This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalizations of Jacobsthal Sums and hypergeometric series over finite fields

Pramod Kumar Kewat and Ram Kumar Department of Applied Mathematics
Indian Institute of Technology (ISM), Dhanbad-826004
Jharkhand, India
[email protected], [email protected]
Abstract.

For non-negative integers l1,l2,,lnl_{1},l_{2},\ldots,l_{n}, we define character sums φ(l1,l2,,ln)\varphi_{(l_{1},l_{2},\ldots,l_{n})} and ψ(l1,l2,,ln)\psi_{(l_{1},l_{2},\ldots,l_{n})} over a finite field which are generalizations of Jacobsthal and modified Jacobsthal sums, respectively. We express these character sums in terms of Greene’s finite field hypergeometric series. We then express the number of points on the hyperelliptic curves y2=(xm+a)(xm+b)(xm+c)y^{2}=(x^{m}+a)(x^{m}+b)(x^{m}+c) and y2=x(xm+a)(xm+b)(xm+c)y^{2}=x(x^{m}+a)(x^{m}+b)(x^{m}+c) over a finite field in terms of the character sums φ(l1,l2,l3)\varphi_{(l_{1},l_{2},l_{3})} and ψ(l1,l2,l3)\psi_{(l_{1},l_{2},l_{3})}, and finally obtain expressions in terms of the finite field hypergeometric series.

Key words and phrases:
Character sum; Jacobsthal Sum; Hyperelliptic curves; Hypergeometric series over finite fields
1991 Mathematics Subject Classification:
11G20, 11T24

1. Introduction And Statement of Results

Let pp be an odd prime, and let 𝔽q\mathbb{F}_{q} denote the finite field with qq elements, where q=pe,e1q=p^{e},e\geq 1. Let 𝔽q×^\widehat{\mathbb{F}_{q}^{\times}} denote the group of multiplicative characters χ\chi on 𝔽q×\mathbb{F}_{q}^{\times}. It is well known that 𝔽q×^\widehat{\mathbb{F}_{q}^{\times}} is a cyclic group of order q1q-1. One extends the domain of each character χ𝔽q×^\chi\in\widehat{\mathbb{F}_{q}^{\times}} to all of 𝔽q\mathbb{F}_{q} by setting χ(0):=0\chi(0):=0 including the trivial character ε\varepsilon. We denote by χ¯\overline{\chi} the character inverse of χ\chi. Throughout the paper, the notation φ\varphi and ε\varepsilon are reserved for quadratic and trivial characters of 𝔽q\mathbb{F}_{q}, respectively. Also, TT denotes a fixed generator of 𝔽q×^\widehat{\mathbb{F}_{q}^{\times}}. For two characters AA and BB on 𝔽q\mathbb{F}_{q}, the binomial coefficient (AB){A\choose B} is defined by

(AB):=B(1)qJ(A,B¯)=B(1)qx𝔽qA(x)B¯(1x),\displaystyle{A\choose B}:=\frac{B(-1)}{q}J(A,\overline{B})=\frac{B(-1)}{q}\sum_{x\in\mathbb{F}_{q}}A(x)\overline{B}(1-x),

where J(A,B)J(A,B) denotes the usual Jacobi sum. Considering the integral representation for the classical hypergeometric series, Greene [6] defined a finite field analogue of the classical hypergeometric series as follows. Let A,B,CA,B,C be multiplicative characters on 𝔽q\mathbb{F}_{q}. Greene’s F12{}_{2}F_{1}-finite field hypergeometric series is defined as

F12(A,BCx)=ε(x)BC(1)qy𝔽qB(y)B¯C(1y)A¯(1xy).\displaystyle{{}_{2}}F_{1}\left(\begin{array}[]{cc}A,&B\\ &C\end{array}\mid x\right)=\varepsilon(x)\frac{BC(-1)}{q}\sum_{y\in\mathbb{F}_{q}}B(y)\overline{B}C(1-y)\overline{A}(1-xy). (1.3)

Greene [6, Theorem 3.6] expressed the above F12{{}_{2}}F_{1}-finite field hypergeometric series in terms of binomial coefficients as given below.

F12(A,BCx)=qq1χ𝔽q×^(Aχχ)(BχCχ)χ(x).\displaystyle{{}_{2}}F_{1}\left(\begin{array}[]{cc}A,&B\\ &C\end{array}\mid x\right)=\frac{q}{q-1}\sum_{\chi\in\widehat{\mathbb{F}_{q}^{\times}}}{A\chi\choose\chi}{B\chi\choose C\chi}\chi(x). (1.6)

In general, for positive integer nn, Greene [6] defined the Fnn+1{{}_{n+1}}F_{n}- finite field hypergeometric series by

Fnn+1(A0,A1,,AnB1,,Bnx)=qq1χ𝔽q×^(A0χχ)(A1χB1χ)(AnχBnχ)χ(x),\displaystyle{{}_{n+1}}F_{n}\left(\begin{array}[]{cccc}A_{0},&A_{1},&\ldots,&A_{n}\\ &B_{1},&\ldots,&B_{n}\end{array}\mid x\right)=\frac{q}{q-1}\sum_{\chi\in\widehat{\mathbb{F}_{q}^{\times}}}{A_{0}\chi\choose\chi}{A_{1}\chi\choose B_{1}\chi}\cdots{A_{n}\chi\choose B_{n}\chi}\chi(x), (1.9)

where A0,A1,,AnA_{0},A_{1},\ldots,A_{n} and B1,B2,,BnB_{1},B_{2},\ldots,B_{n} are multiplicative characters on 𝔽q\mathbb{F}_{q}.

Finite field hypergeometric series were developed mainly to simplify character sum evaluations. In [8], Ono evaluated certain character sums and expressed those sums in terms of finite field hypergeometric series. Williams [10] evaluated the character sum for certain quadratic polynomials. Recently, Lin and Tu found identities between the twisted Kloosterman sums and the finite field hypergeometric series [7]. Recently Many mathematicians evaluated the number of 𝔽q\mathbb{F}_{q}-points of certain algebraic varieties with the help of hypergeometric function over finite fields. (for more detail see [1, 2, 3].

Let nn be a positive integer and φ\varphi the quadratic character on 𝔽q\mathbb{F}_{q}. If a𝔽q×a\in\mathbb{F}^{\times}_{q}, then the Jacobsthal sum φn(a)\varphi_{n}(a) is defined by

φn(a):=x𝔽qφ(x)φ(xn+a)\varphi_{n}(a):=\sum_{x\in\mathbb{F}_{q}}\varphi(x)\varphi(x^{n}+a) (1.10)

and the modified Jacobsthal sum ψn(a)\psi_{n}(a) is defined by

ψn(a):=x𝔽qφ(xn+a).\psi_{n}(a):=\sum_{x\in\mathbb{F}_{q}}\varphi(x^{n}+a). (1.11)

In [4], some of these character sums are evaluated for small values of nn. Let m,nm,n be positive integers. For a,b𝔽q×a,b\in\mathbb{F}_{q}^{\times}, Sadek [9] defined the character sums φm,n(a,b)\varphi_{m,n}(a,b) and ψm,n(a,b)\psi_{m,n}(a,b) as generalizations of the Jacobsthal and the modified Jacobsthal sums respectively. He defined these character sums as follows:

φ(m,n)(a,b)\displaystyle\varphi_{(m,n)}(a,b) :=x𝔽qφ(x)φ(xm+a)φ(xn+b),\displaystyle:=\sum_{x\in\mathbb{F}_{q}}\varphi(x)\varphi(x^{m}+a)\varphi(x^{n}+b), (1.12)
ψ(m,n)(a,b)\displaystyle\psi_{(m,n)}(a,b) :=x𝔽qφ(xm+a)φ(xn+b).\displaystyle:=\sum_{x\in\mathbb{F}_{q}}\varphi(x^{m}+a)\varphi(x^{n}+b). (1.13)

He studied basic properties of these character sums, and evaluated them when mm and nn are small powers of 22. Also, he used these sums to find the number of 𝔽q\mathbb{F}_{q}- rational points on the hyperelliptic curves y2=(xm+a)(xm+b)y^{2}=(x^{m}+a)(x^{m}+b) and y2=x(xm+a)(xm+b)y^{2}=x(x^{m}+a)(x^{m}+b).

In this article, we further generalize these character sums. Let l1,l2,,lnl_{1},l_{2},\ldots,l_{n} be non-negative integers. For a1,a2,,an𝔽q×a_{1},a_{2},\ldots,a_{n}\in\mathbb{F}_{q}^{\times}, we define

φ(l1,l2,,ln)(a1,a2,,an)=x𝔽qφ(x)φ(xl1+a1)φ(xl2+a2)φ(xln+an)\varphi_{(l_{1},l_{2},\ldots,l_{n})}(a_{1},a_{2},\ldots,a_{n})=\sum_{x\in\mathbb{F}_{q}}\varphi(x)\varphi(x^{l_{1}}+a_{1})\varphi(x^{l_{2}}+a_{2})\cdots\varphi(x^{l_{n}}+a_{n}) (1.14)

and

ψ(l1,l2,,ln)(a1,a2,,an)=x𝔽qφ(xl1+a1)φ(xl2+a2)φ(xln+an).\psi_{(l_{1},l_{2},\ldots,l_{n})}(a_{1},a_{2},\ldots,a_{n})=\sum_{x\in\mathbb{F}_{q}}\varphi(x^{l_{1}}+a_{1})\varphi(x^{l_{2}}+a_{2})\cdots\varphi(x^{l_{n}}+a_{n}). (1.15)

We study some basic properties of φ(l1,l2,,ln)(a1,a2,,an)\varphi_{(l_{1},l_{2},\ldots,l_{n})}(a_{1},a_{2},\ldots,a_{n}) and ψ(l1,l2,,ln)(a1,a2,,an)\psi_{(l_{1},l_{2},\ldots,l_{n})}(a_{1},a_{2},\ldots,a_{n}), and obtain some special values of these character sums for n=3n=3. We express them in terms of Greene’s finite field hypergeometric series for certain values of l1,l2,l3l_{1},l_{2},l_{3}. We also express the number of 𝔽q\mathbb{F}_{q}-rational points on hyperelliptic curves in terms of these character sums. More precisely, for a,b,c𝔽q×a,b,c\in\mathbb{F}^{\times}_{q} with all distinct, we consider the hyperelliptic curves

Em:\displaystyle E_{m}: y2=(xm+a)(xm+b)(xm+c),\displaystyle y^{2}=(x^{m}+a)(x^{m}+b)(x^{m}+c), (1.16)
Em:\displaystyle E^{\prime}_{m}: y2=x(xm+a)(xm+b)(xm+c).\displaystyle y^{2}=x(x^{m}+a)(x^{m}+b)(x^{m}+c). (1.17)

From [3], we recall that for an hyperelliptic curve C:y2=f(x)C:y^{2}=f(x) defined over a finite field 𝔽q\mathbb{F}_{q}, the number of points on CC including the points at infinity is given by

#C(𝔽q)\displaystyle\#C(\mathbb{F}_{q}) =r+#{(x,y)𝔽q2:y2=f(x)}\displaystyle=r+\#\{(x,y)\in\mathbb{F}_{q}^{2}:y^{2}=f(x)\}
=r+x𝔽q[1+φ(f(x))]\displaystyle=r+\sum_{x\in\mathbb{F}_{q}}[1+\varphi(f(x))]
=r+q+x𝔽qφ(f(x)),\displaystyle=r+q+\sum_{x\in\mathbb{F}_{q}}\varphi(f(x)), (1.18)

where r=1r=1 if degf(x)\text{deg}~{}f(x) is odd; and r=2r=2 if degf(x)\text{deg}~{}f(x) is even. Here, rr is the number of 𝔽q\mathbb{F}_{q}-rational points at infinity.

In the following theorem, we express the number of 𝔽q\mathbb{F}_{q}-rational points on the hyperelliptic curves EmE_{m} and EmE^{\prime}_{m} in terms of the Greene’s finite field hypergeometric series with the help of the character sums ψ(l,m,n)(a,b,c)\psi_{(l,m,n)}(a,b,c) and φ(l,m,n)(a,b,c)\varphi_{(l,m,n)}(a,b,c).

Theorem 1.1.

Let 𝔽q\mathbb{F}_{q} be a finite field with q1(mod2m)q\equiv 1\pmod{2m}. If χ2m\chi_{2m} is a multiplicative character of order 2m2m on 𝔽q\mathbb{F}_{q}, then we have

#Em(𝔽q)\displaystyle\#E_{m}(\mathbb{F}_{q}) =r+q+q2φ(abc)q1k=0m1χ(φχ)χ¯(a)χχmk(b)F12(φ,χχmkχχ2mm+2k|bc),\displaystyle=r+q+\frac{q^{2}\varphi(-abc)}{q-1}\sum_{k=0}^{m-1}\sum_{\chi}{\varphi\choose\chi}\overline{\chi}(a)\chi\chi^{k}_{m}(-b)~{}{{}_{2}}F_{1}\left(\begin{array}[]{cc}\varphi,&\chi\chi^{k}_{m}\\ &\chi\chi^{m+2k}_{2m}\end{array}|\frac{b}{c}\right),
#Em(𝔽q)\displaystyle\#E^{\prime}_{m}(\mathbb{F}_{q}) =r+q+q2φ(abc)q1k=0m1χ2m2k+1(b)χ(φχ)χ(ba)F12(φ,χχ2m2k+1χχ2mm+2k+1|bc),\displaystyle=r+q+\frac{q^{2}\varphi(-abc)}{q-1}\sum_{k=0}^{m-1}\chi^{2k+1}_{2m}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right){{}_{2}}F_{1}\left(\begin{array}[]{cc}\varphi,&\chi\chi^{2k+1}_{2m}\\ &\chi\chi^{m+2k+1}_{2m}\end{array}|\frac{b}{c}\right),

where r=1r=1 if mm is odd and r=2r=2 if mm is even.

Let χ1,,χk\chi_{1},\ldots,\chi_{k} be multiplicative characters on 𝔽q\mathbb{F}_{q}. For a given a𝔽qa\in\mathbb{F}_{q}, the character sum JaJ_{a} is defined by

Ja(χ1,,χk)=c1++ck=aχ1(c1)χk(ck),J_{a}(\chi_{1},\ldots,\chi_{k})=\sum_{c_{1}+\cdots+c_{k}=a}\chi_{1}(c_{1})\ldots\chi_{k}(c_{k}), (1.19)

where the summation is extended over all kk-tuples (c1,,ck)(c_{1},\ldots,c_{k}) of elements of 𝔽q\mathbb{F}_{q} with c1++ck=ac_{1}+\cdots+c_{k}=a. If we put a=1a=1, then JaJ_{a} is the generalized Jacobi sum (see [5, Chapter 10]). Using the generalizations of Jacobsthal sums, we prove the following result.

Theorem 1.2.

Let q1(modm)q\equiv 1\pmod{m}, where m=2nm=2^{n}. For ai,bi𝔽q×a_{i},b_{i}\in\mathbb{F}^{\times}_{q}, i=1,,ni=1,\ldots,n, put a=a1++ana=a_{1}+\cdots+a_{n} and b=b1++bnb=b_{1}+\cdots+b_{n}. Let ψ,χ1,,χn\psi,\chi_{1},\ldots,\chi_{n} be multiplicative characters on 𝔽q\mathbb{F}_{q} and ψm\psi_{m} be a character of order mm on 𝔽q\mathbb{F}_{q}. Then

x𝔽qψ(axm)χ1(b1a1xm)χn(bnanxm)=k=0m1ψ2k(a)Jb(ψmkψ,χ1,,χn).\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(ax^{m})\chi_{1}(b_{1}-a_{1}x^{m})\cdots\chi_{n}(b_{n}-a_{n}x^{m})=\sum_{k=0}^{m-1}\psi_{2}^{k}(a)J_{b}(\psi_{m}^{k}\psi,\chi_{1},\ldots,\chi_{n}).

Let TT be a generator of the character group 𝔽q×^\widehat{\mathbb{F}^{\times}_{q}}. In the following results, we express the character sums ψ1,1,1(a,b,c)\psi_{1,1,1}(a,b,c), φ(1,1,1)(a,b,c)\varphi_{(1,1,1)}(a,b,c) and ψ2,2,2(a,b,c)\psi_{2,2,2}(a,b,c) in terms of Greene’s F12{}_{2}F_{1} -hypergeometric series.

Theorem 1.3.

Let a,b,c𝔽q×a,b,c\in\mathbb{F}^{\times}_{q} with all distinct and q1(mod6)q\equiv 1\pmod{6}. If h𝔽q×h\in\mathbb{F}_{q}^{\times} satisfies 3h2+2(a+b+c)h+ab+bc+ca=03h^{2}+2(a+b+c)h+ab+bc+ca=0, then

ψ(1,1,1)(a,b,c)=qφ(3d)F12(T(q1)6,T5(q1)6ε|33e22d3),\displaystyle\psi_{(1,1,1)}(a,b,c)=q\varphi(-3d){{}_{2}}F_{1}\left(\begin{array}[]{cc}T^{\frac{(q-1)}{6}},&T^{\frac{5(q-1)}{6}}\\ &\varepsilon\end{array}|-\frac{3^{3}e}{2^{2}d^{3}}\right),

where d=3h+a+b+cd=3h+a+b+c and e=h3+(a+b+c)h2+(ab+bc+ca)h+abce=h^{3}+(a+b+c)h^{2}+(ab+bc+ca)h+abc.

Theorem 1.4.

Let a,b,c𝔽q×a,b,c\in\mathbb{F}^{\times}_{q} with all distinct and q1(mod6)q\equiv 1\pmod{6}. If h𝔽q×h\in\mathbb{F}_{q}^{\times} satisfies 3h2+2(ab+bc+ca)bch+ab+ca+a2bc=03h^{2}+2\frac{(ab+bc+ca)}{bc}h+\frac{ab+ca+a^{2}}{bc}=0, then

φ(1,1,1)(a,b,c)=1+qφ(bc)φ(3f)F12(T(q1)6,T5(q1)6ε|33g22f3),\displaystyle\varphi_{(1,1,1)}(a,b,c)=-1+q\varphi(bc)\varphi(-3f){{}_{2}}F_{1}\left(\begin{array}[]{cc}T^{\frac{(q-1)}{6}},&T^{\frac{5(q-1)}{6}}\\ &\varepsilon\end{array}|-\frac{3^{3}g}{2^{2}f^{3}}\right),

where f=3h+ab+bc+cabcf=3h+\frac{ab+bc+ca}{bc} and g=h3+ab+bc+cabch2+(ab+ca+a2)bch+a2bcg=h^{3}+\frac{ab+bc+ca}{bc}h^{2}+\frac{(ab+ca+a^{2})}{bc}h+\frac{a^{2}}{bc}

Finally, we express the character sum φ(2,2,2)(a,b,c)\varphi_{(2,2,2)}(a,b,c) in terms of sums of Greene’s F12{}_{2}F_{1}-hypergeometric series.

Theorem 1.5.

Let a,b,c,d,e,f𝔽q×a,b,c,d,e,f\in\mathbb{F}^{\times}_{q} be all distinct and q1(mod6)q\equiv 1\pmod{6}. If h𝔽q×h\in\mathbb{F}_{q}^{\times} satisfies 3h2+2(ab+bc+ca)bch+ab+ca+a2bc=03h^{2}+2\frac{(ab+bc+ca)}{bc}h+\frac{ab+ca+a^{2}}{bc}=0 and 3h2+2(a+b+c)h+ab+bc+ca=03h^{2}+2(a+b+c)h+ab+bc+ca=0, then

ψ(2,2,2)(a,b,c)\displaystyle\psi_{(2,2,2)}(a,b,c) =1+qφ(3d)F12(T(q1)6,T5(q1)6ε|33e22d3)\displaystyle=-1+q\varphi(-3d){{}_{2}}F_{1}\left(\begin{array}[]{cc}T^{\frac{(q-1)}{6}},&T^{\frac{5(q-1)}{6}}\\ &\varepsilon\end{array}|-\frac{3^{3}e}{2^{2}d^{3}}\right)
+qφ(bc)φ(3f)F12(T(q1)6,T5(q1)6ε|33g22f3),\displaystyle\hskip 28.45274pt+q\varphi(bc)\varphi(-3f){{}_{2}}F_{1}\left(\begin{array}[]{cc}T^{\frac{(q-1)}{6}},&T^{\frac{5(q-1)}{6}}\\ &\varepsilon\end{array}|-\frac{3^{3}g}{2^{2}f^{3}}\right),

where d=3h+a+b+cd=3h+a+b+c, e=h3+(a+b+c)h2+(ab+bc+ca)h+abce=h^{3}+(a+b+c)h^{2}+(ab+bc+ca)h+abc, f=3h+ab+bc+cabcf=3h+\frac{ab+bc+ca}{bc} and g=h3+ab+bc+cabch2+(ab+ca+a2)bch+a2bcg=h^{3}+\frac{ab+bc+ca}{bc}h^{2}+\frac{(ab+ca+a^{2})}{bc}h+\frac{a^{2}}{bc}.

2. Preliminaries

In this section we recall some results and prove some properties of the character sums ψ(l,m,n)(a,b,c)\psi_{(l,m,n)}(a,b,c) and ϕ(l,m,n)(a,b,c)\phi_{(l,m,n)}(a,b,c) which will be used to prove the main results.

Let δ\delta denote the function on multiplicative characters defined by

δ(A)={1,if A is the trivial character;0,otherwise.\delta(A)=\left\{\begin{array}[]{ll}1,&\hbox{if $A$ is the trivial character;}\\ 0,&\hbox{otherwise.}\end{array}\right.

We also denote by δ\delta the function defined on 𝔽q\mathbb{F}_{q} by

δ(x)={1,if x=0;0,if x0.\delta(x)=\left\{\begin{array}[]{ll}1,&\hbox{if $x=0$;}\\ 0,&\hbox{if $x\neq 0$.}\end{array}\right.
Lemma 2.1.

[6] Let AA be a multiplicative character and a,x𝔽qa,x\in\mathbb{F}_{q}. We have

A(a+x)=δ(x)+qA(a)q1χ𝔽^q(Aχ)χ(xa).A(a+x)=\delta(x)+\frac{qA(a)}{q-1}\sum_{\chi\in\widehat{\mathbb{F}}_{q}}{{A}\choose{\chi}}\chi\left(\frac{x}{a}\right). (2.1)

We recall the following lemma from [9].

Lemma 2.2.

[9] Let ff be a function from 𝔽q\mathbb{F}_{q} to \mathbb{C}. We have

x𝔽qφ(x)f(x)=x𝔽qf(x2)x𝔽qf(x).\sum_{x\in\mathbb{F}_{q}}\varphi(x)f(x)=\sum_{x\in\mathbb{F}_{q}}f(x^{2})-\sum_{x\in\mathbb{F}_{q}}f(x).

In particular, we have ψ(2m,2n)(a,b)=ψ(m,n)(a,b)+φ(m,n)(a,b)\psi_{(2m,2n)}(a,b)=\psi_{(m,n)}(a,b)+\varphi_{(m,n)}(a,b), and ψ(2l,2m,2n)(a,b,c)=ψ(l,m,n)(a,b,c)+φ(l,m,n)(a,b,c)\psi_{(2l,2m,2n)}(a,b,c)=\psi_{(l,m,n)}(a,b,c)+\varphi_{(l,m,n)}(a,b,c).

In the following lemma, we link the character sum to Jacobi sum.

Lemma 2.3.

Let a𝔽q×a\in\mathbb{F}^{\times}_{q}, and ψ,χ\psi,\chi and ρ\rho be characters on 𝔽q\mathbb{F}_{q}. Then

x𝔽qψ(2x2)χ(x2)ρ(1+ax2)=ψ(1)ψχ(a1)J(ψ,χ,ρ)+ψ(1)ψχφ(a1)J(ψ,χφ,ρ),\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(2x^{2})\chi(x^{2})\rho(1+ax^{2})=\psi(-1)\psi\chi(a^{-1})J(\psi,\chi,\rho)+\psi(-1)\psi\chi\varphi(a^{-1})J(\psi,\chi\varphi,\rho),

where J(ψ,χ,ρ)J(\psi,\chi,\rho) is the Jacobi sum.

Proof.

By setting f(x)=ψ(2x)χ(x)ρ(1+ax)f(x)=\psi(2x)\chi(x)\rho(1+ax) in Lemma 2.2, we have

x𝔽qψ(2x2)χ(x2)ρ(1+ax2)=x𝔽qψ(2x)χ(x)ρ(1+ax)+x𝔽qφ(x)ψ(2x)χ(x)ρ(1+ax).\sum_{x\in\mathbb{F}_{q}}\psi(2x^{2})\chi(x^{2})\rho(1+ax^{2})=\sum_{x\in\mathbb{F}_{q}}\psi(2x)\chi(x)\rho(1+ax)+\sum_{x\in\mathbb{F}_{q}}\varphi(x)\psi(2x)\chi(x)\rho(1+ax).

Now using the bijective transformation xa1xx\mapsto-a^{-1}x, we have

x𝔽qψ(2x2)χ(x2)ρ(1+ax2)=\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(2x^{2})\chi(x^{2})\rho(1+ax^{2})= ψ(1)ψχ(a1)x𝔽qψ(2x)χ(x)ρ(1x)\displaystyle\psi(-1)\psi\chi(a^{-1})\sum_{x\in\mathbb{F}_{q}}\psi(2x)\chi(-x)\rho(1-x)
+\displaystyle+ ψ(1)ψχφ(a1)x𝔽qψ(2x)χφ(x)ρ(1x).\displaystyle\psi(-1)\psi\chi\varphi(a^{-1})\sum_{x\in\mathbb{F}_{q}}\psi(2x)\chi\varphi(-x)\rho(1-x).

From the definition of the Jacobi sum, we have the desired result. ∎

Lemma 2.4.

Let ψ,χ,ρ\psi,\chi,\rho be characters on 𝔽q\mathbb{F}_{q} with q1(mod4)q\equiv 1\pmod{4} and χ4\chi_{4} be a character of order 44. Then we have

x𝔽qψ(2x4)χ(x4)ρ(1+ax4)=ψ(1)k=03ψχχ4k(a1)J(ψ,χχ4k,ρ).\sum_{x\in\mathbb{F}_{q}}\psi(2x^{4})\chi(x^{4})\rho(1+ax^{4})=\psi(-1)\sum_{k=0}^{3}\psi\chi\chi^{k}_{4}(a^{-1})J(\psi,\chi\chi^{k}_{4},\rho).
Proof.

Lemma 2.2 yields

x𝔽qψ(2x4)χ(x4)ρ(1+ax4)\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(2x^{4})\chi(x^{4})\rho(1+ax^{4}) =x𝔽qψ(2x2)χ(x2)ρ(1+ax2)+x𝔽qφ(x)ψ(2x2)χ(x2)ρ(1+ax2)\displaystyle=\sum_{x\in\mathbb{F}_{q}}\psi(2x^{2})\chi(x^{2})\rho(1+ax^{2})+\sum_{x\in\mathbb{F}_{q}}\varphi(x)\psi(2x^{2})\chi(x^{2})\rho(1+ax^{2})
=x𝔽qψ(2x2)χ(x2)ρ(1+ax2)+x𝔽qψ(2x2)χ4χ(x2)ρ(1+ax2).\displaystyle=\sum_{x\in\mathbb{F}_{q}}\psi(2x^{2})\chi(x^{2})\rho(1+ax^{2})+\sum_{x\in\mathbb{F}_{q}}\psi(2x^{2})\chi_{4}\chi(x^{2})\rho(1+ax^{2}).

Now using Lemma 2.3, we have

x𝔽qψ(2x4)χ(x4)ρ(1+ax4)=ψ(1)k=03ψχχ4k(a1)J(ψ,χχ4k,ρ).\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(2x^{4})\chi(x^{4})\rho(1+ax^{4})=\psi(-1)\sum_{k=0}^{3}\psi\chi\chi^{k}_{4}(a^{-1})J(\psi,\chi\chi^{k}_{4},\rho).

Now, we prove the next result by using induction.

Lemma 2.5.

Let a𝔽q×a\in\mathbb{F}_{q}^{\times} and m=2nm=2^{n}, where nn\in\mathbb{N} such that q1(modm)q\equiv 1\pmod{m}. Let ψ,χ,ρ\psi,\chi,\rho be characters on 𝔽q\mathbb{F}_{q}, and χm\chi_{m} be a character of order mm on 𝔽q\mathbb{F}_{q}. Then we have

x𝔽qψ(2xm)χ(xm)ρ(1+axm)=ψ(1)k=0m1ψχχmk(a1)J(ψ,χχmk,ρ).\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(2x^{m})\chi(x^{m})\rho(1+ax^{m})=\psi(-1)\sum_{k=0}^{m-1}\psi\chi\chi^{k}_{m}(a^{-1})J(\psi,\chi\chi^{k}_{m},\rho).
Proof.

In view of Lemma 2.3 and Lemma 2.4, we will prove this lemma by induction method. ∎

In the following proposition we prove some basic properties of the character sums
ψ(l1,l2,,ln)(a1,a2,,an)\psi_{(l_{1},\,l_{2},\,\ldots,\,l_{n})}(a_{1},\,a_{2},\,\ldots,a_{n}) and φ(l1,l2,,ln)(a1,a2,,an)\varphi_{(l_{1},\,l_{2},\,\ldots,\,l_{n})}(a_{1},\,a_{2},\,\ldots,\,a_{n}).

Proposition 2.6.

For a1,a2,,an𝔽q×a_{1},a_{2},\ldots,a_{n}\in\mathbb{F}^{\times}_{q}, we have

  1. (1)

    Let l1,l2,,lnl_{1},l_{2},\ldots,l_{n} be non negative integer, then ψ(l1,l2,,ln)(a1,a2,,an)=ψ(l2,l3,,l1)(a2,a3,,a1)==ψ(ln,l1,,l(n1))(an,a1,,an1);φ(l1,l2,,ln)(a1,a2,,an)=ψ(l2,l3,,l1)(a2,a3,,a1)==ψ(ln,l1,,l(n1))(an,a1,,an1).\psi_{(l_{1},\,l_{2},\,\ldots,\,l_{n})}(a_{1},\,a_{2},\ldots,\,a_{n})=\\ \psi_{(l_{2},\,l_{3},\,\ldots,\,l_{1})}(a_{2},\,a_{3},\,\ldots,\,a_{1})=\ldots=\psi_{(l_{n},\,l_{1},\,\ldots,\,l_{(n-1)})}(a_{n},\,a_{1},\,\ldots,\,a_{n-1});\\ \varphi_{(l_{1},\,l_{2},\,\ldots,\,l_{n})}(a_{1},\,a_{2},\,\ldots,\,a_{n})=\psi_{(l_{2},\,l_{3},\,\ldots,\,l_{1})}(a_{2},\,a_{3},\,\ldots,\,a_{1})=\\ \cdots=\psi_{(l_{n},\,l_{1},\,\ldots,\,l_{(n-1)})}(a_{n},\,a_{1},\,\ldots,\,a_{n-1}).\\

  2. (2)

    Let I={i1,i2,,ik}{1,2,,n}I=\{i_{1},i_{2},\ldots,i_{k}\}\subset\{1,2,\ldots,n\}. If lr=0l_{r}=0 for all rIr\in I then ψ(l1,,ln)(a1,,an)=rIφ(1+ar)ψ(l1,,l^i1,,l^ik,ln)(a1,,a^i1,,a^ik,,an);φ(l1,,ln)(a1,,an)=rIφ(1+ar)φ(l1,,l^i1,,l^ik,ln)(a1,,a^i1,,a^ik,,an),\psi_{(l_{1},\ldots,l_{n})}(a_{1},\ldots,a_{n})=\prod_{r\in I}\varphi(1+a_{r})\psi_{(l_{1},\ldots,\hat{l}_{i_{1}},\ldots,\hat{l}_{i_{k}},\ldots l_{n})}(a_{1},\ldots,\hat{a}_{i_{1}},\ldots,\hat{a}_{i_{k}},\ldots,a_{n});\\ \varphi_{(l_{1},\ldots,l_{n})}(a_{1},\ldots,a_{n})=\prod_{r\in I}\varphi(1+a_{r})\varphi_{(l_{1},\ldots,\hat{l}_{i_{1}},\ldots,\hat{l}_{i_{k}},\ldots l_{n})}(a_{1},\ldots,\hat{a}_{i_{1}},\ldots,\hat{a}_{i_{k}},\ldots,a_{n}), where l^ik\hat{l}_{i_{k}} represents the absentia of likl_{i_{k}} in {l1,,li1,,lik,ln}\{l_{1},\ldots,l_{i_{1}},\ldots,l_{i_{k}},\ldots l_{n}\}.

  3. (3)

    ψ(l1,l2,,ln)(a1l1,a2,,an)=φ(al1+l2++ln)ψ(l1,l2,,ln)(1,a2a1l2,ana1ln);φ(l1,l2,,ln)(a1l1,a2,,an)=φ(al1+l2++ln+1)φ(l1,l2,,ln)(1,a2a1l2,ana1ln).\psi_{(l_{1},\,l_{2},\,\ldots,l_{n})}(a^{l_{1}}_{1},\,a_{2},\,\ldots,a_{n})=\varphi(a^{l_{1}+l_{2}+\cdots+l_{n}})\psi_{(l_{1},\,l_{2},\,\ldots,l_{n})}(1,\frac{a_{2}}{a_{1}^{l_{2}}},\ldots\frac{a_{n}}{a_{1}^{l_{n}}});\\ \varphi_{(l_{1},\,l_{2},\,\ldots,l_{n})}(a^{l_{1}}_{1},\,a_{2},\,\ldots,a_{n})=\varphi(a^{l_{1}+l_{2}+\cdots+l_{n}+1})\varphi_{(l_{1},\,l_{2},\,\ldots,l_{n})}(1,\frac{a_{2}}{a_{1}^{l_{2}}},\ldots\frac{a_{n}}{a_{1}^{l_{n}}}).\\

  4. (4)

    If l1=l2==ln=ll_{1}=l_{2}=\cdots=l_{n}=l and a1=a2==an=aa_{1}=a_{2}=\cdots=a_{n}=a, then

    ψ(l,l,,l)(a,a,,a)=φ(l,l,,l)(a,a,,a)={ψl(a),if n is odd;q1,if n is even.\psi_{(l,\,l,\,\ldots,\,l)}(a,\,a,\,\ldots,\,a)=\varphi_{(l,\,l,\,\ldots,\,l)}(a,\,a,\,\ldots,\,a)=\begin{cases}\psi_{l}(a),&\mbox{if n is odd};\\ q-1,&\mbox{if n is even}.\end{cases}
Proof.

We readily obtain (1)(1) and (2)(2) from the definition. For (3)(3), we have the following identity

ψ(l1,l2,,ln)(a1l1,a2,,an)\displaystyle\psi_{(l_{1},l_{2},\ldots,l_{n})}(a_{1}^{l_{1}},a_{2},\ldots,a_{n}) =x𝔽qφ(xl1+a1l1)φ(xl2+a2)φ(xln+an)\displaystyle=\sum_{x\in\mathbb{F}_{q}}\varphi(x^{l_{1}}+a_{1}^{l_{1}})\varphi(x^{l_{2}}+a_{2})\cdots\varphi(x^{l_{n}}+a_{n})
=φ(a1l)x𝔽qφ(xl1a1l1+1)φ(xl2+a2)φ(xln+an).\displaystyle=\varphi(a_{1}^{l})\sum_{x\in\mathbb{F}_{q}}\varphi\left(\frac{x^{l_{1}}}{a_{1}^{l_{1}}}+1\right)\varphi(x^{l_{2}}+a_{2})\cdots\varphi(x^{l_{n}}+a_{n}).

If we replace xx by a1xa_{1}x in the second equality, we have the desired result. The proof of the second part is similar to the proof of first part. Again, we readily obtain (4)(4) from the definition of ψ(l1,l2,,ln)(a1,a2,,an)\psi_{(l_{1},\,l_{2},\,\ldots,\,l_{n})}(a_{1},\,a_{2},\,\ldots,\,a_{n}) and φ(l1,l2,,ln)(a1,a2,,an)\varphi_{(l_{1},\,l_{2},\,\ldots,\,l_{n})}(a_{1},\,a_{2},\,\ldots,\,a_{n}). ∎

We finally recall two theorems from [2]. Let a,b𝔽q×a,b\in\mathbb{F}^{\times}_{q}. In [2], Barman and Kalita expressed the number of 𝔽q\mathbb{F}_{q}-points on the hyperelliptic curve Ed:y2=xd+axd1+bE_{d}:y^{2}=x^{d}+ax^{d-1}+b in terms of Greene’s Fd2d1{}_{d-1}F_{d-2}-hypergeometric series as stated below.

Theorem 2.7.

[2] Let pp be a prime, and qq be a power of pp. If d2d\geq 2 is an even integer and q1(mod2d(d1))q\equiv 1\pmod{2d(d-1)}, then

#{(x,y)𝔽q:y2=xd+axd1+b}\displaystyle\#\{(x,y)\in\mathbb{F}_{q}:y^{2}=x^{d}+ax^{d-1}+b\}
=q+φ(b)+qd2φ(d1)dFd1(φ,ε,χ,χ2,,χd22,χd+22,,χd1φ,ψ,ψ3,,ψd3,ψd+1,,ψ2d3|α),\displaystyle=q+\varphi(b)+q^{\frac{d}{2}}\varphi(d-1)_{d}F_{d-1}\left(\begin{array}[]{ccccc}\varphi,&\varepsilon,&\chi,&\chi^{2},\ldots,\chi^{\frac{d-2}{2}},&\chi^{\frac{d+2}{2}},\ldots,\chi^{d-1}\\ &\varphi,&\psi,&\psi^{3},\ldots,\psi^{d-3},&\psi^{d+1},\ldots,\psi^{2d-3}\end{array}|\alpha\right),

where χ\chi and ψ\psi are characters of order dd and 2(d1)2(d-1), respectively; and α=bddad(d1)d1\alpha=\frac{bd^{d}}{a^{d}(d-1)^{d-1}}.

Theorem 2.8.

[2] Let pp be a prime, and qq be a power of pp. If d3d\geq 3 is an odd integer and q1(mod2d(d1))q\equiv 1\pmod{2d(d-1)}, then

#{(x,y)𝔽q:y2=xd+axd1+b}\displaystyle\#\{(x,y)\in\mathbb{F}_{q}:y^{2}=x^{d}+ax^{d-1}+b\}
=q+qd12φ(ad)d1Fd2(η,η3,η5,,ηd2,ηd+2,,η2d3,η2d1ρ,ρ2,,ρd32,ρd+12,,ρd2,ε|α),\displaystyle=q+q^{\frac{d-1}{2}}\varphi(-ad)_{d-1}F_{d-2}\left(\begin{array}[]{ccccc}\eta,&\eta^{3},&\eta^{5},\ldots,\eta^{d-2},&\eta^{d+2},\ldots,\eta^{2d-3},&\eta^{2d-1}\\ &\rho,&\rho^{2},\ldots,\rho^{\frac{d-3}{2}},&\rho^{\frac{d+1}{2}},\ldots,\rho^{d-2},&\varepsilon\end{array}|-\alpha\right),

where η\eta and ρ\rho are characters of order 2d2d and (d1)(d-1), respectively; and α=bddad(d1)d1\alpha=\frac{bd^{d}}{a^{d}(d-1)^{d-1}}.

3. Proof of the Results

In this section, we will prove Theorem 1.1 and Theorem 1.2. To prove Theorem 1.1, first we prove the following lemma.

Lemma 3.1.

Let mm\in\mathbb{N} and q1(mod2m)q\equiv 1\pmod{2m}. Let χ2m\chi_{2m} be a character of order 2m2m over 𝔽q\mathbb{F}_{q}, then we have

ψ(m,,m)(a1,,ar)=x𝔽qφ(x+a1)φ(x+ar)k=0m1χ2m2k(x)\psi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})=\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{m-1}\chi_{2m}^{2k}(x)

and

φ(m,,m)(a1,,ar)=x𝔽qφ(x+a1)φ(x+ar)k=0m1χ2m2k+1(x).\varphi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})=\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{m-1}\chi_{2m}^{2k+1}(x).
Proof.

Note that χ2m2\chi^{2}_{2m} is a character of order mm. Therefore,

k=0m1(χ2m2)k(x)={1ifx=0mif x is an m-th power in 𝔽q×0otherwise.\displaystyle\sum_{k=0}^{m-1}(\chi^{2}_{2m})^{k}(x)=\begin{cases}1~{}\mbox{if}~{}x=0\\ m~{}\mbox{if $x$ is an $m$-th power in $\mathbb{F}^{\times}_{q}$}\\ 0~{}\mbox{otherwise}.\end{cases} (3.1)

Also χ2m\chi_{2m} is a character of order 2m2m, thus

k=02m1(χ2m)k(x)={1ifx=02mif x is an 2m-th power in 𝔽q×0otherwise.\displaystyle\sum_{k=0}^{2m-1}(\chi_{2m})^{k}(x)=\begin{cases}1~{}\mbox{if}~{}x=0\\ 2m~{}\mbox{if $x$ is an $2m$-th power in $\mathbb{F}^{\times}_{q}$}\\ 0~{}\mbox{otherwise}.\end{cases} (3.2)

Since

ψ(m,,m)(a1,,ar)=x𝔽qφ(xm+a1)φ(xm+ar).\psi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})=\sum_{x\in\mathbb{F}_{q}}\varphi(x^{m}+a_{1})\cdots\varphi(x^{m}+a_{r}).

We use Equation 3.1 to write

ψ(m,,m)(a1,,ar)=x𝔽qφ(x+a1)φ(x+ar)k=0m1χ2m2k(x).\psi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})=\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{m-1}\chi_{2m}^{2k}(x). (3.3)

From Equation 3.2, we obtain

ψ(2m,,2m)(a1,,ar)=x𝔽qφ(x+a1)φ(x+ar)k=02m1χ2mk(x).\psi_{(2m,\ldots,2m)}(a_{1},\ldots,a_{r})=\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{2m-1}\chi_{2m}^{k}(x). (3.4)

Now we recall that

φ(m,,m)(a1,,ar)=ψ(2m,,2m)(a1,,ar)ψ(m,,m)(a1,,ar).\varphi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})=\psi_{(2m,\ldots,2m)}(a_{1},\ldots,a_{r})-\psi_{(m,\ldots,m)}(a_{1},\ldots,a_{r}). (3.5)

Finally, in view of Equations 3.3, 3.4 and 3.5, we conclude that

φ(m,,m)(a1,,ar)=\displaystyle\varphi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})= x𝔽qφ(x+a1)φ(x+ar)k=02m1χ2mk(x)\displaystyle\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{2m-1}\chi_{2m}^{k}(x)
\displaystyle- x𝔽qφ(x+a1)φ(x+ar)k=0m1χ2m2k(x)\displaystyle\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{m-1}\chi_{2m}^{2k}(x)
φ(m,,m)(a1,,ar)=\displaystyle\varphi_{(m,\ldots,m)}(a_{1},\ldots,a_{r})= x𝔽qφ(x+a1)φ(x+ar)k=0m1χ2m2k+1(x).\displaystyle\sum_{x\in\mathbb{F}_{q}}\varphi(x+a_{1})\cdots\varphi(x+a_{r})\sum_{k=0}^{m-1}\chi_{2m}^{2k+1}(x).

Proof of Theorem 1.1.

We use Lemma 3.1 to write

ψ(m,m,m)(a,b,c)=x𝔽qφ(x+a)φ(x+b)φ(x+c)k=0m1χmk(x).\psi_{(m,m,m)}(a,b,c)=\sum_{x\in\mathbb{F}_{q}}\varphi(x+a)\varphi(x+b)\varphi(x+c)\sum_{k=0}^{m-1}\chi_{m}^{k}(x).

Using Lemma 2.1, and then from definition of δ\delta, we deduce that

ψ(m,m,m)(a,b,c)=\displaystyle\psi_{(m,m,m)}(a,b,c)= qφ(a)q1k=0m1χ(φχ)xφ(x+b)φ(x+c)χ(xa)χmk(x).\displaystyle\frac{q\varphi(a)}{q-1}\sum_{k=0}^{m-1}\sum_{\chi}{\varphi\choose\chi}\sum_{x}\varphi(x+b)\varphi(x+c)\chi\left(\frac{x}{a}\right)\chi_{m}^{k}(x). (3.6)

If we replace xx by bx-bx in Equation 3.6, we obtain

ψ(m,m,m)(a,b,c)=\displaystyle\psi_{(m,m,m)}(a,b,c)= qφ(a)q1k=0m1χ(φχ)xφ(bx+b)φ(bx+c)χ(bxa)χmk(bx)\displaystyle\frac{q\varphi(a)}{q-1}\sum_{k=0}^{m-1}\sum_{\chi}{\varphi\choose\chi}\sum_{x}\varphi(-bx+b)\varphi(-bx+c)\chi\left(\frac{-bx}{a}\right)\chi_{m}^{k}(-bx)
=\displaystyle= qφ(abc)q1k=0m1χmk(b)χ(φχ)χ(ba)xφ(1x)φ(1bcx)χχmk(x)\displaystyle\frac{q\varphi(abc)}{q-1}\sum_{k=0}^{m-1}\chi_{m}^{k}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right)\sum_{x}\varphi(1-x)\varphi(1-\frac{b}{c}x)\chi\chi_{m}^{k}(x)
=\displaystyle= qφ(abc)q1k=0m1χmk(b)χ(φχ)χ(ba)xχχmk(x)χχmk¯χχ2mm+2k(1x)φ(1bcx).\displaystyle\frac{q\varphi(abc)}{q-1}\sum_{k=0}^{m-1}\chi_{m}^{k}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right)\sum_{x}\chi\chi_{m}^{k}(x)\overline{\chi\chi_{m}^{k}}\chi\chi_{2m}^{m+2k}(1-x)\varphi(1-\frac{b}{c}x).

From Equation 1.3, the inner sum can be written in terms of Greene’s finite field hypergeometric series as given below

ψ(m,m,m)(a,b,c)=\displaystyle\psi_{(m,m,m)}(a,b,c)= q2φ(abc)q1k=0m1χmk(b)χ(φχ)χ(ba)F12(φ,χχmkχχ2mm+2k|bc).\displaystyle\frac{q^{2}\varphi(-abc)}{q-1}\sum_{k=0}^{m-1}\chi_{m}^{k}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right){{}_{2}}F_{1}\left(\begin{array}[]{cc}\varphi,&\chi\chi^{k}_{m}\\ &\chi\chi^{m+2k}_{2m}\end{array}|\frac{b}{c}\right). (3.9)

We use Equations 1 and 1.15 to write number of 𝔽q\mathbb{F}_{q}-points on EmE_{m} as follows

#Em(𝔽q)=r+q+ψm,m,m(a,b,c).\#E_{m}(\mathbb{F}_{q})=r+q+\psi_{m,m,m}(a,b,c). (3.10)

Using Equations 3.9 and 3.10, the number of 𝔽q\mathbb{F}_{q}-rational points on algebraic curves EmE_{m} is express as

#Em(𝔽q)\displaystyle\#E_{m}(\mathbb{F}_{q}) =r+q+q2φ(abc)q1k=0m1χ(φχ)χ¯(a)χχmk(b)F12(φ,χχmkχχ2mm+2k|bc).\displaystyle=r+q+\frac{q^{2}\varphi(-abc)}{q-1}\sum_{k=0}^{m-1}\sum_{\chi}{\varphi\choose\chi}\overline{\chi}(a)\chi\chi^{k}_{m}(-b)~{}{{}_{2}}F_{1}\left(\begin{array}[]{cc}\varphi,&\chi\chi^{k}_{m}\\ &\chi\chi^{m+2k}_{2m}\end{array}|\frac{b}{c}\right).

Next, we prove second equality. The proof is similar to first equality and so we omit some steps. First we use Lemma 3.1 and then using Lemma 2.1 and definition of δ\delta, we obtain

ψ(m,m,m)(a,b,c)=\displaystyle\psi_{(m,m,m)}(a,b,c)= qφ(a)q1k=0m1χ(φχ)xφ(x+b)φ(x+c)χ(xa)χ2m2k+1(x).\displaystyle\frac{q\varphi(a)}{q-1}\sum_{k=0}^{m-1}\sum_{\chi}{\varphi\choose\chi}\sum_{x}\varphi(x+b)\varphi(x+c)\chi\left(\frac{x}{a}\right)\chi_{2m}^{2k+1}(x). (3.11)

Replace xx by bx-bx in Equation 3.11, we obtain

ψ(m,m,m)(a,b,c)=\displaystyle\psi_{(m,m,m)}(a,b,c)= qφ(a)q1k=0m1χ(φχ)xφ(bx+b)φ(bx+c)χ(bxa)χ2m2k+1(bx)\displaystyle\frac{q\varphi(a)}{q-1}\sum_{k=0}^{m-1}\sum_{\chi}{\varphi\choose\chi}\sum_{x}\varphi(-bx+b)\varphi(-bx+c)\chi\left(\frac{-bx}{a}\right)\chi_{2m}^{2k+1}(-bx)
=qφ(abc)q1k=0m1χ2m2k+1(b)χ(φχ)χ(ba)xχχ2m2k+1(x)χχ2m2k+1¯χχ2mm+2k+1(1x)φ(1bcx).\displaystyle=\frac{q\varphi(abc)}{q-1}\sum_{k=0}^{m-1}\chi_{2m}^{2k+1}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right)\sum_{x}\chi\chi_{2m}^{2k+1}(x)\overline{\chi\chi_{2m}^{2k+1}}\chi\chi_{2m}^{m+2k+1}(1-x)\varphi(1-\frac{b}{c}x).

From Equation 1.3, the inner sum can be written as

ψ(m,m,m)(a,b,c)=\displaystyle\psi_{(m,m,m)}(a,b,c)= q2φ(abc)q1k=0m1χ2m2k+1(b)χ(φχ)χ(ba)F12(φ,χχ2m2k+1χχ2mm+2k+1|bc).\displaystyle\frac{q^{2}\varphi(-abc)}{q-1}\sum_{k=0}^{m-1}\chi_{2m}^{2k+1}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right){{}_{2}}F_{1}\left(\begin{array}[]{cc}\varphi,&\chi\chi^{2k+1}_{2m}\\ &\chi\chi^{m+2k+1}_{2m}\end{array}|\frac{b}{c}\right). (3.14)

Now, we use Equations 1 and 1.14 to write number of 𝔽q\mathbb{F}_{q}- points on EmE^{{}^{\prime}}_{m} as follows

#Em(𝔽q)=r+q+φm,m,m(a,b,c).\#E^{{}^{\prime}}_{m}(\mathbb{F}_{q})=r+q+\varphi_{m,m,m}(a,b,c). (3.15)

Using Equations 3.14, 3.15 and simplifying, we obtain

#Em(𝔽q)\displaystyle\#E^{\prime}_{m}(\mathbb{F}_{q}) =r+q+q2φ(abc)q1k=0m1χ2m2k+1(b)χ(φχ)χ(ba)F12(φ,χχ2m2k+1χχ2mm+2k+1|bc).\displaystyle=r+q+\frac{q^{2}\varphi(-abc)}{q-1}\sum_{k=0}^{m-1}\chi^{2k+1}_{2m}(-b)\sum_{\chi}{\varphi\choose\chi}\chi\left(\frac{-b}{a}\right){{}_{2}}F_{1}\left(\begin{array}[]{cc}\varphi,&\chi\chi^{2k+1}_{2m}\\ &\chi\chi^{m+2k+1}_{2m}\end{array}|\frac{b}{c}\right).

For proving Theorem 1.2, first we prove following Lemmas. Then using simple induction method we will prove Theorem 1.2.

Lemma 3.2.

For ψ,χ1,,χn\psi,\chi_{1},\ldots,\chi_{n} are characters of 𝔽q\mathbb{F}_{q} and ai,bi𝔽q×a_{i},b_{i}\in\mathbb{F}^{\times}_{q} i=1,,n\forall i=1,\ldots,n with a=a1++ana=a_{1}+\cdots+a_{n} and b=b1++bnb=b_{1}+\cdots+b_{n}. Then

x𝔽qψ(ax2)χ1(b1a1x2)χn(bnanx2)=Jb(ψ,χ1,,χn)+φ(a)Jb(φψ,χ1,,χn).\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(ax^{2})\chi_{1}(b_{1}-a_{1}x^{2})\cdots\chi_{n}(b_{n}-a_{n}x^{2})=J_{b}(\psi,\chi_{1},\ldots,\chi_{n})+\varphi(a)J_{b}(\varphi\psi,\chi_{1},\ldots,\chi_{n}).
Proof.

From Lemma 2.2, we obtain

x𝔽qψ(ax2)χ1(b1a1x2)χn(bnanx2)=\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(ax^{2})\chi_{1}(b_{1}-a_{1}x^{2})\cdots\chi_{n}(b_{n}-a_{n}x^{2})= x𝔽qψ(ax)χ1(b1a1x)χn(bnanx)\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(ax)\chi_{1}(b_{1}-a_{1}x)\cdots\chi_{n}(b_{n}-a_{n}x)
+\displaystyle+ x𝔽qφ(x)ψ(ax)χ1(b1a1x)χn(bnanx).\displaystyle\sum_{x\in\mathbb{F}_{q}}\varphi(x)\psi(ax)\chi_{1}(b_{1}-a_{1}x)\cdots\chi_{n}(b_{n}-a_{n}x).

From the definition of Jacobi sum, we have

x𝔽qψ(ax2)χ1(b1a1x2)χn(bnanx2)=\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(ax^{2})\chi_{1}(b_{1}-a_{1}x^{2})\cdots\chi_{n}(b_{n}-a_{n}x^{2})= Jb(ψ,χ1,,χn)+φ(a)Jb(φψ,χ1,,χn).\displaystyle J_{b}(\psi,\chi_{1},\cdots,\chi_{n})+\varphi(a)J_{b}(\varphi\psi,\chi_{1},\cdots,\chi_{n}).

Lemma 3.3.

Let ψ,χ1,,χn\psi,\chi_{1},\ldots,\chi_{n} are characters of 𝔽q\mathbb{F}_{q} such that q1(mod4)q\equiv 1\pmod{4} and ai,bi𝔽q×a_{i},b_{i}\in\mathbb{F}^{\times}_{q} i=1,,n\forall i=1,\ldots,n with a=a1++ana=a_{1}+\cdots+a_{n} and b=b1++bnb=b_{1}+\cdots+b_{n}. Let ψ2\psi_{2} and ψ4\psi_{4} are characters of order 22 and 44 respectively, then

x𝔽qψ(ax4)χ1(b1a1x4)χn(bnanx4)=k=03ψ2k(a)Jb(ψ4kψ,χ1,,χn).\displaystyle\sum_{x\in\mathbb{F}_{q}}\psi(ax^{4})\chi_{1}(b_{1}-a_{1}x^{4})\cdots\chi_{n}(b_{n}-a_{n}x^{4})=\sum_{k=0}^{3}\psi_{2}^{k}(a)J_{b}(\psi_{4}^{k}\psi,\chi_{1},\cdots,\chi_{n}).
Proof.

Proof is similar to Lemma 3.2. ∎

Proof of Theorem 1.2.

In view of Lemmas 3.2 and 3.3, we prove Theorem 1.2 by simple induction method. ∎

4. Evaluation of character sums ψ(1,1,1)(a,b,c)\psi_{(1,1,1)}(a,b,c), φ(1,1,1)(a,b,c)\varphi_{(1,1,1)}(a,b,c) and ψ(2,2,2)(a,b,c)\psi_{(2,2,2)}(a,b,c)

In this section, we will prove Theorems 1.3, 1.4 and 1.5. These theorems give the special values of character sums ψ(l,m,n)(a,b,c)\psi_{(l,m,n)}(a,b,c) and φ(l,m,n)(a,b,c)\varphi_{(l,m,n)}(a,b,c) in terms of hypergeometric function.

Proof of Theorem 1.3.

A change of variable (x,y)(x+h,y)(x,y)\mapsto(x+h,y) takes the elliptic curve y2=x3+(a+b+c)x2+(ab+bc+ca)x+abcy^{2}=x^{3}+(a+b+c)x^{2}+(ab+bc+ca)x+abc to y2=x3+dx2+ey^{2}=x^{3}+dx^{2}+e, where d=3h+a+b+cd=3h+a+b+c and e=h3+(a+b+c)h2+(ab+bc+ca)h+abce=h^{3}+(a+b+c)h^{2}+(ab+bc+ca)h+abc. Clearly, we have

#{(x,y)𝔽q2:y2=x3+dx2+e}\displaystyle\#\{(x,y)\in\mathbb{F}^{2}_{q}:y^{2}=x^{3}+dx^{2}+e\}
=#{(x,y)𝔽q2:y2=x3+(a+b+c)x2+(ab+bc+ca)x+abc}\displaystyle=\#\{(x,y)\in\mathbb{F}^{2}_{q}:y^{2}=x^{3}+(a+b+c)x^{2}+(ab+bc+ca)x+abc\}
=x𝔽qχ2=εχ(x3+(a+b+c)x2+(ab+bc+ca)x+abc)\displaystyle=\sum_{x\in\mathbb{F}_{q}}\sum_{\chi^{2}=\varepsilon}\chi(x^{3}+(a+b+c)x^{2}+(ab+bc+ca)x+abc)
=q+x𝔽qφ(x3+(a+b+c)x2+(ab+bc+ca)x+abc).\displaystyle=q+\sum_{x\in\mathbb{F}_{q}}\varphi(x^{3}+(a+b+c)x^{2}+(ab+bc+ca)x+abc).

In view of Equation 1.15, we have

#{(x,y)𝔽q2:y2=x3+dx2+e}=q+ψ(1,1,1)(a,b,c).\displaystyle\#\{(x,y)\in\mathbb{F}^{2}_{q}:y^{2}=x^{3}+dx^{2}+e\}=q+\psi_{(1,1,1)}(a,b,c).

From Theorem 2.8, we have a desired result. ∎

Proof of Theorem 1.4.

From Equation 1.14, we have

φ(1,1,1)(a,b,c)=\displaystyle\varphi_{(1,1,1)}(a,b,c)= x𝔽qφ(x)φ(x+a)φ(x+b)φ(x+c)\displaystyle\sum_{x\in\mathbb{F}_{q}}\varphi(x)\varphi(x+a)\varphi(x+b)\varphi(x+c)
=\displaystyle= x𝔽q×φ(1+ax)φ(1+bx)φ(1+cx).\displaystyle\sum_{x\in\mathbb{F}^{\times}_{q}}\varphi(1+\frac{a}{x})\varphi(1+\frac{b}{x})\varphi(1+\frac{c}{x}).

If we replace xx by ax\frac{a}{x}, we deduce that

φ(1,1,1)(a,b,c)=\displaystyle\varphi_{(1,1,1)}(a,b,c)= x𝔽q×φ(1+x)φ(1+bbx)φ(1+cax)\displaystyle\sum_{x\in\mathbb{F}^{\times}_{q}}\varphi(1+x)\varphi(1+\frac{b}{b}x)\varphi(1+\frac{c}{a}x)
=\displaystyle= φ(bc)x𝔽q×φ(x3+(ab+bc+cabc)x2+(ab+ac+a2bc)x+a2bc)\displaystyle\varphi(bc)\sum_{x\in\mathbb{F}^{\times}_{q}}\varphi\left(x^{3}+\left(\frac{ab+bc+ca}{bc}\right)x^{2}+\left(\frac{ab+ac+a^{2}}{bc}\right)x+\frac{a^{2}}{bc}\right)
=\displaystyle= φ(bc)x𝔽qφ(x3+(ab+bc+cabc)x2+(ab+ac+a2bc)x+a2bc)1.\displaystyle\varphi(bc)\sum_{x\in\mathbb{F}_{q}}\varphi\left(x^{3}+\left(\frac{ab+bc+ca}{bc}\right)x^{2}+\left(\frac{ab+ac+a^{2}}{bc}\right)x+\frac{a^{2}}{bc}\right)-1.

We now simplify this expression using the same techniques as in the proof of Theorem 1.3

#{(x,y)𝔽q2:y2=x3+fx2+g}=\displaystyle\#\{(x,y)\in\mathbb{F}^{2}_{q}:y^{2}=x^{3}+fx^{2}+g\}= q+φ(1,1,1)(a,b,c)+1φ(bc)\displaystyle q+\frac{\varphi_{(1,1,1)}(a,b,c)+1}{\varphi(bc)}
φ(1,1,1)(a,b,c)=\displaystyle\varphi_{(1,1,1)}(a,b,c)= 1+qφ(bc)φ(3f)F12(T(q1)6,T5(q1)6ε|33g22f3),\displaystyle-1+q\varphi(bc)\varphi(-3f){{}_{2}}F_{1}\left(\begin{array}[]{cc}T^{\frac{(q-1)}{6}},&T^{\frac{5(q-1)}{6}}\\ &\varepsilon\end{array}|-\frac{3^{3}g}{2^{2}f^{3}}\right),

where f=3h+ab+bc+cabcf=3h+\frac{ab+bc+ca}{bc} and g=h3+ab+bc+cabch2+(ab+ca+a2)bch+a2bcg=h^{3}+\frac{ab+bc+ca}{bc}h^{2}+\frac{(ab+ca+a^{2})}{bc}h+\frac{a^{2}}{bc}. ∎

Proof of Theorem 1.5.

In view of Lemma 2.2 and using Theorems 1.3 and 1.4, we obtain desired result. ∎

References

  • [1] R. Barman and G. Kalita. Hypergeometric functions and a family of algebraic curves. The Ramanujan Journal, 2(28):175–185, 2012.
  • [2] R. Barman and G. Kalita. Hyperelliptic curves over 𝔽q\mathbb{F}_{q} and Gaussian hypergeometric series. Journal of the Ramanujan Mathematical Society, 30(3):331–348, 2015.
  • [3] R. Barman, G. Kalita, and N. Saikia. Hyperelliptic curves and values of gaussian hypergeometric series. Archiv der mathematik, 102(4):345–355, 2014.
  • [4] B. C. Berndt and R. J. Evans. Sums of Gauss, Jacobi, and Jacobsthal. J. Number Theory, 11(3):349–398, 1979.
  • [5] B. C. Berndt, R. J. Evans, and K. S. Williams. Gauss and Jacobi sums. Wiley New York, 1998.
  • [6] J. Greene. Hypergeometric functions over finite fields. Trans. Amer. Math. Soc., 301(1):77–101, 1987.
  • [7] Y. H. Lin and F. T. Tu. Twisted kloosterman sums. J. Number Theory, 147:666–690, 2015.
  • [8] K. Ono. Values of gaussian hypergeometric series. Trans. Amer. Math. Soc., 350(3):1205–1223, 1998.
  • [9] M. Sadek. Character sums, Gaussian hypergeometric series, and a family of hyperelliptic curves. International Journal of Number Theory, 12(08):2173–2187, 2016.
  • [10] K. S. Williams. Evaluation of character sums connected with elliptic curves. Proceedings of the American Mathematical Society, 73(3):291–299, 1979.