{ikj}\right]=0, (51)

in the 𝒯\mathcal{T}-symmetric materials. Since the relevant magnetoelectric susceptibility (Re[χjkCC]\text{Re}\left[\chi_{jk}^{CC}\right]) represents the optical magnetoelectric effect, which is the AC analog of the (static) magnetoelectric effect and is 𝒯\mathcal{T}-odd and 𝒫𝒯\mathcal{PT}-even [62]. Then, we call the rectification response denoted by Re[Θijk]\text{Re}\left[\Theta_{ijk}\right] the inverse (optical) magnetoelectric effect in the same spirit of the inverse Faraday effect. In the case of isotropic and nonmagnetic media, the tensor of rectification response is reduced to Θijk=Θ0ϵijk\Theta_{ijk}=\Theta_{0}\,\epsilon_{ijk} (Θ0\Theta_{0}\in\mathbb{R}). Obtained response functions Θ0\Theta_{0} represent the inverse magnetochiral effect [60], a specific case of the inverse magnetoelectric effect.

Importantly, owing to the 𝒫𝒯\mathcal{PT}-ensured Onsager reciprocity of Eq. (43), the components in Θijk\Theta_{ijk} for the inverse magnetoelectric effect vanishes in the 𝒫𝒯\mathcal{PT} symmetric system. On the other hand, the 𝒯\mathcal{T} violation allows for non-zero 𝑩\bm{B} derivative for the antisymmetric part of the magnetoelectric susceptibility (χjkCC=χkjCC\chi_{jk}^{CC}=-\chi_{kj}^{CC}) as in the case of inverse Cotton-Mouton effect. Thus, if the system does not respect the 𝒯\mathcal{T} symmetry but 𝒫𝒯\mathcal{PT} symmetry, only the antisymmetric part contributes to RMI, resulting in the relation

Θijk=Θikj,Re[Θikj]=0,\Theta_{ijk}=-\Theta_{ikj},~{}\text{Re}\left[\Theta_{ikj}\right]=0, (52)

in 𝒫𝒯\mathcal{PT}-symmetric systems. Such a 𝒯\mathcal{T}-violating but 𝒫𝒯\mathcal{PT}-symmetric system can be found in a series of antiferromagnets [63]. The anti-symmetric part (Im[χjkCC]\text{Im}\left[\chi_{jk}^{CC}\right]) means the natural optical activity arising from the correlation between the electric and magnetic dipole transitions, which is observed in nonmagnetic and 𝒫\mathcal{P}-violating materials such as ferroelectric materials. Then, the rectification response of Eq. (52) is the inverse natural optical activity characteristic of odd-parity and 𝒫𝒯\mathcal{PT}-symmetric magnetic materials.

One may obtain an intuitive picture of the field-induced natural optical activity as follows. The 𝒫𝒯\mathcal{PT}-symmetric magnetic order gives rise to the coupling between the magnetic field and the noncentrosymmetric and 𝒯\mathcal{T}-symmetric fields; e.g., the magnetoelectric coupling is the linear coupling between the magnetic and electric fields [DC limit of Eq. (50)]. The interplay between the 𝒫𝒯\mathcal{PT}-symmetric magnetic and 𝑩\bm{B} fields leads to the nonmagnetic 𝒫\mathcal{P} violation and thereby realizes the natural optical activity under 𝑩\bm{B}. To summarize the space-time classification, RMI is determined by the inverse magnetoelectric effect in the presence of 𝒯\mathcal{T} symmetry, while it is by the inverse natural optical activity in the 𝒫𝒯\mathcal{PT}-symmetric systems.

Finally, let us consider the polarization state of light relevant to RMI. The tensor symmetry and property of complex number [Eqs. (51) (52)] indicate that the inverse magnetoelectric and inverse natural optical activity are the responses to the Re[EjBk]\text{Re}\left[E_{j}^{\ast}B_{k}\right] and Im[EjBk]\text{Im}\left[E_{j}^{\ast}B_{k}\right], respectively. When the electromagnetic field satisfies 𝑩=𝒌×𝑬/ω\bm{B}={\bm{k}}\times\bm{E}/\omega with the wave vector 𝒌{\bm{k}} of light as it does in the vacuum, the double external fields are recast as

EjBk=1ωϵkαβkαEjEβ.E_{j}^{\ast}B_{k}=\frac{1}{\omega}\epsilon_{k\alpha\beta}k_{\alpha}~{}E_{j}^{\ast}E_{\beta}. (53)

Thus, similarly to the nonreciprocal magnetization induction such as the inverse Faraday effect, the imaginary part is present if the light includes the circular component, while the real part is non-zero in general due to |𝑬|2|\bm{E}|^{2}. It follows that the inverse magnetoelectric effect occurs even when the light is not circularly-polarized, while the inverse natural optical activity does under the circularly-polarized-light irradiation.

Note that the electric-quadrupole field EabQ(aEb+bEa)/2E^{Q}_{ab}\equiv\left(\partial_{a}E_{b}+\partial_{b}E_{a}\right)/2 gives electromagnetic excitations comparable to that from the magnetic-dipole field (𝑩\bm{B}) in the gradient expansion of the electromagnetic field. Then, up to the lowest-order contributions including RMI, the formula for the DC magnetization response is

Mi=κijkBEEEjEk+κijkBEBEjBk+κijkBBEBjEk+κij(kl)BEQEjEklQ+κi(jk)lBQE(EjkQ)El,M_{i}=\kappa_{ijk}^{BEE}E_{j}^{\ast}E_{k}+\kappa_{ijk}^{BEB}E_{j}^{\ast}B_{k}+\kappa_{ijk}^{BBE}B_{j}^{\ast}E_{k}+\kappa_{ij(kl)}^{BEQ}E_{j}^{\ast}E^{Q}_{kl}+\kappa_{i(jk)l}^{BQE}(E^{Q}_{jk})^{\ast}E_{l}, (54)

where we introduced the odd-parity DC magnetization response κij(kl)BEQ,κi(jl)kBQE\kappa_{ij(kl)}^{BEQ},\kappa_{i(jl)k}^{BQE} to the electric-dipole (EE) and electric-quadrupole (QQ) fields. Since the total 𝒯\mathcal{T} parity of κij(kl)BEQ\kappa_{ij(kl)}^{BEQ} is opposite to Θijk\Theta_{ijk}, Im[κij(kl)BEQ]\text{Im}\left[\kappa_{ij(kl)}^{BEQ}\right] (Re[κij(kl)BEQ]\text{Re}\left[\kappa_{ij(kl)}^{BEQ}\right]) contributes to RMI in the 𝒯\mathcal{T}-symmetric (𝒫𝒯\mathcal{PT}-symmetric) systems in contrast to Eq. (51) [Eq. (52)]. Note that the linear responses relevant to the rectification responses κij(kl)BEQ\kappa_{ij(kl)}^{BEQ} share the same symmetry with the piezoelectric effect and magnetopiezoelectric effects allowed in the 𝒯\mathcal{T}- and 𝒫𝒯\mathcal{PT}-symmetric materials, respectively [64, 65, 66].

In isotropic media, the response formula of Eq. (54) is recast as

𝑴=iκ0𝑬×𝑬+2Re[Θ0(𝑩×𝑬)+Γ1|𝑬|2+Γ2(𝑬)𝑬+Γ3(𝑬)𝑬],\bm{M}=i\kappa_{0}\bm{E}^{\ast}\times\bm{E}+2\text{Re}\left[\Theta_{0}\left(\bm{B}^{\ast}\times\bm{E}\right)+\Gamma_{1}\nabla|\bm{E}|^{2}+\Gamma_{2}\left(\nabla\cdot\bm{E}^{\ast}\right)\bm{E}+\Gamma_{3}\left(\nabla\cdot\bm{E}\right)\bm{E}^{\ast}\right], (55)

where we implicitly assume either 𝒯\mathcal{T} or 𝒫𝒯\mathcal{PT} symmetry by which the inverse Cotton-Mouton effect is forbidden. Since 𝑩×𝑬\bm{B}^{\ast}\times\bm{E} is real and 𝑬=0\nabla\cdot\bm{E}=0 if the monochromatic-field conditions such as 𝑩=𝒌×𝑬/ω\bm{B}={\bm{k}}\times\bm{E}/\omega hold, RMI is attributed to Re[Θ0]\text{Re}\left[\Theta_{0}\right] and Re[Γ1]\text{Re}\left[\Gamma_{1}\right], which are allowed in the 𝒯\mathcal{T}-symmetric and 𝒫𝒯\mathcal{PT}-symmetric systems, respectively.

III.3 Tabulation of Pitaevskii relations

The generalized Pitaevskii relations of Eq. (35) allow us to predict connections between the rectification and linear responses. Let us consider examples by taking auxiliary fields as 𝑭=𝑬,𝑩,σ^\bm{F}=\bm{E},\bm{B},\hat{\sigma} where σ^\hat{\sigma} is the stress conjugate to the strain ε^\hat{\varepsilon}. We can obtain 18 Pitaevskii relations in total from the 6 linear susceptibility tensors

χjkEE,χjkBB,χ(jk)(lm)σσ,χjkEB,χjkBσ,χ(jk)lσE,\chi_{jk}^{EE},\chi_{jk}^{BB},\chi_{(jk)(lm)}^{\sigma\sigma},\chi_{jk}^{EB},\chi_{jk}^{B\sigma},\chi_{(jk)l}^{\sigma E}, (56)

undergoing the correction proportional to 𝑭=𝑬,𝑩,σ^\bm{F}=\bm{E},\bm{B},\hat{\sigma}. The linear-susceptibility tensors are for the electric permittivity (χjkEE\chi_{jk}^{EE}), magnetic permittivity (χjkBB\chi_{jk}^{BB}), elastic susceptibility (χ(jk)(lm)σσ\chi_{(jk)(lm)}^{\sigma\sigma}), magnetoelectric susceptibility (χjkEB\chi_{jk}^{EB}), piezomagnetic susceptibility (χjkBσ\chi_{jk}^{B\sigma}), and piezoelectric susceptibility (χ(jk)lσE\chi_{(jk)l}^{\sigma E}). The Pitaevskii relations are tabulated in Table 2. It suffices to show the results related to χjkEE\chi_{jk}^{EE} and χjkEB\chi_{jk}^{EB}, manifesting the opposite 𝒯\mathcal{T} parity. The Pitaevskii relations concerning other linear responses are straightforwardly obtained.

Table 2: Relations between the linear and rectification responses relevant to the electric field 𝑬\bm{E}, magnetic field 𝑩\bm{B}, and stress σ^\hat{\sigma}. Bearing the rectification response Xi=κijkFjFkX_{i}=\kappa_{ijk}F_{j}^{\ast}F_{k} in mind, ‘Linear response’ is defined for the physical fields (Fj,Fk)(F_{j},F_{k}) and FiF_{i} is conjugate to the rectified response XiX_{i}. τθtot=±1\tau_{\theta}^{\text{tot}}=\pm 1 denotes the time-reversal parity of κijk\kappa_{ijk}. Real and imaginary parts of κ^\hat{\kappa} are classified by whether it is allowed without or with the 𝒯\mathcal{T} violation (see also Table 1). ‘Rectification’ is for the rectification response and available references. Some entries in ‘FiF_{i}’ have the superscript ‘\ddagger’ to denote the 𝒫\mathcal{P}-odd parity of the corresponding rectification responses, and therefore either 𝒯\mathcal{T}-even or 𝒯\mathcal{T}-odd contribution is forbidden if the 𝒫𝒯\mathcal{PT} symmetry is preserved.
Linear response (Fj,Fk)(F_{j},F_{k}) FiF_{i} τθtot\tau_{\theta}^{\text{tot}} Re/Im [κijk\kappa_{ijk}] 𝒯\mathcal{T}-even 𝒯\mathcal{T}-odd Rectification
electric susceptibility (𝑬,𝑬)(\bm{E},\bm{E}) 𝑬\bm{E}^{\ddagger} +1+1 Re \checkmark Optical rectification [2]
Im \checkmark Optical magneto-rectification
𝑩\bm{B} 1-1 Re \checkmark Inv. Cotton-Mouton [8, 9]
Im \checkmark Inv. Faraday [4, 6]
σ^\hat{\sigma} +1+1 Re \checkmark Optical electrostrictive
Im \checkmark Optical magneto-electrostrictive
magnetoelectric susceptibility (𝑬,𝑩)(\bm{E},\bm{B}) 𝑬\bm{E} 1-1 Re \checkmark Inv. magneto-electrogyration
Im \checkmark Inv. electrogyration
𝑩\bm{B}^{\ddagger} +1+1 Re \checkmark Inv. magnetoelectric [59]
Im \checkmark Inv. natural optical activity
σ^\hat{\sigma}^{\ddagger} 1-1 Re \checkmark Optical piezomagnetoelectric
Im \checkmark Kinetic piezomagnetoelectric

For instance, our classification identifies the inverse phenomenon of the electrogyration effect associated with (Fi,Fj,Fk)=(𝑬,𝑬,𝑩)(F_{i},F_{j},F_{k})=(\bm{E},\bm{E},\bm{B}). The electrogyration effect, the 𝑬\bm{E}-induced optical activity, has been demonstrated in theory and experiment [67, 68, 69, 70] and applied to the imaging of the 𝒫\mathcal{P}-even symmetry breaking effect such as ferroaxial order [71] 333 The inverse electrogyration effect can be regarded as another inverse phenomenon of the natural optical activity, concerning the stress σ^\hat{\sigma} instead of the magnetic field 𝑩\bm{B} in the case of the “inverse natural optical activity” in Table 2. To highlight this difference, we can also call the inverse electrogyration, i.e., the rectification responses of the strain connected with Im[χijEB(ω)]\text{Im}\left[\chi_{ij}^{EB}(\omega)\right], the inverse σ^\hat{\sigma}-induced natural optical activity. Similarly, “inverse natural optical activity” in Table 2 should be understood as the inverse 𝑩\bm{B}-induced natural optical activity. Similar things can also be said for the other responses in Table 2. . Note that one should treat the other electrogyration effect related to the electric-quadrupole excitations on equal footing. The corresponding rectification response is

Pa=κij(kl)EEQ(ω)Ej(ω)EklQ(ω),P_{a}=\kappa_{ij(kl)}^{EEQ}(\omega)E_{j}^{\ast}(\omega)E_{kl}^{Q}(\omega), (57)

whose response function is related with Eiχj(kl)EQ\partial_{E_{i}}\chi_{j(kl)}^{EQ} via the Pitaevskii relation. The response is similar to the so-called electric-quadrupole second-harmonic generation [72, 73].

For responses including the elastic degree of freedom in Table 2, let us consider the photo-induced strain response given by

εij=κ(ij)klσEE(ω)Ek(ω)El(ω).\varepsilon_{ij}=\kappa_{(ij)kl}^{\sigma EE}(\omega)E_{k}^{\ast}(\omega)E_{l}(\omega). (58)

In the DC limit, the coupling between ε^\hat{\varepsilon} and EkElE_{k}E_{l} indicates the electrostrictive effect. Thus, the Pitaevskii relation claims that the optical electrostrictive effect we defined by Eq. (58) is related to the electric susceptibility modified by the stress.

One also notice an odd-parity strain response

εij=κ(ij)klσEB(ω)Ek(ω)Bl(ω),\varepsilon_{ij}=\kappa_{(ij)kl}^{\sigma EB}(\omega)E_{k}^{\ast}(\omega)B_{l}(\omega), (59)

which is correlated with the stress-induced optical magnetoelectric coupling according to the Pitaevskii relation. In the DC limit, the response indicates the trilinear coupling between the strain, electric polarization, and magnetization, namely piezomagnetoelectric effect [74, 75].

Note that one can further exploit the Pitaevskii relations by taking another auxiliary field such as the spin gauge fields for the spin-current response, sublattice-dependent magnetic field [76], the spatial gradient of the phase of the superconducting order parameter. For instance, the nonreciprocal current generation in the superconducting phase is related to the non-absorptive linear optical conductivity [32].

IV Numerical study of reciprocal magnetization induction

In this section, we verify that our formulation of the generalized Pitaevskii relation is in agreement with the numerical results. For a specific case, let us consider RMI, comprised of the inverse optical magnetoelectric effect and inverse natural optical activity [Eq. (45)]. To corroborate the contrasting space-time symmetry of the two effects, we adopt toy models where the 𝒫\mathcal{P} symmetry is violated while either 𝒯\mathcal{T} or 𝒫𝒯\mathcal{PT} symmetry is retained. We adopt the normalized lattice constant and the natural units such as =1\hbar=1 for the Dirac constant and e=1e=1 for the elementary charge of fermion.

IV.1 Setup

The model is one-body tight-binding Hamiltonian for the one-dimensional zigzag chain comprised of two sublattice (A,B)(A,B) [Fig. 2(a)]. The Hamiltonian of the spinful fermions reads as

=𝒌𝒄𝒌H𝒌𝒄𝒌,\mathcal{H}=\sum_{{\bm{k}}}\bm{c}_{\bm{k}}^{\dagger}\mathrm{H}_{\bm{k}}\bm{c}_{\bm{k}}, (60)

where 𝒄𝒌=(c𝒌A,c𝒌A,c𝒌B,c𝒌B)T\bm{c}_{\bm{k}}=\left(c_{{\bm{k}}A\uparrow},c_{{\bm{k}}A\downarrow},c_{{\bm{k}}B\uparrow},c_{{\bm{k}}B\downarrow}\right)^{T} is the vector of annihilation operators for the fermion labeled by the crystal momentum 𝒌{\bm{k}}, sublattice (τ=A,B\tau=A,B), and spin (,\uparrow,\downarrow). Then, the many-body energy eigenstates are spanned by the Fock space with the one-body energy eigenstates. The occupation is given by the Fermi-Dirac distribution function faFD=(exp((ϵaμ))/T+1)1f_{a}^{\text{FD}}=(\exp{((\epsilon_{a}-\mu))/T}+1)^{-1} parametrized by temperature TT and the chemical potential μ\mu.

The Bloch Hamiltonian H𝒌\mathrm{H}_{\bm{k}} consists of the centrosymmetric (H0(𝒌)\mathrm{H}_{0}({\bm{k}})) and 𝒫\mathcal{P}-violating (H1(𝒌)\mathrm{H}_{1}({\bm{k}})) parts. The centrosymmetric term is given by

H0(𝒌)=(t+u)coskz2τx(tu)sinkz2τy+λsinkzσxτz,\mathrm{H}_{0}({\bm{k}})=-(t+u)\cos{\frac{k_{z}}{2}}\tau_{x}-(t-u)\sin{\frac{k_{z}}{2}}\tau_{y}+\lambda\sin{k_{z}}\sigma_{x}\tau_{z}, (61)

and satisfies the 𝒫\mathcal{P} symmetry τxH0(𝒌)τx=H0(𝒌)\tau_{x}\mathrm{H}_{0}(-\bm{k})\tau_{x}=\mathrm{H}_{0}(\bm{k}). The pauli matrices 𝝈\bm{\sigma} and 𝝉\bm{\tau} are for the spin and sublattice degrees of freedom. t=1,u=0.8t=1,u=0.8 are the nearest-neighbor hoppings, by which tut-u denotes the dimerization between neighboring sites, and λ=0.6\lambda=0.6 is the sublattice-dependent spin-orbit coupling [77, 78, 79].

Let us take into account the noncentrosymmetric term H1(𝒌)\mathrm{H}_{1}({\bm{k}}) in the following two-fold manners. In the 𝒯\mathcal{T}-symmetric case, the parity-breaking effect is given by the staggered potential like the Su–Schrieffer–Heeger model

H1(𝒌)=Hθ(𝒌)=δτz,\mathrm{H}_{1}({\bm{k}})=\mathrm{H}_{\theta}({\bm{k}})=\delta\tau_{z}, (62)

which breaks the symmetry about the 𝒫\mathcal{P} operation defined with the A-B bond center [Fig. 2(b)]. The symmetry-breaking effect induces the spin-momentum splitting with preserving the degeneracy between ±𝒌\pm{\bm{k}} protected by the 𝒯\mathcal{T} symmetry [Fig. 2(d)]. On the other hand, the 𝒫𝒯\mathcal{PT}-even but 𝒫\mathcal{P}-breaking effect is built into the Hamiltonian by

H1(𝒌)=HθI(𝒌)=h0σyτz.\mathrm{H}_{1}({\bm{k}})=\mathrm{H}_{\theta I}({\bm{k}})=h_{0}\sigma_{y}\tau_{z}. (63)

h0h_{0} is the molecular field of the antiferromagnetic ordering. The magnetic moments are aligned to the yy-axis and staggered between the AA and BB sites [Fig. 2(c)]. The energy spectrum remains doubly degenerate at each crystal momentum due to the 𝒫𝒯\mathcal{PT} symmetry [Fig. 2(d)]. In the following, we demonstrate RMI and its Pitaevskii relations based on the 𝒯\mathcal{T}-symmetric Hamiltonian H0+Hθ\mathrm{H}_{0}+\mathrm{H}_{\theta} and the 𝒫𝒯\mathcal{PT}-symmetric one H0+HθI\mathrm{H}_{0}+\mathrm{H}_{\theta I} with δ,h0=0.5\delta,\,h_{0}=0.5.

Refer to caption
Figure 2: (a) zigzag chain comprised of AA and BB sublattices. Dimerization is denoted by the thick lines. (b) 𝒯\mathcal{T}-symmetric and 𝒫\mathcal{P}-broken state resulting from the staggered onsite potential. (c) 𝒫𝒯\mathcal{PT}-symmetric and 𝒫\mathcal{P}-broken state due to the antiferromagnetic order. (d) Band structures of the para-state (dashed line), that in the case of panel (b) (red solid line), and that in the case of panel (c) (green solid line).

The physical responses are numerically calculated with the formulas of Eqs. (18), (30). The physical fields are (Fi,Fj,Fk)=(𝑩,𝑩,𝑬)(F_{i},F_{j},F_{k})=(\bm{B},\bm{B},\bm{E}) for the reciprocal magnetization induction of Eq. (45) and (Fi,Fj)=(𝑩,𝑬)(F_{i},F_{j})=(\bm{B},\bm{E}) for the magnetoelectric susceptibility of Eq. (50). The electric field is expressed in the velocity gauge with which the photo-electric field is 𝑬=iω𝑨\bm{E}=i\omega\bm{A}. Each physical field is coupled to the fermions as

HB(𝒌)=𝑩𝝈,\mathrm{H}_{\text{B}}({\bm{k}})=\bm{B}\cdot\bm{\sigma}, (64)

for the magnetic field 𝑩\bm{B} and

H𝒌H𝒌+𝑨,\mathrm{H}_{\bm{k}}\to\mathrm{H}_{{\bm{k}}+\bm{A}}, (65)

for the vector potential 𝑨\bm{A}. After calculating the correlation functions χijBA\chi_{ij}^{BA} and κijkBBA\kappa_{ijk}^{BBA}, we obtain the response functions χijBE\chi_{ij}^{BE} and κijkBBE\kappa_{ijk}^{BBE} of interest by using 𝑬=iω𝑨\bm{E}=i\omega\bm{A}. We replace the adiabaticity parameter η=+0\eta=+0 with the phenomenological scattering rate γ>0\gamma>0. We adopt T=103T=10^{-3} and γ=103\gamma=10^{-3} unless explicitly mentioned. For the 𝒌{\bm{k}} integration, we adopt the NN-discretized first Brillouin zone (N=104N=10^{4}).

IV.2 Reciprocal magnetization induction and Pitaevskii relations

Let us consider the symmetry of the adopted Hamiltonians and the allowed responses. The 𝒯\mathcal{T}-symmetric model is labeled by the magnetic point group

m1,m1^{\prime}, (66)

with the yzyz mirror symmetry, while the 𝒫𝒯\mathcal{PT}-symmetric model is by

2/m,2/m^{\prime}, (67)

with the two-fold rotation along the xx-axis. The noncentrosymmetric symmetry allows for the 𝑩\bm{B}-linear correction to the magnetoelectric susceptibility (BiχjzBE\partial_{B_{i}}\chi_{jz}^{BE})

(ij)=(xx),(yy),(zz),(yz),(zy),(ij)=(xx),(yy),(zz),(yz),(zy), (68)

in the 𝒯\mathcal{T}-symmetric Hamiltonian and

(ij)=(xy),(yx),(zx),(xz),(ij)=(xy),(yx),(zx),(xz), (69)

for the 𝒫𝒯\mathcal{PT}-symmetric case. Note that we consider the electric field along the zz direction (𝑬z^\bm{E}\parallel\hat{z}) due to the one-dimensional Hamiltonian. Since the tensor shapes of the κijkBBE\kappa_{ijk}^{BBE} and BiχjzBE\partial_{B_{i}}\chi_{jz}^{BE} coincide with each other, the allowed components of RMI are obtained in parallel. We corroborate κyyzBBE\kappa_{yyz}^{BBE} and κyxzBBE\kappa_{yxz}^{BBE} of 𝒯\mathcal{T}- and 𝒫𝒯\mathcal{PT}-symmetric systems respectively, though the qualitative aspects do not change for the other components.

First, let us consider the 𝒯\mathcal{T}-symmetric case. The spectrum of RMI and 𝑩\bm{B}-modified magnetoelectric susceptibility is shown in Fig. 3. The chemical potential is set to μ=0\mu=0, and the system is in the band-insulator phase. In accordance with Eqs. (51), each response function is real below the optical gap (ω0.924\omega\leq 0.924), while the imaginary parts also participate in responses since resonant particle-hole excitations break down the non-absorption condition. Note that we show the full susceptibility κ\kappa including the absorptive part κa\kappa^{\text{a}} as well as κna\kappa^{\text{na}}. It is evident from the in-gap spectrum shown in Fig. 3 that the Pitaevskii relation for the inverse magnetoelectric effect holds. Although κyyzBBE\kappa_{yyz}^{BBE} almost coincides with ByκyzBE\partial_{B_{y}}\kappa_{yz}^{BE} in the entire frequency range in Fig. 3 due to the simplicity of the model Hamiltonian, the deviation ΔByκyzBEκyyzBBE\Delta\equiv\partial_{B_{y}}\kappa_{yz}^{BE}-\kappa_{yyz}^{BBE} develops around the optical gap when the frequency of light increases as emphasized in the inset. The real part of the deviation Re Δ\Delta is vanishingly small below the optical gap (within the ambiguity of the order T,γ=103T,\gamma=10^{-3}) as expected from the Pitaevskii relation Re Δ=0\Delta=0, while it takes finite values above the optical gap. We also checked that Im Δ\Delta vanish well below the optical gap as both Im κyyzBBE\kappa_{yyz}^{BBE} and ByIm[χByEz]\partial_{B_{y}}\text{Im}\left[\chi_{B_{y}E_{z}}\right] should vanish there.

Refer to caption
Figure 3: Spectrum of the reciprocal magnetization induction κyyzBBE(ω)\kappa_{yyz}^{BBE}(\omega) (RMI) and magnetoelectric susceptibility ByκyzBE(ω)\partial_{B_{y}}\kappa_{yz}^{BE}(\omega) (ME) of the 𝒯\mathcal{T}-symmetric model. The resonant particle-hole excitations are present in the shaded area. The chemical potential is μ=0\mu=0 corresponding to the insulator phase. Real (Imaginary) parts of two response functions almost overlap with each other. (inset) Spectrum of Δ=ByκyzBEκyyzBBE\Delta=\partial_{B_{y}}\kappa_{yz}^{BE}-\kappa_{yyz}^{BBE}. The deviation gets negligible well below the optical gap.

Next, we investigate the 𝒫𝒯\mathcal{PT}-symmetric case. Assuming the band-insulator state with μ=0\mu=0, we obtain the frequency spectrum of responses as shown in Fig. 4. In contrast to the 𝒯\mathcal{T}-symmetric case, one can observe good coincidence between ByIm[κyzBE(ω)]\partial_{B_{y}}\text{Im}\left[\kappa_{yz}^{BE}(\omega)\right] and Im[κyxzBBE(ω)]\text{Im}\left[\kappa_{yxz}^{BBE}(\omega)\right] below the optical gap (inset of Fig. 4). It follows that the Pitaevskii relation holds for the inverse natural optical activity.

Refer to caption
Figure 4: Spectrum of the reciprocal magnetization induction κyxzBBE(ω)\kappa_{yxz}^{BBE}(\omega) (RMI) and magnetoelectric susceptibility ByκxzBE(ω)\partial_{B_{y}}\kappa_{xz}^{BE}(\omega) (ME) of the 𝒫𝒯\mathcal{PT}-symmetric model. The resonant particle-hole excitations are present in the shaded area. The chemical potential is μ=0\mu=0 corresponding to the insulator phase. (inset) Enlarged view of the spectrum in the in-gap regime. Note that no multiplication is applied to each response plotted in the inset, different from the main plot. The imaginary parts of two responses coincide with each other, whereas the real parts are vanishingly small.

The numerical evidence supports the validity of the Pitaevskii relations for the inverse optical magnetoelectric effect and natural optical activity of Eq. (48). The relation holds if and only if the non-absorption condition is satisfied and the distribution-modulation effect is negligible, and thus one may be interested in how the Pitaevskii relation ceases to be satisfied. We have already observed that the relations do not hold if the light irradiation allows for electron-hole excitations (Figs. 34). Then, let us consider the effect of the distribution-modulation effect [Eq. (33)].

In the adopted Hamiltonian, the distribution modulation can occur in the presence of the Fermi surface. Here we focus on the 𝒫𝒯\mathcal{PT}-symmetric case and take μ=0.6\mu=-0.6. The metallic conductivity is identified by the low-frequency spectrum of the optical conductivity (not shown). Figure 5 shows the spectrum of RMI and the 𝑩\bm{B}-derivative of magnetoelectric susceptibility around the optical gap. Both of ByIm[κyzBE(ω)]\partial_{B_{y}}\text{Im}\left[\kappa_{yz}^{BE}(\omega)\right] and Im[κyxzBBE(ω)]\text{Im}\left[\kappa_{yxz}^{BBE}(\omega)\right] are non-zero below the optical gap as well (inset of Fig. 5), whereas they show the significant deviation and thereby indicates the breakdown of the Pitaevskii relation.

The obtained deviation is not attributed to the smearing of the resonant contributions. To eliminate that possible extrinsic effect, we calculate RMI and the magnetoelectric susceptibility with varying the phenomenological scattering rate γ\gamma (Fig. 6). The frequency is fixed to that below the optical gap as ω0=0.5\omega_{0}=0.5. Despite the increasing scattering rate over the orders as γ=104102\gamma=10^{-4}\sim 10^{-2}, ByIm[κyzBE(ω)]\partial_{B_{y}}\text{Im}\left[\kappa_{yz}^{BE}(\omega)\right] and Im[κyxzBBE(ω)]\text{Im}\left[\kappa_{yxz}^{BBE}(\omega)\right] do show negligible variation, indicating that the difference between them is the intrinsic behavior free from the smearing effect. This is also evident from the comparison between ByRe[κyzBE(ω)]\partial_{B_{y}}\text{Re}\left[\kappa_{yz}^{BE}(\omega)\right] and ByIm[κyzBE(ω)]\partial_{B_{y}}\text{Im}\left[\kappa_{yz}^{BE}(\omega)\right], former of which undergoes slight modification by the increasing scattering effect.

Refer to caption
Figure 5: Same plots as those in Figure 4, while the chemical potential is μ=0.6\mu=-0.6 corresponding to the metal phase. We note that the optical gap is shifted to ω1.2\omega\sim 1.2, different from that of Fig. 4. (inset) Enlarged view of the spectrum in the in-gap regime.
Refer to caption
Figure 6: Phenomenological-scattering-rate dependence of the reciprocal magnetization induction κyxzBBE(ω)\kappa_{yxz}^{BBE}(\omega) (RMI) and magnetoelectric susceptibility ByκxzBE(ω)\partial_{B_{y}}\kappa_{xz}^{BE}(\omega) (ME) of the 𝒫𝒯\mathcal{PT}-symmetric model. The frequency of light is ω0=0.5\omega_{0}=0.5, and the chemical potential is μ=0.6\mu=-0.6 where the metallic conductivity is present.

As a result, the insulating state is necessary in addition to the non-absorption condition for the validity of the Pitaevskii relations. The distribution-modulation effect is similarly observed in the system comprised of multiple degrees of freedom such as electron and phonon. In those systems, the distribution may be modified under the external stimuli with the non-absorption condition kept. It is an important future work to further elucidate the possible breakdown of the Pitaevskii relation without phenomenological treatments of scattering effects.

V Summary

We have formulated the rectification and Pockels effects satisfying the non-absorption condition and generalized Pitaevskii’s argument to cover various correlations between the linear and rectification responses. In a full-quantum manner, we obtained the Pitaevskii relation by which the linear, rectification, and Pockels responses are closely related to each other if there is neither interband-like nor intraband-like excitation. The derivation based on many-body energy eigenstates does not depend on any specific approximation and is thus applicable to various systems. Although the Pitaevskii relations have been investigated in previous works in terms of the inverse magneto-optical responses and optical rectification, the derived generalized Pitaevskii relations are applicable to diverse physical phenomena such as cross-correlation between electric, magnetic, elastic, and other degrees of freedom. For instance, we identified a series of Pitaevskii relations and systematically classified them in terms of space-time symmetry (Table 2). The analytical results are supported by numerical calculations of the inverse magnetoelectric effect and inverse natural optical activity. The numerical results further imply that the Pitaevskii relation may be violated in the presence of the Fermi-surface effect even when the frequency of light is in the off-resonant regime. These analytical and numerical demonstrations of the Pitaevskii relations may offer implications for future studies utilizing the nonlinear light-matter coupling and thereby spark further interest in ultrafast spintronic phenomena.

Acknowledgement

H.W. is grateful to Masakazu Matsubara for his fruitful comments. The authors are supported by JSPS KAKENHI No. JP23K13058 (H.W.), No. JP21K13880, No. JP22H04476, No. JP23K17353, No. JP24H01662 (A.D.).

Appendix A Derivation of off-resonant rectification response

We derive the non-absorptive rectification response function from Eq. (18). The general formula is given by

X(2)i(ω)\displaystyle X^{i}_{(2)}(\omega) =dω1dω2(2π)22πδ(ωω1ω2)Fj(ω1)Fk(ω2)\displaystyle=\int\frac{d\omega_{1}d\omega_{2}}{(2\pi)^{2}}2\pi\delta(\omega-\omega_{1}-\omega_{2})F_{j}(\omega_{1})F_{k}(\omega_{2})
×lim𝑭𝟎[a12Xaaijkfa\displaystyle\times\lim_{\bm{F}\to\bm{0}}\Biggl{[}\sum_{a}\frac{1}{2}X^{ijk}_{aa}f_{a}
+a,b12XabijXbakfabω2+iηϵba+12XabikXbajfabω1+iηϵba\displaystyle+\sum_{a,b}\frac{1}{2}\frac{X^{ij}_{ab}X^{k}_{ba}f_{ab}}{\omega_{2}+i\eta-\epsilon_{ba}}+\frac{1}{2}\frac{X^{ik}_{ab}X^{j}_{ba}f_{ab}}{\omega_{1}+i\eta-\epsilon_{ba}}
+a,b12XabiXbajkfabω+2iηϵba\displaystyle+\sum_{a,b}\frac{1}{2}\frac{X^{i}_{ab}X^{jk}_{ba}f_{ab}}{\omega+2i\eta-\epsilon_{ba}}
+a,b,c12Xabiω+2iηϵba(XbcjXcakfacω2+iηϵcaXcajXbckfcbω2+iηϵbc)\displaystyle+\sum_{a,b,c}\frac{1}{2}\frac{X^{i}_{ab}}{\omega+2i\eta-\epsilon_{ba}}\left(\frac{X^{j}_{bc}X^{k}_{ca}f_{ac}}{\omega_{2}+i\eta-\epsilon_{ca}}-\frac{X^{j}_{ca}X^{k}_{bc}f_{cb}}{\omega_{2}+i\eta-\epsilon_{bc}}\right)
+a,b,c12Xabiω+2iηϵba(XbckXcajfacω1+iηϵcaXcakXbcjfcbω1+iηϵbc)].\displaystyle+\sum_{a,b,c}\frac{1}{2}\frac{X^{i}_{ab}}{\omega+2i\eta-\epsilon_{ba}}\left(\frac{X^{k}_{bc}X^{j}_{ca}f_{ac}}{\omega_{1}+i\eta-\epsilon_{ca}}-\frac{X^{k}_{ca}X^{j}_{bc}f_{cb}}{\omega_{1}+i\eta-\epsilon_{bc}}\right)\Biggr{]}.

Let us consider the case of rectification responses (ω=0,ω1=ω2=ω)(\omega=0,~{}\omega_{1}=-\omega_{2}=-\omega). Since the resonant contribution breaks down the non-absorption condition, we drop the contributions including δ(ωϵab)\delta(\omega-\epsilon_{ab}) arising from (ω+iηϵab)1\left(\omega+i\eta-\epsilon_{ab}\right)^{-1}, i.e., κijka(0;ω,ω)\kappa^{\rm a}_{ijk}(0;-\omega,\omega). As a result, the rectification-response function is [36, 43, 37, 32]

κijkna(0;ω,ω)\displaystyle\kappa_{ijk}^{\text{na}}(0;-\omega,\omega) =12lim𝑭𝟎[a12Xaaijkfa+a,bXabijXbakfabωϵba+a,bab12XabiXbajkfabϵab\displaystyle=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\Biggl{[}\sum_{a}\frac{1}{2}X^{ijk}_{aa}f_{a}+\sum_{a,b}\frac{X^{ij}_{ab}X^{k}_{ba}f_{ab}}{\omega-\epsilon_{ba}}+\sum_{a,b}^{a\neq b}\frac{1}{2}\frac{X^{i}_{ab}X^{jk}_{ba}f_{ab}}{\epsilon_{ab}}
+12a,bFi(1ωϵba)XabjXbakfab+a,b,cabXabiϵab(XbcjXcakfacωϵcaXcajXbckfcbωϵbc)]\displaystyle+\frac{1}{2}\sum_{a,b}\partial_{F_{i}}\left(\frac{1}{\omega-\epsilon_{ba}}\right)X_{ab}^{j}X_{ba}^{k}f_{ab}+\sum_{a,b,c}^{a\neq b}\frac{X^{i}_{ab}}{\epsilon_{ab}}\left(\frac{X^{j}_{bc}X^{k}_{ca}f_{ac}}{\omega-\epsilon_{ca}}-\frac{X^{j}_{ca}X^{k}_{bc}f_{cb}}{\omega-\epsilon_{bc}}\right)\Biggr{]}
+[(ω,j,k)(ω,k,j)].\displaystyle+\left[\left(\omega,j,k\right)\leftrightarrow\left(-\omega,k,j\right)\right]. (70)

The energy and eigenstate are parametrized by the auxiliary fields 𝑭\bm{F} [32], and hence the Hellmann-Feynman relation is obtained as

Xabi=ϵabFia|b,X_{ab}^{i}=\epsilon_{ab}\Braket{\partial_{F_{i}}a}{b}, (71)

between the states (a,b)(a,b) with different eigenvalues. Then, the fifth term of Eq. (70) including three eigenstates (a,b,c)(a,b,c) is transformed into

a,b,cabXabiϵab(XbcjXcakfacωϵcaXcajXbckfcbωϵbc)=ab(DFiXabjXabij)Xbakfabωϵba,\sum_{a,b,c}^{a\neq b}\frac{X^{i}_{ab}}{\epsilon_{ab}}\left(\frac{X^{j}_{bc}X^{k}_{ca}f_{ac}}{\omega-\epsilon_{ca}}-\frac{X^{j}_{ca}X^{k}_{bc}f_{cb}}{\omega-\epsilon_{bc}}\right)=\sum_{a\neq b}\left(D_{F_{i}}X_{ab}^{j}-X_{ab}^{ij}\right)X_{ba}^{k}\frac{f_{ab}}{\omega-\epsilon_{ba}}, (72)

where we defined DFiXabj=Fia|(1|aa|)Xj|b+a|Xij|b+a|Xj(1|bb|)|FibD_{F_{i}}X_{ab}^{j}=\braket{\partial_{F_{i}}a}{(1-\ket{a}\bra{a})X^{j}}{b}+\braket{a}{X^{ij}}{b}+\braket{a}{X_{j}(1-\ket{b}\bra{b})}{\partial_{F_{i}}b}. One can notice that this term is partially canceled out by the second term of Eq. (70). Similarly, the third term is recast as

a,bab12XabiXbajkfabϵab=12a(FiXaajkXaaijk)fa.\sum_{a,b}^{a\neq b}\frac{1}{2}\frac{X^{i}_{ab}X^{jk}_{ba}f_{ab}}{\epsilon_{ab}}=\frac{1}{2}\sum_{a}\left(\partial_{F_{i}}X_{aa}^{jk}-X_{aa}^{ijk}\right)f_{a}. (73)

The component including XaaijkX_{aa}^{ijk} is canceled out by the first term of Eq. (70). Then, resuming all the terms and using DFiXabjXbak+XabjDFiXbak=Fi(XabjXbak)D_{F_{i}}X^{j}_{ab}X_{ba}^{k}+X^{j}_{ab}D_{F_{i}}X_{ba}^{k}=\partial_{F_{i}}(X^{j}_{ab}X^{k}_{ba}), we arrive at the final expression

κijkna(0;ω,ω)\displaystyle\kappa^{\text{na}}_{ijk}(0;-\omega,\omega) =12lim𝑭𝟎[aFiXaajkfaabXbajXabkfabFi(1ω+ϵba)Fi(XbajXabk)fabω+ϵba],\displaystyle=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\Biggl{[}\sum_{a}\partial_{F_{i}}X^{jk}_{aa}f_{a}-\sum_{a\neq b}X_{ba}^{j}X_{ab}^{k}f_{ab}\partial_{F_{i}}\left(\frac{1}{\omega+\epsilon_{ba}}\right)-\partial_{F_{i}}\left(X_{ba}^{j}X_{ab}^{k}\right)\frac{f_{ab}}{\omega+\epsilon_{ba}}\Biggr{]}, (74)
=12lim𝑭𝟎[Fi{aXaajkfaabXbajXabkfabω+ϵba}aXaajkFifaabXabjXbak1ω+ϵabFifab].\displaystyle=\frac{1}{2}\lim_{\bm{F}\to\bm{0}}\Biggl{[}\partial_{F_{i}}\left\{\sum_{a}X^{jk}_{aa}f_{a}-\sum_{a\neq b}X_{ba}^{j}X_{ab}^{k}\frac{f_{ab}}{\omega+\epsilon_{ba}}\right\}-\sum_{a}X^{jk}_{aa}\partial_{F_{i}}f_{a}-\sum_{a\neq b}X_{ab}^{j}X_{ba}^{k}\frac{1}{\omega+\epsilon_{ab}}\partial_{F_{i}}f_{ab}\Biggr{]}. (75)

The non-absorptive Pockels-response function of Eq. (28) is derived in a similar manner.

References

  • Kleinman [1962] D. A. Kleinman, Nonlinear dielectric polarization in optical media, Physical Review 126, 1977 (1962).
  • Bass et al. [1962] M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Optical rectification, Physical Review Letters 9, 446 (1962).
  • Armstrong et al. [1962] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interactions between light waves in a nonlinear dielectric, Physical Review 127, 1918 (1962).
  • Pitaevskii [1961] L. P. Pitaevskii, Electric forces in a transparent dispersive medium, Sov. Phys. JETP 12, 1008 (1961), j. Exptl. Theoret. Phys. (U.S.S.R.) 39, 1450 (1960).
  • Pershan [1963] P. S. Pershan, Nonlinear optical properties of solids: Energy considerations, Physical Review 130, 919 (1963).
  • van der Ziel et al. [1965] J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Optically-induced magnetization resulting from the inverse faraday effect, Physical Review Letters 15, 190 (1965).
  • Pershan et al. [1966] P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, Theoretical discussion of the inverse faraday effect, raman scattering, and related phenomena, Physical Review 143, 574 (1966).
  • Kalashnikova et al. [2007] A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, V. N. Gridnev, A. Kirilyuk, and T. Rasing, Impulsive generation of coherent magnons by linearly polarized light in the Easy-Plane antiferromagnet FeBO3Physical Review Letters 99, 167205 (2007).
  • Hansteen et al. [2006] F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, Nonthermal ultrafast optical control of the magnetization in garnet films, Physical Review B 73, 014421 (2006).
  • Gridnev [2008] V. N. Gridnev, Phenomenological theory for coherent magnon generation through impulsive stimulated raman scattering, Physical Review B 77, 094426 (2008).
  • Kalashnikova et al. [2008] A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, V. N. Gridnev, P. A. Usachev, A. Kirilyuk, and T. Rasing, Impulsive excitation of coherent magnons and phonons by subpicosecond laser pulses in the weak ferromagnet FeBO3Physical Review B 78, 104301 (2008).
  • Holbourn [1936] A. H. S. Holbourn, Angular momentum of circularly polarised light, Nature 137, 31 (1936).
  • Beth [1936] R. A. Beth, Mechanical detection and measurement of the angular momentum of light, Physical Review 50, 115 (1936), and references therein.
  • Sokolov [1991] I. V. Sokolov, The angular momentum of an electromagnetic wave, the sadovskiĭ effect, and the generation of magnetic fields in a plasma, Soviet physics, Uspekhi 34, 925 (1991), usp. Fiz. Nauk 161,175-190 (1991).
  • Kirilyuk et al. [2010] A. Kirilyuk, A. V. Kimel, and T. Rasing, Ultrafast optical manipulation of magnetic order, Reviews of Modern Physics 82, 2731 (2010).
  • Němec et al. [2018] P. Němec, M. Fiebig, T. Kampfrath, and A. V. Kimel, Antiferromagnetic opto-spintronics, Nature Physics 14, 229 (2018).
  • Stupakiewicz and Satoh [2021] A. Stupakiewicz and T. Satoh, Ultrafast optomagnonics in ferrimagnetic multi-sublattice garnets, Journal of the Physical Society of Japan 90, 081008 (2021).
  • Beaurepaire et al. [1996] E. Beaurepaire, J. Merle, A. Daunois, and J. Bigot, Ultrafast spin dynamics in ferromagnetic nickel, Physical Eeview Letters 76, 4250 (1996).
  • Hohlfeld et al. [1997] J. Hohlfeld, E. Matthias, R. Knorren, and K. H. Bennemann, Nonequilibrium magnetization dynamics of nickel, Physical Review Letters 78, 4861 (1997).
  • Kimel et al. [2004] A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and T. Rasing, Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3Nature 429, 850 (2004).
  • Duong et al. [2004] N. P. Duong, T. Satoh, and M. Fiebig, Ultrafast manipulation of antiferromagnetism of NiO, Physical Review Letters 93, 117402 (2004).
  • Satoh et al. [2007] T. Satoh, B. B. Van Aken, N. P. Duong, T. Lottermoser, and M. Fiebig, Ultrafast spin and lattice dynamics in antiferromagnetic Cr2O3Physical Review B 75, 155406 (2007).
  • Kimel et al. [2005] A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses, Nature 435, 655 (2005).
  • Stanciu et al. [2007] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, All-optical magnetic recording with circularly polarized light, Physical Review Letters 99, 047601 (2007).
  • Khorsand et al. [2012] A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, Role of magnetic circular dichroism in all-optical magnetic recording, Physical Review Letters 108, 127205 (2012).
  • Kurkin et al. [2008] M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, Transient inverse faraday effect and ultrafast optical switching of magnetization, Physical Review B 78, 134430 (2008).
  • Satoh et al. [2010] T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light, Physical Review Letters 105, 077402 (2010).
  • Higuchi et al. [2011] T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO, Physical Review Letters 106, 047401 (2011).
  • Landau et al. [2013] L. D. Landau, J. S. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media (2nd ed.), Vol. 8 (elsevier, 2013).
  • Battiato et al. [2014] M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Quantum theory of the inverse faraday effect, Physical Review B 89, 014413 (2014).
  • Tokman et al. [2020] I. D. Tokman, Q. Chen, I. A. Shereshevsky, V. I. Pozdnyakova, I. Oladyshkin, M. Tokman, and A. Belyanin, Inverse faraday effect in graphene and weyl semimetals, Physical Review B 101, 174429 (2020).
  • Watanabe et al. [2022a] H. Watanabe, A. Daido, and Y. Yanase, Nonreciprocal optical response in parity-breaking superconductors, Physical Review B 105, 024308 (2022a).
  • Boyd [2020] R. W. Boyd, Nonlinear optics, 4th ed. (Academic Press, San Diego, CA, 2020).
  • Shi et al. [2023] L.-K. Shi, O. Matsyshyn, J. C. W. Song, and I. S. Villadiego, Berry-dipole photovoltaic demon and the thermodynamics of photocurrent generation within the optical gap of metals, Physical Review B 107, 125151 (2023).
  • Tsirkin and Souza [2022] S. Tsirkin and I. Souza, On the separation of hall and ohmic nonlinear responses, SciPost Physics Core 5, 039 (2022).
  • de Juan et al. [2020] F. de Juan, Y. Zhang, T. Morimoto, Y. Sun, J. E. Moore, and A. G. Grushin, Difference frequency generation in topological semimetals, Physical Review Research 2, 012017 (2020).
  • Watanabe and Yanase [2021] H. Watanabe and Y. Yanase, Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet, Physical Review X 11, 011001 (2021).
  • Ahn et al. [2020] J. Ahn, G.-Y. Guo, and N. Nagaosa, Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals, Physical Review X 10, 041041 (2020).
  • Passos et al. [2018] D. J. Passos, G. B. Ventura, J. M. V. P. Lopes, J. M. B. L. d. Santos, and N. M. R. Peres, Nonlinear optical responses of crystalline systems: Results from a velocity gauge analysis, Physical Review B 97, 235446 (2018).
  • Michishita and Peters [2021] Y. Michishita and R. Peters, Effects of renormalization and non-hermiticity on nonlinear responses in strongly correlated electron systems, Physical Review B 103, 195133 (2021).
  • Holder et al. [2020] T. Holder, D. Kaplan, and B. Yan, Consequences of time-reversal-symmetry breaking in the light-matter interaction: Berry curvature, quantum metric, and diabatic motion, Physical Review Research 2, 033100 (2020).
  • von Baltz and Kraut [1981] R. von Baltz and W. Kraut, Theory of the bulk photovoltaic effect in pure crystals, Physical Review B 23, 5590 (1981).
  • Sipe and Shkrebtii [2000] J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Physical Review B 61, 5337 (2000).
  • Morimoto and Nagaosa [2016] T. Morimoto and N. Nagaosa, Topological nature of nonlinear optical effects in solids, Science Advances 2, e1501524 (2016).
  • Ventura et al. [2017] G. B. Ventura, D. J. Passos, J. M. B. Lopes dos Santos, J. M. Viana Parente Lopes, and N. M. R. Peres, Gauge covariances and nonlinear optical responses, Physical Review B 96, 035431 (2017).
  • Oiwa and Kusunose [2022] R. Oiwa and H. Kusunose, Systematic analysis method for nonlinear response tensors, Journal of the Physical Society of Japan 91, 014701 (2022).
  • Belinicher et al. [1986] V. I. Belinicher, E. L. Ivchenko, and G. E. Pikus, Transient photocurrent in gyrotropic crystals, Soviet Physics Semiconductors-Ussr 20, 558 (1986).
  • Onishi et al. [2022] Y. Onishi, H. Watanabe, T. Morimoto, and N. Nagaosa, Effects of relaxation on the photovoltaic effect and possibility for photocurrent within the transparent region, Physical Review B 106, 235110 (2022).
  • Mironov et al. [2021] S. V. Mironov, A. S. Mel’nikov, I. D. Tokman, V. Vadimov, B. Lounis, and A. I. Buzdin, Inverse faraday effect for superconducting condensates, Physical Review Letters 126, 137002 (2021).
  • Watanabe et al. [2022b] H. Watanabe, A. Daido, and Y. Yanase, Nonreciprocal meissner response in parity-mixed superconductors, Physical Review B 105, L100504 (2022b).
  • Wolf et al. [2007] E. Wolf et al.Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).
  • Takayoshi et al. [2014] S. Takayoshi, M. Sato, and T. Oka, Laser-induced magnetization curve, Physical Review B 90, 214413 (2014).
  • Suzuki et al. [2017] M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory for anomalous Hall effect in antiferromagnets, Physical Review B 95, 094406 (2017).
  • Watanabe et al. [2024] H. Watanabe, K. Shinohara, T. Nomoto, A. Togo, and R. Arita, Symmetry analysis with spin crystallographic groups: Disentangling effects free of spin-orbit coupling in emergent electromagnetism, Physical Review B 109, 094438 (2024).
  • Atzori et al. [2021] M. Atzori, C. Train, E. A. Hillard, N. Avarvari, and G. L. J. A. Rikken, Magneto-chiral anisotropy: From fundamentals to perspectives, Chirality 33, 844 (2021).
  • Dzyaloshinskii [1960] I. E. Dzyaloshinskii, On the magneto-electrical effects in antiferromagnets, Soviet Physics JETP 10, 628 (1960).
  • Astrov [1960] D. N. Astrov, The magnetoelectric effect in antiferromagnetics, Soviet Physics JETP 11, 708 (1960), sov. Phys. JETP 13, 729 (1961).
  • Rado and Folen [1961] G. T. Rado and V. J. Folen, Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains, Physical Review Letters 7, 310 (1961).
  • Wagnière [1989] G. Wagnière, Inverse magnetochiral birefringence, Physical Review A 40, 2437 (1989).
  • Woźniak et al. [1991] S. Woźniak, G. Wagnière, and R. Zawodny, Role of molecular symmetry in inverse magnetochiral birefringence, Physics Letters A 154, 259 (1991).
  • Woźniak et al. [1992] S. Woźniak, M. W. Evans, and G. Wagnière, Optically induced static magnetization near optical resonances in molecular systems, Molecular Physics 75, 99 (1992).
  • Malashevich and Souza [2010] A. Malashevich and I. Souza, Band theory of spatial dispersion in magnetoelectrics, Physical Review B 82, 245118 (2010).
  • Fiebig [2005] M. Fiebig, Revival of the magnetoelectric effect, Journal of physics D: Applied physics 38, R123 (2005).
  • Varjas et al. [2016] D. Varjas, A. G. Grushin, R. Ilan, and J. E. Moore, Dynamical piezoelectric and magnetopiezoelectric effects in polar metals from berry phases and orbital moments, Physical Review Letters 117, 257601 (2016).
  • Watanabe and Yanase [2017] H. Watanabe and Y. Yanase, Magnetic hexadecapole order and magnetopiezoelectric metal state in Ba1-xKxMn2As2Physical Review B 96, 064432 (2017).
  • Shiomi et al. [2019] Y. Shiomi, H. Watanabe, H. Masuda, H. Takahashi, Y. Yanase, and S. Ishiwata, Observation of a magnetopiezoelectric effect in the antiferromagnetic metal EuMnBi2Physical Review Letters 122, 127207 (2019).
  • Aizu [1964] K. Aizu, Reversal in optical rotatory Power—“Gyroelectric” crystals and “hypergyroelectric” crystals, Physical Review 133, A1584 (1964).
  • Zheludev [1964] I. Zheludev, Third-rank axial tensors and the physical effects they describe, Kristallografiya 9, 501 (1964), sov. Phys.: Crystallogr. 9, 418 (1965).
  • Vlokh [1970] O. Vlokh, Electrooptic activity of quartz crystals, Ukr. Fiz. Zhurn. 15, 758 (1970), ibid., Sov. Phys.: Ukr. Fiz. Zhurn. 15, 771 (1970).
  • Prosandeev et al. [2013] S. Prosandeev, A. Malashevich, Z. Gui, L. Louis, R. Walter, I. Souza, and L. Bellaiche, Natural optical activity and its control by electric field in electrotoroidic systems, Physical Review B 87, 93 (2013).
  • Hayashida et al. [2020] T. Hayashida, Y. Uemura, K. Kimura, S. Matsuoka, D. Morikawa, S. Hirose, K. Tsuda, T. Hasegawa, and T. Kimura, Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal, Nature Communications 11, 4582 (2020).
  • Fiebig et al. [2005] M. Fiebig, V. V. Pavlov, and R. V. Pisarev, Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review, Journal of the Optical Society of America. B, Optical physics 22, 96 (2005).
  • Jin et al. [2020] W. Jin, E. Drueke, S. Li, A. Admasu, R. Owen, M. Day, K. Sun, S.-W. Cheong, and L. Zhao, Observation of a ferro-rotational order coupled with second-order nonlinear optical fields, Nature Physics 16, 42 (2020).
  • Rado [1962] G. T. Rado, Statistical theory of magnetoelectric effects in antiferromagnetics, Physical Review 128, 2546 (1962).
  • Fil et al. [2017] V. D. Fil, M. P. Kolodyazhnaya, G. A. Zvyagina, I. V. Bilych, and K. R. Zhekov, Piezomagnetoelectric effect in LiCoPO4Physical Review B 96, 180407 (2017).
  • Merte et al. [2023] M. Merte, F. Freimuth, D. Go, T. Adamantopoulos, F. R. Lux, L. Plucinski, O. Gomonay, S. Blügel, and Y. Mokrousov, Photocurrents, inverse Faraday effect, and photospin Hall effect in Mn2Au, APL materials 11, 071106 (2023).
  • Kane and Mele [2005] C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Physical Review Letters 95, 226801 (2005).
  • Železný et al. [2014] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Relativistic néel-order fields induced by electrical current in antiferromagnets, Physical Review Letters 113, 157201 (2014).
  • Yanase [2014] Y. Yanase, Magneto-electric effect in three-dimensional coupled zigzag chains, Journal of the Physical Society of Japan 83, 014703 (2014).