This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

General Expressions for On-shell Recursion relations for Tree-level Open String Amplitudes

Pongwit Srisangyingcharoen [email protected]
Abstract

In this paper, we present a systematic derivation aimed at obtaining general expressions for on-shell recursion relations for tree-level open string amplitudes. Our approach involves applying the BCFW shift to an open string amplitude written in terms of multiple Gaussian hypergeometric functions. By employing binomial expansions, we demonstrate that the shifted amplitudes manifest simple poles, which correspond to scattering channels of intermediate states. Using the residue theorem, we thereby derive a general expression for these relations.

keywords:
Bosonic string, string amplitudes, on-shell recursion relations
journal: Physics letters B
\affiliation

organization=The Institute for Fundamental Study, Naresuan University,city=Phisanulok, postcode=65000, country=Thailand

1 Introduction

Since the beginning of the string theory, understanding string scattering amplitudes has been a fundamental concern among string theorists. It was long known that in the limit of low energies, amplitudes in string theory reproduce those in QFT such as Yang-Mills [1] and Einstein theory [2, 3] plus α\alpha^{\prime} corrections [4, 5, 6, 7, 8]. The connection between string theory and QFT provides useful applications in both theories. Understanding the structure of string amplitudes would provide a better insight into those of quantum field theories. Concrete examples are the celebrated Kawai-Lewellen-Tye (KLT) relations [9] which relates closed string amplitudes in terms of products of two open string amplitudes giving alternative descriptions of gravity as the square of gauge theory. These non-linear relations were proven later in the context of QFT [10, 11].

Another interesting structure was discovered by Plahte [12] which are linear relations among color-ordered open string scattering amplitudes. These are currently known as monodromy relations. In the field theory limit, the relations reduce to the BCJ relations of Bern, Carrasco and Johansson [13] and the Kleiss-Kujif relations [14]. This results in a reduction of the number of color-ordered amplitudes from (n1)!(n-1)! as given by a cyclic property of the trace down to (n3)!(n-3)! [15, 16]. The monodromy relations among partial open string amplitudes can be captured by polygons in the complex plane [17].

During the early 2000s, advancements in the study of scattering amplitudes were notably influenced by the discovery of the Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations [18, 19]. These relations enabled the expression of tree-level amplitudes as products involving amplitudes with fewer particles. The key idea for deriving the on-shell recursion relations is based on the fact that any tree-level scattering amplitude is a rational function of the external momenta, thus, one can turn an amplitude AnA_{n} into a complex meromorphic function An(z)A_{n}(z) by deforming the external momenta through introducing a complex variable zz. These deformed momenta, satisfying momentum conservation, are required to remain on-shell. For a scattering process involving nn particles, the selection of an arbitrary pair of particle momenta for shifting is permissible. Our choice is given by

k1k^1(z)=\displaystyle k_{1}\rightarrow\hat{k}_{1}(z)= k1qz\displaystyle k_{1}-qz (1a)
knk^n(z)=\displaystyle k_{n}\rightarrow\hat{k}_{n}(z)= kn+qz\displaystyle k_{n}+qz (1b)

where qq is a reference momentum which obeys qq=k1q=knq=0q\cdot q=k_{1}\cdot q=k_{n}\cdot q=0.

The unshifted amplitude An(z=0)A_{n}(z=0) can be obtained from a contour integration in which the contour is large enough to enclose all finite poles. According to the Cauchy’s theorem,

An(0)=𝑑zAn(z)zpolesResz=zpoles(An(z)z),A_{n}(0)=\oint dz\frac{A_{n}(z)}{z}-\sum_{\text{poles}}\text{Res}_{z=z_{\text{poles}}}\left(\frac{A_{n}(z)}{z}\right), (2)

the unshifted amplitude at z=0z=0 is equal to the sum of the residues over all the finite poles if the amplitude is well-behaved at large zz (which is the case for most theories). For Yang-Mills theory, the residue at a finite pole is the product of two fewer-point amplitudes with an on-shell exchanged particle. In Yang-Mills a sum over the helicities of the intermediate gauge boson and in general theories a sum over all allowed intermediate particle states must also be done. In the general case, the BCFW recursion relation is

An(0)=polesαphysicalstatesAL(,P(zα))2P2+M2AR(P(zα),)A_{n}(0)=\sum_{\begin{subarray}{c}\text{poles}\\ \alpha\end{subarray}}\sum_{\begin{subarray}{c}\text{physical}\\ \text{states}\end{subarray}}A_{L}(\dots,P(z_{\alpha}))\frac{2}{P^{2}+M^{2}}A_{R}(-P(z_{\alpha}),\dots) (3)

with PP being the momentum of the exchanged particle with mass MM.

The validity of equation (2) requires the absence of a pole at infinity. In the case that there exists such a pole, one must include the residue at infinity. However, the residue at this pole does not have a similar physical interpretation to the residues at finite poles. A detailed discussion can be found in [20].

This paper aims to present expressions for on-shell recursion relations concerning open string amplitudes. While existing literature has explored relations for open strings [21, 22, 23, 24], general forms for open string on-shell recursion relations have never been delivered. Our paper aims to present a systematic derivation to such relations based on the Koba-Nielsen integral forms [25].

2 On-shell Recursion Relations for Four-point Tachyonic Open String Amplitudes

Before deriving a general expression for the on-shell recursion relations of open string amplitudes, let’s start with a discussion of the simplest example, i.e. the four-point tachyon amplitude. Consider the partial amplitude

𝒜(s,t)=01𝑑xxαs2(1x)αt2\displaystyle\mathcal{A}(s,t)=\int_{0}^{1}dx\ x^{\alpha^{\prime}s-2}(1-x)^{\alpha^{\prime}t-2} (4)

where ss and tt are the Mandelstam variables given by s=(k1+k2)2s=(k_{1}+k_{2})^{2} and t=(k1+k4)2t=(k_{1}+k_{4})^{2}. The open string vertex variables x1,x3x_{1},x_{3} and x4x_{4} are fixed to 0,10,1 and \infty due to the PSL(2,R)PSL(2,R) gauge symmetry. Under the shift in (1), 𝒜(s,t)𝒜(z)\mathcal{A}(s,t)\rightarrow\mathcal{A}(z^{\prime}) giving

𝒜(z)=01𝑑xxαs2z(1x)αt2\displaystyle\mathcal{A}(z^{\prime})=\int_{0}^{1}dx\ x^{\alpha^{\prime}s-2-z^{\prime}}(1-x)^{\alpha^{\prime}t-2} (5)

where z=2αzqk2z^{\prime}=2\alpha^{\prime}zq\cdot k_{2}. To determine poles generated from zz^{\prime}, we introduce the variable

x=exp(yαs2z)forRe(αs2z)>0.x=\exp{\left(-\frac{y}{\alpha^{\prime}s-2-z^{\prime}}\right)}\qquad\text{for}\quad\text{Re}(\alpha^{\prime}s-2-z^{\prime})>0. (6)

The integral (5) becomes

𝒜(z)=a=0(αt2a)(1)a0𝑑yeye(1+a)yαs2zαs2z\displaystyle\mathcal{A}(z^{\prime})=\sum_{a=0}^{\infty}\binom{\alpha^{\prime}t-2}{a}(-1)^{a}\int_{0}^{\infty}dy\ e^{-y}\frac{e^{-\frac{(1+a)y}{\alpha^{\prime}s-2-z^{\prime}}}}{\alpha^{\prime}s-2-z^{\prime}} (7)

where a binomial expansion (1x)a=k=0(ak)(1)kxk(1-x)^{a}=\sum_{k=0}^{\infty}\binom{a}{k}(-1)^{k}x^{k} was applied. (ak)\binom{a}{k} denotes a binomial coefficient. Expanding a Taylor series for the exponential, one obtains

𝒜(z)\displaystyle\mathcal{A}(z^{\prime}) =a=0(αt2a)(1)ak=0(1)kk!0𝑑yey((1+a)y)k(αs2z)k+1.\displaystyle=\sum_{a=0}^{\infty}\binom{\alpha^{\prime}t-2}{a}(-1)^{a}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}\int_{0}^{\infty}dy\ e^{-y}\frac{((1+a)y)^{k}}{(\alpha^{\prime}s-2-z^{\prime})^{k+1}}. (8)
=a=0(αt2a)(1)ak=0(1+a)k(z(αs2))k+1\displaystyle=-\sum_{a=0}^{\infty}\binom{\alpha^{\prime}t-2}{a}(-1)^{a}\sum_{k=0}^{\infty}\frac{(1+a)^{k}}{(z^{\prime}-(\alpha^{\prime}s-2))^{k+1}} (9)

This shows that 𝒜(z)\mathcal{A}(z^{\prime}) contains the kthk^{\text{th}}-order poles at z=z~αs2z^{\prime}=\tilde{z}\equiv\alpha^{\prime}s-2. We can regain the unshifted amplitude 𝒜(0)\mathcal{A}(0) using the relation (2). Therefore,

𝒜(0)\displaystyle\mathcal{A}(0) =Resz=z~(𝒜(z)z)=a,k=0(αt2a)(1)a+kz~(1+az~)k\displaystyle=-\text{Res}_{z^{\prime}=\tilde{z}}\left(\frac{\mathcal{A}(z^{\prime})}{z^{\prime}}\right)=\sum_{a,k=0}^{\infty}\binom{\alpha^{\prime}t-2}{a}\frac{(-1)^{a+k}}{\tilde{z}}\left(\frac{1+a}{\tilde{z}}\right)^{k}
=a=0(αt2a)(1)aαs(1a).\displaystyle=\sum_{a=0}^{\infty}\binom{\alpha^{\prime}t-2}{a}\frac{(-1)^{a}}{\alpha^{\prime}s-(1-a)}. (10)

The expression implies propagators of intermediate on-shell string states. Comparing to the BCFW recursion relation (3), the residues of (10) are sum over product of physical state amplitudes at each fixed level aa. This was explicit shown in [23].

It is worth noting that the derivation of the expression (10) assumes the condition such that Re(αs2z)>0(\alpha^{\prime}s-2-z^{\prime})>0 during the coordinates transformation (6). To obtain the same argument but for the kinematic regime Re(αs2z)<0(\alpha^{\prime}s-2-z^{\prime})<0 is a bit trickier as we need to deal with divergence which requires a proper regularization. To see this, for Re(αs2z)<0(\alpha^{\prime}s-2-z^{\prime})<0, we use a change of variables

x=exp(yαs2z)x=\exp{\left(\frac{y}{\alpha^{\prime}s-2-z^{\prime}}\right)} (11)

to turn the amplitude (7) into

𝒜(z)\displaystyle\mathcal{A}(z^{\prime}) =a=0(αt2a)(1)a+1k=01k!0𝑑yey((1+a)y)k(αs2z)k+1\displaystyle=\sum_{a=0}^{\infty}\binom{\alpha^{\prime}t-2}{a}(-1)^{a+1}\sum_{k=0}^{\infty}\frac{1}{k!}\int_{0}^{\infty}dy\ e^{y}\frac{((1+a)y)^{k}}{(\alpha^{\prime}s-2-z^{\prime})^{k+1}} (12)

where the binomial expansion was applied. Notice a slight difference from (8) due to the minus signs. Now comes the divergence integral 0𝑑yeyys\int_{0}^{\infty}dy\ e^{y}y^{s} by which we can regularize it to be

0𝑑yysey(1)s+1s!fors+{0}.\int_{0}^{\infty}dy\ y^{s}e^{y}\coloneqq(-1)^{s+1}s!\qquad\text{for}\quad s\in\mathbb{Z}^{+}\cup\{0\}. (13)

The symbol \coloneqq signifies that the equality holds upon the regularization. In this case, we assign the value for the integral via analytic continuation of the parameter nn from

1An=1(n+1)!0𝑑xxn1exA.\frac{1}{A^{n}}=\frac{1}{(n+1)!}\int_{0}^{\infty}dx\ x^{n-1}e^{-xA}. (14)

Accordingly, substituting (13) into (12), one would regain the same expression of 𝒜(z)\mathcal{A}(z^{\prime}) as (9), hence providing the same on-shell recursion relation (10).

3 On-shell Recursion Relations for nn-point Open String Amplitudes

To generalize the investigation to a general nn-point open string amplitude, we consider a general expression

𝒜(1,2,3,,n)=i=1ndzi|zabzaczbc|dzadzbdzc1i<jn|xixj|2αkikjn\displaystyle\mathcal{A}(1,2,3,\ldots,n)=\int_{\mathcal{I}}\prod_{i=1}^{n}dz_{i}\frac{|z_{ab}z_{ac}z_{bc}|}{dz_{a}dz_{b}dz_{c}}\prod_{1\leq i<j\leq n}|x_{i}-x_{j}|^{2\alpha^{\prime}k_{i}\cdot k_{j}}\mathcal{F}_{n} (15)

where zij=xixjz_{ij}=x_{i}-x_{j} and dzi=dxidz_{i}=dx_{i} for bosonic string theory and zij=xixj+θiθjz_{ij}=x_{i}-x_{j}+\theta_{i}\theta_{j} and dzi=dxidθidz_{i}=dx_{i}d\theta_{i} for the supersymmetric case. The integral is subject to the integration region \mathcal{I} where x1<x2<xnx_{1}<x_{2}\ldots<x_{n} which is associated to the group factor tr(T1T2TnT_{1}T_{2}\ldots T_{n}). The gauge symmetry PSL(2,)PSL(2,\mathbb{R}) allow one to fix the position of three points denoted za,zbz_{a},z_{b} and zcz_{c}. A conventional choice is x1=0,xn1=1x_{1}=0,x_{n-1}=1 and xn=x_{n}=\infty for the bosonic string as well as θn1=θn=0\theta_{n-1}=\theta_{n}=0 for for the supersymmetric case.

The function n\mathcal{F}_{n} is a branch-free function that comes from the operator product expansion of vertex operators depending on the external states of the amplitude we consider. n=1\mathcal{F}_{n}=1 for tachyons and n=exp(i>jξiξj(xixj)2ijαkiξj(xixj))|multilinear in ξi\mathcal{F}_{n}=\text{exp}\Big{(}\sum_{i>j}\frac{\xi_{i}\cdot\xi_{j}}{(x_{i}-x_{j})^{2}}-\sum_{i\neq j}\frac{\sqrt{\alpha^{\prime}}k_{i}\cdot\xi_{j}}{(x_{i}-x_{j})}\Big{)}\Big{|}_{\text{multilinear in $\xi_{i}$}} for an nn-gauge field amplitude with nn polarization vectors ξi\xi_{i}. In addition, n=i=1ndηi×exp[ij(αηi(θiθj)(ξikj)ηiηj(ξicotξj)(xixj+θiθj))]\mathcal{F}_{n}=\int\prod_{i=1}^{n}d\eta_{i}\allowbreak\times\text{exp}\Big{[}\sum_{i\neq j}\Big{(}\frac{\sqrt{\alpha^{\prime}}\eta_{i}(\theta_{i}-\theta_{j})(\xi_{i}\cdot k_{j})-\eta_{i}\eta_{j}(\xi_{i}\cot\xi_{j})}{(x_{i}-x_{j}+\theta_{i}\theta_{j})}\Big{)}\Big{]} for the superstring amplitude where ηi\eta_{i} are Grassmann variables.

Alternatively, one could relate the Koba-Nielsen’s integral representation of open string amplitudes (15) with multiple Gaussian hypergeometric functions,

Bn({n})=(i=1n301𝑑wi)j=1n3wjs12j+1+njl=jn3(1k=jlwk)sj+1,l+2+nj+1,l+2\displaystyle B_{n}(\{n\})=\left(\prod_{i=1}^{n-3}\int_{0}^{1}dw_{i}\right)\prod_{j=1}^{n-3}w_{j}^{s_{12\ldots j+1}+n_{j}}\prod_{l=j}^{n-3}\left(1-\prod_{k=j}^{l}w_{k}\right)^{s_{j+1,l+2}+n_{j+1,l+2}} (16)

where sij=α(ki+kj)2s_{ij}=\alpha^{\prime}(k_{i}+k_{j})^{2} and s12i=α(k1+k2++ki)2s_{12\ldots i}=\alpha^{\prime}(k_{1}+k_{2}+\ldots+k_{i})^{2}. The set {n}\{n\} contains all integers nin_{i} and nijn_{ij} appearing on the right-hand side of (16). More precisely, the function (16) is known as generalized Kampé de Fériet function [26]. To obtain the above expression, we applied a change of integral variables

xi=j=i1n3wjfori=2,3,,n2x_{i}=\prod_{j=i-1}^{n-3}w_{j}\qquad\text{for}\quad i=2,3,\ldots,n-2 (17)

to

i=2n2dxi1i<jn|xixj|2αkikj+n~ij.\int_{\mathcal{I}}\prod_{i=2}^{n-2}dx_{i}\ \prod_{1\leq i<j\leq n}|x_{i}-x_{j}|^{2\alpha^{\prime}k_{i}\cdot k_{j}+\tilde{n}_{ij}}. (18)

Note that we have fixed x1,xn1x_{1},x_{n-1} and xnx_{n} to 0,10,1 and \infty respectively. The exponents n~ij\tilde{n}_{ij}\in\mathbb{Z} which arise from the external state-dependent term n\mathcal{F}_{n}. They relate to the integers nin_{i} and nijn_{ij} via

nij\displaystyle n_{ij} =n~ij+α(mi2+mj2),\displaystyle=\tilde{n}_{ij}+\alpha^{\prime}(m_{i}^{2}+m_{j}^{2}), ij\displaystyle i\leq j
nj\displaystyle n_{j} =j1+l=1jk>lj+1n~lk+αi=1j+1mi2,\displaystyle=j-1+\sum_{l=1}^{j}\sum_{k>l}^{j+1}\tilde{n}_{lk}+\alpha^{\prime}\sum_{i=1}^{j+1}m_{i}^{2}, 1jn3.\displaystyle 1\leq j\leq n-3. (19)

More detail can be found in Chapter 7 of [27]. Consequently, the general expression of color-ordered open string amplitudes reads

𝒜(1,2,,n)=I𝒦IBn({nI})\mathcal{A}(1,2,\ldots,n)=\sum_{I}\mathcal{K}_{I}B_{n}(\{n^{I}\}) (20)

where the function 𝒦I\mathcal{K}_{I} contains scalar products of momentum and polarization vectors which are kikj,kiξjk_{i}\cdot k_{j},k_{i}\cdot\xi_{j} and ξiξj\xi_{i}\cdot\xi_{j} [28].

Rewriting the open string amplitude as (20) is useful to determine the pole structure of the deformed amplitude 𝒜n(z)\mathcal{A}_{n}(z). This allows us to formulate the on-shell recursion relations for nn-point open string amplitudes. When the momenta are shifted using (1), the function Bn({n})B_{n}(\{n\}) becomes

Bn({n},z)=(i=1n301𝑑wi)\displaystyle B_{n}(\{n\},z)=\left(\prod_{i=1}^{n-3}\int_{0}^{1}dw_{i}\right) j=1n3wjs12j+1+njzj\displaystyle\prod_{j=1}^{n-3}w_{j}^{s_{12\ldots j+1}+n_{j}-z_{j}}
×l=jn3(1k=jlwk)sj+1,l+2+nj+1,l+2\displaystyle\times\prod_{l=j}^{n-3}\left(1-\prod_{k=j}^{l}w_{k}\right)^{s_{j+1,l+2}+n_{j+1,l+2}} (21)

where zi=2αz(qj=2i+1kj)z_{i}=2\alpha^{\prime}z(q\cdot\sum_{j=2}^{i+1}k_{j}). This implies that there are n3n-3 poles generated from ziz_{i} which refers to n3n-3 scattering channels. To determine the poles of ziz_{i}, we apply binomial expansions to every term that contains wiw_{i} in the product

j=1n3l=jn3(1k=jlwk)sj+1,l+2+nj+1,l+2.\prod_{j=1}^{n-3}\prod_{l=j}^{n-3}\left(1-\prod_{k=j}^{l}w_{k}\right)^{s_{j+1,l+2}+n_{j+1,l+2}}. (22)

For example, let’s first start by determining the pole regarding z1z_{1}. Therefore, one needs to rewrite

l=1n3(1k=1lwk)s2,l+2+n2,l+2=l=1n3al=0(s2,l+2+n2,l+2al)(1)alwli=ln3ai\displaystyle\prod_{l=1}^{n-3}\left(1-\prod_{k=1}^{l}w_{k}\right)^{s_{2,l+2}+n_{2,l+2}}=\prod_{l=1}^{n-3}\sum_{a_{l}=0}^{\infty}\binom{s_{2,l+2}+n_{2,l+2}}{a_{l}}(-1)^{a_{l}}w_{l}^{\sum_{i=l}^{n-3}a_{i}} (23)

using the binomial expansion. The expression involves n3n-3 parameters ala_{l} resulted from the expansions. This turns (21) to be

Bn({n},z)=\displaystyle B_{n}(\{n\},z)= l=1n3(al=0(s2,l+2+n2,l+2al))(1)i=1n3ai\displaystyle\prod_{l=1}^{n-3}\bigg{(}\sum_{a_{l}=0}^{\infty}\binom{s_{2,l+2}+n_{2,l+2}}{a_{l}}\bigg{)}(-1)^{\sum_{i=1}^{n-3}a_{i}}
×[01𝑑w1w1s12+n1+i=1n3aiz1]i=2n301𝑑wi\displaystyle\times\bigg{[}\int_{0}^{1}dw_{1}w_{1}^{s_{12}+n_{1}+\sum_{i=1}^{n-3}a_{i}-z_{1}}\bigg{]}\prod_{i=2}^{n-3}\int_{0}^{1}dw_{i}
×j=2n3wjs12j+1+nj+i=jn3aizjl=2n3(1k=2lwk)s3,l+2+n3,l+2.\displaystyle\times\prod_{j=2}^{n-3}w_{j}^{s_{12\ldots j+1}+n_{j}+\sum_{i=j}^{n-3}a_{i}-z_{j}}\prod_{l=2}^{n-3}\left(1-\prod_{k=2}^{l}w_{k}\right)^{s_{3,l+2}+n_{3,l+2}}. (24)

We then rename the sum over all ala_{l} to the new parameter, says

i=1n3ai=m\sum_{i=1}^{n-3}a_{i}=m (25)

which runs from zero to infinity. This index mm labels the poles from z1z_{1}. Notice that the integral in the square bracket of (24) in the second line produces the simple poles characterized by the index mm

(1)z1(s12+n1+m+1).\frac{(-1)}{z_{1}-(s_{12}+n_{1}+m+1)}. (26)

As a result, one can compute the residue

mResz=zm(Bn({n},z)z)=m1({n},m,zm)s12+n1+m+1\displaystyle\sum_{m}\text{Res}_{z=z^{*}_{m}}\bigg{(}\frac{B_{n}(\{n\},z)}{z}\bigg{)}=\sum_{m}\frac{\mathcal{B}_{1}(\{n\},m,z^{*}_{m})}{s_{12}+n_{1}+m+1} (27)

where zm=(s12+n1+m1)/(2αqk2)z^{*}_{m}=(s_{12}+n_{1}+m-1)/(2\alpha^{\prime}q\cdot k_{2}). The function 1({n},m,z)\mathcal{B}_{1}(\{n\},m,z) is defined as

l=1n4(al=0(s2,l+2+n2,l+2al))(s2,n1+n2,n1ml=1n4al)(1)m+1i=2n301𝑑wi\displaystyle\prod_{l=1}^{n-4}\left(\sum_{a_{l}=0}^{\infty}\binom{s_{2,l+2}+n_{2,l+2}}{a_{l}}\right)\binom{s_{2,n-1}+n_{2,n-1}}{m-\sum_{l=1}^{n-4}a_{l}}(-1)^{m+1}\prod_{i=2}^{n-3}\int_{0}^{1}dw_{i}
×j=2n3wjs12j+1+nj+mi=1j1aizjl=2n3(1k=2lwk)s3,l+2+n3,l+2.\displaystyle\times\prod_{j=2}^{n-3}w_{j}^{s_{12\ldots j+1}+n_{j}+m-\sum_{i=1}^{j-1}a_{i}-z_{j}}\prod_{l=2}^{n-3}\left(1-\prod_{k=2}^{l}w_{k}\right)^{s_{3,l+2}+n_{3,l+2}}. (28)

Note that 1[ni,nij,z]\mathcal{B}_{1}[n_{i},n_{ij},z] is evaluated at z=zmz=z^{*}_{m} in (27). The denominators of the equation (27) suggest the mass spectrum of intermediate states with momentum k1+k2k_{1}+k_{2}. What we need to do next is to generalize this kind of calculation to involve all poles corresponding to all zjz_{j}.

Similar to the previous calculation, to determine the poles associated with ziz_{i} for i=1,2,,n3i=1,2,\ldots,n-3, one requires a binomial expansion to (22) to expand all the terms that have wiw_{i}. These expansions would generate (n2i)i(n-2-i)i summing indices. As for the previous case, we had n3n-3 indices for i=1i=1.

For convenience, we will assign the summing index ajla_{jl} for jlj\leq l when expanding the polynomial

(1k=jlwk)s~j+1,l+2=ajl=0(s~j+1,l+2ajl)(1)ajl(k=jlwk)ajl\displaystyle\left(1-\prod_{k=j}^{l}w_{k}\right)^{\tilde{s}_{j+1,l+2}}=\sum_{a_{jl}=0}^{\infty}\binom{\tilde{s}_{j+1,l+2}}{a_{jl}}(-1)^{a_{jl}}\left(\prod_{k=j}^{l}w_{k}\right)^{a_{jl}} (29)

where s~j+1,l+2sj+1,l+2+nj+1,l+2\tilde{s}_{j+1,l+2}\equiv s_{j+1,l+2}+n_{j+1,l+2} for short. We will use the above expansion to the product (22) for which jilj\leq i\leq l (Note that ii refers to the index where the poles ziz_{i} will be determined). This gives

jl\displaystyle\prod_{j\leq l} (1k=jlwk)s~j+1,l+2=\displaystyle\left(1-\prod_{k=j}^{l}w_{k}\right)^{\tilde{s}_{j+1,l+2}}=
jli[j,l](1k=jlwk)s~j+1,l+2jli[j,l](ajl=0(s~j+1,l+2ajl)(1)ajl(k=jlwk)ajl).\displaystyle\prod_{\begin{subarray}{c}j\leq l\\ i\notin[j,l]\end{subarray}}\left(1-\prod_{k=j}^{l}w_{k}\right)^{\tilde{s}_{j+1,l+2}}\prod_{\begin{subarray}{c}j\leq l\\ i\in[j,l]\end{subarray}}\left(\sum_{a_{jl}=0}^{\infty}\binom{\tilde{s}_{j+1,l+2}}{a_{jl}}(-1)^{a_{jl}}\left(\prod_{k=j}^{l}w_{k}\right)^{a_{jl}}\right). (30)

Note that we only apply the expansions for the case where i[j,l]i\in[j,l] as discussed. Accordingly, we can write (21) as

Bn({n},z)=\displaystyle B_{n}(\{n\},z)= (k=1kin301𝑑wk)j=1jin3wjs12j+1+njzjjli[j,l](1k=jlwk)s~j+1,l+2\displaystyle\left(\prod_{\begin{subarray}{c}k=1\\ k\neq i\end{subarray}}^{n-3}\int_{0}^{1}dw_{k}\right)\prod_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{n-3}w_{j}^{s_{12\ldots j+1}+n_{j}-z_{j}}\prod_{\begin{subarray}{c}j\leq l\\ i\notin[j,l]\end{subarray}}\left(1-\prod_{k=j}^{l}w_{k}\right)^{\tilde{s}_{j+1,l+2}}
×jli[j,l](ajl=0(s~j+1,l+2ajl)(1)ajl(k=jkilwk)ajl)\displaystyle\times\prod_{\begin{subarray}{c}j\leq l\\ i\in[j,l]\end{subarray}}\left(\sum_{a_{jl}=0}^{\infty}\binom{\tilde{s}_{j+1,l+2}}{a_{jl}}(-1)^{a_{jl}}\left(\prod_{\begin{subarray}{c}k=j\\ k\neq i\end{subarray}}^{l}w_{k}\right)^{a_{jl}}\right)
×01dwiwis12i+1+ni+jlajlzi\displaystyle\times\int_{0}^{1}dw_{i}\ w_{i}^{s_{12\ldots i+1}+n_{i}+\sum_{j\leq l}a_{jl}-z_{i}} (31)

Notice that we factor out the variable wiw_{i} from the others in the last line. Integrating out the wiw_{i}-variable turn (31) into

Bn({n},z)=mi({n},m,z)zi(s12i+1+ni+m+1)\displaystyle B_{n}(\{n\},z)=\sum_{m}\frac{\mathcal{B}_{i}(\{n\},m,z)}{z_{i}-(s_{12\ldots i+1}+n_{i}+m+1)} (32)

where

i({n},m,z)=\displaystyle\mathcal{B}_{i}(\{n\},m,z)= (k=1kin301𝑑wk)j=1jin3wjs12j+1+njzjjli[j,l](1k=jlwk)s~j+1,l+2\displaystyle\left(\prod_{\begin{subarray}{c}k=1\\ k\neq i\end{subarray}}^{n-3}\int_{0}^{1}dw_{k}\right)\prod_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{n-3}w_{j}^{s_{12\ldots j+1}+n_{j}-z_{j}}\prod_{\begin{subarray}{c}j\leq l\\ i\notin[j,l]\end{subarray}}\left(1-\prod_{k=j}^{l}w_{k}\right)^{\tilde{s}_{j+1,l+2}}
×(1)m+1jli[j,l](j,l)(1,n3)(ajl=0(s~j+1,l+2ajl)(k=jkilwk)ajl)\displaystyle\times(-1)^{m+1}\prod_{\begin{subarray}{c}j\leq l\\ i\in[j,l]\\ (j,l)\neq(1,n-3)\end{subarray}}\left(\sum_{a_{jl}=0}^{\infty}\binom{\tilde{s}_{j+1,l+2}}{a_{jl}}\left(\prod_{\begin{subarray}{c}k=j\\ k\neq i\end{subarray}}^{l}w_{k}\right)^{a_{jl}}\right)
×(s~2,n1m(j,l)(1,n3)ajl)(k=1n3wk)m(j,l)(1,n3)ajl.\displaystyle\times\binom{\tilde{s}_{2,n-1}}{m-\sum_{(j,l)\neq(1,n-3)}a_{jl}}\left(\prod_{k=1}^{n-3}w_{k}\right)^{m-\sum_{(j,l)\neq(1,n-3)}a_{jl}}. (33)

We denote the index mm as sum of all indices ajla_{jl}

m=jli[j,l]ajl.m=\sum_{\begin{subarray}{c}j\leq l\\ i\in[j,l]\end{subarray}}a_{jl}. (34)

Accordingly, we need to write one index out of all the aija_{ij}’s in terms of mm. Our choice is a1,n3a_{1,n-3} as this index always appears in the formulation regardless of the index ii we consider. Remember that when i=1i=1, the expression for 1({n},m,z)\mathcal{B}_{1}(\{n\},m,z) matches with that presented in (28).

Now, one can obtain the residue

zpoleResz=zpole(Bn({n},z)z)=i=1n3m=0i({n},m,zim)s12i+1+ni+m+1\displaystyle\sum_{z_{\text{pole}}}\text{Res}_{z=z_{\text{pole}}}\bigg{(}\frac{B_{n}(\{n\},z)}{z}\bigg{)}=\sum_{i=1}^{n-3}\sum_{m=0}^{\infty}\frac{\mathcal{B}_{i}(\{n\},m,z^{*}_{im})}{s_{12\ldots i+1}+n_{i}+m+1} (35)

where

zim=s12i+1+ni+m+12αqj=2i+1kj.z^{*}_{im}=\frac{s_{12\ldots i+1}+n_{i}+m+1}{2\alpha^{\prime}q\cdot\sum_{j=2}^{i+1}k_{j}}. (36)

Consequently, the general expression for color-ordered open string amplitude is then written as

𝒜(1,2,3,,n)=i=1n3m=0I𝒦I(zim)i({nI},m,zim)s12i+1+ni+m+1.\displaystyle\mathcal{A}(1,2,3,\ldots,n)=\sum_{i=1}^{n-3}\sum_{m=0}^{\infty}\sum_{I}\mathcal{K}_{I}(z^{*}_{im})\frac{\mathcal{B}_{i}(\{n^{I}\},m,z^{*}_{im})}{s_{12\ldots i+1}+n_{i}+m+1}. (37)

Note that the function 𝒦I\mathcal{K}_{I} is also evaluated at zimz^{*}_{im} as well since the function is zz-dependent when the momenta are shifted.

It is clear that the denominators in the expression (37) correspond to propagators of the on-shell intermediate string states. For a specific example of nn-tachyon scattering, ni=2n_{i}=-2. The denominators suggest the full spectrum of open strings, i.e.

(k1+k2++ki+1)2+(m1)α(k_{1}+k_{2}+\ldots+k_{i+1})^{2}+\frac{(m-1)}{\alpha^{\prime}} (38)

for a non-negative integer mm. In the case of n1n-1 tachyons and one gauge boson scattering assigning polarization for the vector boson as ξ1\xi_{1}, one obtains n~1i=1\tilde{n}_{1i}=-1 for i=2,3,,ni=2,3,\ldots,n through linearizing the ξ1\xi_{1} in n\mathcal{F}_{n}. This also gives ni=2n_{i}=-2 providing the same mass spectrum of propagating open strings. On the other hand, one can use the requirement of the intermediate states to be on-shell to inversely identify all n~ij\tilde{n}_{ij} from the function n\mathcal{F}_{n} via (19).

The existence of scattering channel s12i+1s_{12\ldots i+1} implies that the function (33) can be factorized into two objects referring to the amplitudes of lower points. For the channel s12i+1s_{12\ldots i+1}, one can write

i({n},m,z)=\displaystyle\mathcal{B}_{i}(\{n\},m,z)= jli[j,l](j,l)(1,n3)(ajl=0(s~j+1,l+2ajl))(s~2,n1m(j,l)(1,n3)ajl)\displaystyle\prod_{\begin{subarray}{c}j\leq l\\ i\in[j,l]\\ (j,l)\neq(1,n-3)\end{subarray}}\left(\sum_{a_{jl}=0}^{\infty}\binom{\tilde{s}_{j+1,l+2}}{a_{jl}}\right)\binom{\tilde{s}_{2,n-1}}{m-\sum_{(j,l)\neq(1,n-3)}a_{jl}}
×Bi,n({n},{a},m,z)×B~i,n({n},{a},m,z)\displaystyle\times B_{i,n}(\{n\},\{a\},m,z)\times\widetilde{B}_{i,n}(\{n\},\{a\},m,z) (39)

where

Bi,n({n},{a},m,z)=\displaystyle B_{i,n}(\{n\},\{a\},m,z)= (j=1i101𝑑wj)k=1i1wks12k+1+nkzk+maiij<lj,l=k+1n3ajl\displaystyle\left(\prod_{j=1}^{i-1}\int_{0}^{1}dw_{j}\right)\prod_{k=1}^{i-1}w_{k}^{s_{12\ldots k+1}+n_{k}-z_{k}+m-a_{ii}-\sum\limits_{\small{\begin{subarray}{c}j<l\\ j,l=k+1\end{subarray}}}^{n-3}a_{jl}}
×l=ki1(1r=klwr)sk+1,l+2+nk+1,l+2\displaystyle\times\prod_{l=k}^{i-1}\left(1-\prod_{r=k}^{l}w_{r}\right)^{s_{k+1,l+2}+n_{k+1,l+2}} (40)

and

B~i,n({n},{a},m,z)=\displaystyle\widetilde{B}_{i,n}(\{n\},\{a\},m,z)= (j=i+1n301𝑑wj)k=i+1n3wks12k+1+nkzk+maiij<lj,l=1k1ajl\displaystyle\left(\prod_{j=i+1}^{n-3}\int_{0}^{1}dw_{j}\right)\prod_{k=i+1}^{n-3}w_{k}^{s_{12\ldots k+1}+n_{k}-z_{k}+m-a_{ii}-\sum\limits_{\small{\begin{subarray}{c}j<l\\ j,l=1\end{subarray}}}^{k-1}a_{jl}}
×l=kn3(1r=klwr)sk+1,l+2+nk+1,l+2.\displaystyle\times\prod_{l=k}^{n-3}\left(1-\prod_{r=k}^{l}w_{r}\right)^{s_{k+1,l+2}+n_{k+1,l+2}}. (41)

The functions Bi,n({n},{a},m,z)B_{i,n}(\{n\},\{a\},m,z) and B~i,n({n},{a},m,z)\widetilde{B}_{i,n}(\{n\},\{a\},m,z) are in the forms of open string amplitudes with i+1i+1 and nin-i external legs respectively. This signifies the fact that the on-shell recursion relations boil down a scattering amplitude in terms of lower-point amplitudes.

4 Conclusions

In conclusion, we have developed a systematic approach to derive on-shell recursion relations for open string amplitudes. The derivation, which is based on the same technique initiated by Britto et al. [18, 19], starts from applying the BCFW shift to an open string amplitude written in terms of multiple Gaussian hypergeometric functions. The shift generates simple poles corresponding to scattering channels of intermediate states. Using the residue theorem, we expressed a general expression for nn-point open string on-shell recursion relations as in (37).

References