This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Einstein-Podolsky-Rosen Steering Paradox

Zhi-Jie Liu Theoretical Physics Division, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China    Xing-Yan Fan Theoretical Physics Division, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China    Jie Zhou College of Physics and Materials Science, Tianjin Normal University, Tianjin 300382, People’s Republic of China    Mi Xie Department of Physics, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China    Jing-Ling Chen [email protected] Theoretical Physics Division, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
(January 22, 2025)
Abstract

Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories, among which the Einstein-Podolsky-Rosen (EPR) steering paradox offers a sharper criterion for the contradiction between local-hidden-state model and quantum mechanics than the usual inequality-based method. In this work, we present a generalized EPR steering paradox, which predicts a contradictory equality “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}” (0δ<10\leq\delta<1) given by the quantum (QQ) and classical (CC) theories. For any NN-qubit state in which the conditional state of the steered party is pure, we test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied. Moreover, our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.

I INTRODUCTION

The concept of quantum nonlocality araised from the seminal paper of Einstein, Podolsky, and Rosen (EPR) EPR1935 , which questioned the completeness of quantum mechanical description for physical reality under the assumptions of locality and reality. As a peculiar nonlocality, EPR steering, also known as “ the spooky action at a distance” Schr1935 ; Schr1936 , was initially imported by Schrödinger in his reply to EPR’s paper EPR1935 . After that, the notion of steering remained undiscussed for a long time, until Vujicic and Herbut extended Schrödinger’s results to the system of continuous variable VM1988 . Subsequently, Reid proved the possibility of the EPR paradox by performing orthogonal phase measurements on the two output beams of a non-simplex parametric amplifier, which led to an EPR-type argument RMD1989 . In addition, Verstraete pointed out the connection of Schrödinger’s idea with quantum teleportation and entanglement transformation VFPhd2002 .

Mathematically, quantum nonlocality Q-nonlocality1994 is defined by the corresponding classical model. For example, entanglement Quantum entanglement2009 is defined by the separable state model separable2002 ; separable2008 ; the classical model corresponding to Bell nonlocality Bell nonlocality2014 is the local-hidden-variable (LHV) model LHV1976 ; LHV2014 ; LHV2006 . In order to depict EPR steering rigorously, Wiseman et al. proposed the local-hidden-state (LHS) model and thus gave an operational definition of steering using a task with two parties (say Alice and Bob) sharing a quantum state Wiseman2007 ; jones2007 ; the immediate effect of this nonlocality is that Alice can steer the particles of Bob, according to the measurement postulation of quantum mechanics. However, the LHS model assumes that the particles in Bob’s hand is specific, though Bob does not know it. Therefore, Alice’s ability to steer Bob’s state is an illusion that cannot be observed experimentally. If Alice convince Bob that the two particles in their hands are entangled and the LHS model cannot describe the particles in Bob’s hand, then Alice is capable of (EPR) steering Bob. These works Wiseman2007 ; jones2007 have stimulated interest in the research of EPR steering, for examples, how to

For the research type-(i) mentioned above, there are generally two effective methods to determine whether a quantum state is steerable. The first one is based on the EPR steering inequality, for instance, the linear EPR steering inequality DJ2010 , and the chained EPR steering inequalities MHX2018 ; MHX20182 , which were constructed compared to the Bell chain inequality Bellchain , optimizing the visibility of the Werner state werner . The other is the approach without inequalities, also dubbed the all-versus-nothing (AVN) proof, which reveals the contradiction between classical theory and quantum mechanics more intuitively than the inequality approach. The AVN proof AVN1 was first built as an elegant argument for the nonexistence of the LHV model. Analogous to the AVN argument for Bell nonlocality without inequalities, Chen et al. presented the AVN proof of EPR steering for any two-qubit entangled state based on a two-setting steering protocol AVN2013 . They then extracted the method for EPR steering paradox as the contradictory equality “2Q=1C2_{Q}=1_{C}” (“2Q2_{Q}” is the quantum prediction, and “1C1_{C}” is the result of the LHS model) for any two-qubit pure state in the two-setting steering protocol chenjl2016 . Subsequently, the EPR steering paradox approach has been further investigated, e.g., “2Q=1C2_{Q}=1_{C}” for a particular four-qubit mixed state Liu2021 , “kQ=1Ck_{Q}=1_{C}” for an arbitrary two-qubit pure state in the kk-setting steering protocol Feng2021 , and “2Q=1C2_{Q}=1_{C}” for an arbitrary NN-qubit entangled state EPR paradox2024 .

In this work, we propose a general EPR steering paradox, expressed as “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}” (0δ<10\leq\delta<1), for an arbitrary NN-qubit entangled state, both pure and mixed. Considering that the conditional states of the steered party (Bob) are all pure, we propose a theorem for any NN-qubit quantum steerable states in the two-setting protocol. We analyze all possible four cases of Bob’s conditional states, corresponding to δ=0\delta=0 and 0<δ<10<\delta<1 respectively. It is noteworthy to mention that we find all the steerable states when Bob’s conditional states are pure.

II RESULTS

II.1 A theorem on the EPR steering paradox

In order to investigate the existence of steering trait for a quantum state, we propose the generalized EPR steering paradox; the contradiction between the LHS model and EPR steering is used to determine whether one side, Alice, can steer the other side, Bob. The main result is summarized into a theorem:

Theorem 1.—In the two-setting steering protocol {n^1,n^2}\left\{\hat{n}_{1},\hat{n}_{2}\right\}, Alice and Bob share an NN-qubit state ρAB\rho_{AB}. Assume that Alice measures along n^1\hat{n}_{1} and n^2\hat{n}_{2}, corresponding to the results aa, and aa^{\prime}; then Bob obtains the conditional states ρ~an^1\tilde{\rho}_{a}^{\hat{n}_{1}} and ρ~an^2\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}, respectively. Considering the scenario where both sets of Bob’s conditional states {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} and {ρ~an^2}\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\} are all pure, there will be a contradiction of “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}” (with 0δ<1)\left(\text{with }0\leq\delta<1\right) if ρAB\rho_{AB} satisfies “ the measurement requirement”, viz.,

  • Bob obtains two sets of results {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} and {ρ~an^2}\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\} that are not exactly the same, i.e., {ρ~an^1}{ρ~an^2}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}\neq\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}.

The complete proof of the theorem is given in Appendix A. Notice that the EPR steering paradox “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}” mentioned in the theorem can be categorized into δ=0\delta=0 and δ0\delta\neq 0, based on which some analysis and examples of the theorem are given below.

II.2 Some cases of the theorem

Case. 1—The sets of Bob’s conditional states {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} and {ρ~an^2}\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\} are all different.

Example 1.—We consider the example of an arbitrary two-qubit pure state presented by Chen et al. chenjl2016 . Alice prepares an arbitrary two-qubit pure state ρAB=|Ψ(θ)Ψ(θ)|\rho_{AB}=\left|\Psi\left(\theta\right)\right\rangle\left\langle\Psi\left(\theta\right)\right|, where

|Ψ(θ)=cosθ|0|0+sinθ|1|1,\left|\Psi\left(\theta\right)\right\rangle=\cos\theta\left|0\right\rangle\left|0\right\rangle+\sin\theta\left|1\right\rangle\left|1\right\rangle, (1)

with θ(0,π/2)\theta\in\left(0,\pi/2\right); she keeps one of the particle in Eq. (1), and sent the other to Bob. In the two-setting steering protocol {z^,x^}\left\{\hat{z},\hat{x}\right\}, Alice performs four possible projective measurements

P0z^=|00|,P1z^=|11|,P0x^=|++|,P1x^=||,\begin{array}[c]{l}{{P}_{0}^{\hat{z}}=}\left|0\right\rangle\left\langle 0\right|,\\ {{P}_{1}^{\hat{z}}=}\left|1\right\rangle\left\langle 1\right|,\end{array}\begin{array}[c]{l}{{P}_{0}^{\hat{x}}=}\left|+\right\rangle\left\langle+\right|,\\ {{P}_{1}^{\hat{x}}=}\left|-\right\rangle\left\langle-\right|,\end{array} (2)

where |±=1/2(|0±|1)\left|\pm\right\rangle=1/\sqrt{2}\left(\left|0\right\rangle\pm\left|1\right\rangle\right). After Alice’s measurements, the four unnormalized conditional states corresponding to Bob are

ρ~=0z^cos2θ|00|,ρ~=1z^sin2θ|11|,ρ~0x^=12|λ+λ+|,ρ~1x^=12|λλ|,\begin{array}[c]{l}\tilde{\rho}{{}_{0}^{\hat{z}}=\cos}^{2}\theta\left|0\right\rangle\left\langle 0\right|,\\ \tilde{\rho}{{}_{1}^{\hat{z}}=\sin}^{2}{\theta}\left|1\right\rangle\left\langle 1\right|,\end{array}\begin{array}[c]{l}\tilde{\rho}_{0}^{\hat{x}}=\frac{1}{2}\left|\lambda_{+}\right\rangle\left\langle\lambda_{\newline +}\right|,\\ \tilde{\rho}_{1}^{\hat{x}}=\frac{1}{2}\left|\lambda_{-}\right\rangle\left\langle\lambda_{\newline -}\right|,\end{array} (3)

where |λ±=cosθ|0±sinθ|1\left|\lambda_{\pm}\right\rangle=\cos\theta\left|0\right\rangle\pm{\sin\theta}\left|1\right\rangle. It is worth noting that Bob’s conditional states are all pure states and none of them are identical, which relate to the measurement requirement mentioned in Theorem 1.

The mathematical definition of the LHS model is given by Wiseman et al. Wiseman2007 . If the LHS model can describe the state assemblage of Bob’s unnormalized conditional states, then Bob’s state can be described by

ρ~an^=ξ(a|n^,ξ)ξρξ,\tilde{\rho}_{a}^{\hat{n}}={\displaystyle\sum\limits_{\xi}}\wp\left(a|\hat{n},\xi\right)\wp_{\xi}\rho_{\xi}, (4)

and

ξξρξ=ρB.{\displaystyle\sum\limits_{\xi}}\wp_{\xi}\rho_{\xi}=\rho_{B}. (5)

Here ξ\wp_{\xi} and (a|n^,ξ)\wp(a|\hat{n},\xi) are probabilities satisfying ξξ=1{\sum_{\xi}\wp_{\xi}}=1, and a(a|n^,ξ)=1{\sum_{a}}\wp(a|\hat{n},\xi)=1, for a fixed ξ\xi, and ρB=trA(ρAB)\rho_{B}=\mathrm{tr}_{A}\left(\rho_{AB}\right) is Bob’s reduced density matrix. Because Bob’s unnormalized conditional states in Eq. (3) are four different pure states, the state ensemble can be taken as {ξρξ}={1ρ1,2ρ2,3ρ3,4ρ4}\{\wp_{\xi}\rho_{\xi}\}=\{\wp_{1}\rho_{1},\wp_{2}\rho_{2},\wp_{3}\rho_{3},\wp_{4}\rho_{4}\}. And it is a well-established tenet that a pure state cannot be obtained as a convex combination of other distinct states, which suggests

{ρ~0z^=1ρ1,ρ~1z^=2ρ2,ρ~0x^=3ρ3,ρ~1x^=4ρ4.\left\{\begin{array}[c]{l}\tilde{\rho}_{0}^{\hat{z}}=\wp_{1}\rho_{1},\\ \tilde{\rho}_{1}^{\hat{z}}=\wp_{2}\rho_{2},\\ \tilde{\rho}_{0}^{\hat{x}}=\wp_{3}\rho_{3},\\ \tilde{\rho}_{1}^{\hat{x}}=\wp_{4}\rho_{4}.\end{array}\right. (6)

Here (0|z^,1)=(1|z^,2)=(0|x^,3)=(1|x^,4)=1\wp\left(0|\hat{z},1\right)=\wp\left(1|\hat{z},2\right)=\wp\left(0|\hat{x},3\right)=\wp\left(1|\hat{x},4\right)=1, and other (a|n^,ξ)=0\wp\left(a|\hat{n},\xi\right)=0. Summing and taking the trace of Eq. (6) gives

tr(ρ~+z^ρ~)x^=2tr(ρB)=2Q\mathrm{tr}\left(\tilde{\rho}{{}^{\hat{z}}}+\tilde{\rho}{{}^{\hat{x}}}\right)=2\mathrm{tr}\left(\rho_{B}\right)=2_{Q} (7)

on the left, and

tr(1ρ1+2ρ2+3ρ3+4ρ4)=tr(ρB)=1C\mathrm{tr}\left(\wp_{1}\rho_{1}+\wp_{2}\rho_{2}+\wp_{3}\rho_{3}+\wp_{4}\rho_{4}\right)=\mathrm{tr}\left(\rho_{B}\right)=1_{C} (8)

on the right. Then the contradiction “2Q=1C2_{Q}=1_{C}” is obtained. In this case EPR steering paradox is formulated as “2Q=1C2_{Q}=1_{C}” with δ=0\delta=0.

Case. 2—Bob has the same conditional states in the same set of measurements.

Example 2.—We consider the example of a four-qubit mixed entangled state presented by Liu et al. Liu2021 . Alice prepares the state ρAB=cos2θ|LC4LC4|+sin2θ|LC4LC4|\rho_{AB}=\cos^{2}\theta\left|LC_{4}\right\rangle\left\langle LC_{4}\right|+\sin^{2}\theta\left|LC_{4}^{\prime}\right\rangle\left\langle LC_{4}^{\prime}\right|, where

|LC4=12(|0000+|1100+|0011|1111),|LC4=12(|0100+|1000+|0111|1011),\begin{array}[c]{c}\left|LC_{4}\right\rangle=\dfrac{1}{2}\left(\left|0000\right\rangle+\left|1100\right\rangle+\left|0011\right\rangle-\left|1111\right\rangle\right),\\[9.0pt] \left|LC_{4}^{\prime}\right\rangle=\dfrac{1}{2}\left(\left|0100\right\rangle+\left|1000\right\rangle+\left|0111\right\rangle-\left|1011\right\rangle\right),\end{array} (9)

are the linear cluster states clus2005 . She keeps the particles 1, 2 and sends the particles 3, 4 to Bob. In the two-setting steering protocol {n^1,n^2}\left\{\hat{n}_{1},\hat{n}_{2}\right\} (n^1n^2)\left(\hat{n}_{1}\neq\hat{n}_{2}\right),

n^1=σzσzzz,n^2=σyσxyx.\begin{array}[c]{c}\hat{n}_{1}=\sigma_{z}\sigma_{z}\equiv zz,\\ \hat{n}_{2}=\sigma_{y}\sigma_{x}\equiv yx.\end{array} (10)

After Alice’s measurements, Bob’s unnormalized conditional states are

ρ~00n^1=14cos2θ(|00+|11)(00|+11|),ρ~01n^1=14sin2θ(|00+|11)(00|+11|),ρ~10n^1=14sin2θ(|00|11)(00|11|),ρ~11n^1=14cos2θ(|00|11)(00|11|),ρ~00n^2=18(|00+i|11)(00|i11|),ρ~01n^2=18(|00i|11)(00|+i11|),ρ~10n^2=18(|00i|11)(00|+i11|),ρ~11n^2=18(|00+i|11)(00|i11|),\begin{array}[c]{l}\tilde{\rho}_{00}^{\hat{n}_{1}}=\frac{1}{4}\cos^{2}\theta\left(\left|00\right\rangle+\left|11\right\rangle\right)\left(\left\langle 00\right|+\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{01}^{\hat{n}_{1}}=\frac{1}{4}\sin^{2}\theta\left(\left|00\right\rangle+\left|11\right\rangle\right)\left(\left\langle 00\right|+\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{10}^{\hat{n}_{1}}=\frac{1}{4}\sin^{2}\theta\left(\left|00\right\rangle-\left|11\right\rangle\right)\left(\left\langle 00\right|-\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{11}^{\hat{n}_{1}}=\frac{1}{4}\cos^{2}\theta\left(\left|00\right\rangle-\left|11\right\rangle\right)\left(\left\langle 00\right|-\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{00}^{\hat{n}_{2}}=\frac{1}{8}\left(\left|00\right\rangle+\mathrm{i}\left|11\right\rangle\right)\left(\left\langle 00\right|-\mathrm{i}\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{01}^{\hat{n}_{2}}=\frac{1}{8}\left(\left|00\right\rangle-\mathrm{i}\left|11\right\rangle\right)\left(\left\langle 00\right|+\mathrm{i}\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{10}^{\hat{n}_{2}}=\frac{1}{8}\left(\left|00\right\rangle-\mathrm{i}\left|11\right\rangle\right)\left(\left\langle 00\right|+\mathrm{i}\left\langle 11\right|\right),\\[9.0pt] \tilde{\rho}_{11}^{\hat{n}_{2}}=\frac{1}{8}\left(\left|00\right\rangle+\mathrm{i}\left|11\right\rangle\right)\left(\left\langle 00\right|-\mathrm{i}\left\langle 11\right|\right),\end{array} (11)

which are not all the same, and satisfy the requirement in Theorem 1.

If Bob’s states have a LHS description, they must satisfy Eqs. (4) and (5). Because the eight states in the set of Bob’s conditional states (11) are pure states, and there are only four different states therein; it is sufficient to take ξ\xi from 11 to 44. Similarly, a pure state cannot be obtained by the convex combination of other pure states, and thus one has

ρ~00n^1=(00|n^1,1)1ρ1,ρ~01n^1=(01|n^1,1)1ρ1,ρ~10n^1=(10|n^1,2)2ρ2,ρ~11n^1=(11|n^1,2)2ρ2,ρ~00n^2=(00|n^2,3)3ρ3,ρ~01n^2=(01|n^2,4)4ρ4,ρ~10n^2=(10|n^2,4)4ρ4,ρ~11n^2=(11|n^2,3)3ρ3.\begin{array}[c]{c}\tilde{\rho}_{00}^{\hat{n}_{1}}=\wp\left(00|\hat{n}_{1},1\right)\wp_{1}\rho_{1},\\ \tilde{\rho}_{01}^{\hat{n}_{1}}=\wp\left(01|\hat{n}_{1},1\right)\wp_{1}\rho_{1},\\ \tilde{\rho}_{10}^{\hat{n}_{1}}=\wp\left(10|\hat{n}_{1},2\right)\wp_{2}\rho_{2},\\ \tilde{\rho}_{11}^{\hat{n}_{1}}=\wp\left(11|\hat{n}_{1},2\right)\wp_{2}\rho_{2},\end{array}\begin{array}[c]{c}\tilde{\rho}_{00}^{\hat{n}_{2}}=\wp\left(00|\hat{n}_{2},3\right)\wp_{3}\rho_{3},\\ \tilde{\rho}_{01}^{\hat{n}_{2}}=\wp\left(01|\hat{n}_{2},4\right)\wp_{4}\rho_{4},\\ \tilde{\rho}_{10}^{\hat{n}_{2}}=\wp\left(10|\hat{n}_{2},4\right)\wp_{4}\rho_{4},\\ \tilde{\rho}_{11}^{\hat{n}_{2}}=\wp\left(11|\hat{n}_{2},3\right)\wp_{3}\rho_{3}.\end{array} (12)

Since in the set Eq. (11), ρ~00n^1=ρ~01n^1\tilde{\rho}_{00}^{\hat{n}_{1}}=\tilde{\rho}_{01}^{\hat{n}_{1}}, ρ~10n^1=ρ~11n^1\tilde{\rho}_{10}^{\hat{n}_{1}}=\tilde{\rho}_{11}^{\hat{n}_{1}}, ρ~00n^2=ρ~11n^2\tilde{\rho}_{00}^{\hat{n}_{2}}=\tilde{\rho}_{11}^{\hat{n}_{2}}, and ρ~01n^2=ρ~10n^2\tilde{\rho}_{01}^{\hat{n}_{2}}=\tilde{\rho}_{10}^{\hat{n}_{2}}, in the LHS description we describe the identical terms by the same hidden state. And a(a|n^,ξ)=1{\sum_{a}}\wp\left(a|\hat{n},\xi\right)=1, so we have (00|n^1,1)+(01|n^1,1)=1\wp\left(00|\hat{n}_{1},1\right)+\wp\left(01|\hat{n}_{1},1\right)=1, (10|n^1,2)+(11|n^1,2)=1\wp\left(10|\hat{n}_{1},2\right)+\wp\left(11|\hat{n}_{1},2\right)=1, (00|n^2,3)+(11|n^2,3)=1\wp\left(00|\hat{n}_{2},3\right)+\wp\left(11|\hat{n}_{2},3\right)=1, (01|n^2,4)+(10|n^2,4)=1\wp\left(01|\hat{n}_{2},4\right)+\wp\left(10|\hat{n}_{2},4\right)=1, and other (a|n^,ξ)=0\wp\left(a|\hat{n},\xi\right)=0. After taking the sum of Eq. (12) and taking the trace subsequently, we get “2Q=1C2_{Q}=1_{C}”. In the same way, we get the EPR steering paradox “2Q=1C2_{Q}=1_{C}” and δ=0\delta=0.

Case. 3—Bob has the same conditional states in different sets of measurements.

Example 3.—We consider the example of a 3-qubit pure entangled state ρAB=|ΨΨ|\rho_{AB}=\left|\Psi^{\prime}\right\rangle\left\langle\Psi^{\prime}\right|, where

|Ψ=16[\displaystyle\left|\Psi^{\prime}\right\rangle=\dfrac{1}{\sqrt{6}}\Big{[} |001+|01(|0+|1)\displaystyle\left|001\right\rangle+\left|01\right\rangle\big{(}\left|0\right\rangle+\left|1\right\rangle\big{)}
+|10(|0|1)|110].\displaystyle+\left|10\right\rangle\big{(}\left|0\right\rangle-\left|1\right\rangle\big{)}-\left|110\right\rangle\Big{]}. (13)

Alice prepares the state ρAB\rho_{AB} as in Eq. (13). She keeps the particles 1, 2 and sends the particle 3 to Bob. In the two-setting steering protocol {n^1,n^2}\left\{\hat{n}_{1},\hat{n}_{2}\right\} (n^1n^2)\left(\hat{n}_{1}\neq\hat{n}_{2}\right), with

n^1=σzσzzz,n^2=σxσxxx,\begin{array}[c]{c}\hat{n}_{1}=\sigma_{z}\sigma_{z}\equiv zz,\\ \hat{n}_{2}=\sigma_{x}\sigma_{x}\equiv xx,\end{array} (14)

after Alice’s measurements, Bob’s unnormalized conditional states are

ρ~00n^1=16|11|,ρ~01n^1=16(|0+|1)(0|+1|),ρ~10n^1=16(|0|1)(0|1|),ρ~11n^1=16|00|,ρ~00n^2=124(|0+|1)(0|+1|),ρ~01n^2=124(|0|1)(0|1|),ρ~10n^2=124(|0+3|1)(0|+31|),ρ~11n^2=124(3|0|1)(30|1|).\begin{array}[c]{l}\tilde{\rho}_{00}^{\hat{n}_{1}}=\frac{1}{6}\left|1\right\rangle\left\langle 1\right|,\\[9.0pt] \tilde{\rho}_{01}^{\hat{n}_{1}}=\frac{1}{6}\left(\left|0\right\rangle+\left|1\right\rangle\right)\left(\left\langle 0\right|+\left\langle 1\right|\right),\\[9.0pt] \tilde{\rho}_{10}^{\hat{n}_{1}}=\frac{1}{6}\left(\left|0\right\rangle-\left|1\right\rangle\right)\left(\left\langle 0\right|-\left\langle 1\right|\right),\\[9.0pt] \tilde{\rho}_{11}^{\hat{n}_{1}}=\frac{1}{6}\left|0\right\rangle\left\langle 0\right|,\\[9.0pt] \tilde{\rho}_{00}^{\hat{n}_{2}}=\frac{1}{24}\left(\left|0\right\rangle+\left|1\right\rangle\right)\left(\left\langle 0\right|+\left\langle 1\right|\right),\\[9.0pt] \tilde{\rho}_{01}^{\hat{n}_{2}}=\frac{1}{24}\left(\left|0\right\rangle-\left|1\right\rangle\right)\left(\left\langle 0\right|-\left\langle 1\right|\right),\\[9.0pt] \tilde{\rho}_{10}^{\hat{n}_{2}}=\frac{1}{24}\left(\left|0\right\rangle+3\left|1\right\rangle\right)\left(\left\langle 0\right|+3\left\langle 1\right|\right),\\[9.0pt] \tilde{\rho}_{11}^{\hat{n}_{2}}=\frac{1}{24}\left(3\left|0\right\rangle-\left|1\right\rangle\right)\left(3\left\langle 0\right|-\left\langle 1\right|\right).\end{array} (15)

Notice that all of Bob’s states are pure, while there are identical results in {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} and {ρ~an^2}\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}, which implies that Bob’s two sets of results are not identical, satisfying the requirement of Theorem 1.

Suppose Bob’s states have a LHS description, and then they must satisfy Eqs. (4) and (5). Because the eight states of Eq. (15) are pure states, and there are only six different states in the measurement result Eq. (15), it is sufficient to take ξ\xi from 11 to 66. Analogously, one has

ρ~00n^1=1ρ1,ρ~01n^1=2ρ2,ρ~10n^1=3ρ3,ρ~11n^1=4ρ4,ρ~00n^2=2ρ2,ρ~01n^2=3ρ3,ρ~10n^2=5ρ5,ρ~11n^2=6ρ6.\begin{array}[c]{c}\tilde{\rho}_{00}^{\hat{n}_{1}}=\wp_{1}\rho_{1},\\ \tilde{\rho}_{01}^{\hat{n}_{1}}=\wp_{2}\rho_{2},\\ \tilde{\rho}_{10}^{\hat{n}_{1}}=\wp_{3}\rho_{3},\\ \tilde{\rho}_{11}^{\hat{n}_{1}}=\wp_{4}\rho_{4},\end{array}\begin{array}[c]{c}\tilde{\rho}_{00}^{\hat{n}_{2}}=\wp_{2}\rho_{2},\\ \tilde{\rho}_{01}^{\hat{n}_{2}}=\wp_{3}\rho_{3},\\ \tilde{\rho}_{10}^{\hat{n}_{2}}=\wp_{5}\rho_{5},\\ \tilde{\rho}_{11}^{\hat{n}_{2}}=\wp_{6}\rho_{6}.\end{array} (16)

Here we describe the identical terms by the same hidden states. (00|n^1,1)=(01|n^1,2)=(10|n^1,3)=(11|n^1,4)=(00|n^2,2)=(01|n^2,3)=(10|n^2,5)=(11|n^2,6)=1\wp\left(00|\hat{n}_{1},1\right)=\wp\left(01|\hat{n}_{1},2\right)=\wp\left(10|\hat{n}_{1},3\right)=\wp\left(11|\hat{n}_{1},4\right)=\wp\left(00|\hat{n}_{2},2\right)=\wp\left(01|\hat{n}_{2},3\right)=\wp\left(10|\hat{n}_{2},5\right)=\wp\left(11|\hat{n}_{2},6\right)=1, and other (a|n^,ξ)=0\wp\left(a|\hat{n},\xi\right)=0. Summing Eq. (16), the quantum result is 2ρB2\rho_{B}, while the classical result is ρB+2ρ2+3ρ3\rho_{B}+\wp_{2}\rho_{2}+\wp_{3}\rho_{3}. Then taking the trace, we obtain “2Q=(1+2+3)C2_{Q}=\left(1+\wp_{2}+\wp_{3}\right)_{C}”. And ξ=16ξ=1\sum\nolimits_{\xi=1}^{6}\wp_{\xi}=1, 1\wp_{1}, 2\wp_{2}, 3\wp_{3}, 4\wp_{4}, 5\wp_{5}, together with 6\wp_{6} are non-zero, thus 0<0< 2+3<1\wp_{2}+\wp_{3}<1. In this case, we get the EPR steering paradox “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}” and δ=2+3\delta=\wp_{2}+\wp_{3}, with 0<δ<10<\delta<1.

Case. 4—Bob has the same conditional states in the sets corresponding to both the same and different directions of Alice’s measurements.

Example 4.—We consider the W state W2000 shared by Alice and Bob. Suppose Alice prepares the W state ρAB=|WW|\rho_{AB}=\left|W\right\rangle\left\langle W\right|, where

|W=13[|100+|010+|001].\left|W\right\rangle=\frac{1}{\sqrt{3}}\Big{[}\left|100\right\rangle+\left|010\right\rangle+\left|001\right\rangle\Big{]}.

She keeps the particles 1, 2, and sends the other to Bob. In the two-setting steering protocol {n^1,n^2}\left\{\hat{n}_{1},\hat{n}_{2}\right\}, where n^1\hat{n}_{1}, n^2\hat{n}_{2} are shown in Eq. (14), after Alice’s measurements, Bob’s unnormalized conditional states are

ρ~00zz=13|11|,ρ~01zz=13|00|,ρ~10zz=13|00|,ρ~11zz=0,ρ~00xx=112(2|0+|1)(20|+1|),ρ~01xx=112|11|,ρ~10xx=112|11|,ρ~11xx=112(2|0|1)(20|1|),\begin{array}[c]{l}\tilde{\rho}_{00}^{zz}=\frac{1}{3}\left|1\right\rangle\left\langle 1\right|,\\ \tilde{\rho}_{01}^{zz}=\frac{1}{3}\left|0\right\rangle\left\langle 0\right|,\\ \tilde{\rho}_{10}^{zz}=\frac{1}{3}\left|0\right\rangle\left\langle 0\right|,\\ \tilde{\rho}_{11}^{zz}=0,\\ \tilde{\rho}_{00}^{xx}=\frac{1}{12}\left(2\left|0\right\rangle+\left|1\right\rangle\right)\left(2\left\langle 0\right|+\left\langle 1\right|\right),\\ \tilde{\rho}_{01}^{xx}=\frac{1}{12}\left|1\right\rangle\left\langle 1\right|,\\ \tilde{\rho}_{10}^{xx}=\frac{1}{12}\left|1\right\rangle\left\langle 1\right|,\\ \tilde{\rho}_{11}^{xx}=\frac{1}{12}\left(2\left|0\right\rangle-\left|1\right\rangle\right)\left(2\left\langle 0\right|-\left\langle 1\right|\right),\end{array} (17)

namely, Bob obtains seven pure states. This satisfies the requirement in Theorem 1. Summing all the equations in Eq. (17) together, and then taking the trace, we get tr(2ρB)=2Q\mathrm{tr}\left(2\rho_{B}\right)=2_{Q}.

If Bob’s states have a LHS description, they satisfy Eqs. (4) and (5). In Eq. (17), there are four pure states, which means that it is sufficient to take ξ\xi from 11 to 44. Because the conditional states obtained by Bob are all pure states, and a pure state can only be expanded by itself, and then one selects

ρ~00zz=1ρ1,ρ~01zz=(01|z^z^,2)2ρ2,ρ~10zz=(10|z^z^,2)2ρ2,ρ~11zz=0,ρ~00xx=3ρ3,ρ~01xx=(01|x^x^,1)1ρ1,ρ~10xx=(10|x^x^,1)1ρ1,ρ~11xx=4ρ4.\begin{array}[c]{l}\tilde{\rho}_{00}^{zz}=\wp_{1}\rho_{1},\\ \tilde{\rho}_{01}^{zz}=\wp\left(01|\hat{z}\hat{z},2\right)\wp_{2}\rho_{2},\\ \tilde{\rho}_{10}^{zz}=\wp\left(10|\hat{z}\hat{z},2\right)\wp_{2}\rho_{2},\\ \tilde{\rho}_{11}^{zz}=0,\\ \tilde{\rho}_{00}^{xx}=\wp_{3}\rho_{3},\\ \tilde{\rho}_{01}^{xx}=\wp\left(01|\hat{x}\hat{x},1\right)\wp_{1}\rho_{1},\\ \tilde{\rho}_{10}^{xx}=\wp\left(10|\hat{x}\hat{x},1\right)\wp_{1}\rho_{1},\\ \tilde{\rho}_{11}^{xx}=\wp_{4}\rho_{4}.\end{array} (18)

Perceive that in Eq. (17), ρ~00zz=ρ~01xx=ρ~10xx\tilde{\rho}_{00}^{zz}=\tilde{\rho}_{01}^{xx}=\tilde{\rho}_{10}^{xx}, so we take the same hide state 1ρ1\wp_{1}\rho_{1} to describe ρ~00zz\tilde{\rho}_{00}^{zz}, ρ~01xx\tilde{\rho}_{01}^{xx}, and ρ~10xx\tilde{\rho}_{10}^{xx}. Similarly, ρ~01zz=ρ~10zz\tilde{\rho}_{01}^{zz}=\tilde{\rho}_{10}^{zz}, and we take 2ρ2\wp_{2}\rho_{2} to describe them. Because a(a|n^,ξ)=1\sum\nolimits_{a}\wp\left(a|\hat{n},\xi\right)=1, we have (00|zz,1)=(00|xx,3)=(11|xx,4)=1\wp\left(00|zz,1\right)=\wp\left(00|xx,3\right)=\wp\left(11|xx,4\right)=1, (01|z^z^,2)+(10|z^z^,2)=1\wp\left(01|\hat{z}\hat{z},2\right)+\wp\left(10|\hat{z}\hat{z},2\right)=1, (01|x^x^,1)+(10|x^x^,1)=1\wp\left(01|\hat{x}\hat{x},1\right)+\wp\left(10|\hat{x}\hat{x},1\right)=1, and other (a|n^,ξ)=0\wp\left(a|\hat{n},\xi\right)=0. We sum up Eq. (18) and take the trace, which leads the right-hand side to (1+1)C\left(1+\wp_{1}\right)_{C}. Since ρ~00zz\tilde{\rho}_{00}^{zz}, ρ~01zz\tilde{\rho}_{01}^{zz}, ρ~10zz\tilde{\rho}_{10}^{zz}, ρ~00xx\tilde{\rho}_{00}^{xx}, ρ~01xx\tilde{\rho}_{01}^{xx}, ρ~10xx\tilde{\rho}_{10}^{xx}, and ρ~11xx\tilde{\rho}_{11}^{xx} are nonzero in Eq. (17), 1\wp_{1}, 2\wp_{2}, 3\wp_{3}, and 4\wp_{4} are all nonzero, as well as ξξ=1\sum\nolimits_{\xi}\wp_{\xi}=1, which imply that 0<1<10<\wp_{1}<1. However, the result of the left-hand side is 22. Consequently, we obtain the paradox “2Q=(1+1)C2_{Q}=\left(1+\wp_{1}\right)_{C}”. In the case of W state, we get the contradiction “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, where 0<δ<10<\delta<1.

In Cases. 1 and 2, Bob’s two sets of results are completely different, with the contradiction “2Q=1C2_{Q}=1_{C}”, where δ=0\delta=0, consistent with the results in EPR paradox2024 . Notwithstanding, in Cases. 3 and 4, Bob’s two sets of results are not exactly the same, with the contradiction “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, where 0<δ<10<\delta<1. Generalized proof of each case and detailed analysis of the examples are provided in the Supplementary Information (SI) (See Supplementary Information for detail analyses of the theorem.).

III Conclusion and Discussion

This work advances the study of the EPR steering paradox. In Theorem 1, we present the generalized EPR steering paradox “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, where 0δ<10\leq\delta<1. The argument holds for any NN-qubit entangled state, either pure or mixed. We show that some quantum states do not satisfy the previous EPR steering paradox “2Q=1C2_{Q}=1_{C}chenjl2016 , but the quantum results contradict the LHS model as well, expressed as “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”. We find a universal EPR steering paradox and show that our result contains the previous EPR steering paradox “2Q=1C2_{Q}=1_{C}” as special cases chenjl2016 ; Liu2021 . It is worth noting that we have found all the steerable states when Bob’s conditional states are pure.

Moreover, if one considers the kk-setting EPR steering scenario, then a contradiction “kQ=(1+δk)Ck_{Q}=\left(1+\delta_{k}\right)_{C}”, where 0δk<k10\leq\delta_{k}<k-1, can be derived from a similar procedure. Of course, our conclusion applies to any NN-qudit state naturally. Besides, as there exists a close connection between steering paradox and inequality AVN1 , our conclusion also provides a new way to structure the NN-qubit EPR steering inequality from the perspective of the generalized steering paradox. However, for any quantum state, if the result “2Q=2C2_{Q}=2_{C}” happens, i.e., there is no contradiction between the quantum result and the LHS model, in such a case one cannot judge whether the quantum state is steerable based on the paradox approach. Finally, if Bob’s conditional states are all mixed, is it possible to find a sufficient and necessary condition for steering? We shall investigate this problem subsequently.

Acknowledgements.
Z.J.L. thanks Wei-Min Shang and Hao-Nan Qiang for insightful discussion. J.L.C. is supported by the National Natural Science Foundation of China (Grants No. 12275136 and 12075001) and the 111 Project of B23045. Z.J.L. is supported by the Nankai Zhide Foundation.

Z.J.L., X.Y.F. and J.Z. contributed equally to this work.

COMPETING INTERESTS

The authors declare no competing interests.

Appendix A Proof of Theorem 1

We consider that Alice and Bob share an NN-qubit entangled state

ρAB=αpα|ψAB(α)ψAB(α)|,\rho_{AB}=\sum_{\alpha}p_{\alpha}\left|\psi_{AB}^{\left(\alpha\right)}\right\rangle\left\langle\psi_{AB}^{\left(\alpha\right)}\right|, (19)

with

|ψAB(α)=i(si(α)|ϕi|ηi(α)),\left|\psi_{AB}^{\left(\alpha\right)}\right\rangle=\sum_{i}\left(s_{i}^{\left(\alpha\right)}\left|\phi_{i}\right\rangle\left|\eta_{i}^{\left(\alpha\right)}\right\rangle\right), (20)

or

|ψAB(α)=j(tj(α)|φj|εj(α)).\left|\psi_{AB}^{\left(\alpha\right)}\right\rangle=\sum_{j}\left(t_{j}^{\left(\alpha\right)}\left|\varphi_{j}\right\rangle\left|\varepsilon_{j}^{\left(\alpha\right)}\right\rangle\right). (21)

Eqs. (20) and (21) are the expressions of |ψAB(α)|\psi_{AB}^{(\alpha)}\rangle under different representations |ϕi|ηi\left|\phi_{i}\right\rangle\otimes\left|\eta_{i}\right\rangle and |φj|εj\left|\varphi_{j}\right\rangle\otimes\left|\varepsilon_{j}\right\rangle, where i,j=1,2,,2Mi,j=1,2,\cdots,2^{M}. Alice keeps M(M<N)M\left(M<N\right) particles, and Bob keeps (NM)(N-M) particles.

In the two-setting steering protocol {n^1,n^2}\left\{\hat{n}_{1},\hat{n}_{2}\right\}, Alice performs 2M+12^{M+1} projective measurements, and then Bob obtains the according unnormalized conditional states ρ~an^=trA[(Pan^𝟙)ρAB]\tilde{\rho}_{a}^{\hat{n}_{\ell}}=\mathrm{tr}_{A}\left[\left({{P}_{a}^{\hat{n}_{\ell}}\otimes\mathds{1}}\right)\rho_{AB}\right], where n^\hat{n}_{\ell} (=1,2\ell=1,2) is the measurement direction, aa is the result of Alice, and 𝟙{\mathds{1}} is a 2NM×2NM2^{N-M}\times 2^{N-M} identity matrix. Set Pain^1=|ϕiϕi|{{P}_{a_{i}}^{\hat{n}_{1}}=}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| and Pajn^2=|φjφj|{{P}_{a_{j}^{\prime}}^{\hat{n}_{2}}=}\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|. After Alice’s measurement, Bob obtains

ρ~ain^1=αpα|si(α)|2|ηi(α)ηi(α)|,\begin{array}[c]{c}\tilde{\rho}_{a_{i}}^{\hat{n}_{1}}=\sum_{\alpha}p_{\alpha}|s_{i}^{(\alpha)}|^{2}|\eta_{i}^{(\alpha)}\rangle\langle\eta_{i}^{(\alpha)}|,\end{array} (22)

or

ρ~ajn^2=αpα|tj(α)|2|εj(α)εj(α)|.\tilde{\rho}_{a_{j}^{\prime}}^{\hat{n}_{2}}=\sum_{\alpha}p_{\alpha}|t_{j}^{(\alpha)}|^{2}|\varepsilon_{j}^{(\alpha)}\rangle\langle\varepsilon_{j}^{(\alpha)}|. (23)

If Bob’s states have a LHS description, they satisfy Eqs. (4) and (5), which lead to 2M+12^{M+1} equations:

ρ~an^1=ξ(a|n^1,ξ)ξρξ,ρ~an^2=ξ(a|n^2,ξ)ξρξ.\begin{array}[c]{c}\tilde{\rho}_{a}^{\hat{n}_{1}}={\displaystyle\sum\limits_{\xi}}\wp\left(a|\hat{n}_{1},\xi\right)\wp_{\xi}\rho_{\xi},\\ \tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}={\displaystyle\sum\limits_{\xi}}\wp\left(a^{\prime}|\hat{n}_{2},\xi\right)\wp_{\xi}\rho_{\xi}.\end{array} (24)

The quantum value 22 can be attained through summing Eq. (22) and Eq. (23) and then taking the trace. However the maximum value of the LHS result is 22 if and only if

aξ(a|n^1,ξ)ξρξ\displaystyle\sum_{a}\sum_{\xi}\wp\left(a|\hat{n}_{1},\xi\right)\wp_{\xi}\rho_{\xi} =aξ(a|n^2,ξ)ξρξ\displaystyle=\sum_{a^{\prime}}\sum_{\xi}\wp\left(a^{\prime}|\hat{n}_{2},\xi\right)\wp_{\xi}\rho_{\xi}
=ξξρξ.\displaystyle=\sum_{\xi}\wp_{\xi}\rho_{\xi}.

But the equation “2Q=2C2_{Q}=2_{C}” is not contradictory, and under this circumstance we cannot determine whether Alice can steer Bob, since there may exist other measurement strategies for Alice to steer Bob, or produce the contradiction “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, with δ[0,1)\delta\in\left[0,1\right).

Considering that the conditional states of Bob are all pure, which implies that |ηi\left|\eta_{i}\right\rangle and |εj\left|\varepsilon_{j}\right\rangle are independent of α\alpha, i.e.,

|ψAB(α)=isi(α)|ϕi|ηi,\left|\psi_{AB}^{\left(\alpha\right)}\right\rangle=\sum_{i}s_{i}^{\left(\alpha\right)}\left|\phi_{i}\right\rangle\left|\eta_{i}\right\rangle, (25)

or

|ψAB(α)=jtj(α)|φj|εj.\left|\psi_{AB}^{\left(\alpha\right)}\right\rangle=\sum_{j}t_{j}^{\left(\alpha\right)}\left|\varphi_{j}\right\rangle\left|\varepsilon_{j}\right\rangle. (26)

Then the conditional states of Bob are

{ρ~a1n^1=αpα|s1(α)|2|η1η1|,ρ~a2Mn^1=αpα|s2M(α)|2|η2Mη2M|,ρ~a1n^2=αpα|t1(α)|2|ε1ε1|,ρ~a2Mn^2=αpα|t2M(α)|2|ε2Mε2M|.\left\{\begin{array}[c]{l}\tilde{\rho}_{a_{1}}^{\hat{n}_{1}}=\sum_{\alpha}p_{\alpha}\left|s_{1}^{\left(\alpha\right)}\right|^{2}\left|\eta_{1}\right\rangle\left\langle\eta_{1}\right|,\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}}^{\hat{n}_{1}}=\sum_{\alpha}p_{\alpha}\left|s_{2^{M}}^{\left(\alpha\right)}\right|^{2}\left|\eta_{2^{M}}\right\rangle\left\langle\eta_{2^{M}}\right|,\\ \tilde{\rho}_{a_{1}^{\prime}}^{\hat{n}_{2}}=\sum_{\alpha}p_{\alpha}\left|t_{1}^{\left(\alpha\right)}\right|^{2}\left|\varepsilon_{1}\right\rangle\left\langle\varepsilon_{1}\right|,\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}^{\prime}}^{\hat{n}_{2}}=\sum_{\alpha}p_{\alpha}\left|t_{2^{M}}^{\left(\alpha\right)}\right|^{2}\left|\varepsilon_{2^{M}}\right\rangle\left\langle\varepsilon_{2^{M}}\right|.\end{array}\right. (27)

Sufficiency—“2Q=2C2_{Q}=2_{C}{ρ~an^1}={ρ~an^2}\Longrightarrow\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}=\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}. To prove the proposition {ρ~an^1}{ρ~an^2}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}\neq\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}\Longrightarrow2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, we simplify the process by demonstrating the accuracy of the contrapositive.

Since the density matrix of a pure state can only be expanded by itself, that is each ρ~an^1\tilde{\rho}_{a}^{\hat{n}_{1}} and ρ~an^2\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}} in Eq. (24) can only be described by a definite hidden state. Without loss of generality, suppose that Bob’s conditional states are completely different in the set involving the same measurement direction {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} or {ρ~an^2}\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}. Further Eq. (24) can be written as

{ρ~a1n^1=1ρ1,ρ~a2n^1=2ρ2,ρ~a2Mn^1=2Mρ2M,{ρ~a1n^2=1ρ1,ρ~a2n^2=2ρ2,ρ~a2Mn^2=2Mρ2M.\left\{\begin{array}[c]{l}\tilde{\rho}_{a_{1}}^{\hat{n}_{1}}=\wp_{1}\rho_{1},\\ \tilde{\rho}_{a_{2}}^{\hat{n}_{1}}=\wp_{2}\rho_{2},\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}}^{\hat{n}_{1}}=\wp_{2^{M}}\rho_{2^{M}},\end{array}\right.\left\{\begin{array}[c]{l}\tilde{\rho}_{a_{1}^{\prime}}^{\hat{n}_{2}}=\wp_{1}^{\prime}\rho_{1}^{\prime},\\ \tilde{\rho}_{a_{2}^{\prime}}^{\hat{n}_{2}}=\wp_{2}^{\prime}\rho_{2}^{\prime},\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}^{\prime}}^{\hat{n}_{2}}=\wp_{2^{M}}^{\prime}\rho_{2^{M}}^{\prime}.\end{array}\right. (28)

Summing the Eq. (28), we have

ρ~an^1+ρ~an^2=i=12Miρi+i=12Miρi.\tilde{\rho}_{a}^{\hat{n}_{1}}+\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}=\sum_{i=1}^{2^{M}}\wp_{i}\rho_{i}+\sum_{i=1}^{2^{M}}\wp_{i}^{\prime}\rho_{i}^{\prime}.

The equation “2Q=2C2_{Q}=2_{C}” requests

i=12Miρi=i=12Miρi=ξξρξ.\sum_{i=1}^{2^{M}}\wp_{i}^{\prime}\rho_{i}^{\prime}=\sum_{i=1}^{2^{M}}\wp_{i}\rho_{i}=\sum_{\xi}\wp_{\xi}\rho_{\xi}. (29)

It means that {ρ~an^1}={ρ~an^2}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}=\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}, i.e., the measurement requirement is not satisfied. Note that there is also no contradiction appearing if Bob has the same conditional state in the same direction measurement result {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} or {ρ~an^2}\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}. As a result, if the measurement requirement is met, the paradoxical equality “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, with δ[0,1)\delta\in\left[0,1\right), can be achieved.

Necessity{ρ~an^1}={ρ~an^2}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}=\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}\Longrightarrow2Q=2C2_{Q}=2_{C}”. Similarly, the proposition 2Q=(1+δ)C{ρ~an^1}{ρ~an^2}\text{``}2_{Q}=\left(1+\delta\right)_{C}\text{''}\Longrightarrow\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}\neq\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\} can be proven by showing the accuracy of its contrapositive.

Suppose that there are 2M2^{M} distinct states in {ρ~an^1}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\} and that they are the same as the corresponding 2M2^{M} elements in {ρ~an^2}\{\tilde{\rho}_{a}^{\hat{n}_{2}}\}. Bob’s conditional states are

{ρ~a1n^1=αpα|s1(α)|2|η1η1|,ρ~a2Mn^1=αpα|s2M(α)|2|η2Mη2M|,ρ~a1n^2=αpα|t1(α)|2|η1η1|,ρ~a2Mn^2=αpα|t2M(α)|2|η2Mη2M|.\left\{\begin{array}[c]{l}\tilde{\rho}_{a_{1}}^{\hat{n}_{1}}=\sum_{\alpha}p_{\alpha}\left|s_{1}^{\left(\alpha\right)}\right|^{2}\left|\eta_{1}\right\rangle\left\langle\eta_{1}\right|,\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}}^{\hat{n}_{1}}=\sum_{\alpha}p_{\alpha}\left|s_{2^{M}}^{\left(\alpha\right)}\right|^{2}\left|\eta_{2^{M}}\right\rangle\left\langle\eta_{2^{M}}\right|,\\ \tilde{\rho}_{a_{1}^{\prime}}^{\hat{n}_{2}}=\sum_{\alpha}p_{\alpha}\left|t_{1}^{\left(\alpha\right)}\right|^{2}\left|\eta_{1}\right\rangle\left\langle\eta_{1}\right|,\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}^{\prime}}^{\hat{n}_{2}}=\sum_{\alpha}p_{\alpha}\left|t_{2^{M}}^{\left(\alpha\right)}\right|^{2}\left|\eta_{2^{M}}\right\rangle\left\langle\eta_{2^{M}}\right|.\end{array}\right. (30)

There are only 2M2^{M} different pure states in the quantum result Eq. (30). It is sufficient to take ξ\xi from 11 to 2M2^{M} in the LHS description, e.g.,

{ρ~an^1=ξ=12M(a|n^1,ξ)ξρξ,ρ~an^2=ξ=12M(a|n^2,ξ)ξρξ.\left\{\begin{array}[c]{l}\tilde{\rho}_{a}^{\hat{n}_{1}}=\sum\limits_{\xi=1}^{2^{M}}\wp\left(a|\hat{n}_{1},\xi\right)\wp_{\xi}\rho_{\xi},\\ \tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}=\sum\limits_{\xi=1}^{2^{M}}\wp\left(a^{\prime}|\hat{n}_{2},\xi\right)\wp_{\xi}\rho_{\xi}.\end{array}\right. (31)

Since Bob’s states are all pure, each ρ~an^\tilde{\rho}_{a}^{\hat{n}_{\ell}} in Eq. (31) contains only one term. Eq. (31) can be written as

{ρ~a1n^1=1ρ1,ρ~a2Mn^1=2Mρ2M,ρ~a1n^2=1ρ1,ρ~a2Mn^2=2Mρ2M.\left\{\begin{array}[c]{l}\tilde{\rho}_{a_{1}}^{\hat{n}_{1}}=\wp_{1}\rho_{1},\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}}^{\hat{n}_{1}}=\wp_{2^{M}}\rho_{2^{M}},\\ \tilde{\rho}_{a_{1}^{\prime}}^{\hat{n}_{2}}=\wp_{1}\rho_{1},\\ \cdots\\ \tilde{\rho}_{a_{2^{M}}^{\prime}}^{\hat{n}_{2}}=\wp_{2^{M}}\rho_{2^{M}}.\end{array}\right. (32)

Here we describe the same term with the same hidden state. And a(a|n^,ξ)=1{\sum\limits_{a}}\wp\left(a|\hat{n},\xi\right)=1, so we have (a1|n^1,1)==(a2M|n^1,2M)=(a1|n^2,1)=(a2M|n^2,2M)=1\wp\left(a_{1}|\hat{n}_{1},1\right)=\cdots=\wp\left(a_{2^{M}}|\hat{n}_{1},2^{M}\right)=\wp\left(a_{1}^{\prime}|\hat{n}_{2},1\right)\cdots=\wp\left(a_{2^{M}}^{\prime}|\hat{n}_{2},2^{M}\right)=1, and the others (a|n^,ξ)=0\wp\left(a|\hat{n},\xi\right)=0. Then we take the sum of Eq. (32) and take the trace, and get “2Q=2C2_{Q}=2_{C}”. That means that there is no contradiction if {ρ~an^1}={ρ~an^2}\{\tilde{\rho}_{a}^{\hat{n}_{1}}\}=\{\tilde{\rho}_{a^{\prime}}^{\hat{n}_{2}}\}, i.e., the measurement requirement is not satisfied, and we cannot conclude whether Alice can steer Bob. Consequently, if there is a contradiction “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, then the measurement condition must be satisfied.

In summary, we demonstrate that the measurement requirement is both a sufficient and necessary condition for the contradiction “2Q=(1+δ)C2_{Q}=\left(1+\delta\right)_{C}”, on the premise that Bob’s conditional states are pure.

References

  • (1) Einstein, A., Podolsky, B. , and Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).
  • (2) Schrödinger, E. Discussion of probability relations between separated systems. Proc. Cambridge Philo. Soc. 31, 555 (1935).
  • (3) Schrödinger, E. Probability relations between separated Systems. Proc. Cambridge Philo. Soc. 32, 446 (1936).
  • (4) Vujicic, M. , and Herbut, F. Distant steering: Schrodinger’s version of quantum non-separability. J. Phys. A: Math. Gen. 21, 2931 (1988).
  • (5) Reid, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989).
  • (6) Verstraete, F. Quantum entanglement and quantum information. Ph.D. thesis, Katholieke Universiteit Leuven (2002).
  • (7) Popescu, S., , and Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 24, 397 (1994).
  • (8) Horodecki, R., Horodecki, P., Horodecki, M. , and Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
  • (9) Doherty, A. C., Parrilo, P. A. , and Spedalieri, F. M. Distinguishing separable and entangled states. Phys. Rev. Lett. 88, 187904 (2002).
  • (10) Li, N. , and Luo, S. Classical states versus separable states. Phys. Rev. A 78, 024303 (2008).
  • (11) Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. , and Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014).
  • (12) Fry, E. S. , and Thompson, R. C. Experimental test of local hidden-variable theories Phys. Rev. Lett. 37, 465 (1976).
  • (13) Augusiak, R., Demianowicz, M. , and Acín, A. Local hidden-variable models for entangled quantum states. J. Phys. A: Math. Theor. 47, 42 (2014).
  • (14) Barukčić, I. Local hidden variable theorem. Causation 1, 11 (2006).
  • (15) Wiseman, H. M., Jones, S. J. , and Doherty, A. C. Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).
  • (16) Jones, S. J., Wiseman, H. M. , and Doherty, A. C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007).
  • (17) Saunders, D. J., Jones, S. J., Wiseman, H. M. , and Pryde, G. J. Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845-849 (2010).
  • (18) Meng, H. X., Zhou, J., Jiang, S. H., Xu, Z. P., Ren, C. L., Su, H. Y. , and Chen, J. L. Comparing Bell nonlocality and Einstein-Podolsky-Rosen steering based on the chained inequalities. Optics Communications 425, 101 (2018).
  • (19) Meng, H. X., Zhou, J.,Ren, C. L., Su, H. Y. , and Chen, J. L. Chained Einstein-Podolsky-Rosen steering inequalities with improved visibility. Inter. J. Quant. Inform. 16, 1850034 (2018).
  • (20) Chen, J. L., Ye, X. J., Wu, C. F., Su, H. Y., Cabello, A., Kwek, L. C. , and Oh, C. H. All-Versus-Nothing proof of Einstein-Podolsky-Rosen steering. Sci. Rep. 3, 2143 (2013).
  • (21) Chen, J. L., Su, H. Y., Xu, Z. P. , and Pati, A. K. Sharp contradiction for local-hidden-state model in quantum steering. Sci. Rep. 6, 32075 (2016).
  • (22) Feng, T. F., Ren, C. L., Feng, Q., Luo, M. L., Qiang, X. G., Chen, J. L. , and Zhou, X. Q. Steering paradox for Einstein-Podolsky-Rosen argument and its extended inequality. Photonics Res. 9,6 (2021).
  • (23) Liu, Z. H., Zhou, J., Meng, H. X., Yang, M., Li, Q., Meng, Y., Su, H. Y., Chen, J. L., Sun, K., Xu, J. S., Li, C. F. , and Guo, G. C. Experimental test of the Greenberger-Horne-Zeilinger-type paradoxes in and beyond graph states. npj Quantum Inf. 7, 66 (2021).
  • (24) Liu, Z. J., Zhou, J., Meng, H. X., Fan, X. Y., Xie, M., Zhang, F. L. , and Chen, J. L. Einstein-Podolsky-Rosen steering paradox 2=12=1 for NN qubits. Mod. Phys. Lett. A 39, 2450030 (2024).
  • (25) Cavalcanti, D., Almeida, M. L., Scarani, V. , and Acín, A. Quantum networks reveal quantum nonlocality. Nat. Commun. 2, 184 (2011).
  • (26) Acín, A., Gisin, N. , and Toner, B. Grothendieck’s constant and local models for noisy entangled quantum states. Phys. Rev. A 73, 062105 (2006).
  • (27) Gehring, T., Händchen, V., Duhme, J., Furrer, F., Franz, T., Pacher, C., Werner, R. F. , and Schnabel, R. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun. 6, 8795 (2015).
  • (28) Armstrong, S., Wang, M., Teh, R. Y., Gong, Q. H., He, Q. Y., Janousek, J., Bachor, H. A., Reid, M. D. , and Lam, P. K. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks. Nat. Phys. 11, 167 (2015).
  • (29) He, Q. Y., Rosales-Zárate, L., Adesso, G. , and Reid, M. D. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 115, 180502 (2015).
  • (30) Skrzypczyk, P. , and Cavalcanti, D. Maximal Randomness Generation from Steering Inequality Violations Using Qudits. Phys. Rev. Lett. 120, 260401 (2018).
  • (31) Piani, M. , and Watrous, J. Necessary and Sufficient Quantum Information Characterization of Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 114, 060404 (2015).
  • (32) Yadin, B., Fadel, M. , and Gessner, M. Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox. Nat. Commun. 12, 2410 (2021).
  • (33) Braunstein, S. L. , and Caves, C. M. Wringing out better Bell inequalities. Ann. Phys. 202, 22 (1990).
  • (34) Werner, R. F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).
  • (35) Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990).
  • (36) Scarani, V., Acín, A., Schenck, E. , and Aspelmeyer, M. Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005).
  • (37) Dür, W., Vidal, G. , and Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).