This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Linear Systems with OAMP/VAMP Receiver: Achievable Rate and Coding Principle

Lei Liu1, Member, IEEE, Yuhao Chi2, Member, IEEE,
Ying Li2, Member, IEEE, and Zhaoyang Zhang1, Senior Member, IEEE
1College of Information Science and Electronic Engineering, Zhejiang University, China 2State Key Lab of ISN, Xidian University, China
Abstract

The generalized linear system (GLS) has been widely used in wireless communications to evaluate the effect of nonlinear preprocessing on receiver performance. Generalized approximation message passing (AMP) is a state-of-the-art algorithm for the signal recovery of GLS, but it was limited to measurement matrices with independent and identically distributed (IID) elements. To relax this restriction, generalized orthogonal/vector AMP (GOAMP/GVAMP) for unitarily-invariant measurement matrices was established, which has been proven to be replica Bayes optimal in uncoded GLS. However, the information-theoretic limit of GOAMP/GVAMP is still an open challenge for arbitrary input distributions due to its complex state evolution (SE). To address this issue, in this paper, we provide the achievable rate analysis of GOAMP/GVAMP in GLS, establishing its information-theoretic limit (i.e., maximum achievable rate). Specifically, we transform the fully-unfolded state evolution (SE) of GOAMP/GVAMP into an equivalent single-input single-output variational SE (VSE). Using the VSE and the mutual information and minimum mean-square error (I-MMSE) lemma, the achievable rate of GOAMP/GVAMP is derived. Moreover, the optimal coding principle for maximizing the achievable rate is proposed, based on which a kind of low-density parity-check (LDPC) code is designed. Numerical results verify the achievable rate advantages of GOAMP/GVAMP over the conventional maximum ratio combining (MRC) receiver based on the linearized model and the BER performance gains of the optimized LDPC codes (0.82.80.8\sim 2.8 dB) compared to the existing methods.

I Introduction

In wireless communication applications, a generalized linear system (GLS) has been widely adopted to solve the recovery problem of an unknown signal 𝒙\bm{x} from a nonlinear noisy observation 𝒚\bm{y} in the following form:

𝒚=Q(𝑨𝒙,𝒏),\bm{y}=Q(\bm{A}\bm{x},\bm{n}), (1)

where 𝑨\bm{A} is the measurement matrix, 𝒏\bm{n} is an additive white Gaussian noise (AWGN), and Q()Q(\cdot) is a nonlinear function. Compared to the most commonly used standard linear system (SLS), i.e., 𝒚=𝑨𝒙+𝒏\bm{y}=\bm{A}\bm{x}+\bm{n}, GLS can better account for the effect of nonlinear preprocessing on signal recovery in practical transceivers [1, 2, 3, 4, 5]. For example, a quantization is necessary for the receiver to reduce the hardware cost and power efficiency of massive multiple-input multiple-output (MIMO) systems[1]. To suppress the high peak-to-average ratio (PAPR) induced by multi-carrier signal transmission in orthogonal frequency-division multiplex (OFDM), signal pre-distortion such as peak-clipping operation Q()Q(\cdot) is used to decrease envelope fluctuations of OFDM signals [2]. In a nutshell, these applications require the recovery of complete transmission signals based on the received nonlinear noisy observations and a specific nonlinear preprocessing function.

I-A Linearized Approximate Model

Despite the widespread use of GLS, an exact analysis is difficult due to the nonlinear nature of Q()Q(\cdot). Several linearized approximation models have been developed over the last decade to convert the GLS into a simplified SLS. Quantization noise is assumed to be additive and independent in [6] based on the additive quantization noise model (AQNM), based on which the achievable rate is calculated for the MRC receiver in massive MIMO with Gaussian signaling and low-resolution ADCs[7]. Similarly, a linearized clipping model is developed for clipped GLS, and an iterative soft compensation method is proposed to mitigate the clipping distortion [8]. Even though linearization can significantly simplify performance analysis and algorithm design for GLS, it is intrinsically suboptimal, resulting in considerable degradation of bit-error-rate (BER) or achievable rate performance.

I-B Bayesian Algorithms

In the past few years, various generalized approximate message passing (AMP)-type algorithms based on the Bayesian framework have been developed for GLS with continuing development of AMP-type algorithms in SLS. A generalized AMP (GAMP) is proposed for GLS in [9], which is low-complexity but is limited to IID matrices. To overcome the limitation of GAMP, generalized vector AMP (GVAMP) [10] is proposed for GLS with unitarily-invariant matrices. Meanwhile, GVAMP is proved to be replica Bayes optimal [11]. Due to the equivalence of GVAMP and generalized orthogonal AMP (GOAMP), they are referred to as GOAMP/GVAMP in this paper. By the utilization of a high complexity linear minimum mean squared error (LMMSE) to reduce linear interference, GOAMP/GVAMP has a high computational complexity. Recently, a low-complexity generalized memory AMP (GMAMP) is extended by MAMP [12] for GLS with unitarily-invariant matrices [13], in which the Bayes optimality of GMAMP is also proven via SE. However, the results in [9, 10, 11, 13] are limited to the uncoded GLS, where error-free performance is not guaranteed. To the best of our knowledge, a rigorous investigation of the information-theoretic limit of generalized AMP-type algorithms in the GLS is yet lacking.

I-C Information-Theoretical Limits of AMP-type Algorithms

The information-theoretical (i.e., constrained capacity) optimality of AMP for a coded SLS with an arbitrary input distribution and IID matrices is proven in [14]. That is, the achievable rate of AMP has been rigorously proven to be equal to the constrained capacity of SLS as derived in [15, 16]. The optimal coding principle is also provided for AMP based on the matching principle between the transfer functions of the linear detector (LD) and nonlinear detector (NLD). The constrained-capacity optimality of OAMP/VAMP for a coded SLS is proven for right unitarily-invariant matrices [17] and is proven to achieve the constrained-capacity region of multi-user (MU) MIMO systems [18]. Meanwhile, the optimal coding principle is presented for OAMP/VAMP in [17, 18].

However, the achievable rate analysis of the AMP-type algorithms[14, 17, 18] in SLS cannot be directly applied to the generalized AMP-type algorithms in GLS. The reason is that the achievable rate analysis of the AMP-type algorithms relies on the single-input-single-output (SISO) transfer functions in their SEs. In contrast, the LD transfer function of the generalized AMP-type algorithms is dual-input-dual-output (DIDO) and is coupled with those of two NLDs, making the achievable rate analysis much more complicated.

I-D Contributions of This Paper

In this paper, we present the information-theoretical (i.e., achievable rate) analysis of GOAMP/GVAMP in the coded GLS. To circumvent the difficulty of SE analysis of GOAMP/GVAMP, a multi-layer information matching principle is proposed to analyze the asymptotic performance of GOAMP/GVAMP. Specifically, a transfer function of the enhanced LD (ELD) is established for GOAMP/GVAMP. Then, GOAMP/GVAMP can be asymptotically characterized by a variational SE (VSE) consisting of the transfer functions of ELD and NLD. Using the VSE, the achievable rate of GOAMP/GVAMP is derived based on the mutual information and MMSE (I-MMSE) lemma [19]. Moreover, we study the maximum achievable rate and practical LDPC code design of GOAMP/GVAMP in the coded GLS with clipping. The main contributions of this paper are summarized as follows.

  1. 1.

    The variational SE is proposed to analyze the achievable rate of GOAMP/GVAMP in GLS, based on which the optimal coding principle is developed to maximize the achievable rate of GOAMP/GVAMP.

  2. 2.

    The maximum achievable rate of GOAMP/GVAMP in a coded GLS is discussed for clipping. To validate its advantages, the GOAMP/GVAMP with optimized coding is compared to the conventional MRC receiver based on the linearized model.

  3. 3.

    A kind of irregular LDPC code is designed for GOAMP/GVAMP with the aim of maximizing the achievable rate. Numerical results show that the finite-length performances of the optimized LDPC codes and quadrature phase-shift keying (QPSK) modulation are within 1.01.0 dB from the threshold limits and outperform those of the existing state-of-art methods.

I-E Notations

For simplicity, we define a “circle minus" operation 𝒂c𝒃11c(𝒂c𝒃)\bm{a}\ominus_{c}\bm{b}\equiv\tfrac{1}{1-c}(\bm{a}-c\bm{b}) for estimate orthogonalization, where cc denotes the orthogonalization coefficient. Define a “box minus" operation ab(a1b1)1a\boxminus b\equiv(a^{-1}-b^{-1})^{-1} for variance orthogonalization. Define 𝑨M×N,𝑩M×N\langle\bm{A}_{M\times N},\bm{B}_{M\times N}\rangle \equiv 𝑨M×NH𝑩M×N\bm{A}_{M\times N}^{\rm H}\bm{B}_{M\times N} and 𝑨M×N|𝑩M×N\langle\bm{A}_{M\times N}|\bm{B}_{M\times N}\rangle\equiv1N𝑨M×N,𝑩M×N\tfrac{1}{N}\langle\bm{A}_{M\times N},\bm{B}_{M\times N}\rangle.

II System Model

Fig. 1 illustrates a coded GLS with an MM-antenna transmitter and one receiver equipped with NN antennas. At the transmitter, a message vector 𝒎\bm{m} is encoded and modulated to a length-NLNL symbol vector 𝒙~\bm{\tilde{x}}. Each element of 𝒙~\bm{\tilde{x}} is taken independently from a constellation set 𝒮\mathcal{S} and 𝒙~\bm{\tilde{x}} is split into LL length-NN vectors {𝒙l,l=1,,L}\{\bm{{x}}_{l},l=1,...,L\} by serial-to-parallel conversion, which are transmitted into the linear channel through LL time slots. We assume that 𝒙l\bm{x}_{l} satisfies the power constraint 1NE{𝒙l2}=1\frac{1}{N}E\{||\bm{x}_{l}||^{2}\}=1.

Refer to caption
Figure 1: Illustration of a GLS, where S/P denotes serial-to-parallel conversion, 𝑨\bm{A} the channel matrix, and Q(){Q}(\cdot) the nonlinear preprocessing at the receiver.

The receiver obtains signal 𝒚lM×1\bm{y}_{l}\in\mathbb{C}^{M\times 1} is expressed as

𝒚l=Q(𝑨𝒙l+𝒏l),\bm{y}_{l}={Q}(\bm{A}\bm{x}_{l}+\bm{n}_{l}), (2)

where 𝑨M×N\bm{A}\in\mathbb{C}^{M\times N} is a quasi-static channel matrix, 𝒏l𝒞𝒩(𝟎,σ2𝑰)\bm{n}_{l}\sim\mathcal{CN}(\mathbf{0},\sigma^{2}\bm{I}) an additive white Gaussian noise (AWGN), and Q(){Q}(\cdot) a symbol-by-symbol nonlinear function. Without loss of generality, we assume 1𝒥tr{𝑨H𝑨}=1\tfrac{1}{\mathcal{J}}{\rm tr}\{\bm{A}^{\rm{H}}\bm{A}\}=1, 𝒥=max{M,N}\mathcal{J}={\mathrm{max}}\{M,N\}, and the signal-to-noise ratio (SNR) is defined as snr=σ2{snr}=\sigma^{-2}. The goal is to recover the message vector 𝒎\bm{m} based on 𝒚\bm{y}, Q(){Q}(\cdot), 𝑨\bm{A} and the distribution of 𝒙l\bm{x}_{l},

III Achievable Rate Analysis of GOAMP/GVAMP

III-A GOAMP/GVAMP Receiver

Since the GLS detection in each time slot is the same, we omit the time index ll in the rest of this paper for simplicity. For simplicity of discussion, we rewrite the GLS model as:

Ψ:\displaystyle\Psi:\quad 𝒚=Q(𝒛+𝒏),\displaystyle\bm{y}={Q}(\bm{z}+\bm{n})\vspace{-2mm}, (3a)
Γ:\displaystyle\Gamma:\quad 𝒛=𝑨𝒙,\displaystyle\bm{z}=\bm{A}\bm{x}\vspace{-2mm}, (3b)
Φ𝒞:\displaystyle\Phi_{\mathcal{C}}:\quad 𝒙𝓒andxiPX(xi),i.\displaystyle\bm{x}\in\bm{\mathcal{C}}\;\;{\rm and}\;\;x_{i}\sim P_{X}(x_{i}),\forall i. (3c)

Fig. 2(a) shows that the GOAMP/GVAMP receiver consists of an LD and two NLDs, where LD employs LMMSE detection for linear constraint Γ\Gamma in (3b), NLDz{\text{NLD}}_{z} employs MMSE detection for nonlinear constraint Ψ\Psi in (3a), and NLDx{\text{NLD}}_{x} employs MMSE demodulation and a-posteriori probability (APP) decoding for coding constraint Φ𝒞\Phi_{\mathcal{C}} in (3c).

Refer to caption
(a) GOAMP/GVAMP receiver: ψ^t\hat{\psi}_{t} γ^t\hat{\gamma}_{t} and ϕ^t\hat{\phi}_{t} denotes the local MMSE/LMMSE detection for the local constraints Ψ\Psi, Γ\Gamma and Φ\Phi, respectively. Orth denotes the orthogonal operations.
Refer to caption
(b) State evolution of GOAMP/GVAMP: ψSE\psi_{\rm{SE}}, ϕSE\phi_{\rm{SE}} and γSE\gamma_{\rm{SE}} denote MSE transfer functions of ψt\psi_{t}, ϕt\phi_{t} and γt\gamma_{t}, respectively.
Figure 2: Illustration of the GOAMP/GVAMP receiver and its state evolution.

GOAMP/GVAMP Receiver: Starting with t=1t=1 and 𝕫1=𝕩1=0\bm{\mathbbm{z}}_{1}=\bm{\mathbbm{x}}_{1}=0,

where 𝒙t=[xt,1,,xt,N]T{{{\bm{x}}_{t}}}=[{{{x}}_{t,1}},...,{{{{x}}_{t,N}}}]^{T} and 𝒛t=[zt,1,,zt,M]T{{{\bm{z}}_{t}}}=[{{{z}}_{t,1}},...,{{{{z}}_{t,M}}}]^{T} denote the outputs of ϕt(𝕩t){{\phi}_{t}(\bm{\mathbbm{x}}_{t})} and ψt(𝕫t){{\psi}_{t}(\bm{\mathbbm{z}}_{t})} respectively, 𝕩t=[𝕩t,1,,𝕩t,N]T\bm{\mathbbm{x}}_{t}=[{\bm{\mathbbm{x}}_{t,1}},...,{\bm{\mathbbm{x}}_{t,N}}]^{T} and 𝕫t=[𝕫t,1,,𝕫t,M]T\bm{\mathbbm{z}}_{t}=[{\bm{\mathbbm{z}}_{t,1}},...,{\bm{\mathbbm{z}}_{t,M}}]^{T} the outputs of γtx(𝒙t,𝒛t){\gamma}_{t}^{x}({\bm{x}}_{t},{\bm{z}}_{t}) and γtz(𝒙t,𝒛t){\gamma}_{t}^{z}({\bm{x}}_{t},{\bm{z}}_{t}), and superscripts ψ\psi, ϕ\phi and γ\gamma correspond to the constraints Ψ\Psi, Φ𝒞\Phi_{\mathcal{C}} and Γ\Gamma, respectively.

NLD: The local MMSE functions of ψt(𝕫t){{\psi}_{t}(\bm{\mathbbm{z}}_{t})} and ϕt(𝕩t){{\phi}_{t}(\bm{\mathbbm{x}}_{t})} in (LABEL:Eqn:NLD) are given by

ϕ^t(𝕩t)E{𝒙|𝕩t,Φ},ψ^t(𝕫t)E{𝒛|𝕫t,Ψ},\hat{\phi}_{t}(\bm{\mathbbm{x}}_{t})\equiv\mathrm{E}\{\bm{x}|\bm{\mathbbm{x}}_{t},\Phi\},\quad\hat{\psi}_{t}(\bm{\mathbbm{z}}_{t})\equiv\mathrm{E}\{\bm{z}|\bm{\mathbbm{z}}_{t},\Psi\}, (4e)

and ctϕ=1N𝕧txE{ϕ^t(𝕩t)𝒙2}c^{\phi}_{t}=\tfrac{1}{N{\mathbbm{v}}_{t}^{x}}\mathrm{E}\{||\hat{\phi}_{t}(\bm{\mathbbm{x}}_{t})-\bm{x}||^{2}\} and ctψ=1M𝕧tzE{ψ^t(𝕫t)𝒛2}c^{\psi}_{t}=\tfrac{1}{M{\mathbbm{v}}_{t}^{z}}\mathrm{E}\{||\hat{\psi}_{t}(\bm{\mathbbm{z}}_{t})-\bm{z}||^{2}\}, where 𝕧tx{\mathbbm{v}}_{t}^{x} and 𝕧tz{\mathbbm{v}}_{t}^{z} denote the input variances of ϕt(𝕩t){{\phi}_{t}(\bm{\mathbbm{x}}_{t})} and ψt(𝕫t){{\psi}_{t}(\bm{\mathbbm{z}}_{t})} from γtx(𝒙t,𝒛t){\gamma}_{t}^{x}({\bm{x}}_{t},{\bm{z}}_{t}) and γtz(𝒙t,𝒛t){\gamma}_{t}^{z}({\bm{x}}_{t},{\bm{z}}_{t}), respectively. It is noted that the decoder ϕ^t()\hat{\phi}_{t}(\cdot) is assumed to be Lipschitz-continuous in this paper.

LD: The local LMMSE function γ^t(𝒙t,𝒛t)\hat{\gamma}_{t}({\bm{x}}_{t},{\bm{z}}_{t}) in (LABEL:Eqn:LD) is

γ^t(𝒙t,𝒛t)𝒙t+𝑨H(ρt𝑰+𝑨𝑨H)1(𝒛t𝑨𝒙t),\hat{\gamma}_{t}({\bm{x}}_{t},{\bm{z}}_{t})\equiv\bm{x}_{t}+\bm{A}^{\rm{H}}(\rho_{t}\bm{I}+\bm{A}\bm{A}^{\rm{H}})^{-1}(\bm{z}_{t}-\bm{A}\bm{x}_{t}), (4f)

with ρt=vtz/vtx\rho_{t}={v_{t}^{z}}/{v_{t}^{x}} and ctγ=1MTr{𝑨H(ρt𝑰+𝑨𝑨H)1𝑨}c^{\gamma}_{t}=\tfrac{1}{M}{\mathrm{Tr}}\{\bm{A}^{\rm{H}}(\rho_{t}\bm{I}+\bm{A}\bm{A}^{\rm{H}})^{-1}\bm{A}\}, where vtxv_{t}^{x} and vtzv_{t}^{z} denote the input variances of γtx(𝒙t,𝒛t){\gamma}_{t}^{x}({\bm{x}}_{t},{\bm{z}}_{t}) and γzx(𝒙t,𝒛t){\gamma}_{z}^{x}({\bm{x}}_{t},{\bm{z}}_{t}) from ϕt(𝕩t){{\phi}_{t}(\bm{\mathbbm{x}}_{t})} and ψt(𝕫t){{\psi}_{t}(\bm{\mathbbm{z}}_{t})}, respectively.

Note: The γ^t()\hat{\gamma}_{t}(\cdot) and ψ^t()\hat{\psi}_{t}(\cdot) have been proven to be Lipschitz-continuous in [20, 13]. Meanwhile, the LDPC decoder ϕ^t()\hat{\phi}_{t}(\cdot) is proved to be Lipschitz-continuous in [21, Appendix B], indicating that the SE of GOAMP/GVAMP based on LDPC decoding holds. Although there is no strict proof for other types of FEC codes, we conjecture that ϕ^t()\hat{\phi}_{t}(\cdot) is also Lipschitz-continuous for the majority of FEC codes (e.g., Turbo code, Polar code, etc.).

III-B State Evolution (SE)

Based on the asymptotic IID Gaussianity lemma (see [13] for more details), the asymptotic MSE of GOAMP/GVAMP can be characterized by the following SE.

where v^tx\hat{v}_{t}^{x}, v^tz\hat{v}_{t}^{z}, 𝕧^tx\hat{\mathbbm{v}}_{t}^{x}, 𝕧^tz\hat{\mathbbm{v}}_{t}^{z} denote the output a posteriori variances of ψ^t(𝕫t)\hat{\psi}_{t}(\bm{\mathbbm{z}}_{t}), ϕ^t(𝕩t)\hat{\phi}_{t}(\bm{\mathbbm{x}}_{t}), γ^tz(𝒛t,𝒙t)\hat{\gamma}_{t}^{z}({\bm{z}}_{t},{\bm{x}}_{t}), and γ^tx(𝒛t,𝒙t)\hat{\gamma}_{t}^{x}({\bm{z}}_{t},{\bm{x}}_{t}), i.e.,

v^tx\displaystyle\hat{v}_{t}^{x} =a.s.ϕ^SE(𝕧tx)=1NE{ϕ^t(𝐱+𝕧tx𝜼tx)𝐱2},\displaystyle\overset{\rm a.s.}{=}\hat{\phi}_{\mathrm{SE}}(\mathbbm{v}_{t}^{x})=\tfrac{1}{N}\mathrm{E}\{||\hat{\phi}_{t}(\bm{x}+\sqrt{\mathbbm{v}_{t}^{x}}\bm{\eta}_{t}^{x})-\bm{x}||^{2}\},
v^tz\displaystyle\hat{v}_{t}^{z} =a.s.ψ^SE(𝕧tz)=1ME{ψ^t(𝐳+𝕧tz𝜼tz)𝐳2},\displaystyle\overset{\rm a.s.}{=}\hat{\psi}_{\mathrm{SE}}(\mathbbm{v}_{t}^{z})=\tfrac{1}{M}\mathrm{E}\{||\hat{\psi}_{t}(\bm{z}+\sqrt{\mathbbm{v}_{t}^{z}}\bm{\eta}_{t}^{z})-\bm{z}||^{2}\},
𝕧^tx\displaystyle\!\hat{\mathbbm{v}}_{t}^{x} =a.s.γ^SEx(vtx,vtz)=1NE{γ^tx(𝐱+vtx𝜼tx,𝐳+vtz𝜼tz)𝐱2},\displaystyle\overset{\rm a.s.}{\!\!=\!\!}\hat{\gamma}_{\mathrm{SE}}^{x}(v_{t}^{x},v_{t}^{z})\!\!=\!\!\tfrac{1}{N}\mathrm{E}\{||\hat{\gamma}^{x}_{t}(\bm{x}\!\!+\!\!\sqrt{{v}_{t}^{x}}\bm{\eta}_{t}^{x},\bm{z}\!\!+\!\!\sqrt{v_{t}^{z}}\bm{\eta}_{t}^{z})\!\!-\!\!\bm{x}||^{2}\},
𝕧^tz\displaystyle\hat{\mathbbm{v}}_{t}^{z} =a.s.γ^SEz(vtx,vtz)=1ME{γ^tz(𝐱+vtx𝜼tx,𝐳+vtz𝜼tz)𝐳2},\displaystyle\overset{\rm a.s.}{\!\!=\!\!}\hat{\gamma}_{\mathrm{SE}}^{z}(v_{t}^{x},v_{t}^{z})\!\!=\!\!\tfrac{1}{M}\mathrm{E}\{||\hat{\gamma}^{z}_{t}(\bm{x}\!\!+\!\!\sqrt{{v}_{t}^{x}}\bm{\eta}_{t}^{x},\bm{z}\!\!+\!\!\sqrt{v_{t}^{z}}\bm{\eta}_{t}^{z})\!\!-\!\!\bm{z}||^{2}\},

where 𝜼tx𝒞𝒩(𝟎,𝑰)\bm{\eta}_{t}^{x}\sim\mathcal{CN}(\bm{0},\bm{I}), 𝜼tz𝒞𝒩(𝟎,𝑰)\bm{\eta}_{t}^{z}\sim\mathcal{CN}(\bm{0},\bm{I}), 𝜼tx\bm{\eta}_{t}^{x} is independent of 𝜼tz\bm{\eta}_{t}^{z}, and 𝜼tx\bm{\eta}_{t}^{x} and 𝜼tz\bm{\eta}_{t}^{z} are independent of 𝒙\bm{x} and 𝒛\bm{z}, respectively. Fig. 2(b) gives a graphical illustration of the SE in (4g).

III-C Variational State Evolution (VSE)

Note that the SE of GOAMP/GVAMP is multi-layer and involves DIDO transfer functions, making it difficult to directly apply the achievable rate analysis of OAMP based on single-layer SLS[17]. To address this difficulty, we study an alternative inner-iterative (II) GOAMP/GVAMP, as shown in Fig. 3(a), where NLDz\text{NLD}_{z}, LD, and the orthogonalization procedures are combined to form an enhanced LD (ELD). Specifically, for given input 𝒙^t\hat{\bm{x}}_{t} from NLDx\text{NLD}_{x}, the internal iteration between ψ^t()\hat{\psi}_{t}(\cdot) and γ^t(){\hat{\gamma}}_{t}(\cdot) is executed in γ¯t()\bar{\gamma}_{t}(\cdot) until it converges. Based on this, the GLS is converted to an SLS composed of γ¯t()\bar{\gamma}_{t}(\cdot) and ϕ^t()\hat{\phi}_{t}(\cdot), while in SE, the original DIDO transfer functions are transformed into SISO transfer functions, as shown in Fig. 3(b).

II-GOAMP/GVAMP Receiver: Starting with t=1t=1 and 𝕩1=0\bm{\mathbbm{x}}_{1}=0,

NLD:𝒙^t=ϕ^t(𝕩t),LD:𝕩t+1=γ¯t(𝒙^t,𝕩t),\text{NLD:}\;\;{{\hat{\bm{x}}_{t}}}=\hat{\phi}_{t}(\bm{\mathbbm{x}}_{t}),\;\;\text{LD:}\;\;{\bm{\mathbbm{x}}_{t+1}}=\bar{\gamma}_{t}(\hat{\bm{x}}_{t},{\bm{\mathbbm{x}}_{t}}), (4gi)

where γ¯t(𝒙^t,𝕩t)\bar{\gamma}_{t}(\hat{\bm{x}}_{t},{\bm{\mathbbm{x}}_{t}}) includes the orthogonal operations and the adequate internal iterations between γ^t(𝒙t,𝒛t,τ)\hat{\gamma}_{t}({\bm{x}}_{t},\bm{{z}}_{t,\tau}) and ψ^τ(𝕫t,τ)\hat{\psi}_{\tau}(\bm{\mathbbm{z}}_{t,\tau}), τ\tau denotes the inner iteration index in γ¯t\bar{\gamma}_{t}, and tt the outer iteration index between γ¯t\bar{\gamma}_{t} and ϕ^t\hat{\phi}_{t}. We will not provide the specific expression of γ¯t\bar{\gamma}_{t}, which is not relevant to the discussions in this paper. However, we will discuss in detail the SE of II-GOAMP/GVAMP, which serves as a bridge to the achievable rate analysis and code design of the original GOAMP/GVAMP. The SE of II-GOAMP/GVAMP is given by

NLD: v^tx=ϕ^SE(𝕧tx),\displaystyle\;\hat{v}_{t}^{x}=\hat{\phi}_{\mathrm{SE}}({\mathbbm{v}}_{t}^{x}), (4gja)
LD: 𝕧t+1x=γ¯SE(v^tx,𝕧tx)=γ~SE(v^tx𝕧tx)(v^tx𝕧tx),\displaystyle\;{\mathbbm{v}}_{{t+1}}^{x}\!\!=\!\!\bar{\gamma}_{\mathrm{SE}}(\hat{v}_{t}^{x},{\mathbbm{v}}_{{t}}^{x})\!\!=\!\!\tilde{\gamma}_{\mathrm{SE}}(\hat{v}_{t}^{x}\boxminus\mathbbm{v}_{t}^{x})\boxminus(\hat{v}_{t}^{x}\boxminus\mathbbm{v}_{t}^{x}), (4gjb)

where γ~SE()\tilde{\gamma}_{\mathrm{SE}}(\cdot) involves adequate inner iterations between MSE transfer functions ψ^SE\hat{\psi}_{\mathrm{SE}} (for ψ^τ\hat{\psi}_{\tau}) and γ^SE\hat{\gamma}_{\mathrm{SE}} (for γ^t\hat{\gamma}_{t}), i.e.,

𝕧^t+1x=γ~SE(vtx)=γ^SEx(vtx,vt,z),{\hat{\mathbbm{v}}}_{{t+1}}^{x}=\tilde{\gamma}_{\mathrm{SE}}(v_{t}^{x})=\hat{\gamma}_{\mathrm{SE}}^{x}(v_{t}^{x},v^{z}_{t,*}), (4gk)

with vtx=v^tx𝕧txv_{t}^{x}=\hat{v}_{t}^{x}\boxminus\mathbbm{v}_{t}^{x}, and vt,zv^{z}_{t,*} is the fixed point of the inner iteration between

𝕧t,τz=𝕧^t,τzvt,τz,vt,τ+1z=v^t,τz𝕧t,τz.{\mathbbm{v}}_{t,\tau}^{z}={\hat{\mathbbm{v}}}_{t,\tau}^{z}\boxminus v_{t,\tau}^{z},\;\;v_{t,\tau+1}^{z}=\hat{v}^{z}_{t,\tau}\boxminus\mathbbm{v}_{t,\tau}^{z}.

Precisely, vt,zv^{z}_{t,*} is a function of vtxv_{t}^{x} and can be solved by

𝕧t,z=γ^SEz(vtx,vt,z)vt,z,vt,z=ψ^SE(𝕧t,z)𝕧t,z.{\mathbbm{v}}_{t,*}^{z}=\hat{\gamma}_{\mathrm{SE}}^{z}(v_{t}^{x},v_{t,*}^{z})\boxminus v_{t,*}^{z},\;\;v_{t,*}^{z}=\hat{\psi}_{\mathrm{SE}}(\mathbbm{v}_{t,*}^{z})\boxminus\mathbbm{v}_{t,*}^{z}. (4gl)
Refer to caption
(a) II-GOAMP/GVAMP receiver: ELD γ¯t\bar{\gamma}_{t} and NLDx{\text{NLD}}_{x} ϕ^t\hat{\phi}_{t}, where γ¯t\bar{\gamma}_{t} includes the orthogonal operations (Orth) and the adequate internal iterations between ψ^τ\hat{\psi}_{\tau} and γ^t\hat{\gamma}_{t}.
Refer to caption
(b) Variational transfer functions: γ¯SE\bar{\gamma}_{\text{SE}}, γ~SE\tilde{\gamma}_{\text{SE}}, ψ^SE\hat{\psi}_{\text{SE}}, γ^SE\hat{\gamma}_{\text{SE}}, and ϕ^SE\hat{\phi}_{\text{SE}} denote MSE functions of γ¯t\bar{\gamma}_{t}, γ~t\tilde{\gamma}_{t}, ψ^τ\hat{\psi}_{\tau}, γ^t\hat{\gamma}_{t}, and ϕ^t\hat{\phi}_{t}, respectively.
Figure 3: Graphical illustrations for (a) II-GOAMP/GVAMP receiver and (b) the variational transfer functions.

Note that the transfer function γ¯SE()\bar{\gamma}_{\mathrm{SE}}(\cdot) in (4gjb) is a dual-input-single-output (DISO) function that incorporates the additional 𝕧tx\mathbbm{v}_{t}^{x} from the previous iteration, although the new SE in (4gj) is simpler than the original SE in (4g). As a result, it is still difficult to obtain the achievable rate of II-GOAMP/GVAMP using the I-LMMSE lemma. This problem can be solved by converting the DISO function γ¯SE()\bar{\gamma}_{\mathrm{SE}}(\cdot) into a SISO function γ˘SE()\breve{\gamma}_{\mathrm{SE}}(\cdot) by replacing 𝕧tx\mathbbm{v}_{t}^{x} with 𝕧t+1x\mathbbm{v}_{t+1}^{x}, which does not change the SE fixed points of II-GOAMP/GVAMP in (4gj) [17]. See [17, Lemma 4] for the details. Then, based on (4gj), we can obtain the following variational SISO transfer functions.

NLD: v^tx=ϕ^SE(𝕧tx),\displaystyle\;\;\hat{v}_{t}^{x}=\hat{\phi}_{\mathrm{SE}}({\mathbbm{v}}_{t}^{x}), (4gma)
LD: 𝕧t+1x=γ˘SE(v^tx)=v^txγ~SE1(v^tx),\displaystyle\;\;{\mathbbm{v}}_{{t+1}}^{x}=\breve{\gamma}_{\mathrm{SE}}(\hat{v}_{t}^{x})=\hat{v}_{t}^{x}\boxminus\tilde{\gamma}_{\mathrm{SE}}^{-1}(\hat{v}_{t}^{x}), (4gmb)
where γ~SE1()\tilde{\gamma}_{\mathrm{SE}}^{-1}(\cdot) is the inverse of γ~SE()\tilde{\gamma}_{\mathrm{SE}}(\cdot).

The following lemma indicates that the converged MSE of II-GOAMP/GVAMP is the same as that of the original GOAMP/GVAMP.

Lemma 1 (Equivalence of GOAMP/GVAMP and II-GOAMP/GVAMP)

GOAMP/GVAMP and II-GOAMP/ GVAMP have the same SE fixed points given by

where ϕ^SE\hat{\phi}_{\mathrm{SE}}, ψ^SE\hat{\psi}_{\mathrm{SE}}, γ^SEx\hat{\gamma}_{\mathrm{SE}}^{x}, and γ^SEz\hat{\gamma}_{\mathrm{SE}}^{z} are given in (4gh). Moreover, the SE fixed points represent the converged MSEs of GOAMP/ GVAMP and II-GOAMP/GVAMP. Therefore, their converged MSEs are the same.

It should be emphasized that the convergence speed and final estimation (not the converged MSE) of II-GOAMP/GVAMP may differ from those of GOAMP/GVAMP. Following Lemma 1, the achievable rate analysis and optimal code design of II-GOAMP/GOAMP and GOAMP/GVAMP are the same since they are only determined by the converged MSE. Consequently, the achievable rate of GOAMP/GVAMP can be analyzed through the variational SISO transfer functions (4gm). Due to this fact, we will not distinguish II-GOAMP/GVAMP and GOAMP/GVAMP, and refer to both as GOAMP/GVAMP.

Refer to caption
Figure 4: Graphical illustration for SE of GOAMP/GVAMP, where γˇSE1()\check{\gamma}_{\mathrm{SE}}^{-1}(\cdot) is the inverse of γˇSE()\check{\gamma}_{\mathrm{SE}}(\cdot), ϕˇSE(){\check{\phi}}_{\mathrm{SE}}(\cdot) is the MMSE function of NLDx\text{NLD}_{x}, ϕSE𝒮()\phi_{\mathrm{SE}}^{\mathcal{S}}(\cdot) and ϕSE𝒞()\phi_{\mathrm{SE}}^{\mathcal{C}}(\cdot) is the MMSE functions of demodulator and decoder, and ϕSE𝒞()\phi_{\mathrm{SE}}^{\mathcal{C}^{*}}(\cdot) is the MMSE function of optimal code. ρ𝒞\rho_{\mathcal{C}}^{*} and γˇSE(0)\check{\gamma}_{\text{SE}}(0) are the intersections of ϕSE𝒞()\phi_{\mathrm{SE}}^{\mathcal{C}}(\cdot) and γˇSE1()\check{\gamma}^{-1}_{\mathrm{SE}}(\cdot) with the horizontal axis, respectively.

III-D Achievable Rate Analysis and Coding Principle

Based on Lemma 1, we can rigorously analyze the achievable rate analysis and optimal code design for GOAMP/GVAMP based on the SISO VSE in (4gm). Let ρtx=1/𝕍tx\rho_{t}^{x}=1/{\scriptstyle\mathbb{V}}_{t}^{x}. We rewrite the VSE in (4gm) as

NLD:v^tx=ϕˇSE(ρtx),LD:ρt+1x=γˇSE(v^tx).\text{NLD:}\;\;\hat{v}_{t}^{x}=\check{\phi}_{\mathrm{SE}}(\rho_{t}^{x}),\quad\text{LD:}\;\;\rho_{t+1}^{x}=\check{\gamma}_{\mathrm{SE}}(\hat{v}_{t}^{x}). (4gno)

Due to coding gain, the decoding transfer function ϕˇSE𝒞()\check{\phi}_{\mathrm{SE}}^{\mathcal{C}}(\cdot) is upper bounded by the demodulation transfer function ϕˇSE𝒮()\check{\phi}_{\mathrm{SE}}^{\mathcal{S}}(\cdot) [14, 17]:

ϕˇSE𝒞(ρtx)<ϕˇSE𝒮(ρtx),for  0ρtxsnr.\check{\phi}_{\mathrm{SE}}^{\mathcal{C}}(\rho_{t}^{x})<\check{\phi}_{\mathrm{SE}}^{\mathcal{S}}(\rho_{t}^{x}),\quad{\mathrm{for}}\;\;0\leq\rho_{t}^{x}\leq snr. (4gnp)

As shown in Fig. 4, assume that there are multiple fixed points between γˇSE1()\check{\gamma}^{-1}_{\mathrm{SE}}(\cdot) and ϕˇSE𝒮()\check{\phi}_{\mathrm{SE}}^{\mathcal{S}}(\cdot) in SE of GOAMP/GVAMP, i.e., (ρ1x,v^1x)(\rho_{1}^{x},{\hat{v}_{1}^{x}}), (ρ2x,v^2x)(\rho_{2}^{x},{\hat{v}_{2}^{x}}) and (ρ3x,v^3x)(\rho_{3}^{x},{\hat{v}_{3}^{x}}), where γˇSE1()\check{\gamma}^{-1}_{\mathrm{SE}}(\cdot) is the inverse of γˇSE()\check{\gamma}_{\mathrm{SE}}(\cdot). It is obvious that the iterative process of the SE transfer functions will stop at the first fixed point (ρ1x,v^1x)(\rho_{1}^{x},{\hat{v}_{1}^{x}}). Since v^1x>0{\hat{v}_{1}^{x}}>0, the converged performance of GOAMP/GVAMP is not error-free. Therefore, to achieve error-free performance, a kind of proper FEC code should be designed to ensure that a decoding tunnel between ϕˇSE𝒞()\check{\phi}_{\mathrm{SE}}^{\mathcal{C}}(\cdot) and γˇSE1()\check{\gamma}^{-1}_{\mathrm{SE}}(\cdot) is available for successful decoding [14, 17]. That is,

ϕˇSEC(ρtx)<γˇSE1(ρtx),for  0ρtx<[γˇSE(0)].\check{\phi}_{\mathrm{SE}}^{C}(\rho_{t}^{x})<\check{\gamma}^{-1}_{\mathrm{SE}}(\rho_{t}^{x}),\quad{\mathrm{for}}\;\;0\leq\rho_{t}^{x}<[\check{\gamma}_{\mathrm{SE}}(0)]. (4gnq)

Then, based on the I-MMSE lemma [19], we give the achievable rate of GOAMP/GVAMP in GLS in the following lemma.

Refer to caption
Figure 5: Maximum achievable rates of GOAMP/GVAMP, the linearized approximate clipping model based on MRC receiver (Linear-Clipping-MRC)[8, 22] with N=500N=500, δ=1\delta=1, Gaussian signaling, channel condition number κ=10\kappa=10, and clipping thresholds λ={0.1,0.25,0.5,1,2,}\lambda=\{0.1,0.25,0.5,1,2,\infty\}.
Lemma 2 (Achievable Rate of GOAMP/GVAMP)

The achievable rate of GOAMP/ GVAMP with fixed ϕˇSEC()\check{\phi}^{C}_{\mathrm{SE}}(\cdot) is

RGOAMP/GVAMP=0γˇSE(0)ϕˇSEC(ρtx)𝑑ρtx,\displaystyle R_{\text{GOAMP/GVAMP}}=\int_{0}^{\check{\gamma}_{\mathrm{SE}}(0)}\check{\phi}^{C}_{\mathrm{SE}}(\rho_{t}^{x})d\rho_{t}^{x}, (4gnr)
s.t.ϕˇSE𝒞(ρtx)<ϕˇSE𝒞(ρtx),for  0ρtxγˇSE(0),\displaystyle\begin{array}[]{l@{\quad}l}{\rm s.t.}&\check{\phi}_{\mathrm{SE}}^{\mathcal{C}}(\rho_{t}^{x})<\check{\phi}_{\mathrm{SE}}^{{\mathcal{C}}^{*}}(\rho_{t}^{x}),\quad{\mathrm{for}}\;\;0\leq\rho_{t}^{x}\leq\check{\gamma}_{\mathrm{SE}}(0),\end{array}

where ϕˇSE𝒞(ρtx)=min{ϕˇSE𝒮(ρtx),γˇSE1(ρtx)}\check{\phi}_{\mathrm{SE}}^{{\mathcal{C}}^{*}}(\rho_{t}^{x})={\mathrm{min}}\{\check{\phi}_{\mathrm{SE}}^{\mathcal{S}}(\rho_{t}^{x}),\check{\gamma}^{-1}_{\mathrm{SE}}(\rho_{t}^{x})\}.

Based on Lemma 2, we obtain the optimal coding principle to maximize the achievable rate of GOAMP/GVAMP in the following lemma.

Lemma 3 (Optimal Code Design)

The optimal coding principle is to match the MMSE decoding transfer function with ϕˇSE𝒞(ρtx)\check{\phi}_{\mathrm{SE}}^{{\mathcal{C}}^{*}}(\rho_{t}^{x}), i.e.,

ϕˇSE𝒞(ρtx)ϕˇSE𝒞(ρtx),for  0ρtxγˇSE(0),\check{\phi}_{\mathrm{SE}}^{\mathcal{C}}(\rho_{t}^{x})\rightarrow\check{\phi}_{\mathrm{SE}}^{{\mathcal{C}}^{*}}(\rho_{t}^{x}),\quad{\mathrm{for}}\;\;0\leq\rho_{t}^{x}\leq\check{\gamma}_{\mathrm{SE}}(0), (4gns)

which achieves the maximum achievable rate while ensuring error-free performance.

The following theorem follows straightforwardly Lemma 2 and Lemma 3. It presents the maximum achievable rate of GOAMP/GVAMP that allows multiple fixed points between ϕˇSE𝒮(){\check{\phi}}^{\mathcal{S}}_{\mathrm{SE}}(\cdot) and γˇSE1()\check{\gamma}^{-1}_{\mathrm{SE}}(\cdot). Note that the results in [17] are dependent on a unique fixed point assumption for SE, which does not always hold.

Theorem 1 (Maximum Achievable Rate)

The maximum achievable rate of GOAMP/GVAMP is

RGOAMP/GVAMPmax0γˇSE(0)ϕˇSE𝒞(ρtx)𝑑ρtx.R_{\text{GOAMP/GVAMP}}^{\text{max}}\rightarrow\int_{0}^{\check{\gamma}_{\mathrm{SE}}(0)}\check{\phi}_{\mathrm{SE}}^{\mathcal{C}^{*}}(\rho_{t}^{x})d\rho_{t}^{x}. (4gnt)

IV Numerical Results

IV-A System Configuration

Assume that the channel matrix 𝑨M×N\bm{A}\in\mathbb{C}^{M\times N} is unitarily-invariant and fixed during the transmission, where N=500N=500 and the condition number of 𝑨\bm{A} is κ=10\kappa=10. Let the SVD of 𝑨\bm{A} be 𝑨=𝑼𝚲𝑽H\bm{A}=\bm{U}\bm{\Lambda}\bm{V}^{H}, where 𝚲\bm{\Lambda} is a rectangular diagonal matrix, {𝑼,𝚲,𝑽}\{\bm{U},\bm{\Lambda},\bm{V}\} are independent, and 𝑼\bm{U} and 𝑽\bm{V} are Haar distributed (i.e., uniformly distributed over all unitary matrices) [23]. To reduce the calculation complexity of matrix multiplication, we approximate two large random unitary matrices by 𝑼=𝑭1𝚷1\bm{U}=\bm{F}_{1}\bm{\Pi}_{1} and 𝑽H=𝚷2𝑭2\bm{V}^{H}=\bm{\Pi}_{2}\bm{F}_{2}, where 𝚷1\bm{\Pi}_{1}, 𝚷2\bm{\Pi}_{2} are random permutation matrices and 𝑭1\bm{F}_{1}, 𝑭2\bm{F}_{2} are discrete Fourier transform (DFT) matrices with dimensions MM and NN [13]. The singular values {di}\{d_{i}\} in 𝚲\bm{\Lambda} are set as [24]: di/di+1=κ1/𝒯d_{i}/d_{i+1}=\kappa^{1/\mathcal{T}}, i=1,,𝒯1i=1,...,\mathcal{T}-1 and i=1𝒯di2=𝒥\sum_{i=1}^{\mathcal{T}}d_{i}^{2}=\mathcal{J}, where 𝒯=min{M,N},𝒥=max{M,N}\mathcal{T}={\mathrm{min}}\{M,N\},\mathcal{J}={\mathrm{max}}\{M,N\}.

IV-B Achievable Rate of GOAMP/GVAMP with Clipping

Clipping is commonly applied to reduce the PAPR in OFDM systems[2]. Here, we provide the maximum achievable rate of GOAMP/GVAMP with clipping under different clipping thresholds λ\lambda based on Theorem 1. As shown in Fig. 5, for a fixed λ\lambda, the achievable rate of GOAMP/GVAMP increases monotonically with SNR. When λ<2\lambda<2, the achievable rate increases as the λ\lambda increases. For λ2\lambda\geq 2, the achievable rates will no longer increase, i.e., the achievable rate curves with λ=2\lambda=2 and λ\lambda\rightarrow\infty overlap. Because the clip threshold λ2\lambda\geq 2 already exceeds the range of noisy observation values, it is not the main factor limiting the achievable rate. Moreover, as shown in Fig. 5, the achievable rate of conventional MRC receiver based on the linearized model is much lower that of the proposed GOAMP/GVAMP. This is due to the linearized model’s inherent higher rate loss, and secondly, interference between signals in the MRC receiver is not well suppressed.

Refer to caption
Figure 6: BER performances of GOAMP/GVAMP with the optimized LDPC codes, the RLDPC=0.5R_{\rm{LDPC}}=0.5 P2P regular (3,6) and P2P capacity-approaching irregular LDPC codes [25]. "limit" denotes the associated information-theoretic limit of GOAMP/GVAMP.

IV-C BER Simulations and Comparisons

Note that the principle of optimal code design in Lemma 3 is applicable for arbitrary input distributions. Thus, we consider the practical LDPC code design for QPSK signaling with target rate Rsum=NRLDPClog2|𝒮QPSK|=500R_{\mathrm{sum}}=NR_{\mathrm{LDPC}}{\mathrm{log}}_{2}|\mathcal{S}_{\mathrm{QPSK}}|=500, where RLDPCR_{\mathrm{LDPC}}=0.5=0.5 and |𝒮QPSK||\mathcal{S}_{\mathrm{QPSK}}|=4=4. Fig. 6 shows the gaps between BER curves at 10410^{-4} of the optimized LDPC codes and the corresponding theoretical limits are about within 1.01.0 dB, which verifies the near optimality of the proposed LDPC codes. Moreover, compared with P2P regular (3,6)(3,6) LDPC codes and well-designed irregular LDPC codes with RLDPC=0.5R_{\rm{LDPC}}=0.5 [25], the optimized LDPC codes with GOAMP/GVAMP can achieve about 0.82.80.8\sim 2.8 dB performance gains. The above comparison demonstrates that the Bayes optimal GOAMP/GVAMP cannot be guaranteed to achieve error-free performance.

Conclusion

This paper focuses on the achievable rate analysis and coding principle of GOAMP/GVAMP for the GLS with unitarily-invariant matrices and arbitrary input distributions. Based on the same convergence performance as the original DIDO transfer functions, the equivalent variational SISO transfer functions are proposed for the analysis of achievable rates and optimal code design. Numerical results demonstrate the achievable rate advantages of the proposed GOAMP/GVAMP and the BER performance gains of the optimized LDPC compared to the existing methods.

References

  • [1] J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication with low-precision analog-to-digital conversion at the receiver,” IEEE Trans. Commun., vol. 57, no. 12, pp. 3629–3639, 2009.
  • [2] S. Liang, J. Ma, and L. Ping, “Clipping can improve the performance of spatially coupled sparse superposition codes,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2578–2581, 2017.
  • [3] X. Yang, S. Jin, and C.-K. Wen, “Symbol detection of phase noise-impaired massive MIMO using approximate bayesian inference,” IEEE Signal Process. Lett., vol. 26, no. 4, pp. 607–611, 2019.
  • [4] S. Wang, L. Zhang, and X. Jing, “Phase retrieval motivated nonlinear MIMO communication with magnitude measurements,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5452–5466, 2017.
  • [5] C.-J. Wang, C.-K. Wen, S.-H. Tsai, and S. Jin, “Decentralized expectation consistent signal recovery for phase retrieval,” IEEE Trans. Signal Proc., vol. 68, pp. 1484–1499, 2020.
  • [6] O. Orhan, E. Erkip, and S. Rangan, “Low power analog-to-digital conversion in millimeter wave systems: Impact of resolution and bandwidth on performance,” in Proc. Inf. Theory Appl. Workshop (ITA), 2015, pp. 191–198.
  • [7] L. Fan, S. Jin, C.-K. Wen, and H. Zhang, “Uplink achievable rate for massive MIMO systems with low-resolution ADC,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2186–2189, 2015.
  • [8] S. Liang, J. Tong, and L. Ping, “On iterative compensation of clipping distortion in OFDM systems,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 436–439, 2019.
  • [9] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory Proc., 2011, pp. 2168–2172.
  • [10] P. Schniter, S. Rangan, and A. K. Fletcher, “Vector approximate message passing for the generalized linear model,” in Proc. Asilomar Conf. on Signals, Systems, and Computers (Pacific Grove, CA), 2016, pp. 1525–1529.
  • [11] P. Pandit, M. Sahraee-Ardakan, S. Rangan, P. Schniter, and A. K. Fletcher, “Inference with deep generative priors in high dimensions,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 336–347, 2020.
  • [12] L. Liu, S. Huang, and B. M. Kurkoski, “Memory AMP,” IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 8015–8039, 2022.
  • [13] F. Tian, L. Liu, and X. Chen, “Generalized memory approximate message passing for generalized linear model,” IEEE Transactions on Signal Processing, vol. 70, pp. 6404–6418, 2022.
  • [14] L. Liu, C. Liang, J. Ma, and L. Ping, “Capacity optimality of AMP in coded systems,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4429–4445, 2021.
  • [15] G. Reeves and H. D. Pfister, “The replica-symmetric prediction for random linear estimation with Gaussian matrices is exact,” IEEE Trans. Inf. Theory, vol. 65, no. 4, pp. 2252–2283, 2019.
  • [16] J. Barbier, N. Macris, M. Dia, and F. Krzakala, “Mutual information and optimality of approximate message-passing in random linear estimation,” IEEE Trans. Inf. Theory, vol. 66, no. 7, pp. 4270–4303, 2020.
  • [17] L. Liu, S. Liang, and L. Ping, “Capacity optimality of OAMP in coded large unitarily invariant systems,” Proc. 2022 IEEE Int. Symp. Inf. Theory (ISIT), arXiv preprint arXiv:2108.08503, pp. 1384–1389, 2022.
  • [18] Y. Chi, L. Liu, G. Song, Y. Li, Y. L. Guan, and C. Yuen, “Constrained capacity optimal generalized multi-user MIMO: A theoretical and practical framework,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8086–8104, 2022.
  • [19] D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1261–1282, 2005.
  • [20] K. Takeuchi, “Rigorous dynamics of expectation-propagation-based signal recovery from unitarily invariant measurements,” IEEE Trans. Inf. Theory, vol. 66, no. 1, pp. 368–386, 2020.
  • [21] J. R. Ebert, J.-F. Chamberland, and K. R. Narayanan, “On sparse regression LDPC codes,” arXiv preprint arXiv:2301.01899, 2023.
  • [22] J. Tong, L. Ping, Z. Zhang, and V. K. Bhargava, “Iterative soft compensation for OFDM systems with clipping and superposition coded modulation,” IEEE Trans. Commun., vol. 58, no. 10, pp. 2861–2870, 2010.
  • [23] A. M. Tulino and S. Verdu´\rm{\acute{u}}, Random matrix theory and wireless communications.   Commun.and Inf.theory, 2004.
  • [24] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborova´\acute{a}, “Adaptive damping and mean removal for the generalized approximate message passing algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2015, pp. 2021–2025.
  • [25] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, 2001.
  • [26] R. Berthier, A. Montanari, and P.-M. Nguyen, “State evolution for approximate message passing with non-separable functions,” Inf. Inference, A J. IMA, vol. 9, no. 1, pp. 33–79, 2020.
  • [27] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6664–6684, 2019.

Appendix A Orthogonality and Asymptotic IID Gaussianity

Define error vectors as

𝝃tx=𝕩t𝒙,𝝃tz=𝒛𝕫t,\displaystyle\bm{\xi}^{x}_{t}=\bm{\mathbbm{x}}_{t}-\bm{x},\qquad\bm{\xi}_{t}^{z}=\bm{z}-\bm{\mathbbm{z}}_{t}, (4gnua)
ϵtx=𝒙𝒙t,ϵtz=𝒛t𝒛,\displaystyle\bm{\epsilon}_{t}^{x}=\bm{x}-\bm{x}_{t},\qquad\bm{\epsilon}_{t}^{z}=\bm{z}_{t}-\bm{z}, (4gnub)

with zero mean and variances:

vtx=𝝃tx|𝝃tx,vtz=𝝃tz|𝝃tz,\displaystyle v_{t}^{x}=\left\langle\bm{\xi}_{t}^{x}|\bm{\xi}_{t}^{x}\right\rangle,\qquad v_{t}^{z}=\left\langle\bm{\xi}_{t}^{z}|\bm{\xi}_{t}^{z}\right\rangle, (4gnva)
𝕧tx=ϵtx|ϵtx,𝕧tz=ϵtz|ϵtz.\displaystyle{\mathbbm{v}}_{t}^{x}=\left\langle\bm{\epsilon}_{t}^{x}|\bm{\epsilon}_{t}^{x}\right\rangle,\qquad{\mathbbm{v}}_{t}^{z}=\left\langle\bm{\epsilon}_{t}^{z}|\bm{\epsilon}_{t}^{z}\right\rangle. (4gnvb)

The following lemma establishes the asymptotic IID Gaussianity of GOAMP/GVAMP based on the unitarily-invariant property of 𝑨\bm{A} [26, 27, 20] (see also [13] for more details).

Lemma 4 (Orthogonality and Asymptotic IID Gaussianity)

Assume that ψ^t()\hat{\psi}_{t}(\cdot), γ^t()\hat{\gamma}_{t}(\cdot), and ϕ^t()\hat{\phi}_{t}(\cdot) are Lipschitz-continuous estimators. The following orthogonality holds for the iterative process of GOAMP/GVAMP: t>1\forall t>1,

𝝃tx|ϵtx\displaystyle\left\langle\bm{\xi}_{t}^{x}|{\epsilon}_{t}^{x}\right\rangle =a.s.0,𝝃tz|ϵtz=a.s.0,\displaystyle\overset{\rm a.s.}{=}0,\qquad\left\langle\bm{\xi}_{t}^{z}|\bm{\epsilon}_{t}^{z}\right\rangle\overset{\rm a.s.}{=}0, (4gnwa)
ϵt+1x|𝝃tx\displaystyle\left\langle\bm{\epsilon}_{t+1}^{x}|\bm{\xi}_{t}^{x}\right\rangle =a.s.0,ϵt+1z|𝝃tz=a.s.0.\displaystyle\overset{\rm a.s.}{=}0,\qquad\left\langle\bm{\epsilon}_{t+1}^{z}|\bm{\xi}_{t}^{z}\right\rangle\overset{\rm a.s.}{=}0. (4gnwb)

Then, the following asymptotic IID Gaussianity holds: for t>1t>1,

vtx\displaystyle\!\!\!v_{t}^{x} =a.s.1NE{ϕt(𝐱+𝕧tx𝜼tx)𝐱2},\displaystyle\overset{\rm a.s.}{=}\tfrac{1}{N}\mathrm{E}\{||\phi_{t}(\bm{x}+\sqrt{\mathbbm{v}_{t}^{x}}\bm{\eta}_{t}^{x})-\bm{x}||^{2}\}, (4gnxa)
𝕧t+1x\displaystyle\!\!\!{\mathbbm{v}}_{t+1}^{x} =a.s.1NE{γtx(𝐱+vtx𝜼tx,𝐳+vtz𝜼tz)𝐱2},\displaystyle\overset{\rm a.s.}{=}\tfrac{1}{N}\mathrm{E}\{||\gamma^{x}_{t}(\bm{x}+\sqrt{{v}_{t}^{x}}\bm{\eta}_{t}^{x},\bm{z}+\sqrt{v_{t}^{z}}\bm{\eta}_{t}^{z})-\bm{x}||^{2}\}, (4gnxb)
𝕧t+1z\displaystyle\!\!\!{\mathbbm{v}}_{t+1}^{z} =a.s.1ME{γtz(𝐱+vtx𝜼tx,𝐳+vtz𝜼tz)𝐳2},\displaystyle\overset{\rm a.s.}{=}\tfrac{1}{M}\mathrm{E}\{||\gamma^{z}_{t}(\bm{x}+\sqrt{{v}_{t}^{x}}\bm{\eta}_{t}^{x},\bm{z}+\sqrt{v_{t}^{z}}\bm{\eta}_{t}^{z})-\bm{z}||^{2}\}, (4gnxc)
where 𝜼tx𝒞𝒩(𝟎,𝑰)\bm{\eta}_{t}^{x}\sim\mathcal{CN}(\bm{0},\bm{I}), 𝜼tz𝒞𝒩(𝟎,𝑰)\bm{\eta}_{t}^{z}\sim\mathcal{CN}(\bm{0},\bm{I}), 𝜼tx\bm{\eta}_{t}^{x} is independent of 𝜼tz\bm{\eta}_{t}^{z}, and 𝜼tx\bm{\eta}_{t}^{x} and 𝜼tz\bm{\eta}_{t}^{z} are independent of 𝒙\bm{x} and 𝒛\bm{z}, respectively.

Note: The γ^t()\hat{\gamma}_{t}(\cdot) has been proven to be Lipschitz-continuous in [20]. ψ^t()\hat{\psi}_{t}(\cdot) is naturally Lipschitz-continuous because it is demodulated symbol-by-symbol in this paper. Meanwhile, the LDPC decoder ϕ^t()\hat{\phi}_{t}(\cdot) is proved to be Lipschitz-continuous in [21, Appendix B], indicating that the SE of GOAMP/GVAMP based on LDPC decoding holds. As a result, we design a kind of LDPC code based on the SE in numerical results. Although no rigorous proof exists for other types of FEC codes, we conjecture it is possible to demonstrate that ϕ^t()\hat{\phi}_{t}(\cdot) is Lipschitz-continuous.

Appendix B Proof of Lemma 1

Let (vz,𝕧z,vx,𝕧x)(v_{*}^{z},{\mathbbm{v}}_{*}^{z},v_{*}^{x},{\mathbbm{v}}_{*}^{x}) be the SE fixed point of GOAMP/GVAMP. Then the fixed-point equation (4gny) can be obtained directly from (4g) and (4gh).

Let (v^x,𝕧x)(\hat{v}_{*}^{x},{\mathbbm{v}}_{*}^{x}) be the SE fixed point of II-GOAMP/GVAMP. Based on (4gm) and (4gh), we have the following SE fixed-point equation for II-GOAMP/GVAMP.

NLD: v^x=ϕ^SE(𝕧x),\displaystyle\;\;\hat{v}_{*}^{x}=\hat{\phi}_{\mathrm{SE}}({\mathbbm{v}}_{*}^{x}), (4gnyza)
LD: 𝕧x=γ¯SE(v^x)=v^xγ~SE1(v^x),\displaystyle\;\;{\mathbbm{v}}_{{*}}^{x}=\bar{\gamma}_{\mathrm{SE}}(\hat{v}_{*}^{x})=\hat{v}_{*}^{x}\boxminus\tilde{\gamma}_{\mathrm{SE}}^{-1}(\hat{v}_{*}^{x}), (4gnyzb)

where γ~SE1()\tilde{\gamma}_{\mathrm{SE}}^{-1}(\cdot) is the inverse of γ~SE()\tilde{\gamma}_{\mathrm{SE}}(\cdot), which is given in (4gk) and (4gl), i.e.,

γ~SE(vx)=γ^SEx(vx,v,z),\displaystyle\tilde{\gamma}_{\mathrm{SE}}(v_{*}^{x})=\hat{\gamma}_{\mathrm{SE}}^{x}(v_{*}^{x},v^{z}_{*,*}), (4gnyaaa)
𝕧,z=γ^SEz(vx,v,z)(v,z),\displaystyle{\mathbbm{v}}_{*,*}^{z}=\hat{\gamma}_{\mathrm{SE}}^{z}(v_{*}^{x},v_{*,*}^{z})\boxminus(v_{*,*}^{z}), (4gnyaab)
v,z=ψ^SE(𝕧,z)(𝕧,z).\displaystyle v_{*,*}^{z}=\hat{\psi}_{\mathrm{SE}}({\mathbbm{v}}_{*,*}^{z})\boxminus({\mathbbm{v}}_{*,*}^{z}). (4gnyaac)

Substituting v^x=[(vx)1+(𝕧x)1]1\hat{v}_{*}^{x}=[(v_{*}^{x})^{-1}+(\mathbbm{v}^{x}_{*})^{-1}]^{-1} into (4gnyza), we have

vx=ϕ^SE(𝕧x)𝕧x.v_{*}^{x}=\hat{\phi}_{\mathrm{SE}}(\mathbbm{v}_{*}^{x})\boxminus\mathbbm{v}_{*}^{x}. (4gnyab)

Similarly, substituting (4gnyaaa) and v^x=[(vx)1+(𝕧x)1]1\hat{v}_{*}^{x}=[(v_{*}^{x})^{-1}+(\mathbbm{v}^{x}_{*})^{-1}]^{-1} into (4gnyzb), we have

𝕧x=γ^SEx(vx,v,z)vx.\mathbbm{v}_{*}^{x}=\hat{\gamma}_{\mathrm{SE}}^{x}(v_{*}^{x},v_{*,*}^{z})\boxminus v_{*}^{x}. (4gnyac)

As a result, the SE fixed-point equations of II-GOAMP/GVAMP in (4gnyz) are converted to (4gnyaab), (4gnyaac), (4gnyab) and (4gnyac). By replacing v,zv_{*,*}^{z} with vzv_{*}^{z} and 𝕧,z{\mathbbm{v}}_{*,*}^{z} with 𝕧z{\mathbbm{v}}_{*}^{z}, we can see that (4gnyab) and (4gnyaac) are the same as the LD fixed-point equations in (LABEL:Eqn:SE_FP_NLD2), and (4gnyac) and (4gnyaab) are the same as the NLD fixed-point equations in (LABEL:Eqn:SE_FP_LD2). This indicates that GOAMP/GVAMP and II-GOAMP/GVAMP have the same SE fixed-point equations. That is, GOAMP/GVAMP and II-GOAMP/GVAMP converge to the same MSE. Hence, we complete the proof of Lemma 1.

Appendix C De-clipping

Clipping is commonly applied to reduce the PAPR in OFDM systems[2]. Let zmz_{m} and nmn_{m} be the mm-th elements of 𝒛\bm{z} and 𝒏\bm{n} in (3), respectively. A complex-valued clipping function 𝒬clip{\mathcal{Q}}_{\rm{clip}} is defined as 𝒬clipQclip(Re{zm+nm})+jQclip(Im{zm+nm}){\mathcal{Q}}_{\rm{clip}}\equiv Q_{\rm{clip}}({\rm{Re}}\{z_{m}+n_{m}\})+jQ_{\rm{clip}}({\rm{Im}}\{z_{m}+n_{m}\}), m=1,,Mm=1,...,M, i.e., the real and imaginary parts are separately clipped symbol by symbol as follows.

Qclip(x)={λ,ifxλx,ifλ<x<λλ,ifxλ.Q_{\rm{clip}}(x){=}\begin{cases}\lambda,&{\mathrm{if}}\;{x\geq\lambda}\\ x,&{\mathrm{if}}\;{-\lambda<x<\lambda}\\ -\lambda,&{\mathrm{if}}\;{x\leq-\lambda}\end{cases}. (4gnyad)

with λ\lambda being the clipping threshold. Since the clipped signal is detected independently symbol-by-symbol, we ignore the subscript mm to simplify the discussion. According to Fig. 3(a), noting that 𝕫tzy\bm{\mathbbm{z}}_{t}-z-y is a Markov chain, we have

P(z|𝕫t,y)=P(𝕫t|z)P(y|z)P(𝕫t|z)P(y|z)𝑑z,P(z|\bm{\mathbbm{z}}_{t},y)=\frac{P(\bm{\mathbbm{z}}_{t}|z)P(y|z)}{\int P(\bm{\mathbbm{z}}_{t}|z)P(y|z)dz}, (4gnyae)

As a result, given λ\lambda, the a posteriori mean of zz is

z^=ψ^t(𝕫t)=E{z|𝕫t,y}=zP(z|𝕫t,y)𝑑z,\hat{z}=\hat{\psi}_{t}(\bm{\mathbbm{z}}_{t})={\mathrm{E}}\{z|\bm{\mathbbm{z}}_{t},y\}=\int zP(z|\bm{\mathbbm{z}}_{t},y)dz, (4gnyafa)
and the a posteriori variance of zz is
v^tz=E{z2|𝕫t,y}z^2.\hat{v}_{t}^{z}={\mathrm{E}}\{z^{2}|\bm{\mathbbm{z}}_{t},y\}-\hat{z}^{2}. (4gnyafb)

Based on the a posteriori estimation (z^,v^tz)(\hat{z},\hat{v}_{t}^{z}), (4gm), and Theorem 1, we can derive the achievable rate of GOAMP/GVAMP with de-clipping.

Appendix D Achievable Rates of MRC in linearized model

In the existing works[8, 22], to simplify the analysis of clipping, a linearized approximate clipping model is considered, i.e,

{𝒚=α𝒛+𝒅,𝒛=𝑨𝒙+𝒏,\begin{cases}\bm{y}=\alpha{\bm{z}}+\bm{d},\\ \bm{z}=\bm{A}\bm{x}+\bm{n},\end{cases} (4gnyag)

where α\alpha is a constant scalar computed as α=E[𝒛H𝒚]E[𝒛2]\alpha=\frac{{\mathrm{E}}[\bm{z}^{H}{\bm{y}}]}{{\mathrm{E}}[||\bm{z}||^{2}]} and 𝒅=𝒚α𝒛\bm{d}=\bm{y}-\alpha\bm{z} is the clipping distortion. Meanwhile, the MRC receiver is commonly used in wireless communications [7]. The achievable rate of MRC receiver with Gaussian signaling is given by [7]

RMRC=m=1Mlog2(1+α2E{𝒉m4}α2imE{|𝒉mH𝒉i|2}+(α2σ2+𝒅2)E{𝒉m2}).\!\!\!\!R_{\text{MRC}}\!\!=\!\!\sum_{m=1}^{M}{\mathrm{log}}_{2}\big{(}1+\tfrac{\alpha^{2}\mathrm{E}\{||\bm{h}_{m}||^{4}\}}{\alpha^{2}\sum_{i\neq m}\mathrm{E}\{|\bm{h}_{m}^{H}\bm{h}_{i}|^{2}\}+(\alpha^{2}\sigma^{2}+||\bm{d}||^{2}){\mathrm{E}\{||\bm{h}_{m}||^{2}\}}}\big{)}.

Appendix E Optimized irregular LDPC codes with GOAMP/GVAMP for clipping

TABLE I: Optimized irregular LDPC codes with GOAMP/GVAMP for clipping.
System parameters N=MN=M
target RsumR_{\rm{sum}}
500 500
Scenarios clipping (λ=1\lambda=1)
κ=10\kappa=10 κ=50\kappa=50
Codelength{\rm{Code~{}length}} 10510^{5}
RLDPCR_{\mathrm{LDPC}} 0.5 0.5
μ(X)\mu(X)
μ6=1{\it{\mu}}_{\text{6}}=1
μ8=1{\it{\mu}}_{\text{8}}=1
γ(X)\gamma(X) γ2=0.4604\gamma_{2}=0.4604 γ2=0.4619\gamma_{2}=0.4619
γ3=0.2464\gamma_{3}=0.2464 γ14=0.0196\gamma_{14}=0.0196
γ13=0.1743\gamma_{13}=0.1743 γ15=0.2559\gamma_{15}=0.2559
γ14=0.1189\gamma_{14}=0.1189 γ70=0.0956\gamma_{70}=0.0956
γ80=0.0760\gamma_{80}=0.0760
γ500=0.0910\gamma_{500}=0.0910
(snr)dB(snr)^{\it{\ast}}_{\text{dB}} 2.25 3.7
(limit)dB{\text{(limit)}_{\text{dB}}} 2.14 3.68

Similar as [14, Section A], a kind of practical irregular LDPC code (𝜸(X)=i=2dv,maxγiXi1(\bm{\gamma}(X)=\sum_{i=2}^{d_{v,\mathrm{max}}}\gamma_{i}X^{i-1}, 𝝁(X))=i=2dc,maxμiXi1)\bm{\mu}(X))=\sum_{i=2}^{d_{c,\mathrm{max}}}\mu_{i}X^{i-1}) is optimized for GOAMP/GVAMP with clipping (λ=1\lambda=1), where dv,maxd_{v,\mathrm{max}} and dc,maxd_{c,\mathrm{max}} are the corresponding maximum degrees of VN and CN. In Table I, the optimized irregular LDPC codes are given with target rate Rsum=NRLDPClog2|𝒮QPSK|=500R_{\mathrm{sum}}=NR_{\mathrm{LDPC}}{\mathrm{log}}_{2}|\mathcal{S}_{\mathrm{QPSK}}|=500, where RLDPC=0.5R_{\mathrm{LDPC}}=0.5 and |𝒮QPSK|=4|\mathcal{S}_{\mathrm{QPSK}}|=4. Note that the decoding thresholds of the optimized LDPC codes are within 0.110.11 dB away from the theoretical limits for the maximum achievable rate of GOAMP/GVAMP.

To verify the advantages of the optimized LDPC codes for GOAMP/GVAMP, we employ P2P well-designed RLDPC=0.5R_{\rm{LDPC}}=0.5 with the degree distributions λ(X)=0.24426x+0.25907x2+0.01054x3+0.05510x4+0.014557+0.01275x9+0.40373x11\lambda(X)=0.24426x+0.25907x^{2}+0.01054x^{3}+0.05510x^{4}+0.01455^{7}+0.01275x^{9}+0.40373x^{11} and μ(X)=0.25475x6+0.73438x7+0.01087x8\mu(X)=0.25475x^{6}+0.73438x^{7}+0.01087x^{8} [25] as the baseline method, whose the decoding threshold is 0.180.18 dB away from the P2P-AWGN capacity.