This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized discrete operators

Rui A. C. Ferreira Grupo Física-Matemática, Faculdade de Ciências, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003, Lisboa, Portugal. [email protected]
Abstract.

We define a class of discrete operators that, in particular, include the delta and nabla fractional operators. Moreover, we prove the fundamental theorem of calculus for these operators.

Key words and phrases:
Discrete calculus, fractional operators.
2000 Mathematics Subject Classification:
Primary 39A12 , 26A33
Rui A. C. Ferreira was supported by the “Fundação para a Ciência e a Tecnologia (FCT)” through the program “Stimulus of Scientific Employment, Individual Support-2017 Call” with reference CEECIND/00640/2017.

1. Preamble

The theory of discrete fractional calculus is currently an area of mathematics of intensive research, having appeared in the literature many articles on the subject in the past decade (see [1, 2, 4, 5, 6, 7, 10, 12] and the references therein). Two parallel concepts were introduced, namely, the delta (or forward) operators and the nabla (or backward) operators (see [8, Sections 2 and 3]).

Consider the falling function defined, for x,yAx,y\in A\subset\mathbb{R}, by

xy¯={x(x1)(xy+1)fory1,1for y=0,Γ(x+1)Γ(x+1y)for x,xy1,0for x1 and xy1,x^{\underline{y}}=\left\{\begin{array}[]{llll}x(x-1)\ldots(x-y+1)\ \mbox{for}\ y\in\mathbb{N}_{1},\\ 1\ \mbox{for }y=0,\\ \frac{\Gamma(x+1)}{\Gamma(x+1-y)}\ \mbox{for }x,x-y\notin\mathbb{N}^{-1},\\ 0\ \mbox{for }x\notin\mathbb{N}^{-1}\mbox{ and }x-y\in\mathbb{N}^{-1},\end{array}\right.

and the rising function defined by

(1.1) xy¯=(x+y1)y¯.x^{\overline{y}}=(x+y-1)^{\underline{y}}.

Then, letting a={a,a+1,}\mathbb{N}_{a}=\{a,a+1,\ldots\} with aa\in\mathbb{R} and f:af:\mathbb{N}_{a}\to\mathbb{R} being a function, the delta Riemann–Liouville fractional sum of ff of order ν>0\nu>0 is defined by

Δaνf(t)=s=atν(t(s+1))ν1¯Γ(ν)f(s) for ta+ν1,\Delta_{a}^{-\nu}f(t)=\sum_{s=a}^{t-\nu}\frac{(t-(s+1))^{\underline{\nu-1}}}{\Gamma(\nu)}f(s)\mbox{ for }t\in\mathbb{N}_{a+\nu-1},

while the nabla Riemann–Liouville fractional sum of ff of order ν>0\nu>0 is defined by

aνf(t)=s=a+1t(t(s1))ν1¯Γ(ν)f(s) for ta.\nabla_{a}^{-\nu}f(t)=\sum_{s=a+1}^{t}\frac{(t-(s-1))^{\overline{\nu-1}}}{\Gamma(\nu)}f(s)\mbox{ for }t\in\mathbb{N}_{a}.

One can observe that the above sums are of the type

k(ts±1)f(s),\sum k(t-s\pm 1)f(s),

for a certain kernel function kk. Now, if we consider the delta difference operator Δf(t)=f(t+1)f(t)\Delta f(t)=f(t+1)-f(t) and the nabla difference operator f(t)=f(t)f(t1)\nabla f(t)=f(t)-f(t-1), then the delta and nabla Riemann–Liouville fractional differences of ff of order 0<α10<\alpha\leq 1 are defined by,

Δaαf(t)=Δ[Δa(1α)f](t),ta+1α,\Delta_{a}^{\alpha}f(t)=\Delta[\Delta_{a}^{-(1-\alpha)}f](t),\ t\in\mathbb{N}_{a+1-\alpha},

and

aαf(t)=[a(1α)f](t),ta+1,\nabla_{a}^{\alpha}f(t)=\nabla[\nabla_{a}^{-(1-\alpha)}f](t),\ t\in\mathbb{N}_{a+1},

respectively.

In this work we aim to construct a summation and a difference operator generalizing the above ones and satisfying the fundamental theorem of calculus (we are particularly inspired by the work of Kochubei [11] in which such kind of operators were defined for (continuous) integrals and derivatives). Hopefully, these very general operators will be useful for researchers acting within the discrete calculus theory.

2. Main results

Let us start by recalling the discrete convolution of two functions f,g:af,g:\mathbb{N}_{a}\to\mathbb{R}, with aa\in\mathbb{R}: it is denoted by (fg)a(f*g)_{a} and defined by

(fg)a(t)=τ=at1f(tτ1+a)g(τ),ta.(f*g)_{a}(t)=\sum_{\tau=a}^{t-1}f(t-\tau-1+a)g(\tau),\quad t\in\mathbb{N}_{a}.

Here and throughout this text we assume that empty sums are equal to zero. Therefore, (fg)a(a)=0(f*g)_{a}(a)=0 for all functions ff and gg. It is known that the convolution is commutative and associative (cf. [3, Theorem 5.4]).

Let us introduce the following set of pair-of-functions: For aa\in\mathbb{R}, put

𝒞a={p,q:a:(pq)a(t)=1for all ta+1}.\mathcal{C}_{a}=\{p,q:\mathbb{N}_{a}\to\mathbb{R}:(p*q)_{a}(t)=1\ \mbox{for all }t\in\mathbb{N}_{a+1}\}.

Before we proceed, we state here the fractional power rule, whose proof may be found in [7].

Lemma 2.1.

Let aa\in\mathbb{R}. Assume μ1\mu\notin\mathbb{N}^{-1} and ν>0\nu>0. If μ+ν1\mu+\nu\notin\mathbb{N}^{-1}, then

(2.1) Δa+μν[(sa)μ¯](t)=Γ(μ+1)Γ(μ+ν+1)(ta)μ+ν¯, for ta+μ+ν.\Delta_{a+\mu}^{-\nu}[(s-a)^{\underline{\mu}}](t)=\frac{\Gamma(\mu+1)}{\Gamma(\mu+\nu+1)}(t-a)^{\underline{\mu+\nu}},\mbox{ for }t\in\mathbb{N}_{a+\mu+\nu}.
Example 2.2.

Let aa\in\mathbb{R} and α+\1\alpha\in\mathbb{R}^{+}\backslash\mathbb{N}_{1}. Define the functions

p(t)=(ta)α1¯Γ(α) and q(t)=(ta+12α)α¯Γ(1α),ta+α1.p(t)=\frac{(t-a)^{\underline{\alpha-1}}}{\Gamma(\alpha)}\mbox{ and }q(t)=\frac{(t-a+1-2\alpha)^{\underline{-\alpha}}}{\Gamma(1-\alpha)},\quad t\in\mathbb{N}_{a+\alpha-1}.

Then, for all ta+αt\in\mathbb{N}_{a+\alpha}, we have

(pq)a+α1(t)\displaystyle(p*q)_{a+\alpha-1}(t) =τ=a+α1t1(tτ1+α1)α1¯Γ(α)(τa+12α)α¯Γ(1α)\displaystyle=\sum_{\tau=a+\alpha-1}^{t-1}\frac{(t-\tau-1+\alpha-1)^{\underline{\alpha-1}}}{\Gamma(\alpha)}\frac{(\tau-a+1-2\alpha)^{\underline{-\alpha}}}{\Gamma(1-\alpha)}
=τ=atα(t(τ+1))α1¯Γ(α)(τ(a+α))α¯Γ(1α)\displaystyle=\sum_{\tau=a}^{t-\alpha}\frac{(t-(\tau+1))^{\underline{\alpha-1}}}{\Gamma(\alpha)}\frac{(\tau-(a+\alpha))^{\underline{-\alpha}}}{\Gamma(1-\alpha)}
=Δaα[(τ(a+α))α¯](t)Γ(1α)\displaystyle=\frac{\Delta_{a}^{-\alpha}[(\tau-(a+\alpha))^{\underline{-\alpha}}](t)}{\Gamma(1-\alpha)}
=1,\displaystyle=1,

where we used (2.1) to obtain the last equality. Hence, the pair (p,q)𝒞a+α1(p,q)\in\mathcal{C}_{a+\alpha-1}.

Analogously, if we define the functions

p^(t)=(ta+1)α1¯Γ(α) and q^(t)=(ta+1)α¯Γ(1α),\hat{p}(t)=\frac{(t-a+1)^{\overline{\alpha-1}}}{\Gamma(\alpha)}\mbox{ and }\hat{q}(t)=\frac{(t-a+1)^{\overline{-\alpha}}}{\Gamma(1-\alpha)},

then we may show, upon using (1.1) and Lemma 2.1, that (p^,q^)𝒞a(\hat{p},\hat{q})\in\mathcal{C}_{a}. Indeed,

(p^q^)a(t)\displaystyle(\hat{p}*\hat{q})_{a}(t) =τ=at1(tτ)α1¯Γ(α)(τa+1)α¯Γ(1α)\displaystyle=\sum_{\tau=a}^{t-1}\frac{(t-\tau)^{\overline{\alpha-1}}}{\Gamma(\alpha)}\frac{(\tau-a+1)^{\overline{-\alpha}}}{\Gamma(1-\alpha)}
=τ=at1(t+α1(τ+1))α1¯Γ(α)(τ(a+α))α¯Γ(1α)\displaystyle=\sum_{\tau=a}^{t-1}\frac{(t+\alpha-1-(\tau+1))^{\underline{\alpha-1}}}{\Gamma(\alpha)}\frac{(\tau-(a+\alpha))^{\underline{-\alpha}}}{\Gamma(1-\alpha)}
=Δaα[(τ(a+α))α¯](t+α1)Γ(1α)\displaystyle=\frac{\Delta_{a}^{-\alpha}[(\tau-(a+\alpha))^{\underline{-\alpha}}](t+\alpha-1)}{\Gamma(1-\alpha)}
=1,\displaystyle=1,
Remark 2.3.

A somewhat more elaborate example of a pair of functions belonging to 𝒞0\mathcal{C}_{0} may be found in [9, Example 9].

Definition 2.4.

Let p,q:Dp,q:D\subset\mathbb{R}\to\mathbb{R} be two functions. We define the generalized fractional sum (GFS) of f:af:\mathbb{N}_{a}\to\mathbb{R} by

𝒮{(p);a}f(t)=τ=at1p(tτ1+a)f(τ),ta.\mathcal{S}_{\{(p);a\}}f(t)=\sum_{\tau=a}^{t-1}p(t-\tau-1+a)f(\tau),\quad t\in\mathbb{N}_{a}.

Moreover, the generalized fractional difference of Riemann–Liouville type is defined by

RL𝒟{(q);a}f(t)=Δτ=at1q(tτ1+a)f(τ),ta+1,{}^{RL}\mathcal{D}_{\{(q);a\}}f(t)=\Delta\sum_{\tau=a}^{t-1}q(t-\tau-1+a)f(\tau),\quad t\in\mathbb{N}_{a+1},

while the generalized fractional difference of Caputo type is defined by

C𝒟{(q);a}f(t)=τ=at1q(tτ1+a)Δf(τ),ta+1.{}^{C}\mathcal{D}_{\{(q);a\}}f(t)=\sum_{\tau=a}^{t-1}q(t-\tau-1+a)\Delta f(\tau),\quad t\in\mathbb{N}_{a+1}.

The previous definition includes the delta and nabla operators mentioned in Section 1. Indeed, first consider a function f:af:\mathbb{N}_{a}\to\mathbb{R}. Then,

  • Consider p(t)=(ta)α1¯Γ(α)p(t)=\frac{(t-a)^{\underline{\alpha-1}}}{\Gamma(\alpha)}, for ta+α1t\in\mathbb{N}_{a+\alpha-1}. Then, for ta+α1t\in\mathbb{N}_{a+\alpha-1}, we have

    𝒮{(p);a+α1}[f(τ+1α)](t)\displaystyle\mathcal{S}_{\{(p);a+\alpha-1\}}[f(\tau+1-\alpha)](t) =τ=a+α1t1(t(τ+1)+α1)α1¯Γ(α)f(τ+1α)\displaystyle=\sum_{\tau=a+\alpha-1}^{t-1}\frac{(t-(\tau+1)+\alpha-1)^{\underline{\alpha-1}}}{\Gamma(\alpha)}f(\tau+1-\alpha)
    =τ=atα(t(τ+1))α1¯Γ(α)f(τ)\displaystyle=\sum_{\tau=a}^{t-\alpha}\frac{(t-(\tau+1))^{\underline{\alpha-1}}}{\Gamma(\alpha)}f(\tau)
    =Δaαf(t).\displaystyle=\Delta_{a}^{-\alpha}f(t).
  • Consider q(t)=(ta)α¯Γ(1α)q(t)=\frac{(t-a)^{\underline{-\alpha}}}{\Gamma(1-\alpha)}, for taαt\in\mathbb{N}_{a-\alpha}. Then, for ta+1αt\in\mathbb{N}_{a+1-\alpha}, we have

    RL𝒟{(q);a+α1}[f(τ+α)](t){}^{RL}\mathcal{D}_{\{(q);a+\alpha-1\}}[f(\tau+\alpha)](t) =Δτ=aαt1(t(τ+1)α)α¯Γ(1α)f(τ+α)\displaystyle=\Delta\sum_{\tau=a-\alpha}^{t-1}\frac{(t-(\tau+1)-\alpha)^{\underline{-\alpha}}}{\Gamma(1-\alpha)}f(\tau+\alpha)
    =Δτ=at+α1(t(τ+1))α¯Γ(1α)f(τ)\displaystyle=\Delta\sum_{\tau=a}^{t+\alpha-1}\frac{(t-(\tau+1))^{\underline{-\alpha}}}{\Gamma(1-\alpha)}f(\tau)
    =Δaαf(t).\displaystyle=\Delta_{a}^{\alpha}f(t).

Now, consider a function f:a+1f:\mathbb{N}_{a+1}\to\mathbb{R}. Then,

  • Consider p^(t)=(ta+1)α1¯Γ(α)\hat{p}(t)=\frac{(t-a+1)^{\overline{\alpha-1}}}{\Gamma(\alpha)}, for tat\in\mathbb{N}_{a}. Then, for tat\in\mathbb{N}_{a}, we have

    𝒮{(p^);a}[f(τ+1)](t)\displaystyle\mathcal{S}_{\{(\hat{p});a\}}[f(\tau+1)](t) =τ=at1(tτ)α1¯Γ(α)f(τ+1)\displaystyle=\sum_{\tau=a}^{t-1}\frac{(t-\tau)^{\overline{\alpha-1}}}{\Gamma(\alpha)}f(\tau+1)
    =τ=a+1t(t(τ1))α1¯Γ(α)f(τ)\displaystyle=\sum_{\tau=a+1}^{t}\frac{(t-(\tau-1))^{\overline{\alpha-1}}}{\Gamma(\alpha)}f(\tau)
    =aαf(t).\displaystyle=\nabla_{a}^{-\alpha}f(t).
  • Consider q^(t)=(ta+1)α¯Γ(1α)\hat{q}(t)=\frac{(t-a+1)^{\overline{-\alpha}}}{\Gamma(1-\alpha)}, for tat\in\mathbb{N}_{a}. Then, for ta+1t\in\mathbb{N}_{a+1}, we have

    RL𝒟{(q^);a+1}[f](t){}^{RL}\mathcal{D}_{\{(\hat{q});a+1\}}[f](t) =Δτ=a+1t1(tτ)α¯Γ(1α)f(τ)\displaystyle=\Delta\sum_{\tau=a+1}^{t-1}\frac{(t-\tau)^{\overline{-\alpha}}}{\Gamma(1-\alpha)}f(\tau)
    =τ=a+1t(t+1τ)α¯Γ(1α)f(τ)τ=a+1t1(tτ)α¯Γ(1α)f(τ)\displaystyle=\sum_{\tau=a+1}^{t}\frac{(t+1-\tau)^{\overline{-\alpha}}}{\Gamma(1-\alpha)}f(\tau)-\sum_{\tau=a+1}^{t-1}\frac{(t-\tau)^{\overline{-\alpha}}}{\Gamma(1-\alpha)}f(\tau)
    =aαf(t).\displaystyle=\nabla_{a}^{\alpha}f(t).

To prove our main result we need the following (cf. [8, Theorem 1.67]):

Proposition 2.5 (Leibniz rule).

Assume f:a+1×af:\mathbb{N}_{a+1}\times\mathbb{N}_{a}\to\mathbb{R}. Then,

Δts=at1f(t,s)=s=at1Δtf(t,s)+f(t+1,t),ta.\Delta_{t}\sum_{s=a}^{t-1}f(t,s)=\sum_{s=a}^{t-1}\Delta_{t}f(t,s)+f(t+1,t),\quad t\in\mathbb{N}_{a}.

It follows the fundamental theorem of calculus for these generalized discrete operators.

Theorem 2.6.

Let aa\in\mathbb{R} and suppose that (p,q)𝒞a(p,q)\in\mathcal{C}_{a}. Then,

(2.2) RL𝒟{(q);a}𝒮{(p);a}f(t)=C𝒟{(q);a}𝒮{(p);a}f(t)=f(t),ta+1.^{RL}\mathcal{D}_{\{(q);a\}}\mathcal{S}_{\{(p);a\}}f(t)={{}^{C}\mathcal{D}}_{\{(q);a\}}\mathcal{S}_{\{(p);a\}}f(t)=f(t),\quad t\in\mathbb{N}_{a+1}.

Moreover,

(2.3) 𝒮{(p);a}RL𝒟{(q);a}f(t)=f(t),ta\mathcal{S}_{\{(p);a\}}{{}^{RL}\mathcal{D}}_{\{(q);a\}}f(t)=f(t),\quad t\in\mathbb{N}_{a}

and

(2.4) 𝒮{(p);a}C𝒟{(q);a}f(t)=f(t)f(a),ta.\mathcal{S}_{\{(p);a\}}{{}^{C}\mathcal{D}}_{\{(q);a\}}f(t)=f(t)-f(a),\quad t\in\mathbb{N}_{a}.
Proof.

Since (p,q)𝒞a(p,q)\in\mathcal{C}_{a} we know that

(pq)a(t)=1for all ta+1.(p*q)_{a}(t)=1\ \mbox{for all }t\in\mathbb{N}_{a+1}.

It follows that,

RL𝒟{(q);a}𝒮{(p);a}f(t)=Δ(p(qf)a)a(t)=Δ((pq)a=1f)a(t)=f(t),ta+1.{}^{RL}\mathcal{D}_{\{(q);a\}}\mathcal{S}_{\{(p);a\}}f(t)=\Delta(p*(q*f)_{a})_{a}(t)=\Delta(\underbrace{(p*q)_{a}}_{=1}*f)_{a}(t)=f(t),\ t\in\mathbb{N}_{a+1}.

Now, by the Leibniz rule, we have that

RL𝒟{(q);a}f(t)=(qΔf)a(t)+f(a)q(t)=C𝒟{(q);a}f(t)+f(a)q(t).{}^{RL}\mathcal{D}_{\{(q);a\}}f(t)=(q*\Delta f)_{a}(t)+f(a)q(t)={{}^{C}\mathcal{D}}_{\{(q);a\}}f(t)+f(a)q(t).

Since 𝒮{(p);a}f(a)=0\mathcal{S}_{\{(p);a\}}f(a)=0, we immediately conclude that C𝒟{(q);a}𝒮{(p);a}f(t)=f(t){{}^{C}\mathcal{D}}_{\{(q);a\}}\mathcal{S}_{\{(p);a\}}f(t)=f(t) and, consequently, (2.2) is proved.

To prove (2.3), we observe that

𝒮{(p);a}RL𝒟{(q);a}f(t)\displaystyle\mathcal{S}_{\{(p);a\}}{{}^{RL}\mathcal{D}}_{\{(q);a\}}f(t) =𝒮{(p);a}[(qΔf)a(t)+f(a)q(t)]\displaystyle=\mathcal{S}_{\{(p);a\}}[(q*\Delta f)_{a}(t)+f(a)q(t)]
=(1Δf)a+f(a)(pq)a=f(t).\displaystyle=(1*\Delta f)_{a}+f(a)(p*q)_{a}=f(t).

Finally, (2.4) follows from

𝒮{(p);a}C𝒟{(q);a}f(t)\displaystyle\mathcal{S}_{\{(p);a\}}{{}^{C}\mathcal{D}}_{\{(q);a\}}f(t) =𝒮{(p);a}[RL𝒟{(q);a}ff(a)q]\displaystyle=\mathcal{S}_{\{(p);a\}}[^{RL}\mathcal{D}_{\{(q);a\}}f-f(a)q]
=f(t)f(a)(pq)a=f(t)f(a).\displaystyle=f(t)-f(a)(p*q)_{a}=f(t)-f(a).

The proof is done. ∎

References

  • [1] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc. 2013, Art. ID 406910, 12 pp.
  • [2] F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus. Int. J. Difference Equ. 2 (2007), no. 2, 165–176.
  • [3] M. Bohner and G. Sh. Guseinov, The convolution on time scales, Abstr. Appl. Anal. 2007, Art. ID 58373, 24 pp.
  • [4] J. Čermák, I. Győri and L. Nechvátal, On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal. 18 (2015), no. 3, 651–672.
  • [5] R. A. C. Ferreira, A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1605–1612.
  • [6] R. A. C. Ferreira, Discrete weighted fractional calculus and applications, Nonlinear Dynamics (2021), DOI 10.1007/s11071-021-06410-6.
  • [7] R. A. C. Ferreira, Discrete fractional calculus and the Saalschutz theorem, arXiv:2008.11605v1.
  • [8] C. Goodrich and A. C. Peterson, Discrete fractional calculus, Springer, Cham, 2015.
  • [9] C. Goodrich and C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst. 40 (2020), no. 8, 4961–4983.
  • [10] H. L. Gray and N. F. Zhang, On a new definition of the fractional difference, Math. Comp. 50 (1988), no. 182, 513–529.
  • [11] A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations Operator Theory 71 (2011), no. 4, 583–600.
  • [12] K. S. Miller and B. Ross, Fractional difference calculus, in Univalent functions, fractional calculus, and their applications (Koriyama, 1988), 139–152, Ellis Horwood Ser. Math. Appl, Horwood, Chichester.