This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalised Bianchi permutability for isothermic surfaces

Joseph Cho Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstrasse 8-10/104, 1040 Wien, Austria [email protected] Katrin Leschke Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom [email protected]  and  Yuta Ogata Department of Integrated Arts and Science, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa 905-2192, Japan [email protected]
Abstract.

Isothermic surfaces are surfaces which allow a conformal curvature line parametrisation. They form an integrable system, and Darboux transforms of isothermic surfaces obey Bianchi permutability: for two distinct spectral parameters the corresponding Darboux transforms have a common Darboux transform which can be computed algebraically. In this paper, we discuss two–step Darboux transforms with the same spectral parameter and show that these are obtained by a Sym–type construction: All two–step Darboux transforms of an isothermic surface are given, without further integration, by parallel sections of the associated family of the isothermic surface, either algebraically or by differentiation against the spectral parameter.

The authors would like to express their gratitude to the referee for valuable comments. The first author gratefully acknowledges the support from JSPS/FWF Bilateral Joint Project I3809-N32 “Geometric shape generation” and JSPS Grants-in-Aid for JSPS Fellows 19J10679. Second author gratefully acknowledges the support from Leverhulme Trust Network Grant IN-2016-019. Third author gratefully acknowledges the support from Grants-in-Aid of The Uruma Fund for the Promotion of Science and JSPS Research Fellowships for Young Scientist 21K13799.

1. Introduction

First defined by Bour in [bour_theorie_1862] as surfaces which admit conformal curvature lines, isothermic surfaces have enjoyed massive interest in the late 19th and early 20th century. Darboux showed in [darboux] that given an isothermic surface f:M3f:M\to\mathbb{R}^{3} from a Riemann surface MM into the 3–sphere, one can construct a second isothermic surface via a Ribaucour sphere congruence that depends on a spectral parameter, a transformation which we refer to as Darboux transformation.

Then Bianchi, [bianchi_ricerche_1905], showed that Darboux transformations admit permutability: starting from an isothermic surface ff and constructing two Darboux transforms f1f_{1} and f2f_{2} using spectral parameters ϱ1\varrho_{1} and ϱ2\varrho_{2}, respectively, one can always find a fourth surface f12f_{12} that is both a Darboux transform of f1f_{1} and f2f_{2} with respect to spectral parameters ϱ2\varrho_{2} and ϱ1\varrho_{1}. Demoulin further showed in [demoulin_sur_1910] that these four surfaces in the permutability enjoy a relationship characterized by cross–ratios:

(1.1) cr(f,f1,f12,f2)=ϱ2ϱ1.\mathrm{cr}(f,f_{1},f_{12},f_{2})=\frac{\varrho_{2}}{\varrho_{1}}.

Generally, one needs integration to find Darboux transforms of a given isothermic surface; however, the cross–ratio equation (1.1) coming from permutability enables one to find successive Darboux transforms algebraically after an initial integration. The cross–ratio equation (1.1) shows that the fourth surface f12f_{12} is identical to the given starting surface ff if the spectral parameters are equal. Therefore, permutability gives algebraic methods to find non-trivial successive Darboux transforms as long as the spectral parameters are pairwise distinct.

Note however that one can always integrate twice to find non–trivial two–step Darboux transforms: the condition in Bianchi permutability that the spectral parameters need to be distinct is only essential to obtain non–trivial successive Darboux transforms algebraically.

The aim of this paper is to eliminate the assumption in Bianchi permutability and obtain all successive Darboux transforms without further integration, even in the case when the spectral parameters are equal. Rather than using Bianchi permutability we obtain two–step Darboux transforms with the same spectral parameter by a Sym–type method, [sym_soliton_1985], that is, by differentiation with respect to the spectral parameter.

The existence of spectral parameters, transformations, and permutability suggested that the class of isothermic surfaces constitutes an integrable system, an approach taken in [cieslinski1995isothermic] which renewed modern interest in isothemic surfaces. Various characterisations of Darboux transformations have been obtained since: Darboux transformation can be described in terms of a Riccati type equation [darboux_isothermic]; Darboux pairs of isothermic surfaces can be viewed as a curved flat using the Minkowski model [bjpp] or using the quaternionic model [hertrich-jeromin_supplement_1997] of conformal geometry. In fact, isothermic surfaces can be characterised via the existence of a closed 11–form or, equivalently, a one parameter family of flat connections [ferus_curved_1996, KamPedPin, burstall_conformal_2010], and one can view Darboux transformations as the parallel sections of the flat connections [hertrich-jeromin_mobius_2001, udo_habil]. In addition, many of the aforementioned works have investigated the various transformations of isothermic surfaces and their relationships: for example, the TT-transforms, also known as Calapso transforms, can be obtained algebraically from the Darboux transforms, while the Christoffel dual can be obtained via a Sym-type formula from either the TT-transforms or the Darboux transforms.

In this paper, we use the quaternionic model and describe Darboux transform by parallel sections of the associated family of flat connections of the isothermic surface. A short review of isothermic surfaces, the associated family dλd_{\lambda} and Bianchi permutability in this setting is given in Section 2 to setup the notations and tools for our main result.

Then we tackle the problem to eliminate the need for a second integration for finding two–step Darboux transforms in Section 3. For this, we use the fact that Darboux transforms of isothermic surfaces are indeed given by a simple factor dressing. In particular, the associated family of flat connections dλ1d^{1}_{\lambda} of a Darboux transform f1f_{1} with spectral parameter ϱ\varrho is given by an explicit gauge rλr_{\lambda}, which depends smoothly on the spectral parameter and has a simple pole at ϱ\varrho, of the associated family dλd_{\lambda} of ff. Although the gauge has a pole, the family dλ1=rλdλd^{1}_{\lambda}=r_{\lambda}\cdot d_{\lambda} extends into ϱ\varrho and we give an explicit form of the associated family.

With this at hand, we obtain the parallel sections φ1=rλ(φ)\varphi_{1}=r_{\lambda}(\varphi) of f1f_{1} by applying the gauge matrix to parallel sections φ\varphi given by the isothermic surface ff, for spectral parameter away from the pole ϱ\varrho of rλr_{\lambda}. This way, we recover the parallel sections used for Bianchi permutability, the Bianchi–type parallel sections, explicitly as projections of parallel sections φ\varphi. In the case when the spectral parameter coincide, there is a quaternionic one–dimensional space arising from this construction: to obtain further parallel sections we have to consider limits of parallel sections for spectral parameter λ\lambda when λ\lambda tends to the pole ϱ\varrho. We show that these limits, the Sym–type parallel sections, are given by differentiation of a family of dλd_{\lambda}–parallel sections with respect to the spectral parameter.

Indeed, we can conclude that all parallel sections of the associated family of a Darboux transform are either Bianchi– or Sym–type. In particular, we obtain all non–trivial two–step Darboux transforms with same spectral parameter without need for a second integration, a principle we call generalised Bianchi permutability.

Given an isothermic surface f:M3f:M\to\mathbb{R}^{3}, the Darboux transformation is initially a local construction: the used parallel sections exist globally only on the universal cover of the Riemann surface MM. Since all two–step parallel sections are given algebraically or by a Sym–type method, we discuss closing conditions for one– and two–step Darboux transforms by investigating the holonomy of the family of flat connections dλd_{\lambda} of ff only.

We conclude the paper by demonstrating our construction in the explicit example of the round cylinder. In particular, we give explicit formulae for all parallel sections and obtain a complete description of the set of all closed Darboux transforms of a cylinder. Depending on the spectral parameter, four cases can occur: there is exactly one closed Darboux transform, which is the cylinder, there are two distinct Darboux transforms, which are again cylinders, there is a 1\mathbb{C}\mathbb{P}^{1}–worth of Darboux transforms which are rotation surfaces, or there is a 1\mathbb{H}\mathbb{P}^{1}–worth of (possibly singular) Darboux transforms which are rotation surfaces or isothermic bubbletons. We then use the parallel sections to give explicit formulae for Sym–type Darboux transforms, including two–step bubbletons.111The figures in this paper were drawn using the software Mathematica.

Since the main ingredients for our construction are the associated family and the simple factor dressing, we expect our results to be templates for similar results for other surface classes allowing simple factor dressing, such as CMC surfaces in space forms, and completely integrable differential equations. This should allow to construct new surfaces and, more generally, new solutions to differential equations given by complete integrability.

2. Background

In this section we will give a short summary of results and methods used in this paper. For details on the quaternionic formalism and isothermic surfaces we refer to [coimbra, klassiker, udo_habil, fran_epos, darboux_isothermic].

2.1. Conformal immersions and quaternions

In this paper we will identify 4–space by the quaternions 4=\mathbb{R}^{4}=\mathbb{H}, and 3–space by the imaginary quaternions 3=Im\mathbb{R}^{3}=\operatorname{Im}\mathbb{H} where =span{1,i,j,k}\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1,i,j,k\} and i2=j2=k2=ijk=1i^{2}=j^{2}=k^{2}=ijk=-1. For imaginary quaternions the product in the quaternions links to the inner product ,\langle\cdot,\cdot\rangle and the cross product in 3\mathbb{R}^{3} by

ab=a,b+a×b,a,bIm.ab=-\langle a,b\rangle+a\times b,\quad a,b\in\operatorname{Im}\mathbb{H}\,.

Here we identify =ReIm=3\mathbb{H}=\mathrm{Re}\,\mathbb{H}\oplus\operatorname{Im}\mathbb{H}=\mathbb{R}\oplus\mathbb{R}^{3}. In particular, we see

S2={nImn2=1}.S^{2}=\{n\in\operatorname{Im}\mathbb{H}\mid n^{2}=-1\}\,.

Thus, if f:M3f:M\to\mathbb{R}^{3} is an immersion then its Gauss map N:MS2N:M\to S^{2} is a complex structure N2=1N^{2}=-1 on 4=\mathbb{R}^{4}=\mathbb{H}. Moreover, if (M,JTM)(M,J_{TM}) is a Riemann surface, then f:M3f:M\to\mathbb{R}^{3} is conformal if and only if

df=Ndf=dfN,*df=Ndf=-dfN\,,

where * denotes the negative Hodge star operator, that is, ω(X)=ω(JTMX)*\omega(X)=\omega(J_{TM}X) for XTMX\in TM, ωΩ1(M)\omega\in\Omega^{1}(M). More generally, if f:M4f:M\to\mathbb{R}^{4} is a conformal immersion from a Riemann surface into 4–space, the Gauss map is given by a pair of complex structures

(N,R):MS2×S2=Gr2(4)(N,R):M\to S^{2}\times S^{2}=\mathrm{Gr}_{2}(\mathbb{R}^{4})

such that

df=Ndf=dfR.*df=Ndf=-dfR\,.

Note that N=RN=R in the case when ff is a surface in 3–space.

Since the theory of isothermic surfaces is conformal, it is useful to also consider conformal immersions into the 4–sphere by identifying S4=1S^{4}=\mathbb{H}\mathbb{P}^{1}. Then a map f:MS4=1f:M\to S^{4}=\mathbb{H}\mathbb{P}^{1} can be identified with a line subbundle L¯2=M×2L\subset\underline{\mathbb{H}}^{2}=M\times\mathbb{H}^{2} of the trivial 2\mathbb{H}^{2}–bundle over MM via

f(p)=Lp.f(p)=L_{p}\,.

Therefore, the group of oriented Möbius transformations is in this setup given by GL(2,)\operatorname{GL}(2,\mathbb{H}). The derivative of LL is given by δ=πLd\delta=\pi_{L}d where πL:¯2¯2/L\pi_{L}:\underline{\mathbb{H}}^{2}\to\underline{\mathbb{H}}^{2}/L denotes the canonical projection. Then an immersion ff is conformal if and only if there are complex structures JLJ_{L} on LL and JV/LJ_{V/L} on ¯2/L\underline{\mathbb{H}}^{2}/L such that

δ=JV/Lδ=δJ.*\delta=J_{V/L}\delta=\delta J\,.

In particular, if f:Mkf:M\to\mathbb{R}^{k}, k=3,4k=3,4, is an immersion from a Riemann surface into 3– or 4–space we will consider ff as a map into the 4–sphere by setting

L=ψ,ψ=(f1).L=\psi\mathbb{H},\quad\psi=\begin{pmatrix}f\\ 1\end{pmatrix}\,.

We will identify e=¯2/Le\mathbb{H}=\underline{\mathbb{H}}^{2}/L via the isomorphism πL|e:e¯2/L\pi_{L}|_{e\mathbb{H}}:e\mathbb{H}\to\underline{\mathbb{H}}^{2}/L where e=e\mathbb{H}=\infty is the point at infinity with

e=(10).e=\begin{pmatrix}1\\ 0\end{pmatrix}\,.

Then N,R:MS2N,R:M\to S^{2} induce the complex structures JLJ_{L} on the line bundles LL and JV/LJ_{V/L} on ¯2/L\underline{\mathbb{H}}^{2}/L by setting JLψ=ψRJ_{L}\psi=-\psi R and JV/Le=eNJ_{V/L}e=eN: since δψ=edf\delta\psi=edf we obtain indeed

δψ=JV/Lδψ=δJLψ.*\delta\psi=J_{V/L}\delta\psi=\delta J_{L}\psi\,.

2.2. Isothermic surfaces and Darboux transforms

Classically, an isothermic surface is considered as a surface in 3–space which allows a conformal curvature line parametrisation (away from umbilic points). In our setting, it is convenient to view an isothermic surface as a quaternionic line bundle with an associated closed 1–form ([fran_epos, Theorem 2.3], [udo_habil, §5.3.19], [KamPedPin, Definition 3.1]):

Definition 2.1.

A conformal immersion f:MS4f:M\to S^{4} is called isothermic if there exists a non–trivial closed 1–form ηΩ1(End(2))\eta\in\Omega^{1}(\operatorname{End}(\mathbb{H}^{2})), the retraction form, such that

ImηLkerη.\mathrm{Im}\,\eta\subset L\subset\ker\eta\,.
Remark 2.2.

This definition immediately shows that the notion of isothermicity is conformally invariant, that is, if f:MS4f:M\to S^{4} is isothermic so are its Möbius transforms: given the line bundle LL corresponding to ff, L~=AL\tilde{L}=AL for AGL(2,)A\in\operatorname{GL}(2,\mathbb{H}) is isothermic with 1–form η~=AηA1\tilde{\eta}=A\eta A^{-1}.

This definition links with the Christoffel transformation of an isothermic surface when ff is a surface in 3– or 4–space: since imηLkerη\operatorname{im}\eta\subset L\subset\ker\eta we can write

(2.1) η=(fωfωfωωf)\eta=\begin{pmatrix}f\omega&-f\omega f\\ \omega&-\omega f\end{pmatrix}

for a 1–form ω\omega with values in \mathbb{H}. But then dη=0d\eta=0 shows that dω=0d\omega=0, so locally there exists a (possibly branched) immersion fdf^{d} with dfd=ωdf^{d}=\omega. Additionally we see from dfω=ωdf=0df\wedge\omega=\omega\wedge df=0 that fdf^{d} is conformal with Gauss map (Nd,Rd)=(R,N)(N^{d},R^{d})=(-R,-N): fdf^{d} is indeed a Christoffel transform or dual surface of ff. If z=x+iyz=x+iy is an isothermic coordinate (and ff does not map into the round sphere) then up to scaling dfd=fx1dxfy1dydf^{d}=f_{x}^{-1}dx-f_{y}^{-1}dy. Conversely, away from umbilics the isothermic coordinate can be constructed from η\eta (see [fran_epos, p. 28]).

In particular, the definition we are using immediately allows to introduce a spectral parameter ϱ\varrho\in\mathbb{R}, see e.g. [burstall_conformal_2010, Theorem 15.4], [burstall_isothermic_2011, Proposition 3.6], and we obtain an associated family of flat connections: since dλ=d+λη,λd_{\lambda}=d+\lambda\eta,\lambda\in\mathbb{R}, has curvature

Rλ=R+λdη+λ2ηη=0R_{\lambda}=R+\lambda d\eta+\lambda^{2}\eta\wedge\eta=0

we see that the associated family dλd_{\lambda} of ff is flat for all λ\lambda\in\mathbb{R}. The converse holds as well:

Theorem 2.3.

If ηΩ1(End(¯2))\eta\in\Omega^{1}(\operatorname{End}(\underline{\mathbb{H}}^{2})) is non–trivial with η2=0\eta^{2}=0 and

dλ=d+ληd_{\lambda}=d+\lambda\eta

is flat for all λ\lambda\in\mathbb{R} then kerη\ker\eta can be extended to a quaternionic line bundle LL and LL is isothermic with retraction form η\eta.

Proof.

We follow the arguments in [simple_factor_dressing, Theorem 3.1], and only give a short outline how the argument there can be adapted to our situation. Let II be the complex structure on 2\mathbb{H}^{2} which is given by right multiplication by the quaternion ii. Let η1,0\eta^{1,0} be the (1,0)(1,0)–part of η\eta and E=kerη1,0E=\ker\eta^{1,0}. Since η\eta is quaternionic, kerη=EEj\ker\eta=E\oplus Ej. In [simple_factor_dressing, Theorem 3.1] it is shown that dd induces a holomorphic structure on Γ(KEnd(4¯))\Gamma(K\operatorname{End}(\underline{\mathbb{C}^{4}})) when identifying sections in Γ(K¯K)\Gamma(\bar{K}K) with 2–rforms in Ω2(M)\Omega^{2}(M). Since dλd_{\lambda} is flat we see that dη=0d\eta=0, so that also dη1,0=0d\eta^{1,0}=0. Thus, η1,0\eta^{1,0} is holomorphic and E=kerη1,0E=\ker\eta^{1,0} extends holomorphically across the zeros of η1,0\eta^{1,0}, and so does kerη=E\ker\eta=E\mathbb{H}. ∎

Recall that an isothermic surface f:M3f:M\to\mathbb{R}^{3} can be locally characterised as a surface which allows a sphere congruence that conformally envelops ff and a second surface f^\hat{f} where f(p)f^(p)f(p)\not=\hat{f}(p) for all pp. Then f^\hat{f} is called a Darboux transform of ff.

In the framework we set up, the Darboux transformation can be formulated in terms of parallel sections of ¯~2\underline{\widetilde{\mathbb{H}}}^{2} of the associated family of flat connections, see e.g. [udo_habil, §5.4.8]. Here ¯~2\underline{\widetilde{\mathbb{H}}}^{2} denotes the trivial 2\mathbb{H}^{2} bundle ¯~2=M~×2\underline{\widetilde{\mathbb{H}}}^{2}=\tilde{M}\times\mathbb{H}^{2} over the universal cover M~\tilde{M} of MM. In this situation, the resulting Darboux transform is in general an isothermic surface in the 4–sphere and is defined on the universal cover of MM, and is a surface in the 3–sphere only for suitable initial conditions. We will identify, in abuse of notation, a surface f:MS4f:M\to S^{4} with the canonical lift f:M~S4f:\tilde{M}\to S^{4}.

Definition 2.4.

Let f:MS4f:M\to S^{4} be isothermic. Then f^:M~S4\hat{f}:\tilde{M}\to S^{4} is called a Darboux transform of ff with respect to the parameter ϱ={0}\varrho\in\mathbb{R}_{*}=\mathbb{R}\setminus\{0\} if L^=φϱ\hat{L}=\varphi^{\varrho}\mathbb{H}, where φϱΓ(¯~2)\varphi^{\varrho}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) is a dϱd_{\varrho}–parallel section, and L(p)L^(p)L(p)\not=\hat{L}(p) for all pM~p\in\tilde{M}.

Remark 2.5.

In the case when the assumption L(p)L^(p)L(p)\not=\hat{L}(p) is not satisfied for all pMp\in M, the surface f^\hat{f} is called a singular Darboux transform of ff, see [conformal_tori]. If f,f^:M3f,\hat{f}:M\to\mathbb{R}^{3} are surfaces in 3–space this means that the enveloping sphere congruence degenerates to a point for pMp\in M with f^(p)=f(p)\hat{f}(p)=f(p) and f^\hat{f} becomes a branched conformal immersion.

To simplify notations we will abbreviate φ=φϱ\varphi=\varphi^{\varrho} if it is clear from the context that φ\varphi is a dϱd_{\varrho}–parallel section, and use the superscript only if we want to emphasise the parameter in the family of flat connections that we use. Similarly, we will call the associated surface a Darboux transform, and only refer to it as ϱ\varrho–Darboux transform or Darboux transform with respect to the parameter ϱ\varrho for emphasis of a specific spectral parameter.

We now investigate the closing conditions for Darboux transforms, see [conformal_tori]. Let us recall the notion of sections with multiplier.

Definition 2.6.

Given a parallel section φΓ(¯~2)\varphi\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) a multiplier is a group homomorphism h:π1(M)h:\pi_{1}(M)\to\mathbb{H}_{*} such that

γφ=φγ=φhγ, for all γπ1(M)\gamma^{*}\varphi=\varphi\circ\gamma_{\sharp}=\varphi h_{\gamma},\quad\text{ for all }\quad\gamma\in\pi_{1}(M)

where γ\gamma_{\sharp} is the deck transformation of M~\tilde{M} associated to γ\gamma. A section with multiplier is a parallel section for which multipliers exist. A spectral parameter ϱ\varrho\in\mathbb{R}_{*} is called a resonance point if every dϱd_{\varrho}–parallel section is a section with multiplier.

Since a Darboux transform of an isothermic surface f:MS4f:M\to S^{4} is given by f^=φ\hat{f}=\varphi\mathbb{H} where φ=φϱ\varphi=\varphi^{\varrho} is a parallel section of dϱd_{\varrho} for some ϱ\varrho\in\mathbb{R}_{*}, we see that f^\hat{f} is closed if and only if φ\varphi is a section with multiplier. In this paper, we consider the “closure condition” to mean that the Darboux transform is defined on the same Riemann surface of the original immersion.

Since for hh\in\mathbb{H}_{*} there exists mm\in\mathbb{H}_{*} with m1hmm^{-1}hm\in\mathbb{C}_{*} we can assume without loss of generality that hγh_{\gamma}\in\mathbb{C}_{*} by changing φ\varphi to φm\varphi m in case of an abelian fundamental group. Note that since dϱd_{\varrho} is quaternionic, we see that if φ\varphi is dϱd_{\varrho}–parallel with multiplier hh then φj\varphi j is dϱd_{\varrho}–parallel with multiplier h¯\bar{h}, so that multipliers come in pairs (h,h¯)(h,\bar{h}) which give both rise to the same surface f^\hat{f}. In particular, in the case when hh is real, the corresponding space of parallel sections with multiplier hh is at least quaternionic 1–dimensional, whereas in the case of hh\not\in\mathbb{R}, the space of parallel sections with multiplier hh is not quaternionic.

Example 2.7.

In the case of a surface of revolution f:M3f:M\to\mathbb{R}^{3}, the holonomy of dϱd_{\varrho} is for all spectral parameter ϱ{0,ϱ0}\varrho\in\mathbb{R}\setminus\{0,\varrho_{0}\} diagonalisable and has at most two distinct multipliers, hh and h1h^{-1}, see [isothermic_paper] and Proposition 4.4 in the case of a round cylinder. The spectral parameter ϱ0\varrho_{0}\in\mathbb{R}_{*} is determined by the choice of dual surface: scaling of fdf^{d} by some factor will result in a scale of ϱ0\varrho_{0}. In the case when f(x,y)=ip(x)+jq(x)eiyf(x,y)=ip(x)+jq(x)e^{-iy} with smooth real–valued functions p,qp,q satisfying p2+q2=q2p^{\prime 2}+q^{\prime 2}=q^{2} is a conformally parameterised surface of revolution in the conformal coordinate z=x+iyz=x+iy and dfd=fx1dxfy1dydf^{d}=f^{-1}_{x}dx-f^{-1}_{y}dy we have ϱ0=14\varrho_{0}=-\frac{1}{4}.

With such choices, for the unique spectral parameter ϱ=14\varrho=-\frac{1}{4} with non-diagonalisable holonomy there is exactly one parallel section with multiplier hh (up to quaternionic scaling), which indeed is h=1h=-1, and the corresponding Darboux transform is a rotation of ff, see Theorem 4.5 in the case when ff is a round cylinder and Remark 4.6 for the general case.

f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ14\scriptstyle{\quad{\varphi^{-\frac{1}{4}}}}f^\textstyle{\hat{f}}

For ϱ<14\varrho<-\frac{1}{4} there are exactly two distinct real multipliers h,h1h,h^{-1}\in\mathbb{R}, and two \mathbb{H}–linearly independent dϱd_{\varrho}–parallel sections φ1ϱ,φ2ϱ\varphi_{1}^{\varrho},\varphi_{2}^{\varrho} with multiplier hh and h1h^{-1} respectively. These give two distinct Darboux transforms of ff which are both rotations of ff. Since φ1ϱj,φ2ϱj\varphi_{1}^{\varrho}j,\varphi_{2}^{\varrho}j have the same real multipliers as φ1ϱ\varphi_{1}^{\varrho} and φ2ϱ\varphi_{2}^{\varrho} respectively, there are no further Darboux transforms, see Theorem 4.5 and Remark 4.6.

f1\textstyle{f_{1}}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ1ϱ\scriptstyle{{\varphi_{1}^{\varrho}}}φ2ϱ\scriptstyle{\varphi_{2}^{\varrho}}f2\textstyle{f_{2}}

For ϱ>14,ϱk214,k,k1,\varrho>-\frac{1}{4},\varrho\not=\frac{k^{2}-1}{4},k\in\mathbb{Z},k\geq 1, there are exactly two complex multipliers hS1{±1}h\in S^{1}\setminus\{\pm 1\}, and two \mathbb{H}–linearly independent dϱd_{\varrho}–parallel sections φ1ϱ,φ2ϱ\varphi_{1}^{\varrho},\varphi_{2}^{\varrho} with multiplier hh. Since any complex linear combination φφ=φ1ϱm1+φ2ϱm2\varphi^{\varphi}=\varphi_{1}^{\varrho}m_{1}+\varphi_{2}^{\varrho}m_{2}, m1,m2m_{1},m_{2}\in\mathbb{C}, is a dϱd_{\varrho}–parallel section with multiplier hh, we obtain a 1\mathbb{C}\mathbb{P}^{1} family of closed (possibly singular) Darboux transforms, giving in case of the round cylinder general rotation surfaces, see Theorem 4.5 and Remark 4.6. Since φϱj\varphi^{\varrho}j has multiplier h¯=h1\bar{h}=h^{-1} and φϱ=φϱj\varphi^{\varrho}\mathbb{H}=\varphi^{\varrho}j\mathbb{H} we obtain no further Darboux transforms in this case.

f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ1ϱ\scriptstyle{{\varphi_{1}^{\varrho}}}φ2ϱr\scriptstyle{\varphi_{2}^{\varrho_{r}}}φϱ,mi\scriptstyle{\quad{\varphi^{\varrho}},m_{i}\in\mathbb{C}}f^\textstyle{\hat{f}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f2\textstyle{f_{2}}
Refer to caption
Refer to caption
Figure 1. Darboux transforms of an unduloid for ϱ,ϱk214,k>1,k,\varrho\in\mathbb{R}_{*},\varrho\not=\frac{k^{2}-1}{4},k>1,k\in\mathbb{Z}, are rotation surfaces.

In the case of a surface of revolution, the only other case which can occur is that the spectral parameter is a resonance point: every dϱrd_{\varrho_{r}}–parallel section φϱr\varphi^{\varrho_{r}} is a section with multiplier, that is, every Darboux transform with parameter ϱr\varrho_{r} is a closed Darboux transform.

Put differently, given a basis {φ1ϱr,φ2ϱr}\{\varphi_{1}^{\varrho_{r}},\varphi_{2}^{\varrho_{r}}\} of dϱrd_{\varrho_{r}}–parallel sections at a resonance point ϱr\varrho_{r} every dϱrd_{\varrho_{r}}–parallel section, and thus, every (possibly singular) ϱr\varrho_{r}–Darboux transform, is given by φϱr=φ1ϱrm1+φ2ϱrm2\varphi^{\varrho_{r}}=\varphi_{1}^{\varrho_{r}}m_{1}+\varphi_{2}^{\varrho_{r}}m_{2}, m1,m2m_{1},m_{2}\in\mathbb{H}:

f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ1ϱr\scriptstyle{{\varphi_{1}^{\varrho_{r}}}}φ2ϱr\scriptstyle{\varphi_{2}^{\varrho_{r}}}φϱr,mi\scriptstyle{\quad{\varphi^{\varrho_{r}}},m_{i}\in\mathbb{H}}f^\textstyle{\hat{f}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f2\textstyle{f_{2}}

Note that this shows that all dϱd_{\varrho}–parallel sections at a resonance point ϱ\varrho\in\mathbb{R}_{*} have the same multiplier hh, and since multipliers appear as pairs (h,h¯)(h,\bar{h}) we also see that hh\in\mathbb{R}.

The corresponding Darboux transforms in case of a surface of revolution are rotation surfaces or isothermic bubbletons: in this case resonance points ϱr=k214\varrho_{r}=\frac{k^{2}-1}{4} are parametrised by positive integers k,k>1,k\in\mathbb{Z},k>1, such that the corresponding Darboux transforms have kk lobes. Special initial conditions give, in the case of a Delaunay surface, again Delaunay surfaces and CMC bubbletons, see Proposition 4.4 for the case of a round cylinder.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2. Darboux transforms in 3–space of an unduloid at a resonance point for k=2,3k=2,3 are unduloids, CMC bubbletons, surfaces of revolution or isothermic bubbletons.

Given two Darboux transforms f1,f2f_{1},f_{2} of ff with respect to parameter ϱ1,ϱ2\varrho_{1},\varrho_{2}\in\mathbb{R}, there is a common Darboux transform of both f1,f2f_{1},f_{2} which can be computed from the parallel sections without further integration.

Theorem 2.8 (Bianchi permutability, [bianchi_ricerche_1905], [udo_habil, §5.6.6], [habil]).

Let f:MS4f:M\to S^{4} be an isothermic surface. Let ϱ1,ϱ2\varrho_{1},\varrho_{2}\in\mathbb{R}_{*} and fif_{i} be the Darboux transforms given by dϱid_{\varrho_{i}}–parallel sections φi=φiϱiΓ(¯~2)\varphi_{i}=\varphi_{i}^{\varrho_{i}}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}). If f1(p)f2(p)f_{1}(p)\not=f_{2}(p) for all pMp\in M then

φ12=φ2φ1χ\varphi_{12}=\varphi_{2}-\varphi_{1}\chi

gives a ϱ2\varrho_{2}–Darboux transform of f1f_{1} and a ϱ1\varrho_{1}–Darboux transform of f2f_{2} on the universal cover M~\tilde{M} of MM by

f12=φ12.f_{12}=\varphi_{12}\mathbb{H}\,.

Here χ:M~\chi:\tilde{M}\to\mathbb{H} is given by dφ2=dφ1χd\varphi_{2}=d\varphi_{1}\chi.

Remark 2.9.

Note that the condition dϱiφi=0d_{\varrho_{i}}\varphi_{i}=0 shows that dφiΩ1(L)d\varphi_{i}\in\Omega^{1}(L), and thus χ:M~\chi:\tilde{M}\to\mathbb{H} is well–defined. The classical case can be extended to allow ϱ1=ϱ2\varrho_{1}=\varrho_{2} in which case the parallel section φ12Γ(L)\varphi_{12}\in\Gamma(L) is a section in L=kerηL=\ker\eta: since dφ2=dφ1χd\varphi_{2}=d\varphi_{1}\chi and dϱφi=0d_{\varrho}\varphi_{i}=0, we see that ηφ2=ηφ1χ\eta\varphi_{2}=\eta\varphi_{1}\chi and thus ηφ12=0\eta\varphi_{12}=0.

In particular, the Darboux transform f12f_{12} is ff: in contrast to the case when ϱ1ϱ2\varrho_{1}\not=\varrho_{2} we do not get all Darboux transforms of f1f_{1} with parameter ϱ1=ϱ2\varrho_{1}=\varrho_{2} by this construction. We will discuss how to obtain all Darboux transforms by a Sym–type argument in the next section.

We also know [isothermic_paper] that φ12=φ12ϱ2\varphi_{12}=\varphi_{12}^{\varrho_{2}} is a parallel section of the family of flat connections of f1f_{1} for spectral parameter ϱ2\varrho_{2}, and φ21=φ21ϱ1:=φ12χ1\varphi_{21}=\varphi_{21}^{\varrho_{1}}:=\varphi_{12}\chi^{-1} is a parallel section of the family of flat connections of f2f_{2} at ϱ1\varrho_{1}. In particular, f12=φ12=φ21=f21f_{12}=\varphi_{12}\mathbb{H}=\varphi_{21}\mathbb{H}=f_{21}:

f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ12ϱ2\scriptstyle{\varphi_{12}^{\varrho_{2}}}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ1ϱ1\scriptstyle{{\varphi_{1}^{\varrho_{1}}}}φ2ϱ2\scriptstyle{\varphi_{2}^{\varrho_{2}}}f12=f^1=f^2=f21\textstyle{f_{12}=\hat{f}_{1}=\hat{f}_{2}=f_{21}}f2\textstyle{f_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ21ϱ1\scriptstyle{\varphi_{21}^{\varrho_{1}}}
Refer to caption
Refer to caption
Refer to caption
Figure 3. Common Darboux transforms of two bubbletons

3. Generalised Bianchi permutability

Given an isothermic surface ff with associated family dλd_{\lambda} and a Darboux transform f1f_{1} given by spectral parameter ϱ1\varrho_{1}\in\mathbb{R} and dϱ1d_{\varrho_{1}}–parallel section φ1=φ1ϱ1\varphi_{1}=\varphi_{1}^{\varrho_{1}}, Bianchi permutability allows to compute Darboux transforms of f1f_{1} for all spectral parameter ϱ2ϱ1\varrho_{2}\not=\varrho_{1} by solely knowing the parallel sections of the family of flat connections of ff and performing an algebraic operation. However, in the case when ϱ:=ϱ1=ϱ2\varrho:=\varrho_{1}=\varrho_{2} we only obtain one Darboux transform of f1f_{1} via Bianchi permutability, namely f12=ff_{12}=f. In this section we show that we still obtain all Darboux transforms of f1f_{1} without integration by the parallel sections of the associated family of ff. The Darboux transform in this case is not given algebraically but by a Sym–type argument: we will differentiate parallel sections with respect to the spectral parameter.

3.1. Simple factor dressing

Let f:MS4f:M\to S^{4} be an isothermic surface with associated family dλd_{\lambda} and let f^=f1\hat{f}=f_{1} be a Darboux transform given by a dϱd_{\varrho}–parallel section φ\varphi. To find all parallel sections of the associated family d^λ=dλ1\hat{d}_{\lambda}=d^{1}_{\lambda} of f^\hat{f} at λ=ϱ\lambda=\varrho in terms of parallel sections of dλd_{\lambda} we need to understand d^λ\hat{d}_{\lambda} at ϱ\varrho. To this end, we recall the so–called simple factor dressing: it is known that a suitable λ\lambda–dependent gauge matrix rλr_{\lambda} with a simple pole given by ϱ\varrho gives via gauging the associated family d^λ=rλdλ\hat{d}_{\lambda}=r_{\lambda}\cdot d_{\lambda} of a ϱ\varrho–Darboux transform.

Theorem 3.1 (Simple Factor Dressing, [burstall_isothermic_2011, Definition 3.7]).

Let f:MS4f:M\to S^{4} be isothermic with associated family dλ=d+ληd_{\lambda}=d+\lambda\eta, λ\lambda\in\mathbb{R}. Let ϱ\varrho\in\mathbb{R}_{*} and let φΓ(¯~2)\varphi\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) be a dϱd_{\varrho}–parallel section with corresponding Darboux transform f^:M~\hat{f}:\tilde{M}\to\mathbb{H} given by L^=φ\hat{L}=\varphi\mathbb{H}. Denote by π^\hat{\pi} and π\pi the projections onto L^\hat{L} and LL respectively along the splitting ¯2=L^L\underline{\mathbb{H}}^{2}=\hat{L}\oplus L and define

(3.1) r(λ)=rϱL^(λ)=π^+σϱ(λ)πr(\lambda)=r_{\varrho}^{\hat{L}}(\lambda)=\hat{\pi}+\sigma_{\varrho}(\lambda)\pi

with

σϱ(λ)=ϱϱλ.\sigma_{\varrho}(\lambda)=\frac{\varrho}{\varrho-\lambda}\,.

Then d^λ=r(λ)dλ\hat{d}_{\lambda}=r(\lambda)\cdot d_{\lambda} is the family of flat connections of the Darboux transform f^\hat{f}. Moreover, d^λ=d+λη^\hat{d}_{\lambda}=d+\lambda\hat{\eta} with

η^=π^dπ1ϱ.\hat{\eta}=-\hat{\pi}\circ d\circ\pi\frac{1}{\varrho}\,.
Proof.

Since the Darboux transform L^=φ\hat{L}=\varphi\mathbb{H} is an isothermic surface, we can consider its family of flat connections d^λ=d+λη^\hat{d}_{\lambda}=d+\lambda\hat{\eta}, λ\lambda\in\mathbb{R}, with imη^=kerη^=L^\operatorname{im}\hat{\eta}=\ker\hat{\eta}=\hat{L}. We first show that

rλdλ=d^λfor allλ{ϱ}.r_{\lambda}\cdot d_{\lambda}=\hat{d}_{\lambda}\quad\text{for all}\quad\lambda\in\mathbb{R}\setminus\{\varrho\}\,.

Since LL is a Darboux transform of L^\hat{L} with parameter ϱ\varrho, there exists a d^ϱ\hat{d}_{\varrho}–parallel section φ^Γ(L)\hat{\varphi}\in\Gamma(L). Since ¯2=LL^=φ^φ\underline{\mathbb{H}}^{2}=L\oplus\hat{L}=\hat{\varphi}\mathbb{H}\oplus\varphi\mathbb{H} it is enough to show that the connections rλdλr_{\lambda}\cdot d_{\lambda} and d^λ\hat{d}_{\lambda} coincide on φ\varphi and φ^\hat{\varphi}.

Since rλ1=π^+πσϱ(λ)1r_{\lambda}^{-1}=\hat{\pi}+\pi\sigma_{\varrho}(\lambda)^{-1}, dϱφ=0d_{\varrho}\varphi=0 and η^φ=0\hat{\eta}\varphi=0 we have

(rλdλ)φ\displaystyle(r_{\lambda}\cdot d_{\lambda})\varphi =rλ(dφ+ηφλ)=rλ(ηφ(λϱ))=ηφϱ=dφ=d^λφ.\displaystyle=r_{\lambda}(d\varphi+\eta\varphi\lambda)=r_{\lambda}(\eta\varphi(\lambda-\varrho))=-\eta\varphi\varrho=d\varphi=\hat{d}_{\lambda}\varphi\,.

Similarly, we see that d^ϱφ^=0\hat{d}_{\varrho}\hat{\varphi}=0 and ηφ^=0\eta\hat{\varphi}=0 give

(rλdλ)φ^\displaystyle(r_{\lambda}\cdot d_{\lambda})\hat{\varphi} =rλ(dλφ^ϱλϱ)=rλ(dφ^ϱλϱ)=rλ(η^φ^)(λϱ)=η^φ^(λϱ)=d^λφ^.\displaystyle=r_{\lambda}(d_{\lambda}\hat{\varphi}\frac{\varrho-\lambda}{\varrho})=r_{\lambda}(d\hat{\varphi}\frac{\varrho-\lambda}{\varrho})=r_{\lambda}(\hat{\eta}\hat{\varphi})(\lambda-\varrho)=\hat{\eta}\hat{\varphi}(\lambda-\varrho)=\hat{d}_{\lambda}\hat{\varphi}\,.

Thus, rλdλ=d+λη^r_{\lambda}\cdot d_{\lambda}=d+\lambda\hat{\eta} for λϱ\lambda\not=\varrho and rλdλr_{\lambda}\cdot d_{\lambda} extends to λ=ϱ\lambda=\varrho. We observe that

rλd=π^dπ^+πdπ+π^dπϱλϱ+πdπ^ϱϱλr_{\lambda}\cdot d=\hat{\pi}\circ d\circ\hat{\pi}+\pi\circ d\circ\pi+\hat{\pi}\circ d\circ\pi\frac{\varrho-\lambda}{\varrho}+\pi\circ d\circ\hat{\pi}\frac{\varrho}{\varrho-\lambda}

and

Ad(rλ)η=πηπ^ϱϱλ\operatorname{Ad}(r_{\lambda})\eta=\pi\circ\eta\circ\hat{\pi}\frac{\varrho}{\varrho-\lambda}

since η|L=0,imηL\eta|_{L}=0,\operatorname{im}\eta\subset L. Therefore, the claim now follows from

η^=limλ1λrλdλ=π^dπ1ϱ.\hat{\eta}=\lim_{\lambda\to\infty}\frac{1}{\lambda}r_{\lambda}\cdot d_{\lambda}=-\hat{\pi}\circ d\circ\pi\frac{1}{\varrho}\,.

Note that indeed η^2=0\hat{\eta}^{2}=0 and imη^=kerη^=L^\operatorname{im}\hat{\eta}=\ker\hat{\eta}=\hat{L}. ∎

In particular, the family of flat connections d^λ=rλdλ\hat{d}_{\lambda}=r_{\lambda}\cdot d_{\lambda} extends into the pole ϱ\varrho of rλr_{\lambda}. We will now investigate parallel sections of d^λ\hat{d}_{\lambda} at λ=ϱ\lambda=\varrho and their corresponding Darboux transforms in terms of parallel sections of dλd_{\lambda}.

3.2. Bianchi–type and Sym–type parallel sections

Let f1f_{1} be the Darboux transform of an isothermic surface f:MS4f:M\to S^{4} which is given by ϱ\varrho\in\mathbb{R}_{*} and a dϱd_{\varrho}–parallel section φ1=φ1ϱ\varphi_{1}=\varphi_{1}^{\varrho}, and dλ1d^{1}_{\lambda} its associated family of flat connections. For λϱ\lambda\not=\varrho all parallel sections of dλ1d^{1}_{\lambda} are given by Bianchi permutability. We are now investigating parallel sections of dλ1d^{1}_{\lambda} at λ=ϱ\lambda=\varrho.

Proposition 3.2.

Assume that φ2=φ2ϱ\varphi_{2}=\varphi_{2}^{\varrho} is dϱd_{\varrho}–parallel and independent of φ1\varphi_{1} over \mathbb{H}. Then

φ12=πφ2\varphi_{12}=\pi\varphi_{2}\,

is a parallel section of the flat connection

dϱ1=dπ1dπd_{\varrho}^{1}=d-\pi_{1}\circ d\circ\pi

of f1f_{1}. Here π\pi and π1\pi_{1} are the projections onto LL and L1L_{1} respectively along the splitting ¯2=L1L\underline{\mathbb{H}}^{2}=L_{1}\oplus L. We call φ12\varphi_{12} a Bianchi–type section. The associated Darboux transform of f1f_{1} is f12=ff_{12}=f.

Proof.

Consider the dϱ1d_{\varrho}^{1}–parallel section φ~\tilde{\varphi} given by Bianchi permutability by

φ~=φ2φ1χ\tilde{\varphi}=\varphi_{2}-\varphi_{1}\chi

with dφ2=dφ1χd\varphi_{2}=d\varphi_{1}\chi. By Remark 2.9 we know that φ~Γ(L)\tilde{\varphi}\in\Gamma(L) is a section in LL. Therefore,

φ~=π(φ2φ1χ)=πφ2=φ12.\tilde{\varphi}=\pi(\varphi_{2}-\varphi_{1}\chi)=\pi\varphi_{2}=\varphi_{12}\,.

Since all dϱ1d^{1}_{\varrho}–parallel sections arising from Bianchi permutability are sections in LL and therefore quaternionic multiples of φ12\varphi_{12} we know that there exist dϱ1d^{1}_{\varrho}–parallel sections on the universal cover M~\tilde{M} of MM which do not arise from Bianchi permutability since dϱ1d^{1}_{\varrho} is a flat connection on ¯2\underline{\mathbb{H}}^{2}. We now investigate these.

Recall that away from λ=ϱ\lambda=\varrho, we have dλ1=rλdλd^{1}_{\lambda}=r_{\lambda}\cdot d_{\lambda} where

rλ=π1+σϱ(λ)π,σϱ(λ)=ϱϱλr_{\lambda}=\pi_{1}+\sigma_{\varrho}(\lambda)\pi,\quad\sigma_{\varrho}(\lambda)=\frac{\varrho}{\varrho-\lambda}

is the simple factor dressing matrix given by the bundle L1L_{1} and the pole ϱ\varrho.

Moreover, if φ1λ\varphi_{1}^{\lambda} are dλd_{\lambda}–parallel sections with φ1=φ1λ=ϱ\varphi_{1}=\varphi_{1}^{\lambda=\varrho}, which depend smoothly on λ\lambda, then φ11λ=rλφ1λ\varphi_{11}^{\lambda}=r_{\lambda}\varphi_{1}^{\lambda} is dλ1d^{1}_{\lambda}–parallel away from λ=ϱ\lambda=\varrho. At λ=ϱ\lambda=\varrho the dressing matrix rλr_{\lambda} has a pole. However, by L’Hôpital’s rule the limit φ11=limλϱφ11λ\varphi_{11}=\lim_{\lambda\to\varrho}\varphi_{11}^{\lambda} at ϱ\varrho exists since limλϱπφ1λ=0\lim_{\lambda\to\varrho}\pi\varphi_{1}^{\lambda}=0, and we obtain

φ11=φ1ϱπ(λφ1λ)|λ=ϱ.\varphi_{11}=\varphi_{1}-\varrho\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}\,.

Indeed, φ11\varphi_{11} is parallel with respect to dϱ1=dπ^dπd^{1}_{\varrho}=d-\hat{\pi}\circ d\circ\pi: since dλφ1λ=0d_{\lambda}\varphi_{1}^{\lambda}=0 we first have

0=λ(πdλφ1λ)|λ=ϱ=πλ(dφ1λ+ληφ1λ)|λ=ϱ=π(dϱ(λφ1λ)|λ=ϱ+ηφ1),0=\frac{\partial}{\partial\lambda}(\pi d_{\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}=\pi\frac{\partial}{\partial\lambda}(d\varphi_{1}^{\lambda}+\lambda\eta\varphi_{1}^{\lambda})|_{\lambda=\varrho}=\pi(d_{\varrho}(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}+\eta\varphi_{1})\,,

so that

ηφ1=π(dϱ(λφ1λ)|λ=ϱ)=π(dϱπ(λφ1λ)|λ=ϱ).\eta\varphi_{1}=-\pi(d_{\varrho}(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho})=-\pi(d_{\varrho}\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho})\,.

Here we used that imηL\operatorname{im}\eta\in L and that L1L_{1} is dϱd_{\varrho}–stable so that πdϱπ=πdϱ\pi\circ d_{\varrho}\circ\pi=\pi\circ d_{\varrho}. Together with η|L=0\eta|_{L}=0 and πφ1=0\pi\varphi_{1}=0 we now see that

dϱ1φ11\displaystyle d^{1}_{\varrho}\varphi_{11} =dφ1ϱdπ((λφ1λ)|λ=ϱ)+ϱπ1dπ(λφ1λ)|λ=ϱ=dφ1ϱπdπ((λφ1λ)|λ=ϱ)\displaystyle=d\varphi_{1}-\varrho d\pi((\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho})+\varrho\pi_{1}d\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}=d\varphi_{1}-\varrho\pi d\pi((\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho})
=dφϱπdϱπ((λφ1λ)|λ=ϱ)=dϱφ1=0.\displaystyle=d\varphi-\varrho\pi d_{\varrho}\pi((\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho})=d_{\varrho}\varphi_{1}=0\,.

Thus, we have shown that φ11\varphi_{11} gives a Darboux transform f11f_{11} of f1f_{1}. Since π1φ11=φ10\pi_{1}\varphi_{11}=\varphi_{1}\not=0, we see that f11ff_{11}\not=f, and thus, f11f_{11} is not a Darboux transform given by Bianchi permutability. We summarise:

Theorem 3.3.

Let f:MS4f:M\to S^{4} be isothermic and dλd_{\lambda} its associated family of flat connections. Let ϱ\varrho\in\mathbb{R}_{*} be fixed, φ1=φ1ϱΓ(¯~2)\varphi_{1}=\varphi_{1}^{\varrho}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) a dϱd_{\varrho}–parallel section, and f1f_{1} the corresponding Darboux transform. Given dλd_{\lambda}–parallel sections φ1λ\varphi_{1}^{\lambda} near ϱ\varrho which depend smoothly on ϱ\varrho with φ1λ=ϱ=φ1\varphi_{1}^{\lambda=\varrho}=\varphi_{1}, the section

φ11=φ1λ=ϱϱπ(λφ1λ)|λ=ϱ\varphi_{11}=\varphi_{1}^{\lambda=\varrho}-\varrho\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}

is dϱ1d^{1}_{\varrho}–parallel where dλ1=dλϱπ1dπd^{1}_{\lambda}=d-\frac{\lambda}{\varrho}\pi_{1}\circ d\circ\pi is the family of flat connections of f1f_{1}. We call the φ11\varphi_{11} as Sym–type (parallel) section and its associated Darboux transform f11f_{11} a Sym–type (two–step) Darboux transform of ff.

Remark 3.4.

Note that the Sym–type parallel section φ11\varphi_{11}, and thus the Sym–type Darboux transform f11f_{11}, depends on the choice of the extension φ1λ\varphi^{\lambda}_{1}.

Refer to caption
Refer to caption
Figure 4. Sym-type Darboux transform of an unduloid ff. In the first case the one–step Darboux transform f1f_{1} of ff is a surface of revolution, in the second case f1f_{1} is a CMC bubbleton.

3.3. A generalisation of Bianchi permutability

Combining previous results, we are now in the position to give a generalisation of Bianchi permutability: we obtain for all ϱ\varrho\in\mathbb{R}_{*} all two–step Darboux transforms of an isothermic surface f:MS4f:M\to S^{4} by parallel sections of the associated family of ff without further integration.

Theorem 3.5.

Let f:MS4f:M\to S^{4} be an isothermic surface and let dλd_{\lambda} be the associated family of ff. Let ϱ\varrho\in\mathbb{R}_{*} be a spectral parameter and f1f_{1} be a Darboux transform of ff given by a dϱd_{\varrho}–parallel section φ1=φ1ϱΓ(¯~2)\varphi_{1}=\varphi_{1}^{\varrho}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}). Then any parallel section of the flat connection dϱ1d^{1}_{\varrho} in the associated family of f1f_{1} is either a Sym–type or a Bianchi–type parallel section.

Proof.

Choose a smooth extension φ1λ\varphi_{1}^{\lambda} of φ1\varphi_{1} near λ=ϱ\lambda=\varrho and let φ11=φ1ϱπ(λφ1λ)|λ=ϱ\varphi_{11}=\varphi_{1}-\varrho\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho} be the corresponding Sym–type parallel section. Moreover, let φ2\varphi_{2} be a dϱd_{\varrho}–parallel section with φ12=πφ20\varphi_{12}=\pi\varphi_{2}\not=0. Since π1φ11=φ10\pi_{1}\varphi_{11}=\varphi_{1}\not=0, we see that φ11,φ12\varphi_{11},\varphi_{12} are \mathbb{H}–independent parallel sections of dϱ1d_{\varrho}^{1}.

Now let φ^Γ(¯~2)\hat{\varphi}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) be an arbitrary dϱ1d^{1}_{\varrho}–parallel section. We first show that φ^\hat{\varphi} is a Bianchi–type parallel section if π1φ^=0\pi_{1}\hat{\varphi}=0. In this case, φ^Γ(L)\hat{\varphi}\in\Gamma(L) and since both φ^\hat{\varphi} and φ12\varphi_{12} are non–vanishing dϱ1d^{1}_{\varrho}–parallel sections of the line bundle LL we have

φ^=φ12m,m,\hat{\varphi}=\varphi_{12}m,\quad m\in\mathbb{H}_{*}\,,

But then φ^=π(φ2m)\hat{\varphi}=\pi(\varphi_{2}m) is a Bianchi–type parallel section. We can therefore now assume that π1φ^0\pi_{1}\hat{\varphi}\not=0 so that

π1φ^=φ1m,m.\pi_{1}\hat{\varphi}=\varphi_{1}m,m\in\mathbb{H}_{*}\,.

We aim to show that φ^\hat{\varphi} is a Sym–type Darboux transform of ff. Therefore, we have to find a smooth extension φ~1λ\tilde{\varphi}_{1}^{\lambda} near λ=ϱ\lambda=\varrho so that φ^\hat{\varphi} is its associated Sym–type parallel section, that is,

φ^=φ~11=φ~1λ=ϱϱπ(λφ~1λ)|λ=ϱ.\hat{\varphi}=\tilde{\varphi}_{11}=\tilde{\varphi}_{1}^{\lambda=\varrho}-\varrho\pi(\frac{\partial}{\partial\lambda}\tilde{\varphi}_{1}^{\lambda})|_{\lambda=\varrho}\,.

Since φ11,φ12\varphi_{11},\varphi_{12} are linearly independent over \mathbb{H} we can write

φ^=φ11m1+φ12m2,m1,m2.\hat{\varphi}=\varphi_{11}m_{1}+\varphi_{12}m_{2},\quad m_{1},m_{2}\in\mathbb{H}\,.

Since πφ^=φ1m\pi\hat{\varphi}=\varphi_{1}m and πφ11=φ1\pi\varphi_{11}=\varphi_{1} we see that m1=mm_{1}=m. Extend φ2\varphi_{2} to dλd_{\lambda}–parallel sections φ2λ\varphi_{2}^{\lambda} which depend smoothly on λ\lambda near λ=ϱ\lambda=\varrho and put

φ~1λ=φ1λm+φ2λm2ϱλϱ.\tilde{\varphi}_{1}^{\lambda}=\varphi_{1}^{\lambda}m+\varphi_{2}^{\lambda}m_{2}\frac{\varrho-\lambda}{\varrho}\,.

Then φ~1λ\tilde{\varphi}_{1}^{\lambda} depends smoothly on λ\lambda near λ=ϱ\lambda=\varrho. Moreover, since φ1λ,φ2λ\varphi_{1}^{\lambda},\varphi_{2}^{\lambda} are dλd_{\lambda}–parallel and ϱλϱ\frac{\varrho-\lambda}{\varrho}\in\mathbb{C} is constant for fixed λ\lambda, we see that φ~1λ\tilde{\varphi}_{1}^{\lambda} is dλd_{\lambda}–parallel. At λ=ϱ\lambda=\varrho we have

φ~1ϱ=φ1m\tilde{\varphi}_{1}^{\varrho}=\varphi_{1}m

and the associated Sym–type parallel section is

φ~11\displaystyle\tilde{\varphi}_{11} =φ~1λ=ϱϱπ(λφ~1λ)|λ=ϱ\displaystyle=\tilde{\varphi}_{1}^{\lambda=\varrho}-\varrho\pi(\frac{\partial}{\partial\lambda}\tilde{\varphi}_{1}^{\lambda})|_{\lambda=\varrho}
=φ1mϱπ((λφ1λ)|λ=ϱmφ2m21ϱ+(λφ2λ)m2ϱλϱ|λ=ϱ)\displaystyle=\varphi_{1}m-\varrho\pi\Big{(}(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}m-\varphi_{2}m_{2}\frac{1}{\varrho}+(\frac{\partial}{\partial\lambda}\varphi_{2}^{\lambda})m_{2}\frac{\varrho-\lambda}{\varrho}|_{\lambda=\varrho}\Big{)}
=(φ1λ=ϱϱπ(λφ1λ)|λ=ϱ)m+πφ2m2=φ11m+φ12m2\displaystyle=\Big{(}\varphi_{1}^{\lambda=\varrho}-\varrho\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}\Big{)}m+\pi\varphi_{2}m_{2}=\varphi_{11}m+\varphi_{12}m_{2}
=φ^.\displaystyle=\hat{\varphi}.

This concludes the proof. ∎

This immediately gives a generalisation of Bianchi permutability, Theorem 2.8:

Theorem 3.6 (generalised Bianchi permutability).

Let f:MS4f:M\to S^{4} be isothermic and f1f_{1} be a Darboux transform of ff given by the spectral parameter ϱ1\varrho_{1}\in\mathbb{R}_{*} and the dϱ1d_{\varrho_{1}}–parallel section φ1Γ(¯~2)\varphi_{1}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}). Then all Darboux transforms of f1f_{1} are either Sym–type or Bianchi–type two–step Darboux transforms of ff.

In particular, all Darboux transforms are given by parallel sections φλΓ(¯~2)\varphi^{\lambda}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) of the associated family dλd_{\lambda} of ff via algebraic operations and differentiation with respect to the spectral parameter λ\lambda.

Denoting by f11f_{11} the Sym–Darboux transform given by a Sym–type parallel section φ11\varphi_{11} and by f12f_{12} a Darboux transform given by Bianchi permutability by a Bianchi–type parallel section φ12\varphi_{12} we see the following picture:

f11\textstyle{f_{11}}f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ12ϱ2\scriptstyle{\varphi_{12}^{\varrho_{2}}}φ11ϱ1\scriptstyle{\varphi_{11}^{\varrho_{1}}}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ1ϱ1\scriptstyle{{\varphi_{1}^{\varrho_{1}}}}φ2ϱ2\scriptstyle{\varphi_{2}^{\varrho_{2}}}f12=f21\textstyle{f_{12}=f_{21}}f2\textstyle{f_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ21ϱ1\scriptstyle{\varphi_{21}^{\varrho_{1}}}
Remark 3.7.

Note that the previous theorem now allows to construct all Darboux transforms (of any order) of an isothermic surface ff from parallel sections of the associated family dλd_{\lambda} of ff without further integration.

3.4. Closing conditions

We now investigate the closing condition for a two–step Darboux transform of an isothermic surface f:MS4f:M\to S^{4}.

For ϱi,i=1,2,\varrho_{i}\in\mathbb{R},i=1,2, let φi=φiϱi\varphi_{i}=\varphi_{i}^{\varrho_{i}} be dϱid_{\varrho_{i}}–parallel sections of the associated family of flat connections dλd_{\lambda} of ff. Assume that φi\varphi_{i} have multipliers hih_{i}\in\mathbb{C}, that is, γφi=φihi(γ)\gamma^{*}\varphi_{i}=\varphi_{i}h_{i}(\gamma) for all γπ1(M)\gamma\in\pi_{1}(M). Then both associated Darboux transforms fi:MS4f_{i}:M\to S^{4} are closed surfaces. The function χ\chi defined by dφ2=dφ1χd\varphi_{2}=d\varphi_{1}\chi satisfies χ=h11χh2\chi^{*}=h_{1}^{-1}\chi h_{2} so that

φ12=φ2φ1χ\varphi_{12}=\varphi_{2}-\varphi_{1}\chi

has multiplier h2h_{2}. In particular, we see that the two–step Darboux transforms, which are obtained by Bianchi permutability from closed Darboux transforms, are closed too:

Proposition 3.8.

Let f:MS4f:M\to S^{4} be an isothermic surface and fi:MS4f_{i}:M\to S^{4}, i=1,2i=1,2, be closed Darboux transforms of ff, with f1(p)f2(p)f_{1}(p)\not=f_{2}(p) for all pp. Then the common Darboux transform of f1f_{1} and f2f_{2} is closed too.

Remark 3.9.

This result holds trivially when ϱ1=ϱ2\varrho_{1}=\varrho_{2}: in this case the Bianchi–type two–step Darboux transforms are f=f12=f21f=f_{12}=f_{21}.

Consider now the remaining case when ϱ:=ϱ1=ϱ2\varrho:=\varrho_{1}=\varrho_{2} and the Darboux transform f11f_{11} of f1f_{1} is given by a Sym–type parallel section, that is, it is given by φ11=φ1ϱπ(λφ1λ)|λ=ϱ\varphi_{11}=\varphi_{1}-\varrho\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho} where φ1λ\varphi_{1}^{\lambda} is dλd_{\lambda}–parallel near λ=ϱ\lambda=\varrho and φ1λ=ϱ=φ1\varphi_{1}^{\lambda=\varrho}=\varphi_{1}. If φ1λ\varphi_{1}^{\lambda} is a section with multiplier h1λh_{1}^{\lambda} for all λ\lambda near ϱ\varrho then

γπ(λφ1λ)|λ=ϱ=π((λφ1λ)|λ=ϱh1λ=ϱ+φ1(λh1λ)|λ=ϱ)=π(λφ1λ)|λ=ϱh1\gamma^{*}\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}=\pi((\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}h_{1}^{\lambda=\varrho}+\varphi_{1}(\frac{\partial}{\partial\lambda}h_{1}^{\lambda})|_{\lambda=\varrho})=\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}h_{1}

and thus φ11=φ1π(λφ1λ)|λ=ϱ\varphi_{11}=\varphi_{1}-\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho} has the same multiplier h1h_{1} as φ1\varphi_{1}. In particular, the resulting Darboux transform f11f_{11} of f1f_{1} is closed.

We summarise:

Theorem 3.10.

Let f:MS4f:M\to S^{4} be isothermic and f1:MS4f_{1}:M\to S^{4} a Darboux transform given by the dϱd_{\varrho}–parallel section φ1\varphi_{1}. A Sym–type Darboux transform f11f_{11} given by an extension φ1λ\varphi_{1}^{\lambda} of φ1\varphi_{1} is closed if φ1λ\varphi_{1}^{\lambda} is a section with multiplier near λ=ϱ\lambda=\varrho.

We now investigate cases where we can guarantee existence of closed two–step Darboux transforms in terms of the behaviour of the holonomy of dλd_{\lambda}.

Corollary 3.11.

Let f:MS4f:M\to S^{4} be isothermic and dλd_{\lambda} its associated family of flat connections. If ϱ\varrho\in\mathbb{R}_{*} is a spectral parameter such that there are four distinct complex multipliers of the holonomy of dϱd_{\varrho}, then every closed Darboux transform f1f_{1} has exactly two closed Darboux transforms with parameter ϱ\varrho.

Remark 3.12.

Homogeneous tori are examples of isothermic surfaces which have exactly four distinct complex multipliers: we will return to this topic in a future paper.

Proof.

If one of the multipliers is real then there exist two complex independent parallel sections φ,φj\varphi,\varphi_{j} with the same multiplier which contradicts the assumption that the holonomy has 4 distinct eigenvalues with complex one–dimensional eigenspaces.

Since complex multipliers appear as pairs of conjugate complex multipliers we have exactly two dϱd_{\varrho}–parallel sections φ1,φ2\varphi_{1},\varphi_{2} with complex multiplier h1h_{1} and h2h_{2}, h1h2h_{1}\not=h_{2}, respectively which are \mathbb{H}–independent. Thus, all multipliers are given by {h1,h¯1,h2,h¯2}\{h_{1},\bar{h}_{1},h_{2},\bar{h}_{2}\}.

Since f1f_{1} is closed, it is given by one of these parallel sections, say φ1\varphi_{1}. The multipliers depend smoothly on the spectral parameter and since there are four distinct multipliers for λ\lambda near ϱ\varrho, we can extend φ1\varphi_{1} around ϱ\varrho to a smooth family of dλd_{\lambda}–parallel sections φ1λ\varphi_{1}^{\lambda} with multipliers h1λh_{1}^{\lambda} . Then the Sym–type formula shows that φ11\varphi_{11} is a section with multiplier h1h_{1} and f11f_{11} is closed. Since f11ff_{11}\not=f we obtain the second closed Darboux transform from Bianchi permutability and the parallel section φ2\varphi_{2}. Since h1h2h_{1}\not=h_{2} we cannot have further closed Darboux transforms of f1f_{1}. ∎

f11\textstyle{f_{11}}f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(φ12ϱ,h2)\scriptstyle{(\varphi_{12}^{\varrho},h_{2})}(φ11ϱ,h1)\scriptstyle{(\varphi_{11}^{\varrho},h_{1})}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(φ1ϱ,h1)\scriptstyle{(\varphi_{1}^{\varrho},h_{1})}(φ2ϱ,h2)\scriptstyle{(\varphi_{2}^{\varrho},h_{2})}f=f12=f21\textstyle{f=f_{12}=f_{21}}f2\textstyle{f_{2}}
Corollary 3.13.

Let f:MS4f:M\to S^{4} be isothermic and dλd_{\lambda} its associated family of flat connections. Assume that there are two \mathbb{H}–independent φ1λ,φ2λ\varphi_{1}^{\lambda},\varphi_{2}^{\lambda} with multipliers hλ=h1λ=h2λh^{\lambda}=h_{1}^{\lambda}=h_{2}^{\lambda}\in\mathbb{C}\setminus\mathbb{R} for λ\lambda near ϱ\varrho\in\mathbb{R}_{*}. Then every closed Darboux transform f1f_{1} of ff with parameter ϱ\varrho has a 1\mathbb{C}\mathbb{P}^{1}–worth of closed Darboux transforms.

Proof.

Since h=hλ=ϱh=h^{\lambda=\varrho}\not\in\mathbb{R} we see that ϱ\varrho is not a resonance point. Let φ1\varphi_{1} be a dϱd_{\varrho}–parallel section with multiplier and f1f_{1} the Darboux transform given by φ1\varphi_{1}. Since multipliers come in pairs of complex conjugates, we know that the holonomy of dλd_{\lambda} is diagonalisable with complex 2–dimensional, dλd_{\lambda}–stable eigenspaces Eλ=span{φ1λ,φ2λ}E^{\lambda}=\operatorname{span}_{\mathbb{C}}\{\varphi_{1}^{\lambda},\varphi_{2}^{\lambda}\} and EλjE^{\lambda}j with multipliers hh and h¯\bar{h}. Therefore, we can assume without loss of generality that the dϱd_{\varrho}–parallel section φ1\varphi_{1} has multiplier hh by replacing φ1\varphi_{1} by φ1j\varphi_{1}j if necessary. Moreover, we can write φ1=φ1λ=ϱm1+φ2λ=ϱm2\varphi_{1}=\varphi_{1}^{\lambda=\varrho}m_{1}+\varphi_{2}^{\lambda=\varrho}m_{2}, m1,m2m_{1},m_{2}\in\mathbb{C}, and thus can also assume without loss of generality that φ1=φ1λ=ϱ\varphi_{1}=\varphi_{1}^{\lambda=\varrho} by replacing φ1λ\varphi_{1}^{\lambda} by φ1λm1+φ2λm2\varphi_{1}^{\lambda}m_{1}+\varphi_{2}^{\lambda}m_{2} if necessary.

The Sym–type parallel section

φ11=φ1ϱπ(λφ1λ)|λ=ϱ\varphi_{11}=\varphi_{1}-\varrho\pi(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}

has multiplier hh since γ(λφ1λ)|λ=ϱ=(λφ1λ)|λ=ϱh+φ1(λhλ)|λ=ϱ\gamma^{*}(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}=(\frac{\partial}{\partial\lambda}\varphi_{1}^{\lambda})|_{\lambda=\varrho}h+\varphi_{1}(\frac{\partial}{\partial\lambda}h^{\lambda})|_{\lambda=\varrho}. Here π\pi is the projection onto LL along the splitting ¯2=LL1\underline{\mathbb{H}}^{2}=L\oplus L_{1}.

On the other hand, the Bianchi–type Darboux transform f12f_{12} of f1f_{1} is given φ12=πφ2λ=ϱ\varphi_{12}=\pi\varphi_{2}^{\lambda=\varrho} which is also a section with multiplier hh. Thus, any \mathbb{C}–linear combination of φ11,φ12\varphi_{11},\varphi_{12} is a dϱd_{\varrho}–parallel section with multiplier hh, and thus we have a 1\mathbb{C}\mathbb{P}^{1} worth of closed Darboux transforms. Since ϱ\varrho is not a resonance point, parallel sections with multipliers h¯\bar{h} give the same surfaces. ∎

f11\textstyle{f_{11}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(φ12ϱ,h)\scriptstyle{(\varphi_{12}^{\varrho},h)}(φ11ϱ,h)\scriptstyle{(\varphi_{11}^{\varrho},h)}(φϱ,h),mi\scriptstyle{\quad(\varphi^{\varrho},h),\,m_{i}\in\mathbb{C}}f^\textstyle{\hat{f}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(φ1ϱ,h1)\scriptstyle{(\varphi_{1}^{\varrho},h_{1})}(φ2ϱ,h)\scriptstyle{(\varphi_{2}^{\varrho},h)}f=f12=f21\textstyle{f=f_{12}=f_{21}}f2\textstyle{f_{2}}
Example 3.14.

This case appears for surfaces of revolution in 3–space: If ϱ>14,ϱ0,\varrho>-\frac{1}{4},\varrho\not=0, is not a resonance point then a closed Darboux transform f1f_{1} with parameter ϱ\varrho in 3–space is a surface of revolution and so is every Darboux transform with parameter ϱ\varrho of f1f_{1} in 3-space.

Refer to caption
Refer to caption
Figure 5. Closed Sym-type Darboux transforms of an unduloid for a non–resonance spectral parameter ϱ>14\varrho>-\frac{1}{4}.

At resonance points ϱr\varrho_{r} it is possible that a Darboux transform f1f_{1} has ϱr\varrho_{r} as a resonance point.

Theorem 3.15.

Let ϱr\varrho_{r}\in\mathbb{R}_{*} is a resonance point of an isothermic surface ff and f1f_{1} be a closed Darboux transform of ff given by a dϱrd_{\varrho_{r}}–parallel section φ1\varphi_{1} with multiplier h1h_{1}. If φ1\varphi_{1} extends to dλd_{\lambda}–parallel sections φ1λ\varphi_{1}^{\lambda} with multiplier h1λh_{1}^{\lambda} near λ=ϱr\lambda=\varrho_{r} then ϱr\varrho_{r} is a resonance point of f1f_{1}.

Proof.

By Theorem 3.5 every parallel section of the family of flat connections of f1f_{1} is either a Sym–type or a Bianchi–type parallel section. Every Bianchi–type parallel section φ12\varphi_{12} gives rise to the Darboux transform f12=ff_{12}=f and is given by a parallel section φ2\varphi_{2} with real multiplier h2=h1h_{2}=h_{1} since ϱr\varrho_{r} is a resonance point.

By Theorem 3.10 we know that a Sym–type Darboux transform is closed if φ1\varphi_{1} can be extended by a dλd_{\lambda}–parallel sections φ1λ\varphi_{1}^{\lambda} with multiplier h1λh_{1}^{\lambda}. In this case, φ11\varphi_{11} has multiplier h1h_{1} and φ12\varphi_{12} and φ11\varphi_{11} have the same real multiplier. Since any parallel section φ^\hat{\varphi} is a linear combination

φ^=φ11m1+φ12m2\hat{\varphi}=\varphi_{11}m_{1}+\varphi_{12}m_{2}

with m1,m2m_{1},m_{2}\in\mathbb{H} we see that every parallel section has multiplier h1h_{1}. Thus, ϱr\varrho_{r} is a resonance point of f1f_{1}. ∎

f11\textstyle{f_{11}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f1\textstyle{f_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(φ12ϱ,h)\scriptstyle{(\varphi_{12}^{\varrho},h)}(φ11ϱ,h)\scriptstyle{(\varphi_{11}^{\varrho},h)}(φϱ,h),mi\scriptstyle{\quad(\varphi^{\varrho},h),\,m_{i}\in\mathbb{H}}f^\textstyle{\hat{f}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\textstyle{f\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(φ1ϱ,h1)\scriptstyle{(\varphi_{1}^{\varrho},h_{1})}(φ2ϱ,h)\scriptstyle{(\varphi_{2}^{\varrho},h)}f=f12=f21\textstyle{f=f_{12}=f_{21}}f2\textstyle{f_{2}}
Example 3.16.

Surfaces of revolution f:M3f:M\to\mathbb{R}^{3} are examples of isothermic surfaces with resonance points. All Darboux transforms f1f_{1} with respect to a resonance point ϱr\varrho_{r}\in\mathbb{R}_{*} which are surfaces of revolution have ϱr\varrho_{r} as a resonance point too and thus a 1\mathbb{H}\mathbb{P}^{1}–family of closed (possibly singular) Darboux transforms.

The only closed Darboux transforms f1f_{1} of ff which are not surfaces of revolution are (isothermic) bubbletons. In this case, the spectral parameter ϱr\varrho_{r} gives only one closed Darboux transform of f1f_{1}, namely the original surface of revolution ff.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6. Sym–type Darboux transforms of an unduloid at resonance points ϱk=k214,k=2,3\varrho_{k}=\frac{k^{2}-1}{4},k=2,3.

4. Sym–type Darboux transforms of the round cylinder

In this section we will demonstrate explicitly the construction of Sym–type Darboux transforms in the example of a conformally parametrised round cylinder (referred to simply as cylinder, hereafter). We will first show that the Darboux transform of a real–analytic surface of revolution, which does not have constant mean curvature, has constant mean curvature if and only if the Darboux transform is again a surface of revolution. This will allow to rule out later that closed surfaces obtained by Sym–type Darboux transforms are constant mean curvature surfaces.

We then will give all Darboux transforms of a cylinder explicitly by computing all parallel sections of the family of flat connections. With this at hand, we will consider the case when the one–step Darboux transform is a surface of revolution but not CMC. In this case, we give two surprisingly explicit examples of Sym–type transforms, one which is a surface of revolution and one which is not.

4.1. Darboux transforms of a surface of revolution

We first discuss curvature properties of Darboux transforms of a surface of revolution which is not a Delaunay surface. Given an isothermic surface f:M3f:M\to\mathbb{R}^{3} recall that the associated family dλd_{\lambda} gives rise to a dual surface fdf^{d} via (2.1) by dfd=ωdf^{d}=\omega. Writing a dϱd_{\varrho}–parallel section φ=eα+ψβΓ(¯~2)\varphi=e\alpha+\psi\beta\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}), ϱ\varrho\in\mathbb{R}_{*}, where

e=(10),ψ=(f1)e=\begin{pmatrix}1\\ 0\end{pmatrix},\quad\psi=\begin{pmatrix}f\\ 1\end{pmatrix}

we obtain the Riccati equation

(4.1) dT=df+TdfdϱTdT=-df+Tdf^{d}\varrho T

for T=αβ1T=\alpha\beta^{-1} in the case when T:M~3T:\tilde{M}\to\mathbb{R}^{3}. In this case, the Darboux transform given by φ\varphi can be written in affine coordinates as f^=f+T\hat{f}=f+T so that df^=ϱTdfdTd\hat{f}=\varrho Tdf^{d}T.

Next we recall that for an isothermic surface f:M3f:M\to\mathbb{R}^{3} the mean curvature of a Darboux transform f^=f+T\hat{f}=f+T in 3–space is given in terms of the mean curvature of a dual surface fdf^{d} of ff.

Lemma 4.1 ([darboux_isothermic, Equation 58]).

Let f:M3f:M\to\mathbb{R}^{3} be an isothermic surface in 3–space with Gauss map NN and dual surface fdf^{d}. Then the mean curvature of a Darboux transform f^=f+T:M~3\hat{f}=f+T:\tilde{M}\to\mathbb{R}^{3} of ff with parameter ϱ\varrho is given by

(4.2) H^=1|T|2(Hdϱ2T,N),\hat{H}=-\frac{1}{|T|^{2}}(\frac{H^{d}}{\varrho}-2\langle T,N\rangle)\,,

where HdH^{d} is the mean curvature of the dual surface fdf^{d} of ff.

Similar to the case when ff is CMC in [coimbra] one can now derive a necessary condition for a Darboux transform of an isothermic surface to have constant mean curvature:

Lemma 4.2.

Let f:M3f:M\to\mathbb{R}^{3} be an isothermic surface and f^=f+T:M~3\hat{f}=f+T:\tilde{M}\to\mathbb{R}^{3} a Darboux transform of ff. If f^\hat{f} has constant mean curvature H^\hat{H} then

(HH^)df,T+dHd2ϱ=0,(H-\hat{H})\langle df,T\rangle+\frac{dH^{d}}{2\varrho}=0\,,

where HH and HdH^{d} are the mean curvatures of ff and its dual surface fdf^{d} respectively.

Proof.

From Hdf=12(dNNdN)-Hdf=\frac{1}{2}(dN-N*dN), see [coimbra, Sec. 7.2], and Nd=NN^{d}=-N we know that dN=HddfdHdfdN=H^{d}df^{d}-Hdf. Since H^\hat{H} is constant we can differentiate equation (4.2)

12H^|T|2+Hd2ϱT,N=0\frac{1}{2}\hat{H}|T|^{2}+\frac{H^{d}}{2\varrho}-\langle T,N\rangle=0

to obtain, using the Riccati equation, that

0\displaystyle 0 =H^dT,T+dHd2ϱdT,NT,dN\displaystyle=\hat{H}\langle dT,T\rangle+\frac{dH^{d}}{2\varrho}-\langle dT,N\rangle-\langle T,dN\rangle
=H^df+TdfdϱT,T+dHd2ϱTdfdϱT,NT,HddfdHdf\displaystyle=\hat{H}\langle-df+Tdf^{d}\varrho T,T\rangle+\frac{dH^{d}}{2\varrho}-\langle Tdf^{d}\varrho T,N\rangle-\langle T,H^{d}df^{d}-Hdf\rangle
=(HH^)df,T+dHd2ϱ+TdfdϱT,H^TNT,Hddfd.\displaystyle=(H-\hat{H})\langle df,T\rangle+\frac{dH^{d}}{2\varrho}+\langle Tdf^{d}\varrho T,\hat{H}T-N\rangle-\langle T,H^{d}df^{d}\rangle\,.

It remains to show that

0=TdfdϱT,H^TNT,Hddfd.0=\langle Tdf^{d}\varrho T,\hat{H}T-N\rangle-\langle T,H^{d}df^{d}\rangle\,.

Since a,b=12(ab+ba)\langle a,b\rangle=-\frac{1}{2}(ab+ba) for a,bIm=3a,b\in\operatorname{Im}\mathbb{H}=\mathbb{R}^{3}, we get

TdfdϱT,T=ϱ|T|2T,dfd\langle Tdf^{d}\varrho T,T\rangle=-\varrho|T|^{2}\langle T,df^{d}\rangle

so that

TdfdϱT,\displaystyle\langle Tdf^{d}\varrho T, H^TNT,Hddfd\displaystyle\hat{H}T-N\rangle-\langle T,H^{d}df^{d}\rangle
=(ϱ|T|2H^+Hd)T,dfdϱTdfdT,N\displaystyle=-(\varrho|T|^{2}\hat{H}+H^{d})\langle T,df^{d}\rangle-\varrho\langle Tdf^{d}T,N\rangle
=2ϱT,NT,dfdϱTdfdT,N\displaystyle=-2\varrho\langle T,N\rangle\langle T,df^{d}\rangle-\varrho\langle Tdf^{d}T,N\rangle
=ϱ2((TN+NT)dfdTTdfd(TN+NT)+TdfdTN+NTdfdT)\displaystyle=\frac{\varrho}{2}(-(TN+NT)df^{d}T-Tdf^{d}(TN+NT)+Tdf^{d}TN+NTdf^{d}T)
=0\displaystyle=0

where we used equation (4.2) and Ndfd=dfdNNdf^{d}=-df^{d}N. ∎

We can now use the previous lemma to discuss the mean curvature of Darboux transforms of surfaces of revolution.

Theorem 4.3.

Let f:M3f:M\to\mathbb{R}^{3} be a real–analytic conformal surface of revolution in 3–space. If a Darboux transform f^:M~3\hat{f}:\tilde{M}\to\mathbb{R}^{3} of ff has constant mean curvature in 3–space then f^:M3\hat{f}:M\to\mathbb{R}^{3} is a surface of revolution or ff is CMC, that is, at least one of f^\hat{f} or ff is a Delaunay surface.

Proof.

Since ff is conformally parametrised we can write f(x,y)=ip(x)+jq(x)eiyf(x,y)=ip(x)+jq(x)e^{-iy} with smooth real–valued functions p,qp,q satisfying p2+q2=q2p^{\prime 2}+q^{\prime 2}=q^{2}.

Let f^:M~3\hat{f}:\tilde{M}\to\mathbb{R}^{3} be a Darboux transform in 3–space with parameter ϱ\varrho, that is f^=f+T\hat{f}=f+T where TT satisfies the Riccati equation (4.1). Since both ff and its dual fdf^{d} are surfaces of revolution the mean curvatures HH and HdH^{d} of both surfaces are independent of yy. Thus, Lemma 4.2 gives

0=(H^H)fy,T=(H^H)jiqeiy,T.0=(\hat{H}-H)\langle f_{y},T\rangle=(\hat{H}-H)\langle-jiqe^{-iy},T\rangle\,.

If H^=H\hat{H}=H then ff has constant mean curvature and we are done. Now, assume that H^H\hat{H}\not=H. Since ff is real–analytic so is HH, and thus H^H\hat{H}-H has only isolated zeros. Then fy,T=0\langle f_{y},T\rangle=0 away from the isolated zeros of H^H\hat{H}-H. Since ff and TT are smooth, we conclude that fy,T=0\langle f_{y},T\rangle=0 on MM. This shows that

T=in+jmeiyT=in+jme^{-iy}

where m,nm,n are real valued functions. On the other hand, HdH^{d} and thus also HxdH^{d}_{x} only depend on xx, so that

fx,T=ip+jqeiy,in+jmeiy=pn+qm\langle f_{x},T\rangle=\langle ip^{\prime}+jq^{\prime}e^{-iy},in+jme^{-iy}\rangle=p^{\prime}n+q^{\prime}m

only depends on xx. Now, dT=df+TdfdϱTdT=-df+Tdf^{d}\varrho T shows

Ty=fy1|fy|2TfyϱT.T_{y}=-f_{y}-\frac{1}{|f_{y}|^{2}}Tf_{y}\varrho T\,.

Since

TfyT=fy|T|22T,fyT=fy|T|2Tf_{y}T=f_{y}|T|^{2}-2\langle T,f_{y}\rangle T=f_{y}|T|^{2}

we have Ty=fy(1ϱ|T|2|fy|2)T_{y}=f_{y}(-1-\frac{\varrho|T|^{2}}{|f_{y}|^{2}}). Therefore, Ty=iny+j(myim)eiyT_{y}=in_{y}+j(m_{y}-im)e^{-iy} is a scale of fy=kqeiyf_{y}=kqe^{-iy} by a real-valued function, and thus ny=0n_{y}=0. Since fx,T,p,q\langle f_{x},T\rangle,p^{\prime},q^{\prime} only depend on xx this shows that also my=0m_{y}=0. Therefore we have shown that f^\hat{f} is a surface of revolution if H^H\hat{H}\not=H. ∎

4.2. Darboux transforms of a cylinder

We will compute all Darboux transforms of a conformally parametrised cylinder, of constant mean curvature H=1H=1

f(x,y)=12(ix+jeiy).f(x,y)=\frac{1}{2}(ix+je^{-iy})\,.

Consider the dual surface fdf^{d} given, up to translation, by dfd=fx1dxfy1dydf^{d}=f_{x}^{-1}dx-f_{y}^{-1}dy. We choose fd(x,y)=2(ixjeiy)f^{d}(x,y)=-2(ix-je^{-iy}) and observe that the dual surface has constant mean curvature Hd=14H^{d}=-\frac{1}{4}.

To find all dϱd_{\varrho}–parallel sections, ϱ0\varrho\not=0, we recall (2.1) that

dϱ=d+ϱ(fdfdfdfdfdfddfdf).d_{\varrho}=d+\varrho\begin{pmatrix}fdf^{d}&-fdf^{d}f\\ df^{d}&-df^{d}f\end{pmatrix}\,.

Since Le=¯2L\oplus e\mathbb{H}=\underline{\mathbb{H}}^{2} where L=ψL=\psi\mathbb{H},

ψ=(f1),e=(10),\psi=\begin{pmatrix}f\\ 1\end{pmatrix},e=\begin{pmatrix}1\\ 0\end{pmatrix}\,,

we can write a dϱd_{\varrho}–parallel section φ=φϱΓ(¯~2)\varphi=\varphi^{\varrho}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) as

φ=eα+ψβ,\varphi=e\alpha+\psi\beta\,,

with α=αϱ,β=βϱ:M~\alpha=\alpha^{\varrho},\beta=\beta^{\varrho}:\tilde{M}\to\mathbb{H}. If φ=φϱ\varphi=\varphi^{\varrho} is dϱd_{\varrho}–parallel we thus see that

dα=dfβ,dβ=dfdαϱ.d\alpha=-df\beta,d\beta=-df^{d}\alpha\varrho\,.

From this we observe that φ\varphi has complex multiplier hh if and only if α\alpha has also multiplier hh.

Differentiating the above equations again we obtain in the isothermic coordinate z=x+iyz=x+iy the differential equation

(4.3) αyyiαy+αϱ=0,\alpha_{yy}-i\alpha_{y}+\alpha\varrho=0\,,

which has, in the case ϱ14\varrho\not=-\frac{1}{4}, the solutions

α=eiy2(c+eity2+ceity2)\alpha=e^{\frac{iy}{2}}(c^{+}e^{\frac{ity}{2}}+c^{-}e^{-\frac{ity}{2}})

where c±c^{\pm} are \mathbb{H}–valued functions, independent of yy, and t=1+4ϱt=\sqrt{1+4\varrho}.

Thus, for ϱ14\varrho\not=-\frac{1}{4} the section φ=eα+ψβ\varphi=e\alpha+\psi\beta is a section with multiplier if and only if c+=0c^{+}=0, c=0c^{-}=0 or ϱ\varrho is a resonance point. In particular, the multiplier is h±=e±iπth^{\pm}=-e^{\pm i\pi t}. Note that if ϱ\varrho is a resonance point, that is, if h+=hh^{+}=h^{-}, then ϱ=k214,k,k>1\varrho=\frac{k^{2}-1}{4},k\in\mathbb{Z},k>1.

In the case when ϱ=14\varrho=-\frac{1}{4} the general solution to the differential equation (4.3) is given by

α=eiy2(c1+yc2)\alpha=e^{\frac{iy}{2}}(c_{1}+yc_{2})

with c1,c2c_{1},c_{2} quaternionic valued functions depending on xx only. From this we see that φ=eα+ψβ\varphi=e\alpha+\psi\beta is a section with multiplier if and only if c2=0c_{2}=0. Thus, to find sections with multipliers we can restrict to finding solutions α\alpha of the form α=eiy2(c+eity2+ceity2)\alpha=e^{\frac{iy}{2}}(c^{+}e^{\frac{ity}{2}}+c^{-}e^{-\frac{ity}{2}}) for t=1+4ϱ,ϱ0t=\sqrt{1+4\varrho},\varrho\not=0 .

We write c±=c0±+jc1±c^{\pm}=c_{0}^{\pm}+jc_{1}^{\pm} with complex valued function c0±,c1±c_{0}^{\pm},c_{1}^{\pm}. Then β=fy1αy\beta=-f_{y}^{-1}\alpha_{y} gives

β=eiy2((c1+(t1)+jc0+(1+t))eity2(c1(1+t)+jc0(t1))eity2).\beta=e^{\frac{iy}{2}}\left(\Big{(}c^{+}_{1}(t-1)+jc_{0}^{+}(1+t)\Big{)}e^{\frac{ity}{2}}-\Big{(}c^{-}_{1}(1+t)+jc_{0}^{-}(t-1)\Big{)}e^{\frac{-ity}{2}}\right)\,.

It remains to find the complex–valued functions ci±c_{i}^{\pm}. Since dα=dfβd\alpha=-df\beta we see that dα=Ndα*d\alpha=Nd\alpha where N=jeiyN=-je^{-iy} is the Gauss map of ff. Therefore, we can find c±c^{\pm} by solving the differential equation αy=Nαx\alpha_{y}=N\alpha_{x} which gives the linear system

(c0±)\displaystyle(c_{0}^{\pm})^{\prime} =i(1±t)2c1±\displaystyle=-\frac{i(-1\pm t)}{2}c_{1}^{\pm}
(c1±)\displaystyle(c_{1}^{\pm})^{\prime} =i(1±t)2c0±.\displaystyle=\frac{i(1\pm t)}{2}c_{0}^{\pm}\,.

The solutions of this system are given by

c0±(x)\displaystyle c_{0}^{\pm}(x) =2iϱ(m0±eϱxm1±eϱx)\displaystyle=-2i\sqrt{\varrho}(m_{0}^{\pm}e^{\sqrt{\varrho}x}-m_{1}^{\pm}e^{-\sqrt{\varrho}x})
c1±(x)\displaystyle c_{1}^{\pm}(x) =(1±t)(m0±eϱx+m1±eϱx)\displaystyle=(1\pm t)(m_{0}^{\pm}e^{\sqrt{\varrho}x}+m_{1}^{\pm}e^{-\sqrt{\varrho}x})

with mi±m_{i}^{\pm}\in\mathbb{C}. Thus, we have now computed all parallel sections of a cylinder explicitly. We summarise:

Proposition 4.4.

Let f(x,y)=12(ix+jeiy)f(x,y)=\frac{1}{2}(ix+je^{-iy}) be the round cylinder and ϱ\varrho\in\mathbb{R}_{*}. Then φ±=eα±+ψβ±Γ(¯~2)\varphi^{\pm}=e\alpha^{\pm}+\psi\beta^{\pm}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}) are dϱd_{\varrho}–parallel sections with multipliers h±=e±iπth^{\pm}=-e^{\pm i\pi t}, where

α±\displaystyle\alpha^{\pm} =eiy2(c0±+jc1±)e±ity2\displaystyle=e^{\frac{iy}{2}}(c_{0}^{\pm}+jc_{1}^{\pm})e^{\pm\frac{ity}{2}}
β±\displaystyle\beta^{\pm} =eiy2(c1±(±t1)+jc0±(1±t))e±ity2\displaystyle=e^{\frac{iy}{2}}\left(c_{1}^{\pm}(\pm t-1)+jc_{0}^{\pm}(1\pm t)\right)e^{\pm\frac{ity}{2}}

with t=1+4ρt=\sqrt{1+4\rho} and

c0±(x)=c0±(x,m0±,m1±)\displaystyle c_{0}^{\pm}(x)=c_{0}^{\pm}(x,m_{0}^{\pm},m_{1}^{\pm}) =2iϱ(m0±eϱxm1±eϱx)\displaystyle=-2i\sqrt{\varrho}(m_{0}^{\pm}e^{\sqrt{\varrho}x}-m_{1}^{\pm}e^{-\sqrt{\varrho}x})
c1±(x)=c1±(x,m0±,m1±)\displaystyle c_{1}^{\pm}(x)=c_{1}^{\pm}(x,m_{0}^{\pm},m_{1}^{\pm}) =(1±t)(m0±eϱx+m1±eϱx),m0±,m1±.\displaystyle=(1\pm t)(m_{0}^{\pm}e^{\sqrt{\varrho}x}+m_{1}^{\pm}e^{-\sqrt{\varrho}x})\,,\quad m_{0}^{\pm},m_{1}^{\pm}\in\mathbb{C}\,.

Moreover, every dϱd_{\varrho}–parallel section, ϱ14\varrho\not=-\frac{1}{4}, is given by φ=φ++φΓ(¯~2)\varphi=\varphi^{+}+\varphi^{-}\in\Gamma(\underline{\widetilde{\mathbb{H}}}^{2}).

Finally, the resonance points of the cylinder are given by

ϱk=k214,k,k>1.\varrho_{k}=\frac{k^{2}-1}{4},\qquad k\in\mathbb{Z},k>1\,.

In this case, every dϱkd_{\varrho_{k}}–parallel section has multiplier hk=(1)k+1h_{k}=(-1)^{k+1}.

From the explicit form of the parallel sections we have now complete information about the set of closed Darboux transforms:

Theorem 4.5.

Let f:M3f:M\to\mathbb{R}^{3} be given by f(x,y)=12(ix+jeiy)f(x,y)=\frac{1}{2}(ix+je^{-iy}). Then for ϱ,ϱk214,k,\varrho\in\mathbb{R}_{*},\varrho\not=\frac{k^{2}-1}{4},k\in\mathbb{Z}, each multiplier h±=e±iπ1+4ϱh^{\pm}=-e^{\pm i\pi\sqrt{1+4\varrho}} has a complex 2–dimensional space E±E_{\pm} of parallel sections with multiplier h±h^{\pm}. Moreover,

  • if ϱ=14\varrho=-\frac{1}{4} then there is exactly one closed Darboux transform, which is the rotation of ff with angle θ=π\theta=\pi in the jkjk–plane, i.e, f^(x,y)=12(ixjeiy)\hat{f}(x,y)=\frac{1}{2}(ix-je^{-iy}) is a cylinder.

  • if ϱ<14\varrho<-\frac{1}{4} then there are exactly two closed Darboux transforms which are the rotations of ff with the angles ±θ\pm\theta in the jkjk–plane where eiθ=1+1+4ϱ11+4ϱe^{i\theta}=-\frac{1+\sqrt{1+4\varrho}}{1-\sqrt{1+4\varrho}}, i.e, both Darboux transforms are cylinders.

  • if ϱ>14,ϱk214,k,k1,\varrho>-\frac{1}{4},\varrho\not=\frac{k^{2}-1}{4},k\in\mathbb{Z},k\geq 1, then there is a 1\mathbb{C}\mathbb{P}^{1}–worth of closed Darboux transforms which are rotation surfaces.

  • if ϱ=k214,k,k>1\varrho=\frac{k^{2}-1}{4},k\in\mathbb{Z},k>1, then ϱ\varrho is a resonance point. In this case, all Darboux transforms are closed and are either rotation surfaces or isothermic “bubbletons” with kk lobes.

Proof.

We first show that the sections φ±\varphi^{\pm} from Proposition 4.4 give closed (non–singular) Darboux transforms. If φ±(p)Γ(L)\varphi^{\pm}(p)\in\Gamma(L) for some pMp\in M then

α±(p)=0\alpha^{\pm}(p)=0

which implies m0±=m1±=0m_{0}^{\pm}=m_{1}^{\pm}=0. Therefore, φ±0\varphi^{\pm}\not=0 give Darboux transforms which are not singular and are closed since φ±\varphi^{\pm} are sections with multipliers.

We now observe that each multiplier h±=e±iπth^{\pm}=-e^{\pm i\pi t}, t=1+4ϱt=\sqrt{1+4\varrho}, has a complex 2–dimensional space E±E_{\pm} of parallel sections with multiplier h±h^{\pm}, parametrised by the pairs (m0±,m1±)2(m_{0}^{\pm},m_{1}^{\pm})\in\mathbb{C}^{2}.

For non–resonance points ϱ>14\varrho>-\frac{1}{4} the multipliers h±=e±iπtS1{±1}h_{\pm}=-e^{\pm i\pi t}\in S^{1}\setminus\{\pm 1\} are not real with h+=h¯h_{+}=\overline{h_{-}} and thus E+j=EE_{+}j=E_{-}. Therefore, we obtain a 1\mathbb{C}\mathbb{P}^{1}–worth of closed Darboux transforms by

L+=φ+,(m0+m1+)1,L_{+}=\varphi_{+}\mathbb{H},\qquad\begin{pmatrix}m_{0}^{+}\\ m_{1}^{+}\end{pmatrix}\mathbb{C}\in\mathbb{C}\mathbb{P}^{1}\,,

and every closed Darboux transform arises this way. Writing φ+=eα++ψβ+\varphi_{+}=e\alpha_{+}+\psi\beta_{+} the corresponding Darboux transform f^=f+T\hat{f}=f+T is given by our explicit formulae as

T=α+β+1=ip^+jeiyq^T=\alpha_{+}\beta_{+}^{-1}=i\hat{p}+je^{-iy}\hat{q}

where p^\hat{p} (resp. q^\hat{q}) is complex–valued (resp. real–valued) function in xx. Thus, every closed Darboux transform is a rotation surface for non–resonance points ϱ>14\varrho>-\frac{1}{4}.

In the case when ϱ<14\varrho<-\frac{1}{4} the two parallel sections φ±\varphi_{\pm} have real multipliers h±h_{\pm}\in\mathbb{R} and the eigenspaces of the multipliers h±h_{\pm} are quaternionic. Therefore, in this case φ+\varphi_{+}\mathbb{H} and φ\varphi_{-}\mathbb{H} give two closed Darboux transforms f±=f+T±f_{\pm}=f+T_{\pm}. Our explicit expressions give

T±=α±β±1=j11teiyT_{\pm}=\alpha_{\pm}\beta_{\pm}^{-1}=-j\frac{1}{1\mp t}e^{iy}

and both surfaces f±=f+T±=12(ix+je±iθeiy)f_{\pm}=f+T_{\pm}=\frac{1}{2}(ix+je^{\pm i\theta}e^{-iy}) are cylinders where eiθ=1+t1tS1e^{i\theta}=-\frac{1+t}{1-t}\in S^{1} since tit\in i\mathbb{R}.

In the case when ϱ=14\varrho=-\frac{1}{4} we have real multiplier h+=h=1h_{+}=h_{-}=-1 and φ+=φ\varphi_{+}\mathbb{H}=\varphi_{-}\mathbb{H} gives one closed Darboux transform. Since there is no other section with multiplier, there are no other closed Darboux transforms in this case. The same computation as in the case ϱ<14\varrho<-\frac{1}{4} shows that the surface is a cylinder (with t=1+4ρ=0t=\sqrt{1+4\rho}=0).

Finally, if ϱ=k214,k,k>1\varrho=\frac{k^{2}-1}{4},k\in\mathbb{Z},k>1, is a resonance point then h+=hh_{+}=h_{-}\in\mathbb{R} and every parallel section is a section with multiplier. The closed Darboux transforms given by L±=φ±L_{\pm}=\varphi_{\pm}\mathbb{H} are non–singular and give rotation surfaces. The closed Darboux transforms with φ=φ++φ\varphi=\varphi_{+}+\varphi_{-}, φ±0\varphi_{\pm}\not=0, give isothermic bubbletons which may be singular Darboux transforms. ∎

Examples of all possible types of closed Darboux transforms in 3–space of a cylinder can be seen in the following figures:

Refer to caption
Refer to caption
Figure 7. At non–resonance points all Darboux transforms are cylinders or more general rotation surfaces.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8. At a resonance point ϱk=k214\varrho_{k}=\frac{k^{2}-1}{4} additionally CMC bubbletons or isothermic bubbletons can occur, here for k=2,3k=2,3 lobes.
Remark 4.6.

We should note that similar arguments as in Proposition 4.4 and Theorem 4.5 allow to investigate parallel sections with multiplier and Darboux transforms of surfaces of revolution, see [isothermic_paper]. Although in general, the differential equations for c±c^{\pm} cannot be solved explicitly, the corresponding shape of the functions α,β\alpha,\beta is still enough to find all possible multipliers and to conclude that all Darboux transforms are surfaces of revolution.

4.3. Sym–type Darboux transforms of a cylinder

Since now all parallel sections of dϱd_{\varrho} are known, we can compute explicit examples of Sym–type Darboux transforms.

We will consider the case when the one–step Darboux transform of the cylinder is a surface of revolution but not CMC. Otherwise, the Darboux transform is again a cylinder, and all of its Darboux transforms are already known, or an (isothermic) bubbleton which has the original cylinder ff as its only closed Darboux transform.

We will fix our spectral parameter as the resonance point ϱ=34\varrho=\frac{3}{4} and choose, according to Proposition 4.4, the parameter m0+=m1+=1m_{0}^{+}=m_{1}^{+}=1 and m0=m1=0m_{0}^{-}=m_{1}^{-}=0. Then the dϱd_{\varrho}–parallel section is given by φ=eα+ψβ\varphi=e\alpha+\psi\beta with

α=α+\displaystyle\alpha=\alpha^{+} =2eiy2(i3sinh3x2+3jcosh3x2)eiy\displaystyle=2e^{\frac{iy}{2}}(-i\sqrt{3}\sinh\frac{\sqrt{3}x}{2}+3j\cosh\frac{\sqrt{3}x}{2})e^{iy}
β=β+\displaystyle\beta=\beta^{+} =6eiy2(cosh3x2ji3sinh3x2)eiy.\displaystyle=6e^{\frac{iy}{2}}\left(\cosh\frac{\sqrt{3}x}{2}-ji\sqrt{3}\sinh\frac{\sqrt{3}x}{2}\right)e^{iy}\,.

The resulting Darboux transform

(4.4) f^=f+αβ1=ip^+jq^eiy\hat{f}=f+\alpha\beta^{-1}=i\hat{p}+j\hat{q}e^{-iy}

is a surface of revolution in 3–space where

p^(x)\displaystyle\hat{p}(x) =x2+23sinh(3x)36cosh(3x)\displaystyle=\frac{x}{2}+\frac{2\sqrt{3}\sinh(\sqrt{3}x)}{3-6\cosh(\sqrt{3}x)}
q^(x)\displaystyle\hat{q}(x) =12cosh(3x)1+12.\displaystyle=\frac{1}{2\cosh(\sqrt{3}x)-1}+\frac{1}{2}\,.
Refer to caption
Figure 9. One–step Darboux transform f^\hat{f} in 3–space.

In particular, f^\hat{f} is real–analytic and we see by Theorem 4.3 that a Darboux transform f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} of f^\hat{f} can only have constant mean curvature if f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} is a surface of revolution.

We now demonstrate in two examples how to explicitly construct Sym–type Darboux transforms of ff. The first one is obtained by extending φ\varphi near λ=ϱ\lambda=\varrho to dλd_{\lambda}–parallel sections φλ\varphi^{\lambda}. Here φ\varphi is the section which gives the above Darboux transform f^\hat{f}. To obtain the Sym–type parallel section we then compute

φ^=φπ(λφλ)|λ=ϱϱ\hat{\varphi}=\varphi-\pi(\frac{\partial}{\partial\lambda}\varphi^{\lambda})|_{\lambda=\varrho}\varrho

where π\pi is the projection along the splitting ¯2=LL^\underline{\mathbb{H}}^{2}=L\oplus\hat{L} , L^=φ\hat{L}=\varphi\mathbb{H}.

Example 4.7 (Sym–type Darboux transform is a surface of revolution).

We choose φλ=eαλ+ψβλ\varphi^{\lambda}=e\alpha^{\lambda}+\psi\beta^{\lambda} where

αλ\displaystyle\alpha^{\lambda} =eiy2(c0+jc1)eity2\displaystyle=e^{\frac{iy}{2}}(c_{0}+jc_{1})e^{\frac{ity}{2}}
βλ\displaystyle\beta^{\lambda} =eiy2(c1±(t1)+jc0±(1+t))eity2\displaystyle=e^{\frac{iy}{2}}\left(c_{1}^{\pm}(t-1)+jc_{0}^{\pm}(1+t)\right)e^{\frac{ity}{2}}

with t=1+4λt=\sqrt{1+4\lambda} and

c0λ(x)\displaystyle c_{0}^{\lambda}(x) =4iλsinh(λx)\displaystyle=-4i\sqrt{\lambda}\sinh(\sqrt{\lambda}x)
c1λ(x)\displaystyle c_{1}^{\lambda}(x) =2(1+t)cosh(λx),\displaystyle=2(1+t)\cosh(\sqrt{\lambda}x)\,,

so that indeed φλ=ϱ=φ\varphi^{\lambda=\varrho}=\varphi. Abbreviating the λ\lambda–derivative evaluated at ϱ\varrho by a dot, we have

φ˙=(λφλ)|λ=ϱ=eα˙+ψβ˙.\dot{\varphi}=(\frac{\partial}{\partial\lambda}\varphi^{\lambda})|_{\lambda=\varrho}=e\dot{\alpha}+\psi\dot{\beta}\,.

We compute

c˙0\displaystyle\dot{c}_{0} =2i(233sinh(3x2)+xcosh(3x2))\displaystyle=-2i\left(\frac{2\sqrt{3}}{3}\sinh(\frac{\sqrt{3}x}{2})+x\cosh(\frac{\sqrt{3}x}{2})\right)
c˙1\displaystyle\dot{c}_{1} =2(cos(3x2)+3xsinh(3x2))\displaystyle=2\left(\cos(\frac{\sqrt{3}x}{2})+\sqrt{3}x\sinh(\frac{\sqrt{3}x}{2})\right)

and thus

α˙\displaystyle\dot{\alpha} =ie3iy23(6xcosh(3x2)+3(4+3iy)sinh(3x2))\displaystyle=-\frac{ie^{\frac{3iy}{2}}}{3}\left(6x\cosh(\frac{\sqrt{3}x}{2})+\sqrt{3}(4+3iy)\sinh(\frac{\sqrt{3}x}{2})\right)
+j2e12(3x+iy)(e3x(23x+3iy+2)23x+3iy+2)\displaystyle\qquad\qquad+\frac{j}{2}e^{\frac{1}{2}(-\sqrt{3}x+iy)}\left(e^{\sqrt{3}x}\left(2\sqrt{3}x+3iy+2\right)-2\sqrt{3}x+3iy+2\right)
β˙\displaystyle\dot{\beta} =12e12(3x+3iy)(e3x(23x+3iy+8)23x+3iy+8)\displaystyle=\frac{1}{2}e^{\frac{1}{2}(-\sqrt{3}x+3iy)}\left(e^{\sqrt{3}x}\left(2\sqrt{3}x+3iy+8\right)-2\sqrt{3}x+3iy+8\right)
3jieiy2(2xcosh(3x2)+3(2+iy)sinh(3x2)).\displaystyle\qquad\qquad-3jie^{\frac{iy}{2}}\left(2x\cosh(\frac{\sqrt{3}x}{2})+\sqrt{3}(2+iy)\sinh(\frac{\sqrt{3}x}{2})\right)\,.

Since e=φα1ψβα1e=\varphi\alpha^{-1}-\psi\beta\alpha^{-1} we obtain πφ˙=ψ(β˙βα1α˙)\pi\dot{\varphi}=\psi(\dot{\beta}-\beta\alpha^{-1}\dot{\alpha}) so that

φ^=φπφ˙ϱ=eα+ψβ(1+m)\hat{\varphi}=\varphi-\pi\dot{\varphi}\varrho=e\alpha+\psi\beta(1+m)

with

m\displaystyle m =(α1α˙β1β˙)ϱ\displaystyle=(\alpha^{-1}\dot{\alpha}-\beta^{-1}\dot{\beta})\varrho
=14(43xsinh(3x)+3cosh(3x)2cosh(23x)+1+2+jie2iy(3sinh(3x)12xcosh(3x))2cosh(23x)+1).\displaystyle=-\tfrac{1}{4}\left(\tfrac{4\sqrt{3}x\sinh(\sqrt{3}x)+3\cosh(\sqrt{3}x)}{2\cosh(2\sqrt{3}x)+1}+2+ji\tfrac{e^{2iy}\left(\sqrt{3}\sinh(\sqrt{3}x)-12x\cosh(\sqrt{3}x)\right)}{2\cosh(2\sqrt{3}x)+1}\right)\,.

Thus, using (1+m)1=1m(1+m)1(1+m)^{-1}=1-m(1+m)^{-1} we obtain

f^^=f+α(1+m)1β1=f+αβ1αm(1+m)1β1=f^αm(1+m)1β1,\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}=f+\alpha(1+m)^{-1}\beta^{-1}=f+\alpha\beta^{-1}-\alpha m(1+m)^{-1}\beta^{-1}=\hat{f}-\alpha m(1+m)^{-1}\beta^{-1}\,,

which gives f^^=f^+T^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}=\hat{f}+\hat{T} with

T^=2i(3sinh(3x)(48x28cosh(23x)7)+72xcosh(3x))3(2cosh(3x)1)(48x2163xsinh(3x)12cosh(3x)+8cosh(23x)+7)+jeiy(48x2+163xsinh(23x)+4cosh(23x)+5)(2cosh(3x)1)(48x2163xsinh(3x)12cosh(3x)+8cosh(23x)+7)\hat{T}=\begin{multlined}\tfrac{2i\left(\sqrt{3}\sinh(\sqrt{3}x)\left(48x^{2}-8\cosh(2\sqrt{3}x)-7\right)+72x\cosh(\sqrt{3}x)\right)}{3\left(2\cosh(\sqrt{3}x)-1\right)\left(48x^{2}-16\sqrt{3}x\sinh(\sqrt{3}x)-12\cosh(\sqrt{3}x)+8\cosh(2\sqrt{3}x)+7\right)}\\ +j\tfrac{e^{-iy}\left(-48x^{2}+16\sqrt{3}x\sinh(2\sqrt{3}x)+4\cosh(2\sqrt{3}x)+5\right)}{\left(2\cosh(\sqrt{3}x)-1\right)\left(48x^{2}-16\sqrt{3}x\sinh(\sqrt{3}x)-12\cosh(\sqrt{3}x)+8\cosh(2\sqrt{3}x)+7\right)}\end{multlined}\tfrac{2i\left(\sqrt{3}\sinh(\sqrt{3}x)\left(48x^{2}-8\cosh(2\sqrt{3}x)-7\right)+72x\cosh(\sqrt{3}x)\right)}{3\left(2\cosh(\sqrt{3}x)-1\right)\left(48x^{2}-16\sqrt{3}x\sinh(\sqrt{3}x)-12\cosh(\sqrt{3}x)+8\cosh(2\sqrt{3}x)+7\right)}\\ +j\tfrac{e^{-iy}\left(-48x^{2}+16\sqrt{3}x\sinh(2\sqrt{3}x)+4\cosh(2\sqrt{3}x)+5\right)}{\left(2\cosh(\sqrt{3}x)-1\right)\left(48x^{2}-16\sqrt{3}x\sinh(\sqrt{3}x)-12\cosh(\sqrt{3}x)+8\cosh(2\sqrt{3}x)+7\right)}

In particular, f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} is again a surface of revolution in 3-space.

Refer to caption
Figure 10. Sym–type Darboux transform of the round cylinder ff.

Since f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} is not a Delaunay surface, we see that f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} is isothermic but not CMC.

We now compute another Sym–type Darboux transform of the cylinder by using Theorem 3.5: all Darboux transforms f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} of f^\hat{f} are given by parallel sections which are quaternionic linear combinations of φ^\hat{\varphi} and of φ^2=πφ2\hat{\varphi}_{2}=\pi\varphi_{2}, where π\pi is the projection to LL along the splitting LL^L\oplus\hat{L}, L^=φ\hat{L}=\varphi\mathbb{H}, and φ2\varphi_{2} is a dϱd_{\varrho}–parallel section φ2\varphi_{2} which is \mathbb{H}–independent of φ\varphi.

Note that for the resonance point ϱ=34\varrho=\frac{3}{4} all Darboux transforms obtained this way are closed surfaces. Moreover, if f^^f\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}\not=f then f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} is a Sym–type Darboux transform of ff: recall that by Theorem 3.6 a two–step Darboux transform is either Sym–type or Bianchi type; in the latter case, it is the original cylinder f^^=f\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}=f whereas in the former f^^f\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}\not=f.

Example 4.8 (Closed Sym–type Darboux transform is not a surface of revolution).

Let c02=c0+(x,i,i)c_{0}^{2}=c_{0}^{+}(x,i,-i) and consider the corresponding parallel section φ~\tilde{\varphi} which is quaternionic independent of φ\varphi by construction. To obtain a CMC bubbleton, see [isothermic_paper], we put φ2=φ+φ~j=eα2+ψβ2\varphi^{2}=\varphi+\tilde{\varphi}j=e\alpha^{2}+\psi\beta^{2} with

α2\displaystyle\alpha^{2} =2ieiy2(3+3e2iy)sinh(3x2)+2je3iy2(3+3e2iy)cosh(3x2)\displaystyle=-2ie^{-\frac{iy}{2}}\left(-3+\sqrt{3}e^{2iy}\right)\sinh(\frac{\sqrt{3}x}{2})+2je^{-\frac{3iy}{2}}\left(\sqrt{3}+3e^{2iy}\right)\cosh(\frac{\sqrt{3}x}{2})
β2\displaystyle\beta^{2} =6eiy2(3+e2iy)cosh(3x2)6jie3iy2(1+3e2iy)sinh(3x2).\displaystyle=6e^{-\frac{iy}{2}}\left(-\sqrt{3}+e^{2iy}\right)\cosh(\frac{\sqrt{3}x}{2})-6jie^{-\frac{3iy}{2}}\left(1+\sqrt{3}e^{2iy}\right)\sinh(\frac{\sqrt{3}x}{2})\,.

The resulting Darboux transform f2f_{2} of ff can be explicitly computed as

f2(x,y)=(x2+2sinh(3x)3cos(2y)23cosh(3x)cos(y)2+3cos(y)cos(3y)6cos(2y)43cosh(3x)siny2+12siny3cosh(3x)+3cos(2y)+232),f_{2}(x,y)=\begin{pmatrix}\frac{x}{2}+\frac{2\sinh\left(\sqrt{3}x\right)}{3\cos(2y)-2\sqrt{3}\cosh\left(\sqrt{3}x\right)}\\ \frac{\cos(y)}{2}+\frac{3\cos(y)-\cos(3y)}{6\cos(2y)-4\sqrt{3}\cosh\left(\sqrt{3}x\right)}\\ \frac{\sin y}{2}+\frac{\frac{1}{2}\sin y}{\frac{\sqrt{3}\cosh\left(\sqrt{3}x\right)+3}{\cos(2y)+2}-\frac{3}{2}}\end{pmatrix}\,,

and is indeed a CMC bubbleton.

Refer to caption
Figure 11. CMC bubbleton f2f_{2}.

To obtain a surface in 3-space from linear combinations of the two parallel sections φ^\hat{\varphi} and φ^2=πφ2\hat{\varphi}_{2}=\pi\varphi_{2}, we need to satisfy an initial condition: if we use

φ^+φ^2ir\hat{\varphi}+\hat{\varphi}_{2}ir

where rr\in\mathbb{R} is a free parameter, the resulting Darboux transforms f^^:M3\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}:M\to\mathbb{R}^{3} of f^:M3\hat{f}:M\to\mathbb{R}^{3} are surfaces in 3–space and Sym–type Darboux transforms of ff since

π^(φ^+φ^2ir)=φ^0,\hat{\pi}(\hat{\varphi}+\hat{\varphi}_{2}ir)=\hat{\varphi}\not=0\,,

that is f^^f\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}\not=f.

The resulting Darboux transforms of f^\hat{f} can be computed explicitly. For example, for r=50r=50 we obtain f^^=f^+T^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}}=\hat{f}+\hat{T} with T^=(T^1,T^2,T^3)\hat{T}=(\hat{T}_{1},\hat{T}_{2},\hat{T}_{3}) where

T^1\displaystyle\hat{T}_{1} =2d(2cosh(23x)+1)(3sinh(3x)(48x28cosh(23x)+639993)+72xcosh(3x))\displaystyle=\begin{multlined}\frac{2}{d}\left(2\cosh(2\sqrt{3}x)+1\right)\\ \left(\sqrt{3}\sinh(\sqrt{3}x)(48x^{2}-8\cosh(2\sqrt{3}x)+639993)+72x\cosh(\sqrt{3}x)\right)\end{multlined}\frac{2}{d}\left(2\cosh(2\sqrt{3}x)+1\right)\\ \left(\sqrt{3}\sinh(\sqrt{3}x)(48x^{2}-8\cosh(2\sqrt{3}x)+639993)+72x\cosh(\sqrt{3}x)\right)
T^2\displaystyle\hat{T}_{2} =1d(4cosh2(3x)1)(3Acosy32003(2cosh(23x)+1)sin3y)\displaystyle=\begin{multlined}\frac{1}{d}\left(4\cosh^{2}(\sqrt{3}x)-1\right)\left(-3A\cos y-3200\sqrt{3}(2\cosh(2\sqrt{3}x)+1)\sin^{3}y\right)\end{multlined}\frac{1}{d}\left(4\cosh^{2}(\sqrt{3}x)-1\right)\left(-3A\cos y-3200\sqrt{3}(2\cosh(2\sqrt{3}x)+1)\sin^{3}y\right)
T^3\displaystyle\hat{T}_{3} =1d(2cosh(23x)+1)(3Asiny+24003(2cosh(23x)+1)cosy+8003(2cosh(23x)+1)cos(3y))\displaystyle=\begin{multlined}-\frac{1}{d}\left(2\cosh(2\sqrt{3}x)+1\right)\left(3A\sin y+2400\sqrt{3}(2\cosh(2\sqrt{3}x)+1)\cos y\right.\\ +\left.800\sqrt{3}(2\cosh(2\sqrt{3}x)+1)\cos(3y)\right)\end{multlined}-\frac{1}{d}\left(2\cosh(2\sqrt{3}x)+1\right)\left(3A\sin y+2400\sqrt{3}(2\cosh(2\sqrt{3}x)+1)\cos y\right.\\ +\left.800\sqrt{3}(2\cosh(2\sqrt{3}x)+1)\cos(3y)\right)

where

A=48x2163xsinh(23x)4cosh(23x)+639995A=48x^{2}-16\sqrt{3}x\sinh(2\sqrt{3}x)-4\cosh(2\sqrt{3}x)+639995

and

d=3(12cosh(3x))2(2cosh(3x)+1)(48x2163xsinh(3x)12cosh(3x)+8cosh(23x)+16003(12cosh(3x))sin(2y)+640007).d=\begin{multlined}3\big{(}1-2\cosh(\sqrt{3}x)\big{)}^{2}\big{(}2\cosh(\sqrt{3}x)+1\big{)}\\ \left(48x^{2}-16\sqrt{3}x\sinh(\sqrt{3}x)-12\cosh(\sqrt{3}x)+8\cosh(2\sqrt{3}x)\right.\\ \left.+1600\sqrt{3}\big{(}1-2\cosh(\sqrt{3}x)\big{)}\sin(2y)+640007\right)\,.\end{multlined}3\big{(}1-2\cosh(\sqrt{3}x)\big{)}^{2}\big{(}2\cosh(\sqrt{3}x)+1\big{)}\\ \left(48x^{2}-16\sqrt{3}x\sinh(\sqrt{3}x)-12\cosh(\sqrt{3}x)+8\cosh(2\sqrt{3}x)\right.\\ \left.+1600\sqrt{3}\big{(}1-2\cosh(\sqrt{3}x)\big{)}\sin(2y)+640007\right)\,.
Refer to caption
Figure 12. Sym–type Darboux transform of ff.

Despite the Sym–type Darboux transform f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} having a similar shape to CMC bubbletons, the surface does not have constant mean curvature: for a Darboux transform f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} of the surface of revolution f^\hat{f} to have constant mean curvature, f^^\hat{\vphantom{\rule{1.0pt}{5.93056pt}}\smash{\hat{f}}} must be a surface of revolution.

Similarly, one can obtain other Sym–type Darboux transforms explicitly where kk gives the number of lobes:

Refer to caption
Refer to caption
Refer to caption
Figure 13. Sym–type Darboux transforms of a cylinder at resonance points ϱk=k214,k=2,3\varrho_{k}=\frac{k^{2}-1}{4},k=2,3.

To conclude this section we observe that we also obtain all closed Darboux transform of higher order of the cylinder ff by information on the multipliers of parallel sections of the associated family dλd_{\lambda} of ff, without further integration.

Refer to caption
Refer to caption
Figure 14. Triple Darboux transforms at a resonance point: the first one is obtained as a Darboux transform of a Sym–type two–step transform surface of revolution at the resonance point ϱ2\varrho_{2}, whereas the second one is obtained by Bianchi permutability from a non–rotational Sym–type Darboux transform, using the two different resonance points ϱ2,ϱ3\varrho_{2},\varrho_{3}.

Data availability. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References