This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


Generalized Mittag-Leffler stability of Hilfer fractional impulsive differential systems

Divya Raghavan Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India [email protected], [email protected] Sukavanam Nagarajan Department of Mathematics
Indian Institute of Technology, Roorkee-247 667, Uttarkhand, India
[email protected]
 and  Chengbo Zhai School of Mathematical Sciences Shanxi University, Taiyuan 030006 SHANX PEOPLES REPUBLIC OF CHINA [email protected]
Abstract.

This paper establishes integral representations of mild solutions of impulsive Hilfer fractional differential equations with impulsive conditions and fluctuating lower bounds at impulsive points. Further, the paper provides sufficient conditions for generalized Mittag-Leffler stability of a class of impulsive fractional differential systems with Hilfer order. The analysis extends through both, instantaneous and non-instantaneous impulsive conditions. The theory utilizes continuous Lyapunov functions, to ascertain the stability conditions. An example is provided to study the solution of the system with changeable lower bound for the non-instantaneous impulsive conditions.

Key words and phrases:
Impulsive systems; Generalized Mittag-Leffler stability; Hilfer fractional derivative; Lyapunov functions
2010 Mathematics Subject Classification:
33E12,93D20,93D05

1. Introduction

Many biological happenings sustain perturbations for a period of time. Some of such perturbations may persist for a very short span, may be only at certain points or it may stretch to a finite time interval. In accordance with the duration of perturbation, systems are branched as instantaneous impulsive system and non-instantaneous impulsive system respectively. The instantaneous impulsive system finds its application in models where the system changes its constraint suddenly. For example, the sudden change of speed/ direction of a moving car or in the change of trajectory of ball bouncing on a hard surface are modeled as instantaneous impulsive systems. For applications of instantaneous impulsive systems, one can refer to [20] by Stamova and Stamov, where, various models involving impulsive conditions are discussed in detail. On the other hand, non-instantaneous impulsive systems gets involved when the perturbations are not negligible. Such a situation was first analyzed by Hernández and  O’Regan in [8], where they proposed a new impulsive conditions where the perturbations prolong for a finite interval of time and not just at some fixed moments. Precisely, instead of impulsive points tkt_{k}, they considered the finite time interval [tk,pk][t_{k},p_{k}] where the perturbation occurs. For instance, a differential equation model that reveals the impact of the drug in a body for a certain period of time admits a non-instantaneous impulse. Besides the field of medicine, most of the real-life problems including the study of geographical conditions, to estimate the impact of global warming, in varied field of physics, involve non-instantaneous impulses. The detailed theory and application regarding non-instantaneous impulses is available in whole lot in the literature, see for instance, the book by Agarwalet al. [1]. Numerous research articles constantly emerge that deal with the above two impulsive conditions.

In both the impulsive systems, in particular, the state of the system keeps on varying. Thus, stability is one such property which has to be addressed, as it determines the stable region of the state of the system. As an example, a power system uses stability analysis to prove if it has the ability to withstand the impact of reasonable fluctuations (or impulses). While discussing the practical-oriented systems, their corresponding models with non-integer order is more productive and it enhances the accuracy that a system needs. For instance, a proportional-integral-derivative controller (PID controller or three-term controller) is a system with control loop employing feedback that is broadly used in industrial control systems and in wide range of other applications that demand continuous modulated control. Instead of classical controller, Podlubny [15] considered PIλDμPI^{\lambda}D^{\mu} controller combining fractional order integrand (IλI^{\lambda}) and fractional order derivative (DμD^{\mu}). An illustration is also provided in his work that proves that PIλDμPI^{\lambda}D^{\mu} controller works better than the classical PID controller. While working on fractional model, choosing an effective fractional order is vital.

Generalized Riemann-Liouville fractional derivative, termed later as Hilfer fractional order derivative, arose as a theoretical model of dielectric relaxation in glass-forming materials in a work by Hilfer [9]. The two classical fractional order derivatives Caputo and Riemann Liouville are a particular case of Hilfer fractional derivative. The existence and uniqueness of solution of systems with Hilfer fractional derivative with different constraints such as an impulsive system with nonlocal conditions was given by Gou and Li [6], approximate controllability of impulsive Hilfer fractional system was given by Jiang and Niazi [4] and with delay conditions was given by Ahmed et al.[3], etc.

The study of stability analysis for non-integer systems was initially given by Podlubny et al.[12]. The work of Stamova [19] on impulsive fractional order is also a classical result. Using the theory of qq-calculus, Li et al. [11] studied the qq- Mittag-Leffler stability of qq-fractional differential systems. Ren and Zhai [16] studied the stability conditions for generalized fractional derivative along with examples in neural network. Even though stability analysis has been done for Hilfer fractional system by Rezazadeh et al.[18], Wang et al. [21], stability analysis of impulsive differential system with Hilfer fractional derivative has never been studied. The present work studies the generalized Mittag-Leffler stability of a Hilfer fractional differential systems involving both, instantaneous and non-instantaneous impulsive conditions using Lyapunov approach.

The structure of the paper is in the following sequence. Section 2 covers the essential notions that are used in the rest of the paper. In Section 3, mild solution in integral form of impulsive differential equations with Hilfer fractional derivative with changeable initial conditions are discussed. In Section 4, both non-instantaneous and instantaneous impulsive systems are outlined and the lemma which is necessary for the stability analysis is proved. Section 5 elaborates the stability analysis for both the impulsive cases separately.

2. Essential notions

Let t0+=[0,)t_{0}\in\mathbb{R}_{+}=[0,\infty) be the initial time. The fractional integral of order μ\mu is given as [14, Sec 2.3.2],

Itμt0g(t)=1Γ(μ)t0t(ts)μ1g(s)𝑑s,tt0,0<μ<1.{}_{t_{0}}I^{\mu}_{t}g(t)=\dfrac{1}{\Gamma(\mu)}\int^{t}_{t_{0}}(t-s)^{\mu-1}g(s)ds,\enspace t\geq t_{0},\enspace\enspace 0<\mu<1.

Here Γ()\Gamma(\cdot) is the well known gamma function and gg an integrable function. The two classical derivatives Caputo and Riemann-Liouville fractional derivative of order μ\mu are given by [14, Sec 2.4.1],

Dtμt0Cx(t)=1Γ(1μ)t0tx(s)(ts)μ𝑑s,tt0,0<μ<1,{}^{C}_{t_{0}}D^{\mu}_{t}x(t)=\dfrac{1}{\Gamma(1-\mu)}\int^{t}_{t_{0}}\dfrac{x^{\prime}(s)}{(t-s)^{\mu}}ds,\enspace t\geq t_{0},\enspace 0<\mu<1,

and

Dtμt0RLx(t)=1Γ(1μ)(ddt)t0tx(s)(ts)μ𝑑s,tt0,0<μ<1.{}^{RL}_{t_{0}}D^{\mu}_{t}x(t)=\dfrac{1}{\Gamma(1-\mu)}\left(\dfrac{d}{dt}\right)\int^{t}_{t_{0}}\dfrac{x(s)}{(t-s)^{\mu}}ds,\enspace t\geq t_{0},\enspace 0<\mu<1.

The Hilfer fractional derivative of order 0<μ<10<\mu<1 and type 0ν10\leq\nu\leq 1, of function x(t)x(t) is defined by Hilfer [9] as

(t0Dtμ,ν)x(t)=(Itν(1μ)t0D(t0It(1ν)(1μ)))x(t)\displaystyle(_{t_{0}}D^{\mu,\nu}_{t})x(t)=\big{(}{}_{t_{0}}I_{t}^{\nu(1-\mu)}D(_{t_{0}}I_{t}^{(1-\nu)(1-\mu)})\Big{)}x(t)

where D:=ddtD:=\dfrac{d}{dt}. For the results regarding the existence of solution of systems with Hilfer fractional derivative, the reader can refer the work of Furati et al.[5] and Gu and Trujillo [7]. Riemann-Liouville and Caputo can be considered as a particular case of Hilfer fractional derivative, respectively as

Dtμ,νt0={ν=0Dt0It1μ=Dtμt0RLν=1It1μt0D=Dtμt0C{}_{t_{0}}D_{t}^{\mu,\nu}=\left\{\begin{array}[]{ll}\nu=0\Rightarrow D\,_{t_{0}}I_{t}^{1-\mu}={}^{RL}_{t_{0}}D_{t}^{\mu}\\ \nu=1\Rightarrow{}_{t_{0}}I_{t}^{1-\mu}D={}^{C}_{t_{0}}D^{\mu}_{t}\end{array}\right.

The parameter λ\lambda satisfies λ=μ+νμν,0<λ1\lambda=\mu+\nu-\mu\nu,\enspace 0<\lambda\leqq 1. Another important tool that is used is the Laplace transform of fractional order. For the operator \mathcal{L}, the Laplace transform is given by

{x(t):s}:=0estx(t)dt=:X(s),(s)>0.\displaystyle\mathcal{L}\{x(t):s\}:=\int_{0}^{\infty}e^{-st}x(t)dt=:X(s),\enspace\Re(s)>0.

Here, the function xx is assumed to be locally integrable on [0,)[0,\infty). The Laplace transform with respect to the Hilfer fractional derivative, was given by Rezazadeh et al. in [18], as

[Dtμ,ν0x(t):s]=sμ[x(t)]sν(μ1)(It(1ν)(1μ)0x)(0+),(s)>0.\displaystyle\mathcal{L}[{}_{0}D_{t}^{\mu,\nu}x(t):s]=s^{\mu}\mathcal{L}[x(t)]-s^{\nu(\mu-1)}({}_{0}I_{t}^{(1-\nu)(1-\mu)}x)(0^{+}),\enspace\Re(s)>0.

The Mittag-Leffler function with one parameter say μ\mu and two parameters μ\mu and λ\lambda are given respectively as, (see [14] for details)

Eμ(z)=k=0zkΓ(μk+1)andEμ,λ(z)=k=0zkΓ(μk+λ),μ>0,λ>0,z.\displaystyle E_{\mu}(z)=\sum_{k=0}^{\infty}\dfrac{z^{k}}{\Gamma(\mu k+1)}\enspace\mbox{and}\enspace E_{\mu,\lambda}(z)=\sum_{k=0}^{\infty}\dfrac{z^{k}}{\Gamma(\mu k+\lambda)},\enspace\mu>0,\enspace\lambda>0,\enspace z\in\mathfrak{C}.

and for λ=1\lambda=1, Eμ,1(z)=Eμ(z)E_{\mu,1}(z)=E_{\mu}(z).

The Laplace transforms with respect to one and two parameter Mittag-Leffler function are given respectively as

{Eμ(γtμ)}=sμ1sμ+γand{tλ1Eμ,λ(γtμ)}=sμλsμ+γ,γ.\displaystyle\mathcal{L}\{E_{\mu}(-\gamma t^{\mu})\}=\dfrac{s^{\mu-1}}{s^{\mu}+\gamma}\enspace\mbox{and}\enspace\mathcal{L}\{t^{\lambda-1}E_{\mu,\lambda}(-\gamma t^{\mu})\}=\dfrac{s^{\mu-\lambda}}{s^{\mu}+\gamma},\enspace\gamma\in\mathbb{R}.
Proposition 2.1.

[5] For μ(0,1)\mu\in(0,1), δ>0\delta>0 the following statements are true.

Itμt0(tt0)δ1=Γ(δ)Γ(δ+μ)(tt0)δ+μ1\displaystyle{}_{t_{0}}I^{\mu}_{t}(t-t_{0})^{\delta-1}=\dfrac{\Gamma(\delta)}{\Gamma(\delta+\mu)}(t-t_{0})^{\delta+\mu-1}
Dtμ,νt0(tt0)δ1=Γ(δ)Γ(δμ)(tt0)δμ1\displaystyle{}_{t_{0}}D^{\mu,\nu}_{t}(t-t_{0})^{\delta-1}=\dfrac{\Gamma(\delta)}{\Gamma(\delta-\mu)}(t-t_{0})^{\delta-\mu-1}
Corollary 2.1.

[5] Further, for λ(0,1)\lambda\in(0,1), μ(0,1)\mu\in(0,1), the following statements can be derived from the above proposition.

Itμt0(tt0)μ=Γ(1μ)\displaystyle{}_{t_{0}}I_{t}^{\mu}(t-t_{0})^{-\mu}=\Gamma(1-\mu)
Dtμ,νt01=1Γ(1μ)(tt0)μ\displaystyle{}_{t_{0}}D^{\mu,\nu}_{t}1=\dfrac{1}{\Gamma(1-\mu)}(t-t_{0})^{-\mu}
Dtμ,νt0(tt0)λ1=0\displaystyle{}_{t_{0}}D^{\mu,\nu}_{t}(t-t_{0})^{\lambda-1}=0

Consider the nonlinear Hilfer fractional differential equation

Dtμ,νax(t)=G(t,x(t)),t>a,0<μ<1,0ν1.\displaystyle{}_{a}D^{\mu,\nu}_{t}x(t)=G(t,x(t)),\enspace t>a,\enspace 0<\mu<1,\enspace 0\leq\nu\leq 1. (2.1)

The two commonly used initial conditions of (2.1) are as follows:

  1. (1)

    Initial condition in integral form:

    It1λax(t)|t=a=B.\displaystyle{}_{a}I^{1-\lambda}_{t}x(t)|_{t=a}=B\in\mathbb{R}. (2.2)
  2. (2)

    Initial condition in weighted Cauchy type problem:

    limta((ta)1λx(t))=C.\displaystyle\lim_{t\rightarrow a}\left((t-a)^{1-\lambda}x(t)\right)=C\in\mathbb{R}. (2.3)
Remark 2.1.

In accordance with [10, Lemma 3.2], if any function x(t)x(t) satisfies the initial condition (2.2), then x(t)x(t) also satisfies the condition (2.3) with B=CΓ(λ)B=C\Gamma(\lambda). Also (2.1) with the above two forms of initial conditions will have an equivalent integral representations.

In this paper, the initial condition in weighted form (2.3) is taken into consideration and the following lemma gives the integral representation for the weighted form of initial condition. Let C[a,b]C[a,b] and Cn[a,b]C^{n}[a,b] be the space of continuous functions and n times continuously differentiable functions on [a,b][a,b], respectively. In general, the weighted space of continuous functions are given by

C1λ[a,b]\displaystyle C_{1-\lambda}[a,b] ={g:(a,b]:(xa)1λg(x)C[a,b]},0<λ1,\displaystyle=\{g:(a,b]\rightarrow\mathbb{R}:(x-a)^{1-\lambda}g(x)\in C[a,b]\},\enspace 0<\lambda\leq 1,
C1λλ[a,b]\displaystyle C_{1-\lambda}^{\lambda}[a,b] ={gC1λ[a,b],Da+λgC1λ[a,b]}.\displaystyle=\{g\in C_{1-\lambda}[a,b],\enspace D^{\lambda}_{a^{+}}g\in C_{1-\lambda}[a,b]\}.
Lemma 2.1.

[5] Let λ=μ+νμν\lambda=\mu+\nu-\mu\nu where 0<μ<10<\mu<1 and 0ν10\leq\nu\leq 1. Let G:(a,b]×G:(a,b]\times\mathbb{R}\rightarrow\mathbb{R} be a function such that G(,x())C1λ[a,b]G(\cdot,x(\cdot))\in C_{1-\lambda}[a,b] for any xC1λλ[a,b]x\in C^{\lambda}_{1-\lambda}[a,b], then x(t)x(t) satisfies (2.1)-(2.3) if and only if xx satisfies

x(t)=C(ta)λ1+1Γ(μ)atG(s,x(s))(ts)1μ𝑑s,t(a,b].\displaystyle x(t)=C(t-a)^{\lambda-1}+\dfrac{1}{\Gamma(\mu)}\int^{t}_{a}\dfrac{G(s,x(s))}{(t-s)^{1-\mu}}ds,\enspace t\in(a,b].

The following lemma is on the uniqueness of the solution of the Cauchy type problem (2.1)-(2.3) in the space C1λλ[a,b]C^{\lambda}_{1-\lambda}[a,b]. Also, the global existence for the weighted Cauchy type problem for Hilfer fractional differential equation is proved by Furati [5].

Lemma 2.2.

[5] Let 0<μ<10<\mu<1, 0ν10\leq\nu\leq 1 and λ=μ+νμν\lambda=\mu+\nu-\mu\nu. Let G:(a,b]×G:(a,b]\times\mathbb{R}\rightarrow\mathbb{R} be a function such that G(,x())C1λλ[a,b]G(\cdot,x(\cdot))\in C^{\lambda}_{1-\lambda}[a,b] for any xC1λ[a,b]x\in C_{1-\lambda}[a,b] and satisfy the Lipschitz condition such that L>0L>0 exists with |G(t,x)G(t,y)|L|xy||G(t,x)-G(t,y)|\leq L|x-y| . Then there exists an unique solution to the initial value problem (2.1)-(2.3) in the space C1λλ[a,b]C^{\lambda}_{1-\lambda}[a,b].

Lemma 2.3.

[5]

  1. (1)

    If xC(t0,T]x\in C(t_{0},T], then for any point t(t0,T]t\in(t_{0},T]

    Dtμ,νt0(Itμt0x(t))=x(t).\displaystyle{}_{t_{0}}D^{\mu,\nu}_{t}({}_{t_{0}}I^{\mu}_{t}x(t))=x(t).
  2. (2)

    If xC(t0,T]x\in C(t_{0},T] and Itμt0x(t)C(t0,T]{}_{t_{0}}I^{\mu}_{t}x(t)\in C(t_{0},T], then for any point t(t0,T]t\in(t_{0},T],

    Itμt0(Dtμ,νt0x(t))=x(t)(tt0)λ1Γ(λ)It(1μ)(1μ)t0x(t)|t=t0.\displaystyle{}_{t_{0}}I^{\mu}_{t}({}_{t_{0}}D^{\mu,\nu}_{t}x(t))=x(t)-\dfrac{(t-t_{0})^{\lambda-1}}{\Gamma(\lambda)}{}_{t_{0}}I^{(1-\mu)(1-\mu)}_{t}x(t)|_{t=t_{0}}.

3. Existence of mild solution with changed lower bounds of the Hilfer fractional derivative at the impulsive points

3.1. The case when the Impulses are Non-instantaneous

The initial value problem (IVP) with Hilfer fractional differential equations with non-instantaneous impulses is given by

Dtμ,νtix(t)\displaystyle{}_{t_{i}}D^{\mu,\nu}_{t}x(t) =g(t,x),t(ti,pi],i=0,1,k,\displaystyle=g(t,x),\enspace t\in(t_{i},p_{i}],\enspace i=0,1,\ldots k, (3.1)

with weighted impulsive and initial condition,

{x(t)=ϕi(t,x(t),x(pi0)),t(pi,ti+1],i=0,1,2,k1,limtti((tti)1λx(t))=ϕi1(ti,x(ti),x(pi10)),i=1,2,k1,limtt0((tt0)1λx(t))=x0.\displaystyle\left\{\begin{array}[]{ll}x(t)=\phi_{i}(t,x(t),x(p_{i}-0)),\enspace t\in(p_{i},t_{i+1}],\enspace i=0,1,2,\ldots k-1,\\ \lim_{t\rightarrow t_{i}}\big{(}(t-t_{i})^{1-\lambda}x(t)\big{)}=\phi_{i-1}(t_{i},x(t_{i}),x(p_{i-1}-0)),\enspace i=1,2,\ldots k-1,\\ \lim_{t\rightarrow t_{0}}\big{(}(t-t_{0})^{1-\lambda}x(t)\big{)}=x_{0}.\end{array}\right. (3.5)

Here x0nx_{0}\in\mathbb{R}^{n}, g:i=0k[ti,pi]×nng:\cup_{i=0}^{k}[t_{i},p_{i}]\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, ϕi:[pi,ti+1]×n×nn\phi_{i}:[p_{i},t_{i+1}]\times\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} for (i=0,1,2,ki=0,1,2,\ldots k).

Definition 3.1.

A function x:[t0,T]nx:[t_{0},T]\rightarrow\mathbb{R}^{n} is called a mild solution of the IVP for non-instantaneous Hilfer fractional differential system (3.1), if it satisfies the following Volterra-algebraic equation

x(t)={x0(tt0)λ1+1Γ(μ)t0t(ts)μ1g(s,x(s))𝑑s,t(t0,p0],ϕi(t,x(t),x(pi0)),t(pi,ti+1],i=0,1,2,k1,ϕi1(ti,x(ti),x(pi10))(tti)λ1+1Γ(μ)tit(ts)μ1g(s,x(s))𝑑s,t(ti,pi],i=1,2,k.\displaystyle\ x(t)=\left\{\begin{array}[]{ll}x_{0}(t-t_{0})^{\lambda-1}+\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{0}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{0},p_{0}],\\ \phi_{i}(t,x(t),x(p_{i}-0)),\enspace t\in(p_{i},t_{i+1}],\enspace i=0,1,2,\ldots k-1,\\ \phi_{i-1}(t_{i},x(t_{i}),x(p_{i-1}-0))(t-t_{i})^{\lambda-1}\\ +\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{i}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{i},p_{i}],\enspace i=1,2,\ldots k.\end{array}\right.

The following theorem gives the condition for the existence and uniqueness of a mild solution for the fractional system (3.1) with impulsive and initial conditions given in (3.5).

Theorem 3.1.

The weighted form of IVP (3.1) has a unique mild solution if the following assumptions are satisfied.

  1. (1)

    For x1,x2nx_{1},x_{2}\in\mathbb{R}^{n}, the function g:i=0k[ti,pi]×nng:\cup_{i=0}^{k}[t_{i},p_{i}]\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, g(t,x)i=0kC1λ[ti,pi]g(t,x)\in\cup_{i=0}^{k}C_{1-\lambda}[t_{i},p_{i}] satisfies the inequality,

    g(t,x1)g(t,x2)Lx1x2,forL>0t[ti,pi].\displaystyle\|g(t,x_{1})-g(t,x_{2})\|\leq L\|x_{1}-x_{2}\|,\enspace\mbox{for}\enspace L>0\enspace\forall t\in[t_{i},p_{i}].
  2. (2)

    For x1,x2,y1,y2nx_{1},x_{2},y_{1},y_{2}\in\mathbb{R}^{n}, the function ϕi(t,x,y)C[pi,ti+1]\phi_{i}(t,x,y)\in C[p_{i},t_{i+1}] satisfies the inequality,

    ϕi(t,x1,y1)ϕi(t,x2,y2)Ii(x1x2+y1y2),\displaystyle\|\phi_{i}(t,x_{1},y_{1})-\phi_{i}(t,x_{2},y_{2})\|\leq I_{i}\big{(}\|x_{1}-x_{2}\|+\|y_{1}-y_{2}\|\big{)},

    for t[pi,ti+1]t\in[p_{i},t_{i+1}], and Ii>0,(i=0,1,k1)I_{i}>0,\enspace(i=0,1,\ldots k-1).

  3. (3)

    The inequality K<1K<1 holds where,

    K=max(maxi=0,1,kIi,\displaystyle K=\max\Bigg{(}\max_{i=0,1,\ldots k}I_{i},\enspace L(tt0)μΓ(μ)(1pλp)1p(pp+μ1)p,Ii+Ii(pi1ti1)1λ\displaystyle\dfrac{L(t-t_{0})^{\mu}}{\Gamma(\mu)}\Big{(}\frac{1-p}{\lambda-p}\Big{)}^{1-p}\Big{(}\dfrac{p}{p+\mu-1}\Big{)}^{p},\enspace I_{i}+\dfrac{I_{i}}{(p_{i-1}-t_{i-1})^{1-\lambda}}
    +L(tti)μΓ(μ)(1pλp)1p(pp+μ1)p).\displaystyle+\dfrac{L(t-t_{i})^{\mu}}{\Gamma(\mu)}\Big{(}\frac{1-p}{\lambda-p}\Big{)}^{1-p}\Big{(}\dfrac{p}{p+\mu-1}\Big{)}^{p}\Bigg{)}.
Proof.

The theorem is proved using Banach contraction principle. An operator 𝒢\mathcal{G} is defined for any function xPC1λ[t0,T]x\in PC_{1-\lambda}[t_{0},T] as

𝒢x(t)={x0(tt0)λ1+1Γ(μ)t0t(ts)μ1g(s,x(s))𝑑s,t(t0,p0],ϕi(t,x(t),x(pi0)),t(pi,ti+1],i=0,1,2,k1,ϕi1(ti,x(ti),x(pi10))(tti)λ1+1Γ(μ)tit(ts)μ1g(s,x(s))𝑑s,t(ti,pi],i=1,2,k.\displaystyle\mathcal{G}x(t)=\left\{\begin{array}[]{ll}x_{0}(t-t_{0})^{\lambda-1}+\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{0}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{0},p_{0}],\\ \phi_{i}(t,x(t),x(p_{i}-0)),\enspace t\in(p_{i},t_{i+1}],\enspace i=0,1,2,\ldots k-1,\\ \phi_{i-1}(t_{i},x(t_{i}),x(p_{i-1}-0))(t-t_{i})^{\lambda-1}\\ +\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{i}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{i},p_{i}],\enspace i=1,2,\ldots k.\end{array}\right. (3.11)

From the assumption 11, given in the theorem statement, it can observed that the operator 𝒢x(t)\mathcal{G}x(t) is well defined. The theorem can be proved by a series of steps.

Step 1. To prove that 𝒢x(t)PC1λ[t0,T]\mathcal{G}x(t)\in PC_{1-\lambda}[t_{0},T] for xPC1λ[t0,T]x\in PC_{1-\lambda}[t_{0},T].
From the definition of the operator 𝒢\mathcal{G} in (3.11), it is obvious that

𝒢x(t)i=0kC(ti,pi)i=0kC(pi,ti+1).\mathcal{G}x(t)\in\cup^{k}_{i=0}C(t_{i},p_{i})\bigcup\cup_{i=0}^{k}C(p_{i},t_{i+1}).

For the case t(t0,p0]t\in(t_{0},p_{0}],

(tt0)1λ𝒢x(t)\displaystyle(t-t_{0})^{1-\lambda}\mathcal{G}x(t) =x0+1Γ(μ)t0t(tt0)1λ(ts)1μg(s,x(s))𝑑s.\displaystyle=x_{0}+\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{0}}^{t}\dfrac{(t-t_{0})^{1-\lambda}}{(t-s)^{1-\mu}}g(s,x(s))ds.
\displaystyle\Longrightarrow (tt0)1λ𝒢x(t)C(t0,p0].\displaystyle(t-t_{0})^{1-\lambda}\mathcal{G}x(t)\in C(t_{0},p_{0}].

For the case t(ti,pi]t\in(t_{i},p_{i}], i=1,2,ki=1,2,\ldots k,

(tti)1λ𝒢x(t)\displaystyle(t-t_{i})^{1-\lambda}\mathcal{G}x(t) =ϕi1(ti,xi(t),x(pi10))+1Γ(μ)tit(tti)1λ(ts)1μg(s,x(s))𝑑s.\displaystyle=\phi_{i-1}(t_{i},x_{i}(t),x(p_{i-1}-0))+\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{i}}^{t}\dfrac{(t-t_{i})^{1-\lambda}}{(t-s)^{1-\mu}}g(s,x(s))ds.
(tti)1λ𝒢x(t)\displaystyle\Longrightarrow(t-t_{i})^{1-\lambda}\mathcal{G}x(t) C(ti,pi].\displaystyle\in C(t_{i},p_{i}].

Hence proved.

Step 2. The proof will be complete if it can be proved that 𝒢\mathcal{G} is a contraction operator in PC1λ[t0,T]PC_{1-\lambda}[t_{0},T]. Let x1,x2PC1λ[t0,T]x_{1},x_{2}\in PC_{1-\lambda}[t_{0},T].
Consider the case t(t0,p0]t\in(t_{0},p_{0}],

supt[t0,p0]\displaystyle\sup_{t\in[t_{0},p_{0}]} (tt0)1λ𝒢x1(t)(tt0)1λ𝒢x2(t)\displaystyle\|(t-t_{0})^{1-\lambda}\mathcal{G}x_{1}(t)-(t-t_{0})^{1-\lambda}\mathcal{G}x_{2}(t)\|
L(tt0)1λΓ(μ)t0t(ts)μ1x1(s)x2(s)𝑑s\displaystyle\leq\dfrac{L(t-t_{0})^{1-\lambda}}{\Gamma(\mu)}\int_{t_{0}}^{t}(t-s)^{\mu-1}\|x_{1}(s)-x_{2}(s)\|ds
=L(tt0)1λΓ(μ)t0t(ts)μ1(st0)1λ(st0)1λx1(s)(st0)1λx2(s)𝑑s\displaystyle=\dfrac{L(t-t_{0})^{1-\lambda}}{\Gamma(\mu)}\int_{t_{0}}^{t}\dfrac{(t-s)^{\mu-1}}{(s-t_{0})^{1-\lambda}}\|(s-t_{0})^{1-\lambda}x_{1}(s)-(s-t_{0})^{1-\lambda}x_{2}(s)\|ds
x1x2PC1λ[t0,T]L(tt0)1λΓ(μ)t0t(ts)μ1(st0)1λ𝑑s.\displaystyle\leq\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}\dfrac{L(t-t_{0})^{1-\lambda}}{\Gamma(\mu)}\int_{t_{0}}^{t}\dfrac{(t-s)^{\mu-1}}{(s-t_{0})^{1-\lambda}}ds.

To proceed further, Ho¨\ddot{o}lder’s inequality is applied and it leads to

supt[t0,p0](tt0)1λ𝒢x1(t)(tt0)1λ𝒢x2(t)\displaystyle\sup_{t\in[t_{0},p_{0}]}\|(t-t_{0})^{1-\lambda}\mathcal{G}x_{1}(t)-(t-t_{0})^{1-\lambda}\mathcal{G}x_{2}(t)\|
x1x2PC1λ[t0,T]L(tt0)1λΓ(μ)[(t0t(st0)λ11p𝑑s)1p(t0t(ts)μ1p𝑑s)p]\displaystyle\leq\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}\dfrac{L(t-t_{0})^{1-\lambda}}{\Gamma(\mu)}\Bigg{[}\Big{(}\int_{t_{0}}^{t}(s-t_{0})^{\frac{\lambda-1}{1-p}}ds\Big{)}^{1-p}\Big{(}\int_{t_{0}}^{t}(t-s)^{\frac{\mu-1}{p}}ds\Big{)}^{p}\Bigg{]}
=x1x2PC1λ[t0,T]L(tt0)1λΓ(μ)[(1pλp)1p(tt0)λp(pp+μ1)p(tt0)p+μ1]\displaystyle=\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}\dfrac{L(t-t_{0})^{1-\lambda}}{\Gamma(\mu)}\Bigg{[}\Big{(}\dfrac{1-p}{\lambda-p}\Big{)}^{1-p}(t-t_{0})^{\lambda-p}\Big{(}\dfrac{p}{p+\mu-1}\Big{)}^{p}(t-t_{0})^{p+\mu-1}\Bigg{]}
=x1x2PC1λ[t0,T]L(tt0)μΓ(μ)(1pλp)1p(pp+μ1)p.\displaystyle=\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}\dfrac{L(t-t_{0})^{\mu}}{\Gamma(\mu)}\Big{(}\frac{1-p}{\lambda-p}\Big{)}^{1-p}\Big{(}\dfrac{p}{p+\mu-1}\Big{)}^{p}.
supt[t0,p0](tt0)1λ𝒢x1(t)(tt0)1λ𝒢x2(t)Kx1x2PC1λ[t0,T].\displaystyle\Longrightarrow\sup_{t\in[t_{0},p_{0}]}\|(t-t_{0})^{1-\lambda}\mathcal{G}x_{1}(t)-(t-t_{0})^{1-\lambda}\mathcal{G}x_{2}(t)\|\leq K\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}. (3.12)

For the case t(p0,t1]t\in(p_{0},t_{1}],

sup(p0,t1]𝒢x1(t)𝒢x2(t)=\displaystyle\sup_{(p_{0},t_{1}]}\|\mathcal{G}x_{1}(t)-\mathcal{G}x_{2}(t)\|= sup(p0,t1]ϕ0(t,x1(p00))ϕ0(t,x2(p00))\displaystyle\sup_{(p_{0},t_{1}]}\|\phi_{0}\big{(}t,x_{1}(p_{0}-0)\big{)}-\phi_{0}\big{(}t,x_{2}(p_{0}-0)\big{)}\|
\displaystyle\leq I0x1x2PC1λ[t0,T].\displaystyle\enspace I_{0}\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}.

In a similar way for t(pi,ti+1]t\in(p_{i},t_{i+1}],

sup(pi,ti+1]𝒢x1(t)𝒢x2(t)=\displaystyle\sup_{(p_{i},t_{i+1}]}\|\mathcal{G}x_{1}(t)-\mathcal{G}x_{2}(t)\|= sup(pi,ti+1]ϕi(t,x1(pi0))ϕi(t,x2(pi0))\displaystyle\sup_{(p_{i},t_{i+1}]}\|\phi_{i}\big{(}t,x_{1}(p_{i}-0)\big{)}-\phi_{i}\big{(}t,x_{2}(p_{i}-0)\big{)}\|
\displaystyle\leq Iix1x2PC1λ[t0,T]Kx1x2PC1λ[t0,T].\displaystyle I_{i}\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}\leq K\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}. (3.13)

For the general case t(ti,pi]t\in(t_{i},p_{i}], the calculation can be proceeded as below:

supt(ti,pi]\displaystyle\sup_{t\in(t_{i},p_{i}]} (tti)1λ𝒢x1(t)(tti)1λ𝒢x2(t)\displaystyle\|(t-t_{i})^{1-\lambda}\mathcal{G}x_{1}(t)-(t-t_{i})^{1-\lambda}\mathcal{G}x_{2}(t)\|
\displaystyle\leq ϕi1(ti,x1(ti),x1(pi10))ϕi1(ti,x2(ti),x2(pi10))\displaystyle\|\phi_{i-1}\big{(}t_{i},x_{1}(t_{i}),x_{1}(p_{i-1}-0)\big{)}-\phi_{i-1}\big{(}t_{i},x_{2}(t_{i}),x_{2}(p_{i-1}-0)\big{)}\|
+\displaystyle+ 1Γ(μ)tit(tti)1λ(ts)μ1g(s,x1(s))g(s,x2(s))𝑑s\displaystyle\dfrac{1}{\Gamma(\mu)}\int_{t_{i}}^{t}(t-t_{i})^{1-\lambda}(t-s)^{\mu-1}\|g\big{(}s,x_{1}(s)\big{)}-g\big{(}s,x_{2}(s)\big{)}\|ds
\displaystyle\leq Iix1(ti)x2(ti)\displaystyle I_{i}\|x_{1}(t_{i})-x_{2}(t_{i})\|
+\displaystyle+ Ii(pi1ti1)1λ(pi1ti1)1λx1(pi10)x2(pi10)\displaystyle\dfrac{I_{i}}{(p_{i-1}-t_{i-1})^{1-\lambda}}(p_{i-1}-t_{i-1})^{1-\lambda}\big{\|}x_{1}(p_{i-1}-0)-x_{2}(p_{i-1}-0)\big{\|}
+\displaystyle+ L(tti)1λΓ(μ)tit(ts)μ1(sti)1λ(sti)1λx1(s)(sti)1λx2(s)𝑑s.\displaystyle\dfrac{L(t-t_{i})^{1-\lambda}}{\Gamma(\mu)}\int_{t_{i}}^{t}\dfrac{(t-s)^{\mu-1}}{(s-t_{i})^{1-\lambda}}\big{\|}(s-t_{i})^{1-\lambda}x_{1}(s)-(s-t_{i})^{1-\lambda}x_{2}(s)\big{\|}ds.

From the fact that

x1(ti)x2(ti)supt(pi,ti+1]x1(t)x2(t)x1x2PC1λ[t0,T],\displaystyle\|x_{1}(t_{i})-x_{2}(t_{i})\|\leq\sup_{t\in(p_{i},t_{i+1}]}\|x_{1}(t)-x_{2}(t)\|\leq\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]},

and

(pi1ti1)1λ\displaystyle\big{\|}(p_{i-1}-t_{i-1})^{1-\lambda} (x1(pi10)x2(pi10))\displaystyle\big{(}x_{1}(p_{i-1}-0)-x_{2}(p_{i-1}-0)\big{)}\big{\|}
supt(ti1,pi1](tti)1λ(x1(t)x2(t))x1x2PC1λ[t0,T],\displaystyle\leq\sup_{t\in(t_{i-1},p_{i-1}]}\big{\|}(t-t_{i})^{1-\lambda}\big{(}x_{1}(t)-x_{2}(t)\big{)}\big{\|}\leq\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]},

the following conclusion can be drawn. That is,

supt(ti,pi](tti)1λ𝒢x1(t)(tti)1λ𝒢x2(t)\displaystyle\sup_{t\in(t_{i},p_{i}]}\|(t-t_{i})^{1-\lambda}\mathcal{G}x_{1}(t)-(t-t_{i})^{1-\lambda}\mathcal{G}x_{2}(t)\|
\displaystyle\leq [Ii+Ii(pi1ti1)1λ+L(tti)μΓ(μ)(1pλp)1p(pp+μ1)p]x1x2PC1λ[t0,T]\displaystyle\Bigg{[}I_{i}+\dfrac{I_{i}}{(p_{i-1}-t_{i-1})^{1-\lambda}}+\dfrac{L(t-t_{i})^{\mu}}{\Gamma(\mu)}\Big{(}\frac{1-p}{\lambda-p}\Big{)}^{1-p}\Big{(}\dfrac{p}{p+\mu-1}\Big{)}^{p}\Bigg{]}\big{\|}x_{1}-x_{2}\big{\|}_{PC_{1-\lambda}[t_{0},T]}
\displaystyle\leq Kx1x2PC1λ[t0,T].\displaystyle K\|x_{1}-x_{2}\|_{PC_{1-\lambda}[t_{0},T]}. (3.14)

From the inequalities (3.12), (3.1), (3.1) and from the assumption (3) of the given theorem hypothesis, the theorem is proved. ∎

3.2. The case when the Impulses are Instantaneous

Consider the IVP of Hilfer fractional differential equations with instantaneous impulses as below:

Dtμ,νtix(t)\displaystyle{}_{t_{i}}D^{\mu,\nu}_{t}x(t) =g(t,x),t(ti,ti+1],i=0,1,k,\displaystyle=g(t,x),\enspace t\in(t_{i},t_{i+1}],\enspace i=0,1,\ldots k, (3.15)

with weighted impulsive and initial condition,

{x(t)=ψi(t,x(ti0)),t=ti,i=1,2,k,limtti((tti)1λx(t))=ψi(ti,x(ti0)),i=1,2,k,limtt0((tt0)1λx(t))=x0.\displaystyle\left\{\begin{array}[]{ll}x(t)=\psi_{i}\big{(}t,x(t_{i}-0)\big{)},\enspace t=t_{i},\enspace i=1,2,\ldots k,\\ \lim_{t\rightarrow t_{i}}\big{(}(t-t_{i})^{1-\lambda}x(t)\big{)}=\psi_{i}(t_{i},x(t_{i}-0)),\enspace i=1,2,\ldots k,\\ \lim_{t\rightarrow t_{0}}\big{(}(t-t_{0})^{1-\lambda}x(t)\big{)}=x_{0}.\end{array}\right.

Here x0nx_{0}\in\mathbb{R}^{n}, g:i=0k[ti,ti+1]×nng:\cup_{i=0}^{k}[t_{i},t_{i+1}]\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} and ψi:[to,T]×nn\psi_{i}:[t_{o},T]\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} for (i=0,1,2,ki=0,1,2,\ldots k).

Definition 3.2.

A function x:[t0,T]nx:[t_{0},T]\rightarrow\mathbb{R}^{n} is called a mild solution of the IVP for instantaneous Hilfer fractional differential system (3.15) if it satisfies the following Volterra-algebraic equation

x(t)={ψi(t,x(ti0)),t=ti,i=1,2,k,ψi(ti,x(ti0))(tti)λ1+1Γ(μ)tit(ts)μ1g(s,x(s))𝑑s,t(ti,ti+1],i=1,2,k,ψ0(t,x(t00))=x0.\displaystyle x(t)=\left\{\begin{array}[]{ll}\psi_{i}(t,x(t_{i}-0)),\enspace t=t_{i},\enspace i=1,2,\ldots k,\\ \psi_{i}(t_{i},x(t_{i}-0))(t-t_{i})^{\lambda-1}\\ +\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{i}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{i},t_{i+1}],\enspace i=1,2,\ldots k,\\ \psi_{0}(t,x(t_{0}-0))=x_{0}.\end{array}\right.
Remark 3.1.

The existence and uniqueness of the mild solution of the system (3.15) can be proved in a similar way as Theorem 3.1.

4. Stability Analysis

While analyzing the nonlinear systems, stability is vital, amongst other significant traits in control theory. In 1996, the stability of linear fractional systems were studied by Matignon [13] concerning the Caputo derivative. Subsequently, a substantial study has been done by many authors on the stability theory of fractional systems. The work of Li et al. [12] on stability impelled many authors to peruse the study on Mittag-Leffler stability and Lyapunov direct method. The following is the definition of the generalized Mittag-Leffler stability of the solution x(t)x(t) of the Hilfer fractional differential system.

Definition 4.1.

Let Ω\Omega\subset\mathbb{R} be a domain containing the origin. The solution is said to be generalized Mittag-Leffler Stable if

x(t)[m[It1λt0x(t0)](tt0)λ1Eμ,λ(γ(tt0)μ)]c,\displaystyle\|x(t)\|\leq\big{[}m[{}_{t_{0}}I_{t}^{1-\lambda}x(t_{0})](t-t_{0})^{\lambda-1}E_{\mu,\lambda}\big{(}-\gamma(t-t_{0})^{\mu}\big{)}\big{]}^{c},

where μ(0,1)\mu\in(0,1), ν[0,1]\nu\in[0,1], λ=ν+νμν\lambda=\nu+\nu-\mu\nu, γ0\gamma\geq 0, m(0)=0m(0)=0, m(x)0m(x)\geq 0 and m(x)m(x) is locally Lipschitz with Lipschitz constant m0m_{0} and It1λt0x(t0){}_{t_{0}}I_{t}^{1-\lambda}x(t_{0}) is the integral type initial condition.

We discuss the stability analysis of the two impulsive system in the subsequent subsections separately.

4.1. For Non-instantaneous Impulsive System

For the non-instantaneous impulsive system with Hilfer fractional order, consider the sequences {ti}i=1\{t_{i}\}_{i=1}^{\infty}, {pi}i=0\{p_{i}\}^{\infty}_{i=0}, with 0t0<p0<ti<pi<ti+1pi+10\leq t_{0}<p_{0}<t_{i}<p_{i}<t_{i+1}\leq p_{i+1} for i=1,2,i=1,2,\ldots and limiti=\displaystyle\lim_{i\rightarrow\infty}t_{i}=\infty. The IVP with non-instantaneous impulses and Hilfer order derivative is given by

Dtμ,νtix(t)\displaystyle{}_{t_{i}}D^{\mu,\nu}_{t}x(t) =g(t,x),t(ti,pi],i=0,1,,\displaystyle=g(t,x),\enspace t\in(t_{i},p_{i}],\enspace i=0,1,\ldots, (4.1)

with weighted impulsive and initial condition,

{x(t)=ϕi(t,x(t),x(pi0)),t(pi,ti+1],i=0,1,2,,limtti((tti)1λx(t))=ϕi(ti,x(ti),x(pi0)),i=0,1,2,,limtt0((tt0)1λx(t))=x0.\displaystyle\left\{\begin{array}[]{ll}x(t)=\phi_{i}(t,x(t),x(p_{i}-0)),\enspace t\in(p_{i},t_{i+1}],\enspace i=0,1,2,\ldots,\\ \lim_{t\rightarrow t_{i}}\big{(}(t-t_{i})^{1-\lambda}x(t)\big{)}=\phi_{i}(t_{i},x(t_{i}),x(p_{i}-0)),\enspace i=0,1,2,\ldots,\\ \lim_{t\rightarrow t_{0}}\big{(}(t-t_{0})^{1-\lambda}x(t)\big{)}=x_{0}.\end{array}\right.

Here x0nx_{0}\in\mathbb{R}^{n}, g:i=0[ti,pi]×nng:\cup_{i=0}^{\infty}[t_{i},p_{i}]\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, ϕi:[pi,ti+1]×n×nn\phi_{i}:[p_{i},t_{i+1}]\times\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} for (i=0,1,2,i=0,1,2,\ldots).
For an arbitrary initial value τ[ti,pi)\tau\in[t_{i},p_{i}), i=0,1,i=0,1,\ldots, a general Hilfer fractional IVP can be described as

Dtμ,ντx(t)=g(t,x(t)),t[τ,pi],limtτ((tτ)1λx(t))=x^0.\begin{split}{}_{\tau}D_{t}^{\mu,\nu}x(t)=&g\big{(}t,x(t)\big{)},\enspace t\in[\tau,p_{i}],\\ \lim_{t\rightarrow\tau}\big{(}(t-\tau)^{1-\lambda}x(t)\big{)}=&\widehat{x}_{0}.\end{split} (4.3)

The solution of the IVP of Hilfer fractional non-instantaneous differential system (4.1), with variable initial condition is given by

x(t)=x(t;t0,x0)=\displaystyle x(t)=x(t;t_{0},x_{0})= {Xi(t),t(ti,pi],i=0,1,ϕi(t,x(t),Xi(pi0)),t(pi,ti+1],i=0,1,2,\displaystyle\left\{\begin{array}[]{lll}X_{i}(t),&t\in(t_{i},p_{i}],&i=0,1,\ldots\\ \phi_{i}(t,x(t),X_{i}(p_{i}-0)),&t\in(p_{i},t_{i+1}],&i=0,1,2,\ldots\end{array}\right.

The following remark is the output of the interval-by-interval analysis of the IVP with the Hilfer fractional derivative given above.

Remark 4.1.
  1. (1)

    For t[t0,p0]t\in[t_{0},p_{0}], the solution X0(t)X_{0}(t) of the system (4.1) coincides with the solution of IVP (4.3) for τ=t0\tau=t_{0}, i=0i=0 and x^0=x0;\widehat{x}_{0}=x_{0};

  2. (2)

    For t(p0,t1]t\in(p_{0},t_{1}], the solution of the system (4.1) satisfies the system

    x(t;t0,x0)=ϕ0(t,x(t;t0,x0),X1(p00));\displaystyle x(t;t_{0},x_{0})=\phi_{0}\big{(}t,x(t;t_{0},x_{0}),X_{1}(p_{0}-0)\big{)};
  3. (3)

    For t(t1,p1]t\in(t_{1},p_{1}], the solution X1(t)X_{1}(t) of the system (4.1) coincides with the solution of IVP (4.3) for τ=t1\tau=t_{1}, i=1i=1 and x^0=ϕ0(t1,x(t1;t0,x0),X1(p00));\widehat{x}_{0}=\phi_{0}\big{(}t_{1},x(t_{1};t_{0},x_{0}),X_{1}(p_{0}-0)\big{)};

  4. (4)

    For t(p1,t2]t\in(p_{1},t_{2}], the solution of the system (4.1) satisfies the system

    x(t;t0,x0)=ϕ1(t,x(t;t0,x0),X2(p10));\displaystyle x(t;t_{0},x_{0})=\phi_{1}\big{(}t,x(t;t_{0},x_{0}),X_{2}(p_{1}-0)\big{)};
  5. (5)

    For t(t2,p2]t\in(t_{2},p_{2}], the solution X2(t)X_{2}(t) of the system (4.1) coincides with the solution of IVP (4.3) for τ=t2\tau=t_{2}, i=2i=2 and x^0=ϕ1(t2,x(t2;t0,x0),X2(p10));\widehat{x}_{0}=\phi_{1}\big{(}t_{2},x(t_{2};t_{0},x_{0}),X_{2}(p_{1}-0)\big{)};

and so on.

In general, the solution x(t)x(t), tt0t\geq t_{0} satisfies the integral system

x(t)={x0(tt0)λ1+1Γ(μ)t0t(ts)μ1g(s,x(s))𝑑s,t[t0,p0],ϕi(t,x(t),x(pi0)),t(pi,ti+1],i=0,1,2,,ϕi1(ti,x(ti),x(pi10))(tti)λ1+1Γ(μ)tit(ts)μ1g(s,x(s))𝑑s,t(ti,pi],i=1,2,.\displaystyle x(t)=\left\{\begin{array}[]{ll}x_{0}(t-t_{0})^{\lambda-1}+\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{0}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in[t_{0},p_{0}],\\ \phi_{i}(t,x(t),x(p_{i}-0)),\enspace t\in(p_{i},t_{i+1}],\enspace i=0,1,2,\ldots,\\ \phi_{i-1}(t_{i},x(t_{i}),x(p_{i-1}-0))(t-t_{i})^{\lambda-1}\\ +\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{i}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{i},p_{i}],\enspace i=1,2,\ldots.\end{array}\right. (4.8)

The following definition is proposed, for the zero solution of a non-instantaneous system with Hilfer fractional derivative to be Mittag-Leffler stable.

Definition 4.2.

The zero solution of the non-instantaneous impulsive system (4.1) with Hilfer fractional derivative of order 0<μ<10<\mu<1 and type 0ν10\leq\nu\leq 1 is said to be Mittag-Leffler stable if there exist constants a,b,h,γa,b,h,\gamma such that for any initial time t0[0,p0)i=1[ti,pi)t_{0}\in[0,p_{0})\bigcup_{i=1}^{\infty}[t_{i},p_{i}) the following inequality holds.

x(t){hx0b[(l=0i1(pltl)λ1Eμ,ν(γ(pltl)μ))(tti)λ1Eμ,ν(γ(tti)μ)]1a,t[ti,pi],i=1,2,hx0b[(l=0i(pltl)λ1Eμ,ν(γ(pltl)μ))]1a,t[pi,ti+1],i=0,1,.\displaystyle\|x(t)\|\leq\left\{\begin{array}[]{ll}h\|x_{0}\|^{b}\Big{[}\Big{(}\displaystyle\prod_{l=0}^{i-1}(p_{l}-t_{l})^{\lambda-1}E_{\mu,\nu}\big{(}-\gamma(p_{l}-t_{l})^{\mu}\big{)}\Big{)}(t-t_{i})^{\lambda-1}E_{\mu,\nu}\big{(}-\gamma(t-t_{i})^{\mu}\big{)}\Big{]}^{\frac{1}{a}},\\ \hskip 56.9055ptt\in[t_{i},p_{i}],i=1,2,\ldots\\ h\|x_{0}\|^{b}\Big{[}\Big{(}\displaystyle\prod_{l=0}^{i}(p_{l}-t_{l})^{\lambda-1}E_{\mu,\nu}\big{(}-\gamma(p_{l}-t_{l})^{\mu})\Big{)}\Big{]}^{\frac{1}{a}},\enspace t\in[p_{i},t_{i+1}],\enspace i=0,1,\ldots.\end{array}\right.

An example is given below to provide a more detailed view of the solution of the non-instantaneous impulsive system with Hilfer fractional derivative and its particular case reducing to Caputo and Riemann-Liouville derivative.

Example 1.

[2]. Consider the IVP with μ=0.4\mu=0.4, g(t,x)=tg(t,x)=t, ti=it_{i}=i, pi=0.5+ip_{i}=0.5+i, i=0,1,i=0,1,\ldots. Let ϕi(t,x,y)=tix+y\phi_{i}(t,x,y)=t-ix+y for (pi,ti+1](p_{i},t_{i+1}], i=0,1,2i=0,1,2\ldots with the solution x(t)=tix(t)+x(pi0)x(t)=t-ix(t)+x(p_{i}-0) or x(t)=t+x(pi0)1+ix(t)=\dfrac{t+x(p_{i}-0)}{1+i} in the interval (pi,ti+1](p_{i},t_{i+1}]. Let

G(t,a)=atg(s,x(s))(ts)1μ𝑑s.G(t,a)=\displaystyle\int_{a}^{t}\dfrac{g(s,x(s))}{(t-s)^{1-\mu}}ds.

For the given example, let g(s,x(s))=tg(s,x(s))=t. Hence, G(t,a)=ats(ts)0.6𝑑sG(t,a)=\displaystyle\int_{a}^{t}\dfrac{s}{(t-s)^{0.6}}ds and using Mathematica 12.2, the value of G(t,a)G(t,a) is calculated as below:

G(t,a)=2.46265×1016t1.4+0.714286a(a+t)(2/5)+1.78571t1(a+t)(2/5)\displaystyle G(t,a)=-2.46265\times 10^{-16}t^{1.4}+0.714286a(-a+t)^{(2/5)}+1.78571t^{1}(-a+t)^{(2/5)}

The solution derived in (4.8), for this example can be calculated as,

x(t)={x0tλ1+G(t,0)Γ(0.4),t(0,0.5],t+x0(0.5)λ1+G(0.5,0)Γ(0.4),t(0.5,1],(1+x0(0.5)λ1+G(0.5,0)Γ(0.4))(t1)λ1+G(t,1)Γ(0.4),t(1,1.5],12[(t+1+x0(0.5)λ1+G(0.5,0)Γ(0.4))(0.5)λ1+G(1.5,1)Γ(0.4)],t(1.5,2].\displaystyle x(t)=\left\{\begin{array}[]{ll}x_{0}t^{\lambda-1}+\dfrac{G(t,0)}{\Gamma(0.4)},&t\in(0,0.5],\\ t+x_{0}(0.5)^{\lambda-1}+\dfrac{G(0.5,0)}{\Gamma(0.4)},&t\in(0.5,1],\\ \Big{(}1+x_{0}(0.5)^{\lambda-1}+\dfrac{G(0.5,0)}{\Gamma(0.4)}\Big{)}(t-1)^{\lambda-1}+\dfrac{G(t,1)}{\Gamma(0.4)},&t\in(1,1.5],\\ \dfrac{1}{2}\Big{[}\Big{(}t+1+x_{0}(0.5)^{\lambda-1}+\dfrac{G(0.5,0)}{\Gamma(0.4)}\Big{)}(0.5)^{\lambda-1}+\dfrac{G(1.5,1)}{\Gamma(0.4)}\Big{]},&t\in(1.5,2].\end{array}\right.

Further, for t(2,2.5]t\in(2,2.5], the solution reduces to

x(t)=12[(2+1+x0(0.5)λ1+G(0.5,0)Γ(0.4))(0.5)λ1+G(1.5,1)Γ(0.4)](t2)λ1+G(t,2)Γ(0.4),\displaystyle x(t)=\dfrac{1}{2}\Big{[}\Big{(}2+1+x_{0}(0.5)^{\lambda-1}+\dfrac{G(0.5,0)}{\Gamma(0.4)}\Big{)}(0.5)^{\lambda-1}+\dfrac{G(1.5,1)}{\Gamma(0.4)}\Big{]}(t-2)^{\lambda-1}+\dfrac{G(t,2)}{\Gamma(0.4)},

and so on. For different values of ν\nu, the value of λ\lambda varies. For μ=0.4\mu=0.4 and ν=1\nu=1 the solutions are same as given in [2]. Also for different values of λ\lambda and x0=1x_{0}=1, the graph given below provide a clear idea regarding the solution.

Refer to caption
(a) With μ=0.4\mu=0.4 and various values of ν\nu.
Refer to caption
(b) With μ=0.4\mu=0.4 and ν=1\nu=1
Figure 1. Caputo as a special case of Hilfer order derivative.

4.2. For Instantaneous Impulsive System

For the instantaneous impulsive system with Hilfer fractional order, consider the sequence {ti}i=1\{t_{i}\}_{i=1}^{\infty} with 0t0<t1<t2<<ti+10\leq t_{0}<t_{1}<t_{2}<\ldots<t_{i+1} for i=1,2,i=1,2,\ldots and limiti=\displaystyle\lim_{i\rightarrow\infty}t_{i}=\infty. The IVP with instantaneous impulses and Hilfer fractional derivative is given by

Dtμ,νtix(t)\displaystyle{}_{t_{i}}D^{\mu,\nu}_{t}x(t) =g(t,x)t(ti,ti+1],i=0,1,,\displaystyle=g(t,x)\enspace t\in(t_{i},t_{i+1}],\enspace i=0,1,\ldots, (4.9)

with weighted impulsive and initial condition,

{x(t)=ψi(t,x(ti0)),t=ti,i=1,2,,limtti((tti)1λx(t))=ψi(ti,x(ti0)),i=1,2,,limtt0((tt0)1λx(t))=x0.\displaystyle\left\{\begin{array}[]{ll}x(t)=\psi_{i}(t,x(t_{i}-0)),\enspace t=t_{i},\enspace i=1,2,\ldots,\\ \lim_{t\rightarrow t_{i}}\big{(}(t-t_{i})^{1-\lambda}x(t)\big{)}=\psi_{i}(t_{i},x(t_{i}-0)),\enspace i=1,2,\ldots,\\ \lim_{t\rightarrow t_{0}}\big{(}(t-t_{0})^{1-\lambda}x(t)\big{)}=x_{0}.\end{array}\right.

Here x0nx_{0}\in\mathbb{R}^{n}, g:i=0[ti,ti+1]×nng:\cup_{i=0}^{\infty}[t_{i},t_{i+1}]\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} and ψi:[t0,)×nn\psi_{i}:[t_{0},\infty)\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} for (i=1,2,i=1,2,\ldots)
The solution of the IVP of Hilfer fractional instantaneous differential system (4.9) with variable initial condition is given by
x(t)=x(t;t0,x0)x(t)=x(t;t_{0},x_{0})

=\displaystyle= {Xi(t),t(ti,ti+1],i=0,1,ψi(t,Xi(ti0)),t=ti,i=1,2,\displaystyle\left\{\begin{array}[]{lll}X_{i}(t),&t\in(t_{i},t_{i+1}],&i=0,1,\ldots\\ \psi_{i}(t,X_{i}(t_{i}-0)),&t=t_{i},&i=1,2,\ldots\end{array}\right.

Here X0(t)X_{0}(t) for t(t0,p0]t\in(t_{0},p_{0}] is the solution of the IVP for Hilfer fractional system (4.3) with τ=t0\tau=t_{0} , x^0=x0\widehat{x}_{0}=x_{0} and for Xi(t)X_{i}(t) for t(ti,ti+1]t\in(t_{i},t_{i+1}], we have x^0=ψi(ti,Xi(ti0))\widehat{x}_{0}=\psi_{i}(t_{i},X_{i}(t_{i}-0)).
In general, the solution x(t)x(t), tt0t\geq t_{0} satisfies the integral system given below.

x(t)={ψi(t,x(ti0)),t=ti,i=1,2,,ψi(ti,x(ti0))(tti)λ1+1Γ(μ)tit(ts)μ1g(s,x(s))𝑑s,t(ti,ti+1],i=0,1,2,,ψ0(t,x(t00))=x0.\displaystyle x(t)=\left\{\begin{array}[]{ll}\psi_{i}(t,x(t_{i}-0)),\enspace t=t_{i},\enspace i=1,2,\ldots,\\ \psi_{i}(t_{i},x(t_{i}-0))(t-t_{i})^{\lambda-1}\\ +\dfrac{1}{\Gamma(\mu)}\displaystyle\int_{t_{i}}^{t}(t-s)^{\mu-1}g(s,x(s))ds,\enspace t\in(t_{i},t_{i+1}],\enspace i=0,1,2,\ldots,\\ \psi_{0}(t,x(t_{0}-0))=x_{0}.\end{array}\right.

Similar to Definition 4.2, the following definition is proposed for the zero solution of an instantaneous system with Hilfer fractional derivative to be Mittag-Leffler stable.

Definition 4.3.

The zero solution of instantaneous impulsive system (4.9) with Hilfer fractional derivative of order 0<μ<10<\mu<1 and type 0ν10\leq\nu\leq 1 is called Mittag-Leffler stable, if there exist positive constants a,b,h,γa,b,h,\gamma such that for any initial time t0[0,p0)i=1[ti,pi)t_{0}\in[0,p_{0})\bigcup_{i=1}^{\infty}[t_{i},p_{i}) the following inequality holds.

x(t){hx0b[(l=0i1(tl+1tl)λ1Eμ,ν(γ(tl+1tl)μ))(tti)λ1Eμ,ν(γ(tti)μ)]1a,t[ti,ti+1],i=0,1,\displaystyle\|x(t)\|\leq\left\{\begin{array}[]{ll}h\|x_{0}\|^{b}\Big{[}\Big{(}\displaystyle\prod_{l=0}^{i-1}(t_{l+1}-t_{l})^{\lambda-1}E_{\mu,\nu}\big{(}-\gamma(t_{l+1}-t_{l})^{\mu}\big{)}\Big{)}(t-t_{i})^{\lambda-1}\\ E_{\mu,\nu}\big{(}-\gamma(t-t_{i})^{\mu}\big{)}\Big{]}^{\frac{1}{a}},\enspace t\in[t_{i},t_{i+1}],\enspace i=0,1,\ldots\\ \end{array}\right.

The following lemma will be used in the proof of the main theorem to study the generalized Mittag-Leffler stability for both the impulsive systems.

Lemma 4.1.

Assume that

  1. (1)

    g(t,0)=0g(t,0)=0 for t0t\geq 0.

  2. (2)

    V(t,x)V(t,x) be a continuously differentiable function defined by

    V(t,x):+×Λ+,Λn,0Λ.\displaystyle V(t,x):\mathbb{R}_{+}\times\Lambda\rightarrow\mathbb{R}_{+},\enspace\Lambda\subset\mathbb{R}^{n},\enspace 0\in\Lambda.
  3. (3)

    V(t,x)V(t,x) is locally Lipschitz with respect to the second variable xx.

  4. (4)

    V(t,0)=0V(t,0)=0 for t+t\in\mathbb{R}_{+}.

  5. (5)
    1. (i)

      α1xaV(t,x)α2xab\alpha_{1}\|x\|^{a}\leq V(t,x)\leq\alpha_{2}\|x\|^{ab}, for tτt\geq\tau, xΛx\in\Lambda.

    2. (ii)

      Dtμ,ντV(t,x(t))α3x(t)ab{}_{\tau}D_{t}^{\mu,\nu}V(t,x(t))\leq-\alpha_{3}\|x(t)\|^{ab}, for t[τ,pm]t\in[\tau,p_{m}].

hold for τ[tm,pm)\tau\in[t_{m},p_{m}), m0m\geq 0 , mm is an integer, μ(0,1)\mu\in(0,1), ν[0,1]\nu\in[0,1], α\alpha, α2\alpha_{2}, α3\alpha_{3} aa, bb, are arbitrary positive constants, x^0Λ\widehat{x}_{0}\in\Lambda and x(t)=x(t;τ,x^0)C1λλ([τ,pm],Λ)x(t)=x(t;\tau,\widehat{x}_{0})\in C_{1-\lambda}^{\lambda}\big{(}[\tau,p_{m}],\Lambda\big{)} is a solution of Hilfer fractional impulsive differential system (4.3). Then

V(t,x(t))[It1λτV(τ,x(τ))](tτ)λ1Eμ,λ(α3α3(tτ)μ),t[τ,pm]\displaystyle V(t,x(t))\leq\big{[}{}_{\tau}I_{t}^{1-\lambda}V(\tau,x(\tau))\big{]}(t-\tau)^{\lambda-1}E_{\mu,\lambda}\big{(}\dfrac{-\alpha_{3}}{\alpha_{3}}(t-\tau)^{\mu}\big{)},\enspace t\in[\tau,p_{m}]

and

x(t;τ,x^0)x^0bh(tτ)λ1Eμ,λ(γ(tτ)μ)a,t[τ,pm]\displaystyle\|x(t;\tau,\widehat{x}_{0})\|\leq\|\widehat{x}_{0}\|^{b}\sqrt[a]{h(t-\tau)^{\lambda-1}E_{\mu,\lambda}\big{(}-\gamma(t-\tau)^{\mu}\big{)}},\enspace t\in[\tau,p_{m}]

where h>0h>0 for x(τ)0x(\tau)\neq 0 and h=0h=0 holds if, and only, x(τ)=0x(\tau)=0.

Proof.

From the conditions 5-(i) and 5-(ii) it follows, respectively, that

V(t,x(t))α2xabandDtμ,ντV(t,x(t))α3xab.\displaystyle\dfrac{V(t,x(t))}{\alpha_{2}}\leq\|x\|^{ab}\quad\mbox{and}\quad\dfrac{{}_{\tau}D_{t}^{\mu,\nu}V(t,x(t))}{-\alpha_{3}}\geq\|x\|^{ab}.

Combining both the above inequalities gives

Dtμ,ντV(t,x(t))α3α2V(t,x(t)),t[τ,pm].\displaystyle{}_{\tau}D_{t}^{\mu,\nu}V(t,x(t))\leq\dfrac{-\alpha_{3}}{\alpha_{2}}V(t,x(t)),\enspace t\in[\tau,p_{m}].

There exists a function W(t)C([τ,pm],)W(t)\in C([\tau,p_{m}],\mathbb{R}) such that

Dtμ,ντV(t,x(t))+W(t)=α3α2V(t,x(t)),t[τ,pm].\displaystyle{}_{\tau}D_{t}^{\mu,\nu}V(t,x(t))+W(t)=\dfrac{-\alpha_{3}}{\alpha_{2}}V(t,x(t)),\enspace t\in[\tau,p_{m}].

Taking the Laplace transform of the above system for t[τ,pm]t\in[\tau,p_{m}] gives

sμV(s)sν(μ1)[It1λτV(τ,x(τ))]+W(s)=α3α2V(s),\displaystyle s^{\mu}V(s)-s^{\nu(\mu-1)}\big{[}{}_{\tau}I_{t}^{1-\lambda}V(\tau,x(\tau))\big{]}+W(s)=\dfrac{-\alpha_{3}}{\alpha_{2}}V(s),

where V(s)=L[V(t,x(t))]V(s)=L\big{[}V(t,x(t))\big{]}, W(s)=L[W(t)]W(s)=L[W(t)]. Further simplification leads to

V(s)=sν(μ1)[It1λτV(τ,x(τ))]sμ+α3α2W(s)sμ+α3α2.\displaystyle V(s)=\dfrac{s^{\nu(\mu-1)}\big{[}{}_{\tau}I_{t}^{1-\lambda}V(\tau,x(\tau))\big{]}}{s^{\mu}+\frac{\alpha_{3}}{\alpha_{2}}}-\dfrac{W(s)}{s^{\mu}+\frac{\alpha_{3}}{\alpha_{2}}}.

If x(τ)=0x(\tau)=0, then It1λτV(τ,x(τ))=0{}_{\tau}I_{t}^{1-\lambda}V(\tau,x(\tau))=0 and the solution to the system (4.3) becomes zero. If τ0\tau\neq 0 then, as V(t,x(t))V(t,x(t)) is locally Lipschitz with respect to the second term, from the existence and uniqueness theorem [14, Theorem 3.4] and inverse Laplace transform, a unique solution exists and is given as

V(t,x(t))=\displaystyle V(t,x(t))= [It1λτV(τ,x(τ))](tτ)λ1Eμ,λ(α3α2(tτ)μ)\displaystyle\big{[}{}_{\tau}I_{t}^{1-\lambda}V(\tau,x(\tau))\big{]}(t-\tau)^{\lambda-1}E_{\mu,\lambda}\big{(}\dfrac{-\alpha_{3}}{\alpha_{2}}(t-\tau)^{\mu}\big{)}
W(t)[(tτ)λ1Eμ,μ(α3α2(tτ)μ)].\displaystyle\quad-W(t)*\big{[}(t-\tau)^{\lambda-1}E_{\mu,\mu}\big{(}\dfrac{-\alpha_{3}}{\alpha_{2}}(t-\tau)^{\mu}\big{)}\big{]}.

Since (tτ)λ10(t-\tau)^{\lambda-1}\geq 0 and Eμ,μ(α3α2(tτ)μ)0E_{\mu,\mu}\big{(}\dfrac{\alpha_{3}}{\alpha_{2}}(t-\tau)^{\mu}\big{)}\geq 0, it follows that

V(t,x(t))[It1λτV(τ,x(τ))](tτ)λ1Eμ,λ(α3α2(tτ)μ).\displaystyle V(t,x(t))\leq\big{[}{}_{\tau}I_{t}^{1-\lambda}V(\tau,x(\tau))\big{]}(t-\tau)^{\lambda-1}E_{\mu,\lambda}\big{(}\dfrac{-\alpha_{3}}{\alpha_{2}}(t-\tau)^{\mu}\big{)}.

However from condition 5-(i) and Remark 2.1, it can be concluded that

V(t,x(t))\displaystyle V(t,x(t)) x^0abα2Γ(λ)(tτ)λ1Eμ,λ(α3α2(tτ)μ)\displaystyle\leq\|\widehat{x}_{0}\|^{ab}\dfrac{\alpha_{2}}{\Gamma(\lambda)}(t-\tau)^{\lambda-1}E_{\mu,\lambda}\big{(}\dfrac{-\alpha_{3}}{\alpha_{2}}(t-\tau)^{\mu}\big{)}
xa\displaystyle\Longrightarrow\quad\qquad\|x\|^{a} x^0abα2Γ(λ)α1(tτ)λ1Eμ,λ(α3α2(tτ)μ)\displaystyle\leq\|\widehat{x}_{0}\|^{ab}\dfrac{\alpha_{2}}{{\Gamma(\lambda)}\alpha_{1}}(t-\tau)^{\lambda-1}E_{\mu,\lambda}\big{(}\dfrac{-\alpha_{3}}{\alpha_{2}}(t-\tau)^{\mu}\big{)}
x(t;τ,x^0)\displaystyle\Longrightarrow\|x(t;\tau,\widehat{x}_{0})\| x^0bh(tτ)λ1Eμ,λ(γ(tτ)μ)a\displaystyle\leq\|\widehat{x}_{0}\|^{b}\sqrt[a]{h(t-\tau)^{\lambda-1}E_{\mu,\lambda}\left(-\gamma(t-\tau)^{\mu}\right)}

with h=α2Γ(λ)α1h=\dfrac{\alpha_{2}}{{\Gamma(\lambda)}\alpha_{1}}. This completes the proof of the lemma. ∎

5. Mittag-Leffler Stability of the Hilfer Fractional Differential System with Non-Instantaneous Impulses

The main theorem that provides certain sufficient conditions for the Mittag-Leffler stability of the Hilfer fractional non-instantaneous differential equations is given in this section. The following conditions are assumed to guarantee the existence of the solution x(t;t0,x0)x(t;t_{0},x_{0}) of the IVP (4.1).

Condition 1.

The function gC([0,p0]i=1[ti,pi]×n,n)g\in C\big{(}[0,p_{0}]\cup_{i=1}^{\infty}[t_{i},p_{i}]\times\mathbb{R}^{n},\mathbb{R}^{n}\big{)} for t(0,t1)i=1[ti,pi]t\in(0,t_{1})\cup_{i=1}^{\infty}[t_{i},p_{i}] with g(t,0)0g(t,0)\equiv 0 is such that for any initial point (t^0,x^0)[0,p0)i=1[ti,pi]×n(\widehat{t}_{0},\widehat{x}_{0})\in[0,p_{0})\cup_{i=1}^{\infty}[t_{i},p_{i}]\times\mathbb{R}^{n}, the IVP for general Hilfer fractional differential system (4.3) with τ=t^0\tau=\widehat{t}_{0} has a solution x(t;t^0,x^0)C1λλ([t^0,pm],n)x(t;\widehat{t}_{0},\widehat{x}_{0})\in C_{1-\lambda}^{\lambda}\big{(}[\widehat{t}_{0},p_{m}],\mathbb{R}^{n}\big{)}, where m=min{i:t^0<pk}m=min\{i:\widehat{t}_{0}<p_{k}\}.

Condition 2.

The function ϕi:[pi,ti+1]×n×nn\phi_{i}:[p_{i},t_{i+1}]\times\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} for any i=0,1,2,i=0,1,2,\ldots are such that, the system x=ϕi(t,x,y)x=\phi_{i}(t,x,y) has a unique solution x=ζi(t,y)x=\zeta_{i}(t,y), t[pi,ti+1]t\in[p_{i},t_{i+1}]. The function ζi\zeta_{i} is defined as ζiC([pi,ti+1]×n,n)\zeta_{i}\in C\big{(}[p_{i},t_{i+1}]\times\mathbb{R}^{n},\mathbb{R}^{n}\big{)}, with ζi(t,0)0\zeta_{i}(t,0)\equiv 0 for t[pi,ti+1]t\in[p_{i},t_{i+1}], i=0,1,2,i=0,1,2,\ldots.

The following theorem provides the condition for the zero solution of Hilfer fractional system with non-instantaneous impulses to satisfy the Mittag-Leffler stable condition:

Theorem 5.1.

Let the assumed conditions 1 and 2 hold. Λn\Lambda\in\mathbb{R}^{n}; 0Λ0\in\Lambda. Further let the Lyapunov function V(t,x)V(t,x) be continuously differentiable which is defined by

V(t,x):+×Λ+\displaystyle V(t,x):\mathbb{R}_{+}\times\Lambda\rightarrow\mathbb{R}_{+}

and locally Lipschitz with respect to the second variable along with V(t,0)=0V(t,0)=0 for t0t\geq 0, such that

  1. (1)

    For t0t\geq 0, xnx\in\mathbb{R}^{n},

    α1xaV(t,x)α2xab,\displaystyle\alpha_{1}\|x\|^{a}\leq V(t,x)\leq\alpha_{2}\|x\|^{ab},

    where α1\alpha_{1}, α2\alpha_{2}, aa, bb are positive constants, with α21\alpha_{2}\leq 1.

  2. (2)

    For any τ[0,p0)k=0[ti,pi]\tau\in[0,p_{0})\cup_{k=0}^{\infty}[t_{i},p_{i}] and any solution x(t)C1λλ([τ,pm],n)x(t)\in C_{1-\lambda}^{\lambda}([\tau,p_{m}],\mathbb{R}^{n}) of fractional system (4.3), the inequality

    Dtμ,ντV(t,x(t))α3x(t)ab,t(τ,pm]\displaystyle{}_{\tau}D_{t}^{\mu,\nu}V(t,x(t))\leq\alpha_{3}\|x(t)\|^{ab},\enspace t\in(\tau,p_{m}]

    holds, where m=min{i:τ<pi}m=min\{i:\tau<p_{i}\}, μ(0,1)\mu\in(0,1), ν[0,1]\nu\in[0,1], λ(0,1]\lambda\in(0,1], and α3>0\alpha_{3}>0.

  3. (3)

    For any i=0,1,2,i=0,1,2,\ldots, the inequality

    V(t,ζi(t,x))α4xa,for,t(pi,ti+1],xn\displaystyle V(t,\zeta_{i}(t,x))\leq\alpha_{4}\|x\|^{a},\enspace\mbox{for},\enspace t\in(p_{i},t_{i+1}],\enspace x\in\mathbb{R}^{n}

    holds, where, α4\alpha_{4} is a positive constant such that α4α1\alpha_{4}\leq\alpha_{1}.

Then the zero solution of Hilfer fractional differential system (4.1) is generalized Mittag-Leffler stable concerning non-instantaneous impulses.

Proof.

Let the arbitrary initial time be t0t_{0}, such that t0[0,p0)i=1[ti,pi]t_{0}\in[0,p_{0})\cup_{i=1}^{\infty}[t_{i},p_{i}]. With no loss of generality, let the initial time be assumed as t0[0,p0)t_{0}\in[0,p_{0}). For the arbitrary initial point x0nx_{0}\in\mathbb{R}^{n}, the solution of Hilfer fractional impulsive system (4.1) is considered as x(t;t0,x0)x(t;t_{0},x_{0}). The stability is proved by the method of induction in the following steps.

Step 1. For the interval t[t0,p0]t\in[t_{0},p_{0}]:
The solution X0(t)X_{0}(t) coincides with the solution of the general Hilfer impulsive system (4.3). Here τ=t0\tau=t_{0}; i=0i=0, x^0=x0\widehat{x}_{0}=x_{0}.
According to Lemma 4.1, the solution can be written as,

x(t;t0,x0)\displaystyle\|x(t;t_{0},x_{0})\| x0bα2Γ(λ)α1(tt0)λ1Eμ,λ(α3α2(tt0)μ)a.\displaystyle\leq\|x_{0}\|^{b}\sqrt[a]{\dfrac{\alpha_{2}}{\Gamma(\lambda)\alpha_{1}}(t-t_{0})^{\lambda-1}E_{\mu,\lambda}\big{(}\dfrac{-\alpha_{3}}{\alpha_{2}}(t-t_{0})^{\mu}\big{)}}.

Since β1\beta\leq 1, we have

x(t;t0,x0)x0bα2Γ(λ)α1(tt0)λ1Eμ,λ(α3(tt0)μ)a\displaystyle\|x(t;t_{0},x_{0})\|\leq\|x_{0}\|^{b}\sqrt[a]{\dfrac{\alpha_{2}}{\Gamma(\lambda)\alpha_{1}}(t-t_{0})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(t-t_{0})^{\mu}\right)} (5.1)

Step 2. For the interval t(p0,t1]t\in(p_{0},t_{1}]:
From condition 1 and 2, for t=p00t=p_{0}-0, it follows that

α1x(t;t0,x0)a\displaystyle\alpha_{1}\|x(t;t_{0},x_{0})\|^{a} V(t,x(t;t0,x0))=V(t,x(p00;t0,x0))\displaystyle\leq V(t,x(t;t_{0},x_{0}))=V(t,x(p_{0}-0;t_{0},x_{0}))
α4x(p00;t0,x0)a.\displaystyle\leq\alpha_{4}\|x(p_{0}-0;t_{0},x_{0})\|^{a}.

From (5.1), the above inequality reduces to,

α1x(t;t0,x0)a\displaystyle\alpha_{1}\|x(t;t_{0},x_{0})\|^{a} α4x0abα2Γ(λ)α1(tt0)λ1Eμ,λ(α3(p0t0)μ)\displaystyle\leq\alpha_{4}\|x_{0}\|^{ab}\dfrac{\alpha_{2}}{\Gamma(\lambda)\alpha_{1}}(t-t_{0})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(p_{0}-t_{0})^{\mu}\right)
x(t;t0,x0)\displaystyle\Longrightarrow\qquad\|x(t;t_{0},x_{0})\| x0bα2Γ(λ)α1(tt0)λ1Eμ,λ(α3(p0t0)μ)a,t(p0,t1].\displaystyle\leq\|x_{0}\|^{b}\sqrt[a]{\dfrac{\alpha_{2}}{\Gamma(\lambda)\alpha_{1}}(t-t_{0})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(p_{0}-t_{0})^{\mu}\right)},\enspace t\in(p_{0},t_{1}]. (5.2)

Step 3. For the interval t(t1,p1]t\in(t_{1},p_{1}]:
The solution X1(t)=x(t;t0,x0)X_{1}(t)=x(t;t_{0},x_{0}) of the system (4.1) coincides with the solution of IVP (4.3) for τ=t1\tau=t_{1}, i=1i=1 and x^0=x(t1;t0,x0)\widehat{x}_{0}=x(t_{1};t_{0},x_{0}). As the problem considered is changeable lower bound, for τ=t1\tau=t_{1}, x^0=X1(t1)\widehat{x}_{0}=X_{1}(t_{1}), the inequality can be written as,

V(t,X1(t))\displaystyle V(t,X_{1}(t)) [It1λt1V(t1,X1(t1))](tt1)λ1Eμ,λ(α3(tt1)μ)\displaystyle\leq[{}_{t_{1}}I_{t}^{1-\lambda}V(t_{1},X_{1}(t_{1}))](t-t_{1})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(t-t_{1})^{\mu}\right)
=[It1λt1V(t1,x(t1;t0,x0))](tt1)λ1Eμ,λ(α3(tt1)μ)\displaystyle=[{}_{t_{1}}I_{t}^{1-\lambda}V(t_{1},x(t_{1};t_{0},x_{0}))](t-t_{1})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(t-t_{1})^{\mu}\right)
=[It1λt1V(t1,ζ0(t1,x(p00;t0,x0))(tt1)λ1Eμ,λ(α3(tt1)μ)\displaystyle=[{}_{t_{1}}I_{t}^{1-\lambda}V(t_{1},\zeta_{0}(t_{1},x(p_{0}-0;t_{0},x_{0}))(t-t_{1})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(t-t_{1})^{\mu}\right)
α4Γ(λ)x(p00;t0,x0)a(tt1)λ1Eμ,λ(α3(tt1)μ).\displaystyle\leq\dfrac{\alpha_{4}}{\Gamma(\lambda)}\|x(p_{0}-0;t_{0},x_{0})\|^{a}(t-t_{1})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(t-t_{1})^{\mu}\right).

From Condition 1 and bound (5) the below given inequality can be derived.

α1x(t;t0,x0)a\displaystyle\alpha_{1}\|x(t;t_{0},x_{0})\|^{a}\leq α4Γ(λ)x0abα2Γ(λ)α1(p0t0)λ1Eμ,λ(α3(p0t0)μ)\displaystyle\enspace\dfrac{\alpha_{4}}{\Gamma(\lambda)}\|x_{0}\|^{ab}\dfrac{\alpha_{2}}{\Gamma(\lambda)\alpha_{1}}(p_{0}-t_{0})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(p_{0}-t_{0})^{\mu}\right)
(tt1)λ1Eμ,λ(α3(tt1)μ).\displaystyle\qquad(t-t_{1})^{\lambda-1}E_{\mu,\lambda}\left(-\alpha_{3}(t-t_{1})^{\mu}\right).

Thus from the above inequality it can be concluded that

x(t;t0,x0)\displaystyle\|x(t;t_{0},x_{0})\|
\displaystyle\leq x0bα2(Γ(λ))2α1(p0t0)λ1Eμ,λ(α3(p0t0)μ)(tt1)λ1Eμ,λ(α3(tt1)μ)a\displaystyle\,\|x_{0}\|^{b}\sqrt[a]{\dfrac{\alpha_{2}}{(\Gamma(\lambda))^{2}\alpha_{1}}(p_{0}-t_{0})^{\lambda-1}E_{\mu,\lambda}\big{(}-\alpha_{3}(p_{0}-t_{0})^{\mu}\big{)}(t-t_{1})^{\lambda-1}E_{\mu,\lambda}\big{(}-\alpha_{3}(t-t_{1})^{\mu}\big{)}}

Step 4. For the interval t(p1,t2]t\in(p_{1},t_{2}]:
An inequality can be derived using the condition 1 and 2, in a similar way, which is given as follows.

\displaystyle\noindent\Longrightarrow x(t;t0,x0)\displaystyle\|x(t;t_{0},x_{0})\|
\displaystyle\leq x0bα2(Γ(λ))2α1(p0t0)λ1Eμ,λ(α3(p0t0)μ)(p1t1)λ1Eμ,λ(α3(p1t1)μ)a.\displaystyle\|x_{0}\|^{b}\sqrt[a]{\dfrac{\alpha_{2}}{(\Gamma(\lambda))^{2}\alpha_{1}}(p_{0}-t_{0})^{\lambda-1}E_{\mu,\lambda}\big{(}-\alpha_{3}(p_{0}-t_{0})^{\mu}\big{)}(p_{1}-t_{1})^{\lambda-1}E_{\mu,\lambda}\big{(}-\alpha_{3}(p_{1}-t_{1})^{\mu}\big{)}}.

Extending this procedure for further intervals confirms that the zero solution of the given system (4.1) is Mittag-Leffler stable with h=α2(Γ(λ))i+1α1ah=\sqrt[a]{\dfrac{\alpha_{2}}{(\Gamma(\lambda))^{i+1}\alpha_{1}}} and α3=γ\alpha_{3}=\gamma. ∎

6. Mittag-Leffler Stability of the Hilfer Fractional Differential System with Instantaneous Impulses

The main theorem that ascertains certain sufficient conditions for the Mittag-Leffler stability of the Hilfer fractional instantaneous differential system is given in this section. The following conditions are assumed to guarantee the existence of solution x(t;t0,x0)x(t;t_{0},x_{0}) of the IVP (4.9).

Condition 3.

The function gC([0,)/{ti}×n,n)g\in C\big{(}[0,\infty)/\{t_{i}\}\times\mathbb{R}^{n},\mathbb{R}^{n}\big{)} for ttit\neq t_{i} with g(t,0)0g(t,0)\equiv 0 is such that for any initial point (t^0,x^0)[0,)/{ti}×n(\widehat{t}_{0},\widehat{x}_{0})\in[0,\infty)/\{t_{i}\}\times\mathbb{R}^{n}, the IVP for general Hilfer fractional differential system (4.3) with τ=t^0\tau=\widehat{t}_{0} has a solution x(t;t^0,x^0)C1λλ([t^0,tm],n)x(t;\widehat{t}_{0},\widehat{x}_{0})\in C_{1-\lambda}^{\lambda}\big{(}[\widehat{t}_{0},t_{m}],\mathbb{R}^{n}\big{)}, where m=min{l:t^0<ti}m=min\{l:\widehat{t}_{0}<t_{i}\}.

Condition 4.

The function ψi\psi_{i} is defined as ψi:[t0,)×nn\psi_{i}:[t_{0},\infty)\times\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} with ψi(ti,0)0\psi_{i}(t_{i},0)\equiv 0 for any i=1,2,i=1,2,\ldots .

The following theorem provides the condition for the zero solution of Hilfer fractional system with non-instantaneous impulses to satisfy the Mittag-Leffler stable condition.

Theorem 6.1.

Let the assumed conditions 3 and 4 hold. Λn\Lambda\in\mathbb{R}^{n}; 0Λ0\in\Lambda. Further, let the Lyapunov function V(t,x)V(t,x) be continuously differentiable which is defined by

V(t,x):+×Λ+\displaystyle V(t,x):\mathbb{R}_{+}\times\Lambda\rightarrow\mathbb{R_{+}}

and locally Lipschitz with respect to the second variable along with V(t,0)=0V(t,0)=0 for t0t\geq 0, such that

  1. (1)

    For t0t\geq 0 and xΛx\in\Lambda,

    α1xaV(t,x)α2xab,\displaystyle\alpha_{1}\|x\|^{a}\leq V(t,x)\leq\alpha_{2}\|x\|^{ab},

    where α1\alpha_{1}, α2\alpha_{2}, aa, bb are positive constants, with α21\alpha_{2}\leq 1.

  2. (2)

    For any τti\tau\neq t_{i}, i=1,2,i=1,2,\ldots and for the solution x(t)C1λλ([τ,tm],n)x(t)\in C_{1-\lambda}^{\lambda}([\tau,t_{m}],\mathbb{R}^{n}) of fractional system (4.3), the inequality

    Dtμ,ντV(t,x(t))α3x(t)ab,t(τ,tm]\displaystyle{}_{\tau}D_{t}^{\mu,\nu}V(t,x(t))\leq\alpha_{3}\|x(t)\|^{ab},\enspace t\in(\tau,t_{m}]

    holds, where m=min{i:τ<ti}m=min\{i:\tau<t_{i}\}, μ(0,1)\mu\in(0,1), ν[0,1]\nu\in[0,1], λ(0,1]\lambda\in(0,1] and γ>0\gamma>0.

  3. (3)

    For any i=1,2,i=1,2,\ldots, the inequality

    V(ti,ψi(t,x))α4xa,xn\displaystyle V(t_{i},\psi_{i}(t,x))\leq\alpha_{4}\|x\|^{a},\enspace x\in\mathbb{R}^{n}

    holds, where, α4\alpha_{4} is a positive constant such that α4α1\alpha_{4}\leq\alpha_{1}.

Then the zero solution of Hilfer fractional differential system (4.9) is generalized Mittag-Leffler stable with respect to instantaneous impulses.

Proof.

Let the arbitrary initial time with no loss of generality be assumed as t0[0,t1)t_{0}\in[0,t_{1}). For the arbitrary initial point x0nx_{0}\in\mathbb{R}^{n}, with the initial time t0t_{0}, the solution is given by x(t;t0,x0)x(t;t_{0},x_{0}). As in Theorem 5.1, the proof of this theorem can be carried out interval by interval and using induction it can be extended to a general interval. ∎

7. concluding remarks

Mittag-Leffler stability condition for systems with both instantaneous impulses and non-instantaneous impulses having Hilfer fractional order is discussed in detail. By varying the value of ν\nu, we can interpolate the results on the stability of the solution of the system (4.1) and (4.9) between Caputo and Riemann-Liouville fractional operators. Moreover, the mild solution of impulsive systems with Hilfer fractional derivative with changeable initial conditions has not been studied so far. Further, in most of the dynamical systems, delay plays an effective role for the loss in stability that degrades the performance of the system. In many applications, especially, in the field of communications and network exchange, time delay system play a major role (see, for example [17]). The stability analysis of impulsive systems with Hilfer fractional order with time delay can be considered as an immediate future problem based on this paper.

Authors’ contribution

The authors contributed equally to this article.

References

  • [1] R. Agarwal, S. Hristova and D. O’Regan, Non-instantaneous impulses in differential equations, Springer, Cham, 2017.
  • [2] R. Agarwal, S. Hristova and D. O’Regan, Mittag-Leffler stability for impulsive Caputo fractional differential equations, Differ. Equ. Dyn. Syst. 29 (2021), no. 3, 689–705.
  • [3] H. M. Ahmed, M. M. El-Borai, H. M. El-Owaidy  A. S. Ghanem, Impulsive Hilfer fractional differential equations, Adv. Difference Equ. 2018, Paper No. 226, 20 pp.
  • [4] J. Du, W. Jiang and A. U. K. Niazi, Approximate controllability of impulsive Hilfer fractional differential inclusions, J. Nonlinear Sci. Appl. 10 (2017), no. 2, 595–611.
  • [5] K. M. Furati, M. D. Kassim and N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl. 64 (2012), no. 6, 1616–1626.
  • [6] H. Gou and Y. Li, A Study on Impulsive Hilfer Fractional Evolution Equations with Nonlocal Conditions, Int. J. Nonlinear Sci. Numer. Simul. 21 (2020), no. 2, 205–218.
  • [7] H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput. 257 (2015), 344–354.
  • [8] E. Hernández and D. O’Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1641–1649.
  • [9] R. Hilfer, Fractional time evolution, in Applications of fractional calculus in physics, 87–130, World Sci. Publ., River Edge, NJ, 2000
  • [10] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
  • [11] X. Li, S. Liu and W. Jiang, qq-Mittag-Leffler stability and Lyapunov direct method for differential systems with qq-fractional order, Adv. Difference Equ. 2018, Paper No. 78, 9 .
  • [12] Y. Li, Y. Chen and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica J. IFAC 45 (2009), no. 8, 1965–1969.
  • [13] D. Matignon, Stability results for fractional differential equations with applications to control processing, Proceedings of the IMACS-SMC. 2 (1996), 963–-968.
  • [14] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
  • [15] I. Podlubny, Fractional-order systems and PIλDμPI^{\lambda}D^{\mu}-controllers, IEEE Trans. Automat. Control 44 (1999), no. 1, 208–214.
  • [16] J. Ren and C. Zhai, Stability analysis for generalized fractional differential systems and applications, Chaos Solitons Fractals 139 (2020), 110009, 13 pp.
  • [17] J. Ren and C. Zhai, Stability analysis of generalized neutral fractional differential systems with time delays, Appl. Math. Lett. 116 (2021), Paper No. 106987, 8 pp.
  • [18] H. Rezazadeh, H. Aminikhah and A. H. Refahi Sheikhani, Stability analysis of Hilfer fractional differential systems, Math. Commun. 21 (2016), no. 1, 45–64.
  • [19] I. M. Stamova, Mittag-Leffler stability of impulsive differential equations of fractional order, Quart. Appl. Math. 73 (2015), no. 3, 525–535. .
  • [20] I. M. Stamova and G. Tr. Stamov, Functional and impulsive differential equations of fractional order, CRC Press, Boca Raton, FL, 2017.
  • [21] G. Wang, J. Qin, H. Dong,  and T. Guan, Generalized Mittag-Leffler stability of Hilfer fractional order nonlinear dynamicsystem, Mathematics. 7. (2019), 500.