This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Euler angles for a unitary control of the Hamiltonian system

Seungjin Lee, Kyunghyun Baek and Jeongho Bang Electronics and Telecommunications Research Institute,
Gajeong-ro 218, Daejeon, Republic of Korea, 34129
[email protected]
Abstract

We provide an angular parametrization of the special unitary group SU(2n)\textrm{SU}(2^{n}) generalizing Euler angles for SU(2)\textrm{SU}(2) by successively applying the KAK decomposition. We then determine constraint equations for the parametric curve of generalized Euler angles corresponding to the exponential curve of a given Hamiltonian. The constraint equations are in the form of first-order differential-algebraic equations and resemble Wei-Norman equations of canonical coordinates of the second kind for SU(2n)\textrm{SU}(2^{n}).

Keywords: Hamiltonian simulation, uniform finite generation, KAK decomposition, Euler angles, differential-algebraic equations

1 Introduction

The simulation of a quantum system through a controllable quantum system, often called the Hamiltonian simulation, has been a prominent application in quantum computation. Along with the vitality of the Hamiltonian simulation for diverse target systems, the particular interest in the Hamiltonian simulation resides in its anticipated computational power over the classical implementation owing to the intrinsic quantum nature of the control system.

In the Hamiltonian simulation, it is essential to establish the connection between the control parameters of the control system to the unitary evolution generated by the Hamiltonian of the target system embedded in the control system. This necessitates a comprehensive specification of the control system, which includes the complete set of control parameters and the relationship between a particular Hamiltonian and control parameters.

In mathematical terms, the unitarity of a quantum system’s evolution indicates that the controllability of the control system for a Hamiltonian simulation amounts to a parametrization of the unitary group embedding the evolution of the target system. For instance, given a two-level quantum system, an evolution of the system can be identified with an element of U(2)\textrm{U}(2). Therefore, up to the overall phase factor, a conventional Euler angle parametrization of SU(2)\textrm{SU}(2) provides a set of control parameters along with the polar decomposition.

A particularly practical class of parametrizations involves decomposing the unitary group into one-parameter subgroups. With this approach, an element of the unitary group can be expressed as a finite string of elements of subgroups in which the order of subgroups in the string is fixed and independent of the decomposed element. Each parameter in the string provides complete control over the corresponding subgroup, allowing for precise manipulation of the target element. Such decomposition is often called the uniform finite generation of the unitary group and has acquired a particular interest since the group-generating string can be interpreted as a sequential implementation of elements forming the string.

The uniform finite generation of the unitary group has been extensively studied in the context of the controllability of systems on Lie groups (see, for instance, [1] and related references). The first existence of a uniform finite generation has been established in [2], and various explicit constructions have been presented in [1, 3, 4].

The KAK decomposition of a compact Lie group has provided systematic constructions of the uniform finite generation of the unitary group and has been studied in [5, 6, 7, 8, 9, 10]. In particular, in [8], the KAK decomposition of SU(2n)\textrm{SU}(2^{n}) has been applied to obtain a uniform finite generation of SU(2n)\textrm{SU}(2^{n}) which is relevant to unitary evolutions embedded in the control system consisting of nn two-level (or qubit) systems.

However, despite diverse constructions of the uniform finite generation of the unitary group, the direct interconnection between the Hamiltonian simulation and the uniform finite generation has yet to be extensively studied. In particular, the relation between the integral curve generated by the given Hamiltonian of the system via the exponential map and the parametric curve for the control parameters has not been explicitly established apart from the well-known equations for Euler angles [11].

In this work, we provide a construction of the uniform finite generation of the unitary group SU(2n)\textrm{SU}(2^{n}) by extending results in [8, 9, 10, 12]. Having a uniform finite generation of SU(2n)\textrm{SU}(2^{n}), we establish a set of constraint equations for the parametric curve corresponding to the integral curve generated by the Hamiltonian of the target system via the exponential map, which provides the direct interconnection between the Hamiltonian simulation and the uniform finite generation of the nn-qubit system.

The paper is organized as follows. In the next section, we provide a decomposition of the unitary group SU(2n)\textrm{SU}(2^{n}) by successively applying the KAK decomposition. The decomposition can be considered a refinement of works in [8, 12], having a particular intention to systematically relate the decomposition with the Hamiltonian simulation.

We then show that for a unitary evolution of a Hamiltonian system, one can obtain a system of differential-algebraic equations (DAEs) for the parametric curve identical to the unitary evolution. The construction of the DAEs resembles that of the Wei-Norman equations in [13, 14, 15], whose parametrization is the set of canonical coordinates of the second kind. The last section is devoted to the summary and outlook, discussing possible research directions for our work.

2 KAK decomposition and generalized Euler angles for SU(2n)\textrm{SU}(2^{n})

An evolution of a Hamiltonian system embedded in an nn-qubit system can be represented as an element in SU(2n)\textrm{SU}(2^{n}) by ignoring the overall phase factor. Therefore, a uniform finite generation of SU(2n)\textrm{SU}(2^{n}) provides a set of control parameters for the evolution of the system.

The KAK decomposition of the unitary group provides a systematic construction of a uniform finite generation of the unitary group. The KAK decomposition in the context of a unitary control of a Hamiltonian system has been considered in [8]. In this section, we extend the method in [8] to decompose SU(2n)\textrm{SU}(2^{n}) in a recursive manner, which is somewhat close to the exposition in [12].

A decomposition of the KAK type for a compact connected semisimple Lie group GG is associated with an orthogonal symmetric Lie algebra of the compact type of the corresponding Lie algebra 𝔤\mathfrak{g}. For a compact Lie algebra, the construction of an orthogonal symmetric Lie algebra amounts to a vector space decomposition 𝔤=𝔨𝔭\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} such that [16]

[𝔨𝔨]𝔨,[𝔨𝔭]=𝔭,[𝔭𝔭]𝔨.\displaystyle\left[\mathfrak{k}\mathfrak{k}\right]\subset\mathfrak{k},\quad\left[\mathfrak{k}\mathfrak{p}\right]=\mathfrak{p},\quad\left[\mathfrak{p}\mathfrak{p}\right]\subset\mathfrak{k}. (1)

Given the orthogonal symmetric Lie algebra (𝔤,𝔨)(\mathfrak{g},\mathfrak{k}) we have a KAK decomposition of GG as an application of the following theorem whose proof can be found in [16]:

Theorem 1 (KAK decomposition).

Let GG be a connected compact Lie group whose Lie algebra 𝔤\mathfrak{g} is semisimple, and (𝔤,𝔨)(\mathfrak{g},\mathfrak{k}) be an orthogonal symmetric Lie algebra of the compact type. Then for all gGg\in G, there exist k1,k2𝔨k_{1},k_{2}\in\mathfrak{k} and a𝔞a\in\mathfrak{a} such that g=exp(k1)exp(a)exp(k2)g=\exp\left(k_{1}\right)\exp\left(a\right)\exp\left(k_{2}\right) in which 𝔞\mathfrak{a} is the maximal abelian subalgebra of 𝔭\mathfrak{p}.

In order to construct an orthogonal symmetric Lie algebra for the Lie algebra 𝔰𝔲(2n)\mathfrak{su}(2^{n}) of SU(2n)\textrm{SU}(2^{n}), it is somewhat convenient to consider the tensor product construction of 𝔰𝔲(2n)\mathfrak{su}(2^{n}), which manifestly exhibits the composite nature of the nn-qubit system. For the tensor product construction, we mean an associative algebra recursively constructed by

𝔲(2)=\displaystyle\mathfrak{u}(2)= {σa:a=0,1,2,3}\displaystyle\mathbb{R}\left\{\sigma_{a}:a=0,1,2,3\right\} (2)
𝔲(2n)=\displaystyle\mathfrak{u}(2^{n})= iσa𝔲(2n1)\displaystyle i\sigma_{a}\otimes\mathfrak{u}(2^{n-1}) (3)

where σa=(i2𝟏,12𝐢,12𝐣,12𝐤)\sigma_{a}=\left(-\frac{i}{2}\mathbf{1},\frac{1}{2}\mathbf{i},\frac{1}{2}\mathbf{j},\frac{1}{2}\mathbf{k}\right) with the following multiplication table of quaternions {𝟏,𝐢,𝐣,𝐤}\{\mathbf{1},\mathbf{i},\mathbf{j},\mathbf{k}\}:

𝟏𝐢𝐣𝐤𝟏𝟏𝐢𝐣𝐤𝐢𝐢𝟏𝐤𝐣𝐣𝐣𝐤𝟏𝐢𝐤𝐤𝐣𝐢𝟏.\displaystyle\begin{array}[]{c|cccc}&\mathbf{1}&\mathbf{i}&\mathbf{j}&\mathbf{k}\\ \hline\cr\mathbf{1}&\mathbf{1}&\mathbf{i}&\mathbf{j}&\mathbf{k}\\ \mathbf{i}&\mathbf{i}&-\mathbf{1}&\mathbf{k}&-\mathbf{j}\\ \mathbf{j}&\mathbf{j}&-\mathbf{k}&-\mathbf{1}&\mathbf{i}\\ \mathbf{k}&\mathbf{k}&\mathbf{j}&-\mathbf{i}&-\mathbf{1}\end{array}. (9)

One can easily notice that 𝔲(2n)\mathfrak{u}(2^{n}) induces the unitary Lie algebra of rank 2n2^{n}, so we have 𝔰𝔲(2n)\mathfrak{su}(2^{n}) by excluding the center of 𝔲(2n)\mathfrak{u}(2^{n}).

Given 𝔰𝔲(2n)\mathfrak{su}(2^{n}) as in the above, we have an orthogonal symmetric Lie algebra (𝔰𝔲(2n),𝔨n)(\mathfrak{su}(2^{n}),\mathfrak{k}_{n}) constructed by [8]

𝔨n=(iσ0𝔰𝔲(2n1))(iσ3𝔲(2n1)),𝔭n=i=1,2(iσi𝔲(2n1)).\displaystyle\mathfrak{k}_{n}=\left(i\sigma_{0}\otimes\mathfrak{su}(2^{n-1})\right)\oplus\left(i\sigma_{3}\otimes\mathfrak{u}(2^{n-1})\right),\quad\mathfrak{p}_{n}=\bigoplus_{i=1,2}\left(i\sigma_{i}\otimes\mathfrak{u}(2^{n-1})\right). (10)

Consequently, the corresponding KAK decomposition of 𝔰𝔲(2n)\mathfrak{su}(2^{n}) can be casted into the form of

SU(2n)=exp(𝔨n)exp(𝔞n)exp(𝔨n)\displaystyle\textrm{SU}(2^{n})=\exp(\mathfrak{k}_{n})\exp(\mathfrak{a}_{n})\exp(\mathfrak{k}_{n}) (11)

with 𝔞n=iσ1𝔱n1\mathfrak{a}_{n}=i\sigma_{1}\otimes\mathfrak{t}_{n-1} in which 𝔱n\mathfrak{t}_{n} denotes the maximal abelian subalgebra of 𝔲(2n)\mathfrak{u}(2^{n}).

One can further notice that the corresponding Lie group of 𝔨n\mathfrak{k}_{n} is homeomorphic to U(1)×SU(2n1)×SU(2n1)\textrm{U}(1)\times\textrm{SU}(2^{n-1})\times\textrm{SU}(2^{n-1}) so that one can apply another KAK decomposition for exp(𝔨n)\exp(\mathfrak{k}_{n}) as [12]

exp(𝔨n)=exp(𝔨n)exp(𝔞𝔫)exp(𝔨n).\displaystyle\exp(\mathfrak{k}_{n})=\exp(\mathfrak{k}_{n}^{\prime})\exp(\mathfrak{a_{n}^{\prime}})\exp(\mathfrak{k}_{n}^{\prime}). (12)

Explicitly, the decomposition of SU(2n1)×SU(2n1)\textrm{SU}(2^{n-1})\times\textrm{SU}(2^{n-1}) is associated with an orthogonal symmetric Lie algebra (𝔨n,𝔨n)\left(\mathfrak{k}_{n},\mathfrak{k}_{n}^{\prime}\right) constructed by

𝔨n=iσ0𝔰𝔲(2n1),𝔭n=iσ3𝔰𝔲(2n1),𝔞n=iσ3𝔱n1.\displaystyle\mathfrak{k}_{n}^{\prime}=i\sigma_{0}\otimes\mathfrak{su}(2^{n-1}),\quad\mathfrak{p}_{n}^{\prime}=i\sigma_{3}\otimes\mathfrak{su}(2^{n-1}),\quad\mathfrak{a}_{n}^{\prime}=i\sigma_{3}\otimes\mathfrak{t}_{n-1}. (13)

Altogether, we have a sub-extended KAK decomposition of SU(2n)\textrm{SU}(2^{n}) as

SU(2n)=exp(𝔨n)exp(𝔞n)exp(𝔨n)exp(𝔞n)exp(𝔨n)exp(𝔞n)exp(𝔨n).\displaystyle\textrm{SU}(2^{n})=\exp(\mathfrak{k}_{n}^{\prime})\exp(\mathfrak{a}_{n}^{\prime})\exp(\mathfrak{k}_{n}^{\prime})\exp(\mathfrak{a}_{n})\exp(\mathfrak{k}_{n}^{\prime})\exp(\mathfrak{a}_{n}^{\prime})\exp(\mathfrak{k}_{n}^{\prime}). (14)

By noticing that exp(𝔨n)\exp(\mathfrak{k}_{n}^{\prime}) is isomorphic to SU(2n1)\textrm{SU}(2^{n-1}) the decomposition in (14) allows one to recursively decompose SU(2n)\textrm{SU}(2^{n}) until we reach SU(2)\textrm{SU}(2) decomposed into

exp(σ3)exp(σ1)exp(σ3).\displaystyle\exp(\mathbb{R}\sigma_{3})\exp(\mathbb{R}\sigma_{1})\exp(\mathbb{R}\sigma_{3}). (15)

For instance, for SU(4)\textrm{SU}(4) we have the following decomposition:

SU(4)=exp(𝔨2)exp(𝔞2)exp(𝔨2)exp(𝔞2)exp(𝔨2)exp(𝔞2)exp(𝔨2)\displaystyle\textrm{SU}(4)=\exp(\mathfrak{k}_{2}^{\prime})\exp(\mathfrak{a}_{2}^{\prime})\exp(\mathfrak{k}_{2}^{\prime})\exp(\mathfrak{a}_{2})\exp(\mathfrak{k}_{2}^{\prime})\exp(\mathfrak{a}_{2}^{\prime})\exp(\mathfrak{k}_{2}^{\prime}) (16)

in which

e𝔞2=eσ10eσ13,e𝔨2=eσ03eσ01eσ03,e𝔞2=eσ30eσ33\displaystyle e^{\mathfrak{a}_{2}}=e^{\mathbb{R}\sigma_{10}}e^{\mathbb{R}\sigma_{13}},\quad e^{\mathfrak{k}_{2}^{\prime}}=e^{\mathbb{R}\sigma_{03}}e^{\mathbb{R}\sigma_{01}}e^{\mathbb{R}\sigma_{03}},\quad e^{\mathfrak{a}_{2}^{\prime}}=e^{\mathbb{R}\sigma_{30}}e^{\mathbb{R}\sigma_{33}} (17)

where σabiσaσb\sigma_{ab}\propto i\sigma_{a}\otimes\sigma_{b}.

Generators of the decomposition of SU(4)\textrm{SU}(4) in (17) illustrate that each one-parameter subgroup of the decomposition in (14) is generated by a Pauli string in the form of σa1σan\sigma_{a_{1}}\otimes\ldots\otimes\sigma_{a_{n}}. In turn, the space Θn\Theta_{n} of parameters of one-parameter subgroups is homeomorphic to the lnl_{n}-torus

Tln=S1××S1ln\displaystyle T^{l_{n}}=\underbrace{S^{1}\times\ldots\times S^{1}}_{l_{n}} (18)

where lnl_{n} is the length of the decomposition. At n=1n=1, Θ1\Theta_{1} corresponds to the space of Euler angles, Θn\Theta_{n} can be thus taken as a generalization of the space of Euler angles. We also note that the length lnl_{n} of the string in (14) is given recursively by

l1=3,ln=4×ln1+3(n1).\displaystyle l_{1}=3,\quad l_{n}=4\times l_{n-1}+3(n-1). (19)

3 Constraint equations for generalized Euler angles

In the previous section, we have shown that up to the overall phase factor, SU(2n)\textrm{SU}(2^{n}) can be decomposed into a finite string of one-parameter subgroups. Therefore, given a Hamiltonian, the evolution of the Hamiltonian system can be decomposed as

exp(tH)=ek1(t)ea1(t)ek2(t)ea(t)ek3(t)ea2(t)ek4(t).\displaystyle\exp(tH)=e^{k^{\prime}_{1}(t)}e^{a^{\prime}_{1}(t)}e^{k^{\prime}_{2}(t)}e^{a(t)}e^{k^{\prime}_{3}(t)}e^{a^{\prime}_{2}(t)}e^{k^{\prime}_{4}(t)}. (20)

for k1,2,3,4𝔨nk^{\prime}_{1,2,3,4}\in\mathfrak{k}_{n}^{\prime}, a1,2𝔞na^{\prime}_{1,2}\in\mathfrak{a}_{n}^{\prime} and a𝔞na\in\mathfrak{a}_{n}.

As we have discussed in the below of (14), exp(ad𝔨n)\exp(\textrm{ad}\,\mathfrak{k}^{\prime}_{n}) can be recursively decomposed into one-parameter subgroups generated by σa1aniσa1σa2σn\sigma_{a_{1}\ldots a_{n}}\propto i\sigma_{a_{1}}\otimes\sigma_{a_{2}\ldots\sigma_{n}} for ai=0,1,2,3a_{i}=0,1,2,3. In turn, one obtains

exp(tH)=eθ1(t)X1eθ2(t)X2eθln(t)Xln\displaystyle\exp(tH)=e^{\theta_{1}(t)X_{1}}e^{\theta_{2}(t)X_{2}}\ldots e^{\theta_{l_{n}}(t)X_{l_{n}}} (21)

where Xi,i=1,2,,lnX_{i},\ i=1,2,\ldots,l_{n} are Pauli strings.

By identifying exp(tH)\exp(tH) with an integral curve generated by a left-invariant vector field HH, one obtains the following identity by comparing the left-invariant vector fields of both sides in (20) [17]:

H=i=1lnθ˙i[j=lni+1exp(θjadXj)]Xi,θ˙i=dθidt\displaystyle H=\sum_{i=1}^{l_{n}}\dot{\theta}_{i}\left[\prod_{j=l_{n}}^{i+1}\exp(-\theta_{j}\textrm{ad}\,X_{j})\right]X_{i},\quad\dot{\theta}_{i}=\frac{d\theta_{i}}{dt} (22)

where (adX)Y=[X,Y]\left(\textrm{ad}\,X\right)Y=\left[X,Y\right] for X,YX,Y in 𝔰𝔲(2n)\mathfrak{su}(2^{n}). Upon an expansion under a basis of 𝔰𝔲(2n)\mathfrak{su}(2^{n}), we obtain a system of first-order differential-algebraic equations (DAEs)

hk=i=1lnθ˙i[j=lni+1exp(θjadXj)Xi]k,k=1,,22n1\displaystyle h_{k}=\sum_{i=1}^{l_{n}}\dot{\theta}_{i}\left[\prod_{j=l_{n}}^{i+1}\exp(-\theta_{j}\textrm{ad}\,X_{j})X_{i}\right]_{k},\quad k=1,\ldots,2^{2n}-1 (23)

where hkh_{k} and []k\left[\ldots\right]_{k} denote the linear coefficients of the kk-th element of the basis for HH and []\left[\ldots\right] respectively. DAEs in (23) resemble DAEs in [13, 14, 15] in the spirit of comparing left-invariant vector fields but differ in the sense that in [13, 14, 15] the decomposition corresponds to canonical coordinates of the second kind.

If we fix σa1an=2iσa1σa2an\sigma_{a_{1}\ldots a_{n}}=2i\sigma_{a_{1}}\otimes\sigma_{a_{2}\ldots a_{n}}, we have

[σa1an,[σa1an,σb1bn]]={0if [σa1an,σb1bn]=0,σb1bnotherwise,\displaystyle\left[\sigma_{a_{1}\ldots a_{n}},\left[\sigma_{a_{1}\ldots a_{n}},\sigma_{b_{1}\ldots b_{n}}\right]\right]=\cases{0&if $\left[\sigma_{a_{1}\ldots a_{n}},\sigma_{b_{1}\ldots b_{n}}\right]=0$,\\ -\sigma_{b_{1}\ldots b_{n}}\quad&otherwise,} (24)

so that

exp(adθσa1an)σb1bn\displaystyle\exp(\textrm{ad}\,\theta\sigma_{a_{1}\ldots a_{n}})\sigma_{b_{1}\ldots b_{n}}
={σb1bnif [σa1an,σb1bn]=0,cosθσb1bn+sinθ[σa1an,σb1bn]otherwise.\displaystyle=\cases{\sigma_{b_{1}\ldots b_{n}}&if $\left[\sigma_{a_{1}\ldots a_{n}},\sigma_{b_{1}\ldots b_{n}}\right]=0$,\\ \cos\theta\sigma_{b_{1}\ldots b_{n}}+\sin\theta\left[\sigma_{a_{1}\ldots a_{n}},\sigma_{b_{1}\ldots b_{n}}\right]\quad&otherwise.} (25)

Consequently, the action of exp(adθσa1an)\exp(\textrm{ad}\,\theta\sigma_{a_{1}\ldots a_{n}}) always decomposes 𝔰𝔲(2n)\mathfrak{su}(2^{n}) into

𝔰𝔲(2n)=V1V2VkW22n2k1\displaystyle\mathfrak{su}(2^{n})=V_{1}\oplus V_{2}\oplus\ldots V_{k}\oplus W_{2^{2n}-2k-1} (26)

on which W22n2k1W_{2^{2n}-2k-1} is an 22n2k12^{2n}-2k-1-dimensional invariant subspace and

exp(adθσa1an)|Vi=(cosθsinθsinθcosθ),i=1,2,,k.\displaystyle\exp(\textrm{ad}\,\theta\sigma_{a_{1}\ldots a_{n}})|_{V_{i}}=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{array}\right),\quad i=1,2,\ldots,k. (29)

By combining (3) with (23) DAEs in (23) has the form of

𝒉=𝑱n.𝜽˙,\displaystyle\bm{h}=\bm{J}_{n}.\dot{\bm{\theta}}, (30)

where 𝑱n\bm{J}_{n} is a (22n1)×ln\left(2^{2n}-1\right)\times l_{n} matrix depending on (cosθi,sinθi),i=1,2,,ln\left(\cos\theta_{i},\ \sin\theta_{i}\right),\ i=1,2,\ldots,l_{n} and

𝒉=(h1,h2,,h22n1)T,𝜽˙=(θ˙1,θ˙2,,θ˙ln)T.\displaystyle\bm{h}=\left(h_{1},h_{2},\ldots,h_{2^{2n}-1}\right)^{T},\quad\dot{\bm{\theta}}=\left(\dot{\theta}_{1},\dot{\theta}_{2},\ldots,\dot{\theta}_{l_{n}}\right)^{T}. (31)

For 𝔰𝔲(2)\mathfrak{su}(2), DAEs in (23) can be casted into the form of

h1=sinβsinγα˙+cosγβ˙h2=sinβcosγα˙sinγβ˙h3=cosβα˙+γ˙\displaystyle\begin{array}[]{l}h_{1}=\sin\beta\sin\gamma\dot{\alpha}+\cos\gamma\dot{\beta}\\ h_{2}=\sin\beta\cos\gamma\dot{\alpha}-\sin\gamma\dot{\beta}\\ h_{3}=\cos\beta\dot{\alpha}+\dot{\gamma}\end{array} (35)

or equivalently

(h1h2h3)=(sinβsinγcosγ0sinβcosγsinγ0cosβ01)(α˙β˙γ˙)\displaystyle\left(\begin{array}[]{c}h_{1}\\ h_{2}\\ h_{3}\end{array}\right)=\left(\begin{array}[]{ccc}\sin\beta\sin\gamma&\cos\gamma&0\\ \sin\beta\cos\gamma&-\sin\gamma&0\\ \cos\beta&0&1\end{array}\right)\left(\begin{array}[]{c}\dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\end{array}\right) (45)

where H=i=13hiσiH=\sum_{i=1}^{3}h_{i}\sigma_{i} subject to the KAK decomposition given by

exp(tH)=exp(α(t)σ3)exp(β(t)σ1)exp(γ(t)σ3).\displaystyle\exp(tH)=\exp(\alpha(t)\sigma_{3})\exp(\beta(t)\sigma_{1})\exp(\gamma(t)\sigma_{3}). (46)

The KAK decomposition in (46) together with (35) renders the group-theoretic method to obtain the conventional Euler angles α,β,γ\alpha,\beta,\gamma and their derivatives related to the angular velocity discussed in the standard literature such as [11].

For the cases having a higher rank than 𝔰𝔲(2)\mathfrak{su}(2), one should anticipate having a rather lengthy form for 𝑱n\bm{J}_{n}, but an explicit construction of 𝑱n\bm{J}_{n} is always accessible by employing the matrix representation of the adjoint action. In A, we illustrate the construction of 𝑱2\bm{J}_{2} via the matrix representation of the adjoint action for 𝔰𝔲(4)\mathfrak{su}(4) although the construction is relatively straightforward in general.

4 Conclusion and outlook

In this work, we have provided a uniform finite generation of SU(2n)\textrm{SU}(2^{n}), which can be taken as an abstract unitary control of a Hamiltonian system embedded in an nn-qubit system. The uniform finite generation has been obtained by successively applying a decomposition of the KAK type, which has been discussed in [8, 9, 10, 12]. The decomposition enables one to parameterize SU(2n)\textrm{SU}(2^{n}) via angular parameters taken as a generalization of Euler angles for SU(2)\textrm{SU}(2).

Having the decomposition, we have constructed a system of differential-algebraic equations for the parametric curve in the space of generalized Euler angles, corresponding to the integral curve generated by a given Hamiltonian via the exponential map. The cyclicity of generators of one-parameter subgroups constituting the decomposition allows one to cast DAEs into the form of a matrix equation in (30) whose matrix consists of trigonometric functions on generalized Euler angles.

As a closing remark, we address two aspects of our result, which may require further investigation concerning the random matrix ensemble and the solvability of DAEs. Firstly, we note that the parameterization in Section 2 can be taken as an explicit construction of a probabilistic ensemble of SU(2n)\textrm{SU}(2^{n}) in the context of random matrix theory. Indeed, the matrix 𝑱n\bm{J}_{n} in (30) can be identified with the jacobian of the tangent space of SU(2n)\textrm{SU}(2^{n}). Therefore, it is straightforward to construct the corresponding volume form (or the probabilistic distribution measure). An explicit representation of such random ensemble has taken a prominent role in quantum machine learning (see for a survey [18]), so one may find an application of generalized Euler angles in the context of quantum machine learning.

Finally, it is worth noting that the conversion of DAEs in (23) into a system of first-order differential ordinary differential equations is not trivial due to singularities of the decomposition in (14), particularly at the identity of SU(2n)\textrm{SU}(2^{n}). This singularity issue is closely tied to the solvability of (23), which is necessary to justify any attempt to find the integral curve by solving (23). In turn, as a future endeavor, a more in-depth investigation into the structure of DAEs (see, e.g., [19]) through some case studies focused on specific Hamiltonians could be conducted to shed more light on the solvability while expanding the scope and applicability of our method.

SL is grateful to Joonsuk Huh and Jinhyoung Lee for enlightening discussions on related topics. This work was partly supported by Institute for Information & Communications Technology Promotion (IITP) grant (No. 2019-0-00003, Research and Development of Core Technologies for Programming, Running, Implementing and Validating of Fault-Tolerant Quantum Computing System), National Research Foundation of Korea (NRF) grant (No. -2019M3E4A1080146, NRF-2021M3E4A1038213, and NRF-2022M3E4A1077094) and Electronics and Communications Research Institute (ETRI) (23ZB1300, Proprietary Basic Research on Computing Technology for the Disruptive Innovation of Computational Performance) funded by the Korea government (MSIT).

Appendix A A simple case study: 𝔰𝔲(4)\mathfrak{su}(4)

As indicated in Section 3, the construction of 𝑱n\bm{J}_{n} can be implemented by explicitly representing the adjoint action in a matrix form. For 𝔰𝔲(4)\mathfrak{su}(4), by choosing a basis in the following order

(σ01,σ02,σ03,σ10,σ11,σ12,σ13,σ20,σ21,σ22,σ23,σ30,σ31,σ32,σ33)\displaystyle\left(\sigma_{01},\sigma_{02},\sigma_{03},\sigma_{10},\sigma_{11},\sigma_{12},\sigma_{13},\sigma_{20},\sigma_{21},\sigma_{22},\sigma_{23},\sigma_{30},\sigma_{31},\sigma_{32},\sigma_{33}\right)

one has the matrix representation as

eadθσ10\displaystyle e^{\textrm{\scriptsize ad}\,\theta\sigma_{10}}
(1000000000000000100000000000000010000000000000001000000000000000100000000000000010000000000000001000000000000000cosθ000sinθ00000000000cosθ000sinθ00000000000cosθ000sinθ00000000000cosθ000sinθ0000000sinθ000cosθ00000000000sinθ000cosθ00000000000sinθ000cosθ00000000000sinθ000cosθ),\displaystyle\simeq{\tiny\left(\begin{array}[]{ccccccccccccccc}1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&\cos\theta&0&0&0&\sin\theta&0&0&0\\ 0&0&0&0&0&0&0&0&\cos\theta&0&0&0&\sin\theta&0&0\\ 0&0&0&0&0&0&0&0&0&\cos\theta&0&0&0&\sin\theta&0\\ 0&0&0&0&0&0&0&0&0&0&\cos\theta&0&0&0&\sin\theta\\ 0&0&0&0&0&0&0&-\sin\theta&0&0&0&\cos\theta&0&0&0\\ 0&0&0&0&0&0&0&0&-\sin\theta&0&0&0&\cos\theta&0&0\\ 0&0&0&0&0&0&0&0&0&-\sin\theta&0&0&0&\cos\theta&0\\ 0&0&0&0&0&0&0&0&0&0&-\sin\theta&0&0&0&\cos\theta\end{array}\right),}
eadθσ13\displaystyle e^{\textrm{\scriptsize ad}\,\theta\sigma_{13}}
(cosθ0000sinθ0000000000cosθ00sinθ00000000000010000000000000001000000000000sinθ00cosθ0000000000sinθ0000cosθ0000000000000001000000000000000cosθ000000sinθ0000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ0000000000000001000000000000000100000000sinθ000000cosθ),\displaystyle\simeq{\tiny\left(\begin{array}[]{ccccccccccccccc}\cos\theta&0&0&0&0&\sin\theta&0&0&0&0&0&0&0&0&0\\ 0&\cos\theta&0&0&-\sin\theta&0&0&0&0&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&\sin\theta&0&0&\cos\theta&0&0&0&0&0&0&0&0&0&0\\ -\sin\theta&0&0&0&0&\cos\theta&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&\cos\theta&0&0&0&0&0&0&\sin\theta\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&\cos\theta&\sin\theta&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&-\sin\theta&\cos\theta&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&-\sin\theta&0&0&0&0&0&0&\cos\theta\end{array}\right),}
eadθσ03\displaystyle e^{\textrm{\scriptsize ad}\,\theta\sigma_{03}}
(cosθsinθ0000000000000sinθcosθ00000000000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ00000000000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ00000000000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ0000000000000001),\displaystyle\simeq{\tiny\left(\begin{array}[]{ccccccccccccccc}\cos\theta&\sin\theta&0&0&0&0&0&0&0&0&0&0&0&0&0\\ -\sin\theta&\cos\theta&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&\cos\theta&\sin\theta&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&-\sin\theta&\cos\theta&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&\cos\theta&\sin\theta&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&-\sin\theta&\cos\theta&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&\cos\theta&\sin\theta&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&-\sin\theta&\cos\theta&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\end{array}\right),}
eadθσ01\displaystyle e^{\textrm{\scriptsize ad}\,\theta\sigma_{01}}
(1000000000000000cosθsinθ0000000000000sinθcosθ00000000000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ00000000000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ00000000000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ),\displaystyle\simeq{\tiny\left(\begin{array}[]{ccccccccccccccc}1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&\cos\theta&\sin\theta&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&-\sin\theta&\cos\theta&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&\cos\theta&\sin\theta&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&-\sin\theta&\cos\theta&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&\cos\theta&\sin\theta&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&-\sin\theta&\cos\theta&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&\cos\theta&\sin\theta\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&-\sin\theta&\cos\theta\end{array}\right),}
eadθσ30\displaystyle e^{\textrm{\scriptsize ad}\,\theta\sigma_{30}}
(100000000000000010000000000000001000000000000000cosθ000sinθ00000000000cosθ000sinθ00000000000cosθ000sinθ00000000000cosθ000sinθ0000000sinθ000cosθ00000000000sinθ000cosθ00000000000sinθ000cosθ00000000000sinθ000cosθ0000000000000001000000000000000100000000000000010000000000000001),\displaystyle\simeq{\tiny\left(\begin{array}[]{ccccccccccccccc}1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&\cos\theta&0&0&0&\sin\theta&0&0&0&0&0&0&0\\ 0&0&0&0&\cos\theta&0&0&0&\sin\theta&0&0&0&0&0&0\\ 0&0&0&0&0&\cos\theta&0&0&0&\sin\theta&0&0&0&0&0\\ 0&0&0&0&0&0&\cos\theta&0&0&0&\sin\theta&0&0&0&0\\ 0&0&0&-\sin\theta&0&0&0&\cos\theta&0&0&0&0&0&0&0\\ 0&0&0&0&-\sin\theta&0&0&0&\cos\theta&0&0&0&0&0&0\\ 0&0&0&0&0&-\sin\theta&0&0&0&\cos\theta&0&0&0&0&0\\ 0&0&0&0&0&0&-\sin\theta&0&0&0&\cos\theta&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\end{array}\right),}
eadθσ33\displaystyle e^{\textrm{\scriptsize ad}\,\theta\sigma_{33}}
(cosθ000000000000sinθ00cosθ0000000000sinθ00001000000000000000cosθ000000sinθ0000000010000000000000001000000000000000cosθsinθ0000000000000sinθcosθ0000000000000001000000000000000100000000sinθ000000cosθ00000000000000010000sinθ0000000000cosθ00sinθ000000000000cosθ0000000000000001).\displaystyle\simeq{\tiny\left(\begin{array}[]{ccccccccccccccc}\cos\theta&0&0&0&0&0&0&0&0&0&0&0&0&\sin\theta&0\\ 0&\cos\theta&0&0&0&0&0&0&0&0&0&0&-\sin\theta&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&\cos\theta&0&0&0&0&0&0&\sin\theta&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&\cos\theta&\sin\theta&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&-\sin\theta&\cos\theta&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0&0&0\\ 0&0&0&-\sin\theta&0&0&0&0&0&0&\cos\theta&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&\sin\theta&0&0&0&0&0&0&0&0&0&0&\cos\theta&0&0\\ -\sin\theta&0&0&0&0&0&0&0&0&0&0&0&0&\cos\theta&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\end{array}\right).}

Then by employing

Π03(x)=(00x000000000000),Π01(x)=(x00000000000000),Π30(x)=(00000000000x000),\displaystyle\Pi_{03}(x)={\tiny\left(\begin{array}[]{c}0\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}\right)},\quad\Pi_{01}(x)={\tiny\left(\begin{array}[]{c}x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}\right)},\quad\Pi_{30}(x)={\tiny\left(\begin{array}[]{c}0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ x\\ 0\\ 0\\ 0\end{array}\right)},
Π33(x)=(00000000000000x),Π10(x)=(000x00000000000),Π03(x)=(00000x00000000),\displaystyle\Pi_{33}(x)={\tiny\left(\begin{array}[]{c}0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ x\end{array}\right)},\quad\Pi_{10}(x)=\left({\tiny\begin{array}[]{c}0\\ 0\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}}\right),\quad\Pi_{03}(x)=\left({\tiny\begin{array}[]{c}0\\ 0\\ 0\\ 0\\ 0\\ x\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}}\right),

one obtains DAEs for 𝔰𝔲(4)\mathfrak{su}(4) as

𝒉=\displaystyle\bm{h}= i=182eadθiXiΠ03(θ˙1)+i=183eadθiXiΠ01(θ˙2)+i=184eadθiXiΠ03(θ˙3)\displaystyle\prod_{i=18}^{2}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{1})+\prod_{i=18}^{3}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{01}(\dot{\theta}_{2})+\prod_{i=18}^{4}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{3})
+i=185eadθiXiΠ30(θ˙4)+i=186eadθiXiΠ33(θ˙5)+i=187eadθiXiΠ03(θ˙6)\displaystyle+\prod_{i=18}^{5}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{30}(\dot{\theta}_{4})+\prod_{i=18}^{6}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{33}(\dot{\theta}_{5})+\prod_{i=18}^{7}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{6})
+i=188eadθiXiΠ01(θ˙7)+i=189eadθiXiΠ03(θ˙8)+i=1810eadθiXiΠ10(θ˙9)\displaystyle+\prod_{i=18}^{8}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{01}(\dot{\theta}_{7})+\prod_{i=18}^{9}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{8})+\prod_{i=18}^{10}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{10}(\dot{\theta}_{9})
+i=1811eadθiXiΠ13(θ˙10)+i=1812eadθiXiΠ03(θ˙11)+i=1813eadθiXiΠ01(θ˙12)\displaystyle+\prod_{i=18}^{11}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{13}(\dot{\theta}_{10})+\prod_{i=18}^{12}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{11})+\prod_{i=18}^{13}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{01}(\dot{\theta}_{12})
+i=1814eadθiXiΠ03(θ˙13)+i=1815eadθiXiΠ30(θ˙14)+i=1816eadθiXiΠ33(θ˙15)\displaystyle+\prod_{i=18}^{14}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{13})+\prod_{i=18}^{15}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{30}(\dot{\theta}_{14})+\prod_{i=18}^{16}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{33}(\dot{\theta}_{15})
+i=1817eadθiXiΠ03(θ˙16)+eadθ18X18Π01(θ˙17)+Π03(θ˙18)\displaystyle+\prod_{i=18}^{17}e^{-\textrm{\scriptsize ad}\,\theta_{i}X_{i}}\Pi_{03}(\dot{\theta}_{16})+e^{-\textrm{\scriptsize ad}\,\theta_{18}X_{18}}\Pi_{01}(\dot{\theta}_{17})+\Pi_{03}(\dot{\theta}_{18})

together with 𝒉=(h1,h2,,h15)T\bm{h}=\left(h_{1},h_{2},\ldots,h_{15}\right)^{T}.

References

References

  • [1] D’Alessandro D 2001 Uniform Finite Generation of Compact Lie Groups and universal quantum gates (Preprint quant-ph/0111133)
  • [2] Jurdjevic V and Sussmann H J 1972 J. Differ. Equations 12 313--329
  • [3] Lowenthal F 1972 Can. J. Math. 24 713--727
  • [4] Divakaran P P and Ramachandran R 1980 Pramana 14 47--56
  • [5] Crouch P E and Leite F S 1983 Syst. Control Lett. 2 341--347
  • [6] Leite F S 1991 Rocky Mt. J. of Math 21 879--911
  • [7] Tilma T, Byrd M and Sudarshan E C G 2002 J. Phys. A: Math. Gen 35 10467
  • [8] Khaneja N and Glaser S J 2001 Chem. Phys. 267 11--23
  • [9] Bullock S S 2004 Quantum Inf. Comput. 4 396--400
  • [10] D’Alessandro D and Albertini F 2007 J. Phys. A: Math. Theor. 40 2439--2453
  • [11] Goldstein H, Poole C P and Safko J L 2001 Classical Mechanics 3rd ed (Addison Wesley)
  • [12] Hai-Rui W, Yao-Min D and Zhang-Jie 2008 Chin. Phys. Lett. 25 3107
  • [13] Wei J and Norman E 1964 Proc. Am. Math. Soc. 15 327--334
  • [14] Owren B and Marthinsen A 2001 Numer. Math. 87 763--790
  • [15] Charzyski S and Kuś M 2013 J. Phys. A: Math. Theor. 46 265208
  • [16] Helgason S 1979 Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press)
  • [17] Knapp A W 1996 Lie Groups Beyond an Introduction (Birkhäuser Boston, MA)
  • [18] Cerezo M, Verdon G, Huang H Y, Cincio L and Coles P J 2022 Nat. Comput. Sci. 2 567--576
  • [19] Campbell S L and Griepentrog E 1995 SIAM J. Sci. Comput. 16 257--270