This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized optimal degenerations of Fano varieties

Linsheng Wang Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200438, China [email protected]
Abstract.

We prove a generalization of the algebraic version of Tian conjecture. Precisely, for any smooth strictly increasing function g:>0g:\mathbb{R}\to\mathbb{R}_{>0} with logg{\rm log}\circ g convex, we define the 𝐇g\mathbf{H}^{g}-invariant on a Fano variety XX generalizing the 𝐇\mathbf{H}-invariant introduced by Tian-Zhang-Zhang-Zhu, and show that 𝐇g\mathbf{H}^{g} admits a unique minimizer. Such a minimizer will induce the gg-optimal degeneration of the Fano variety XX, whose limit space admits a gg^{\prime}-soliton. We present an example of Fano threefold which has the same gg-optimal degenerations for any gg.

1. Introduction

As predicted by [Tia97, Conjecture 9.1], a normalized Kähler-Ricci flow ωt\omega_{t} on a Fano manifold MM will converge in the Cheeger-Gromov-Hausdorff topology to (M,ω)(M_{\infty},\omega_{\infty}) with mild singularities, where ω\omega_{\infty} is a Kähler-Einstein metric or a Kähler-Ricci soliton on the smooth part of MM_{\infty}. This conjecture was widely studied, and has been solved now, see [TZ16, Bam18, CW20, WZ21]. The limit MM_{\infty} is called the optimal degeneration of the Fano manifold MM.

There is an algebraic version of the above conjecture, which is closely related to the 𝐇\mathbf{H}-invariant introduced by [TZZZ13]. By [BLXZ23, HL24], for any log Fano pair (X,Δ)(X,\Delta), the 𝐇\mathbf{H}-invariant is strictly convex along geodesics and admits a unique quasi-monomial valuation v0v_{0} as its minimizer, whose associated graded ring is finitely generated, hence inducing a multistep special degeneration of (X,Δ)(X,\Delta) to some weighted K-semistable log Fano triple (X0,Δ0,ξ0)(X_{0},\Delta_{0},\xi_{0}). Moreover, (X0,Δ0,ξ0)(X_{0},\Delta_{0},\xi_{0}) will specially degenerate to a weighted K-polystable log Fano triple (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}), which admits a Kähler-Ricci soliton by [HL23, BLXZ23].

In the second step of the above degenerations, [HL23, BLXZ23] work not only for Kähler-Ricci solitons, but also gg-solitons. Precisely, they showed that for any smooth function g:>0g:{\mathbb{R}}\to{\mathbb{R}}_{>0}, any gg-weighted K-semistable log Fano triple (X,Δ,ξ0)(X,\Delta,\xi_{0}) will specially degenerate to a gg-weighted K-polystable log Fano triple (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}), which is gg-weighted reduced uniformly K-stable by [BLXZ23], hence admits a gg-soliton by [HL23]. Motivated by this step, one may ask whether there is an associated first step degeneration in the algebraic version of Tian conjecture or not.

In this paper, we give a generalization of the 𝐇\mathbf{H}-invariant, namely, the 𝐇g\mathbf{H}^{g}-invariant for some

(1) smooth strictly increasing function g:>0g:{\mathbb{R}}\to{\mathbb{R}}_{>0} with logg{\rm log}\circ g convex.

This will lead to the first step degeneration asked in the previous paragraph. We aim to prove the following generalized version of Tian conjecture.

Theorem 1.1 (Generalized Tian conjecture).

Let (X,Δ)(X,\Delta) be a log Fano pair, and g:>0g:{\mathbb{R}}\to{\mathbb{R}}_{>0} be a smooth strictly increasing function with logg{\rm log}\circ g convex. Then the 𝐇g\mathbf{H}^{g}-invariant (Definition 3.1) of (X,Δ)(X,\Delta) admits a unique minimizer v0v_{0}, which is a special valuation (Theorem 2.12), such that the central fiber (𝒳0,Δ𝒳0,ξ0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}}_{0}},\xi_{0}) of the multistep special degeneration (𝒳,Δ𝒳,ξ0)({\mathcal{X}},\Delta_{\mathcal{X}},\xi_{0}) of (X,Δ)(X,\Delta) induced by v0v_{0} is gg^{\prime}-weighted K-semistable. Moreover (𝒳0,Δ𝒳0,ξ0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}}_{0}},\xi_{0}) has a unique gg^{\prime}-weighted K-polystable special degeneration (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}), which admits a gg^{\prime}-soliton.

We say that (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}) is the gg-optimal degeneration of (X,Δ)(X,\Delta). The last statement of the theorem has been established by [BLXZ23, HL24]. We aim to prove the first part of the theorem.

Remark 1.2.

In the setting of gg-optimal degenerations, the correct weighted stability notion is the gg^{\prime}-weighted K-stability, where gg^{\prime} is the first order derivative of the function gg. See Lemma 3.11 and Theorem 4.14 for details. If we choose g(x)=exg(x)=e^{x}, then it reveals the ordinary optimal degeneration. In this case g(x)=g(x)g^{\prime}(x)=g(x).

The following theorem is an analog of [HL24, Theorem 5.3], which is the key ingredient in finding gg-optimal degenerations.

Theorem 1.3 (Theorem 4.14).

Let v0v_{0} be a quasi-monomial valuation over XX with finitely generated associated graded ring grv0R{\rm gr}_{v_{0}}R, which induces a multistep special degeneration (𝒳,Δ𝒳,ξ0)({\mathcal{X}},\Delta_{{\mathcal{X}}},\xi_{0}) with klt central fiber. Then v0v_{0} minimizes 𝐇g\mathbf{H}^{g} if and only if (𝒳0,Δ𝒳,0,ξ0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}},0},\xi_{0}) is gg^{\prime}-weighted K-semistable.

If Theorem 1.1 is established, then it’s natural to ask what is the relationship between the gg-optimal degenerations of a log Fano pair (X,Δ)(X,\Delta) for different functions gg.

Question 1.4.

Let (X,Δ)(X,\Delta) be a log Fano pair and g,g¯g,\bar{g} be functions satisfying (1). Let (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}), (Y¯,ΔY¯,ξ¯0)(\overline{Y},\Delta_{\overline{Y}},\bar{\xi}_{0}) be the gg-, g¯\bar{g}-optimal degenerations of (X,Δ)(X,\Delta) respectively. When do we have

(2) (Y,ΔY)(Y¯,ΔY¯)?\displaystyle(Y,\Delta_{Y})\cong(\overline{Y},\Delta_{\overline{Y}})?

If (X,Δ)(X,\Delta) is a toric log Fano pair, then the isomorphism (2) always holds since (X,Δ)(X,\Delta) g0g_{0}-weighted K-polystable for any weight function g0:𝐏>0g_{0}:\mathbf{P}\to{\mathbb{R}}_{>0} (see Corollary 5.1 for details). We have the following non-trivial examples given by [Wan24, Example 5.5 and 5.7].

Theorem 1.5.

For any Fano threefold in families №2.28, №3.14 and №2.23(a) of Mori-Mukai’s list, the isomorphism (2) always holds.

The paper is organized as follows. In Section 2 we recall some basic notions in K-stability theory that we will use. We define the generalized 𝐇\mathbf{H}-invariant 𝐇g\mathbf{H}^{g} for polarized klt pairs (X,Δ;L)(X,\Delta;L) in Section 3 and study the basic properties of it. In Section 4, we show the existence of the 𝐇g\mathbf{H}^{g}-minimizer and its finite generation property in the log Fano case. Finally, we give some examples of gg-optimal degenerations in Section 5.

Acknowledgments. I would like to thank my advisor Gang Tian for his constant support and guidance. I thank Jiyuan Han for many helpful comments in this paper. I thank Thibaut Delcroix for informing me to consider the 𝔾{\mathbb{G}}-equivariant gg-optimal degenerations. I also thank Minghao Miao, Lu Qi, Kewei Zhang and Shengxuan Zhou for helpful discussions.

2. Preliminaries

We work over an algebraically closed field 𝕜{\mathbbm{k}} of characteristic 0. A pair (X,Δ)(X,\Delta) consists of a normal variety XX and an effective {\mathbb{Q}}-divisor Δ\Delta on XX such that KX+ΔK_{X}+\Delta is {\mathbb{Q}}-Cartier. A polarized pair (X,Δ;L)(X,\Delta;L) consists of a projective pair (X,Δ)(X,\Delta) and a {\mathbb{Q}}-Cartier ample divisor LL on XX. It is called log Fano if L=(KX+Δ)L=-(K_{X}+\Delta). Fix an integer l0>0l_{0}>0 such that l0Ll_{0}L is Cartier. We denote by R:=R(X;L):=ml0RmR:=R(X;L):=\oplus_{m\in l_{0}{\mathbb{N}}}R_{m} the section ring of LL where Rm:=H0(X,mL)R_{m}:=H^{0}(X,mL).

2.1. Filtrations, concave transforms and DH measures

Let (X,Δ;L)(X,\Delta;L) be a polarized pair of dimension nn. Following [BJ20, 2.1], a graded linear series V={Vm}V_{\bullet}=\{V_{m}\} of LL is a sequence of subspaces VmRmV_{m}\subseteq R_{m} such that V0=𝕜V_{0}={\mathbbm{k}} and VmVmVm+mV_{m}\cdot V_{m^{\prime}}\subseteq V_{m+m^{\prime}}. We assume that VV_{\bullet} contains an ample series, that is, H0(X,mA)VmH^{0}(X,mA)\subseteq V_{m} for m0m\gg 0, where AA is an ample {\mathbb{Q}}-divisor such that |LA||L-A|_{\mathbb{Q}}\neq\varnothing. Then

vol(V)=limmdimVmmn/n!>0.\displaystyle{\rm vol}(V_{\bullet})=\mathop{{\rm lim}}_{m\to\infty}\frac{\dim V_{m}}{m^{n}/n!}>0.

For such a graded linear series VV_{\bullet}, we may construct a convex body 𝐎=𝐎(V)n\mathbf{O}=\mathbf{O}(V_{\bullet})\subseteq{\mathbb{R}}^{n} called the Okounkov body by choosing an admissible flag on XX, such that vol(𝐎(V))=1n!vol(V){\rm vol}(\mathbf{O}(V_{\bullet}))=\frac{1}{n!}{\rm vol}(V_{\bullet}). See for example [JM12]. Note that the section ring R=R(X;L)R_{\bullet}=R(X;L) is a graded linear series containing an ample series.

Definition 2.1.

A filtration {\mathcal{F}} on VV_{\bullet} is a collection of subspaces λVmVm{\mathcal{F}}^{\lambda}V_{m}\subseteq V_{m} for each λ\lambda\in{\mathbb{R}} and m0m\geq 0 such that

  • Decreasing. λVmλVm{\mathcal{F}}^{\lambda}V_{m}\supseteq{\mathcal{F}}^{\lambda^{\prime}}V_{m} for λλ\lambda\leq\lambda^{\prime};

  • Left-continuous. λVm=λϵVm{\mathcal{F}}^{\lambda}V_{m}={\mathcal{F}}^{\lambda-\epsilon}V_{m} for 0<ϵ10<\epsilon\ll 1;

  • Bounded. λVm=Vm{\mathcal{F}}^{\lambda}V_{m}=V_{m} for λ0\lambda\ll 0 and λVm=0{\mathcal{F}}^{\lambda}V_{m}=0 for λ0\lambda\gg 0;

  • Multiplicative. λVmλVmλ+λVm+m{\mathcal{F}}^{\lambda}V_{m}\cdot{\mathcal{F}}^{\lambda^{\prime}}V_{m^{\prime}}\subseteq{\mathcal{F}}^{\lambda+\lambda^{\prime}}V_{m+m^{\prime}}.

For any sVms\in V_{m}, we set ord(s)=max{λ:sλVm}.{\rm ord}_{\mathcal{F}}(s)={\rm max}\{\lambda:s\in{\mathcal{F}}^{\lambda}V_{m}\}. The filtration is called linearly bounded if there is a constant C>0C>0 such that mCVm=Vm{\mathcal{F}}^{-mC}V_{m}=V_{m} and mCVm=0{\mathcal{F}}^{mC}V_{m}=0 for all mm. In this case, the sequence of numbers λmax(m)=max{λ:λRm0}\lambda^{(m)}_{\rm max}={\rm max}\{\lambda\in{\mathbb{R}}:{\mathcal{F}}^{\lambda}R_{m}\neq 0\} is linearly bounded, that is,

λmax(V;):=supmλmax(m)m=limmλmax(m)m<+.\displaystyle\lambda_{\rm max}(V_{\bullet};{\mathcal{F}}):=\mathop{{\rm sup}}_{m\in{\mathbb{N}}}\frac{\lambda^{(m)}_{\rm max}}{m}=\mathop{{\rm lim}}_{m\rightarrow\infty}\frac{\lambda^{(m)}_{\rm max}}{m}<+\infty.

A basis {si}\{s_{i}\} of VmV_{m} is called compatible with {\mathcal{F}} if λVm{\mathcal{F}}^{\lambda}V_{m} is generated by {si:ord(si)λ}\{s_{i}:{\rm ord}_{\mathcal{F}}(s_{i})\geq\lambda\}.

For example, if vv is a valuation over XX, then vλVm:={sVm:v(s)λ}{\mathcal{F}}_{v}^{\lambda}V_{m}:=\{s\in V_{m}:v(s)\geq\lambda\} defines a filtration on VV_{\bullet}. It is linearly bounded if AX,Δ(v)<+A_{X,\Delta}(v)<+\infty, which holds for quasi-monomial valuations over XX, see [JM12].

For any filtration {\mathcal{F}} on VV_{\bullet} and a>0,ba\in{\mathbb{R}}_{>0},b\in{\mathbb{R}}, we define the aa-rescaling and bb-shift of {\mathcal{F}} by

(a)λVm:=λ/aVm,(b)λVm:=λbmVm,\displaystyle(a{\mathcal{F}})^{\lambda}V_{m}:={\mathcal{F}}^{\lambda/a}V_{m},\,\,{\mathcal{F}}(b)^{\lambda}V_{m}:={\mathcal{F}}^{\lambda-bm}V_{m},

and we also denote by a(b):=(a)(b)a{\mathcal{F}}(b):=(a{\mathcal{F}})(b), that is (a(b))λVm=λbmaVm(a{\mathcal{F}}(b))^{\lambda}V_{m}={\mathcal{F}}^{\frac{\lambda-bm}{a}}V_{m}.

Definition 2.2.

Let {\mathcal{F}} be a linearly bounded filtration on VV_{\bullet}. Then for any tt\in{\mathbb{R}}, we have a graded linear subseries (t)VV{\mathcal{F}}^{(t)}V_{\bullet}\subseteq V_{\bullet} defined by ((t)V)m=mtVm({\mathcal{F}}^{(t)}V)_{m}={\mathcal{F}}^{mt}V_{m}. Note that (t)V{\mathcal{F}}^{(t)}V_{\bullet} is linearly bounded and contains an ample series since VV_{\bullet} does. We denote the Okounkov body of (t)V{\mathcal{F}}^{(t)}V_{\bullet} by 𝐎(t)\mathbf{O}^{(t)}, and let 𝐎=𝐎(V)\mathbf{O}=\mathbf{O}(V_{\bullet}). Then 𝐎(t)𝐎\mathbf{O}^{(t)}\subseteq\mathbf{O} is a descending collection of convex bodies. The concave transform of {\mathcal{F}} is the function on n{\mathbb{R}}^{n} defined by

G(y)=sup{t:y𝐎(t)}.\displaystyle G_{\mathcal{F}}(y)={\rm sup}\{t\in{\mathbb{R}}:y\in\mathbf{O}^{(t)}\}.

Note that GG_{\mathcal{F}} is concave and upper-semicontinuous. The linear boundedness of {\mathcal{F}} guarantees that 𝐎(C)=𝐎\mathbf{O}^{(-C)}=\mathbf{O} and 𝐎(C)=0\mathbf{O}^{(C)}=0. In other word, 𝐎\mathbf{O} is contained in the level set {CGC}n\{-C\leq G_{\mathcal{F}}\leq C\}\subseteq{\mathbb{R}}^{n}.

Lemma 2.3.

For any a>0,ba\in{\mathbb{R}}_{>0},b\in{\mathbb{R}}, we have Ga(b)=aG+bG_{a{\mathcal{F}}(b)}=aG_{\mathcal{F}}+b.

Definition 2.4.

Let {\mathcal{F}} be a linearly bounded filtration on VV_{\bullet}. We have the following discrete measure,

DH,m=λδλmdimgrλVmdimVm=ddtdimmtVmdimVm\displaystyle{\rm DH}_{{\mathcal{F}},m}=\sum_{\lambda}\delta_{\frac{\lambda}{m}}\cdot\frac{\dim{\rm gr}_{\mathcal{F}}^{\lambda}V_{m}}{\dim V_{m}}=-\frac{{\rm d}}{{\rm d}t}\frac{\dim{\mathcal{F}}^{mt}V_{m}}{\dim V_{m}}

on {\mathbb{R}}, where δλm\delta_{\frac{\lambda}{m}} is the Dirac measure at λm\frac{\lambda}{m}\in{\mathbb{R}}. By [BC11, BHJ17], DH,mDH{\rm DH}_{{\mathcal{F}},m}\to{\rm DH}_{\mathcal{F}} converges weakly as mm\to\infty, where

DH=ddtvol((t)V)vol(V)\displaystyle{\rm DH}_{\mathcal{F}}=-\frac{{\rm d}}{{\rm d}t}\frac{{\rm vol}({\mathcal{F}}^{(t)}V_{\bullet})}{{\rm vol}(V_{\bullet})}

is called the Duistermaat-Heckman (DH) measure of {\mathcal{F}}.

Let 𝒢{\mathcal{G}} be another linearly bounded filtration on VV_{\bullet}. By [BLXZ23, 3.1.3], we define

DH,𝒢,m=λδ(λm,μm)dimgrλgr𝒢μVmdimVm=2xydimmxVm𝒢myVmdimVm\displaystyle{\rm DH}_{{\mathcal{F}},{\mathcal{G}},m}=\sum_{\lambda}\delta_{(\frac{\lambda}{m},\frac{\mu}{m})}\cdot\frac{\dim{\rm gr}_{\mathcal{F}}^{\lambda}{\rm gr}_{\mathcal{G}}^{\mu}V_{m}}{\dim V_{m}}=-\frac{\partial^{2}}{\partial x\partial y}\frac{\dim{\mathcal{F}}^{mx}V_{m}\cap{\mathcal{G}}^{my}V_{m}}{\dim V_{m}}

on 2{\mathbb{R}}^{2}, which also converges weakly to

DH,𝒢=2xyvol((x)𝒢(y)V)vol(V)\displaystyle{\rm DH}_{{\mathcal{F}},{\mathcal{G}}}=-\frac{\partial^{2}}{\partial x\partial y}\frac{{\rm vol}({\mathcal{F}}^{(x)}{\mathcal{G}}^{(y)}V_{\bullet})}{{\rm vol}(V_{\bullet})}

as mm\to\infty by [BLXZ23, Theorem 3.3], where (x)𝒢(y)V{\mathcal{F}}^{(x)}{\mathcal{G}}^{(y)}V_{\bullet} is the graded linear series defined by

((x)𝒢(y)V)m:=mxVm𝒢myVm.\displaystyle({\mathcal{F}}^{(x)}{\mathcal{G}}^{(y)}V_{\bullet})_{m}:={\mathcal{F}}^{mx}V_{m}\cap{\mathcal{G}}^{my}V_{m}.

This measure is called the DH measure compatible with both {\mathcal{F}} and 𝒢{\mathcal{G}}.

The two measures defined above both have compact support since {\mathcal{F}} and 𝒢{\mathcal{G}} are linearly bounded. Let ff be a continuous function on {\mathbb{R}}, then

2f(x)DH,𝒢(dxdy)=f(x)DH(dx).\displaystyle\int_{{\mathbb{R}}^{2}}f(x){\rm DH}_{{\mathcal{F}},{\mathcal{G}}}({\rm d}x{\rm d}y)=\int_{\mathbb{R}}f(x){\rm DH}_{{\mathcal{F}}}({\rm d}x).

By [BJ20, 2.5], we also have

DH=G,LE,\displaystyle{\rm DH}_{\mathcal{F}}=G_{{\mathcal{F}},*}{\rm LE},

where LE{\rm LE} is the Lebesgue measure on the Okounkov body 𝐎=𝐎(V)\mathbf{O}=\mathbf{O}(V_{\bullet}).

We define the L1L^{1}-distance of {\mathcal{F}} and 𝒢{\mathcal{G}} by

d1(,𝒢):=2|xy|DH,𝒢(dxdy),\displaystyle d_{1}({\mathcal{F}},{\mathcal{G}}):=\int_{{\mathbb{R}}^{2}}|x-y|{\rm DH}_{{\mathcal{F}},{\mathcal{G}}}({\rm d}x{\rm d}y),

and say that ,𝒢{\mathcal{F}},{\mathcal{G}} are equivalent if d1(,𝒢)=0d_{1}({\mathcal{F}},{\mathcal{G}})=0. Let v,wv,w be valuations over XX, if v{\mathcal{F}}_{v} and w{\mathcal{F}}_{w} are equivalent, then v=wv=w by [HL24, Proposition 2.27], see also [BLXZ23, Lemma 3.16].

2.2. Log canonical slopes and 𝐋\mathbf{L}-functionals

Definition 2.5.

Let (X,Δ;L)(X,\Delta;L) be a polarized klt pair and {\mathcal{F}} be a linearly bounded filtration on R=R(X;L)R=R(X;L). The base ideal sequence I(t)={Im,mt}ml0I^{(t)}_{\bullet}=\{I_{m,mt}\}_{m\in l_{0}{\mathbb{N}}} of {\mathcal{F}} is defined by

Im,mt=Im,mt(L;):=im(mtH0(X,mL)𝒪(mL)𝒪),\displaystyle I_{m,mt}\,\,\,=\,\,\,I_{m,mt}(L;{\mathcal{F}})\,\,\,:=\,\,\,{\rm im}\Big{(}{\mathcal{F}}^{mt}H^{0}(X,mL)\otimes{\mathcal{O}}(-mL)\to{\mathcal{O}}\Big{)},

for any ml0m\in l_{0}{\mathbb{N}} and tt\in{\mathbb{R}}. The log canonical slope of {\mathcal{F}} is defined by

μ()=μX,Δ;L():=sup{t:lct(X,Δ;I(t))1}.\displaystyle\mu({\mathcal{F}})\,\,\,=\,\,\,\mu_{X,\Delta;L}({\mathcal{F}})\,\,\,:=\,\,\,{\rm sup}\Big{\{}t:{\rm lct}(X,\Delta;I^{(t)}_{\bullet})\geq 1\Big{\}}.

Note that I(t)=0I^{(t)}_{\bullet}=0 (hence lct(X,Δ;I(t))=0{\rm lct}(X,\Delta;I^{(t)}_{\bullet})=0) when t>λmaxt>\lambda_{\rm max}. We have μ()λmax\mu({\mathcal{F}})\leq\lambda_{\rm max}.

Lemma 2.6.

For any a>0,ba\in{\mathbb{R}}_{>0},b\in{\mathbb{R}}, we have μ(a(b))=aμ()+b\mu(a{\mathcal{F}}(b))=a\mu({\mathcal{F}})+b.

By [JM12], for any valuation vv on XX, we have

v(I(t))=infmv(Im,mt)m=limmv(Im,mt)m.\displaystyle v(I^{(t)}_{\bullet})=\mathop{{\rm inf}}_{m\in{\mathbb{N}}}\frac{v(I_{m,mt})}{m}=\mathop{{\rm lim}}_{m\to\infty}\frac{v(I_{m,mt})}{m}.

Consider the following function of tt\in{\mathbb{R}} in the definition of μ()\mu({\mathcal{F}}),

f(t)=lct(X,Δ;I(t))=infvAX,Δ(v)v(I(t)),\displaystyle f(t)={\rm lct}(X,\Delta;I^{(t)}_{\bullet})={\rm inf}_{v}\frac{A_{X,\Delta}(v)}{v(I^{(t)}_{\bullet})},

where the infimum runs over all the valuations over XX. We have the following useful lemma in computing log canonical slope.

Lemma 2.7.

[Xu24, Proposition 3.46] The function f(t)f(t) is continuous non-increasing on (,λmax)(-\infty,\lambda_{\rm max}). If we set μ+=sup{t:lct(X,Δ;I(t))=+}\mu_{+\infty}={\rm sup}\{t:{\rm lct}(X,\Delta;I^{(t)}_{\bullet})=+\infty\}, then f(t)f(t) is strictly decreasing on [μ+,λmax)[\mu_{+\infty},\lambda_{\rm max}).

As a consequence, we have

(3) μX,Δ;L(v)AX,Δ(v),\displaystyle\mu_{X,\Delta;L}({\mathcal{F}}_{v})\leq A_{X,\Delta}(v),

for any valuation vv over XX. Indeed, we only need to prove the inequality when AX,Δ(v)<λmaxA_{X,\Delta}(v)<\lambda_{\rm max} since μ(v)λmax\mu({\mathcal{F}}_{v})\leq\lambda_{\rm max}. By definition, we have v(I(t))tv(I^{(t)}_{\bullet})\geq t. Hence for any tAX,Δ(v)t\geq A_{X,\Delta}(v), we have lct(X,Δ;I(t))AX,Δ(v)v(I(t))1{\rm lct}(X,\Delta;I^{(t)}_{\bullet})\leq\frac{A_{X,\Delta}(v)}{v(I^{(t)}_{\bullet})}\leq 1. So μ(v)AX,Δ(v)\mu({\mathcal{F}}_{v})\leq A_{X,\Delta}(v) by Lemma 2.7.

Lemma 2.8.

If there exists Γ|L|\Gamma\in|L|_{\mathbb{Q}} such that (X,Δ+Γ)(X,\Delta+\Gamma) is lc, and vv is an lc place of (X,Δ+Γ)(X,\Delta+\Gamma). Then μX,Δ;L(v)=AX,Δ(v)\mu_{X,\Delta;L}({\mathcal{F}}_{v})=A_{X,\Delta}(v).

Proof.

Assume that Γ1m|mL|\Gamma\in\frac{1}{m}|mL|. Since v(Γ)=AX,Δ(v)v(\Gamma)=A_{X,\Delta}(v), we have Γ1m|vmAX,Δ(v)Rm|\Gamma\in\frac{1}{m}|{\mathcal{F}}_{v}^{mA_{X,\Delta}(v)}R_{m}| and

lct(X,Δ;I(AX,Δ(v)))lct(X,Δ;Γ)1.\displaystyle{\rm lct}(X,\Delta;I^{(A_{X,\Delta}(v))}_{\bullet})\geq{\rm lct}(X,\Delta;\Gamma)\geq 1.

Hence μ(v)AX,Δ(v)\mu({\mathcal{F}}_{v})\geq A_{X,\Delta}(v). We conclude by (3). ∎

Remark 2.9.

If grvR=m,λvλRm/v>λRm{\rm gr}_{v}R=\oplus_{m,\lambda}{\mathcal{F}}_{v}^{\lambda}R_{m}/{\mathcal{F}}_{v}^{>\lambda}R_{m} is finitely generated, then the converse of this lemma also holds. Indeed, for sufficiently divisible mm we have

1=lct(X,Δ;I(AX,Δ(v)))=lct(X,Δ;Im,mAX,Δ(v)1/m).\displaystyle 1={\rm lct}(X,\Delta;I_{\bullet}^{(A_{X,\Delta}(v))})={\rm lct}(X,\Delta;I_{m,mA_{X,\Delta}(v)}^{1/m}).

This means that there exists D1m|mL|D\in\frac{1}{m}|mL| with v(D)AX,Δ(v)v(D)\geq A_{X,\Delta}(v) and (X,Δ+D)(X,\Delta+D) is lc. Thus vv is an lc place of (X,Δ+D)(X,\Delta+D). The condition holds if vv is induced by some weakly special test configuration, see [Xu24, Theorem 4.24].

Definition 2.10.

Let {\mathcal{F}} be a linearly bounded filtration on RR, and e,e+e_{-},e_{+}\in{\mathbb{Z}} such that meRm=Rm{\mathcal{F}}^{me_{-}}R_{m}=R_{m} and me+Rm=0{\mathcal{F}}^{me_{+}}R_{m}=0 for any ml0m\in l_{0}{\mathbb{N}}. Recall that Im,λI_{m,\lambda} is the base ideal sequence of {\mathcal{F}} (Definition 2.5). We denote by

m(e+,e)\displaystyle{\mathcal{I}}_{m}(e_{+},e_{-}) =\displaystyle= m(;e+,e)\displaystyle{\mathcal{I}}_{m}({\mathcal{F}};e_{+},e_{-})
:=\displaystyle:= Im,mesme+me++Im,me+1s(me+1)+me+++Im,me+s0𝒪X[s].\displaystyle I_{m,me_{-}}\cdot s^{-me_{-}+me_{+}}+I_{m,me_{-}+1}\cdot s^{-(me_{-}+1)+me_{+}}+\cdots+I_{m,me_{+}}\cdot s^{0}\subseteq{\mathcal{O}}_{X}[s].

Since Im,me=𝒪X,Im,me+=0I_{m,me_{-}}={\mathcal{O}}_{X},I_{m,me_{+}}=0 and 𝒪Xs(me1)𝒪Xsme{\mathcal{O}}_{X}\cdot s^{-(me_{-}-1)}\subseteq{\mathcal{O}}_{X}\cdot s^{-me_{-}}, we see that (e++a,eb)=(e+,e)sma{\mathcal{I}}(e_{+}+a,e_{-}-b)={\mathcal{I}}(e_{+},e_{-})s^{ma} for any a,ba,b\in{\mathbb{N}}. Hence m(e+):=m(e+,e){\mathcal{I}}_{m}(e_{+}):={\mathcal{I}}_{m}(e_{+},e_{-}) is independent of the choice of ee_{-} and

m:=m(e+)sme+𝒪X[s,s1]\displaystyle{\mathcal{I}}_{m}:={\mathcal{I}}_{m}(e_{+})\cdot s^{-me_{+}}\subseteq{\mathcal{O}}_{X}[s,s^{-1}]

is independent of the choice of e+e_{+}. The 𝐋\mathbf{L}-functional of {\mathcal{F}} is defined by

𝐋()=𝐋X,Δ;L():=limmlct(X𝔸1,Δ𝔸1+m1m;X0)1,\displaystyle\mathbf{L}({\mathcal{F}})=\mathbf{L}_{X,\Delta;L}({\mathcal{F}}):=\mathop{{\rm lim}}_{m\to\infty}{\rm lct}(X_{{\mathbb{A}}^{1}},\Delta_{{\mathbb{A}}^{1}}+{\mathcal{I}}_{m}^{\frac{1}{m}};X_{0})-1,

where the limit exists by [Xu24, Lemma 1.49].

Lemma 2.11.

[Xu24, Theorem 3.55] For any linearly bounded filtration {\mathcal{F}} on RR, we have

μ()=𝐋().\displaystyle\mu({\mathcal{F}})=\mathbf{L}({\mathcal{F}}).

2.3. Multistep special degenerations and higher rank finite generation

Let (X,Δ)(X,\Delta) be a log Fano pair, and {\mathcal{F}} be a filtration on R=R(X,Δ)R=R(X,\Delta) such that grR{\rm gr}_{\mathcal{F}}R is finitely generated. Assume that {\mathcal{F}} is of rational rank rr. Then the Rees construction gives a 𝔾mr{\mathbb{G}}_{m}^{r}-equivariant family 𝒳=ProjAReesR𝔸r{\mathcal{X}}_{\mathcal{F}}={\rm Proj}_{A}{\rm Rees}_{\mathcal{F}}R\to{\mathbb{A}}^{r}, where A=𝕜[t1,,tr]A={\mathbbm{k}}[t_{1},\cdots,t_{r}] and

ReesR:=mλΓm()tλλRm.\displaystyle{\rm Rees}_{\mathcal{F}}R:=\bigoplus_{m\in{\mathbb{N}}}\bigoplus_{\lambda\in\Gamma_{m}({\mathcal{F}})}t^{-\lambda}{\mathcal{F}}^{\lambda}R_{m}.

We denote by Δ𝒳\Delta_{{\mathcal{X}}_{\mathcal{F}}} the closure of Δ×(𝔸1{0})r\Delta\times({\mathbb{A}}^{1}\setminus\{0\})^{r} in 𝒳{\mathcal{X}}_{\mathcal{F}} and say that (𝒳,Δ𝒳)({\mathcal{X}}_{\mathcal{F}},\Delta_{{\mathcal{X}}_{\mathcal{F}}}) is the multistep special degeneration induced by {\mathcal{F}}. If =v{\mathcal{F}}={\mathcal{F}}_{v} for some valuation vv over XX, we simply denote the multistep special degeneration by (𝒳v,Δ𝒳v)({\mathcal{X}}_{v},\Delta_{{\mathcal{X}}_{v}}) and the central fiber by (Xv,Δv)(X_{v},\Delta_{v}). We have the following deep theorem of higher rank finite generation developed by [LXZ22, XZ22, Xu24].

Theorem 2.12.

Let (X,Δ)(X,\Delta) be a log Fano pair, and vv be a quasi-monomial valuation over XX. The following statements are all equivalent.

  1.  (a)

    The associated graded ring grvR{\rm gr}_{v}R is finitely generated, and the central fiber (Xv,Δv)(X_{v},\Delta_{v}) of the induced degeneration is klt.

  2.  (b)

    There exists a special {\mathbb{Q}}-complement Γ\Gamma of (X,Δ)(X,\Delta) with respect to some toroidal model π:(Y,E)(X,Δ)\pi:(Y,E)\to(X,\Delta) such that vQM(Y,E)LC(X,Δ+Γ)v\in{\rm QM}(Y,E)\cap{\rm LC}(X,\Delta+\Gamma).

  3.  (c)

    There exists a qdlt Fano type model π:(Y,E)(X,Δ)\pi:(Y,E)\to(X,\Delta) such that vQM(Y,E)v\in{\rm QM}(Y,E).

In this case, the valuation vv is called special with respect to (X,Δ)(X,\Delta).

Motivated by [LX18, Lemma 2.7] and [Che24, Lemma 4.2], we have the following characterization of weakly special valuations.

Theorem 2.13.

Let (X,Δ)(X,\Delta) be a log Fano pair, and vv be a quasi-monomial valuation over XX. The following statements are all equivalent.

  1.  (a)

    μ(v)=AX,Δ(v)\mu({\mathcal{F}}_{v})=A_{X,\Delta}(v).

  2.  (b)

    There exists a {\mathbb{Q}}-complement Γ\Gamma of (X,Δ)(X,\Delta) such that vLC(X,Δ+Γ)v\in{\rm LC}(X,\Delta+\Gamma).

  3.  (c)

    There exists a qdlt model (Y,E)(X,Δ)(Y,E)\to(X,\Delta) and a birational contraction (Y,E)(Y¯,E¯)(Y,E)\dashrightarrow({\overline{Y}},{\overline{E}}) which is an isomorphism at any stratum of EE, such that (KY¯+π¯1Δ+E¯)-(K_{\overline{Y}}+{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}) is semiample and QM(Y,E){\rm QM}(Y,E) is a minimal simplex containing vv.

In this case, the valuation vv is called weakly special with respect to (X,Δ)(X,\Delta).

Proof.

By Lemme 2.8, we have (b) \Rightarrow (a). Now we prove (a) \Rightarrow (c). By [HMX14], there exists ε>0\varepsilon>0 depending only on dimX\dim X and coefficients of Δ\Delta such that, for any birational morphism π:YX\pi:Y\dashrightarrow X and any reduced divisor EE on YY, the pair (Y,π1Δ+(1ε)E)(Y,\pi_{*}^{-1}\Delta+(1-\varepsilon)E) is lc if and only if (Y,π1Δ+E)(Y,\pi_{*}^{-1}\Delta+E) is.

Let μ=μ(v)=AX,Δ(v)\mu=\mu({\mathcal{F}}_{v})=A_{X,\Delta}(v). This is equivalent to vv computing lct(X,Δ;I(μ))=1{\rm lct}(X,\Delta;I^{(\mu)}_{\bullet})=1. Since vv is a quasi-monomial valuation over XX, there exists a quasi-monomial simplicial cone σValX\sigma\subseteq{\rm Val}_{X} containing vv. The functions wAX,Δ(w)w\mapsto A_{X,\Delta}(w) and ww(𝔞c)w\mapsto w(\mathfrak{a}_{\bullet}^{c}) are linear and concave on σ\sigma respectively. Hence the function AX,Δ+𝔞c():σA_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(-):\sigma\to{\mathbb{R}},

(4) wAX,Δ+𝔞c(w)=AX,Δ(w)w(𝔞c)\displaystyle w\mapsto A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(w)=A_{X,\Delta}(w)-w(\mathfrak{a}_{\bullet}^{c})

is convex on σ\sigma. In particular, it is Lipschitz on σ\sigma. Hence there exists a constant C>0C>0 such that

|AX,Δ+𝔞c(w)AX,Δ+𝔞c(v)|C|wv|.\displaystyle|A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(w)-A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(v)|\leq C|w-v|.

On the other hand, AX,Δ+𝔞c(w)0A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(w)\geq 0 for any wσw\in\sigma since vv compute lct(X,Δ;I(μ))=1{\rm lct}(X,\Delta;I^{(\mu)}_{\bullet})=1. Hence

(5) 0AX,Δ+𝔞c(w)=|AX,Δ+𝔞c(w)AX,Δ+𝔞c(v)|C|wv|.\displaystyle 0\leq A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(w)=|A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(w)-A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(v)|\leq C|w-v|.

By Diophantine approximation [LX18, Lemma 2.7], there exist divisorial valuations v1,,vrv_{1},\cdots,v_{r} and positive integers q1,,qr,c1,,crq_{1},\cdots,q_{r},c_{1},\cdots,c_{r} such that

  • {v1,,vr}\{v_{1},\cdots,v_{r}\} spans a quasi-monomial simplicial cone in ValX{\rm Val}_{X} containing vv;

  • for any 1ir1\leq i\leq r, there exists a prime divisor EiE_{i} over XX such that qivi=ciordEiq_{i}v_{i}=c_{i}{\rm ord}_{E_{i}};

  • |viv|<ε2Cqi|v_{i}-v|<\frac{\varepsilon}{2Cq_{i}} for any 1ir1\leq i\leq r.

In particular,

(6) AX,Δ+𝔞c(Ei)=qiciAX,Δ+𝔞c(vi)qiciC|viv|<qiciCε2Cqiε2.\displaystyle A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(E_{i})=\frac{q_{i}}{c_{i}}\cdot A_{X,\Delta+\mathfrak{a}_{\bullet}^{c}}(v_{i})\leq\frac{q_{i}}{c_{i}}\cdot C|v_{i}-v|<\frac{q_{i}}{c_{i}}\cdot C\cdot\frac{\varepsilon}{2Cq_{i}}\leq\frac{\varepsilon}{2}.

Choose 0<ε<ε/2ordEi(I(μ))0<\varepsilon^{\prime}<\varepsilon/2{\rm ord}_{E_{i}}(I_{\bullet}^{(\mu)}). Then for m0m\gg 0 and general Dm1m|mμRm|D_{m}\in\frac{1}{m}|{\mathcal{F}}^{m\mu}R_{m}|, we have

lct(X,Δ;(1ε)Dm)=lct(X,Δ;Im,mμ(1ε)/m)>1,\displaystyle{\rm lct}(X,\Delta;(1-\varepsilon^{\prime})D_{m})={\rm lct}(X,\Delta;I_{m,m\mu}^{(1-\varepsilon^{\prime})/m})>1,

and ordEi(Dm)=1mordEi(Im,mμ){\rm ord}_{E_{i}}(D_{m})=\frac{1}{m}{\rm ord}_{E_{i}}(I_{m,m\mu}) for any ii. Hence

ai:=AX,Δ+(1ε)Dm(Ei)\displaystyle a_{i}\,\,\,:=\,\,\,A_{X,\Delta+(1-\varepsilon^{\prime})D_{m}}(E_{i}) =\displaystyle= (1ε)(ordEi(I(μ))1mordEi(Im,mμ))\displaystyle(1-\varepsilon^{\prime})\Big{(}{\rm ord}_{E_{i}}(I_{\bullet}^{(\mu)})-\frac{1}{m}{\rm ord}_{E_{i}}(I_{m,m\mu})\Big{)}
+εordEi(I(μ))+AX,Δ+I(μ)(Ei)ε,\displaystyle+\,\varepsilon^{\prime}\cdot{\rm ord}_{E_{i}}(I_{\bullet}^{(\mu)})+A_{X,\Delta+I_{\bullet}^{(\mu)}}(E_{i})\,\,\,\leq\,\,\,\varepsilon,

since ordEi(𝔞)1mordEi(𝔞m){\rm ord}_{E_{i}}(\mathfrak{a}_{\bullet})\leq\frac{1}{m}{\rm ord}_{E_{i}}(\mathfrak{a}_{m}) for any graded ideal sequence 𝔞\mathfrak{a}_{\bullet}.

By [BCHM10, Corollary 1.4.3], there exists a {\mathbb{Q}}-factorial model π:YX\pi:Y\to X extracts precisely E1,,ErE_{1},\cdots,E_{r}. Then

(7) KY+π1(Δ+(1ε)Dm)+i=1r(1ai)Ei=π(KX+Δ+(1ε)Dm).\displaystyle K_{Y}+\pi_{*}^{-1}(\Delta+(1-\varepsilon^{\prime})D_{m})+\sum_{i=1}^{r}(1-a_{i})E_{i}=\pi^{*}(K_{X}+\Delta+(1-\varepsilon^{\prime})D_{m}).

In particular, π(KX+Δ+(1ε)Dm)KY+π1Δ+(1ε)E\pi^{*}(K_{X}+\Delta+(1-\varepsilon^{\prime})D_{m})\geq K_{Y}+\pi_{*}^{-1}\Delta+(1-\varepsilon)E. Since lct(X,Δ;(1ε)Dm)>1{\rm lct}(X,\Delta;(1-\varepsilon^{\prime})D_{m})>1, the pair (Y,π1Δ+(1ε)E)(Y,\pi_{*}^{-1}\Delta+(1-\varepsilon)E) is lc. Hence (Y,π1Δ+E)(Y,\pi_{*}^{-1}\Delta+E) is also lc by our choice of ε\varepsilon. Since YY is {\mathbb{Q}}-factorial, (Y,π1Δ+E)(Y,\pi_{*}^{-1}\Delta+E) is indeed qdlt by [Xu24, Lemma 5.3]. So we get a qdlt model π:(Y,E)(X,Δ)\pi:(Y,E)\to(X,\Delta) with vQM(Y,E)v\in{\rm QM}(Y,E).

Since lct(X,Δ;(1ε)Dm)>1{\rm lct}(X,\Delta;(1-\varepsilon^{\prime})D_{m})>1, we see that (X,Δ+(1ε)Dm)(X,\Delta+(1-\varepsilon^{\prime})D_{m}) is an lc Fano pair. Hence YY is of Fano type by (7). We may run (KY+π1Δ+E)-(K_{Y}+\pi_{*}^{-1}\Delta+E)-MMP and get a {\mathbb{Q}}-factorial good minimal model ϕ:YY¯\phi:Y\dashrightarrow{\overline{Y}} with induced birational map π¯:Y¯X{\overline{\pi}}:{\overline{Y}}\dashrightarrow X. Then (KY¯+π¯1Δ+E¯)-(K_{{\overline{Y}}}+{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}) is nef, hence semiample since Y¯{\overline{Y}} is of Fano type, where E¯=ϕE{\overline{E}}=\phi_{*}E. With the same argument in the previous paragraph, we see that (Y¯,π¯1Δ+E¯)({\overline{Y}},{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}) is also lc. On the other hand, for any prime divisor FF over YY, we have

AY,π1Δ+E(F)AY¯,π¯1Δ+E¯(F),\displaystyle A_{Y,\pi_{*}^{-1}\Delta+E}(F)\geq A_{{\overline{Y}},{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}}(F),

and the equality holds if and only if ϕ\phi is an isomorphism at the generic point of CY(F)C_{Y}(F). Hence ϕ\phi is an isomorphism at the generic point of each lc center of (Y,π1Δ+E)(Y,\pi_{*}^{-1}\Delta+E). In particular, ϕ\phi is an isomorphism at any stratum of EE. The proof of (a) \Rightarrow (c) is finished.

Finally we prove (c) \Rightarrow (b). Since ϕ\phi is an isomorphism at any stratum of EE, we have KY+π1Δ+Eϕ(KY¯+π¯1Δ+E¯)K_{Y}+\pi_{*}^{-1}\Delta+E\leq\phi^{*}(K_{\overline{Y}}+{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}). It suffices to show that (Y¯,π¯1Δ+E¯)({\overline{Y}},{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}) admits a {\mathbb{Q}}-complement, which follows from Bertini theorem since (KY¯+π¯1Δ+E¯)-(K_{\overline{Y}}+{\overline{\pi}}_{*}^{-1}\Delta+{\overline{E}}) is semiample. ∎

3. Generalized 𝐇\mathbf{H}-invariants

Fix a polarized klt pair (X,Δ;L)(X,\Delta;L). In this section, we will define the generalized 𝐇\mathbf{H}-invariant 𝐇g\mathbf{H}^{g} of (X,Δ;L)(X,\Delta;L) for any function gg satisfying (1), and study the basic properties of it. Some existence results will be established for log Fano pairs in the next section. We fix an Okounkov body 𝐎\mathbf{O} of LL with respect to some admissible flag in the following.

Definition 3.1 (𝐇g\mathbf{H}^{g}-invariants).

For any linearly bounded filtration {\mathcal{F}} on R=R(X;L)R=R(X;L), we define

𝐇g()=𝐇X,Δ;Lg()\displaystyle\mathbf{H}^{g}({\mathcal{F}})\,\,\,=\,\,\,\mathbf{H}^{g}_{X,\Delta;L}({\mathcal{F}}) :=\displaystyle:= log(g(μ()t)DH(dt))\displaystyle{\rm log}\Big{(}\int_{\mathbb{R}}g(\mu({\mathcal{F}})-t){\rm DH}_{\mathcal{F}}({\rm d}t)\Big{)}
=\displaystyle= log(𝐎g(μ()G(y))dy),\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g(\mu({\mathcal{F}})-G_{\mathcal{F}}(y)){\rm d}y\Big{)},
hg(X,Δ;L)\displaystyle h^{g}(X,\Delta;L) :=\displaystyle:= inf𝐇g(),\displaystyle{\rm inf}_{\mathcal{F}}\,\,\mathbf{H}^{g}({\mathcal{F}}),

where the infimum runs over all the linearly bounded filtrations {\mathcal{F}} on RR.

Remark 3.2.

If we choose g(x)=exg(x)=e^{x}, then 𝐇g\mathbf{H}^{g} reveals the original 𝐇\mathbf{H}-invariant as [TZZZ13, DS20, HL24], see also [MW24, Definition 2.7]. It’s well-known that μ()\mu({\mathcal{F}}) and GG_{\mathcal{F}} are affine with respect to shifting, we have 𝐇g((b))=𝐇g()\mathbf{H}^{g}({\mathcal{F}}(b))=\mathbf{H}^{g}({\mathcal{F}}) for any bb\in{\mathbb{R}}.

3.1. Convexity

We study the global behavior of 𝐇g\mathbf{H}^{g} in the rest of this section. Following [BLXZ23, Theorem 3.7], we prove the convexity of the 𝐇g\mathbf{H}^{g}-invariants, which mainly relies on our choice of gg. As a consequence, we prove the uniqueness of valuative minimizer of 𝐇g\mathbf{H}^{g}. Let 0,1{\mathcal{F}}_{0},{\mathcal{F}}_{1} be linearly bounded filtrations on RR. The geodesic connecting 0{\mathcal{F}}_{0} and 1{\mathcal{F}}_{1} is defined by

(8) tλRm=(1t)μ+tνλ0μRm1νRm.\displaystyle{\mathcal{F}}^{\lambda}_{t}R_{m}=\sum_{(1-t)\mu+t\nu\geq\lambda}{\mathcal{F}}_{0}^{\mu}R_{m}\cap{\mathcal{F}}_{1}^{\nu}R_{m}.
Theorem 3.3.

The functional 𝐇g\mathbf{H}^{g} is convex along geodesics. More precisely, for any 0t10\leq t\leq 1, we have 𝐇g(t)(1t)𝐇g(0)+t𝐇g(1).\mathbf{H}^{g}({\mathcal{F}}_{t})\leq(1-t)\mathbf{H}^{g}({\mathcal{F}}_{0})+t\mathbf{H}^{g}({\mathcal{F}}_{1}).

Proof.

By [BLXZ23, Proposition 3.12], we know that

μ(t)(1t)μ(0)+tμ(1).\displaystyle\mu({\mathcal{F}}_{t})\leq(1-t)\mu({\mathcal{F}}_{0})+t\mu({\mathcal{F}}_{1}).

Hence

𝐇g(t)\displaystyle\mathbf{H}^{g}({\mathcal{F}}_{t}) =\displaystyle= log(g(μ(t)s)DHt(ds))\displaystyle{\rm log}\Big{(}\int_{\mathbb{R}}g(\mu({\mathcal{F}}_{t})-s){\rm DH}_{{\mathcal{F}}_{t}}({\rm d}s)\Big{)}
=\displaystyle= log(2g(μ(t)(1t)xty)DH0,1(dxdy))\displaystyle{\rm log}\Big{(}\int_{{\mathbb{R}}^{2}}g(\mu({\mathcal{F}}_{t})-(1-t)x-ty){\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}}({\rm d}x{\rm d}y)\Big{)}
\displaystyle\leq log(2g((1t)(μ(0)x)+t(μ(1)y))DH0,1(dxdy))\displaystyle{\rm log}\Big{(}\int_{{\mathbb{R}}^{2}}g((1-t)(\mu({\mathcal{F}}_{0})-x)+t(\mu({\mathcal{F}}_{1})-y)){\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}}({\rm d}x{\rm d}y)\Big{)}
\displaystyle\leq log(2g(μ(0)x)1tg(μ(1)y)tDH0,1(dxdy))\displaystyle{\rm log}\Big{(}\int_{{\mathbb{R}}^{2}}g(\mu({\mathcal{F}}_{0})-x)^{1-t}\cdot g(\mu({\mathcal{F}}_{1})-y)^{t}\cdot{\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}}({\rm d}x{\rm d}y)\Big{)}
\displaystyle\leq (1t)log(g(μ(0)x)DH0(dx))+tlog(g(μ(1)y)DH1(dy))\displaystyle(1-t){\rm log}\Big{(}\int_{\mathbb{R}}g(\mu({\mathcal{F}}_{0})-x){\rm DH}_{{\mathcal{F}}_{0}}({\rm d}x)\Big{)}+t{\rm log}\Big{(}\int_{\mathbb{R}}g(\mu({\mathcal{F}}_{1})-y){\rm DH}_{{\mathcal{F}}_{1}}({\rm d}y)\Big{)}
=\displaystyle= (1t)𝐇g(0)+t𝐇g(1),\displaystyle(1-t)\mathbf{H}^{g}({\mathcal{F}}_{0})+t\mathbf{H}^{g}({\mathcal{F}}_{1}),

where the first inequality follows from (8) and gg being increasing, the second one follows from the log concavity of gg, and the third one follows from Hölder’s inequality. ∎

Corollary 3.4.

Let v,wv,w be valuations over XX. If 𝐇g(v)=𝐇g(w)=hg(X,Δ;L)\mathbf{H}^{g}({\mathcal{F}}_{v})=\mathbf{H}^{g}({\mathcal{F}}_{w})=h^{g}(X,\Delta;L), then v=wv=w.

Proof.

The proof is slightly different from [BLXZ23, Proposition 3.14], which relies on the linearity of logg{\rm log}\circ g. Let 0=v{\mathcal{F}}_{0}={\mathcal{F}}_{v} and 1=w{\mathcal{F}}_{1}={\mathcal{F}}_{w}, and t{\mathcal{F}}_{t} be the geodesic connecting them. Then

𝐇g(t)(1t)𝐇g(0)+t𝐇g(1)=hg(X,Δ;L).\displaystyle\mathbf{H}^{g}({\mathcal{F}}_{t})\leq(1-t)\mathbf{H}^{g}({\mathcal{F}}_{0})+t\mathbf{H}^{g}({\mathcal{F}}_{1})=h^{g}(X,\Delta;L).

So the equality holds, hence do those in the proof of Theorem 3.3. Then since we used Hölder’s inequality, we have g(μ(0)x)=cg(μ(1)y)g(\mu({\mathcal{F}}_{0})-x)=c\cdot g(\mu({\mathcal{F}}_{1})-y) almost everywhere on 2{\mathbb{R}}^{2} with respect to the measure DH0,1{\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}} for some c>0c>0. On the other hand, since 𝐇g(0)=𝐇g(1)\mathbf{H}^{g}({\mathcal{F}}_{0})=\mathbf{H}^{g}({\mathcal{F}}_{1}), we have c=1c=1. Hence μ(0)x=μ(1)y\mu({\mathcal{F}}_{0})-x=\mu({\mathcal{F}}_{1})-y almost everywhere on 2{\mathbb{R}}^{2} with respect to the measure DH0,1{\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}} since gg is continuous and strictly increasing, that is,

0=2|xyd|DH0,1(dxdy)=d1(0,1(d)),\displaystyle 0=\int_{{\mathbb{R}}^{2}}|x-y-d|{\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}}({\rm d}x{\rm d}y)=d_{1}({\mathcal{F}}_{0},{\mathcal{F}}_{1}(d)),

where d=μ(0)μ(1)d=\mu({\mathcal{F}}_{0})-\mu({\mathcal{F}}_{1}). Then 0{\mathcal{F}}_{0} and 1(d){\mathcal{F}}_{1}(d) are equivalent, so they have the same λmin\lambda_{\rm min}, and d=0d=0 by [BLXZ23, Lemma 2.5]. We conclude that v=wv=w by [HL24, Proposition 2.27] or [BLXZ23, Lemma 3.16]. ∎

Another corollary is the behavior of 𝐇g\mathbf{H}^{g} on a quasi-monomial simplicial cone σ=QMη(Y,E)\sigma={\rm QM}_{\eta}(Y,E), where (Y,E)(X,Δ)(Y,E)\to(X,\Delta) is a log smooth model and η\eta is the generic point of some stratum of EE. In this case, the geodesic connecting v,wσv,w\in\sigma is the obvious line segment in σ\sigma.

Theorem 3.5.

The function v𝐇g(v)v\mapsto\mathbf{H}^{g}({\mathcal{F}}_{v}) on σ\sigma is strictly convex. In particular, it is continuous and admits a unique minimizer v0σv_{0}\in\sigma.

Proof.

With the same argument as Corollary 3.4, The function 𝐇g:σ>0\mathbf{H}^{g}:\sigma\to{\mathbb{R}}_{>0} is strictly convex and admits at most one minimizer. To see the existence, it suffice to show that for any vσ{0}v\in\sigma\setminus\{0\}, 𝐇g(av)+\mathbf{H}^{g}(a{\mathcal{F}}_{v})\to+\infty as a+a\to+\infty, which holds since gg is strictly increasing. ∎

3.2. Approximation by valuations

Definition 3.6 (β~g\tilde{\beta}^{g}-invariants).

For any valuation vv over XX, we define

β~g(v)=β~X,Δ;Lg(v):=log(g(AX,Δ(v)t)DHv(dt)).\displaystyle\tilde{\beta}^{g}(v)\,\,\,=\,\,\,\tilde{\beta}^{g}_{X,\Delta;L}(v)\,\,\,:=\,\,\,{\rm log}\Big{(}\int_{\mathbb{R}}g(A_{X,\Delta}(v)-t){\rm DH}_{{\mathcal{F}}_{v}}({\rm d}t)\Big{)}.
Remark 3.7.

Since μX,Δ;L(v)AX,Δ(v)\mu_{X,\Delta;L}({\mathcal{F}}_{v})\leq A_{X,\Delta}(v), we have naturally 𝐇g(v)β~g(v)\mathbf{H}^{g}({\mathcal{F}}_{v})\leq\tilde{\beta}^{g}(v). The equality holds if vv is an lc place of (X,Δ+Γ)(X,\Delta+\Gamma) by Lemma 2.8, where Γ|L|\Gamma\in|L|_{\mathbb{Q}} such that (X,Δ+Γ)(X,\Delta+\Gamma) is lc.

We have shown that the 𝐇g\mathbf{H}^{g}-invariants admit at most one valuative minimizer. For the existence, we prove the following theorem as preparation.

Theorem 3.8.

hg(X,Δ;L)=infvValXβ~g(v).h^{g}(X,\Delta;L)={\rm inf}_{v\in{\rm Val}_{X}}\,\tilde{\beta}^{g}(v).

Proof.

We need to show that for any linearly bounded filtration {\mathcal{F}} on RR_{\bullet}, there exists a valuation vv over XX such that 𝐇g()β~g(v)\mathbf{H}^{g}({\mathcal{F}})\geq\tilde{\beta}^{g}(v).

Just assume that μ=μ()<λmax()\mu=\mu({\mathcal{F}})<\lambda_{\rm max}({\mathcal{F}}). Then we have lct(X,Δ;I(μ))1{\rm lct}(X,\Delta;I^{(\mu)}_{\bullet})\leq 1. There exists a valuation vv on XX computing lct(X,Δ;I(μ)){\rm lct}(X,\Delta;I^{(\mu)}_{\bullet}) by [JM12]. Hence v(I(μ))AX,Δ(v)v(I^{(\mu)}_{\bullet})\leq A_{X,\Delta}(v). We denote by fv(t)=v(I(t))f_{v}(t)=v(I^{(t)}_{\bullet}), which is a convex function on {\mathbb{R}}. Rescale vv such that the first order left-derivative at μ\mu\in{\mathbb{R}} equals to one, that is, fv,(μ)=1f^{\prime}_{v,-}(\mu)=1. Then we have

(9) fv(t)t+fv(μ)μt+AX,Δ(v)μ.\displaystyle f_{v}(t)\geq t+f_{v}(\mu)-\mu\geq t+A_{X,\Delta}(v)-\mu.

We claim that :=(AX,Δ(v)μ)v{\mathcal{F}}^{\prime}:={\mathcal{F}}(A_{X,\Delta}(v)-\mu)\subseteq{\mathcal{F}}_{v}, hence GGvG_{{\mathcal{F}}^{\prime}}\leq G_{{\mathcal{F}}_{v}}. Indeed, for any λ\lambda\in{\mathbb{R}} and sm(λAX,Δ(v)+μ)Rms\in{\mathcal{F}}^{m(\lambda-A_{X,\Delta}(v)+\mu)}R_{m},

1mv(s)1mv(Im,m(λAX,Δ(v)+μ))fv(λAX,Δ(v)+μ)λ,\displaystyle\frac{1}{m}v(s)\geq\frac{1}{m}v(I_{m,m(\lambda-A_{X,\Delta}(v)+\mu)})\geq f_{v}(\lambda-A_{X,\Delta}(v)+\mu)\geq\lambda,

where the third inequality follows from (9) with t=λAX,Δ(v)+μt=\lambda-A_{X,\Delta}(v)+\mu. Hence svmλRms\in{\mathcal{F}}^{m\lambda}_{v}R_{m}. Recall that the functional μ()\mu({\mathcal{F}}) and measure DH{\rm DH}_{{\mathcal{F}}} are affine with respect to shift of filtrations, that is, μ((b))=μ()+b\mu({\mathcal{F}}(b))=\mu({\mathcal{F}})+b and f(s)DH(b)(ds)=f(s+b)DH(ds)\int_{\mathbb{R}}f(s){\rm DH}_{{\mathcal{F}}(b)}({\rm d}s)=\int_{\mathbb{R}}f(s+b){\rm DH}_{{\mathcal{F}}}({\rm d}s) for any bb\in{\mathbb{R}}. Hence 𝐇g()=𝐇g((b))\mathbf{H}^{g}({\mathcal{F}})=\mathbf{H}^{g}({\mathcal{F}}(b)). We conclude that

𝐇g()=𝐇g()\displaystyle\mathbf{H}^{g}({\mathcal{F}})\,\,\,=\,\,\,\mathbf{H}^{g}({\mathcal{F}}^{\prime}) =\displaystyle= log(𝐎g(μ()G(y))dy)\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g(\mu({\mathcal{F}}^{\prime})-G_{{\mathcal{F}}^{\prime}}(y)){\rm d}y\Big{)}
=\displaystyle= log(𝐎g(AX,Δ(v)G(y))dy)\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g(A_{X,\Delta}(v)-G_{{\mathcal{F}}^{\prime}}(y)){\rm d}y\Big{)}
\displaystyle\geq log(𝐎g(AX,Δ(v)Gv(y))dy)=β~g(v).\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g(A_{X,\Delta}(v)-G_{{\mathcal{F}}_{v}}(y)){\rm d}y\Big{)}\,\,\,=\,\,\,\tilde{\beta}^{g}(v).

The proof is finished. ∎

Remark 3.9.

In the theorem vValXv\in{\rm Val}_{X} can be replaced by vv being quasi-monomial valuations over XX. Indeed, in the proof we can choose a quasi-monomial minimizer of lct(X,Δ;I(μ)){\rm lct}(X,\Delta;I^{(\mu)}_{\bullet}) by [Xu20].

3.3. Weighted delta invariants

By [BLXZ23, Definition 4.1], we define the following version of weighted delta invariants. This is one of the key ingredient in the proof of speciality of 𝐇g\mathbf{H}^{g}-minimizer in the next section.

Let g:>0g^{\prime}:{\mathbb{R}}\to{\mathbb{R}}_{>0} be the first order derivative of gg, and Nm=dimRmN_{m}=\dim R_{m}.

Definition 3.10.

Let 0,{\mathcal{F}}_{0},{\mathcal{F}} be linearly bounded filtrations on RR, and μ0=μ(0)\mu_{0}=\mu({\mathcal{F}}_{0}), we define

Nmg,0\displaystyle N^{g^{\prime},{\mathcal{F}}_{0}}_{m} :=\displaystyle:= i=1Nmg(μ0ord0(si)m),\displaystyle\sum_{i=1}^{N_{m}}g^{\prime}\Big{(}\mu_{0}-\frac{{\rm ord}_{{\mathcal{F}}_{0}}(s_{i})}{m}\Big{)},
Smg,0()=Smg,0(L;)\displaystyle S^{g^{\prime},{\mathcal{F}}_{0}}_{m}({\mathcal{F}})\,\,\,=\,\,\,S^{g^{\prime},{\mathcal{F}}_{0}}_{m}(L;{\mathcal{F}}) :=\displaystyle:= 1Nmg,0i=1Nmg(μ0ord0(si)m)ord(si)m,\displaystyle\frac{1}{N^{g^{\prime},{\mathcal{F}}_{0}}_{m}}\sum_{i=1}^{N_{m}}g^{\prime}\Big{(}\mu_{0}-\frac{{\rm ord}_{{\mathcal{F}}_{0}}(s_{i})}{m}\Big{)}\cdot\frac{{\rm ord}_{\mathcal{F}}(s_{i})}{m},

where {si}\{s_{i}\} is a basis of RmR_{m} which is compatible with both 0{\mathcal{F}}_{0} and {\mathcal{F}}. It’s clear that Smg,0(L;)S^{g^{\prime},{\mathcal{F}}_{0}}_{m}(L;{\mathcal{F}}) does not depend on the choice of {si}\{s_{i}\}. Let

Sg,0()=Sg,0(L;):=limmSmg,0(L;)=2g(μ0x)yDH0,(dxdy)g(μ0x)DH0(dx),\displaystyle S^{g^{\prime},{\mathcal{F}}_{0}}({\mathcal{F}})\,\,\,=\,\,\,S^{g^{\prime},{\mathcal{F}}_{0}}(L;{\mathcal{F}})\,\,\,:=\,\,\,\mathop{{\rm lim}}_{m\to\infty}S^{g^{\prime},{\mathcal{F}}_{0}}_{m}(L;{\mathcal{F}})\,\,\,=\,\,\,\frac{\int_{{\mathbb{R}}^{2}}g^{\prime}(\mu_{0}-x)y\cdot{\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}}({\rm d}x{\rm d}y)}{\int_{{\mathbb{R}}}g^{\prime}(\mu_{0}-x)\cdot{\rm DH}_{{\mathcal{F}}_{0}}({\rm d}x)},

Finally let

δmg,0(X,Δ;L):=infvAX,Δ(v)Smg,0(L;v),δg,0(X,Δ;L):=infvAX,Δ(v)Sg,0(L;v),\displaystyle\delta^{g^{\prime},{\mathcal{F}}_{0}}_{m}(X,\Delta;L)\,\,\,:=\,\,\,{\rm inf}_{v}\frac{A_{X,\Delta}(v)}{S^{g^{\prime},{\mathcal{F}}_{0}}_{m}(L;v)},\qquad\delta^{g^{\prime},{\mathcal{F}}_{0}}(X,\Delta;L)\,\,\,:=\,\,\,{\rm inf}_{v}\frac{A_{X,\Delta}(v)}{S^{g^{\prime},{\mathcal{F}}_{0}}(L;v)},

where the infimum runs over all the valuations vv over XX.

We have the following generalization of [BLXZ23, Theorem 5.1].

Lemma 3.11.

Let 0{\mathcal{F}}_{0} be a linearly bounded filtration on R=R(X;L)R=R(X;L) with μ0=μ(0)\mu_{0}=\mu({\mathcal{F}}_{0}) and v0v_{0} be a valuation minimizing lct(X,Δ;I(μ0)){\rm lct}(X,\Delta;I_{\bullet}^{(\mu_{0})}). By shifting 0{\mathcal{F}}_{0}, we may assume that μ0=AX,Δ(v0)\mu_{0}=A_{X,\Delta}(v_{0}).

Then 0{\mathcal{F}}_{0} minimizes 𝐇g\mathbf{H}^{g} if and only if δg,0(X,Δ;L)=AX,Δ(v0)Sg,0(L;v0)=1\delta^{g^{\prime},{\mathcal{F}}_{0}}(X,\Delta;L)=\frac{A_{X,\Delta}(v_{0})}{S^{g^{\prime},{\mathcal{F}}_{0}}(L;v_{0})}=1 and 𝐇g(0)=β~g(v0)\mathbf{H}^{g}({\mathcal{F}}_{0})=\tilde{\beta}^{g}(v_{0}).

Proof.

The proof follows from [BLXZ23, Theorem 5.1]. We first prove the “if” part. By Theorem 3.8, it suffices to show β~g(v)𝐇g(0)\tilde{\beta}^{g}(v)\geq\mathbf{H}^{g}({\mathcal{F}}_{0}) for any valuation vv over XX.

By the proof of Theorem 3.8, we know that 0v0{\mathcal{F}}_{0}\subseteq{\mathcal{F}}_{v_{0}}, hence G0Gv0G_{{\mathcal{F}}_{0}}\leq G_{{\mathcal{F}}_{v_{0}}}. The assumptions μ0=AX,Δ(v0)\mu_{0}=A_{X,\Delta}(v_{0}) and 𝐇g(0)=β~g(v0)\mathbf{H}^{g}({\mathcal{F}}_{0})=\tilde{\beta}^{g}(v_{0}) imply that G0=Gv0G_{{\mathcal{F}}_{0}}=G_{{\mathcal{F}}_{v_{0}}} almost everywhere on 𝐎\mathbf{O}. Hence

(10) Sg,0(0)=Sg,0(v0).\displaystyle S^{g^{\prime},{\mathcal{F}}_{0}}({\mathcal{F}}_{0})=S^{g^{\prime},{\mathcal{F}}_{0}}(v_{0}).

Let t{\mathcal{F}}_{t} be the geodesic connecting 0{\mathcal{F}}_{0} and 1:=v{\mathcal{F}}_{1}:={\mathcal{F}}_{v}. We define the following analog of 𝐇g(t)\mathbf{H}^{g}({\mathcal{F}}_{t}),

f(t)\displaystyle f(t) :=\displaystyle:= log(2g((1t)(μ0x)+t(AX,Δ(v)y))DH0,1(dxdy)).\displaystyle{\rm log}\Big{(}\int_{{\mathbb{R}}^{2}}g((1-t)(\mu_{0}-x)+t(A_{X,\Delta}(v)-y)){\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}}({\rm d}x{\rm d}y)\Big{)}.

Then similar argument of Theorem 3.3 shows that ff is convex. We have

f(0)\displaystyle f^{\prime}(0) =\displaystyle= ef(0)2((AX,Δ(v)y)(μ0x))g(μ0x)DH0,1(dxdy),\displaystyle e^{-f(0)}\cdot\int_{{\mathbb{R}}^{2}}\big{(}(A_{X,\Delta}(v)-y)-(\mu_{0}-x)\big{)}g^{\prime}(\mu_{0}-x){\rm DH}_{{\mathcal{F}}_{0},{\mathcal{F}}_{1}}({\rm d}x{\rm d}y),
=\displaystyle= ef(0)𝐯g,0((AX,Δ(v)Sg,0(v))(μ0Sg,0(0))),\displaystyle e^{-f(0)}\mathbf{v}^{g^{\prime},{\mathcal{F}}_{0}}\cdot\Big{(}(A_{X,\Delta}(v)-S^{g^{\prime},{\mathcal{F}}_{0}}(v))-(\mu_{0}-S^{g^{\prime},{\mathcal{F}}_{0}}({\mathcal{F}}_{0}))\Big{)},
=\displaystyle= ef(0)𝐯g,0(AX,Δ(v)Sg,0(v))   0,\displaystyle e^{-f(0)}\mathbf{v}^{g^{\prime},{\mathcal{F}}_{0}}\cdot(A_{X,\Delta}(v)-S^{g^{\prime},{\mathcal{F}}_{0}}(v))\,\,\,\geq\,\,\,0,

where 𝐯g,0=g(μ0x)DH0(dx)\mathbf{v}^{g^{\prime},{\mathcal{F}}_{0}}=\int_{{\mathbb{R}}}g^{\prime}(\mu_{0}-x){\rm DH}_{{\mathcal{F}}_{0}}({\rm d}x) and the third equality follows from (10). Hence

𝐇g(0)=f(0)f(1)=β~g(v).\displaystyle\mathbf{H}^{g}({\mathcal{F}}_{0})=f(0)\leq f(1)=\tilde{\beta}^{g}(v).

Next, we prove the “only if” part. By Theorem 3.8, we know that 𝐇g(0)β~g(v0)𝐇g(v0)\mathbf{H}^{g}({\mathcal{F}}_{0})\geq\tilde{\beta}^{g}(v_{0})\geq\mathbf{H}^{g}({\mathcal{F}}_{v_{0}}). Hence both the equalities hold since 0{\mathcal{F}}_{0} minimizes 𝐇g\mathbf{H}^{g}, and we also have (10).

For any valuation vv over XX, let t{\mathcal{F}}_{t} and ff be the same as above. Since μ(v)AX,Δ(v)\mu({\mathcal{F}}_{v})\leq A_{X,\Delta}(v), we have

μ(t)(1t)μ(0)+tμ(1)(1t)μ0+tAX,Δ(v).\displaystyle\mu({\mathcal{F}}_{t})\leq(1-t)\mu({\mathcal{F}}_{0})+t\mu({\mathcal{F}}_{1})\leq(1-t)\mu_{0}+tA_{X,\Delta}(v).

Hence f(0)=𝐇g(0)𝐇g(t)f(t)f(0)=\mathbf{H}^{g}({\mathcal{F}}_{0})\leq\mathbf{H}^{g}({\mathcal{F}}_{t})\leq f(t) for any 0t10\leq t\leq 1. We conclude that f(0)0f^{\prime}(0)\geq 0 since ff is convex, that is,

AX,Δ(v)Sg,0(v)μ0Sg,0(0)=AX,Δ(v0)Sg,0(v0),\displaystyle A_{X,\Delta}(v)-S^{g^{\prime},{\mathcal{F}}_{0}}(v)\geq\mu_{0}-S^{g^{\prime},{\mathcal{F}}_{0}}({\mathcal{F}}_{0})=A_{X,\Delta}(v_{0})-S^{g^{\prime},{\mathcal{F}}_{0}}(v_{0}),

by the assumption and (10). If v=λv0v=\lambda v_{0}, we see that

(λ1)(AX,Δ(v0)Sg,0(v0))0,(\lambda-1)(A_{X,\Delta}(v_{0})-S^{g^{\prime},{\mathcal{F}}_{0}}(v_{0}))\geq 0,

for any λ>0\lambda>0. Hence AX,Δ(v0)Sg,0(v0)=0A_{X,\Delta}(v_{0})-S^{g^{\prime},{\mathcal{F}}_{0}}(v_{0})=0. The proof of Lemma 3.11 is finished. ∎

4. Existence of 𝐇g\mathbf{H}^{g}-minimizers and finite generation

In this section, let (X,Δ)(X,\Delta) be a log Fano pair and L=(KX+Δ)L=-(K_{X}+\Delta).

4.1. Approximation by test configurations

Recall that a normal test configuration (TC) of (X,Δ)(X,\Delta) is a collection (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta) consisting of

  • A normal variety 𝒳{\mathcal{X}} with a 𝔾m{\mathbb{G}}_{m}-action generated by ηHom(𝔾m,Aut(𝒳))\eta\in{\rm Hom}({\mathbb{G}}_{m},{\rm Aut}({\mathcal{X}}));

  • A 𝔾m{\mathbb{G}}_{m}-equivariant morphism π:𝒳𝔸1\pi:{\mathcal{X}}\to{\mathbb{A}}^{1}, where the 𝔾m{\mathbb{G}}_{m}-action on 𝔸1{\mathbb{A}}^{1} is standard;

  • A 𝔾m{\mathbb{G}}_{m}-equivariant π\pi-semiample {\mathbb{Q}}-Cartier divisor {\mathcal{L}} on 𝒳{\mathcal{X}};

  • A 𝔾m{\mathbb{G}}_{m}-equivariant trivialization over the punctured plane iη:(𝒳,)|π1(𝔾m)(X,L)×𝔾mi_{\eta}:({\mathcal{X}},{\mathcal{L}})|_{\pi^{-1}({\mathbb{G}}_{m})}\cong(X,L)\times{\mathbb{G}}_{m}, which is compatible with π\pi and pr1{\rm pr}_{1}. And Δ𝒳\Delta_{\mathcal{X}} is the closure of iη1(Δ×𝔾m)i_{\eta}^{-1}(\Delta\times{\mathbb{G}}_{m}) in 𝒳{\mathcal{X}}.

The TC (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta) is called (weakly) special if (𝒳,𝒳0+Δ𝒳)({\mathcal{X}},{\mathcal{X}}_{0}+\Delta_{\mathcal{X}}) is (lc) plt, and =K𝒳/𝔸1Δ𝒳+c𝒳0{\mathcal{L}}=-K_{{\mathcal{X}}/{\mathbb{A}}^{1}}-\Delta_{\mathcal{X}}+c{\mathcal{X}}_{0} for some cc\in{\mathbb{Q}}. Note by adjunction that (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta) being special is equivalent that the central fiber (𝒳0,Δ𝒳,0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}},0}) is a log Fano pair.

For any test configuration (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta) of (X,Δ)(X,\Delta), we have the following {\mathbb{Z}}-filtration =(X,Δ𝒳;,η){\mathcal{F}}={\mathcal{F}}_{(X,\Delta_{\mathcal{X}};{\mathcal{L}},\eta)} on the anti-canonical ring R=R(X,Δ)R=R(X,\Delta),

(11) λRm\displaystyle{\mathcal{F}}^{\lambda}R_{m} :=\displaystyle:= {fH0(X,mL):tλf¯H0(𝒳,m)},\displaystyle\{f\in H^{0}(X,mL):t^{-\lambda}\bar{f}\in H^{0}({\mathcal{X}},m{\mathcal{L}})\},

where tt is the parameter on 𝔸1{\mathbb{A}}^{1}, and f¯\bar{f} is the 𝔾m{\mathbb{G}}_{m}-extension of ff on 𝒳𝒳0{\mathcal{X}}\setminus{\mathcal{X}}_{0} and viewed as a rational section of mm{\mathcal{L}}. We simply denote 𝐅((X,Δ𝒳;,η))\mathbf{F}({\mathcal{F}}_{(X,\Delta_{\mathcal{X}};{\mathcal{L}},\eta)}) by 𝐅(X,Δ𝒳;,η)\mathbf{F}(X,\Delta_{\mathcal{X}};{\mathcal{L}},\eta) for 𝐅=𝐋\mathbf{F}=\mathbf{L} or 𝐇g\mathbf{H}^{g}. We have

(12) 𝐋(X,Δ𝒳;,η):=lct(X,Δ𝒳+𝒟;𝒳0)1,\displaystyle\mathbf{L}(X,\Delta_{\mathcal{X}};{\mathcal{L}},\eta):={\rm lct}(X,\Delta_{\mathcal{X}}+{\mathcal{D}};{\mathcal{X}}_{0})-1,

where 𝒟(K𝒳+Δ𝒳){\mathcal{D}}\sim_{\mathbb{Q}}-(K_{\mathcal{X}}+\Delta_{\mathcal{X}})-{\mathcal{L}} is supported on 𝒳0{\mathcal{X}}_{0}, see for example [Xu24, Theorem 3.66].

Conversely, for any linearly bounded filtration {\mathcal{F}} on RR, one may construct a sequence of TC (𝒳m;m)({\mathcal{X}}_{m};{\mathcal{L}}_{m}) approximating it, see for example [Xu24, Definition 3.65]. We shortly recall the construction. Recall that m(e+)𝒪X[s]{\mathcal{I}}_{m}(e_{+})\subseteq{\mathcal{O}}_{X}[s] is the graded ideal sequence associated to {\mathcal{F}} in Definition 2.10. Let πm:𝒳mX𝔸1\pi_{m}:{\mathcal{X}}_{m}\to X_{{\mathbb{A}}^{1}} be the normalized blowup along m(e+){\mathcal{I}}_{m}(e_{+}) with exceptional divisor m{\mathcal{E}}_{m}, and Δ𝒳m=πm,1Δ𝔸1\Delta_{{\mathcal{X}}_{m}}=\pi_{m,*}^{-1}\Delta_{{\mathbb{A}}^{1}}. Then m=πmL𝔸11mm{\mathcal{L}}_{m}=\pi_{m}^{*}L_{{\mathbb{A}}^{1}}-\frac{1}{m}{\mathcal{E}}_{m} is semiample by [Xu24, Lemma 3.64]. Hence (𝒳m,Δ𝒳m;m,ηm)({\mathcal{X}}_{m},\Delta_{{\mathcal{X}}_{m}};{\mathcal{L}}_{m},\eta_{m}) is a normal TC of (X,Δ)(X,\Delta) and is called the mm-th approximating TC of {\mathcal{F}}. We remark that the definition depends on the choice of e+e_{+}.

Lemma 4.1.

[HL24, Proposition 2.16 and 2.28]

(13) 𝐋()\displaystyle\mathbf{L}({\mathcal{F}}) \displaystyle\geq limm𝐋(𝒳m,Δ𝒳m;m,ηm),\displaystyle\mathop{{\rm lim}}_{m\to\infty}\mathbf{L}({\mathcal{X}}_{m},\Delta_{{\mathcal{X}}_{m}};{\mathcal{L}}_{m},\eta_{m}),
(14) DH\displaystyle{\rm DH}_{\mathcal{F}} =\displaystyle= limmDH(𝒳m,Δ𝒳m;m,ηm).\displaystyle\mathop{{\rm lim}}_{m\to\infty}{\rm DH}_{({\mathcal{X}}_{m},\Delta_{{\mathcal{X}}_{m}};{\mathcal{L}}_{m},\eta_{m})}.

We remark that (13) only holds for Fano varieties, but (14) holds for polarized varieties.

Corollary 4.2.
(15) 𝐇g()limm𝐇g(𝒳m,Δ𝒳m;m,ηm),\displaystyle\mathbf{H}^{g}({\mathcal{F}})\geq\mathop{{\rm lim}}_{m\to\infty}\mathbf{H}^{g}({\mathcal{X}}_{m},\Delta_{{\mathcal{X}}_{m}};{\mathcal{L}}_{m},\eta_{m}),
Theorem 4.3.

For any log Fano pair (X,Δ)(X,\Delta), we have

(16) hg(X,Δ)=inf(𝒳,Δ𝒳;,η)𝐇g(𝒳,Δ𝒳;,η),\displaystyle h^{g}(X,\Delta)=\mathop{{\rm inf}}_{({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta)}\mathbf{H}^{g}({\mathcal{X}},\Delta_{{\mathcal{X}}};{\mathcal{L}},\eta),

where the infimum runs over all the normal test configurations (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{{\mathcal{X}}};{\mathcal{L}},\eta) of (X,Δ)(X,\Delta).

For any TC (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta) of (X,Δ)(X,\Delta), we denote by 𝒟=+(K𝒳+Δ𝒳)=ieiEi-{\mathcal{D}}={\mathcal{L}}+(K_{\mathcal{X}}+\Delta_{\mathcal{X}})=\sum_{i}e_{i}E_{i} and 𝒳0=ibiEi{\mathcal{X}}_{0}=\sum_{i}b_{i}E_{i}, where Ei𝒳E_{i}\subseteq{\mathcal{X}} are irreducible components of 𝒳0{\mathcal{X}}_{0}. Let vi=ordEi|𝒳1v_{i}={\rm ord}_{E_{i}}|_{{\mathcal{X}}_{1}} be the corresponding divisorial valuations over X=𝒳1X={\mathcal{X}}_{1}. We have the following description of the filtration =(𝒳,Δ𝒳;,η){\mathcal{F}}={\mathcal{F}}_{({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta)} induced by (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta).

Lemma 4.4.
(𝒳,Δ𝒳;,η)=ibi1(vi(ei+1biAX,Δ(vi))).\displaystyle{\mathcal{F}}_{({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta)}\,\,\,=\,\,\,\bigcap_{i}b_{i}^{-1}\Big{(}{\mathcal{F}}_{v_{i}}(e_{i}+1-b_{i}-A_{X,\Delta}(v_{i}))\Big{)}.
Proof.

Let 𝒴{\mathcal{Y}} be the graph of the birational map 𝒳X𝔸1{\mathcal{X}}\dashrightarrow X_{{\mathbb{A}}^{1}}, and π:𝒴𝒳\pi:{\mathcal{Y}}\to{\mathcal{X}}, τ:𝒴X𝔸1\tau:{\mathcal{Y}}\to X_{{\mathbb{A}}^{1}} be the corresponding morphisms.

𝒴\textstyle{{\mathcal{Y}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}π\scriptstyle{\pi}𝒳\textstyle{\mathcal{X}}X𝔸1.\textstyle{X_{{\mathbb{A}}^{1}}.}

By [BHJ17, Lemma 5.17] (whose notation is vEi=bi1viv_{E_{i}}=b_{i}^{-1}v_{i}), for any λ\lambda and mm, we have

(𝒳,Δ𝒳;,η)λRm=ivibiλmordEi(D)Rm,\displaystyle{\mathcal{F}}_{({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta)}^{\lambda}R_{m}\,\,\,=\,\,\,\bigcap_{i}{\mathcal{F}}_{v_{i}}^{b_{i}\lambda-m\cdot{\rm ord}_{E_{i}}(D)}R_{m},

where D=πτL𝔸1D=\pi^{*}{\mathcal{L}}-\tau^{*}L_{{\mathbb{A}}^{1}} is supported on 𝒴0{\mathcal{Y}}_{0}. It suffices to prove ordEi(D)=ei+1biAX,Δ(vi){\rm ord}_{E_{i}}(D)=e_{i}+1-b_{i}-A_{X,\Delta}(v_{i}). Since

D=π(+K𝒳+Δ𝒳)+(π(K𝒳+Δ𝒳)τL𝔸1)=ieiEi+B,\displaystyle D=\pi^{*}({\mathcal{L}}+K_{\mathcal{X}}+\Delta_{\mathcal{X}})+(-\pi^{*}(K_{\mathcal{X}}+\Delta_{\mathcal{X}})-\tau^{*}L_{{\mathbb{A}}^{1}})=\sum_{i}e_{i}E_{i}+B,

where B=π(K𝒳+Δ𝒳)+τ(KX𝔸1+Δ𝔸1)B=-\pi^{*}(K_{\mathcal{X}}+\Delta_{\mathcal{X}})+\tau^{*}(K_{X_{{\mathbb{A}}^{1}}}+\Delta_{{\mathbb{A}}^{1}}) is supported on 𝒴0{\mathcal{Y}}_{0}. By Lemma 4.5, we have

ordEi(B)=A𝒳,Δ𝒳(Ei)AX𝔸1,Δ𝔸1(Ei)=1(bi+AX𝔸1,Δ𝔸1+X0(Ei))=1biAX,Δ(vi),\displaystyle{\rm ord}_{E_{i}}(B)=A_{{\mathcal{X}},\Delta_{\mathcal{X}}}(E_{i})-A_{X_{{\mathbb{A}}^{1}},\Delta_{{\mathbb{A}}^{1}}}(E_{i})=1-(b_{i}+A_{X_{{\mathbb{A}}^{1}},\Delta_{{\mathbb{A}}^{1}}+X_{0}}(E_{i}))=1-b_{i}-A_{X,\Delta}(v_{i}),

where the second and third equalities follows from ordEi(X0)=bi{\rm ord}_{E_{i}}(X_{0})=b_{i} and adjunction respectively. ∎

Lemma 4.5.

Let π:Z(X,ΔX)\pi:Z\to(X,\Delta_{X}) and τ:Z(Y,ΔY)\tau:Z\to(Y,\Delta_{Y}) be birational morphisms of {\mathbb{Q}}-Gorenstein families over a curve CC, which are isomorphisms away from 0C0\in C, and Supp(ΔX),Supp(ΔX){\rm Supp}(\Delta_{X}),{\rm Supp}(\Delta_{X}) do not contain any fiber of the families. Then for any irreducible component EE of Z0ZZ_{0}\subseteq Z, we have

ordE(π(KX+ΔX)+τ(KY+ΔY))=AX,ΔX(E)AY,ΔY(E).{\rm ord}_{E}(-\pi^{*}(K_{X}+\Delta_{X})+\tau^{*}(K_{Y}+\Delta_{Y}))=A_{X,\Delta_{X}}(E)-A_{Y,\Delta_{Y}}(E).
Proof.

Note that

π(KX+ΔX)=KZ+π1ΔX+(1AX,ΔX(E))E+F,\displaystyle\pi^{*}(K_{X}+\Delta_{X})=K_{Z}+\pi^{-1}_{*}\Delta_{X}+(1-A_{X,\Delta_{X}}(E))E+F,
τ(KY+ΔY)=KZ+τ1ΔY+(1AY,ΔY(E))E+F,\displaystyle\tau^{*}(K_{Y}+\Delta_{Y})=K_{Z}+\tau^{-1}_{*}\Delta_{Y}+(1-A_{Y,\Delta_{Y}}(E))E+F^{\prime},

where F,FZ0F,F^{\prime}\subseteq Z_{0} are {\mathbb{Q}}-divisors that do not contain EE as a component. By assumption, we have π1ΔX=τ1ΔY\pi^{-1}_{*}\Delta_{X}=\tau^{-1}_{*}\Delta_{Y}. Hence

B=π(KX+ΔX)+τ(KY+ΔY)=(AX,ΔX(E)AY,ΔY(E))E+FF,\displaystyle B=-\pi^{*}(K_{X}+\Delta_{X})+\tau^{*}(K_{Y}+\Delta_{Y})=(A_{X,\Delta_{X}}(E)-A_{Y,\Delta_{Y}}(E))E+F^{\prime}-F,

is a {\mathbb{Q}}-divisor supported in Z0Z_{0}. We conclude that ordE(B)=AX,ΔX(E)AY,ΔY(E){\rm ord}_{E}(B)=A_{X,\Delta_{X}}(E)-A_{Y,\Delta_{Y}}(E). ∎

4.2. Approximation by special test configurations

The following theorem is an analog of [HL24, Theorem 3.4], which depends on Li-Xu’s proof of Tian’s conjecture [LX14]. Different from Han-Li’s proof which relies on an analytic description of the 𝐇\mathbf{H}-invariants, we give a pure algebraic proof by considering the filtrations induced by test configurations.

Theorem 4.6.

For any normal TC (𝒳,Δ𝒳;,η)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},\eta) of (X,Δ)(X,\Delta) and a>0a\in{\mathbb{R}}_{>0}, there exists a special TC (𝒳s,Δ𝒳s;s,ηs)({\mathcal{X}}^{s},\Delta_{{\mathcal{X}}^{s}};{\mathcal{L}}^{s},\eta^{s}) and as>0a^{s}\in{\mathbb{R}}_{>0} such that

𝐇g(𝒳s,Δ𝒳s;s,asηs)𝐇g(𝒳,Δ𝒳;,aη).\displaystyle\mathbf{H}^{g}({\mathcal{X}}^{s},\Delta_{{\mathcal{X}}^{s}};{\mathcal{L}}^{s},a^{s}\eta^{s})\leq\mathbf{H}^{g}({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},a\eta).
Proof.

We follow the proof of [HL24, Theorem 3.4].

Step 1. (Semistable reduction 𝒳(d1){\mathcal{X}}^{(d_{1})}). By [LX14, Lemma 5], there exists a semistable reduction 𝒳(d1)𝒳{\mathcal{X}}^{(d_{1})}\to{\mathcal{X}} over 𝔸1𝔸1,zzd1{\mathbb{A}}^{1}\to{\mathbb{A}}^{1},z\mapsto z^{d_{1}}, such that 𝒳0(d1){\mathcal{X}}^{(d_{1})}_{0} is reduced. Since the filtration

(𝒳(d1),Δ𝒳(d1);(d1),ad1η(d1))=(𝒳,Δ𝒳;,aη)\displaystyle{\mathcal{F}}_{({\mathcal{X}}^{(d_{1})},\Delta_{{\mathcal{X}}^{(d_{1})}};{\mathcal{L}}^{(d_{1})},\frac{a}{d_{1}}\eta^{(d_{1})})}={\mathcal{F}}_{({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},a\eta)}

is not changed, the 𝐇g\mathbf{H}^{g}-invariants are the same.

Step 2. (Lc modification 𝒳lc{\mathcal{X}}^{\rm lc}). By [LX14, Theorem 2], which is proved by running a 𝔾m{\mathbb{G}}_{m}-equivariant MMP on a log resolution of (𝒳(d1),Δ𝒳(d1)+𝒳0(d1))({\mathcal{X}}^{(d_{1})},\Delta_{{\mathcal{X}}^{(d_{1})}}+{\mathcal{X}}^{(d_{1})}_{0}), there is a 𝔾m{\mathbb{G}}_{m}-equivariant lc modification πlc:𝒳lc𝒳(d1)\pi^{\rm lc}:{\mathcal{X}}^{\rm lc}\to{\mathcal{X}}^{(d_{1})} such that (𝒳lc,Δ𝒳lc+𝒳0lc)({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}}+{\mathcal{X}}^{\rm lc}_{0}) is lc and K𝒳lc+Δ𝒳lcK_{{\mathcal{X}}^{\rm lc}}+\Delta_{{\mathcal{X}}^{\rm lc}} is ample over 𝒳(d1){\mathcal{X}}^{(d_{1})}.

Write E=(d1)+K𝒳lc+Δ𝒳lc=i=1leiEiE={\mathcal{L}}^{(d_{1})}+K_{{\mathcal{X}}^{\rm lc}}+\Delta_{{\mathcal{X}}^{\rm lc}}=\sum_{i=1}^{l}e_{i}E_{i} with e1e2ele_{1}\leq e_{2}\leq\cdots\leq e_{l}, where EiE_{i} are irreducible components of 𝒳0lc{\mathcal{X}}^{\rm lc}_{0}. Let λlc=(d1)+λE=(K𝒳lc+Δ𝒳lc)+(1+λ)E{\mathcal{L}}^{\rm lc}_{\lambda}={\mathcal{L}}^{(d_{1})}+\lambda E=-(K_{{\mathcal{X}}^{\rm lc}}+\Delta_{{\mathcal{X}}^{\rm lc}})+(1+\lambda)E and λ:=(𝒳lc,Δ𝒳lc;λlc,ηlc){\mathcal{F}}_{\lambda}:={\mathcal{F}}_{({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc}_{\lambda},\eta^{\rm lc})}. By Lemma 4.4, we have

ad1λ\displaystyle\frac{a}{d_{1}}{\mathcal{F}}_{\lambda} =\displaystyle= (𝒳lc,Δ𝒳lc;λlc,ad1ηlc)=ad1i(vi((1+λ)eiAX,Δ(vi))),\displaystyle{\mathcal{F}}_{({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc}_{\lambda},\frac{a}{d_{1}}\eta^{\rm lc})}\,\,\,=\,\,\,\frac{a}{d_{1}}\bigcap_{i}\Big{(}{\mathcal{F}}_{v_{i}}((1+\lambda)e_{i}-A_{X,\Delta}(v_{i}))\Big{)},
Gλ(y)\displaystyle G_{{\mathcal{F}}_{\lambda}}(y) =\displaystyle= mini(Gvi(y)+(1+λ)eiAX,Δ(vi)),y𝐎.\displaystyle{\rm min}_{i}\,\Big{(}G_{v_{i}}(y)+(1+\lambda)e_{i}-A_{X,\Delta}(v_{i})\Big{)},\,\,\,\forall y\in\mathbf{O}.

On the other hand, by [HL24, Example 2.31] we have

𝐋(λ)\displaystyle\mathbf{L}({\mathcal{F}}_{\lambda}) =\displaystyle= 𝐋(𝒳lc,Δ𝒳lc;λlc,ηlc)=(1+λ)e1.\displaystyle\mathbf{L}({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc}_{\lambda},\eta^{\rm lc})\,\,\,=\,\,\,(1+\lambda)e_{1}.

If λ=0\lambda=0, we have

ad10=(𝒳lc,Δ𝒳lc;0lc,ad1ηlc)=(𝒳(d1),Δ𝒳(d1);(d1),ad1η(d1)).\displaystyle\frac{a}{d_{1}}{\mathcal{F}}_{0}\,\,\,=\,\,\,{\mathcal{F}}_{({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc}_{0},\frac{a}{d_{1}}\eta^{\rm lc})}\,\,\,=\,\,\,{\mathcal{F}}_{({\mathcal{X}}^{(d_{1})},\Delta_{{\mathcal{X}}^{(d_{1})}};{\mathcal{L}}^{(d_{1})},\frac{a}{d_{1}}\eta^{(d_{1})})}.

We denote by i(y)i(y) the minimizer of the above minimum for any y𝐎y\in\mathbf{O}. Then

𝐇g(ad1λ)\displaystyle\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}}{\mathcal{F}}_{\lambda}\Big{)} =\displaystyle= log(𝐎g(ad1(𝐋(λ)Gλ(y)))dy)\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\Big{(}\frac{a}{d_{1}}\big{(}\mathbf{L}({\mathcal{F}}_{\lambda})-G_{{\mathcal{F}}_{\lambda}}(y)\big{)}\Big{)}{\rm d}y\Big{)}
=\displaystyle= log(𝐎g(ad1maxi((1+λ)(e1ei)+AX,Δ(vi)Gvi(y)))dy),\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\Big{(}\frac{a}{d_{1}}{\rm max}_{i}\big{(}(1+\lambda)(e_{1}-e_{i})+A_{X,\Delta}(v_{i})-G_{v_{i}}(y)\big{)}\Big{)}{\rm d}y\Big{)},
ddλ𝐇g(ad1λ)\displaystyle\frac{{\rm d}}{{\rm d}\lambda}\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}}{\mathcal{F}}_{\lambda}\Big{)} =\displaystyle= ad1𝐎(e1ei(y))gf(λ,y)dy𝐎gf(λ,y)dy0,\displaystyle\frac{a}{d_{1}}\frac{\int_{\mathbf{O}}(e_{1}-e_{i(y)})\cdot g^{\prime}\circ f(\lambda,y){\rm d}y}{\int_{\mathbf{O}}g\circ f(\lambda,y){\rm d}y}\leq 0,

where f(λ,y)=ad1(𝐋(λ)Gλ(y))f(\lambda,y)=\frac{a}{d_{1}}\big{(}\mathbf{L}({\mathcal{F}}_{\lambda})-G_{{\mathcal{F}}_{\lambda}}(y)\big{)}. Recall that K𝒳lc+Δ𝒳lcK_{{\mathcal{X}}^{\rm lc}}+\Delta_{{\mathcal{X}}^{\rm lc}} is ample over 𝒳(d1){\mathcal{X}}^{(d_{1})}, so is E=(d1)+K𝒳lc+Δ𝒳lcE={\mathcal{L}}^{(d_{1})}+K_{{\mathcal{X}}^{\rm lc}}+\Delta_{{\mathcal{X}}^{\rm lc}}. Hence λlc{\mathcal{L}}^{\rm lc}_{\lambda} is ample over 𝔸1{\mathbb{A}}^{1} for 0<λ10<\lambda\ll 1. Fix a very small λ>0\lambda>0 and let lc=λlc{\mathcal{L}}^{\rm lc}={\mathcal{L}}^{\rm lc}_{\lambda}. We get an ample TC (𝒳lc,Δ𝒳lc;lc,ad1ηlc)({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc},\frac{a}{d_{1}}\eta^{\rm lc}) such that

𝐇g(𝒳lc,Δ𝒳lc;lc,ad1ηlc)𝐇g(𝒳(d1),Δ𝒳(d1);(d1),ad1η(d1)).\displaystyle\mathbf{H}^{g}({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc},\frac{a}{d_{1}}\eta^{\rm lc})\leq\mathbf{H}^{g}({\mathcal{X}}^{(d_{1})},\Delta_{{\mathcal{X}}^{(d_{1})}};{\mathcal{L}}^{(d_{1})},\frac{a}{d_{1}}\eta^{(d_{1})}).

Step 3. (Ample configuration 𝒳ac{\mathcal{X}}^{\rm ac}). Choose q1q\gg 1 such that lc=lc(1+q)1(lc+K𝒳lc+Δ𝒳lc){\mathcal{H}}^{\rm lc}={\mathcal{L}}^{\rm lc}-(1+q)^{-1}({\mathcal{L}}^{\rm lc}+K_{{\mathcal{X}}^{\rm lc}}+\Delta_{{\mathcal{X}}^{\rm lc}}) is ample over 𝔸1{\mathbb{A}}^{1}. Set 𝒳0=𝒳lc;0=lc,0=lc{\mathcal{X}}^{0}={\mathcal{X}}^{\rm lc};{\mathcal{L}}^{0}={\mathcal{L}}^{\rm lc},{\mathcal{H}}^{0}={\mathcal{H}}^{\rm lc} and λ0=1+q\lambda_{0}=1+q. Running a 𝔾m{\mathbb{G}}_{m}-equivariant (K𝒳0+Δ𝒳0)(K_{{\mathcal{X}}^{0}}+\Delta_{{\mathcal{X}}^{0}})-MMP with scaling 0{\mathcal{H}}^{0}, we get a sequence of birational maps

𝒳0𝒳1𝒳k.\displaystyle{\mathcal{X}}^{0}\dashrightarrow{\mathcal{X}}^{1}\dashrightarrow\cdots\dashrightarrow{\mathcal{X}}^{k}.

Let j{\mathcal{H}}^{j} be the pushforward of 0{\mathcal{H}}^{0} to 𝒳j{\mathcal{X}}^{j}, and λj+1=inf{λ:KXj+λj is nef over 𝔸1}\lambda_{j+1}={\rm inf}\{\lambda:K_{X^{j}}+\lambda{\mathcal{H}}^{j}\text{ is nef over }{\mathbb{A}}^{1}\} be the nef threshold. Then 𝒳j𝒳j+1{\mathcal{X}}^{j}\dashrightarrow{\mathcal{X}}^{j+1} is the contraction of a (K𝒳j+Δ𝒳j+λj+1j)(K_{{\mathcal{X}}^{j}}+\Delta_{{\mathcal{X}}^{j}}+\lambda_{j+1}{\mathcal{H}}^{j})-trivial extremal ray. We have

1+q=λ0λ1λk>λk+1=1,\displaystyle 1+q=\lambda_{0}\geq\lambda_{1}\geq\cdots\geq\lambda_{k}>\lambda_{k+1}=1,

where the last equality follows from the fact that the pseudo-effective threshold of K𝒳0+Δ𝒳0K_{{\mathcal{X}}^{0}}+\Delta_{{\mathcal{X}}^{0}} with respect to 0{\mathcal{H}}^{0} is 11. For any λ>1\lambda>1, we denote by

λ=(λ1)1(K𝒳0+Δ𝒳0+λ0),E=K𝒳0+Δ𝒳0+0=ieiEi,\displaystyle{\mathcal{L}}_{\lambda}=(\lambda-1)^{-1}(K_{{\mathcal{X}}^{0}}+\Delta_{{\mathcal{X}}^{0}}+\lambda{\mathcal{H}}^{0}),\quad E=K_{{\mathcal{X}}^{0}}+\Delta_{{\mathcal{X}}^{0}}+{\mathcal{H}}^{0}=\sum_{i}e_{i}E_{i},

with e1e2ele_{1}\leq e_{2}\leq\cdots\leq e_{l}. Then

λ+K𝒳0+Δ𝒳0=λλ1(K𝒳0+Δ𝒳0+0)=λλ1E.\displaystyle{\mathcal{L}}_{\lambda}+K_{{\mathcal{X}}^{0}}+\Delta_{{\mathcal{X}}^{0}}=\frac{\lambda}{\lambda-1}(K_{{\mathcal{X}}^{0}}+\Delta_{{\mathcal{X}}^{0}}+{\mathcal{H}}^{0})=\frac{\lambda}{\lambda-1}E.

Let λj{\mathcal{L}}^{j}_{\lambda} and EjE^{j} be the push-forward of λ{\mathcal{L}}_{\lambda} and EE to 𝒳j{\mathcal{X}}^{j} respectively. And we denote by λj=(𝒳j,Δ𝒳j;λj,ηj)j{\mathcal{F}}^{j}_{\lambda}={\mathcal{F}}^{j}_{({\mathcal{X}}^{j},\Delta_{{\mathcal{X}}^{j}};{\mathcal{L}}^{j}_{\lambda},\eta^{j})}. Then for any λjλλj+1\lambda_{j}\geq\lambda\geq\lambda_{j+1}, we have

𝐇g(ad1λj)\displaystyle\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}}{\mathcal{F}}^{j}_{\lambda}\Big{)} =\displaystyle= log(𝐎g(ad1(𝐋(λ)Gλ(y)))dy)\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\Big{(}\frac{a}{d_{1}}\big{(}\mathbf{L}({\mathcal{F}}_{\lambda})-G_{{\mathcal{F}}_{\lambda}}(y)\big{)}\Big{)}{\rm d}y\Big{)}
=\displaystyle= log(𝐎g(ad1maxi(λλ1(e1ei)+AX,Δ(vi)Gvi(y)))dy),\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\Big{(}\frac{a}{d_{1}}{\rm max}_{i}\big{(}\frac{\lambda}{\lambda-1}(e_{1}-e_{i})+A_{X,\Delta}(v_{i})-G_{v_{i}}(y)\big{)}\Big{)}{\rm d}y\Big{)},
ddλ𝐇g(ad1λj)\displaystyle\frac{{\rm d}}{{\rm d}\lambda}\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}}{\mathcal{F}}^{j}_{\lambda}\Big{)} =\displaystyle= ad1𝐎(λ1)2(ei(y)e1)gfj(λ,y)dy𝐎gfj(λ,y)dy0.\displaystyle\frac{a}{d_{1}}\frac{\int_{\mathbf{O}}(\lambda-1)^{-2}(e_{i(y)}-e_{1})\cdot g^{\prime}\circ f^{j}(\lambda,y){\rm d}y}{\int_{\mathbf{O}}g\circ f^{j}(\lambda,y){\rm d}y}\geq 0.

where fj(λ,y)=ad1(𝐋(λj)Gλj(y))f^{j}(\lambda,y)=\frac{a}{d_{1}}\big{(}\mathbf{L}({\mathcal{F}}^{j}_{\lambda})-G_{{\mathcal{F}}^{j}_{\lambda}}(y)\big{)}. On the other hand, the filtration is not changed under divisorial contractions and flips. Hence for any 0jk0\leq j\leq k we have

𝐇g(ad1λj+1j)=𝐇g(ad1λj+1j+1).\displaystyle\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}}{\mathcal{F}}^{j}_{\lambda_{j+1}}\Big{)}=\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}}{\mathcal{F}}^{j+1}_{\lambda_{j+1}}\Big{)}.

Recall that K𝒳k+Δ𝒳k+kK_{{\mathcal{X}}^{k}}+\Delta_{{\mathcal{X}}^{k}}+{\mathcal{H}}^{k} is nef over 𝔸1{\mathbb{A}}^{1}. So is

K𝒳k+Δ𝒳k+λkk=λkλk1(K𝒳k+Δ𝒳k+k).\displaystyle K_{{\mathcal{X}}^{k}}+\Delta_{{\mathcal{X}}^{k}}+{\mathcal{L}}^{k}_{\lambda_{k}}=\frac{\lambda_{k}}{\lambda_{k}-1}(K_{{\mathcal{X}}^{k}}+\Delta_{{\mathcal{X}}^{k}}+{\mathcal{H}}^{k}).

By negativity lemma, we have K𝒳k+Δ𝒳k+λkk,𝔸10K_{{\mathcal{X}}^{k}}+\Delta_{{\mathcal{X}}^{k}}+{\mathcal{L}}^{k}_{\lambda_{k}}\sim_{{\mathbb{Q}},{\mathbb{A}}^{1}}0. Let 𝒳ac=𝒳k{\mathcal{X}}^{\rm ac}={\mathcal{X}}^{k} and ac=λkk{\mathcal{L}}^{\rm ac}={\mathcal{L}}^{k}_{\lambda_{k}}. Now we get a TC (𝒳ac,Δ𝒳ac,ac,ad1ηac)({\mathcal{X}}^{\rm ac},\Delta_{{\mathcal{X}}^{\rm ac}},{\mathcal{L}}^{\rm ac},\frac{a}{d_{1}}\eta^{\rm ac}) with (K𝒳ac+Δ𝒳ac),𝔸1ac-(K_{{\mathcal{X}}^{\rm ac}}+\Delta_{{\mathcal{X}}^{\rm ac}})\sim_{{\mathbb{Q}},{\mathbb{A}}^{1}}{\mathcal{L}}^{\rm ac} ample over 𝔸1{\mathbb{A}}^{1}, such that

𝐇g(𝒳ac,Δ𝒳ac,ac,ad1ηac)𝐇g(𝒳lc,Δ𝒳lc;lc,ad1ηlc).\displaystyle\mathbf{H}^{g}({\mathcal{X}}^{\rm ac},\Delta_{{\mathcal{X}}^{\rm ac}},{\mathcal{L}}^{\rm ac},\frac{a}{d_{1}}\eta^{\rm ac})\leq\mathbf{H}^{g}({\mathcal{X}}^{\rm lc},\Delta_{{\mathcal{X}}^{\rm lc}};{\mathcal{L}}^{\rm lc},\frac{a}{d_{1}}\eta^{\rm lc}).

Step 4. (Special test configuration 𝒳s{\mathcal{X}}^{\rm s}). By [LX14, Theorem 6], there exists a special TC 𝒳s{\mathcal{X}}^{\rm s} birational to (𝒳ac)(d2)({\mathcal{X}}^{\rm ac})^{(d_{2})} over 𝔸1{\mathbb{A}}^{1} for some d2>0d_{2}>0, such that 𝒳0s{\mathcal{X}}^{s}_{0} is an lc place of ((𝒳ac)(d2),Δ(𝒳ac)(d2)+(𝒳ac)0(d2))(({\mathcal{X}}^{\rm ac})^{(d_{2})},\Delta_{({\mathcal{X}}^{\rm ac})^{(d_{2})}}+({\mathcal{X}}^{\rm ac})^{(d_{2})}_{0}). By [BCHM10, 1.4.3], there exists a 𝔾m{\mathbb{G}}_{m}-equivariant birational morphism π:𝒳(𝒳ac)(d2)\pi^{\prime}:{\mathcal{X}}^{\prime}\to({\mathcal{X}}^{\rm ac})^{(d_{2})} which precisely extracts 𝒳0s{\mathcal{X}}^{\rm s}_{0}. Hence K𝒳+Δ𝒳=π(K(𝒳ac)(d2)+Δ(𝒳ac)(d2))K_{{\mathcal{X}}^{\prime}}+\Delta_{{\mathcal{X}}^{\prime}}=\pi^{\prime*}(K_{({\mathcal{X}}^{\rm ac})^{(d_{2})}}+\Delta_{({\mathcal{X}}^{\rm ac})^{(d_{2})}}) and

(𝒳,Δ𝒳,(K𝒳+Δ𝒳),ad1d2η)=(𝒳ac,Δ𝒳ac,(K𝒳ac+Δ𝒳ac),ad1ηac).\displaystyle{\mathcal{F}}_{({\mathcal{X}}^{\prime},\Delta_{{\mathcal{X}}^{\prime}},-(K_{{\mathcal{X}}^{\prime}}+\Delta_{{\mathcal{X}}^{\prime}}),\frac{a}{d_{1}d_{2}}\eta^{\prime})}={\mathcal{F}}_{({\mathcal{X}}^{\rm ac},\Delta_{{\mathcal{X}}^{\rm ac}},-(K_{{\mathcal{X}}^{\rm ac}}+\Delta_{{\mathcal{X}}^{\rm ac}}),\frac{a}{d_{1}}\eta^{\rm ac})}.

Let p:𝒳^(𝒳,Δ𝒳)p:\hat{{\mathcal{X}}}\to({\mathcal{X}}^{\prime},\Delta_{{\mathcal{X}}^{\prime}}) and q:𝒳^(𝒳s,Δ𝒳s)q:\hat{{\mathcal{X}}}\to({\mathcal{X}}^{\rm s},\Delta_{{\mathcal{X}}^{\rm s}}) be a common log resolution, and E=q(K𝒳+Δ𝒳)+p(K𝒳s+Δ𝒳s)=ieiEiE=-q^{*}(K_{{\mathcal{X}}^{\prime}}+\Delta_{{\mathcal{X}}^{\prime}})+p^{*}(K_{{\mathcal{X}}^{\rm s}}+\Delta_{{\mathcal{X}}^{\rm s}})=\sum_{i}e_{i}E_{i} with e1ele_{1}\leq\cdots\leq e_{l}. We denote by λ=q(K𝒳+Δ𝒳)+λE{\mathcal{L}}_{\lambda}=-q^{*}(K_{{\mathcal{X}}^{\prime}}+\Delta_{{\mathcal{X}}^{\prime}})+\lambda E and λ=(𝒳,Δ𝒳;λ,η){\mathcal{F}}_{\lambda}={\mathcal{F}}_{({\mathcal{X}}^{\prime},\Delta_{{\mathcal{X}}^{\prime}};{\mathcal{L}}^{\prime}_{\lambda},\eta^{\prime})}. Then

𝐇g(ad1d2λ)\displaystyle\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}d_{2}}{\mathcal{F}}_{\lambda}\Big{)} =\displaystyle= log(𝐎g(ad1d2maxi(λ(e1ei)+AX,Δ(vi)Gvi(y)))dy),\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\Big{(}\frac{a}{d_{1}d_{2}}{\rm max}_{i}\big{(}\lambda(e_{1}-e_{i})+A_{X,\Delta}(v_{i})-G_{v_{i}}(y)\big{)}\Big{)}{\rm d}y\Big{)},
ddλ𝐇g(ad1d2λ)\displaystyle\frac{{\rm d}}{{\rm d}\lambda}\mathbf{H}^{g}\Big{(}\frac{a}{d_{1}d_{2}}{\mathcal{F}}_{\lambda}\Big{)} =\displaystyle= ad1d2𝐎(e1ei(y))gf(λ,y)dy𝐎gf(λ,y)dy0.\displaystyle\frac{a}{d_{1}d_{2}}\frac{\int_{\mathbf{O}}(e_{1}-e_{i(y)})\cdot g^{\prime}\circ f(\lambda,y){\rm d}y}{\int_{\mathbf{O}}g\circ f(\lambda,y){\rm d}y}\leq 0.

We conclude that

𝐇g(𝒳s,Δ𝒳s,(K𝒳s+Δ𝒳s),ad1d2ηs)𝐇g(𝒳,Δ𝒳,(K𝒳+Δ𝒳),ad1d2η).\displaystyle\mathbf{H}^{g}\Big{(}{\mathcal{X}}^{\rm s},\Delta_{{\mathcal{X}}^{\rm s}},-(K_{{\mathcal{X}}^{\rm s}}+\Delta_{{\mathcal{X}}^{\rm s}}),\frac{a}{d_{1}d_{2}}\eta^{\rm s}\Big{)}\leq\mathbf{H}^{g}\Big{(}{\mathcal{X}}^{\prime},\Delta_{{\mathcal{X}}^{\prime}},-(K_{{\mathcal{X}}^{\prime}}+\Delta_{{\mathcal{X}}^{\prime}}),\frac{a}{d_{1}d_{2}}\eta^{\prime}\Big{)}.

Remark 4.7.

If (X,Δ)(X,\Delta) admits a connected reductive group 𝔾{\mathbb{G}}-action, and (𝒳,Δ𝒳;,aη)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}},a\eta) is a 𝔾{\mathbb{G}}-equivariant normal TC of (X,Δ)(X,\Delta), then the special TC (𝒳s,Δ𝒳s;s,asηs)({\mathcal{X}}^{s},\Delta_{{\mathcal{X}}^{s}};{\mathcal{L}}^{s},a^{s}\eta^{s}) obtained above can also be 𝔾{\mathbb{G}}-equivariant as explained in [Li22, Theorem A.1].

Recall that a divisorial valuation vv over (X,Δ)(X,\Delta) is called special if there exists a {\mathbb{Q}}-complement of (X,Δ)(X,\Delta) such that vv is the unique lc place of (X,Δ+Γ)(X,\Delta+\Gamma). By the one-to-one correspondence of special test configurations and special divisorial valuations [Xu24, Theorem 4.27], we have the following corollary, which is a strengthening of Theorem 3.8 in the log Fano case.

Corollary 4.8.

For any log Fano pair (X,Δ)(X,\Delta), we have

hg(X,Δ)=infv𝐇g(v)=infvβ~g(v),\displaystyle h^{g}(X,\Delta)\,\,\,=\,\,\,{\rm inf}_{v}\,\mathbf{H}^{g}({\mathcal{F}}_{v})\,\,\,=\,\,\,{\rm inf}_{v}\,\tilde{\beta}^{g}(v),

where vv runs over all the special divisorial valuations over XX.

The second equality follows easily from Remark 3.7.

4.3. Existence of 𝐇g\mathbf{H}^{g}-minimizer

Theorem 4.9.

There exists a quasi-monomial valuation v0v_{0} such that

hg(X,Δ)=𝐇g(v0)=β~g(v0).\displaystyle h^{g}(X,\Delta)\,\,\,=\,\,\,\mathbf{H}^{g}({\mathcal{F}}_{v_{0}})\,\,\,=\,\,\,\tilde{\beta}^{g}(v_{0}).
Proof.

The proof is verbatim to [HL24, Theorem 4.9] with h(X,Δ)h(X,\Delta) and β~\tilde{\beta} replaced by hg(X,Δ)h^{g}(X,\Delta) and β~g\tilde{\beta}^{g} respectively. We shortly recall the argument. By [BLX22, Theorem A.2] (a variant of boundedness of complements [Bir19]), there exists an integer NN depending only on dimX\dim X and the coefficients of Δ\Delta, such that every {\mathbb{Q}}-complement of (X,Δ)(X,\Delta) is a NN-complement.

Recall L=(KX+Δ)L=-(K_{X}+\Delta) and Rm=H0(X,mL)R_{m}=H^{0}(X,mL). Let W=(RN)W={\mathbb{P}}(R_{N}) and DD be the universal {\mathbb{Q}}-divisor on X×WX\times W parametrizing divisors in 1N|NL|\frac{1}{N}|NL|. By lower semicontinuity of lct, the subset Z={wW:lct(X,Δ+Dw)=1}WZ=\{w\in W:{\rm lct}(X,\Delta+D_{w})=1\}\subseteq W is locally closed. For any zZz\in Z, we denote by

(17) bz:=infvLC(X,Δ+Dz)β~g(v).\displaystyle b_{z}:=\mathop{{\rm inf}}_{v\in{\rm LC}(X,\Delta+D_{z})}\tilde{\beta}^{g}(v).

Choose a log resolution (Yz,Ez)(X,Δ+Dz)(Y_{z},E_{z})\to(X,\Delta+D_{z}). Then LC(X,Δ+Dz)QM(Y,E){\rm LC}(X,\Delta+D_{z})\subseteq{\rm QM}(Y,E). Hence the infimum in (17) is a minimum by Theorem 3.5, that is, bz=β~g(vz)b_{z}=\tilde{\beta}^{g}(v_{z}) for some vzLC(X,Δ+Dz)v_{z}\in{\rm LC}(X,\Delta+D_{z}).

Since (XZ,ΔZ+DZ):=(X×Z,Δ×Z+D|X×Z)Z(X_{Z},\Delta_{Z}+D_{Z}):=(X\times Z,\Delta\times Z+D|_{X\times Z})\to Z is a {\mathbb{Q}}-Gorenstein family of pairs, we can divide ZZ into a disjoint union of finitely many locally closed subsets Z=jZjZ=\sqcup_{j}Z_{j} such that, for each jj, ZjZ_{j} is smooth, and there exists an étale cover ZjZjZ_{j}^{\prime}\to Z_{j} such that the base change (XZj,ΔZj+DZj)(X_{Z_{j}^{\prime}},\Delta_{Z_{j}^{\prime}}+D_{Z_{j}^{\prime}}) admits a fiberwise log resolution (YZj,EZj)(Y_{Z_{j}^{\prime}},E_{Z_{j}^{\prime}}) over ZjZ_{j}^{\prime}. For any prime divisor FQM(YZj,EZj)F\in{\rm QM}(Y_{Z_{j}^{\prime}},E_{Z_{j}^{\prime}}), by the proof of [BLX22, Theorem 4.2] (using invariance of plurigenera [HMX13]), we see that DHFz{\rm DH}_{F_{z}} is constant for zZjz\in Z_{j}^{\prime}. Hence for any vQM(YZj,EZj)v\in{\rm QM}(Y_{Z_{j}^{\prime}},E_{Z_{j}^{\prime}}), the DH measure DHvz{\rm DH}_{v_{z}} is constant for zZjz\in Z_{j}^{\prime}. On the other hand, AX,Δ(vz)A_{X,\Delta}(v_{z}) is constant for zZjz\in Z_{j}^{\prime} since (YZj,EZj)(Y_{Z_{j}^{\prime}},E_{Z_{j}^{\prime}}) is snc over ZjZ_{j}^{\prime}. We conclude that bzb_{z} is constant for zZjz\in Z_{j}^{\prime}, and we denote this number by bjb_{j}.

Finally, by Corollary 4.8 and by our choice of NN and ZZ, we have hg(X,Δ)=infzZbz=minjbjh^{g}(X,\Delta)={\rm inf}_{z\in Z}b_{z}={\rm min}_{j}b_{j}. Let j0j_{0} be a minimizer. Then for any zZj0z\in Z_{j_{0}}^{\prime}, the minimizer vzv_{z} of bzb_{z} in (17) is the desired quasi-monomial valuation minimizing hg(X,Δ)h^{g}(X,\Delta). ∎

Theorem 4.10.

If (X,Δ)(X,\Delta) admits a connected reductive group 𝔾{\mathbb{G}}-action, then the 𝐇g\mathbf{H}^{g}-minimizer v0v_{0} is 𝔾{\mathbb{G}}-invariant.

Proof.

This follows from the similar argument of [Xu24, Theorem 4.63 (i)]. We use the same notions as in the above proof. By Remark 4.7 and Corollary 4.8, we see that hg(X,Δ)h^{g}(X,\Delta) is approximated by a series of 𝔾{\mathbb{G}}-invariant special divisorial valuations EmE_{m}, which are lc places of NN-complements. Hence EmE_{m} is an lc place of (X,Δ+Bs|Mm|1N)(X,\Delta+{\rm Bs}|M_{m}|^{\frac{1}{N}}), where

Mm=EmNAX,Δ(E)RNRN,\displaystyle M_{m}={\mathcal{F}}_{E_{m}}^{NA_{X,\Delta}(E)}R_{N}\subseteq R_{N},

is a 𝔾{\mathbb{G}}-invarant sublinear series. Let WW be the subvariety of iGr(i,RN)\cup_{i}{\rm Gr}(i,R_{N}) parametrizing 𝔾{\mathbb{G}}-invariant sublinear series of RNR_{N}, and MWM\to W be the corresponding universal family. Also by lower semicontinuity of lct, we have locally closed subset Z={wW:lct(X,Δ+Bs|Mw|1N)=1}WZ=\{w\in W:{\rm lct}(X,\Delta+{\rm Bs}|M_{w}|^{\frac{1}{N}})=1\}\subseteq W. For any zZz\in Z, we define

(18) bz:=infvLC𝔾(X,Δ+Bs|Mw|1N)β~g(v),\displaystyle b_{z}:=\mathop{{\rm inf}}_{v\in{\rm LC}^{\mathbb{G}}(X,\Delta+{\rm Bs}|M_{w}|^{\frac{1}{N}})}\tilde{\beta}^{g}(v),

where LC𝔾(X,Δ+Bs|Mw|1N)LC(X,Δ+Bs|Mw|1N){\rm LC}^{\mathbb{G}}(X,\Delta+{\rm Bs}|M_{w}|^{\frac{1}{N}})\subseteq{\rm LC}(X,\Delta+{\rm Bs}|M_{w}|^{\frac{1}{N}}) consists of 𝔾{\mathbb{G}}-invariant valuations. Also by Theorem 3.5, we have bz=β~g(vz)b_{z}=\tilde{\beta}^{g}(v_{z}) for some vzLC𝔾(X,Δ+Bs|Mw|1N)v_{z}\in{\rm LC}^{\mathbb{G}}(X,\Delta+{\rm Bs}|M_{w}|^{\frac{1}{N}}). Now the same argument of the last two paragraph of the above proof shows that hg(X,Δ)=bzh^{g}(X,\Delta)=b_{z} for some zZz\in Z, which is minimized by the 𝔾{\mathbb{G}}-invariant quasi-monomial valuation vzv_{z}. ∎

4.4. Finite generation and weighted K-stability

Theorem 4.11.

The minimizer v0v_{0} of 𝐇g\mathbf{H}^{g} is special.

Proof.

By Lemma 3.11, v0v_{0} is a minimizer of δg,v0(X,Δ)=1\delta^{g^{\prime},v_{0}}(X,\Delta)=1. Hence it is a special valuation by [BLXZ23, Theorem 5.4]. ∎

By definition of special valuations Theorem 2.12, we see that the 𝐇g\mathbf{H}^{g}-minimizer v0v_{0} induces a multistep special degeneration (𝒳,Δ𝒳,ξ0)({\mathcal{X}},\Delta_{\mathcal{X}},\xi_{0}) of (X,Δ)(X,\Delta) with klt central fiber. We call (𝒳,Δ𝒳,ξ0)({\mathcal{X}},\Delta_{\mathcal{X}},\xi_{0}) the gg-optimal degeneration of (X,Δ)(X,\Delta). Next we study this degeneration of (X,Δ)(X,\Delta). We first recall some notions in the weighted K-stability theory.

Assume that (X,Δ)(X,\Delta) admits a torus 𝕋=𝔾mr{\mathbb{T}}={\mathbb{G}}_{m}^{r}-action. Then the anti-canonical ring R=R(X,Δ)=ml0RmR_{\bullet}=R(X,\Delta)=\oplus_{m\in l_{0}{\mathbb{N}}}R_{m} admits a canonical weight decomposition Rm=αMRm,αR_{m}=\oplus_{\alpha\in M}R_{m,\alpha}, where M=Hom(𝕋,𝔾m)rM={\rm Hom}({\mathbb{T}},{\mathbb{G}}_{m})\cong{\mathbb{Z}}^{r} is the weight lattice. Let N=MN=M^{\vee} be the coweight lattice. A filtration {\mathcal{F}} is called 𝕋{\mathbb{T}}-invariant if λRm=αλRm,α{\mathcal{F}}^{\lambda}R_{m}=\oplus_{\alpha}{\mathcal{F}}^{\lambda}R_{m,\alpha}.

For any ξN\xi\in N_{\mathbb{R}} and 𝕋{\mathbb{T}}-invariant filtration {\mathcal{F}}, the ξ\xi-twist of {\mathcal{F}} is defined by

ξλRm=αM(ξλRm)α,(ξλRm)α:=λα,ξRm,α.\displaystyle{\mathcal{F}}_{\xi}^{\lambda}R_{m}=\oplus_{\alpha\in M}({\mathcal{F}}_{\xi}^{\lambda}R_{m})_{\alpha},\quad({\mathcal{F}}_{\xi}^{\lambda}R_{m})_{\alpha}:={\mathcal{F}}^{\lambda-\langle\alpha,\xi\rangle}R_{m,\alpha}.

We will simple denote the filtration triv,ξλRm=α,ξλRm,α{\mathcal{F}}_{{\rm triv},\xi}^{\lambda}R_{m}=\oplus_{\langle\alpha,\xi\rangle\geq\lambda}R_{m,\alpha} by ξ\xi, then

μ(ξ)=μ(triv,ξ)=μ(triv)=0,\displaystyle\mu(\xi)=\mu({\mathcal{F}}_{{\rm triv},\xi})=\mu({\mathcal{F}}_{\rm triv})=0,

by the following lemma.

Lemma 4.12.

[Xu24, Lemma 6.24] For any 𝕋{\mathbb{T}}-invariant linearly bounded filtration {\mathcal{F}} on RR, and any ξN\xi\in N_{\mathbb{R}}, we have μ(ξ)=μ()\mu({\mathcal{F}}_{\xi})=\mu({\mathcal{F}}).

Recall that g:>0g^{\prime}:{\mathbb{R}}\to{\mathbb{R}}_{>0} is the first order derivative of gg. Then for any ξN\xi\in N_{\mathbb{R}}, we may define the (g,ξ)(g^{\prime},\xi)-weighted Ding invariants of (X,Δ)(X,\Delta).

Definition 4.13.

For any 𝕋{\mathbb{T}}-invariant linearly bounded filtration {\mathcal{F}} on RR, we define the (g,ξ)(g^{\prime},\xi)-weighted Ding invariant by

𝐃g,ξ()=𝐃X,Δg,ξ():=μX,Δ()Sg,ξ().\displaystyle\mathbf{D}^{g^{\prime},\xi}({\mathcal{F}})\,\,\,=\,\,\,\mathbf{D}^{g^{\prime},\xi}_{X,\Delta}({\mathcal{F}})\,\,\,:=\,\,\,\mu_{X,\Delta}({\mathcal{F}})-S^{g^{\prime},\xi}({\mathcal{F}}).

The log Fano pair (X,Δ)(X,\Delta) is called 𝕋{\mathbb{T}}-equivariantly (g,ξ)(g^{\prime},\xi)-weighted Ding-semistable if 𝐃g,ξ()0\mathbf{D}^{g^{\prime},\xi}({\mathcal{F}})\geq 0 for any 𝕋{\mathbb{T}}-invariant linearly bounded filtration {\mathcal{F}} on RR. If moreover, for any 𝕋{\mathbb{T}}-equivariant normal TC (𝒳,Δ𝒳;)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}}) of (X,Δ)(X,\Delta), 𝐃g,ξ(𝒳,Δ𝒳;)=0\mathbf{D}^{g^{\prime},\xi}({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}})=0 implies that (𝒳,Δ𝒳;)({\mathcal{X}},\Delta_{\mathcal{X}};{\mathcal{L}}) is a product TC, then (X,Δ)(X,\Delta) is called 𝕋{\mathbb{T}}-equivariantly (g,ξ)(g^{\prime},\xi)-weighted Ding-polystable.

The log Fano triple (X,Δ,ξ)(X,\Delta,\xi) is called gg^{\prime}-weighted K-(semi/poly)stable if (X,Δ)(X,\Delta) is 𝕋{\mathbb{T}}-equivariantly (g,ξ)(g^{\prime},\xi)-weighted Ding-(semi/poly)stable for some 𝕋{\mathbb{T}}-action. By [BLXZ23, Remark 5.10], the definition is independent of the choice of the 𝕋{\mathbb{T}}-action.

Theorem 4.14.

Let v0v_{0} be a quasi-monomial valuation over XX with finitely generated associated graded ring grv0R{\rm gr}_{v_{0}}R, which induces a multistep special degeneration (𝒳,Δ𝒳,ξ0)({\mathcal{X}},\Delta_{{\mathcal{X}}},\xi_{0}) with klt central fiber. Then v0v_{0} minimizes 𝐇g\mathbf{H}^{g} if and only if (𝒳0,Δ𝒳,0,ξ0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}},0},\xi_{0}) is gg^{\prime}-weighted K-semistable.

Proof.

We follow the proof of [HL24, Theorem 5.3]. First assume that v0v_{0} minimizes 𝐇g\mathbf{H}^{g}. Denote by (W,ΔW,ξ)=(𝒳0,Δ𝒳,0,ξ0)(W,\Delta_{W},\xi)=({\mathcal{X}}_{0},\Delta_{{\mathcal{X}},0},\xi_{0}) and assume that it is gg^{\prime}-weighted K-unstable. Then by a variant of [LX14], there exists a special TC (𝒲,Δ𝒲,η)({\mathcal{W}},\Delta_{{\mathcal{W}}},\eta) such that

𝐃W,ΔWg,ξ(𝒲,Δ𝒲,η)<0.\displaystyle\mathbf{D}^{g^{\prime},\xi}_{W,\Delta_{W}}({\mathcal{W}},\Delta_{{\mathcal{W}}},\eta)<0.

We denote by (Y,ΔY,η)=(𝒲0,Δ𝒲,0,η)(Y,\Delta_{Y},\eta)=({\mathcal{W}}_{0},\Delta_{{\mathcal{W}},0},\eta), then

𝐃Y,ΔYg,ξ(η)=𝐃W,ΔWg,ξ(𝒲,Δ𝒲,η)<0.\displaystyle\mathbf{D}^{g^{\prime},\xi}_{Y,\Delta_{Y}}(\eta)=\mathbf{D}^{g^{\prime},\xi}_{W,\Delta_{W}}({\mathcal{W}},\Delta_{{\mathcal{W}}},\eta)<0.

Then we can construct a series of valuations {vε}ε\{v_{\varepsilon}\}_{\varepsilon\in{\mathbb{R}}} as [LX18] inducing special degenerations of (X,Δ)(X,\Delta) with central fibers (Y,ΔY,ξ+εη)(Y,\Delta_{Y},\xi+\varepsilon\eta). Then 𝐇X,Δg(vε)=𝐇Y,ΔYg(ξ+εη)\mathbf{H}^{g}_{X,\Delta}(v_{\varepsilon})=\mathbf{H}^{g}_{Y,\Delta_{Y}}(\xi+\varepsilon\eta). Since μ(ξ)=0\mu(\xi^{\prime})=0 for any holomorphic vector field ξ\xi^{\prime} on YY, we have

𝐇Y,ΔYg(ξ+εη)=log(𝐏g(α,ξ+εη)DH𝐏(dα)).\displaystyle\mathbf{H}^{g}_{Y,\Delta_{Y}}(\xi+\varepsilon\eta)={\rm log}\big{(}\int_{\mathbf{P}}g(-\langle\alpha,\xi+\varepsilon\eta\rangle){\rm DH}_{\mathbf{P}}({\rm d}\alpha)\big{)}.

Hence

ddε|ε=0𝐇X,Δg(vε)\displaystyle\frac{{\rm d}}{{\rm d}\varepsilon}|_{\varepsilon=0}\,\,\mathbf{H}^{g}_{X,\Delta}(v_{\varepsilon}) =\displaystyle= 𝐏(α,η)g(α,ξ)DH𝐏(dα)𝐏g(α,ξ)DH𝐏(dα)\displaystyle\frac{\int_{\mathbf{P}}(-\langle\alpha,\eta\rangle)\cdot g^{\prime}(-\langle\alpha,\xi\rangle){\rm DH}_{\mathbf{P}}({\rm d}\alpha)}{\int_{\mathbf{P}}g(-\langle\alpha,\xi\rangle){\rm DH}_{\mathbf{P}}({\rm d}\alpha)}
=\displaystyle= 1𝐯g𝐏(α,η)g(α,ξ)DH𝐏(dα)=𝐯g𝐯g𝐃Y,ΔYg,ξ(η)<   0,\displaystyle\frac{1}{\mathbf{v}^{g}}\int_{\mathbf{P}}(-\langle\alpha,\eta\rangle)\cdot g^{\prime}(-\langle\alpha,\xi\rangle){\rm DH}_{\mathbf{P}}({\rm d}\alpha)\,\,\,=\,\,\,\frac{\mathbf{v}^{g^{\prime}}}{\mathbf{v}^{g}}\cdot\mathbf{D}^{g^{\prime},\xi}_{Y,\Delta_{Y}}(\eta)\,\,\,<\,\,\,0,

which contradicts that v0v_{0} minimizes 𝐇X,Δg\mathbf{H}^{g}_{X,\Delta}.

Conversely, assume that (W,ΔW,ξ)(W,\Delta_{W},\xi) is gg^{\prime}-weighted K-semistable. Then for any linearly bounded filtration {\mathcal{F}} on RR. We define its initial term degeneration {\mathcal{F}}^{\prime} on grv0R{\rm gr}_{v_{0}}R by

λgrv0Rm:=s¯i:siλRm,\displaystyle{\mathcal{F}}^{\prime\lambda}{\rm gr}_{v_{0}}R_{m}:=\langle\bar{s}_{i}:s_{i}\in{\mathcal{F}}^{\lambda}R_{m}\rangle,

where {si}\{s_{i}\} is a basis of RmR_{m} which is compatible with both v0v_{0} and {\mathcal{F}}. Hence DH=DH{\rm DH}_{\mathcal{F}}={\rm DH}_{{\mathcal{F}}^{\prime}}. By lower semicontinuity of lct, we have μX,Δ()μW,ΔW().\mu_{X,\Delta}({\mathcal{F}})\geq\mu_{W,\Delta_{W}}({\mathcal{F}}^{\prime}). Hence

(19) 𝐇X,Δg()𝐇W,ΔWg()𝐇W,ΔWg(ξ)=𝐇X,Δg(v0),\displaystyle\mathbf{H}^{g}_{X,\Delta}({\mathcal{F}})\geq\mathbf{H}^{g}_{W,\Delta_{W}}({\mathcal{F}}^{\prime})\geq\mathbf{H}^{g}_{W,\Delta_{W}}(\xi)=\mathbf{H}^{g}_{X,\Delta}(v_{0}),

where the second inequality follows from the gg^{\prime}-weighted K-semistability of (W,ΔW,ξ)(W,\Delta_{W},\xi). Indeed, since 𝐇g\mathbf{H}^{g} is strictly convex along geodesics, it suffices to show that the derivative of 𝐇X,Δg(t)\mathbf{H}^{g}_{X,\Delta}({\mathcal{F}}_{t}) at t=0t=0 is non-negative, where t{\mathcal{F}}_{t} is the geodesic connecting 0=wtξ{\mathcal{F}}_{0}={\mathcal{F}}_{{\rm wt}_{\xi}} and 1={\mathcal{F}}_{1}={\mathcal{F}}^{\prime}. Note that

tλRm\displaystyle{\mathcal{F}}^{\lambda}_{t}R_{m} =\displaystyle= (1t)μ+tνλ0μRm1νRm\displaystyle\sum_{(1-t)\mu+t\nu\geq\lambda}{\mathcal{F}}_{0}^{\mu}R_{m}\cap{\mathcal{F}}_{1}^{\nu}R_{m}
=\displaystyle= {sRm:(1t)ord0(s)+tord1(s)λ}\displaystyle\Big{\{}s\in R_{m}:(1-t){\rm ord}_{{\mathcal{F}}_{0}}(s)+t\,{\rm ord}_{{\mathcal{F}}_{1}}(s)\geq\lambda\Big{\}}
=\displaystyle= αM{sRm,α:(1t)α,ξ+tord(s)λ}\displaystyle\bigoplus_{\alpha\in M}\Big{\{}s\in R_{m,\alpha}:(1-t)\langle\alpha,\xi\rangle+t\,{\rm ord}_{{\mathcal{F}}^{\prime}}(s)\geq\lambda\Big{\}}
=\displaystyle= αM{sRm,α:t(ord(s)+α,1ttξ)λ}\displaystyle\bigoplus_{\alpha\in M}\Big{\{}s\in R_{m,\alpha}:t\Big{(}{\rm ord}_{{\mathcal{F}}^{\prime}}(s)+\langle\alpha,\frac{1-t}{t}\xi\rangle\Big{)}\geq\lambda\Big{\}}
=\displaystyle= {sRm:ordt1ttξ(s)λ}=(t1ttξ)λRm.\displaystyle\Big{\{}s\in R_{m}:{\rm ord}_{t{\mathcal{F}}^{\prime}_{\frac{1-t}{t}\xi}}(s)\geq\lambda\Big{\}}\,\,\,=\,\,\,(t{\mathcal{F}}^{\prime}_{\frac{1-t}{t}\xi})^{\lambda}R_{m}.

Hence t=t1ttξ{\mathcal{F}}_{t}=t{\mathcal{F}}^{\prime}_{\frac{1-t}{t}\xi}. Recall that μ()\mu({\mathcal{F}}) is invariant under ξ\xi-twist, and linear under rescaling. Hence μ(t)=tμ()\mu({\mathcal{F}}_{t})=t\mu({\mathcal{F}}^{\prime}). We also have G(y)=(1t)α,ξ+tG(y)G_{{\mathcal{F}}}(y)=(1-t)\langle\alpha,\xi\rangle+tG_{{\mathcal{F}}^{\prime}}(y) where y=(α,y)y=(\alpha,y^{\prime}). Hence

𝐇g(t)\displaystyle\mathbf{H}^{g}({\mathcal{F}}_{t}) =\displaystyle= log(𝐎g(μ(t)Gt(y))dy)\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g(\mu({\mathcal{F}}_{t})-G_{{\mathcal{F}}_{t}}(y)){\rm d}y\Big{)}
=\displaystyle= log(𝐎g(α,ξ+t(μ()G(y)+α,ξ))dy)\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\big{(}-\langle\alpha,\xi\rangle+t(\mu({\mathcal{F}}^{\prime})-G_{{\mathcal{F}}^{\prime}}(y)+\langle\alpha,\xi\rangle)\big{)}{\rm d}y\Big{)}
=\displaystyle= log(𝐎g(α,ξ+t(μ(ξ)Gξ(y)))dy),\displaystyle{\rm log}\Big{(}\int_{\mathbf{O}}g\big{(}-\langle\alpha,\xi\rangle+t(\mu({\mathcal{F}}^{\prime}_{\xi})-G_{{\mathcal{F}}^{\prime}_{\xi}}(y))\big{)}{\rm d}y\Big{)},
ddt|t=0𝐇g(t)\displaystyle\frac{{\rm d}}{{\rm d}t}|_{t=0}\,\mathbf{H}^{g}({\mathcal{F}}_{t}) =\displaystyle= 𝐎g(α,ξ)(μ(ξ)Gξ(y))dy𝐎g(α,ξ)dy\displaystyle\frac{\int_{\mathbf{O}}g^{\prime}\big{(}-\langle\alpha,\xi\rangle\big{)}\cdot\big{(}\mu({\mathcal{F}}^{\prime}_{\xi})-G_{{\mathcal{F}}^{\prime}_{\xi}}(y)\big{)}{\rm d}y}{\int_{\mathbf{O}}g(-\langle\alpha,\xi\rangle){\rm d}y}
=\displaystyle= 𝐯g𝐯g𝐃W,ΔWg,ξ(ξ)   0,\displaystyle\frac{\mathbf{v}^{g^{\prime}}}{\mathbf{v}^{g}}\mathbf{D}^{g^{\prime},\xi}_{W,\Delta_{W}}({\mathcal{F}}^{\prime}_{\xi})\,\,\,\geq\,\,\,0,

where y=(α,y)y=(\alpha,y^{\prime}). Hence the second inequality in (19) holds and the proof is finished. ∎

Remark 4.15.

If (X,Δ)(X,\Delta) admits a connected reductive group 𝔾{\mathbb{G}}-action, then by Theorem 4.10, the 𝐇g\mathbf{H}^{g}-minimizer v0v_{0} is 𝔾{\mathbb{G}}-invariant, hence grv0R{\rm gr}_{v_{0}}R admitting the 𝔾{\mathbb{G}}-action and inducing a 𝔾{\mathbb{G}}-equivariant multistep special degeneration. In other word, the gg-optimal degeneration of (X,Δ)(X,\Delta) is 𝔾{\mathbb{G}}-equivariant.

As a corollary, we have the following characterization of gg-optimal degeneration.

Corollary 4.16.

Let (X,Δ)(X,\Delta) be a log Fano pair admitting a torus 𝔾mr{\mathbb{G}}_{m}^{r}-action, and ξ0N\xi_{0}\in N_{\mathbb{R}}. Then the filtration triv,ξ0{\mathcal{F}}_{{\rm triv},\xi_{0}} minimizes 𝐇g\mathbf{H}^{g} if and only if (X,Δ,ξ0)(X,\Delta,\xi_{0}) is gg^{\prime}-weighted K-semistable.

Now we can finish the proof of the main theorem in this paper.

Proof of Theorem 1.1.

The existence and uniqueness of the minimizer v0v_{0} of 𝐇g\mathbf{H}^{g} follows from Theorem 4.9 and 3.3 respectively. The valuation is special by Theorem 4.11. Moreover, the central fiber (𝒳0,Δ𝒳,0,ξ0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}},0},\xi_{0}) of the multistep special degeneration induced by v0v_{0} is gg^{\prime}-weighted K-semistable by Theorem 4.14. Finally, (𝒳0,Δ𝒳,0,ξ0)({\mathcal{X}}_{0},\Delta_{{\mathcal{X}},0},\xi_{0}) has a unique gg^{\prime}-weighted K-polystable degeneration (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}) by [HL24, Theorem 1.3], and (Y,ΔY,ξ0)(Y,\Delta_{Y},\xi_{0}) admits a gg^{\prime}-soliton by [BLXZ23, Theorem 1.3] and [HL23, Theorem 1.7]. ∎

5. Examples

In this section, we give some examples that Question 1.4 has positive answer.

5.1. Weighted K-stable Fano varieties for any weight function

Let (X,Δ)(X,\Delta) be a log Fano pair with a 𝕋=𝔾mr{\mathbb{T}}={\mathbb{G}}_{m}^{r}-action, M=Hom(𝕋,𝔾m),N=MM={\rm Hom}({\mathbb{T}},{\mathbb{G}}_{m}),N=M^{\vee} be the weight, coweight lattices respectively. Let 𝐏M\mathbf{P}\subseteq M_{\mathbb{R}} be the moment polytope of the 𝕋{\mathbb{T}}-action and DH𝐏{\rm DH}_{\mathbf{P}} be the DH measure of the 𝕋{\mathbb{T}}-action on 𝐏\mathbf{P} (see for example [MW23, Section 2.5 and 3.3]). A continuous function g0:𝐏>0g_{0}:\mathbf{P}\to{\mathbb{R}}_{>0} is called a weight function if

𝐏αig0(α)DH𝐏(dα)=0,\displaystyle\int_{\mathbf{P}}\alpha_{i}\cdot g_{0}(\alpha){\rm DH}_{\mathbf{P}}({\rm d}\alpha)=0,

for any 1ir1\leq i\leq r. Similar to Definition 4.13, one can define the g0g_{0}-weighted K-stability and Ding-stability of the log Fano 𝕋{\mathbb{T}}-pair (X,Δ)(X,\Delta). In the setting of gg-optimal degenerations, we will choose

g0(α)=g(α,ξ0),\displaystyle g_{0}(\alpha)=g^{\prime}(-\langle\alpha,\xi_{0}\rangle),

where ξ0\xi_{0} is the minimizer of 𝐇g\mathbf{H}^{g} on NN_{\mathbb{R}}. We have the following easy consequence of Corollary 4.16, which gives some trivial examples answering Question 1.4 positively.

Corollary 5.1.

Assume that (X,Δ)(X,\Delta) is g0g_{0}-weighted K-polystable for any weight function g0g_{0}. Then (X,Δ)(X,\Delta) is the gg-optimal degeneration of itself for any function gg satisfying (1).

Let (X,Δ)(X,\Delta) be a toric log Fano pair. Then (X,Δ)(X,\Delta) is g0g_{0}-weighted K-polystable for any weight function g0g_{0}. Indeed, any 𝕋{\mathbb{T}}-invariant filtration {\mathcal{F}} is equivalent to triv,ξ{\mathcal{F}}_{{\rm triv},\xi} for some ξN\xi\in N_{\mathbb{R}}. Hence

𝐃g0()=1𝐯g0𝐏(α,ξ)g0(α)DH𝐏(dα)=0.\displaystyle\mathbf{D}^{g_{0}}({\mathcal{F}})=\frac{1}{\mathbf{v}^{g_{0}}}\int_{\mathbf{P}}(-\langle\alpha,\xi\rangle)\cdot g_{0}(\alpha){\rm DH}_{\mathbf{P}}({\rm d}\alpha)=0.

In particular, the gg-optimal degenerations of (X,Δ)(X,\Delta) are always itself.

The following non-trivial examples follow from [Wan24, Example 5.5].

Theorem 5.2.

Any Fano threefold XX in the families №2.28 and №3.14 of Mori-Mukai’s list is g0g_{0}-weighted K-polystable for any weight function g0g_{0}. In particular, the gg-optimal degenerations of XX are always XX itself for any function gg satisfying (1).

5.2. Non-trivial gg-optimal degenerations

The Fano threefolds in the family №2.23 of Mori-Mukai’s list are K-unstable and admit discrete automorphism group [MT22]. Hence they could not be weighted K-semistable and admit no g0g_{0}-soliton [HL23, (1.3)] for any weight function g0g_{0}. Their optimal degenerations were determined by [MW24]. It’s natural to ask what are their gg-optimal degenerations for other functions gg satisfying (1).

Recall that any Fano threefold XX in №2.23 is obtained by blowing up the quadric threefold QQ along the complete intersection CC of a hyperplane section H|𝒪Q(1)|H\in|{\mathcal{O}}_{Q}(1)| and a quadric section Q|𝒪Q(2)|Q^{\prime}\in|{\mathcal{O}}_{Q}(2)|. The family №2.23 is divided into two subfamilies by the smoothness of HH,

  • XX\in №2.23(a), if H1×1H\cong{\mathbb{P}}^{1}\times{\mathbb{P}}^{1},

  • XX\in №2.23(b), if H(1,1,2)H\cong{\mathbb{P}}(1,1,2).

The optimal degeneration X0X_{0} of XX in №2.23(a) is induced by the divisorial valuation ordH{\rm ord}_{H} by [MW24, Corollary 1.4]. Hence X0=BlCQ0X_{0}={\rm Bl}_{C}Q_{0} where Q04Q_{0}\subseteq{\mathbb{P}}^{4} is the cone over a smooth quadric surface H3H\subseteq{\mathbb{P}}^{3}, and CH1×1C\subseteq H\cong{\mathbb{P}}^{1}\times{\mathbb{P}}^{1} is a biconic curve (i.e. C|𝒪1×1(2,2)|C\in|{\mathcal{O}}_{{\mathbb{P}}^{1}\times{\mathbb{P}}^{1}}(2,2)|).

Theorem 5.3.

For any Fano threefold XX in family №2.23(a), the gg-optimal degenerations are always X0X_{0} for any function gg satisfying (1).

Proof.

We need to prove that X0X_{0} is the gg-optimal degeneration of XX for any function gg satisfying (1). This is equivalent to 𝐇Xg\mathbf{H}^{g}_{X} being minimized by aordHa\cdot{\rm ord}_{H} for some a>0a\in{\mathbb{R}}_{>0}, hence is equivalent to (X0,aξ)(X_{0},a\cdot\xi) being gg^{\prime}-weighted K-polystable for some a>0a\in{\mathbb{R}}_{>0}, where ξN\xi\in N\cong{\mathbb{Z}} whose filtration is a shift of ordH{\mathcal{F}}_{{\rm ord}_{H}}. We conclude by [Wan24, Example 5.7], which says that X0X_{0} is g0g_{0}-weighted K-polystable for any weight function g0g_{0}. ∎

References

  • [Bam18] Richard Bamler. Convergence of Ricci flows with bounded scalar curvature. Ann. of Math. (2), 188(3):753–831, 2018.
  • [BC11] Sébastien Boucksom and Huayi Chen. Okounkov bodies of filtered linear series. Compos. Math., 147(4):1205–1229, 2011.
  • [BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.
  • [BHJ17] Sébastien Boucksom, Tomoyuki Hisamoto, and Mattias Jonsson. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 67(2):743–841, 2017.
  • [Bir19] Caucher Birkar. Anti-pluricanonical systems on Fano varieties. Ann. of Math. (2), 190(2):345–463, 2019.
  • [BJ20] Harold Blum and Mattias Jonsson. Thresholds, valuations, and K-stability. Adv. Math., 365:107062, 57, 2020.
  • [BLX22] Harold Blum, Yuchen Liu, and Chenyang Xu. Openness of K-semistability for Fano varieties. Duke Math. J., 171(13):2753–2797, 2022.
  • [BLXZ23] Harold Blum, Yuchen Liu, Chenyang Xu, and Ziquan Zhuang. The existence of the Kähler-Ricci soliton degeneration. Forum Math. Pi, 11:Paper No. e9, 28, 2023.
  • [Che24] Zhiyuan Chen. Stable degeneration of families of klt singularities with constant local volume. 2024. arXiv:2405.19273.
  • [CW20] Xiuxiong Chen and Bing Wang. Space of Ricci flows (II)—Part B: Weak compactness of the flows. J. Differential Geom., 116(1):1–123, 2020.
  • [DS20] Ruadhaí Dervan and Gábor Székelyhidi. The Kähler-Ricci flow and optimal degenerations. J. Differential Geom., 116(1):187–203, 2020.
  • [HL23] Jiyuan Han and Chi Li. On the Yau-Tian-Donaldson conjecture for generalized Kähler-Ricci soliton equations. Comm. Pure Appl. Math., 76(9):1793–1867, 2023.
  • [HL24] Jiyuan Han and Chi Li. Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties. Geom. Topol., 28(2):539–592, 2024.
  • [HMX13] Christopher D. Hacon, James McKernan, and Chenyang Xu. On the birational automorphisms of varieties of general type. Ann. of Math. (2), 177(3):1077–1111, 2013.
  • [HMX14] Christopher D. Hacon, James McKernan, and Chenyang Xu. ACC for log canonical thresholds. Ann. of Math. (2), 180(2):523–571, 2014.
  • [JM12] Mattias Jonsson and Mircea Mustaţă. Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble), 62(6):2145–2209 (2013), 2012.
  • [Li22] Chi Li. GG-uniform stability and Kähler-Einstein metrics on Fano varieties. Invent. Math., 227(2):661–744, 2022.
  • [LX14] Chi Li and Chenyang Xu. Special test configuration and K-stability of Fano varieties. Ann. of Math. (2), 180(1):197–232, 2014.
  • [LX18] Chi Li and Chenyang Xu. Stability of Valuations: Higher Rational Rank. Peking Math. J., 1(1):1–79, 2018.
  • [LXZ22] Yuchen Liu, Chenyang Xu, and Ziquan Zhuang. Finite generation for valuations computing stability thresholds and applications to K-stability. Ann. of Math. (2), 196(2):507–566, 2022.
  • [MT22] Minghao Miao and Gang Tian. A Note on Kähler-Ricci Flow on Fano Threefolds. (accepted by Peking Math. J.), 2022. arXiv:2210.15263.
  • [MW23] Minghao Miao and Linsheng Wang. Kähler-Ricci solitons on Fano threefolds with non-trivial moduli. 2023. arXiv:2309.14212.
  • [MW24] Minghao Miao and Linsheng Wang. Optimal degenerations of K-unstable Fano threefolds. 2024. arXiv:2401.13999.
  • [Tia97] Gang Tian. Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 130(1):1–37, 1997.
  • [TZ16] Gang Tian and Zhenlei Zhang. Regularity of Kähler-Ricci flows on Fano manifolds. Acta Math., 216(1):127–176, 2016.
  • [TZZZ13] Gang Tian, Shijin Zhang, Zhenlei Zhang, and Xiaohua Zhu. Perelman’s entropy and Kähler-Ricci flow on a Fano manifold. Trans. Amer. Math. Soc., 365(12):6669–6695, 2013.
  • [Wan24] Linsheng Wang. A valuative criterion of K-polystability. 2024. arXiv:2406.06176.
  • [WZ21] Feng Wang and Xiaohua Zhu. Tian’s partial C0{C}^{0}-estimate implies Hamilton-Tian’s conjecture. Advances in Mathematics, 381:107619, 2021.
  • [Xu20] Chenyang Xu. A minimizing valuation is quasi-monomial. Ann. of Math. (2), 191(3):1003–1030, 2020.
  • [Xu24] Chenyang Xu. K-stability of Fano varieties. 2024.
  • [XZ22] Chenyang Xu and Ziquan Zhuang. Stable degenerations of singularities. 2022. arXiv:2205.10915.