This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gelfand-Tsetlin Bases for Elliptic Quantum Groups

Hitoshi Konno  and  Kohei Motegi

Tokyo University of Marine Science and Technology,
Etchujima 2-1-6, Koto-Ku, Tokyo, 135-8533, Japan




E-mail: [email protected]: [email protected]
Abstract

We study the level-0 representations of the elliptic quantum group Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}). We give a classification theorem of the finite-dimensional irreducible representations of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) in terms of the theta function analogue of the Drinfeld polynomial for the quantum affine algebra Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}). We also construct the Gelfand-Tsetlin bases for the level-0 Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N})-modules following the work by Nazarov-Tarasov for the Yangian Y(𝔤𝔩N)Y({\mathfrak{gl}}_{N})-modules. This is a construction in terms of the Drinfeld generators. For the case of tensor product of the vector representations, we give another construction of the Gelfand-Tsetlin bases in terms of the LL-operators and make a connection between the two constructions. We also compare them with those obtained by the first author by using the 𝔖n\mathfrak{S}_{n}-action realized by the elliptic dynamical RR-matrix on the standard bases. As a byproduct, we obtain an explicit formula for the partition functions of the corresponding 2-dimensional square lattice model in terms of the elliptic weight functions of type AN1A_{N-1}.

1 Introduction

The classification theorem of the finite-dimensional irreducible representations of the Lie algebra 𝔤𝔩N=𝔤𝔩(N,){\mathfrak{gl}_{N}}={\mathfrak{gl}}(N,{\mathbb{C}}) in terms of the dominant integral weights and the construction of the Gelfand-Tsetlin bases are the most important results in the classical representation theory. An extension of the former to the quantum groups, the Yangian Y(𝔤𝔩N)Y({\mathfrak{gl}_{N}}) and the quantum affine algebra Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}), was initiated by Tarasov[33], stated by Drinfeld [8] and established by Chari and Pressley [3, 4, 5, 6]. There the classification is given in terms of the polynomials called the Drinfeld polynomials, which can be regarded as a generating functions of a set of complex numbers specifying the highest weight. To prove the theorem, for example for Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}), one needs careful studies of the embedding structure Uq(𝔤𝔩N)Uq(𝔤𝔩^N)U_{q}({\mathfrak{gl}_{N}})\ \hookrightarrow\ U_{q}(\widehat{\mathfrak{gl}}_{N}), the evaluation homomorphism eva:Uq(𝔤𝔩^N)Uq(𝔤𝔩N)ev_{a}:U_{q}(\widehat{\mathfrak{gl}}_{N})\ \mapsto\ U_{q}({\mathfrak{gl}_{N}}) as well as the isomorphism [8, 2] between the two realizations of Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}), i.e. the Drinfeld-Jimbo realization[7, 14] and the Drinfeld realization[8]. For elliptic quantum groups, only a partial result for Uq,p(𝔰𝔩^2)U_{q,p}(\widehat{\mathfrak{sl}}_{2}) was obtained by using the evaluation homomorphism Uq,p(𝔰𝔩^2)Uq(𝔰𝔩^2)U_{q,p}(\widehat{\mathfrak{sl}}_{2})\ \mapsto\ U_{q}(\widehat{\mathfrak{sl}}_{2})[21]. One of the purpose of this paper is to give a complete exposition of the necessary structures of the elliptic quantum groups Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) and Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}), and establish an elliptic version of the classification theorem.

To construct the Gelfand-Tsetlin bases for the elliptic quantum groups is the other purpose of this paper. The Gelfand-Tsetlin bases[12] of finite-dimensional irreducible representations of quantum groups were constructed for the Yangian Y(𝔤𝔩N)Y({\mathfrak{gl}}_{N})[28, 29, 27] and the quantum group Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}_{N}})[15, 35]. In particular, the constructions in terms of the quantum minor determinants of the LL-operators, or equivalently the Drinfeld generators of Y(𝔤𝔩N)Y({\mathfrak{gl}}_{N}), developed by Nazarov-Tarasov [29] and Molev [27] are important for us, because they can be extended to the elliptic case straightforwardly. For the elliptic quantum groups Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}), the quantum minor determinants of the LL-operators and their various properties were studied in [23].

On the other hand, recently, the Gelfand-Tsetlin bases of the tensor product of the vector representations have been attracting a lot of attention in geometric representation theory of quantum groups. There the Gelfand-Tsetlin bases are identified with the fixed point bases (classes) of the equivariant cohomology, K\mathrm{K}-theory and elliptic cohomology of quiver varieties corresponding to the quantum groups. See for example [24]. A key to this is the identification of the weight functions in the representation theory of quantum groups [13, 31, 24, 32] with the stable envelopes in the geometry of quiver varieties[26, 30, 1]. In fact, it has been shown for the case of the elliptic quantum group Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) that the Gelfand-Tsetlin bases are obtained by transforming the standard bases with the change of basis matrix given by the elliptic weight functions[24] (see also [31] for the affine quantum group case).

In this paper, we extend the construction of the Gelfand-Tsetlin bases to arbitrary level-0 Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N})-modules whose weights are labelled by the Gelfand-Tsetlin patterns. We give a general construction in terms of the Drinfeld generators following the results in [29]. For the tensor product of the vector representations, we also give another construction in terms of the LL-operators and make a connection to the general construction. We also make a connection to the one obtained in [24], where the Gelfand-Tsetlin bases were constructed by using the action of the permutation group 𝔖n\mathfrak{S}_{n} realized by the elliptic dynamical RR-matrix on the tensor product space. As a byproduct, we obtain an explicit evaluation of the partition functions of the 2-dimensional square lattice statistical model defined by the RR-matrix in terms of the elliptic weight functions.

This paper is organized as follows. In Section 2, we expose some properties of the elliptic quantum groups Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}), Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}). In Section 3, we give a proof of the classification theorem of level-0 finite-dimensional irreducible representations of the elliptic quantum groups. In Section 4, we present an explicit and complete example of the classification of all finite-dimensional irreducible representations of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}) and their Gelfand-Tsetlin bases. In Section 4, we give a general construction of the Gelfand-Tsetlin bases for Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})-modules in terms of the Drinfeld generators. In Section 5, we give the second construction of the Gelfand-Tsetlin bases for the case of the tensor product of the vector representations of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) in terms of the LL-operators. We make a connection of them to the general construction as well as the one obtained in [24]. By considering the change of basis matrices, we obtain an explicit evaluation of the partition function of the statistical model in terms of the elliptic weight functions.

2 Elliptic Quantum Groups Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N})

In this section, we review the elliptic quantum groups Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) and Eq,p(𝔰𝔩^N)E_{q,p}(\widehat{\mathfrak{sl}}_{N}) following [23]. In particular we summarize embeddings of Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}}_{N}) to Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}) and further to Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) as well as evaluation homomorphisms from Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) to Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}) and further to Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}}_{N}). We also summarize an isomorphism between Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) and list some formulas on quantum minor determinants.

2.1 Preliminaries

Let A=(aij)A=(a_{ij}) (0i,jN1)(0\leq i,j\leq N-1) be the generalized Cartan matrix of the affine Lie algebra 𝔰𝔩^N=𝔰𝔩^(N,)\widehat{\mathfrak{sl}}_{N}=\widehat{\mathfrak{sl}}(N,\mathbb{C}). Let 𝔥=𝔥~d\mathfrak{h}=\widetilde{\mathfrak{h}}\oplus\mathbb{C}d, 𝔥~=𝔥¯c\widetilde{\mathfrak{h}}=\overline{\mathfrak{h}}\oplus\mathbb{C}c, 𝔥¯=i=1N1hi\overline{\mathfrak{h}}=\oplus_{i=1}^{N-1}\mathbb{C}h_{i} be the Cartan subalgebras of 𝔰𝔩^N\widehat{\mathfrak{sl}}_{N}, and 𝔥=𝔥~δ\mathfrak{h}^{*}=\widetilde{\mathfrak{h}}^{*}\oplus\mathbb{C}\delta, 𝔥~=𝔥¯Λ0\widetilde{\mathfrak{h}}^{*}=\overline{\mathfrak{h}}^{*}\oplus\mathbb{C}\Lambda_{0}, 𝔥¯=i=1N1Λ¯i\overline{\mathfrak{h}}^{*}=\oplus_{i=1}^{N-1}\mathbb{C}\overline{\Lambda}_{i} their duals. Let 𝒬=i=1N1αi\mathcal{Q}=\oplus_{i=1}^{N-1}\mathbb{Z}\alpha_{i} be the root lattice and 𝒫=i=1N1Λ¯i\mathcal{P}=\oplus_{i=1}^{N-1}\mathbb{Z}\overline{\Lambda}_{i} the weight lattice. The pairings between δ,Λ0\delta,\Lambda_{0}, αi,Λ¯i\alpha_{i},\overline{\Lambda}_{i} (1iN1)𝔥(1\leq i\leq N-1)\in\mathfrak{h}^{*} are given by

αi,hj=aji,δ,d=Λ0,c=1,Λ¯i,hj=δi,j,\displaystyle\langle\alpha_{i},h_{j}\rangle=a_{ji},\ \langle\delta,d\rangle=\langle\Lambda_{0},c\rangle=1,\ \langle\overline{\Lambda}_{i},h_{j}\rangle=\delta_{i,j}, (2.1)

and the other pairings are 0. An element λ\lambda in 𝒫+:=i=1N10Λ¯i{\cal P}^{+}:=\oplus_{i=1}^{N-1}\mathbb{Z}_{\geq 0}\overline{\Lambda}_{i} is called a dominant integral weight. Let {ϵj(1jN)}\{\epsilon_{j}\ (1\leq j\leq N)\} be an orthonormal basis in N\mathbb{R}^{N} with the inner product (ϵj,ϵk)=δj,k(\epsilon_{j},\epsilon_{k})=\delta_{j,k}. We set ϵ¯j=ϵjk=1Nϵk/N\overline{\epsilon}_{j}=\epsilon_{j}-\sum_{k=1}^{N}\epsilon_{k}/N, and realize the simple roots by αj=ϵ¯jϵ¯j+1\alpha_{j}=\overline{\epsilon}_{j}-\overline{\epsilon}_{j+1} (1jN1)(1\leq j\leq N-1) and the fundamental weights by Λj=ϵ¯1++ϵ¯j\Lambda_{j}=\overline{\epsilon}_{1}+\dots+\overline{\epsilon}_{j} (1jN1)(1\leq j\leq N-1). In order to discuss 𝔤𝔩^N\widehat{\mathfrak{gl}}_{N}, we consider ¯=l=1Nϵl\overline{\mathfrak{H}}^{*}=\oplus_{l=1}^{N}{\mathbb{C}}\epsilon_{l} and define hϵlh_{\epsilon_{l}} (1lN)(1\leq l\leq N) by hi=hϵihϵi+1h_{i}=h_{\epsilon_{i}}-h_{\epsilon_{i+1}}. We set ¯=l=1Nhϵl\overline{\mathfrak{H}}=\oplus_{l=1}^{N}{\mathbb{C}}h_{\epsilon_{l}}. We regard ¯¯\overline{\mathfrak{H}}\oplus\overline{\mathfrak{H}}^{*} as the Heisenberg algebra by

[hα,β]=(α,β),[hα,hβ]=[α,β]=0,α,β¯.\displaystyle[h_{\alpha},\beta]=(\alpha,\beta),\ \ \ [h_{\alpha},h_{\beta}]=[\alpha,\beta]=0,\ \ \ \alpha,\beta\in\overline{\mathfrak{H}}^{*}. (2.2)

Let {Pα,Qβ}\{P_{\alpha},Q_{\beta}\} (α,β¯)(\alpha,\beta\in\overline{\mathfrak{H}}^{*}) be the Heisenberg algebra defined by

[Pα,Qβ]=(α,β),[Pα,Pβ]=[Qα,Qβ]=0.\displaystyle[P_{\alpha},Q_{\beta}]=(\alpha,\beta),\ \ \ [P_{\alpha},P_{\beta}]=[Q_{\alpha},Q_{\beta}]=0. (2.3)

We also set Q=l=1NQϵl{\cal R}_{Q}=\oplus_{l=1}^{N}{\mathbb{C}}Q_{\epsilon_{l}} and denote by [Q]{\mathbb{C}}[{\cal R}_{Q}] the group ring of Q{\cal R}_{Q}. Note that for eQα,eQβ[Q]e^{Q_{\alpha}},e^{Q_{\beta}}\in{\mathbb{C}}[{\cal R}_{Q}] one has eQαeQβ=eQα+Qβ[Q]e^{Q_{\alpha}}e^{Q_{\beta}}=e^{Q_{\alpha}+Q_{\beta}}\in{\mathbb{C}}[{\cal R}_{Q}].

We define the commutative algebra HH as H=𝔥~(l=1NPϵl)H=\widetilde{\mathfrak{h}}\oplus\left(\oplus_{l=1}^{N}{\mathbb{C}}P_{\epsilon_{l}}\right), and its dual space H=𝔥~(j=1NQϵj)H^{*}=\widetilde{\mathfrak{h}}^{*}\oplus\Big{(}\oplus_{j=1}^{N}\mathbb{C}Q_{{\epsilon}_{j}}\Big{)}. Then define 𝔽=H\mathbb{F}=\mathcal{M}_{H^{*}} to be the field of meromorphic functions on HH^{*}.

For xx\in{\mathbb{C}}, we set [x]q=qxqxqq1{[x]_{q}=\frac{q^{x}-q^{-x}}{q-q^{-1}}}. Let q1,q2,,qk×q_{1},q_{2},\cdots,q_{k}\in{\mathbb{C}}^{\times} satisfying |q1|,|q2|,,|qk|<1|q_{1}|,|q_{2}|,\cdots,|q_{k}|<1. We introduce the qq-infinite product

(x;q1,q2,,qk)=n1,n2,,nk=0(1xq1n1q2n2qknk).\displaystyle(x;q_{1},q_{2},\cdots,q_{k})_{\infty}=\prod_{n_{1},n_{2},\cdots,n_{k}=0}^{\infty}(1-xq_{1}^{n_{1}}q_{2}^{n_{2}}\cdots q_{k}^{n_{k}}). (2.4)

In particular, the k=1k=1 case gives

(x;q)=n=0(1xqn).\displaystyle(x;q)_{\infty}=\prod_{n=0}^{\infty}(1-xq^{n}). (2.5)

Let pp be a generic complex number satisfying |p|<1|p|<1, and introduce the Jacobi’s odd theta functions as

Θp(z)=(z;p)(p/z;p)(p;p).\displaystyle\Theta_{p}(z)=(z;p)_{\infty}(p/z;p)_{\infty}(p;p)_{\infty}. (2.6)

It is also convenient to use

θ(z)=z1/2Θp(z).\displaystyle\theta(z)=-z^{-1/2}\Theta_{p}(z). (2.7)

We also use the elliptic Gamma function defined by

Γ(z;p,q)=(pq/z;p,q)(z;p,q)|p|,|q|<1.\displaystyle\Gamma(z;p,q)=\frac{(pq/z;p,q)_{\infty}}{(z;p,q)_{\infty}}\qquad|p|,|q|<1. (2.8)

This satisfies

Γ(pz;p,q)=Θq(z)(q;q)Γ(z;p,q),Γ(qz;p,q)=Θp(z)(p;p)Γ(z;p,q).\displaystyle\Gamma(pz;p,q)=\frac{\Theta_{q}(z)}{(q;q)_{\infty}}\Gamma(z;p,q),\qquad\Gamma(qz;p,q)=\frac{\Theta_{p}(z)}{(p;p)_{\infty}}\Gamma(z;p,q). (2.9)

2.2 The elliptic dynamical RR-matrix of the 𝔤𝔩^N\widehat{{\mathfrak{gl}}}_{N} type

Let V^=j=1N𝔽vj\displaystyle\widehat{V}=\bigoplus_{j=1}^{N}{\mathbb{F}}v_{j} be the NN-dimensional vector space over 𝔽{\mathbb{F}} and set V^z:=V^[z,z1]\widehat{V}_{z}:=\widehat{V}[z,z^{-1}]. We assume eQαvj=vje^{Q_{\alpha}}\cdot v_{j}=v_{j}. We consider the elliptic dynamical RR-matrix R+(z,Π)End(V^z1V^z2){R}^{+}(z,\Pi)\in\mathrm{End}(\widehat{V}_{z_{1}}\otimes\widehat{V}_{z_{2}}) given by

R+(z,Π)=\displaystyle\displaystyle{R}^{+}(z,\Pi)= ρ+(z)R¯(z,Π),\displaystyle\rho^{+}(z)\overline{R}(z,\Pi), (2.10)
R¯(z,Π)=\displaystyle\displaystyle\overline{R}(z,\Pi)= j=1NEjjEjj+1j1<j2N(b(z,Πj1,j2)Ej1,j1Ej2,j2+b¯(z)Ej2,j2Ej1,j1\displaystyle\sum_{j=1}^{N}E_{jj}\otimes E_{jj}+\sum_{1\leq j_{1}<j_{2}\leq N}\Biggl{(}b(z,\Pi_{j_{1},j_{2}})E_{j_{1},j_{1}}\otimes E_{j_{2},j_{2}}+\overline{b}(z)E_{j_{2},j_{2}}\otimes E_{j_{1},j_{1}}
+c(z,Πj1,j2)Ej1,j2Ej2,j1+c¯(z,Πj1,j2)Ej2,j1Ej1,j2),\displaystyle+c(z,\Pi_{j_{1},j_{2}})E_{j_{1},j_{2}}\otimes E_{j_{2},j_{1}}+\overline{c}(z,\Pi_{j_{1},j_{2}})E_{j_{2},j_{1}}\otimes E_{j_{1},j_{2}}\Biggr{)}, (2.11)

where Ei,jvμ=δj,μviE_{i,j}v_{\mu}=\delta_{j,\mu}v_{i}, and we set Πj,k=q2(P+h)j,k\Pi_{j,k}=q^{2(P+h)_{j,k}}, (P+h)j,k:=(P+h)ϵj(P+h)ϵk(P+h)_{j,k}:=(P+h)_{{\epsilon}_{j}}-(P+h)_{{\epsilon}_{k}}, and

ρ+(z)\displaystyle\displaystyle\rho^{+}(z) =q(N1)/NΓ(z;q2N,p)Γ(q2Nz;q2N,p)Γ(q2z;q2N,p)Γ(q2Nq2z;q2N,p),\displaystyle=q^{-(N-1)/N}\frac{\Gamma(z;q^{2N},p)\Gamma(q^{2N}z;q^{2N},p)}{\Gamma(q^{2}z;q^{2N},p)\Gamma(q^{2N}q^{-2}z;q^{2N},p)}, (2.12)
b(z,Π)\displaystyle b(z,\Pi) =θ(q2Π)θ(q2Π)θ(z)θ(Π)2θ(q2z),b¯(z)=θ(z)θ(q2z),\displaystyle=\frac{\theta(q^{2}\Pi)\theta(q^{-2}\Pi)\theta(z)}{\theta(\Pi)^{2}\theta(q^{2}z)},\ \ \ \overline{b}(z)=\frac{\theta(z)}{\theta(q^{2}z)}, (2.13)
c(z,Π)\displaystyle c(z,\Pi) =θ(q2)θ(zΠ)θ(Π)θ(q2z),c¯(z,Π)=θ(q2)θ(zΠ1)θ(Π1)θ(q2z).\displaystyle=\frac{\theta(q^{2})\theta(z\Pi)}{\theta(\Pi)\theta(q^{2}z)},\ \ \ \overline{c}(z,\Pi)=\frac{\theta(q^{2})\theta(z\Pi^{-1})}{\theta(\Pi^{-1})\theta(q^{2}z)}. (2.14)

The RR-matrix R¯+(z,q2s)\overline{R}^{+}(z,q^{2s}) satisfies the dynamical Yang-Baxter equation

R¯+(12)(z1/z2,q2(s+h(3)))R¯+(13)(z1/z3,q2s)R¯+(23)(z2/z3,q2(s+h(1)))\displaystyle\overline{R}^{+(12)}(z_{1}/z_{2},q^{2(s+h^{(3)})})\overline{R}^{+(13)}(z_{1}/z_{3},q^{2s})\overline{R}^{+(23)}(z_{2}/z_{3},q^{2(s+h^{(1)})})
=R¯+(23)(z2/z3,q2s)R¯+(13)(z1/z3,q2(s+h(2)))R¯+(12)(z1/z2,q2s),\displaystyle=\overline{R}^{+(23)}(z_{2}/z_{3},q^{2s})\overline{R}^{+(13)}(z_{1}/z_{3},q^{2(s+h^{(2)})})\overline{R}^{+(12)}(z_{1}/z_{2},q^{2s}), (2.15)

where q2hj,k()q^{2h_{j,k}^{(\ell)}} acts on the \ell-th tensor space V^zl\widehat{V}_{z_{l}} by q2hj,k()vμ=q2ϵ¯μ,hj,kvμq^{2h_{j,k}^{(\ell)}}v_{\mu}=q^{2\langle\overline{\epsilon}_{\mu},h_{j,k}\rangle}v_{\mu}.

2.3 The elliptic algebra Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N})

Definition 2.1.

The elliptic algebra Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) is a topological algebra over 𝔽[[p]]{\mathbb{F}}[[p]] generated by ej,m,fj,m,kl,me_{j,m},f_{j,m},k_{l,m}, (1jN1,1lN,m)(1\leq j\leq N-1,1\leq l\leq N,m\in{\mathbb{Z}}) and the central elements q±c/2q^{\pm c/2}. The defining relations are given in terms of the following generating functions called the elliptic currents.

ej(z)=mej,mzm,fj(z)=mfj,mzm,\displaystyle e_{j}(z)=\sum_{m\in{\mathbb{Z}}}e_{j,m}z^{-m},\quad f_{j}(z)=\sum_{m\in{\mathbb{Z}}}f_{j,m}z^{-m}, (2.16)
kl+(z)=m0kl,mzm+m>0kl,mpmzm,\displaystyle k_{l}^{+}(z)=\sum_{m\in{\mathbb{Z}}_{\geq 0}}k_{l,-m}z^{m}+\sum_{m\in{\mathbb{Z}}_{>0}}k_{l,m}p^{m}z^{-m}, (2.17)
kl(z)=q2hϵlkl+(zpqc).\displaystyle k^{-}_{l}(z)=q^{2h_{\epsilon_{l}}}k^{+}_{l}(zpq^{-c}). (2.18)

The relations are given in Appendix A.1111Through this paper we do not consider the derivation operator d^{\widehat{d}}..

In the following, we set p=pq2cp^{*}=pq^{-2c}. Let ml(1lN,m0){\cal E}^{l}_{m}\ (1\leq l\leq N,m\in{\mathbb{Z}}_{\not=0}) be operators satisfying222 Our ml{\cal E}^{l}_{m} is (qmqm)2m+l(q^{m}-q^{-m})^{2}{\cal E}^{+l}_{m} in [10, 23].

[ml,nl]=δm+n,0[cm]q[(N1)m]q(qmqm)2m[m]q[Nm]q1pm1pmqcm,\displaystyle[{\cal E}^{l}_{m},{\cal E}^{l}_{n}]=\delta_{m+n,0}\frac{[cm]_{q}[(N-1)m]_{q}(q^{m}-q^{-m})^{2}}{m[m]_{q}[Nm]_{q}}\frac{1-p^{m}}{1-p^{*m}}q^{-cm}, (2.19)
[mk,nl]=δm+n,0qsgn(kl)Nm+(kl)m[cm]q(qmqm)2m[Nm]q1pm1pmqcm,\displaystyle[{\cal E}^{k}_{m},{\cal E}^{l}_{n}]=-\delta_{m+n,0}q^{-{\rm sgn}(k-l)Nm+(k-l)m}\frac{[cm]_{q}(q^{m}-q^{-m})^{2}}{m[Nm]_{q}}\frac{1-p^{m}}{1-p^{*m}}q^{-cm}, (2.20)
l=1Nq(l1)mml=0.\displaystyle\sum_{l=1}^{N}q^{(l-1)m}{\cal E}^{l}_{m}=0. (2.21)

Then one can realize kl+(z)k^{+}_{l}(z) as

kl+(z)\displaystyle k^{+}_{l}(z) =\displaystyle= Kϵl+exp{m>0ml1pm(qlz)m}exp{m>0pmml1pm(qlz)m}.\displaystyle K^{+}_{\epsilon_{l}}\exp\left\{-\sum_{m>0}\frac{{\cal E}^{l}_{-m}}{1-p^{m}}(q^{l}z)^{m}\right\}\exp\left\{\sum_{m>0}\frac{p^{m}{\cal E}^{l}_{m}}{1-p^{m}}(q^{l}z)^{-m}\right\}. (2.22)

Here, expanding kl,mUq,p(𝔤𝔩^N)k_{l,m}\in U_{q,p}(\widehat{\mathfrak{gl}}_{N}) in pp

kl,m=r0kl,m(r)pr,1lN,m,\displaystyle k_{l,m}=\sum_{r\in{\mathbb{Z}}_{\geq 0}}k^{(r)}_{l,m}p^{r},\qquad 1\leq l\leq N,\ m\in{\mathbb{Z}}, (2.23)

we have

Kϵl+=kl,0(0).\displaystyle K^{+}_{\epsilon_{l}}=k^{(0)}_{l,0}. (2.24)

Let us set

K(z)=k1+(z)k2+(q2z)kN+(q2(N1)z).\displaystyle K(z)=k^{+}_{1}(z)k^{+}_{2}(q^{-2}z)\cdots k^{+}_{N}(q^{-2(N-1)}z).

Then K(z)K(z) belongs to the center of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) (Proposition 3.2 in [23]). This can also be verified from (2.21), (2.22) and the fact that l=1Nqhϵl\prod_{l=1}^{N}q^{-h_{\epsilon_{l}}} belongs to the center.

Let UqD(𝔤𝔩^N)U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}) be the quantum affine algebra over {\mathbb{C}} generated by the Drinfeld generators Xj,m±,Kl,m±,q±c/2X^{\pm}_{j,m},K^{\pm}_{l,m},q^{\pm c/2}. The defining relations can be seen in Appendix A in [23]. We set

Xj±(z)=mXj,m±zm,Kl±(z)=m0Kl,m±z±m.\displaystyle X^{\pm}_{j}(z)=\sum_{m\in{\mathbb{Z}}}X^{\pm}_{j,m}z^{-m},\qquad K^{\pm}_{l}(z)=\sum_{m\in{\mathbb{Z}}_{\geq 0}}K^{\pm}_{l,\mp m}z^{\pm m}.

Note the relation Kl,0+Kl,0=1=Kl,0Kl,0+K^{+}_{l,0}K^{-}_{l,0}=1=K^{-}_{l,0}K^{+}_{l,0}.

Let us introduce the currents uϵl+(z,p)Uq,p(𝔤𝔩^N)[[p]][[z]]u^{+}_{\epsilon_{l}}(z,p)\in U_{q,p}(\widehat{\mathfrak{gl}}_{N})[[p]][[z]], uϵl(z,p)Uq,p(𝔤𝔩^N)[[p]][[z1]]u^{-}_{\epsilon_{l}}(z,p)\in U_{q,p}(\widehat{\mathfrak{gl}}_{N})[[p]][[z^{-1}]] (1lN)(1\leq l\leq N) by

uϵl+(z,p)=exp{m>0(pqc)mml1pmzm},\displaystyle u^{+}_{\epsilon_{l}}(z,p)=\exp\left\{\sum_{m>0}\frac{(pq^{-c})^{m}{\cal E}^{l}_{-m}}{1-p^{m}}\;z^{m}\right\}, (2.25)
uϵl(z,p)=exp{m>0pmml1pmzm},\displaystyle u^{-}_{\epsilon_{l}}(z,p)=\exp\left\{-\sum_{m>0}\frac{p^{m}{\cal E}^{l}_{m}}{1-p^{m}}\;z^{-m}\right\}, (2.26)

and set

uj±(z,p)=uϵj±(z,p)uϵj+1±(qz,p)1(1jN1).\displaystyle u_{j}^{\pm}(z,p)=u^{\pm}_{\epsilon_{j}}(z,p)u^{\pm}_{\epsilon_{j+1}}(qz,p)^{-1}\qquad(1\leq j\leq N-1). (2.27)

These are well defined elements in (Uq,p(𝔤𝔩^N)[[p]])[[z,z1]](U_{q,p}(\widehat{\mathfrak{gl}}_{N})[[p]])[[z,z^{-1}]] in the pp-adic topology.

Theorem 2.2.

The map πp:(𝔽UqD(𝔤𝔩^N))[Q]Uq,p(𝔤𝔩^N)\pi_{p}:({\mathbb{F}}\otimes_{\mathbb{C}}U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}))\sharp{\mathbb{C}}[{\cal R}_{Q}]\to U_{q,p}(\widehat{\mathfrak{gl}}_{N}) defined by

πp(Xj+(z)eQj)=uj+(z,p)ej+(z),\displaystyle\pi_{p}(X^{+}_{j}(z)e^{-Q_{j}})=u_{j}^{+}(z,p)e_{j}^{+}(z),
πp(Xj(z))=fj(z)uj(z,p),\displaystyle\pi_{p}(X^{-}_{j}(z))=f_{j}^{-}(z)u_{j}^{-}(z,p),
πp(Kl+(z)eQϵl)=uϵl+(qc+lz,p)kl+(z)uϵl(qlz,p),\displaystyle\pi_{p}(K^{+}_{l}(z)e^{-Q_{\epsilon_{l}}})=u_{\epsilon_{l}}^{+}(q^{-c+l}z,p)k^{+}_{l}(z)u_{\epsilon_{l}}^{-}(q^{l}z,p),
πp(Kl(z)eQϵl)=uϵl+(qlz,p)kl(z)uϵl(qc+lz,p).\displaystyle\pi_{p}(K^{-}_{l}(z)e^{-Q_{\epsilon_{l}}})=u_{\epsilon_{l}}^{+}(q^{l}z,p)k^{-}_{l}(z)u_{\epsilon_{l}}^{-}(q^{-c+l}z,p).

is an algebra homomorphism. Here the smash product \sharp is defined as follows.

g(P,P+h)aeQαf(P,P+h)beQβ\displaystyle g(P,P+h)a\otimes e^{Q_{\alpha}}\cdot f(P,P+h)b\otimes e^{Q_{\beta}}
=g(P,P+h)f(PQα,P,P+hQα+wt(a),P+h)abeQα+Qβ\displaystyle\quad=g(P,P+h)f(P-\langle Q_{\alpha},P\rangle,P+h-\langle Q_{\alpha}+{\rm wt}(a),P+h\rangle)ab\otimes e^{Q_{\alpha}+Q_{\beta}}

where wt(a)𝔥¯{\rm wt}({a})\in\bar{\mathfrak{h}}^{*} s.t. qhaqh=qwt(a),haq^{h}aq^{-h}=q^{\langle{\rm wt}({a}),h\rangle}a for a,bUq(𝔤^),f(P),g(P)𝔽,eQα,eQβ[Q]a,b\in U_{q}(\widehat{\mathfrak{g}}),f(P),g(P)\in{\mathbb{F}},e^{Q_{\alpha}},e^{Q_{\beta}}\in{\mathbb{C}}[{\cal R}_{Q}].

In particular, one obtains the following identifications.

Corollary 2.3.
Kl,0+eQϵl=q2hϵlKl,0eQϵl=Kϵl+=qhϵleQϵl,\displaystyle K^{+}_{l,0}e^{-Q_{\epsilon_{l}}}=q^{-2h_{\epsilon_{l}}}K^{-}_{l,0}e^{-Q_{\epsilon_{l}}}=K^{+}_{\epsilon_{l}}=q^{-h_{\epsilon_{l}}}e^{-Q_{\epsilon_{l}}}, (2.28)
πp(Kl+(z))=qhϵlexp{m>01pm1pmml(qlz)m}Uq,p(𝔤𝔩^N)[[z]],\displaystyle\pi_{p}(K^{+}_{l}(z))=q^{-h_{\epsilon_{l}}}\exp\left\{-\sum_{m>0}\frac{1-p^{*m}}{1-p^{m}}{\cal E}^{l}_{-m}(q^{l}z)^{m}\right\}\ \in U_{q,p}(\widehat{\mathfrak{gl}}_{N})[[z]], (2.29)
πp(Kl(z))=qhϵlexp{m>0ml(qlcz)m}Uq,p(𝔤𝔩^N)[[z1]].\displaystyle\pi_{p}(K^{-}_{l}(z))=q^{h_{\epsilon_{l}}}\exp\left\{\sum_{m>0}{\cal E}^{l}_{m}(q^{l-c}z)^{-m}\right\}\ \in U_{q,p}(\widehat{\mathfrak{gl}}_{N})[[z^{-1}]]. (2.30)

One also has the inverse of πp\pi_{p} ( Sec.5.2 in [23]). Hence one obtains the isomorphism
Uq,p(𝔤𝔩^N)(𝔽UqD(𝔤𝔩^N))[Q]{U_{q,p}(\widehat{\mathfrak{gl}}_{N})\cong({\mathbb{F}}\otimes_{{\mathbb{C}}}U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}))\sharp{\mathbb{C}}[{\cal R}_{Q}]}. In the below we set Kϵl=Kl,0+=(Kl,0)1=qhϵlK_{\epsilon_{l}}=K^{+}_{l,0}=(K^{-}_{l,0})^{-1}=q^{-h_{\epsilon_{l}}}.

The quantum affine algebra associated with 𝔤𝔩^N\widehat{\mathfrak{gl}}_{N} has the other realization UDJ(𝔤𝔩^N)U^{DJ}(\widehat{\mathfrak{gl}}_{N}) called the Drinfeld-Jimbo realization[7, 14]. This is generated by the Chevalley type generators 𝒳r±,𝒦ϵl,q±c/2(0rN1, 1lN){\cal X}^{\pm}_{r},{\cal K}_{\epsilon_{l}},q^{\pm c/2}\ (0\leq r\leq N-1,\ 1\leq l\leq N) subject to

𝒦ϵl𝒦ϵm=𝒦ϵm𝒦ϵl,𝒦ϵl𝒦ϵl1=𝒦ϵl1𝒦ϵl=1(1l,mN),\displaystyle{\cal K}_{\epsilon_{l}}{\cal K}_{\epsilon_{m}}={\cal K}_{\epsilon_{m}}{\cal K}_{\epsilon_{l}},\qquad{\cal K}_{\epsilon_{l}}{\cal K}_{\epsilon_{l}}^{-1}={\cal K}_{\epsilon_{l}}^{-1}{\cal K}_{\epsilon_{l}}=1\qquad(1\leq l,m\leq N),
𝒦ϵl𝒳r±𝒦ϵl1=qαr,hϵl𝒳r±,\displaystyle{\cal K}_{\epsilon_{l}}{\cal X}^{\pm}_{r}{\cal K}_{\epsilon_{l}}^{-1}=q^{\mp\langle\alpha_{r},h_{\epsilon_{l}}\rangle}{\cal X}^{\pm}_{r},
[𝒳r+,𝒳s]=δr,sqq1(𝒦ϵr1𝒦ϵr+1𝒦ϵr𝒦ϵr+11),\displaystyle[{\cal X}^{+}_{r},{\cal X}^{-}_{s}]=\frac{\delta_{r,s}}{q-q^{-1}}({\cal K}_{\epsilon_{r}}^{-1}{\cal K}_{\epsilon_{r+1}}-{\cal K}_{\epsilon_{r}}{\cal K}_{\epsilon_{r+1}}^{-1}),

where we set α0=δθ\alpha_{0}=\delta-\theta and 𝒦ϵ0qc𝒦ϵN{\cal K}_{\epsilon_{0}}\equiv q^{c}{\cal K}_{\epsilon_{N}}.

The isomorphism between UqD(𝔤𝔩^N)U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}) and UqDJ(𝔤𝔩^N)U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N}) is given as follows[8, 25, 2]. Let us set in UqD(𝔤𝔩^N)U_{q}^{D}(\widehat{\mathfrak{gl}}_{N})

Kj:=KϵjKϵj+11,(1jN1)\displaystyle K_{j}:=K_{\epsilon_{j}}K_{\epsilon_{j+1}}^{-1},\qquad(1\leq j\leq N-1) (2.31)
Kθ:=K1K2KN1=Kϵ1KϵN1.\displaystyle K_{\theta}:=K_{1}K_{2}\cdots K_{N-1}=K_{\epsilon_{1}}K_{\epsilon_{N}}^{-1}. (2.32)

Then one has an isomorphism of {\mathbb{C}}-algebras f:UqDJ(𝔤𝔩^N)UqD(𝔤𝔩^N)f:U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N})\to U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}) given by

f(𝒦0)=qcKθ,f(𝒦ϵl)=Kϵl,f(𝒳j±)=Xj,0±,\displaystyle f({\cal K}_{0})=q^{c}K_{\theta},\qquad f({\cal K}_{\epsilon_{l}})=K_{\epsilon_{l}},\qquad f({\cal X}^{\pm}_{j})=X^{\pm}_{j,0}, (2.33)
f(𝒳0+)=[XN1,0,[XN2,0,[X2,0,X1,1]q1]q1]q1Kθ1,\displaystyle f({\cal X}^{+}_{0})=[X^{-}_{N-1,0},[X^{-}_{N-2,0},\cdots[X^{-}_{2,0},X^{-}_{1,1}]_{q^{-1}}\cdots]_{q^{-1}}]_{q^{-1}}K_{\theta}^{-1}, (2.34)
f(𝒳0)=Kθ[[[X1,1+,X2,0+]q,XN2,0+]q,XN1,0+]q,\displaystyle f({\cal X}^{-}_{0})=K_{\theta}[[\cdots[X^{+}_{1,-1},X^{+}_{2,0}]_{q}\cdots,X^{+}_{N-2,0}]_{q},X^{+}_{N-1,0}]_{q}, (2.35)

where [A,B]q±1=ABq±1BA[A,B]_{q^{\pm 1}}=AB-q^{\pm 1}BA. One also has the opposite algebra homomorphism F:UqD(𝔤𝔩^N)UqDJ(𝔤𝔩^N)F:U^{D}_{q}(\widehat{\mathfrak{gl}}_{N})\to U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N}) in the same way as in [2] for Uq(𝔰𝔩^N)U_{q}(\widehat{\mathfrak{sl}}_{N}).

It is also obvious that UqDJ(𝔤𝔩^N)U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N}) has a subalgebra Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}}_{N}) generated by 𝒳j±,𝒦ϵl(1jN1, 1lN){\cal X}^{\pm}_{j},{\cal K}_{\epsilon_{l}}\ (1\leq j\leq N-1,\ 1\leq l\leq N) subject to

𝒦ϵl𝒳j±𝒦ϵl1=qαj,hϵl𝒳j±,\displaystyle{\cal K}_{\epsilon_{l}}{\cal X}^{\pm}_{j}{\cal K}_{\epsilon_{l}}^{-1}=q^{\mp\langle\alpha_{j},h_{\epsilon_{l}}\rangle}{\cal X}^{\pm}_{j},
[𝒳i+,𝒳j]=δi,jqq1(𝒦ϵj1𝒦ϵj+1𝒦ϵj𝒦ϵj+11).\displaystyle[{\cal X}^{+}_{i},{\cal X}^{-}_{j}]=\frac{\delta_{i,j}}{q-q^{-1}}({\cal K}_{\epsilon_{j}}^{-1}{\cal K}_{\epsilon_{j+1}}-{\cal K}_{\epsilon_{j}}{\cal K}_{\epsilon_{j+1}}^{-1}).

The opposite algebra homomorphism eva:UqDJ(𝔤𝔩^N)Uq(𝔤𝔩N){\rm ev}_{a}:U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N})\ \ {\longrightarrow}\ U_{q}({\mathfrak{gl}}_{N}) was obtained by Jimbo [16]. Let us define E^ijUq(𝔤𝔩N)(1ijN)\widehat{E}_{ij}\in U_{q}({\mathfrak{gl}_{N}})\ (1\leq i\not=j\leq N) inductively by E^jj+1=𝒳j+\widehat{E}_{jj+1}={\cal X}^{+}_{j}, E^j+1j=𝒳j\widehat{E}_{j+1j}={\cal X}^{-}_{j} and

E^ij=E^ikE^kjq±1E^kjE^ik(ikj).\displaystyle\widehat{E}_{ij}=\widehat{E}_{ik}\widehat{E}_{kj}-q^{\pm 1}\widehat{E}_{kj}\widehat{E}_{ik}\qquad(i\gtrless k\gtrless j).

Then the following map gives an algebra homomorphism eva:UqDJ(𝔤𝔩^N)Uq(𝔤𝔩N)[a,a1]{\rm ev}_{a}:U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N})\ \ {\longrightarrow}\ U_{q}({\mathfrak{gl}}_{N})[a,a^{-1}] with a×a\in{\mathbb{C}}^{\times}.

eva(𝒦0)=𝒦ϵ1𝒦ϵN1,\displaystyle{\rm ev}_{a}({\cal K}_{0})={\cal K}_{\epsilon_{1}}{\cal K}_{\epsilon_{N}}^{-1},\qquad (2.36)
eva(𝒳0+)=aq1𝒦ϵ1𝒦ϵNE^N1,\displaystyle{\rm ev}_{a}({\cal X}^{+}_{0})=aq^{-1}{\cal K}_{\epsilon_{1}}{\cal K}_{\epsilon_{N}}\widehat{E}_{N1}, (2.37)
eva(𝒳0+)=a1q𝒦ϵ11𝒦ϵN1E^1N,\displaystyle{\rm ev}_{a}({\cal X}^{+}_{0})=a^{-1}q{\cal K}_{\epsilon_{1}}^{-1}{\cal K}_{\epsilon_{N}}^{-1}\widehat{E}_{1N}, (2.38)
eva(𝒦ϵl)=𝒦ϵl,eva(𝒳j±)=𝒳j±(1lN,1jN1).\displaystyle{\rm ev}_{a}({\cal K}_{\epsilon_{l}})={\cal K}_{\epsilon_{l}},\qquad{\rm ev}_{a}({\cal X}^{\pm}_{j})={\cal X}^{\pm}_{j}\qquad(1\leq l\leq N,1\leq j\leq N-1). (2.39)

In summary we have the following embeddings

Uq(𝔤𝔩N)UqDJ(𝔤𝔩^N)(𝔽UqD(𝔤𝔩^N))[Q]πpUq,p(𝔤𝔩^N),\displaystyle U_{q}({\mathfrak{gl}}_{N})\ \hookrightarrow\ U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N})\ \hookrightarrow\ ({\mathbb{F}}\otimes_{\mathbb{C}}U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}))\sharp{\mathbb{C}}[{\cal R}_{Q}]\ \stackrel{{\scriptstyle\pi_{p}}}{{\hookrightarrow}}\ U_{q,p}(\widehat{\mathfrak{gl}}_{N}), (2.40)

where in the middle we used UqDJ(𝔤𝔩^N)UqD(𝔤𝔩^N)U^{DJ}_{q}(\widehat{\mathfrak{gl}}_{N})\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}) by Beck [2]. In particular, we have the identification

𝒦ϵlKϵl,KϵleQϵlKϵl+.\displaystyle{\cal K}_{\epsilon_{l}}\ \mapsto\ K_{\epsilon_{l}},\quad K_{\epsilon_{l}}e^{-Q_{\epsilon_{l}}}\mapsto\ K^{+}_{\epsilon_{l}}. (2.41)

On the other hand, we have the algebra homomorphisms of the opposite direction.

Uq,p(𝔤𝔩^N)πp1(𝔽UqD(𝔤𝔩^N))[Q]eva(𝔽Uq(𝔤𝔩N)[a,a1])[Q].\displaystyle U_{q,p}(\widehat{\mathfrak{gl}}_{N})\ \stackrel{{\scriptstyle\pi_{p}^{-1}}}{{\longrightarrow}}\ ({\mathbb{F}}\otimes_{\mathbb{C}}U^{D}_{q}(\widehat{\mathfrak{gl}}_{N}))\sharp{\mathbb{C}}[{\cal R}_{Q}]\ \stackrel{{\scriptstyle{\rm ev}_{a}}}{{\longrightarrow}}\ ({\mathbb{F}}\otimes_{\mathbb{C}}U_{q}({\mathfrak{gl}}_{N})[a,a^{-1}])\sharp{\mathbb{C}}[{\cal R}_{Q}]. (2.42)

2.4 The elliptic algebra Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N})

The elliptic algebra Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}) is defined as the quotient algebra

Uq,p(𝔤𝔩^N)/<K(z)1>.\displaystyle U_{q,p}(\widehat{\mathfrak{gl}}_{N})/<K(z)-1>. (2.43)

Set

Kj+:=Kϵj+Kϵj+1+1,\displaystyle K^{+}_{j}:=K^{+}_{\epsilon_{j}}K^{+-1}_{\epsilon_{j+1}}, (2.44)
αj,m:=1qq1(mjqmmj+1)1jN1,m.\displaystyle\alpha_{j,m}:=\frac{1}{q-q^{-1}}\left({\cal E}^{j}_{m}-q^{-m}{\cal E}^{j+1}_{m}\right)\qquad 1\leq j\leq N-1,\ m\in{\mathbb{Z}}. (2.45)

One has

[αi,m,αj,n]=δm+n,0[aijm]q[cm]qm1pm1pmqcm.\displaystyle[\alpha_{i,m},\alpha_{j,n}]=\delta_{m+n,0}\frac{[a_{ij}m]_{q}[cm]_{q}}{m}\frac{1-p^{m}}{1-p^{*m}}q^{-cm}. (2.46)

Solving (2.45) and (2.21), one obtains

mj=(qq1)qjm[Nm]q(qNmk=1j1[km]qαk,m+k=jN1[(Nk)m]qαk,m)(1jN1),\displaystyle{\cal E}^{j}_{m}=(q-q^{-1})\frac{q^{jm}}{[Nm]_{q}}\left(-q^{-Nm}\sum_{k=1}^{j-1}[km]_{q}\alpha_{k,m}+\sum_{k=j}^{N-1}[(N-k)m]_{q}\alpha_{k,m}\right)\quad(1\leq j\leq N-1),
mN=(qq1)[Nm]qk=1N1[km]qαk,m.\displaystyle{\cal E}^{N}_{m}=-\frac{(q-q^{-1})}{[Nm]_{q}}\sum_{k=1}^{N-1}[km]_{q}\alpha_{k,m}. (2.47)

Let us define ψj±(z)(1jN1)\psi^{\pm}_{j}(z)\ (1\leq j\leq N-1) by333Our ψj±(z)\psi^{\pm}_{j}(z) are ψj(z)\psi^{\mp}_{j}(z) in [18, 20].

ψj+(qc/2qjz):=κkj+(z)kj+1+(z)1,\displaystyle\psi^{+}_{j}(q^{-c/2}q^{j}z):=\kappa k^{+}_{j}(z)k^{+}_{j+1}(z)^{-1}, (2.48)
ψj(qc/2qjz):=κkj(z)kj+1(z)1\displaystyle\psi^{-}_{j}(q^{-c/2}q^{j}z):=\kappa k^{-}_{j}(z)k^{-}_{j+1}(z)^{-1} (2.49)

with κ\kappa given in (A.21). Then one has

ψj+(qc2z)=Kj+exp((qq1)n>0αj,n1pnzn)exp((qq1)n>0pnαj,n1pnzn),\displaystyle{\psi}_{j}^{+}(q^{-\frac{c}{2}}z)=K^{+}_{j}\exp\left(-(q-q^{-1})\sum_{n>0}\frac{\alpha_{j,-n}}{1-p^{n}}z^{n}\right)\exp\left((q-q^{-1})\sum_{n>0}\frac{p^{n}\alpha_{j,n}}{1-p^{n}}z^{-n}\right),
ψj(z)=q2hjψj+(zpqc).\displaystyle\psi^{-}_{j}(z)=q^{2h_{j}}\psi^{+}_{j}(zpq^{-c}). (2.50)
Definition 2.4.

The elliptic algebra Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}) is a topological algebra over 𝔽[[p]]{\mathbb{F}}[[p]] generated by αj,n,ej,m,fj,m(1jN1,n\{0},m)\alpha_{j,n},e_{j,m},f_{j,m}\ (1\leq j\leq N-1,n\in{\mathbb{Z}}\backslash\{0\},m\in{\mathbb{Z}}) and the central elements q±c/2q^{\pm c/2} satisfying the relations in Appendix A.2.

The quantum affine algebra Uq(𝔰𝔩^N)U_{q}(\widehat{\mathfrak{sl}}_{N}) is an associative algebra generated by Xj,m±(1jN1,m)X^{\pm}_{j,m}\ (1\leq j\leq N-1,m\in{\mathbb{Z}}) and aj,na_{j,n} (n\{0})(n\in{\mathbb{Z}}\backslash\{0\}) defined by

aj,n={αj,nn>01pn1pnq2cnαj,nn<0.\displaystyle a_{j,n}=\left\{\begin{matrix}\alpha_{j,n}&n>0\cr\frac{1-p^{*n}}{1-p^{n}}q^{2cn}\alpha_{j,n}&n<0\cr\end{matrix}\right.. (2.51)

One finds

[ai,m,aj,n]=[aijm]q[cm]qmqc|m|δm+n,0.\displaystyle[a_{i,m},a_{j,n}]=\frac{[a_{ij}m]_{q}[cm]_{q}}{m}q^{-c|m|}\delta_{m+n,0}.

Furthermore define

Φj±(qjz):=Kj±(z)Kj+1±(z)1.\displaystyle\Phi^{\pm}_{j}(q^{j}z):=K^{\pm}_{j}(z)K^{\pm}_{j+1}(z)^{-1}. (2.52)

Then one gets the generating functions of aj,ma_{j,m} as

Φj±(z)=qhjexp{(qq1)m>0aj,mz±m}.\displaystyle\Phi^{\pm}_{j}(z)=q^{\mp h_{j}}\exp\left\{\mp(q-q^{-1})\sum_{m>0}a_{j,\mp m}z^{\pm m}\right\}. (2.53)

2.5 The elliptic algebra Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N})

The elliptic algebra Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) is generated by the LL-operators. Let L¯ij,n(n,1i,jN)\bar{L}_{ij,n}\ (n\in{\mathbb{Z}},1\leq i,j\leq N) be abstract symbols. We define the LL-operator L+(z)=1i,jNEijLij+(z)L^{+}(z)=\sum_{1\leq i,j\leq N}E_{ij}\otimes L^{+}_{ij}(z) by

Lij+(z)=nLij,nzn,Lij,n=pmax(n,0)L¯ij,n.\displaystyle L^{+}_{ij}(z)=\sum_{n\in{\mathbb{Z}}}L_{ij,n}z^{-n},\qquad L_{ij,n}=p^{{\rm max}(n,0)}\bar{L}_{ij,n}. (2.54)
Definition 2.5.

Let R+(z,Π)R^{+}(z,\Pi) be the same RR matrix as in Sec.2.2. The elliptic algebra =Eq,p(𝔤𝔩^N){\cal E}=E_{q,p}(\widehat{\mathfrak{gl}}_{N}) is a topological algebra over 𝔽[[p]]{\mathbb{F}}[[p]] generated by L¯ij,n\bar{L}_{ij,n} and the central element q±c/2q^{\pm c/2} satisfying the following relations.

R+(12)(z1/z2,Π)L+(1)(z1)L+(2)(z2)=L+(2)(z2)L+(1)(z1)R+(12)(z1/z2,Π),\displaystyle R^{+(12)}(z_{1}/z_{2},\Pi)L^{+(1)}(z_{1})L^{+(2)}(z_{2})=L^{+(2)}(z_{2})L^{+(1)}(z_{1})R^{+*(12)}(z_{1}/z_{2},\Pi^{*}), (2.55)
g(P+h)L¯ij,n=L¯ij,ng(P+hQϵ¯i,P+h),\displaystyle g({P+h})\bar{L}_{ij,n}=\bar{L}_{ij,n}\;g(P+h-\langle Q_{\bar{\epsilon}_{i}},P+h\rangle), (2.56)
g(P)L¯ij,n=L¯ij,ng(PQϵ¯j,P),\displaystyle g({P})\bar{L}_{ij,n}=\bar{L}_{ij,n}\;g(P-\langle Q_{\bar{\epsilon}_{j}},P\rangle), (2.57)

where g(P+h),g(P)𝔽g({P+h}),g(P)\in{\mathbb{F}} and

L+(1)(z)=L+(z)id,L+(2)(z)=idL+(z).\displaystyle L^{+(1)}(z)=L^{+}(z)\otimes{\rm id},\qquad L^{+(2)}(z)={\rm id}\otimes L^{+}(z).

The RR-matrix R+(z,Π)R^{+*}(z,\Pi^{*}) is the same as R+(z,Π)R^{+}(z,\Pi) except for the replacements : theta functions θ(z)\theta(z) by θ(z):=z1/2(z;p)(p/z;p)(p;p)\theta^{*}(z):=-z^{-1/2}(z;p^{*})_{\infty}(p^{*}/z;p^{*})_{\infty}(p^{*};p^{*})_{\infty} and the dynamical parameters Πk,l\Pi_{k,l} by Πk,l=q2(PϵkPϵl)\Pi^{*}_{k,l}=q^{2(P_{\epsilon_{k}}-P_{\epsilon_{l}})}.

We regard L+(z)End𝔽V^zL^{+}(z)\in\operatorname{End}_{\mathbb{F}}\widehat{V}_{z}\otimes{\cal E}. We treat (2.55) as a formal Laurent series in z1z_{1} and z2z_{2}. The coefficients of z1,z2z_{1},z_{2} are well defined in the pp-adic topology.

It is also convenient to introduce the dynamical LL-operator L+(z,Π)L^{+}(z,\Pi^{*}) defined by[18, 20]

L+(z,Π)=L+(z)ei=1NπV(hεi)Qϵi,\displaystyle L^{+}(z,\Pi^{*})=L^{+}(z)e^{\sum_{i=1}^{N}\pi_{V}(h_{\varepsilon_{i}})\otimes Q_{\epsilon_{i}}}, (2.58)

where πV(hϵi)=Ei,i\pi_{V}(h_{\epsilon_{i}})=E_{i,i}. We then have the fully dynamical RLLRLL-relation[11]

R+(12)(z1/z2,Πq2h(3))L+(1)(z1,Π)L+(2)(z2,Πq2πV(h)(1))\displaystyle R^{+(12)}(z_{1}/z_{2},{\Pi}^{*}q^{2h^{(3)}})L^{+(1)}(z_{1},\Pi^{*})L^{+(2)}(z_{2},{\Pi^{*}q^{2\pi_{V}(h)^{(1)}}})
=L+(2)(z2,Π)L+(1)(z1,Πq2πV(h)(2))R+(12)(z1/z2,Π).\displaystyle\qquad\qquad=L^{+(2)}(z_{2},\Pi^{*})L^{+(1)}(z_{1},{\Pi^{*}q^{2\pi_{V}(h)^{(2)}}})R^{+*(12)}(z_{1}/z_{2},\Pi^{*}). (2.59)

2.6 Isomorphism between Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N})

The two elliptic algebras Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}) are isomorphic[23]. We briefly summarize their isomorphism.

Let us introduce L(z)=1i,jNEijLij(z)L^{-}(z)=\sum_{1\leq i,j\leq N}E_{ij}\otimes L^{-}_{ij}(z) by[17, 23]

L(z)=(Ad(q2θV(P))id)(q2TVL+(zpqc)),\displaystyle L^{-}(z)=\left({\rm Ad}(q^{-2{\theta}_{V}(P)})\otimes{\rm id}\right)\left(q^{2{T}_{V}}L^{+}(zp^{*}q^{c})\right), (2.60)
θV(P)=j=1N1(12πV(hj)πV(hj)+PjπV(hj)),\displaystyle{\theta}_{V}(P)=-\sum_{j=1}^{N-1}\left(\frac{1}{2}\pi_{V}(h_{j})\pi_{V}(h^{j})+P_{j}\pi_{V}(h^{j})\right), (2.61)
TV=j=1N1πV(hj)hj.\displaystyle{T}_{V}=\sum_{j=1}^{N-1}\pi_{V}(h_{j})\otimes h^{j}. (2.62)

Here (AdX)Y=XYX1({\rm Ad}X)Y=XYX^{-1}, hj=hΛ¯j(jI)h^{j}=h_{\bar{\Lambda}_{j}}\ (j\in I) , πV(hj)=EjjEj+1j+1\pi_{V}(h_{j})=E_{jj}-E_{j+1j+1} and πV(hj)=i=1jπV(hϵ¯i)(jI)\pi_{V}(h^{j})=\sum_{i=1}^{j}\pi_{V}(h_{\bar{\epsilon}_{i}})\ (j\in I). Hence L+L^{+} and LL^{-} are not independent operators in the elliptic algebra in contrast to the quantum affine algebra Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N}).

One can verify the following.

Proposition 2.6.

The LL operators L+(z)L^{+}(z) and L(z)L^{-}(z) satisfy the following relations.

R(12)(z1/z2,Π)L(1)(z1)L(2)(z2)=L(2)(z2)L(1)(z1)R(12)(z1/z2,Π),\displaystyle R^{-(12)}(z_{1}/z_{2},\Pi)L^{-(1)}(z_{1})L^{-(2)}(z_{2})=L^{-(2)}(z_{2})L^{-(1)}(z_{1})R^{-*(12)}(z_{1}/z_{2},\Pi^{*}),
R±(12)(q±cz1/z2,Π)L±(1)(z1)L(2)(z2)=L(2)(z2)L±(1)(z1)R±(12)(qcz1/z2,Π).\displaystyle R^{\pm(12)}(q^{\pm{c}}z_{1}/z_{2},\Pi)L^{\pm(1)}(z_{1})L^{\mp(2)}(z_{2})=L^{\mp(2)}(z_{2})L^{\pm(1)}(z_{1})R^{\pm*(12)}(q^{\mp{c}}z_{1}/z_{2},\Pi^{*}).
Definition 2.7.

We define the Gauss components El,j±(z),Fj,l±(z),Km±(z)(1j<lN,1mN)E^{\pm}_{l,j}(z),F^{\pm}_{j,l}(z),K^{\pm}_{m}(z)\ (1\leq j<l\leq N,1\leq m\leq N) of the LL-operator L±(z){L}^{\pm}(z) of {\cal E} as follows.

L±(z)=(1F1,2±(z)F1,3±(z)F1,N±(z)01F2,3±(z)F2,N±(z)1FN1,N±(z)001)(K1±(z)000K2±(z)000KN±(z))\displaystyle{L}^{\pm}(z)=\left(\begin{array}[]{ccccc}1&F_{1,2}^{\pm}(z)&F_{1,3}^{\pm}(z)&\cdots&F_{1,N}^{\pm}(z)\\ 0&1&F_{2,3}^{\pm}(z)&\cdots&F_{2,N}^{\pm}(z)\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ \vdots&&\ddots&1&F_{N-1,N}^{\pm}(z)\\ 0&\cdots&\cdots&0&1\end{array}\right)\left(\begin{array}[]{cccc}K^{\pm}_{1}(z)&0&\cdots&0\\ 0&K^{\pm}_{2}(z)&&\vdots\\ \vdots&&\ddots&0\\ 0&\cdots&0&K^{\pm}_{N}(z)\end{array}\right) (2.72)
×(100E2,1±(z)1E3,1±(z)E3,2±(z)10EN,1±(z)EN,2±(z)EN,N1±(z)1).\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times\left(\begin{array}[]{ccccc}1&0&\cdots&\cdots&0\\ E^{\pm}_{2,1}(z)&1&\ddots&&\vdots\\ E^{\pm}_{3,1}(z)&E^{\pm}_{3,2}(z)&\ddots&\ddots&\vdots\\ \vdots&\vdots&\ddots&1&0\\ E^{\pm}_{N,1}(z)&E^{\pm}_{N,2}(z)&\cdots&E^{\pm}_{N,N-1}(z)&1\end{array}\right). (2.78)

In particular we call Ej+1,j±(z),Fj,j+1±(z),Km±(z)E^{\pm}_{j+1,j}(z),F^{\pm}_{j,j+1}(z),K^{\pm}_{m}(z) the basic half currents.

In [23], it was shown that there are a sequence of subalgebras

Eq,p(𝔤𝔩^1)Eq,p(𝔤𝔩^2)Eq,p(𝔤𝔩^N),\displaystyle E_{q,p}(\widehat{{\mathfrak{gl}}}_{1})\subset E_{q,p}(\widehat{{\mathfrak{gl}}}_{2})\subset\cdots\subset E_{q,p}(\widehat{{\mathfrak{gl}}}_{N}), (2.79)

where Eq,p(𝔤𝔩^m)E_{q,p}(\widehat{{\mathfrak{gl}}}_{m}) is generated by the coefficients of the basic half currents Ea+1,a+(u),Fa,a+1+(u),Kb+(u)E^{+}_{a+1,a}(u),F^{+}_{a,a+1}(u),K_{b}^{+}(u) (Nm+1aN1,Nm+1bN)(N-m+1\leq a\leq N-1,\ N-m+1\leq b\leq N).

In addition, the following lemma indicates that the whole Gauss components of L±(z)L^{\pm}(z) can be determined recursively by the basic half currents.

Lemma 2.8 ([23], Lemma 6.10).

Let Ia,b={(j,k)|ajb1,j+1kb}{(a,b)}I_{a,b}=\{\ (j,k)\ |\ a\leq j\leq b-1,\ j+1\leq k\leq b\}\setminus\{(a,b)\}. For 2l+1<mN2\leq l+1<m\leq N, Em,l+(z)E^{+}_{m,l}(z) (resp. Fl,m+(z)F^{+}_{l,m}(z)) is determined by {Ek,j+(z)(j,k)Il,m,Kj+(z)ljm}\{E^{+}_{k,j}(z)\ (j,k)\in I_{l,m},K^{+}_{j}(z)\ l\leq j\leq m\} (resp. {Fj,k+(z)(j,k)Il,m,Kj+(z)ljm}\{F^{+}_{j,k}(z)\ (j,k)\in I_{l,m},K^{+}_{j}(z)\ l\leq j\leq m\}).

Now let us define the basic half currents ej+1,j+(z),fj,j+1+(z)e_{j+1,j}^{+}(z),f_{j,j+1}^{+}(z) (1jN1)(1\leq j\leq N-1) of 𝒰{\cal U} as follows.

Definition 2.9.
ej+1,j+(z)=aCdz2πizej(z)Θp(zqjcq2(1Pαj)/z)Θp(q2)Θp(zqjc/z)Θp(q2(Pαj1)),\displaystyle e_{j+1,j}^{+}(z)=a^{*}\oint_{C^{*}}\frac{dz^{\prime}}{2\pi iz^{\prime}}e_{j}(z^{\prime})\frac{{\Theta}_{p^{*}}(zq^{j-c}q^{2(1-P_{\alpha_{j}})}/z^{\prime}){\Theta}_{p^{*}}(q^{2})}{{\Theta}_{p^{*}}(zq^{j-c}/z^{\prime}){\Theta}_{p^{*}}(q^{2(P_{\alpha_{j}}-1)})}, (2.80)
fj,j+1+(z)=aCdz2πizfj(z)Θp(zqjq2((P+h)αj1)/z)Θp(q2)Θp(zqj/z)Θp(q2((P+h)αj1)),\displaystyle f_{j,j+1}^{+}(z)=a\oint_{C}\frac{dz^{\prime}}{2\pi iz^{\prime}}f_{j}(z^{\prime})\frac{{\Theta_{p}}(zq^{j}q^{2((P+h)_{\alpha_{j}}-1)}/z^{\prime}){\Theta_{p}}(q^{2})}{{\Theta_{p}}(zq^{j}/z^{\prime}){\Theta_{p}}(q^{2((P+h)_{\alpha_{j}}-1)})}, (2.81)

where C:|qjcz|<|z|<|p1qjcz|C^{*}:|q^{j-c}z|<|z^{\prime}|<|p^{*-1}q^{j-c}z|, C:|qjz|<|z|<|p1qjz|C:|q^{j}z|<|z^{\prime}|<|p^{-1}q^{j}z|, and

a=q1(p;p)(pq2;p),a=q1(p;p)(pq2;p).\displaystyle a^{*}=q^{-1}\frac{(p^{*};p^{*})_{\infty}}{(p^{*}q^{2};p^{*})_{\infty}},\qquad a=q^{-1}\frac{(p;p)_{\infty}}{(pq^{-2};p)_{\infty}}. (2.82)
Theorem 2.10.

The following map gives an isomorphism 𝒰{\cal U}\cong{\cal E} as a topological HH-algebra over 𝔽[[p]]{\mathbb{F}}[[p]].

ej+1,j+(z)Ej+1,j+(z),fj,j+1+(z)Fj,j+1+(z),kl+(z)Kl+(z)(1jN1, 1lN).\displaystyle e^{+}_{j+1,j}(z)\mapsto E^{+}_{j+1,j}(z),\quad f^{+}_{j,j+1}(z)\mapsto F^{+}_{j,j+1}(z),\quad k^{+}_{l}(z)\mapsto K^{+}_{l}(z)\quad(1\leq j\leq N-1,\ 1\leq l\leq N).

2.7 Quantum determinant

We introduce the quantum minor determinant of L+(z)L^{+}(z).

Definition 2.1.

([23], Proposition E.12) For I={i1<i2<<ik}I=\{i_{1}<i_{2}<\cdots<i_{k}\}, J={j1<j2<<jk}J=\{j_{1}<j_{2}<\cdots<j_{k}\}, we define +(z)IJ{\ell}^{+}(z)_{I}^{J} as

+(z)IJ:=\displaystyle{\ell}^{+}(z)_{I}^{J}:= 𝒩kσ𝔖ksgnJ(σ,Π)Li1jσ(i)+(z)Li2jσ(2)+(zq2)Likjσ(k)+(zq2(k1)),\displaystyle\mathcal{N}_{k}\sum_{\sigma\in\mathfrak{S}_{k}}{\mathrm{sgn}}_{J}^{*}(\sigma,\Pi^{*})L^{+}_{i_{1}j_{\sigma(i)}}(z)L^{+}_{i_{2}j_{\sigma(2)}}(zq^{-2})\cdots L^{+}_{i_{k}j_{\sigma(k)}}(zq^{-2(k-1)}), (2.83)
=\displaystyle= 𝒩k1σ𝔖ksgnI(σ,Π)Liσ(k)jk+(zq2(k1))Liσ(k1)jk1+(zq2(k2))Liσ(1)j1+(z),\displaystyle\mathcal{N}_{k}^{-1}\sum_{\sigma\in\mathfrak{S}_{k}}{\mathrm{sgn}}_{I}(\sigma,\Pi)L^{+}_{i_{\sigma(k)}j_{k}}(zq^{-2(k-1)})L^{+}_{i_{\sigma(k-1)}j_{k-1}}(zq^{-2(k-2)})\cdots L^{+}_{i_{\sigma(1)}j_{1}}(z), (2.84)

where 𝔖k\mathfrak{S}_{k} is the permutation group of degree kk, and we set

sgnI(σ,Π):=\displaystyle{\mathrm{sgn}}_{I}(\sigma,\Pi):= 1a<bkσ(a)>σ(b)θ(q2Πiσ(a),iσ(b))θ(Πiσ(b),iσ(a)),\displaystyle\prod_{\begin{subarray}{c}1\leq a<b\leq k\\ \sigma(a)>\sigma(b)\end{subarray}}\frac{\theta(q^{2}\Pi_{i_{\sigma(a)},i_{\sigma(b)}})}{\theta(\Pi_{i_{\sigma(b)},i_{\sigma(a)}})}, (2.85)
sgnI(σ,Π):=\displaystyle{\mathrm{sgn}}_{I}^{*}(\sigma,\Pi^{*}):= 1a<bkσ(a)>σ(b)θ(q2Πiσ(a),iσ(b))θ(Πiσ(b),iσ(a)),\displaystyle\prod_{\begin{subarray}{c}1\leq a<b\leq k\\ \sigma(a)>\sigma(b)\end{subarray}}\frac{\theta^{*}(q^{2}\Pi^{*}_{i_{\sigma(a)},i_{\sigma(b)}})}{\theta^{*}(\Pi^{*}_{i_{\sigma(b)},i_{\sigma(a)}})}, (2.86)

and

𝒩k:=\displaystyle\mathcal{N}_{k}:= 1a<bkρ0θ(q2a)θ(q2)ρ0θ(q2a)θ(q2).\displaystyle\prod_{1\leq a<b\leq k}\sqrt{\frac{\rho_{0}^{*}\theta^{*}(q^{2a})\theta(q^{2})}{\rho_{0}\theta(q^{2a})\theta^{*}(q^{2})}}. (2.87)

We have the following are fundamental properties.

Proposition 2.2.

([23], Proposition E.14)

+(z)Iτ(J)=sgnJ(τ,P)+(z)IJ.\displaystyle{\ell}^{+}(z)_{I}^{\tau(J)}={\mathrm{sgn}}_{J}^{*}(\tau,P){\ell}^{+}(z)_{I}^{J}. (2.88)
Proposition 2.3.

([23], Proposition E.16)

+(z)IJ==1k(𝒩k)11a<θ(q2Πi,ia)θ(Πia,i)+(zq2)i^j1^Lij1+(z),\displaystyle\displaystyle{\ell}^{+}(z)_{I}^{J}=\sum_{\ell=1}^{k}(\mathcal{N}_{k}^{\prime})^{-1}\prod_{1\leq a<\ell}\frac{\theta(q^{2}\Pi_{i_{\ell},i_{a}})}{\theta(\Pi_{i_{a},i_{\ell}})}{\ell}^{+}(zq^{-2})_{\widehat{i_{\ell}}}^{\widehat{j_{1}}}L_{i_{\ell}j_{1}}^{+}(z), (2.89)

where i^=I\{i}\widehat{i_{\ell}}=I\backslash\{i_{\ell}\} and

𝒩k=𝒩k𝒩k1.\displaystyle\mathcal{N}_{k}^{\prime}=\frac{\mathcal{N}_{k}}{\mathcal{N}_{k-1}}. (2.90)

The quantum determinant of the LL-operator is given by

q-detL+(z)=+(z)[1,N][1,N],\displaystyle{q}\mbox{\rm-det}L^{+}(z)={\ell}^{+}(z)_{[1,N]}^{[1,N]}, (2.91)

where [1,N]={1,2,,N}[1,N]=\{1,2,\dots,N\}.

Definition 2.11.

Let us define

A(z):=+(z)[,N][,N],\displaystyle A_{\ell}(z):={\ell}^{+}(z)^{[\ell,N]}_{[\ell,N]},\qquad (2.92)
Bm(z):=+(z)m1m+1m+2Nmm+1m+2N,\displaystyle B_{m}(z):={\ell}^{+}(z)^{mm+1m+2\cdots N}_{m-1m+1m+2\cdots N}, (2.93)
Cm(z):=+(z)mm+1m+2Nm1m+1m+2N,\displaystyle C_{m}(z):={\ell}^{+}(z)_{mm+1m+2\cdots N}^{m-1m+1m+2\cdots N}, (2.94)

for 1N1\leq\ell\leq N and 2mN2\leq m\leq N. In particular, we set

AN(z)=+(z){N}{N}=LNN+(z)=KN+(z),\displaystyle A_{N}(z)=\ell^{+}(z)^{\{N\}}_{\{N\}}=L^{+}_{NN}(z)=K^{+}_{N}(z),
BN(z)=+(z){N1}{N}=LN1N+(z),\displaystyle B_{N}(z)=\ell^{+}(z)^{\{N\}}_{\{N-1\}}=L^{+}_{N-1N}(z),
CN(z)=+(z){N}{N1}=LNN1+(z).\displaystyle C_{N}(z)=\ell^{+}(z)_{\{N\}}^{\{N-1\}}=L^{+}_{NN-1}(z).

One then finds the following relations to the basic half currents.

Proposition 2.12.
K+(z)=(𝒩N+1)1A(z)A+1(zq2)1,\displaystyle K^{+}_{\ell}(z)=({\cal N}^{\prime}_{N-\ell+1})^{-1}A_{\ell}(z)A_{\ell+1}(zq^{-2})^{-1}, (2.95)
Em,m1+(z)=Am(z)1Cm(z),\displaystyle E^{+}_{m,m-1}(z)=A_{m}(z)^{-1}C_{m}(z), (2.96)
Fm1,m+(z)=Bm(z)Am(z)1.\displaystyle F^{+}_{m-1,m}(z)=B_{m}(z)A_{m}(z)^{-1}. (2.97)

Here we set AN+1(z)1A_{N+1}(z)\equiv 1. Hence through the isomorphism Theorem 2.10, Am(z),Bm(z),Cm(z)A_{m}(z),B_{m}(z),C_{m}(z) are related to the Drinfeld generators of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}).

Proof. In [23], we introduced L+(z)a,a=(Li,j+(z))ai,jNL^{+}(z)_{a,a}=(L_{i,j}^{+}(z))_{a\leq i,j\leq N} and

L+(z)a,b=\displaystyle L^{+}(z)_{a,b}= (La,b+(z)La,a+1+(z)La,N+(z)La+1,b+(z)La+1,a+1+(z)La+1,N+(z)LN,b+(z)LN,a+1+(z)LN,N+(z)),a>b,\displaystyle\begin{pmatrix}L^{+}_{a,b}(z)&L^{+}_{a,a+1}(z)&\cdots&L^{+}_{a,N}(z)\\ L^{+}_{a+1,b}(z)&L^{+}_{a+1,a+1}(z)&\cdots&L^{+}_{a+1,N}(z)\\ \vdots&\vdots&&\vdots\\ L^{+}_{N,b}(z)&L^{+}_{N,a+1}(z)&\cdots&L^{+}_{N,N}(z)\end{pmatrix},\ \ \ a>b, (2.98)
L+(z)a,b=\displaystyle L^{+}(z)_{a,b}= (La,b+(z)La,b+1+(z)La,N+(z)Lb+1,b+(z)Lb+1,b+1+(z)Lb+1,N+(z)LN,b+(z)LN,b+1+(z)LN,N+(z)),a<b.\displaystyle\begin{pmatrix}L^{+}_{a,b}(z)&L^{+}_{a,b+1}(z)&\cdots&L^{+}_{a,N}(z)\\ L^{+}_{b+1,b}(z)&L^{+}_{b+1,b+1}(z)&\cdots&L^{+}_{b+1,N}(z)\\ \vdots&\vdots&&\vdots\\ L^{+}_{N,b}(z)&L^{+}_{N,b+1}(z)&\cdots&L^{+}_{N,N}(z)\end{pmatrix},\ \ \ a<b. (2.99)

The statements follows from Theorem E.23 in [23] with the identification

q-detL+(z),=+(z)[,N][,N],\displaystyle{q}\mbox{\rm-det}L^{+}(z)_{\ell,\ell}={\ell}^{+}(z)^{[\ell,N]}_{[\ell,N]},
q-detL+(z)m,m1=+(z)m1m+1m+2Nmm+1m+2N,\displaystyle{q}\mbox{\rm-det}L^{+}(z)_{m,m-1}={\ell}^{+}(z)^{mm+1m+2\cdots N}_{m-1m+1m+2\cdots N},
q-detL+(z)m1,m=+(z)mm+1m+2Nm1m+1m+2N.\displaystyle{q}\mbox{\rm-det}L^{+}(z)_{m-1,m}={\ell}^{+}(z)_{mm+1m+2\cdots N}^{m-1m+1m+2\cdots N}.

Corollary 2.13.
(1)\displaystyle(1) Am(z)=𝒩Nm+1Km+(z)Km+1+(zq2)KN+(zq2(Nm)),\displaystyle A_{m}(z)={\cal N}_{N-m+1}K^{+}_{m}(z)K^{+}_{m+1}(zq^{-2})\cdots K^{+}_{N}(zq^{-2(N-m)}), (2.100)
(2)\displaystyle(2) q-detL^+(z)=𝒩NK(z).\displaystyle{q}\mbox{\rm-det}\widehat{L}^{+}(z)={\cal N}_{N}K(z). (2.101)
Proposition 2.14.

The coefficients of Am(z)A_{m}(z) belong to the center of the subalgebra Eq,p(𝔤𝔩^Nm+1)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N-m+1}) for m=1,2,,Nm=1,2,\cdots,N.

Proof.

The statement follows from Theorem 6.7 in [23] (see below (2.79)) and Corollary E.24 in [23]. ∎

From (2.78), (2.55) and Proposition 2.12, one obtains the following commutation relations. They play a key role in the construction of the Gelfand-Tsetlin bases in Sec.5.

Proposition 2.15.
[Am(z),An(w)]=0,\displaystyle[A_{m}(z),A_{n}(w)]=0, (2.102)
[Am(z),Bn(w)]=0mn,\displaystyle[A_{m}(z),B_{n}(w)]=0\qquad m\not=n, (2.103)
[Am(z),Cn(w)]=0mn,\displaystyle[A_{m}(z),C_{n}(w)]=0\qquad m\not=n, (2.104)
[Bm(z),Cn(w)]=0mn,\displaystyle[B_{m}(z),C_{n}(w)]=0\qquad m\not=n, (2.105)
[Bm(z),Bn(w)]=0mn±1,\displaystyle[B_{m}(z),B_{n}(w)]=0\qquad m\not=n\pm 1, (2.106)
[Cm(z),Cn(w)]=0mn±1,\displaystyle[C_{m}(z),C_{n}(w)]=0\qquad m\not=n\pm 1, (2.107)
Am(z)Bm(w)=θ(q2z/w)θ(z/w)Bm(w)Am(z)θ(Πm1,m1z/w)θ(q2)θ(Πm1,m1)θ(z/w)Bm(z)Am(w)zw,\displaystyle A_{m}(z)B_{m}(w)=\frac{\theta(q^{2}z/w)}{\theta(z/w)}B_{m}(w)A_{m}(z)-\frac{\theta(\Pi^{-1}_{m-1,m}z/w)\theta(q^{2})}{\theta(\Pi_{m-1,m}^{-1})\theta(z/w)}B_{m}(z)A_{m}(w)\quad z\not=w,
(2.108)
Cm(w)Am(z)=θ(q2z/w)θ(z/w)Am(z)Cm(w)Am(w)Cm(z)θ(Πm1,m1z/w)θ(q2)θ(Πm1,m1)θ(z/w)zw.\displaystyle C_{m}(w)A_{m}(z)=\frac{\theta^{*}(q^{2}z/w)}{\theta^{*}(z/w)}A_{m}(z)C_{m}(w)-A_{m}(w)C_{m}(z)\frac{\theta^{*}(\Pi^{*-1}_{m-1,m}z/w)\theta^{*}(q^{2})}{\theta^{*}(\Pi_{m-1,m}^{*-1})\theta^{*}(z/w)}\quad z\not=w.
(2.109)
Cm(z)Bm(w)\displaystyle{C}_{m}(z){B}_{m}(w)
=Am(z)Bm(w)Am(w)1Am(z)1Cm(z)Am(w)\displaystyle={A}_{m}(z){B}_{m}(w){A}_{m}(w)^{-1}{A}_{m}(z)^{-1}{C}_{m}(z){A}_{m}(w)
+𝒩Nm+1Am(z)Km1+(w)Am+1(v1)θ(ΠNm,Nm+11z/w)θ(q2)θ(ΠNm,Nm+11)θ(z/w)\displaystyle+{\cal N}^{\prime}_{N-m+1}{A}_{m}(z)K^{+}_{m-1}(w){A}_{m+1}(v-1)\frac{\theta^{*}(\Pi^{*-1}_{N-m,N-m+1}z/w)\theta^{*}(q^{2})}{\theta^{*}(\Pi^{*-1}_{N-m,N-m+1})\theta^{*}(z/w)}
𝒩Nm+1Am(z)Am+1(u1)Am(z)1Km1+(z)Am(w)θ(ΠNm,Nm+11z/w)θ(q2)θ(ΠNm,Nm+11)θ(z/w).\displaystyle-{\cal N}^{\prime}_{N-m+1}A_{m}(z){A}_{m+1}(u-1)A_{m}(z)^{-1}K^{+}_{m-1}(z){A}_{m}(w)\frac{\theta(\Pi^{-1}_{N-m,N-m+1}z/w)\theta(q^{2})}{\theta(\Pi^{-1}_{N-m,N-m+1})\theta(z/w)}. (2.110)

Proof. From the (m,l1)(m,l)(m,l-1)(m,l) and (m1,l1)(m,l1)(m-1,l-1)(m,l-1) components of (6.25) in [23], one has for l<ml<m

[Fl1l+(z2),Km+(z1)]=0,[Fm1m+(z1),Kl1+(z2)]=0,\displaystyle[F^{+}_{l-1l}(z_{2}),K^{+}_{m}(z_{1})]=0,\qquad[F^{+}_{m-1m}(z_{1}),K^{+}_{l-1}(z_{2})]=0,

respectively. Hence one obtains

[Ba(z1),Kl+(z2)]=0(la1,a).\displaystyle[B_{a}(z_{1}),K^{+}_{l}(z_{2})]=0\qquad(l\not=a-1,a).

Combining this with [Ba(z1),q-detL+(z)]=0[B_{a}(z_{1}),{q}\mbox{\rm-det}L^{+}(z)]=0, one obtains

[Ba(z1),Al(z1)]=0(la).\displaystyle[B_{a}(z_{1}),A_{l}(z_{1})]=0\qquad(l\not=a).

Similarly (2.104) follows from the (m,l)(m,l1)(m,l)(m,l-1) and (m,l1)(m1,l1)(m,l-1)(m-1,l-1) components for l<ml<m of (6.25) in [23].

(2.105) follows from the component (m1,l)(m,l1)(m-1,l)(m,l-1) (l<m)(l<m) of (6.25) in [23], (2.103) and (2.104).

(2.106) follows from the component (m1,l)(m,l+1)(m-1,l)(m,l+1) (1l<m2N2)(1\leq l<m-2\leq N-2) of (6.25), the (j,j)(j+1,j+1)(j,j)(j+1,j+1) component of (6.23) in [23] and (2.103). (2.107) can be proved similarly.

(2.108) and (2.109) are obtained from (C.8) and (C.6) in [23], respectively.

(2.110) follows from the relation ( [20] (C.6), [23], (C.19))

[Em,m1+(z),Fm1,m+(w)]=\displaystyle[E_{m,m-1}^{+}(z),F_{m-1,m}^{+}(w)]= Km1+(w)Km+(w)1c¯(z/w,q2Πm1,m)b¯(z/w)\displaystyle K_{m-1}^{+}(w)K_{m}^{+}(w)^{-1}\frac{\bar{c}(z/w,q^{-2}\Pi^{*}_{m-1,m})}{\overline{b}(z/w)}
Km+(z)1Km1+(z)c¯(z/w,q2Πm1,m)b¯(z/w).\displaystyle-K_{m}^{+}(z)^{-1}K_{m-1}^{+}(z)\frac{\bar{c}(z/w,q^{-2}\Pi_{m-1,m})}{\overline{b}(z/w)}.

Remark. This proposition can also be obtained by the realization of the basic half currents (Definition 2.9) and the defining relations of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})[18, 20, 23].

2.8 Coalgebra structure

We present a HH-Hopf algebroid structure[9, 19, 23] as a common coalgebra structure of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}).

Let 𝒜{\cal A} denote Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) or Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}). The elliptic algebra 𝒜{\cal A} is a HH-algebra by

𝒜=α,βH𝒜α,β\displaystyle{\cal A}=\bigoplus_{\alpha,\beta\in H^{*}}{\cal A}_{\alpha,\beta} (2.111)
𝒜αβ={a𝒰|qP+haq(P+h)=qα,P+ha,qPaqP=qβ,Pa,P+h,PH}\displaystyle{\cal A}_{\alpha\beta}=\left\{a\in{\cal U}\left|\ q^{P+h}aq^{-(P+h)}=q^{\langle\alpha,P+h\rangle}a,\quad q^{P}aq^{-P}=q^{\langle\beta,P\rangle}a,\quad\forall P+h,P\in H\right.\right\}

and two moment maps μl,μr:𝔽𝒜0,0\mu_{l},\mu_{r}:{\mathbb{F}}\to{\cal A}_{0,0} defined by

μl(f^)=f(P+h,p)𝔽[[p]],μr(f^)=f(P,p)𝔽[[p]].\displaystyle\mu_{l}(\widehat{f})=f(P+h,p)\in{\mathbb{F}}[[p]],\qquad\mu_{r}(\widehat{f})=f(P,p^{*})\in{\mathbb{F}}[[p]].

Let 𝒟=𝔽[Q]{\cal D}={\mathbb{F}}\sharp{\mathbb{C}}[{\cal R}_{Q}]. We define two HH-algebra homomorphisms, the co-unit ε:𝒜𝒟\varepsilon:{\cal A}\to{\cal D} and the co-multiplication Δ:𝒜𝒜~\Delta:{\cal A}\to{\cal A}\widetilde{\otimes}{\cal E} by

ε(Lij,n)=δi,jδn,0eQϵi(n),ε(eQα)=eQα,α¯\displaystyle\varepsilon(L_{ij,n})=\delta_{i,j}\delta_{n,0}e^{-Q_{\epsilon_{i}}}\quad(n\in{\mathbb{Z}}),\qquad\varepsilon(e^{Q_{\alpha}})=e^{Q_{\alpha}},\quad\alpha\in\overline{\mathfrak{H}}^{*} (2.112)
ε(μl(f^))=ε(μr(f^))=f^ 1,\displaystyle\varepsilon(\mu_{l}({\widehat{f}}))=\varepsilon(\mu_{r}(\widehat{f}))=\widehat{f}\;1, (2.113)
Δ(Lij+(z))=kLik+(zqc(2))~Lkj+(z),\displaystyle\Delta(L^{+}_{ij}(z))=\sum_{k}L^{+}_{ik}(zq^{c^{(2)}})\widetilde{\otimes}L^{+}_{kj}(z), (2.114)
Δ(eQα)=eQα~eQα,\displaystyle\Delta(e^{Q_{\alpha}})=e^{Q_{\alpha}}\widetilde{\otimes}e^{Q_{\alpha}}, (2.115)
Δ(μl(f^))=μl(f^)~1,Δ(μr(f^))=1~μr(f^).\displaystyle\Delta(\mu_{l}(\widehat{f}))=\mu_{l}(\widehat{f})\widetilde{\otimes}1,\quad\Delta(\mu_{r}(\widehat{f}))=1\widetilde{\otimes}\mu_{r}(\widehat{f}). (2.116)
Proposition 2.16.

The maps ε\varepsilon and Δ\Delta satisfy

(Δ~id)Δ=(id~Δ)Δ,\displaystyle(\Delta\widetilde{\otimes}{\rm id})\circ\Delta=({\rm id}\widetilde{\otimes}\Delta)\circ\Delta, (2.117)
(ε~id)Δ=id=(id~ε)Δ.\displaystyle(\varepsilon\widetilde{\otimes}{\rm id})\circ\Delta={\rm id}=({\rm id}\widetilde{\otimes}\varepsilon)\circ\Delta. (2.118)

We also define an algebra antihomomorphism (the antipode) S:𝒜𝒜S:{\cal A}\to{\cal A} by

S(Lij+(z))=(L+(z)1)ij,\displaystyle S(L^{+}_{ij}(z))=(L^{+}(z)^{-1})_{ij}, (2.119)
S(eQ)=eQ,S(μr(f^))=μl(f^),S(μl(f^))=μr(f^).\displaystyle S(e^{Q})=e^{-Q},\quad S(\mu_{r}(\widehat{f}))=\mu_{l}(\widehat{f}),\quad S(\mu_{l}(\widehat{f}))=\mu_{r}(\widehat{f}). (2.120)

One then finds that the HH-algebra 𝒜{\cal A} equipped with (Δ,ε,S)(\Delta,\varepsilon,S) is a HH-Hopf algebroid[23].

3 Finite-Dimensional Representations

We say that a representation of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) (or Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N})) is level 0 if the central elements q±c/2q^{\pm c/2} act as 1 on it. Here and in the following sections we consider the level-0 highest weight representations of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) (or Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N})) and Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}).

3.1 Level-0 highest weight representation

Proposition 3.1.

In a level-0 representation, the coefficients of kl+(z)(1lN)k^{+}_{l}(z)\ (1\leq l\leq N) (resp. ψj+(z)(1jN1)\psi^{+}_{j}(z)\ (1\leq j\leq N-1)) generate a commutative subalgebra of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) (resp. Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N})). We call it the Gelfand-Tsetlin subalgebra. In particular, Am(z)(1mN)A_{m}(z)\ (1\leq m\leq N) are commutative each other.

Proof.

For Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}), the statement follows from (2.22), (2.19) and (2.20). For Uq,p(𝔰𝔩^N)U_{q,p}({\widehat{\mathfrak{sl}}_{N}}), use (2.46) and (2.50). Noting p=pp^{*}=p at the level-0 representation, one can prove the statement, i.e. the commutativity of Kl+(z)K^{+}_{l}(z)’s, directly for Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}) by using (2.55). ∎

Definition 3.2.

A representation VV of 𝒰=Uq,p(𝔤𝔩^N){\cal U}=U_{q,p}(\widehat{\mathfrak{gl}}_{N}) is called a level-0 highest weight representation, if there exists ζ(0)V\zeta(\not=0)\in V such that

  • (1)

    VV is generated by ζ\zeta

  • (2)

    qc/2ζ=ζq^{c/2}\cdot\zeta=\zeta

  • (3)

    ej,mζ=0j{1,2,,N1},m{\displaystyle e_{j,m}\cdot\zeta=0\qquad\forall j\in\{1,2,\cdots,N-1\},\ m\in{\mathbb{Z}}}

  • (4)

    kl+(z)ζ=λl(z)ζ,l{1,2,,N}{\displaystyle k^{+}_{l}(z)\cdot\zeta=\lambda_{l}(z)\zeta,\quad l\in\{1,2,\cdots,N\}}, where λl(z)\lambda_{l}(z) are formal Laurent series in zz of the form

    λl(z)=m>0λl,mzm+m0λl,mpmzm,\displaystyle\lambda_{l}(z)=\sum_{m\in{\mathbb{Z}}_{>0}}\lambda_{l,-m}z^{m}+\sum_{m\in{\mathbb{Z}}_{\geq 0}}\lambda_{l,m}p^{m}z^{-m},\qquad (3.1)
    λl,m=r0λl,m(r)pr[[p]],m.\displaystyle\lambda_{l,m}=\sum_{r\geq 0}\lambda^{(r)}_{l,m}p^{r}\in{\mathbb{C}}[[p]],\qquad m\in{\mathbb{Z}}. (3.2)

The vector ζ\zeta is called the highest weight vector of VV, and the NN-tuple of formal series λ(z)=(λ1(z),,λN(z))\lambda(z)=(\lambda_{1}(z),\cdots,\lambda_{N}(z)) is the highest weight of VV.

Proposition 3.3.

The conditions (3) and (4) for the highest weight vector ζ\zeta are equivalent to the following ones, respectively.

  • (3)’

    Llk+(z)ζ=0, 1k<lN{\displaystyle{L}^{+}_{lk}(z)\cdot\zeta=0,\ \ \ 1\leq k<l\leq N}

  • (4)’

    Lll+(z)ζ=λl(z)ζ, 1lN{\displaystyle{L}^{+}_{ll}(z)\cdot\zeta=\lambda_{l}(z)\zeta,\ \ \ 1\leq l\leq N}.

Proof. The statement follows from Lemma 2.8, Theorem 2.10 and the formula

Llk+(z)=Kl+(z)El,k+(z)+m>lNFl,m+(z)Km+(z)Em,k+(z),\displaystyle L^{+}_{lk}(z)=K^{+}_{l}(z)E^{+}_{l,k}(z)+\sum_{m>l}^{N}F^{+}_{l,m}(z)K^{+}_{m}(z)E^{+}_{m,k}(z), (3.3)
Lll+(z)=Kl+(z)+m>lNFl,m+(z)Km+(z)Em,l+(z).\displaystyle L^{+}_{ll}(z)=K^{+}_{l}(z)+\sum_{m>l}^{N}F^{+}_{l,m}(z)K^{+}_{m}(z)E^{+}_{m,l}(z). (3.4)

Definition 3.4.

Let λ(z)=(λ1(z),,λN(z))\lambda(z)=(\lambda_{1}(z),\cdots,\lambda_{N}(z)) be an arbitrary tuple of formal Laurent series of the form (3.1). The Verma module M(λ(z))M(\lambda(z)) is the quotient of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) by the left ideal generated by ej,me_{j,m}, kl,mλl,mk_{l,m}-\lambda_{l,m} (1jN1,1lN,m)(1\leq j\leq N-1,1\leq l\leq N,m\in{\mathbb{Z}}) and q±c/21q^{\pm c/2}-1. Equivalently, M(λ(z))M(\lambda(z)) is the quotient of Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}) by the left ideal generated by L¯ji,m{\bar{L}}_{ji,m}, L¯ll,mλl,m{\bar{L}}_{ll,m}-\lambda_{l,m} (1i<jN,1lN,m)(1\leq i<j\leq N,1\leq l\leq N,m\in{\mathbb{Z}}) and q±c/21q^{\pm c/2}-1.

Let us denote 𝒰=Uq,p(𝔤𝔩^N){\cal U}=U_{q,p}(\widehat{\mathfrak{gl}}_{N}) or =Eq,p(𝔤𝔩^N){\cal E}=E_{q,p}(\widehat{\mathfrak{gl}}_{N}) by 𝒜{\cal A}. By definition, M(λ(z))M(\lambda(z)) is a highest weight representation of 𝒜{\cal A} with the highest weight λ(z)\lambda(z) and the highest weight vector 1λ(z)1_{\lambda(z)}, which is the image of the element 11 of 𝒜{\cal A}. Moreover, if LL is a highest weight representation of 𝒜{\cal A} with the highest weight λ(z)\lambda(z) and the highest vector ζ\zeta, then the map 1λ(z)ζ1_{\lambda(z)}\to\zeta defines a surjective 𝒜{\cal A}-module homomorphism M(λ(z))LM(\lambda(z))\to L. Hence, LL is isomorphic to the quotient of M(λ(z))M(\lambda(z)) by the kernel of this homomorphism.

Definition 3.5.

Let 𝒩+{\cal N}^{+} (resp. 𝒩{\cal N}^{-}) and {\cal H} be the subalgebras of 𝒰{\cal U} generated by ej,me_{j,m} (resp. fj,mf_{j,m}) (1jN1,m)(1\leq j\leq N-1,m\in{\mathbb{Z}}) and by q±c/2q^{\pm c/2}, kl,mk_{l,m} (1lN,m)(1\leq l\leq N,m\in{\mathbb{Z}}), respectively.

Proposition 3.6.

We have

𝒰=𝒩𝒩+.\displaystyle{\cal U}={\cal N}^{-}\,{\cal H}\,{\cal N}^{+}.

Thanks to the embeddings (2.40), we regard M(λ(z))M(\lambda(z)) as a Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}}_{N})-module. In particular, under the identification 𝒦ϵl=qhϵl{\cal K}_{\epsilon_{l}}=q^{-h_{\epsilon_{l}}} (2.41), we set for ν¯\nu\in\overline{\mathfrak{H}}^{*},

M(λ(z))ν={ξM(λ(z))|qhϵlξ=q(ν,ϵl)ξ(1lN)}.\displaystyle M(\lambda(z))_{\nu}=\{\xi\in M(\lambda(z))\ |\ q^{-h_{\epsilon_{l}}}\cdot\xi=q^{-(\nu,\epsilon_{l})}\xi\quad(1\leq l\leq N)\}. (3.5)

For λ(z)=(λ1(z),,λN(z))\lambda(z)=(\lambda_{1}(z),\cdots,\lambda_{N}(z)) with (3.1), let us define λ¯\lambda\in\overline{\mathfrak{H}}^{*} by

λl,0(0)=qλl,1lN.\displaystyle\lambda^{(0)}_{l,0}=q^{-\lambda_{l}},\qquad 1\leq l\leq N. (3.6)

Here we set λl=(λ,ϵl)\lambda_{l}=(\lambda,\epsilon_{l}). Then we have

M(λ(z))λ=1λ(z).\displaystyle M(\lambda(z))_{\lambda}={\mathbb{C}}1_{\lambda(z)}.

We call ν\nu a weight of the Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}_{N}})-module M(λ(z))M(\lambda(z)) if (M(λ(z)))ν{0}(M(\lambda(z)))_{\nu}\not=\{0\} and set

Wt(M(λ(z)))={μ¯|M(λ(z))μ{0}}.\displaystyle{\rm Wt}(M(\lambda(z)))=\{\mu\in\overline{\mathfrak{H}}^{*}\ |\ M(\lambda(z))_{\mu}\not=\{0\}\}.

We then have the weight decomposition as a Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}_{N}})-module.

M(λ(z))=ν¯M(λ(z))ν.\displaystyle M(\lambda(z))=\bigoplus_{\nu\in\overline{\mathfrak{H}}^{*}}M(\lambda(z))_{\nu}. (3.7)
Definition 3.7.

The irreducible highest weight representation L(λ(z))L(\lambda(z)) of 𝒜{\cal A} with the highest weight λ(z)\lambda(z) is defined as the quotient of M(λ(z))M(\lambda(z)) by the maximal proper submodule.

The following classical result is fundamental through this paper.

Theorem 3.8.

For λ¯\lambda\in\overline{\mathfrak{H}}^{*}, let L(λ)L(\lambda) be the irreducible highest weight representation of Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}_{N}}) with ζ(0)L(λ)\zeta(\not=0)\in L(\lambda) such that

L(λ)=Uq(𝔤𝔩N)ζ,\displaystyle L(\lambda)=U_{q}({\mathfrak{gl}_{N}})\cdot\zeta,
𝒳j+ζ=0,(1jN1),\displaystyle{\cal X}^{+}_{j}\cdot\zeta=0,\qquad(1\leq j\leq N-1),
𝒦ϵlζ=qλlζ,(1lN).\displaystyle{\cal K}_{\epsilon_{l}}\cdot\zeta=q^{-\lambda_{l}}\zeta,\qquad(1\leq l\leq N).

The representation L(λ)L(\lambda) is finite-dimensional if and only if λjλj+10\lambda_{j}-\lambda_{j+1}\in{\mathbb{Z}}_{\geq 0} (1jN1)(1\leq j\leq N-1).

Noting the embeddings in (2.40), one can prove the following statement in the same way as the Yangian case [27] and the quantum affine algebra case [6].

Theorem 3.9.

Every level-0 finite-dimensional irreducible representation LL of 𝒜{\cal A} is a highest weight representation. Moreover, LL contains a unique highest vector up to a constant factor.

Proof. Let us consider the following subspace of LL.

L0={ξL|ej,mξ=0(1jN1,m)}\displaystyle L^{0}=\{\xi\in L\ |\ e_{j,m}\cdot\xi=0\quad(1\leq j\leq N-1,\ m\in{\mathbb{Z}})\}

Then the finiteness of dimL\dim L yields L0{0}L^{0}\not=\{0\}. From Proposition 3.1, all kl+(z)k^{+}_{l}(z) are simultaneously diagonalizable. In addition, from Proposition 5.5 in [10], one has

Kϵl+ej(z)=qδl,j+δl,j+1ej(z)Kϵl+,Kϵl+fj(z)=qδl,jδl,j+1fj(z)Kϵl+,\displaystyle K^{+}_{\epsilon_{l}}e_{j}(z)=q^{-\delta_{l,j}+\delta_{l,j+1}}e_{j}(z)K^{+}_{\epsilon_{l}},\qquad K^{+}_{\epsilon_{l}}f_{j}(z)=q^{\delta_{l,j}-\delta_{l,j+1}}f_{j}(z)K^{+}_{\epsilon_{l}}, (3.8)
[ml,ej(z)]=qcm(qmqm)zmm1pm1pmej(z)(qmδl,jδl,j+1),\displaystyle[{\cal E}^{l}_{m},e_{j}(z)]=\frac{q^{-cm}(q^{m}-q^{-m})z^{m}}{m}\frac{1-p^{m}}{1-p^{*m}}e_{j}(z)(q^{m}\delta_{l,j}-\delta_{l,j+1}), (3.9)
[ml,fj(z)]=(qmqm)zmmfj(z)(qmδl,jδl,j+1)\displaystyle[{\cal E}^{l}_{m},f_{j}(z)]=-\frac{(q^{m}-q^{-m})z^{m}}{m}f_{j}(z)(q^{m}\delta_{l,j}-\delta_{l,j+1}) (3.10)

for 1lN, 1jN11\leq l\leq N,\ 1\leq j\leq N-1. Hence the action of kl+(z)k^{+}_{l}(z) preserves L0L_{0}. Thanks to Proposition 3.6, any simultaneous eigenvector ζL0\zeta\in L^{0} for these operators will satisfy the conditions of Definition 3.2.

Finally, by Proposition 3.6 the vector space LL is spanned by the vectors of the form

fj1,m1fj2,m2fjr,mrζ,r0, 1j1,,jrN1,m1,,mr.\displaystyle f_{j_{1},m_{1}}f_{j_{2},m_{2}}\cdots f_{j_{r},m_{r}}\cdot\zeta,\qquad r\in{\mathbb{Z}}_{\geq 0},\ 1\leq j_{1},\cdots,j_{r}\leq N-1,\ m_{1},\cdots,m_{r}\in{\mathbb{Z}}.

Then (3.8) implies that the weight space L0L^{0} is one dimensional and spanned by the vector ζ\zeta. Moreover, if ν\nu is a weight of LL and νλ\nu\not=\lambda, then ν\nu strictly precedes λ\lambda. This proves that the highest vector ζ\zeta of LL is determined uniquely, up to a constant factor. ∎

Definition 3.10 ([34]).

We say that ff is a theta function of order nn and norm tt if there exist constants a1,,ana_{1},\cdots,a_{n} and CC with t=a1ant=a_{1}\cdots a_{n} such that

f(z)=CΘp(z/a1)Θp(z/an).\displaystyle f(z)=C\Theta_{p}(z/a_{1})\cdots\Theta_{p}(z/a_{n}).

Note that the above condition is equivalent to that ff is an entire function satisfying

f(e2πiz)=f(z),f(pz)=()ntznf(z).\displaystyle f(e^{2\pi i}z)=f(z),\qquad f(pz)=(-)^{n}t\,z^{-n}f(z). (3.11)
Definition 3.11.

For λ¯\lambda\in\overline{\mathfrak{H}}^{*}, we set λl=(λ,ϵl)(1lN)\lambda_{l}=(\lambda,\epsilon_{l})\ (1\leq l\leq N) and

P+={λ¯|λjλj+10(1jN1)}.\displaystyle P^{+}=\{\lambda\in\overline{\mathfrak{H}}^{*}\ |\ \lambda_{j}-\lambda_{j+1}\in{\mathbb{Z}}_{\geq 0}\quad(1\leq j\leq N-1)\ \}.

For λP+\lambda\in P^{+}, we set

𝒫λ={(P1(z),,PN1(z))|Pj(z)is a theta function of order λjλj+1(1jN1)}\displaystyle{\cal P}^{\lambda}=\{(P_{1}(z),\cdots,P_{N-1}(z))\ |\ P_{j}(z)\ \mbox{is a theta function of order $\lambda_{j}-\lambda_{j+1}$}\quad(1\leq j\leq N-1)\}

and 𝒫=λP+𝒫λ{\cal P}=\cup_{\lambda\in P^{+}}{\cal P}^{\lambda}.

Theorem 3.12.

Let L(λ(z))L(\lambda(z)) be the level-0 irreducible highest weight representation of 𝒜{\cal A} with the highest weight λ(z)\lambda(z) and the highest weight vector ζ\zeta. L(λ(z))L(\lambda(z)) is finite-dimensional if and only if there exists the N1N-1-tuple of theta functions (P1(z),,PN1(z))𝒫λ(P_{1}(z),\cdots,P_{N-1}(z))\in{\cal P}^{\lambda} such that

λj(qjz)λj+1(qjz)=q(λjλj+1)Pj(q2z)Pj(z).\displaystyle\frac{\lambda_{j}(q^{-j}z)}{\lambda_{j+1}(q^{-j}z)}=q^{-(\lambda_{j}-\lambda_{j+1})}\frac{P_{j}(q^{2}z)}{P_{j}(z)}. (3.12)

Proof of only if part. From Theorem 2.2 and Corollary 2.3, one can regard L(λ(z))L(\lambda(z)) as a Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N})-module. The highest weight vector ζ\zeta in L(λ(z))L(\lambda(z)) satisfies

πp(Xj,m+eQj)ζ=0,1jN1,m,\displaystyle\pi_{p}(X^{+}_{j,m}e^{-Q_{j}})\cdot\zeta=0,\qquad 1\leq j\leq N-1,\ m\in{\mathbb{Z}},
πp(Kl±(z)eQϵl)ζ=Λl±(z)ζ,\displaystyle\pi_{p}(K^{\pm}_{l}(z)e^{-Q_{\epsilon_{l}}})\cdot\zeta=\Lambda^{\pm}_{l}(z)\zeta,

with certain power series

Λl±(z)=m0Λl,m±z±m.\displaystyle\Lambda^{\pm}_{l}(z)=\sum_{m\in{\mathbb{Z}}_{\geq 0}}\Lambda^{\pm}_{l,\mp m}z^{\pm m}.

In particular, one has

Λl,0±=qλl.\displaystyle\Lambda^{\pm}_{l,0}=q^{\mp\lambda_{l}}.

From Sec.3.5 in [27], one can show that, up to a multiplication by a formal power series in zz (resp. z1z^{-1}), Λl+(z)\Lambda^{+}_{l}(z) (resp. Λl(z)\Lambda^{-}_{l}(z)) (1lN)(1\leq l\leq N) are polynomials in zz (resp. z1z^{-1}). Furthermore, there exists the N1N-1-tuple of polynomials (P1+(z),,PN1+(z))(P^{+}_{1}(z),\cdots,P^{+}_{N-1}(z)) in zz with degPj+(z)=λjλj+1\deg P^{+}_{j}(z)=\lambda_{j}-\lambda_{j+1} and Pj+(0)=1P^{+}_{j}(0)=1, such that

Λj+(qjz)Λj+1+(qjz)=q(λjλj+1)Pj+(q2z)Pj+(z)\displaystyle\frac{\Lambda^{+}_{j}(q^{-j}z)}{\Lambda^{+}_{j+1}(q^{-j}z)}=q^{-(\lambda_{j}-\lambda_{j+1})}\frac{P^{+}_{j}(q^{2}z)}{P^{+}_{j}(z)} (3.13)

as a power series in zz, as well as

Λj(qjz)Λj+1(qjz)=q(λjλj+1)Pj+(q2z)Pj+(z)\displaystyle\frac{\Lambda^{-}_{j}(q^{-j}z)}{\Lambda^{-}_{j+1}(q^{-j}z)}=q^{-(\lambda_{j}-\lambda_{j+1})}\frac{P^{+}_{j}(q^{2}z)}{P^{+}_{j}(z)} (3.14)

as a power series in z1z^{-1}. Namely Pj+(z)P^{+}_{j}(z)’s are the Drinfeld polynomials which specify the finite-dimensional irreducible Uq(𝔤𝔩^N)U_{q}(\widehat{\mathfrak{gl}}_{N})-module L(λ(z))L(\lambda(z)). Let us set rj=λjλj+1r_{j}=\lambda_{j}-\lambda_{j+1} and suppose that Pj+(z)P^{+}_{j}(z) is factored as

Pj+(z)=k=1rj(1z/aj,k),aj,k×.\displaystyle P^{+}_{j}(z)=\prod_{k=1}^{r_{j}}(1-z/a_{j,k}),\qquad a_{j,k}\in{\mathbb{C}}^{\times}. (3.15)

In particular, as the Uq(𝔰𝔩^N)U_{q}(\widehat{\mathfrak{sl}}_{N})-module one obtains from (2.52)

Φj+(z)ζ=qrjPj+(q2z)Pj+(z)ζ.\displaystyle\Phi^{+}_{j}(z)\cdot\zeta=q^{-r_{j}}\frac{P^{+}_{j}(q^{2}z)}{P^{+}_{j}(z)}\zeta. (3.16)

Then by using (2.53) and comparing the coefficient in each power of zz, one finds

qhjζ=qrjζ,\displaystyle q^{-h_{j}}\cdot\zeta=q^{-r_{j}}\zeta, (3.17)
aj,mζ=[m]mqmk=1rjaj,kmζ,m\{0}.\displaystyle a_{j,m}\cdot\zeta=\frac{[m]}{m}q^{-m}\sum_{k=1}^{r_{j}}a_{j,k}^{m}\zeta,\qquad m\in{\mathbb{Z}}\backslash\{0\}. (3.18)

Therefore noting p=pp=p^{*} on L(λ(z))L(\lambda(z)) so that αj,m=al,m\alpha_{j,m}=a_{l,m}, one obtains from (2.50)

ψj+(z)ζ=qrjk=1rjΘp(q2z/aj,k)Θp(z/aj,k)ζ.\displaystyle\psi^{+}_{j}(z)\cdot\zeta=q^{-r_{j}}\prod_{k=1}^{r_{j}}\frac{\Theta_{p}(q^{2}z/a_{j,k})}{\Theta_{p}(z/a_{j,k})}\zeta. (3.19)

Hence the only if part follows from (2.49) by taking

Pj(z)=k=1rjΘp(z/aj,k).\displaystyle P_{j}(z)=\prod_{k=1}^{r_{j}}{\Theta_{p}(z/a_{j,k})}. (3.20)

Corollary 3.13.

Every level-0 finite-dimensional irreducible representation of Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}) contains a unique, up to a constant factor, vector ζ0\zeta\not=0 such that

ej(z)ζ=0,for 1jN1.\displaystyle e_{j}(z)\cdot\zeta=0,\qquad for\ 1\leq j\leq N-1. (3.21)

Moreover, this vector satisfies

ψj+(z)ζ=q(λjλj+1)Pj(q2z)Pj(z)ζ,for1jN1,\displaystyle\psi^{+}_{j}(z)\cdot\zeta=q^{-(\lambda_{j}-\lambda_{j+1})}\frac{P_{j}(q^{2}z)}{P_{j}(z)}\zeta,\qquad for1\leq j\leq N-1, (3.22)

where each Pj(z)P_{j}(z) is a theta function of order λjλj+1\lambda_{j}-\lambda_{j+1}. The tuple of theta functions (P1(z),,PN1(z))(P_{1}(z),\cdots,P_{N-1}(z)) determines the representation up to an isomorphism.

Following [6], let us denote by L(𝐏)L({\bf P}) the level-0 finite-dimensional irreducible representation L(λ(z))L(\lambda(z)) of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) associated to 𝐏=(P1(z),,PN1(z))𝒫λ{\bf P}=(P_{1}(z),\cdots,P_{N-1}(z))\in{\cal P}^{\lambda} through (3.12), and say that 𝐏{\bf P} is its highest weight. The following series of statements describe the behavior of the N1N-1-tuple of theta functions 𝐏{\bf P} under tensor products. For two formal Laurent series λ(z),μ(z)\lambda(z),\mu(z) satisfying (3.1) and associated tuples of theta functions 𝐏=(P1(z),,PN1(z))𝒫λ{\bf P}=(P_{1}(z),\cdots,P_{N-1}(z))\in{\cal P}^{\lambda}, 𝐐=(Q1(z),,QN1(z))𝒫μ{\bf Q}=(Q_{1}(z),\cdots,Q_{N-1}(z))\in{\cal P}^{\mu} with λ,μP+\lambda,\mu\in P^{+}, let 𝐏𝐐𝒫λ+μ{\bf P}\otimes{\bf Q}\in{\cal P}^{\lambda+\mu} be the N1N-1-tuple of theta functions (P1(z)Q1(z),,PN1(z)QN1(z))(P_{1}(z)Q_{1}(z),\cdots,P_{N-1}(z)Q_{N-1}(z)). This is related to λ(z)μ(z)=(λ1(z)μ1(z),,λN(z)μN(z))\lambda(z)\mu(z)=(\lambda_{1}(z)\mu_{1}(z),\cdots,\lambda_{N}(z)\mu_{N}(z)) in the following way.

Proposition 3.14.

Let ζ𝐏\zeta_{{\bf P}} and ζ𝐐\zeta_{{\bf Q}} be Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})-highest weight vectors in L(𝐏)L({\bf P}) and L(𝐐)L({\bf Q}), respectively. Then, in L(𝐏)~L(𝐐)L({\bf P})\widetilde{\otimes}L({\bf Q}), we have

Δ(ej,m)(ζ𝐏~ζ𝐐)=0,\displaystyle\Delta(e_{j,m})\cdot(\zeta_{{\bf P}}\widetilde{\otimes}\zeta_{{\bf Q}})=0,\qquad (3.23)
Δ(kl+(z))(ζ𝐏~ζ𝐐)=λl(z)μl(z)(ζ𝐏~ζ𝐐),\displaystyle\Delta(k^{+}_{l}(z))\cdot(\zeta_{{\bf P}}\widetilde{\otimes}\zeta_{{\bf Q}})=\lambda_{l}(z)\mu_{l}(z)(\zeta_{{\bf P}}\widetilde{\otimes}\zeta_{{\bf Q}}), (3.24)

for all 1jN11\leq j\leq N-1, mm\in{\mathbb{Z}}, 1lN1\leq l\leq N. The formal Laurent series λl(z)μl(z)\lambda_{l}(z)\mu_{l}(z) satisfies

λl,0(0)μl,0(0)=qλlμl,\displaystyle\lambda^{(0)}_{l,0}\mu^{(0)}_{l,0}=q^{-\lambda_{l}-\mu_{l}}, (3.25)
λj(qjz)μj(qjz)λj+1(qjz)μj+1(qjz)=Pj(q2z)Qj(q2z)Pj(z)Qj(z),1jN1.\displaystyle\frac{\lambda_{j}(q^{-j}z)\mu_{j}(q^{-j}z)}{\lambda_{j+1}(q^{-j}z)\mu_{j+1}(q^{-j}z)}=\frac{P_{j}(q^{2}z)Q_{j}(q^{2}z)}{P_{j}(z)Q_{j}(z)},\qquad 1\leq j\leq N-1. (3.26)
Proof.

The statement follows from the following comultiplication formulas obtained from (2.114), (3.3) and (3.4).

Δ(Lj,j1+(z))=k<jNLjk+(z)~Lkj1+(z)+kjNLjk+(z)~Lkj1+(z),\displaystyle\Delta(L^{+}_{j,j-1}(z))=\sum_{k<j}^{N}L^{+}_{jk}(z)\widetilde{\otimes}L^{+}_{kj-1}(z)+\sum_{k\geq j}^{N}L^{+}_{jk}(z)\widetilde{\otimes}L^{+}_{kj-1}(z), (3.27)
Δ(Lll+(z))=Ljj+(z)~Ljj+(z)+k<jNLjk+(z)~Lkj+(z)+k>jNLjk+(z)~Lkj+(z).\displaystyle\Delta(L^{+}_{ll}(z))=L^{+}_{jj}(z)\widetilde{\otimes}L^{+}_{jj}(z)+\sum_{k<j}^{N}L^{+}_{jk}(z)\widetilde{\otimes}L^{+}_{kj}(z)+\sum_{k>j}^{N}L^{+}_{jk}(z)\widetilde{\otimes}L^{+}_{kj}(z). (3.28)

Corollary 3.15.

Let 𝐏𝒫λ{\bf P}\in{\cal P}^{\lambda}, 𝐐𝒫μ{\bf Q}\in{\cal P}^{\mu} . Then, L(𝐏𝐐)L({\bf P}\otimes{\bf Q}) is isomorphic, as a representation of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}), to a quotient of the subrepresentation of L(𝐏)~L(𝐐)L({\bf P})\widetilde{\otimes}L({\bf Q}) generated by the tensor product of the highest weight vectors in L(𝐏)L({\bf P}) and L(𝐐)L({\bf Q}).

Proof. From Proposition 3.14, L(𝐏)~L(𝐐)L({\bf P})\widetilde{\otimes}L({\bf Q}) is the finite-dimensional highest weight representation generated by ζ𝐏~ζ𝐐\zeta_{{\bf P}}\widetilde{\otimes}\zeta_{{\bf Q}} so that it has the maximal proper Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})-submodule K(λ(z))K(\lambda(z)). The quotient module of L(𝐏)~L(𝐐)L({\bf P})\widetilde{\otimes}L({\bf Q}) by K(λ(z))K(\lambda(z)) gives the unique finite-dimensional irreducible representation associated to 𝐏𝐐{\bf P}\otimes{\bf Q}, which is nothing but L(𝐏𝐐)L({\bf P}\otimes{\bf Q}). ∎

Definition 3.16.

We define a representation L(𝐏)L({\bf P}) of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) to be fundamental if for some j{1,,N1}j\in\{1,\cdots,N-1\}, 𝐏=(1,,Pj(z),,1){\bf P}=(1,\cdots,P_{j}(z),\cdots,1) with Pj(z)P_{j}(z) being a theta function of order 11.

Corollary 3.17.

For any 𝐏𝒫λ{\bf P}\in{\cal P}^{\lambda}, the representation L(𝐏)L({\bf P}) of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) is isomorphic to a subquotient of a tensor product of the fundamental representations.

Proof. Let L(𝐏j)L({\bf P}_{j}) be the fundamental representations with 𝐏j=(1,,Pj,,1){\bf P}_{j}=(1,\cdots,P_{j},\cdots,1) (1jN1)(1\leq j\leq N-1). The statement follows from 𝐏=𝐏1𝐏N1{\bf P}={\bf P}_{1}\otimes\cdots\otimes{\bf P}_{N-1}. ∎

3.2 Proof of the if part of Theorem 3.12

The following is immediate from the Definition of the algebras.

Proposition 3.18.

For any formal Laurent series f(z)f(z) in zz satisfying

f(z)=z1/2(1+m>0fmzm+m>0fmpmzm),\displaystyle f(z)=-z^{-1/2}\left(1+\sum_{m>0}f_{-m}z^{m}+\sum_{m>0}f_{m}p^{m}z^{-m}\right), (3.29)

one has an automorphism of Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}) by

L+(z)f(z)L+(z)\displaystyle L^{+}(z)\mapsto f(z)L^{+}(z) (3.30)

with the other generators remain the same. This is equivalent to an automorphism of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) defined by

kl+(z)f(z)kl+(z)(1lN)\displaystyle k^{+}_{l}(z)\mapsto f(z)k^{+}_{l}(z)\qquad(1\leq l\leq N) (3.31)

with the other generators remain the same.

Proof.

Note that

kl,0(0)=L¯ll,0=(f(z)kl+(z))0(0)=(f(z)Lll+(z))0(0).\displaystyle k_{l,0}^{(0)}=\bar{L}_{ll,0}=(f(z)k^{+}_{l}(z))_{0}^{(0)}=(f(z)L^{+}_{ll}(z))^{(0)}_{0}.

To show the if part, we follows the argument in [27], Theorem 3.4.1.

Proof.

Suppose Pj(z)P_{j}(z) is a theta function of order rj>0r_{j}\in{\mathbb{Z}}_{>0} satisfying (3.12) for 1jN11\leq j\leq N-1. Setting 𝐏=(Pj(z))jI{\bf P}=(P_{j}(z))_{j\in I}, we have L(λ(z))=L(𝐏)L(\lambda(z))=L({\bf P}). Without loss of generality one can set

Pj(z)=k=1rjΘp(z/aj,k)\displaystyle P_{j}(z)=\prod_{k=1}^{r_{j}}\Theta_{p}(z/a_{j,k})\qquad (3.32)

with some aj,k×a_{j,k}\in\mathbb{C}^{\times}. Set j=1N1rj=n{\displaystyle\sum_{j=1}^{N-1}r_{j}=n}. For j{1,,N1}j\in\{1,\cdots,N-1\}, define

Pj(a=1j1ra+k)(z)=Θp(z/aj,k)1krj,\displaystyle P^{(\sum_{a=1}^{j-1}r_{a}+k)}_{j}(z)=\Theta_{p}(z/a_{j,k})\qquad 1\leq k\leq r_{j}, (3.33)

and consider the set of the N1N-1-tuple of theta functions

𝐏(s)=(1,,1,Pj(s)(z),1,,1),a=1j1ra+1sa=1jra,\displaystyle{\bf P}^{(s)}=(1,\cdots,1,P^{(s)}_{j}(z),1,\cdots,1),\qquad\sum_{a=1}^{j-1}r_{a}+1\leq s\leq\sum_{a=1}^{j}r_{a},

s=1,2,,ns=1,2,\cdots,n. Let L(𝐏(s))L({\bf P}^{(s)}) be the irreducible highest weight Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})-module with the highest weight 𝐏(s){\bf P}^{(s)}. There exist the formal Laurent series μ(s)(z)=(μ1(s)(z),,μN(s)(z))\mu^{(s)}(z)=(\mu^{(s)}_{1}(z),\cdots,\mu^{(s)}_{N}(z)) such that

μj(s)(qjz)μj+1(s)(qjz)=q1Pj(s)(q2z)Pj(s)(z),μj(s)μj+1(s)=1,\displaystyle\frac{\mu^{(s)}_{j}(q^{-j}z)}{\mu^{(s)}_{j+1}(q^{-j}z)}=q^{-1}\frac{P^{(s)}_{j}(q^{2}z)}{P^{(s)}_{j}(z)},\qquad\mu^{(s)}_{j}-\mu^{(s)}_{j+1}=1, (3.34)
μa(s)(qaz)μa+1(s)(qaz)=1,μa(s)μa+1(s)=0(aj),\displaystyle\frac{\mu^{(s)}_{a}(q^{-a}z)}{\mu^{(s)}_{a+1}(q^{-a}z)}=1,\qquad\mu^{(s)}_{a}-\mu^{(s)}_{a+1}=0\quad(a\not=j), (3.35)

and L(μ(s)(z))=L(𝐏(s))L(\mu^{(s)}(z))=L({\bf P}^{(s)}). Here we set (μl(s))0(0)=qμl(s)(\mu^{(s)}_{l})^{(0)}_{0}=q^{-\mu^{(s)}_{l}} as before. In fact, let us define μ(z)=(μ1(z),,μN(z))\mu(z)=(\mu_{1}(z),\cdots,\mu_{N}(z)) by (Proof of Theorem 3.4.1 in [27])

μj(z)=qλjP1(z)Pj1(z)Pj(q2z)PN1(q2z),\displaystyle\mu_{j}(z)=q^{-\lambda_{j}}P_{1}(z)\cdots P_{j-1}(z)P_{j}(q^{2}z)\cdots P_{N-1}(q^{2}z), (3.36)

and μj(s)\mu^{(s)}_{j} and a(s)a^{(s)} (1sn)(1\leq s\leq n) as follows.

q2μj(a=1i1rj+k)a(a=1i1rj+k)={q2ai,k(i<j)ai,k(ij),\displaystyle q^{-2\mu^{(\sum_{a=1}^{i-1}r_{j}+k)}_{j}}a^{(\sum_{a=1}^{i-1}r_{j}+k)}=\left\{\begin{matrix}q^{2}a_{i,k}&\ (i<j)\cr a_{i,k}&\ (i\geq j)\end{matrix}\right., (3.37)
λj=s=1nμj(s).\displaystyle\lambda_{j}=\sum_{s=1}^{n}\mu^{(s)}_{j}. (3.38)

Then one finds

μj(z)=s=1nμj(s)(z),\displaystyle\mu_{j}(z)=\prod_{s=1}^{n}\mu^{(s)}_{j}(z), (3.39)
μj(s)(z)=qμj(s)Θp(q2(μj(s)+1)z/a(s)),\displaystyle\mu^{(s)}_{j}(z)=q^{-\mu^{(s)}_{j}}\Theta_{p}(q^{2(\mu^{(s)}_{j}+1)}z/a^{(s)}), (3.40)

and μj(s)(z)\mu^{(s)}_{j}(z) satisfy (3.34) and (3.35).

Thus obtained representation L(μ(s)(z))L(\mu^{(s)}(z)) is hence an evaluation representations of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) associated with the irreducible finite-dimensional highest weight representation L(μ(s))L(\mu^{(s)}) of Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}_{N}}) with μ(s)=(μ1(s),,μN(s))\mu^{(s)}=(\mu^{(s)}_{1},\cdots,\mu^{(s)}_{N}) by (2.42). Noting 𝐏=𝐏(1)𝐏(n){\bf P}={\bf P}^{(1)}\otimes\cdots\otimes{\bf P}^{(n)}, from Corollary 3.17, L(λ(z))L(\lambda(z)) is isomorphic to a subquotient of

L(μ(1)(z))~L(μ(2)(z))~~L(μ(n)(z)).\displaystyle L(\mu^{(1)}(z))\widetilde{\otimes}L(\mu^{(2)}(z))\widetilde{\otimes}\cdots\widetilde{\otimes}L(\mu^{(n)}(z)).

Therefore L(λ(z))L(\lambda(z)) is finite-dimensional.

4 Representations of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2})

For Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}), one can construct all the fundamental representations explicitly. Hence Corollary 3.17 allows us to classify all the level-0 finite-dimensional irreducible representations.

Let ll be a non-negative integer. Let Vl=m=0lvmlV_{l}=\oplus_{m=0}^{l}{\mathbb{C}}v^{l}_{m}, Vl(a)=Vl[a,a1]V_{l}(a)=V_{l}[a,a^{-1}] with a×a\in{\mathbb{C}}^{\times}, where by convention we set vml=0v^{l}_{m}=0 for m<0m<0 or m>lm>l. Let us define the level-0 action πl,a:Uq,p(𝔤𝔩^2)End𝔽(Vl(a))\pi_{l,a}:U_{q,p}(\widehat{\mathfrak{gl}}_{2})\to\operatorname{End}_{\mathbb{F}}(V_{l}(a)) by (Appendix C [18])

πl,a(αn)vml=ann(qq1)((qn+qn)q(l2m)n(q(l+1)n+q(l+1)n))vml,\displaystyle\pi_{l,a}(\alpha_{n})\cdot v^{l}_{m}=\frac{a^{n}}{n(q-q^{-1})}\left((q^{n}+q^{-n})q^{(l-2m)n}-(q^{(l+1)n}+q^{-(l+1)n})\right)v^{l}_{m}, (4.1)
πl,a(e(z))vml=q(lm)1q2(q2(lm+1);p)(pq2m;p)(p;p)(pq2;p)δ(ql2m+1az)vm1l,\displaystyle\pi_{l,a}(e(z))v^{l}_{m}=\frac{q^{-(l-m)}}{1-q^{2}}\frac{(q^{2(l-m+1)};p)_{\infty}(pq^{-2m};p)_{\infty}}{(p;p)_{\infty}(pq^{-2};p)_{\infty}}\delta\left(q^{l-2m+1}\frac{a}{z}\right)v^{l}_{m-1}, (4.2)
πl,a(f(z))vml=qm1q2(q2(m+1);p)(pq2(lm);p)(p;p)(pq2;p)δ(ql2m1az)vm+1l.\displaystyle\pi_{l,a}(f(z))v^{l}_{m}=\frac{q^{-m}}{1-q^{2}}\frac{(q^{2(m+1)};p)_{\infty}(pq^{-2(l-m)};p)_{\infty}}{(p;p)_{\infty}(pq^{2};p)_{\infty}}\delta\left(q^{l-2m-1}\frac{a}{z}\right)v^{l}_{m+1}. (4.3)

In particular, for λ1,λ2\lambda_{1},\lambda_{2}\in{\mathbb{C}} satisfying λ1λ2=l\lambda_{1}-\lambda_{2}=l, one has

πl,a(k1+(z))vml=qλ1+mΘp(qlz/a)Θp(ql+2mz/a)Γ(qlz/a;q4,p)Γ(q4ql2z/a;q4,p)Γ(q4ql2z/a;q4,p)Γ(qlz/a;q4,p)vml,\displaystyle\pi_{l,a}(k^{+}_{1}(z))\cdot v^{l}_{m}=q^{-\lambda_{1}+m}\frac{\Theta_{p}(q^{l}z/a)}{\Theta_{p}(q^{-l+2m}z/a)}\frac{\Gamma(q^{l}z/a;q^{4},p)\Gamma(q^{4}q^{-l-2}z/a;q^{4},p)}{\Gamma(q^{4}q^{l-2}z/a;q^{4},p)\Gamma(q^{-l}z/a;q^{4},p)}v^{l}_{m}, (4.4)
πl,a(k2+(z))vml=qλ2mΘp(ql+2m+2z/a)Θp(ql+2z/a)Γ(q4qlz/a;q4,p)Γ(q4ql2z/a;q4,p)Γ(q4ql2z/a;q4,p)Γ(q4qlz/a;q4,p)vml.\displaystyle\pi_{l,a}(k^{+}_{2}(z))\cdot v^{l}_{m}=q^{-\lambda_{2}-m}\frac{\Theta_{p}(q^{-l+2m+2}z/a)}{\Theta_{p}(q^{l+2}z/a)}\frac{\Gamma(q^{4}q^{l}z/a;q^{4},p)\Gamma(q^{4}q^{-l-2}z/a;q^{4},p)}{\Gamma(q^{4}q^{l-2}z/a;q^{4},p)\Gamma(q^{4}q^{-l}z/a;q^{4},p)}v^{l}_{m}. (4.5)
Theorem 4.1.

The (πl.a,Vl(a))(\pi_{l.a},V_{l}(a)) is the l+1l+1-dimensional irreducible representation L(Pl,a)L(P_{l,a}) of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}) with the theta function Pl,a(z)P_{l,a}(z) of order ll given by

Pl,a(z)=k=1lΘp(ql+2k1z/a).\displaystyle P_{l,a}(z)=\prod_{k=1}^{l}\Theta_{p}(q^{-l+2k-1}z/a). (4.6)

In particular, the fundamental representations of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}) are the two dimensional representations V1(a)V_{1}(a), for arbitrary a×a\in{\mathbb{C}}^{\times} associated with

P1,a(z)=Θp(z/a).\displaystyle P_{1,a}(z)=\Theta_{p}(z/a). (4.7)

We call Vl(a)V_{l}(a) an evaluation representation of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}).

Proof. From (4.4) and (4.5), one obtains

πl,a(k1+(z))v0l=θ(ql+2z/a)f(z)1v0l,\displaystyle\pi_{l,a}(k^{+}_{1}(z))\cdot v^{l}_{0}={\theta(q^{l+2}z/a)}f(z)^{-1}v^{l}_{0},\quad (4.8)
πl,a(k2+(z))v0l=θ(ql+2z/a)f(z)1v0l\displaystyle\pi_{l,a}(k^{+}_{2}(z))\cdot v^{l}_{0}={\theta(q^{-l+2}z/a)}f(z)^{-1}v^{l}_{0} (4.9)

with

f(z)1=1θ(ql+2z/a)Γ(q4qlz/a;q4,p)Γ(q4ql2z/a;q4,p)Γ(q4ql2z/a;q4,p)Γ(q4qlz/a;q4,p).\displaystyle f(z)^{-1}=\frac{1}{\theta(q^{l+2}z/a)}\frac{\Gamma(q^{4}q^{l}z/a;q^{4},p)\Gamma(q^{4}q^{-l-2}z/a;q^{4},p)}{\Gamma(q^{4}q^{l-2}z/a;q^{4},p)\Gamma(q^{4}q^{-l}z/a;q^{4},p)}.

Hence up to an automorphism (3.18), we have

λ1(z)=θ(ql+2z/a),λ2(z)=θ(ql+2z/a).\displaystyle\lambda_{1}(z)=\theta(q^{l+2}z/a),\qquad\lambda_{2}(z)=\theta(q^{-l+2}z/a).

Therefore

πl,a(ψ+(z))v0l=λ1(q1z)λ2(q1z)v0l=q(λ1λ2)Θp(ql+1z/a)Θp(ql+1z/a)v0l.\displaystyle\pi_{l,a}(\psi^{+}(z))\cdot v^{l}_{0}=\frac{\lambda_{1}(q^{-1}z)}{\lambda_{2}(q^{-1}z)}v^{l}_{0}=q^{-(\lambda_{1}-\lambda_{2})}\frac{\Theta_{p}(q^{l+1}z/a)}{\Theta_{p}(q^{-l+1}z/a)}v^{l}_{0}.

Let us call the set Σl,a={aql+1,aql+3,,aql1}\Sigma_{l,a}=\{aq^{-l+1},aq^{-l+3},\cdots,aq^{l-1}\} of roots of Pl,aP_{l,a} the qq-segment of length ll and centre aa[5].

Definition 4.2.

Two qq-segments Σ1\Sigma_{1}, Σ2\Sigma_{2} are said to be in general position if either

  • (i)

    Σ1Σ2\Sigma_{1}\cup\Sigma_{2} is not a qq-segment, or

  • (ii)

    Σ1Σ2\Sigma_{1}\subseteq\Sigma_{2} or Σ2Σ1\Sigma_{2}\subseteq\Sigma_{1}.

Proposition 4.3.

Let l1,l2,,lnl_{1},l_{2},\cdots,l_{n}\in{\mathbb{N}}, a1,a2,,an×,na_{1},a_{2},\cdots,a_{n}\in{\mathbb{C}}^{\times},n\in{\mathbb{N}}. Then, the tensor product Vl1(a1)~Vl2(a2)~~Vln(an)V_{l_{1}}(a_{1})\widetilde{\otimes}V_{l_{2}}(a_{2})\widetilde{\otimes}\cdots\widetilde{\otimes}V_{l_{n}}(a_{n}) is irreducible as a representation of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}) iff the q-segments Σl1,a1,,Σln,an\Sigma_{l_{1},a_{1}},\cdots,\Sigma_{l_{n},a_{n}} are pairwise in general position.

One can prove the statement in the same way as in the case of Uq(𝔰𝔩^2)U_{q}(\widehat{\mathfrak{sl}}_{2})[4] or the Yangian Y(𝔤𝔩2)Y({\mathfrak{gl}}_{2})[3, 27].

Theorem 4.4.

Every level-0 finite-dimensional irreducible representation of Uq,p(𝔰𝔩^2)U_{q,p}(\widehat{\mathfrak{sl}}_{2}) is isomorphic to a tensor product of evaluation representations.

Proof. Let L(P)L(P) be an irreducible finite-dimensional representation associated with the theta function P(z)P(z). Consider the multiset Σ\Sigma formed by the zeros of P(z)P(z) in the fundamental parallelogram. Following a proof of Theorem 4.3 in [5], one has a unique decomposition

Σ=Σl1,a1Σl2,a2Σln,an\displaystyle\Sigma=\Sigma_{l_{1},a_{1}}\cup\Sigma_{l_{2},a_{2}}\cup\cdots\cup\Sigma_{l_{n},a_{n}}

for some l1,l2,,lkl_{1},l_{2},\cdots,l_{k}\in{\mathbb{N}}, a1,a2,,an×,na_{1},a_{2},\cdots,a_{n}\in{\mathbb{C}}^{\times},n\in{\mathbb{N}}, and all qq-segments Σli,ai\Sigma_{l_{i},a_{i}}’s are pairwise in general position. Then the statement follows from Corollary 3.15 and Proposition 4.3 by

P(z)=Pl1,a1(z)Pl2,a2(z)Pln,an(z).\displaystyle P(z)=P_{l_{1},a_{1}}(z)P_{l_{2},a_{2}}(z)\cdots P_{l_{n},a_{n}}(z). (4.10)

4.1 The Gelfand-Tsetlin bases

We give the Gelfand-Tsetlin basis of the level-0 finite-dimensional irreducible representation

L(P)=Vl1(a~1)~Vl2(a~2)~~Vln(a~n),\displaystyle L(P)=V_{l_{1}}(\tilde{a}_{1})\widetilde{\otimes}V_{l_{2}}(\tilde{a}_{2})\widetilde{\otimes}\cdots\widetilde{\otimes}V_{l_{n}}(\tilde{a}_{n}), (4.11)

where the theta function PP is given in (4.10) with replacing aia_{i} with

a~i=qαiβi+2ai.\displaystyle\tilde{a}_{i}=q^{-\alpha_{i}-\beta_{i}+2}a_{i}.

Here αi,βi(1in)\alpha_{i},\beta_{i}\ (1\leq i\leq n) are complex numbers satisfying

αiβi=li0.\displaystyle\alpha_{i}-\beta_{i}=l_{i}\in{\mathbb{Z}}_{\geq 0}. (4.12)

The highest weight vector is given by

ζ=v0l1~v0l2~~v0ln.\displaystyle\zeta=v^{l_{1}}_{0}\widetilde{\otimes}v^{l_{2}}_{0}\widetilde{\otimes}\cdots\widetilde{\otimes}v^{l_{n}}_{0}. (4.13)

Let γ=(γ1,,γn)\gamma=(\gamma_{1},\cdots,\gamma_{n}) be a nn-tuple of complex numbers satisfying

αiγi0,γiβi0,(1in).\displaystyle\alpha_{i}-\gamma_{i}\in{\mathbb{Z}}_{\geq 0},\qquad\gamma_{i}-\beta_{i}\in{\mathbb{Z}}_{\geq 0},\qquad(1\leq i\leq n). (4.14)

From (4.8) and (4.9) with a=a~ia=\tilde{a}_{i} we have

πli,ai(k1+(z))v0li=θ(q2αiz/ai)f(z)1v0li,\displaystyle\pi_{l_{i},a_{i}}(k^{+}_{1}(z))\cdot v^{l_{i}}_{0}=\theta(q^{2\alpha_{i}}z/a_{i})f(z)^{-1}v^{l_{i}}_{0},\qquad
πli,ai(k2+(z))v0li=θ(q2βiz/ai)f(z)1v0li.\displaystyle\pi_{l_{i},a_{i}}(k^{+}_{2}(z))\cdot v^{l_{i}}_{0}=\theta(q^{2\beta_{i}}z/a_{i})f(z)^{-1}v^{l_{i}}_{0}.

Hence up to an automorphism of the form (3.18), one has

k1+(z)ζ=i=1nθ(q2αiz/ai)ζ,\displaystyle k^{+}_{1}(z)\cdot\zeta=\prod_{i=1}^{n}\theta(q^{2\alpha_{i}}z/a_{i})\zeta, (4.15)
k2+(z)ζ=i=1nθ(q2βiz/ai)ζ.\displaystyle k^{+}_{2}(z)\cdot\zeta=\prod_{i=1}^{n}\theta(q^{2\beta_{i}}z/a_{i})\zeta. (4.16)

Let A1(z),A2(z),B2(z),C2(z)A_{1}(z),A_{2}(z),B_{2}(z),C_{2}(z) be operators defined in Definition 2.11 for the N=2N=2 case. Define

ξγ=i=1nB2(q2(γi1)ai)B2(q2(γi2)ai)B2(q2βiai)ζ,\displaystyle\xi_{\gamma}=\prod_{i=1}^{n}B_{2}(q^{-2(\gamma_{i}-1)}a_{i})B_{2}(q^{-2(\gamma_{i}-2)}a_{i})\cdots B_{2}(q^{-2\beta_{i}}a_{i})\cdot\zeta, (4.17)
ξβ=ζ,\displaystyle\xi_{\beta}=\zeta, (4.18)

where β=(β1,,βk)\beta=(\beta_{1},\cdots,\beta_{k}).

Theorem 4.5.

The set of vectors {ξγ}\{\xi_{\gamma}\} with γ\gamma satisfying (4.14) forms a basis of L(P)L(P). Moreover, the generators of Uq,p(𝔤𝔩^2)U_{q,p}(\widehat{\mathfrak{gl}}_{2}) act on ξγ\xi_{\gamma} as follows

A1(z)ξγ=i=1nθ(q2αiz/ai)θ(q2(βi1)z/ai)ξγ,\displaystyle A_{1}(z)\cdot\xi_{\gamma}=\prod_{i=1}^{n}\theta(q^{2\alpha_{i}}z/a_{i})\theta(q^{2(\beta_{i}-1)}z/a_{i})\,\xi_{\gamma}, (4.19)
A2(z)ξγ=i=1nθ(q2γiz/ai)ξγ,\displaystyle A_{2}(z)\cdot\xi_{\gamma}=\prod_{i=1}^{n}\theta(q^{2\gamma_{i}}z/a_{i})\,\xi_{\gamma}, (4.20)
B2(q2γjaj)ξγ=ξγ+δj,\displaystyle B_{2}(q^{-2\gamma_{j}}a_{j})\cdot\xi_{\gamma}=\xi_{\gamma+\delta_{j}}, (4.21)
C2(q2γjaj)ξγ=Δ(n1)(θ(q2Π)θ(Π))i=1nθ(q2(αiγj+1))θ(q2(βiγj))ξγδj,\displaystyle C_{2}(q^{-2\gamma_{j}}a_{j})\cdot\xi_{\gamma}=-\Delta^{(n-1)}\left(\frac{\theta(q^{2}\Pi^{*})}{\theta(\Pi^{*})}\right)\cdot\prod_{i=1}^{n}\theta(q^{2(\alpha_{i}-\gamma_{j}+1)})\theta(q^{2(\beta_{i}-\gamma_{j})})\,\xi_{\gamma-\delta_{j}}, (4.22)

for j{1,,n}j\in\{1,\cdots,n\}, where we set γ±δj=(γ1,,γj±1,,γn)\gamma\pm\delta_{j}=(\gamma_{1},\cdots,\gamma_{j}\pm 1,\cdots,\gamma_{n}). The vector ξγ±δj\xi_{\gamma\pm\delta_{j}} is considered to be zero if γ±δj\gamma\pm\delta_{j} does not satisfy (4.14).

Proof. From (2.100),(2.103), (4.15) and (4.16), one obtains (4.19).

(4.20) can be proved inductively on the number of operators B2()B_{2}(\bullet) in ξγ\xi_{\gamma}. Noting ξγ=B2(q2(γ11)a1)ξγδ1\xi_{\gamma}=B_{2}(q^{-2(\gamma_{1}-1)}a_{1})\cdot\xi_{\gamma-\delta_{1}}, from (2.108), one has

A2(z)B2(q2(γ11)a1)ξγδ1\displaystyle A_{2}(z)B_{2}(q^{-2(\gamma_{1}-1)}a_{1})\cdot\xi_{\gamma-\delta_{1}} =\displaystyle= θ(q2q2(γ11)z/a1)θ(q2(γ11)z/a1)B2(q2(γ11)a1)A2(z)ξγδ1\displaystyle\frac{\theta(q^{2}q^{2(\gamma_{1}-1)}z/a_{1})}{\theta(q^{2(\gamma_{1}-1)}z/a_{1})}B_{2}(q^{-2(\gamma_{1}-1)}a_{1})A_{2}(z)\cdot\xi_{\gamma-\delta_{1}}
θ(q2)θ(Π1q2(γ11)z/a1)θ(Π1)θ(q2(γ11)z/a1)B2(z)A2(q2(γ11)a1)ξγδ1.\displaystyle\qquad-\frac{\theta(q^{2})\theta(\Pi^{-1}q^{2(\gamma_{1}-1)}z/a_{1})}{\theta(\Pi^{-1})\theta(q^{2(\gamma_{1}-1)}z/a_{1})}B_{2}(z)A_{2}(q^{-2(\gamma_{1}-1)}a_{1})\cdot\xi_{\gamma-\delta_{1}}.

The second term vanishes by the induction hypothesis for some jj

A2(z)ξγδj=θ(q2(γj1)z/aj)i=1jnθ(q2γiz/ai)ξγδj.\displaystyle A_{2}(z)\cdot\xi_{\gamma-\delta_{j}}=\theta(q^{2(\gamma_{j}-1)}z/a_{j})\prod_{i=1\atop\not=j}^{n}\theta(q^{2\gamma_{i}}z/a_{i})\,\xi_{\gamma-\delta_{j}}. (4.23)

(4.21) follows from the definition of ξγ\xi_{\gamma}.

(4.22) with γj>βj\gamma_{j}>\beta_{j} follows from ξγ=B2(q2(γj1)aj)ξγδj\xi_{\gamma}=B_{2}(q^{-2(\gamma_{j}-1)}a_{j})\cdot\xi_{\gamma-\delta_{j}} and (4.23) and (2.110).

C2(q2γjaj)ξγ=C2(q2γjaj)B2(q2(γj1)aj)ξγδj\displaystyle C_{2}(q^{-2\gamma_{j}}a_{j})\cdot\xi_{\gamma}=C_{2}(q^{-2\gamma_{j}}a_{j})B_{2}(q^{-2(\gamma_{j}-1)}a_{j})\cdot\xi_{\gamma-\delta_{j}}
=A2(q2γjaj)f12+(q2(γj1)aj)e21+(q2γjaj)A2(q2(γj1)aj)ξγδj\displaystyle=A_{2}(q^{-2\gamma_{j}}a_{j})f^{+}_{12}(q^{-2(\gamma_{j}-1)}a_{j})e^{+}_{21}(q^{-2\gamma_{j}}a_{j})A_{2}(q^{-2(\gamma_{j}-1)}a_{j})\cdot\xi_{\gamma-\delta_{j}}
+A1(q2(γj1)aj)Δ(n1)(θ(q2)θ(Π1q2)θ(Π1)θ(q2))ξγδj\displaystyle\qquad+A_{1}(q^{-2(\gamma_{j}-1)}a_{j})\Delta^{(n-1)}\left(\frac{\theta(q^{2})\theta(\Pi^{*-1}q^{-2})}{\theta(\Pi^{*-1})\theta(q^{-2})}\right)\cdot\xi_{\gamma-\delta_{j}}
A1(q2γjaj)A2(q2q2γjaj)1A2(q2(γj1)aj)Δ(n1)(θ(q2)θ(Π1q2)θ(Π1)θ(q2))ξγδj\displaystyle\qquad-A_{1}(q^{-2\gamma_{j}}a_{j})A_{2}(q^{-2}q^{-2\gamma_{j}}a_{j})^{-1}A_{2}(q^{-2(\gamma_{j}-1)}a_{j})\cdot\Delta^{(n-1)}\left(\frac{\theta(q^{2})\theta(\Pi^{-1}q^{-2})}{\theta(\Pi^{-1})\theta(q^{-2})}\right)\cdot\xi_{\gamma-\delta_{j}}
=Δ(n1)(θ(Πq2)θ(Π))i=1nθ(q2(αiγj+1))θ(q2(βiγj))ξγδj.\displaystyle=-\Delta^{(n-1)}\left(\frac{\theta(\Pi^{*}q^{2})}{\theta(\Pi^{*})}\right)\prod_{i=1}^{n}\theta(q^{2(\alpha_{i}-\gamma_{j}+1)})\theta(q^{2(\beta_{i}-\gamma_{j})})\xi_{\gamma-\delta_{j}}.

Note that p=pp^{*}=p on L(P)L(P).

For the case γj=βj\gamma_{j}=\beta_{j} for some jj, one has

C2(q2βjaj)ξγ=0.\displaystyle C_{2}(q^{-2\beta_{j}}a_{j})\cdot\xi_{\gamma}=0.

In fact, let us take j=1j=1 and consider γ=(β1,γ2,,γn)\gamma=(\beta_{1},\gamma_{2},\cdots,\gamma_{n}) without loss of generality. Then one has

C2(q2β1a1)ξ(β1,γ2,,γn)\displaystyle C_{2}(q^{-2\beta_{1}}a_{1})\cdot\xi_{(\beta_{1},\gamma_{2},\cdots,\gamma_{n})}
=C2(q2β1a1)B2(q2(γ21)a2)ξγδ2\displaystyle=C_{2}(q^{-2\beta_{1}}a_{1})B_{2}(q^{-2(\gamma_{2}-1)}a_{2})\cdot\xi_{\gamma-\delta_{2}}
=A2(q2β1a1)B2(q2(γ21)a2)A2(q2(γ21)a2)1A2(q2β1a1)1C2(q2β1a1)A2(q2(γ21)a2)ξγδ2\displaystyle=A_{2}(q^{-2\beta_{1}}a_{1})B_{2}(q^{-2(\gamma_{2}-1)}a_{2})A_{2}(q^{-2(\gamma_{2}-1)}a_{2})^{-1}A_{2}(q^{-2\beta_{1}}a_{1})^{-1}C_{2}(q^{-2\beta_{1}}a_{1})A_{2}(q^{-2(\gamma_{2}-1)}a_{2})\xi_{\gamma-\delta_{2}}
+A2(q2β1a1)A1(q2(γ21)a2)A2(q2(γ21)q2a2)1Δ(θ(q2)θ(Π1q2β1q2(γ21)a1/a2)θ(Π1)θ(q2β1q2(γ21)a1/a2))ξγδ2\displaystyle+A_{2}(q^{-2\beta_{1}}a_{1})A_{1}(q^{-2(\gamma_{2}-1)}a_{2})A_{2}(q^{-2(\gamma_{2}-1)}q^{-2}a_{2})^{-1}\Delta\left(\frac{\theta(q^{2})\theta(\Pi^{*-1}q^{-2\beta_{1}}q^{2(\gamma_{2}-1)}a_{1}/a_{2})}{\theta(\Pi^{*-1})\theta(q^{-2\beta_{1}}q^{2(\gamma_{2}-1)}a_{1}/a_{2})}\right)\xi_{\gamma-\delta_{2}}
A1(q2β1a1)A2(q2β1q2a1)1A2(q2(γ21)a2)Δ(θ(q2)θ(Π1q2β1q2(γ21)a1/a2)θ(Π1)θ(q2β1q2(γ21)a1/a2))ξγδ2.\displaystyle-A_{1}(q^{-2\beta_{1}}a_{1})A_{2}(q^{-2\beta_{1}}q^{-2}a_{1})^{-1}A_{2}(q^{-2(\gamma_{2}-1)}a_{2})\Delta\left(\frac{\theta(q^{2})\theta(\Pi^{-1}q^{-2\beta_{1}}q^{2(\gamma_{2}-1)}a_{1}/a_{2})}{\theta(\Pi^{-1})\theta(q^{-2\beta_{1}}q^{2(\gamma_{2}-1)}a_{1}/a_{2})}\right)\xi_{\gamma-\delta_{2}}.

This vanishes because A2(q2(γ21)a2)A_{2}(q^{-2(\gamma_{2}-1)}a_{2}) and A1(q2β1a1)A_{1}(q^{2\beta_{1}}a_{1}) vanish on ξγδ2\xi_{\gamma-\delta_{2}}.

We now prove that the vectors ξγ\xi_{\gamma} form a basis of L(P)L(P). Firstly, ξγ0\xi_{\gamma}\not=0 follows from Lemma 4.6 given in the below. Secondly, the vectors ξγ\xi_{\gamma} are linearly independent because they are eigenvectors for A2(z)A_{2}(z) with distinct eigenvalues. The number of these vectors is

i=1n(αiβi+1)\displaystyle\prod_{i=1}^{n}(\alpha_{i}-\beta_{i}+1)

which coincides with the dimension of L(P)L(P), thus proving the claim.

It remains to verify that B2(q2αjaj)ξγ=0B_{2}(q^{-2\alpha_{j}}a_{j})\xi_{\gamma}=0. The argument used for the proof of (4.20) shows that if the vector ξ=B2(q2αjaj)ξγ\xi^{\prime}=B_{2}(q^{-2\alpha_{j}}a_{j})\xi_{\gamma} is nonzero, then ξ\xi^{\prime} is an eigenvector for A2(z)A_{2}(z) with the eigenvalue

θ(q2γ1z/a1)θ(q2γj1z/aj1)θ(q2(αj+1)z/aj)θ(q2γj+1z/aj+1)θ(q2γnz/an).\displaystyle\theta(q^{2\gamma_{1}}z/a_{1})\cdots\theta(q^{2\gamma_{j-1}}z/a_{j-1})\theta(q^{2(\alpha_{j}+1)}z/a_{j})\theta(q^{2\gamma_{j+1}}z/a_{j+1})\cdot\theta(q^{2\gamma_{n}}z/a_{n}).

However, as we have seen above, the module LL admits a basis which consists of eigenvectors of A2(z)A_{2}(z) with distinct eigenvalues. We come to a contradiction since none of these eigenvalues coincides with the eigenvalue of ξ\xi^{\prime}. So, ξ=0\xi^{\prime}=0.

Lemma 4.6.
1inC2(q2(βi+1)ai)C2(q2(γi1)ar)C2(q2γiai)ξγ\displaystyle\stackrel{{\scriptstyle\curvearrowleft}}{{\prod_{1\leq i\leq n}}}C_{2}(q^{-2(\beta_{i}+1)}a_{i})\cdots C_{2}(q^{-2(\gamma_{i}-1)}a_{r})C_{2}(q^{-2\gamma_{i}}a_{i})\cdot\xi_{\gamma}
=()i=1n(γiβi)Δ(n1)(θ(Πq2i=1n(γiβi))θ(Π))\displaystyle\qquad=(-)^{\sum_{i=1}^{n}(\gamma_{i}-\beta_{i})}\Delta^{(n-1)}\left(\frac{\theta(\Pi^{*}q^{2\sum_{i=1}^{n}(\gamma_{i}-\beta_{i})})}{\theta(\Pi^{*})}\right)
×i=1nj=1naj=0γjβj1θ(q2(αiγj+aj+1))θ(q2(βiγj+aj))ζ.\displaystyle\qquad\times\prod_{i=1}^{n}\prod_{j=1}^{n}\prod_{a_{j}=0}^{\gamma_{j}-\beta_{j}-1}\theta(q^{2(\alpha_{i}-\gamma_{j}+a_{j}+1)})\theta(q^{2(\beta_{i}-\gamma_{j}+a_{j})})\,\zeta. (4.24)

Proof. Use (4.22) repeatedly. ∎

5 The Gelfand-Tsetlin Bases for Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})-modules

In this section, we consider general level-0 finite-dimensional irreducible representations specified by the Gelfand-Tsetlin patterns, and construct their bases. Our construction is an elliptic analogue of the one studied by Nazarov-Tarasov [29].

Let kl+(z),Al(z),Bm(z),Cm(z)(1lN, 2mN)k^{+}_{l}(z),A_{l}(z),B_{m}(z),C_{m}(z)\ (1\leq l\leq N,\ 2\leq m\leq N) as in Sec.2.7. Recall that on the level-0 representations, we have

p=p,θ(z)=θ(z),𝒩k=𝒩k=1(1kN).\displaystyle p^{*}=p,\quad\theta^{*}(z)=\theta(z),\quad{\cal N}_{k}={\cal N}^{\prime}_{k}=1\ (1\leq k\leq N).

For s{1,,n}s\in\{1,\cdots,n\}, let L(λ(s)(z))L(\lambda^{(s)}(z)) be a level-0 finite-dimensional irreducible representation of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) with the highest weight λ(s)(z)=(λ1(s)(z),,λN(s)(z))\lambda^{(s)}(z)=(\lambda^{(s)}_{1}(z),\cdots,\lambda^{(s)}_{N}(z)). We consider an irreducible representation L(λ(z))L(\lambda(z)) given as a subquotient of the tensor product.

L(λ(1)(z))~~L(λ(n)(z)).\displaystyle L(\lambda^{(1)}(z))\widetilde{\otimes}\cdots\widetilde{\otimes}L(\lambda^{(n)}(z)). (5.1)

The highest weight λ(z)\lambda(z) is given by

λ(z)=(λ1(z),,λN(z)),\displaystyle\lambda(z)=(\lambda_{1}(z),\cdots,\lambda_{N}(z)), (5.2)
λj(z)=s=1nλj(s)(z).\displaystyle\lambda_{j}(z)=\prod_{s=1}^{n}\lambda^{(s)}_{j}(z). (5.3)

From Theorem 3.12, there exist theta functions Pj(s)(z)P^{(s)}_{j}(z) of order rj(s)λj(s)λj+1(s)0r^{(s)}_{j}\equiv\lambda^{(s)}_{j}-\lambda^{(s)}_{j+1}\in{\mathbb{Z}}_{\geq 0} such that

λj(s)(qjz)λj+1(s)(qjz)=qrj(s)Pj(s)(q2z)Pj(s)(z).\displaystyle\frac{\lambda^{(s)}_{j}(q^{-j}z)}{\lambda^{(s)}_{j+1}(q^{-j}z)}=q^{-r^{(s)}_{j}}\frac{P^{(s)}_{j}(q^{2}z)}{P^{(s)}_{j}(z)}. (5.4)

In the following we consider the finite-dimensional irreducible representation L(λ(z))L(\lambda(z)) whose highest weight is given by 𝐏=(P1(z),,PN1(z)){\bf P}=(P_{1}(z),\cdots,P_{N-1}(z))

Pj(z)=s=1nPj(s)(z),Pj(s)(z)=k=1rj(s)Θp(q2(λj(s)k)qjz/a(s))\displaystyle P_{j}(z)=\prod_{s=1}^{n}P^{(s)}_{j}(z),\qquad P^{(s)}_{j}(z)=\prod_{k=1}^{r^{(s)}_{j}}\Theta_{p}(q^{2(\lambda^{(s)}_{j}-k)}q^{-j}z/a^{(s)}) (5.5)

without loss of generality. Hence up to an automorphism (3.18), we have

λj(s)(z)=θ(q2λj(s)z/a(s)).\displaystyle\lambda^{(s)}_{j}(z)=\theta(q^{2\lambda^{(s)}_{j}}z/a^{(s)}). (5.6)

We call the following set of complex numbers λl,j(s)(1jlN)\lambda^{(s)}_{l,j}\ (1\leq j\leq l\leq N) the Gelfand-Tsetlin pattern 𝝀(s){\boldsymbol{\lambda}}^{(s)} associated with λ(s)=(λ1(s),,λN(s))\lambda^{(s)}=(\lambda^{(s)}_{1},\cdots,\lambda^{(s)}_{N}), if

λN,j(s)=λj(s)(1jN),\displaystyle\lambda^{(s)}_{N,j}=\lambda^{(s)}_{j}\qquad(1\leq j\leq N),
λl,j(s)λl1,j(s)0,λl1,j(s)λl,j+1(s)0.\displaystyle\lambda^{(s)}_{l,j}-\lambda^{(s)}_{l-1,j}\in{\mathbb{Z}}_{\geq 0},\quad\lambda^{(s)}_{l-1,j}-\lambda^{(s)}_{l,j+1}\in{\mathbb{Z}}_{\geq 0}.

Schematically we have

𝝀(s)\displaystyle{\boldsymbol{\lambda}}^{(s)} =\displaystyle= λN,1(s)λN,2(s)λN,N1(s)λN,N(s)λN1,1(s)λN1,2(s)λN1,N1(s)λ2,1(s)λ2,2(s)λ1,1(s)\displaystyle\begin{matrix}\lambda^{(s)}_{N,1}&&\lambda^{(s)}_{N,2}&\cdots&\cdots&\cdots&\lambda^{(s)}_{N,N-1}&&\lambda^{(s)}_{N,N}\quad\cr&\lambda^{(s)}_{N-1,1}&&\lambda^{(s)}_{N-1,2}&\cdots&\cdots&&\ \ \ \lambda^{(s)}_{N-1,N-1}&\cr&\quad\ddots&&\ddots&&&&\ \rotatebox[origin={c}]{85.0}{$\ddots$}\quad&\cr&&\ddots&&\ddots&&&\rotatebox[origin={c}]{85.0}{$\ddots$}\qquad\qquad&\cr&&&&&&&&\cr&&&&\lambda^{(s)}_{2,1}&&\lambda^{(s)}_{2,2}&&\cr&&&&&&&&\cr&&&&&\quad\lambda^{(s)}_{1,1}&&&\cr\end{matrix}

In particular, we denote by 𝝀0(s){\boldsymbol{\lambda}}^{(s)}_{0} the Gelfand-Tsetlin pattern where λl,j(s)=λN,j(s)(jlN1)\lambda^{(s)}_{l,j}=\lambda^{(s)}_{N,j}\ (j\leq l\leq N-1) for each j{1,,N1}j\in\{1,\cdots,N-1\}.

To describe the Gelfand-Tsetlin bases, it is convenient to set νi(s):=λN+1i(s)\nu_{i}^{(s)}:=\lambda_{N+1-i}^{(s)} (1sn)(1\leq s\leq n) and νi(z):=λN+1i(z)\nu_{i}(z):=\lambda_{N+1-i}(z). Hence we have

νj(z)=s=1nθ(q2νj(s)z/a(s))1jN.\displaystyle\nu_{j}(z)=\prod_{s=1}^{n}\theta(q^{2\nu_{j}^{(s)}}z/a^{(s)})\ \ \qquad 1\leq j\leq N. (5.7)

The Gelfand-Tsetlin patterns 𝝂(s)=(νl,j(s))1jlN{\boldsymbol{\nu}}^{(s)}=(\nu_{l,j}^{(s)})_{1\leq j\leq l\leq N}, s=1,,ns=1,\dots,n are collections of complex numbers νl,j(s)\nu_{l,j}^{(s)} (1jlN)(1\leq j\leq l\leq N) satisfying

νN,j(s)=νj(s),\displaystyle\nu_{N,j}^{(s)}=\nu_{j}^{(s)}, (5.8)
νl,j(s)νl1,j1(s)0,νl1,j1(s)νl,j1(s)0.\displaystyle\nu_{l,j}^{(s)}-\nu_{l-1,j-1}^{(s)}\in\mathbb{Z}_{\geq 0},\quad\nu_{l-1,j-1}^{(s)}-\nu_{l,j-1}^{(s)}\in\mathbb{Z}_{\geq 0}. (5.9)

In the following, to make the presentation simple, we write the condition (5.9) as νl,j(s)νl1,j1(s)νl,j1(s)\nu_{l,j}^{(s)}\geq\nu_{l-1,j-1}^{(s)}\geq\nu_{l,j-1}^{(s)}. Schematically we have

𝝂(s)\displaystyle{\boldsymbol{\nu}}^{(s)} =\displaystyle= νN,N(s)νN,N1(s)νN,2(s)νN,1(s)νN1,N1(s)νN1,N2(s)νN1,1(s)ν2,2(s)ν2,1(s)ν1,1(s)\displaystyle\begin{matrix}\nu^{(s)}_{N,N}&&\nu^{(s)}_{N,N-1}&\cdots&\cdots&\cdots&\nu^{(s)}_{N,2}&&\nu^{(s)}_{N,1}\quad\cr&\nu^{(s)}_{N-1,N-1}&&\nu^{(s)}_{N-1,N-2}&\cdots&\cdots&&\ \ \nu^{(s)}_{N-1,1}&\cr&\quad\ddots&&\ddots&&&&\ \rotatebox[origin={c}]{85.0}{$\ddots$}\quad&\cr&&\ddots&&\ddots&&&\rotatebox[origin={c}]{85.0}{$\ddots$}\qquad\qquad&\cr&&&&&&&&\cr&&&&\nu^{(s)}_{2,2}&&\nu^{(s)}_{2,1}&&\cr&&&&&&&&\cr&&&&&\quad\nu^{(s)}_{1,1}&&&\cr\end{matrix}

By definition the set of all Gelfand-Tsetlin patterens {𝝀(s)}\{{\boldsymbol{\lambda}}^{(s)}\} has a bijection to the one of all {𝝂(s)}\{{\boldsymbol{\nu}}^{(s)}\} for each s{1,,n}s\in\{1,\cdots,n\}.

We introduce the following order for the set of indices ={(l,j), 1jlN}{\cal I}=\{(l,j),\ 1\leq j\leq l\leq N\ \}:

(,j)(,j)j<jor(j=jand>).\displaystyle(\ell,j)\prec(\ell^{\prime},j^{\prime})\Leftrightarrow j<j^{\prime}\ \mathrm{or}\ (j=j^{\prime}\ \mathrm{and}\ \ell>\ell^{\prime}). (5.10)

Let us also set A¯m(z):=AN+1m(z)\overline{A}_{m}(z):=A_{N+1-m}(z), B¯m(z):=BN+1n(z)\overline{B}_{m}(z):=B_{N+1-n}(z). We rewrite the commutation relations (2.108), (2.103) and (2.110) as

[A¯m(z),B¯n(w)]=0,(mn),\displaystyle[\overline{A}_{m}(z),\overline{B}_{n}(w)]=0,\ \ \ (m\neq n), (5.11)
A¯m(z)B¯m(w)=θ(q2z/w)θ(z/w)B¯m(w)A¯m(z)θ(q2)θ(ΠNm,Nm+11z/w)θ(ΠNm,Nm+11)θ(z/w)B¯m(z)A¯m(w),\displaystyle\overline{A}_{m}(z)\overline{B}_{m}(w)=\frac{\theta(q^{2}z/w)}{\theta(z/w)}\overline{B}_{m}(w)\overline{A}_{m}(z)-\frac{\theta(q^{2})\theta(\Pi^{-1}_{N-m,N-m+1}z/w)}{\theta(\Pi^{-1}_{N-m,N-m+1})\theta(z/w)}\overline{B}_{m}(z)\overline{A}_{m}(w), (5.12)
C¯m(z)B¯m(w)\displaystyle\overline{C}_{m}(z)\overline{B}_{m}(w)
=A¯m(z)B¯m(w)A¯m(w)1A¯m(z)1C¯m(z)A¯m(w)\displaystyle=\overline{A}_{m}(z)\overline{B}_{m}(w)\overline{A}_{m}(w)^{-1}\overline{A}_{m}(z)^{-1}\overline{C}_{m}(z)\overline{A}_{m}(w)
+A¯m(z)A¯m+1(w)A¯m(wq2)1A¯m1(wq2)c¯(ΠNm,Nm+1z/w)b¯(z/w)\displaystyle\quad+\overline{A}_{m}(z)\overline{A}_{m+1}(w)\overline{A}_{m}(wq^{-2})^{-1}\overline{A}_{m-1}(wq^{-2})\frac{\bar{c}(\Pi^{*}_{N-m,N-m+1}z/w)}{\overline{b}(z/w)}
A¯m1(zq2)A¯m+1(z)A¯m(zq2)1A¯m(w)c¯(ΠNm,Nm+1z/w)b¯(z/w).\displaystyle\quad-\overline{A}_{m-1}(zq^{-2})\overline{A}_{m+1}(z)\overline{A}_{m}(zq^{-2})^{-1}\overline{A}_{m}(w)\frac{\bar{c}(\Pi_{N-m,N-m+1}z/w)}{\overline{b}(z/w)}. (5.13)

From Theorem 2.10 and (2.100), one has

A¯m(z)=kN+1m+(z)kN+1(m1)+(zq2)kN+(zq2(m1))\displaystyle\overline{A}_{m}(z)=k^{+}_{N+1-m}(z)k^{+}_{N+1-(m-1)}(zq^{-2})\cdots k^{+}_{N}(zq^{-2(m-1)})

on the level-0 representation L(λ(z))L(\lambda(z)). Note that 𝒩k=1{\cal N}_{k}=1 on it. Hence the action of A¯m(z)\overline{A}_{m}(z) on the highest weight vector ζ\zeta is given by

A¯m(z)ζ\displaystyle\overline{A}_{m}(z)\cdot\zeta =ν1(q2(m1)z)ν2(q2(m2)z)νm(z)ζ\displaystyle=\nu_{1}(q^{-2(m-1)}z)\nu_{2}(q^{-2(m-2)}z)\cdots\nu_{m}(z)\zeta
=s=1nt=1mθ(q2(νt(s)+tm)z/a(s))ζ.\displaystyle=\prod_{s=1}^{n}\prod_{t=1}^{m}\theta(q^{2(\nu_{t}^{(s)}+t-m)}z/a^{(s)})\zeta. (5.14)

We define a vector ξ𝝂{\xi}_{{\boldsymbol{\nu}}} labeled by the nn-tuple of Gelfand-Tsetlin patterns 𝝂=(𝝂(1),𝝂(2),,𝝂(n)){\boldsymbol{\nu}}=({\boldsymbol{\nu}}^{(1)},{\boldsymbol{\nu}}^{(2)},\dots,{\boldsymbol{\nu}}^{(n)}) with 𝝂(s)=(ν,j(s))1jlN{\boldsymbol{\nu}}^{(s)}=(\nu_{\ell,j}^{(s)})_{1\leq j\leq l\leq N} as

ξ𝝂:=(,j)(s=1n1tν,j(s)νN,j(s)B¯(q2(νN,j(s)+t+j1)a(s)))ζ.\displaystyle{\xi}_{{\boldsymbol{\nu}}}:=\stackrel{{\scriptstyle\curvearrowright}}{{\prod_{(\ell,j)\in{\cal I}}}}\Bigg{(}\prod_{s=1}^{n}\prod_{\begin{subarray}{c}1\leq t\leq\nu_{\ell,j}^{(s)}-\nu_{N,j}^{(s)}\end{subarray}}\overline{B}_{\ell}(q^{-2(\nu_{N,j}^{(s)}+t-\ell+j-1)}a^{(s)})\Bigg{)}\cdot\zeta. (5.15)

We show that a set of vectors {ξ𝝂}\{\xi_{{\boldsymbol{\nu}}}\} with 𝝂{\boldsymbol{\nu}} satisfying (5.8) and (5.9) forms a basis of the representation L(ν(z))L(\nu(z)).

For this purpose, it is crucial to note the following facts.

  • (1)

    Let 𝝂0(s){\boldsymbol{\nu}}^{(s)}_{0} (1sn)(1\leq s\leq n) be the Gelfand-Tsetlin pattern satisfying νj,j(s)=νj+1,j(s)==νN,j(s)\nu_{j,j}^{(s)}=\nu_{j+1,j}^{(s)}=\cdots=\nu_{N,j}^{(s)} for 1jN1\leq j\leq N, and set 𝝂0=(𝝂0(1),,𝝂0(n)){\boldsymbol{\nu}}_{0}=({\boldsymbol{\nu}}^{(1)}_{0},\cdots,{\boldsymbol{\nu}}^{(n)}_{0}). Then one has

    ξ𝝂0=ζ.\displaystyle{\xi}_{{\boldsymbol{\nu}}_{0}}=\zeta.
  • (2)

    For any Gelfand-Tsetlin pattern 𝝂𝝂0{\boldsymbol{\nu}}\neq{\boldsymbol{\nu}}_{0}, there exist a set of integers ,j,r\ell,j,r satisfying 2jN2\leq j\leq\ell\leq N1rn1\leq r\leq n and 𝝂=𝝂(,j;r){\boldsymbol{\nu}}={\boldsymbol{\nu}}^{(\ell,j;r)}, where 𝝂(,j;r){\boldsymbol{\nu}}^{(\ell,j;r)} denotes the nn-tuple of the Gelfand-Tsetlin patterns consisting of ν(s)\nu^{(s)} (1sn)(1\leq s\leq n) satisfying

    • i)

      νk,k(s)=νk+1,k(s)==νN,k(s)\nu_{k,k}^{(s)}=\nu_{k+1,k}^{(s)}=\cdots=\nu_{N,k}^{(s)} for 1kj11\leq k\leq j-1,  1sn1\leq s\leq n

    • ii)

      ν,j(r)>ν+1,j(r)==νN,j(r)\nu_{\ell,j}^{(r)}>\nu_{\ell+1,j}^{(r)}=\cdots=\nu_{N,j}^{(r)} and ν,j(s)ν+1,j(s)==νN,j(s)\nu_{\ell,j}^{(s)}\geq\nu_{\ell+1,j}^{(s)}=\cdots=\nu_{N,j}^{(s)} for all s(r)s(\not=r).

    Namely (,j)(\ell,j) is the minimum pair in {\cal I} satisfying ν,j(r)>νN,j(r)\nu^{(r)}_{\ell,j}>\nu^{(r)}_{N,j}. So we have

    ξ𝝂(,j;r)\displaystyle\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}} =\displaystyle= B¯(q2(ν,j(r)+j1)a(r))B¯(q2(ν,j(r)+j2)a(r))B¯(q2(νN,j(r)+j)a(r))\displaystyle\overline{B}_{\ell}(q^{-2(\nu^{(r)}_{\ell,j}-\ell+j-1)}a^{(r)})\overline{B}_{\ell}(q^{-2(\nu^{(r)}_{\ell,j}-\ell+j-2)}a^{(r)})\cdots\overline{B}_{\ell}(q^{-2(\nu^{(r)}_{N,j}-\ell+j)}a^{(r)})
    ×(,j)(,j)(s=1rn1tν,j(s)νN,j(s)B¯(q2(νN,j(s)+t+j1)a(s)))ζ.\displaystyle\qquad\times\stackrel{{\scriptstyle\curvearrowright}}{{\prod_{(\ell,j)\prec(\ell^{\prime},j^{\prime})}}}\Bigg{(}\prod_{s=1\atop\neq r}^{n}\prod_{\begin{subarray}{c}1\leq t\leq\nu_{\ell^{\prime},j^{\prime}}^{(s)}-\nu_{N,j^{\prime}}^{(s)}\end{subarray}}\overline{B}_{\ell^{\prime}}(q^{-2(\nu_{N,j^{\prime}}^{(s)}+t-\ell^{\prime}+j^{\prime}-1)}a^{(s)})\Bigg{)}\cdot\zeta.
Proposition 5.1.

For a Gelfand-Tsetlin pattern 𝛎𝛎0{\boldsymbol{\nu}}\neq{\boldsymbol{\nu}}_{0}, let ,j,r\ell,j,r be the set of integers satisfying the conditions in (2). We have the following actions of operators.

A¯m(z)ξ𝝂=s=1nt=1mθ(q2(νm,t(s)+tm)z/a(s))ξ𝝂,\displaystyle\overline{A}_{m}(z)\cdot{\xi}_{{\boldsymbol{\nu}}}=\prod_{s=1}^{n}\prod_{t=1}^{m}\theta(q^{2(\nu_{m,t}^{(s)}+t-m)}z/a^{(s)})\xi_{{\boldsymbol{\nu}}}, (5.16)
B¯(q2(ν(,j)(r)+j)a(r))ξ𝝂=ξ𝝂+δ(,j)(r),\displaystyle\overline{B}_{\ell}(q^{-2(\nu^{(r)}_{(\ell,j)}-\ell+j)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}}=\xi_{{\boldsymbol{\nu}}+\delta^{(r)}_{(\ell,j)}}, (5.17)
C¯(q2(ν(,j)(r)+j)a(r))ξ𝝂\displaystyle\overline{C}_{\ell}(q^{-2(\nu^{(r)}_{(\ell,j)}-\ell+j)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}}
=Δ(n1)(θ(q2ΠN,N+1)θ(ΠN,N+1))\displaystyle\quad=-\Delta^{(n-1)}\left(\frac{\theta(q^{2}\Pi^{*}_{N-\ell,N+1-\ell})}{\theta(\Pi^{*}_{N-\ell,N+1-\ell})}\right)
×s=1n(t=1+1θ(q2(ν+1,t(s)ν,j(r)+tj))u=11θ(q2(ν1,u(s)ν,j(r)+uj+1)))ξ𝝂δ(,j)(r).\displaystyle\qquad\times\prod_{s=1}^{n}\left(\prod_{t=1}^{\ell+1}\theta(q^{2(\nu^{(s)}_{\ell+1,t}-\nu^{(r)}_{\ell,j}+t-j)})\prod_{u=1}^{\ell-1}\theta(q^{2(\nu^{(s)}_{\ell-1,u}-\nu^{(r)}_{\ell,j}+u-j+1)})\right)\xi_{{\boldsymbol{\nu}}-\delta^{(r)}_{(\ell,j)}}. (5.18)

In particular, the coefficient of (5.18) does not vanish if νN,N(r)νN,N(s)\nu^{(r)}_{N,N}-\nu^{(s)}_{N,N}\neq{\mathbb{Z}} modulo the fundamental parallelogram for rsr\neq s.

Proof.

Let us consider (5.16). This can be proved in the same way as [29], Theorem 3.2. We show by induction on the number of operators B¯(q2(νN,j(s)+t+j1)a(s))\overline{B}_{\ell}(q^{-2(\nu_{N,j}^{(s)}+t-\ell+j-1)}a^{(s)}) in (5.15). The case 𝝂=𝝂0{\boldsymbol{\nu}}={\boldsymbol{\nu}}_{0}, the statement follows from (5.14). Next, for 𝝂𝝂0{\boldsymbol{\nu}}\neq{\boldsymbol{\nu}}_{0}, one can assume 𝝂=𝝂(,j;r){\boldsymbol{\nu}}={\boldsymbol{\nu}}^{(\ell,j;r)} without loss of generality. Set

𝝂(r)δ(,j):=(ν1,1(r),,ν,j(r)1,,νN,N(r))\displaystyle{\boldsymbol{\nu}}^{(r)}-\delta_{(\ell,j)}:=(\nu^{(r)}_{1,1},\cdots,\nu^{(r)}_{\ell,j}-1,\cdots,\nu^{(r)}_{N,N}) (5.19)

and

𝝂(,j;r)δ(,j)(r):=(𝝂(1),,𝝂(r)δ(,j),,𝝂(n)).\displaystyle{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}:=({\boldsymbol{\nu}}^{(1)},\cdots,{\boldsymbol{\nu}}^{(r)}-\delta_{(\ell,j)},\cdots,{\boldsymbol{\nu}}^{(n)}). (5.20)

One has the following relation.

ξ𝝂(,j;r)=B¯(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r).\displaystyle\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}}=\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}. (5.21)

Let us set

a¯m,𝝂(z):=s=1nt=1mθ(q2(νm,t(s)+tm)z/a(s)).\displaystyle\overline{a}_{m,{\boldsymbol{\nu}}}(z):=\prod_{s=1}^{n}\prod_{t=1}^{m}\theta(q^{2(\nu_{m,t}^{(s)}+t-m)}z/a^{(s)}). (5.22)

For m()m(\neq\ell), by the induction assumption

A¯m(z)ξ𝝂(,j;r)δ(,j)(r)=a¯m,𝝂(,j;r)δ(,j)(r)(z)ξ𝝂(,j;r)δ(,j)(r),\displaystyle\overline{A}_{m}(z)\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}=\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}(z)\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}, (5.23)

and the commutativity of A¯m(z)\overline{A}_{m}(z) with B¯()\overline{B}_{\ell}(\bullet), one has

A¯m(z)ξ𝝂(,j;r)\displaystyle\overline{A}_{m}(z)\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}} =A¯m(z)B¯(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r)\displaystyle=\overline{A}_{m}(z)\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}
=B¯(q2(ν,j(r)+j1)a(r))A¯m(z)ξ𝝂(,j;r)δ(,j)(r)\displaystyle=\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\overline{A}_{m}(z)\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}
=a¯m,𝝂(,j;r)δ(,j)(r)(z)B¯(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r)\displaystyle=\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}(z)\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}
=a¯m,𝝂(,j;r)(z)ξ𝝂(,j;r).\displaystyle=\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}}(z)\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}}. (5.24)

In the last line, we used the equality

a¯m,𝝂(,j;r)(z)=a¯m,𝝂(,j;r)δ(,j)(r)(z).\displaystyle\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}}(z)=\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}(z). (5.25)

This is due to the fact that \ell is the largest index of the B¯\overline{B}-operators appearing in ξ~𝝂(,j;r)δ(,j)(r)\widetilde{\xi}_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}.

For m=m=\ell, note the following relation

a¯m,𝝂(,j;r)(z)=θ(q2(νm,j(r)m+j)z/a(r))θ(q2(νm,j(r)m+j1)z/a(r))a¯m,𝝂(,j;r)δ(,j)(r)(z),\displaystyle\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}}(z)=\frac{\theta(q^{2(\nu_{m,j}^{(r)}-m+j)}z/a^{(r)})}{\theta(q^{2(\nu_{m,j}^{(r)}-m+j-1)}z/a^{(r)})}\overline{a}_{m,{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}(z), (5.26)

from (5.22). From the inductive assumption (5.23), we get

A¯(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r)=a¯,𝝂(,j;r)δ(,j)(r)(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r)=0.\displaystyle\overline{A}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}=\overline{a}_{\ell,{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}=0. (5.27)

Setting ww in (5.12) to w=q2(ν,j(r)+j1)a(r)w=q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)} and making both sides act on ξ𝝂(,j;r)δ(,j)(r)\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}, we get from (5.26) and (5.27),

A¯(z)B¯(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r)\displaystyle\overline{A}_{\ell}(z)\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}
=θ(q2(ν,j(r)+j)z/a(r))θ(q2(ν,j(r)+j1)z/a(r))B¯(q2(ν,j(r)+j1)a(r))A¯(z)ξ𝝂(,j;r)δ(,j)(r)\displaystyle=\frac{\theta(q^{2(\nu_{\ell,j}^{(r)}-\ell+j)}z/a^{(r)})}{\theta(q^{2(\nu_{\ell,j}^{(r)}-\ell+j-1)}z/a^{(r)})}\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\overline{A}_{\ell}(z)\cdot\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}
=θ(q2(ν,j(r)+j)z/a(r))θ(q2(ν,j(r)+j1)z/a(r))B¯(q2(ν,j(r)+j1)a(r))a¯,𝝂(,j;r)δ(,j)(r)(z)ξ𝝂(,j;r)δ(,j)(r)\displaystyle=\frac{\theta(q^{2(\nu_{\ell,j}^{(r)}-\ell+j)}z/a^{(r)})}{\theta(q^{2(\nu_{\ell,j}^{(r)}-\ell+j-1)}z/a^{(r)})}\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\overline{a}_{\ell,{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}(z)\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}
=a¯,𝝂(,j;r)(z)B¯(q2(ν,j(r)+j1)a(r))ξ𝝂(,j;r)δ(,j)(r).\displaystyle=\overline{a}_{\ell,{\boldsymbol{\nu}}^{(\ell,j;r)}}(z)\overline{B}_{\ell}(q^{-2(\nu_{\ell,j}^{(r)}-\ell+j-1)}a^{(r)})\xi_{{\boldsymbol{\nu}}^{(\ell,j;r)}-\delta^{(r)}_{(\ell,j)}}. (5.28)

Then the statement follows from (5.21).

The statement (5.17) follows from the definition of ξ𝝂\xi_{{\boldsymbol{\nu}}}.

Using (5.13), (5.21), (5.16) and (5.27), one obtains (5.18). The non-vanishment of (5.18) follows from due to (5.9) and the conditions i)i) and ii)ii) for 𝝂(,j;r){\boldsymbol{\nu}}^{(\ell,j;r)}. Namely the latter 2 conditions yield ν,j(r)>ν+1,j(r)\nu^{(r)}_{\ell,j}>\nu^{(r)}_{\ell+1,j} and ν+1,j(r)ν,j1(r)=ν1,j1(r)\nu^{(r)}_{\ell+1,j}\geq\nu^{(r)}_{\ell,j-1}=\nu^{(r)}_{\ell-1,j-1}.

The following is an elliptic version of Theorem 5.2.4 in [27].

Theorem 5.2.

If νN,N(r)νN,N(s)\nu_{N,N}^{(r)}-\nu_{N,N}^{(s)}\not\in\mathbb{Z} modulo the fundamental parallelogram for rsr\neq s, the vectors ξ𝛎\xi_{{\boldsymbol{\nu}}} with 𝛎=(𝛎(1),,𝛎(n)){\boldsymbol{\nu}}=({\boldsymbol{\nu}}^{(1)},\dots,{\boldsymbol{\nu}}^{(n)}) satisfying (5.8) and (5.9) form a basis of the representation L(λ(z))L(\lambda(z)).

Proof.

Note that by definition we have λ(z)=ν(z)\lambda(z)=\nu(z) and λ(s)(z)=ν(s)(z)\lambda^{(s)}(z)=\nu^{(s)}(z) (1sn)(1\leq s\leq n), and dimL(λ(z))s=1ndimL(λ(s)(z)){\displaystyle\dim L(\lambda(z))\leq\prod_{s=1}^{n}\dim L(\lambda^{(s)}(z))}. From (5.16), the vectors ξ𝝂\xi_{{\boldsymbol{\nu}}} labeled by the different Gelfand-Tsetlin patterns belong to the different simultaneous eigenvalues of A¯(z)\overline{A}_{\ell}(z) (1N)(1\leq\ell\leq N), so that they are linearly independent. By applying (5.18) repeatedly, one can remove all B¯\overline{B}_{\ell}-operators from ξ𝝂\xi_{{\boldsymbol{\nu}}} inductively, and obtains ζ\zeta with non-zero coefficient under the assumption. Hence we have ξ𝝂0\xi_{{\boldsymbol{\nu}}}\neq 0. The total number of the vectors ξ𝝂\xi_{{\boldsymbol{\nu}}}, i.e. the total number of the Gelfand-Tsetlin patterns is k=1ndimL(λ(k)(z))\prod_{k=1}^{n}\mathrm{dim}L(\lambda^{(k)}(z)). This is due to the fact that the finite-dimensional irreducible representation L(λ(s)(z))L(\lambda^{(s)}(z)) of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N}) is obtained by the evaluation homomorphism (2.42) to the Uq(𝔤𝔩N)U_{q}({\mathfrak{gl}}_{N})-module L(λ(s))L(\lambda^{(s)}) and to the classical result that dimL(λ(s))\dim L(\lambda^{(s)}) coincides with the number of the Gelfand-Tsetlin patterns 𝝀(s){\boldsymbol{\lambda}}^{(s)}. Finally, to keep the condition ν+1,j+1(r)ν,j(r)0\nu^{(r)}_{\ell+1,j+1}-\nu^{(r)}_{\ell,j}\in{\mathbb{Z}}_{\geq 0} one needs to show B¯(q2(ν+1,j+1(r)+j)a(r))ξ𝝂=0{\displaystyle\overline{B}_{\ell}(q^{-2(\nu^{(r)}_{\ell+1,j+1}-\ell+j)}a^{(r)})\cdot\xi_{{\boldsymbol{\nu}}}=0}. In fact, this vanishment follows from the same argument as in the proof of Theorem 4.5. ∎

6 Tensor Product of the Vector Representations

In this section, we consider the tensor product of the vector representations and construct the Gelfand-Tsetlin bases in terms of the LL-operator. We derive the relation between them and the ones in in the previous section for the case of tensor product of the vector representations.

Before considering the vector representation, we prepare the following.

Definition 6.1.

We call that a vector η\eta is a singular vector of weight μ(z)=(μk(z),,μN(z))\mu(z)=(\mu_{k}(z),\dots,\mu_{N}(z)) with respect to the subalgebra Eq,p(𝔤𝔩^Nk+1)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N-k+1}) (see (2.79)) if it satisfies

Lij+(z)η\displaystyle L^{+}_{ij}(z)\cdot\eta =0,kj<iN,\displaystyle=0,\ \ \ k\leq j<i\leq N, (6.1)
Lii+(z)η\displaystyle L^{+}_{ii}(z)\cdot\eta =μi(z)η,kiN.\displaystyle=\mu_{i}(z)\eta,\ \ \ k\leq i\leq N. (6.2)

We have the following statement analogous to [27] Lemma 5.2.1.

Lemma 6.1.

For k{1,2,,N}k\in\{1,2,\cdots,N\}, let η\eta be a singular vector of weight μ(z)=(μk(z),,μN(z))\mu(z)=(\mu_{k}(z),\dots,\mu_{N}(z)) with respect to the subalgebra Eq,p(𝔤𝔩^Nk+1)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N-k+1}). Assume that η\eta satisfies Lkk+(α)η=0L^{+}_{kk}(\alpha)\cdot\eta=0 for some α×\alpha\in{\mathbb{C}}^{\times}. Then Lk1,k+(α)ηL^{+}_{k-1,k}(\alpha)\cdot\eta is also a singular vector with respect to Eq,p(𝔤𝔩^Nk+1)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N-k+1}), with weight given by

(θ(q2z/α)θ(z/α)μk(z),μk+1(z),,μN(z)).\displaystyle\Bigg{(}\frac{\theta(q^{2}z/\alpha)}{\theta(z/\alpha)}\mu_{k}(z),\mu_{k+1}(z),\dots,\mu_{N}(z)\Bigg{)}. (6.3)
Proof.

What we need to show are the following:

Lij+(z)Lk1,k+(α)η\displaystyle L^{+}_{ij}(z)L^{+}_{k-1,k}(\alpha)\cdot\eta =0,kj<iN,\displaystyle=0,\ \ \ k\leq j<i\leq N, (6.4)
Lkk+(z)Lk1,k+(α)η\displaystyle L^{+}_{kk}(z)L^{+}_{k-1,k}(\alpha)\cdot\eta =1b¯(z/α)μk(z)Lk1,k+(α)η,\displaystyle=\frac{1}{\overline{b}(z/\alpha)}\mu_{k}(z)L^{+}_{k-1,k}(\alpha)\cdot\eta, (6.5)
Lii+(z)Lk1,k+(α)η\displaystyle L^{+}_{ii}(z)L^{+}_{k-1,k}(\alpha)\cdot\eta =μi(z)Lk1,k+(α)η,k+1iN.\displaystyle=\mu_{i}(z)L^{+}_{k-1,k}(\alpha)\cdot\eta,\ \ \ k+1\leq i\leq N. (6.6)

These relations can be shown by using the properties and assumption for the singular vector η\eta, together with the following relations which are particular matrix elements of the defining relations (2.55)

b¯(z1/z2)Lij+(z1)Lk1,k+(z2)+c¯(z1/z2,Πk1,i)Lk1,j+(z1)Lik+(z2)\displaystyle\overline{b}(z_{1}/z_{2})L_{ij}^{+}(z_{1})L_{k-1,k}^{+}(z_{2})+\overline{c}(z_{1}/z_{2},\Pi_{k-1,i})L_{k-1,j}^{+}(z_{1})L_{ik}^{+}(z_{2})
=\displaystyle= Lk1,j+(z2)Lik+(z1)c(z1/z2,Πkj)+Lk1,k+(z2)Lij+(z1)b¯(z1/z2),k+1jiN,\displaystyle L_{k-1,j}^{+}(z_{2})L_{ik}^{+}(z_{1})c(z_{1}/z_{2},\Pi^{*}_{kj})+L_{k-1,k}^{+}(z_{2})L_{ij}^{+}(z_{1})\overline{b}(z_{1}/z_{2}),\ \ \ k+1\leq j\leq i\leq N, (6.7)
b¯(z1/z2)Lik+(z1)Lk1,k+(z2)+c¯(z1/z2,Πk1,i)Lk1,k+(z1)Lik+(z2)\displaystyle\overline{b}(z_{1}/z_{2})L_{ik}^{+}(z_{1})L_{k-1,k}^{+}(z_{2})+\overline{c}(z_{1}/z_{2},\Pi_{k-1,i})L_{k-1,k}^{+}(z_{1})L_{ik}^{+}(z_{2})
=\displaystyle= Lk1,k+(z2)Lik+(z1),kiN.\displaystyle L_{k-1,k}^{+}(z_{2})L_{ik}^{+}(z_{1}),\ \ \ k\leq i\leq N. (6.8)

(6.4) for k+1j<iNk+1\leq j<i\leq N can be derived by setting z1=zz_{1}=z, z2=αz_{2}=\alpha in (6.7) and acting both hand sides on η\eta. We get

b¯(z/α)Lij+(z)Lk1,k+(α)η+c¯(z/α,Πk1,i)Lk1,j+(z)Lik+(α)η\displaystyle\overline{b}(z/\alpha)L_{ij}^{+}(z)L_{k-1,k}^{+}(\alpha)\cdot\eta+\overline{c}(z/\alpha,\Pi_{k-1,i})L_{k-1,j}^{+}(z)L_{ik}^{+}(\alpha)\cdot\eta
=\displaystyle= Lk1,j+(α)Lik+(z)c(z/α,Πkj)η+Lk1,k+(α)Lij+(z)b¯(z/α)η\displaystyle L_{k-1,j}^{+}(\alpha)L_{ik}^{+}(z)c(z/\alpha,\Pi^{*}_{kj})\cdot\eta+L_{k-1,k}^{+}(\alpha)L_{ij}^{+}(z)\overline{b}(z/\alpha)\cdot\eta
=\displaystyle= c(z/α,Πkj)Lk1,j+(α)Lik+(z)η+b¯(z/α)Lk1,k+(α)Lij+(z)η,\displaystyle c(z/\alpha,\Pi^{*}_{kj})L_{k-1,j}^{+}(\alpha)L_{ik}^{+}(z)\cdot\eta+\overline{b}(z/\alpha)L_{k-1,k}^{+}(\alpha)L_{ij}^{+}(z)\cdot\eta, (6.9)

and using Lik+(α)η=Lik+(z)η=Lij+(z)η=0L_{ik}^{+}(\alpha)\cdot\eta=L_{ik}^{+}(z)\cdot\eta=L_{ij}^{+}(z)\cdot\eta=0 since η\eta is a singular vector and b¯(z/α)0\overline{b}(z/\alpha)\neq 0, we get (6.4) for k+1j<iNk+1\leq j<i\leq N.

(6.4) with j=kj=k follows from (6.8) for k+1iNk+1\leq i\leq N. We set z1=zz_{1}=z, z2=αz_{2}=\alpha in (6.8) and act both hand sides on η\eta to get

b¯(z/α)Lik+(z)Lk1,k+(α)η+c¯(z/α,Πk1,i)Lk1,k+(z)Lik+(α)η=Lk1,k+(α)Lik+(z)η,\displaystyle\overline{b}(z/\alpha)L_{ik}^{+}(z)L_{k-1,k}^{+}(\alpha)\cdot\eta+\overline{c}(z/\alpha,\Pi_{k-1,i})L_{k-1,k}^{+}(z)L_{ik}^{+}(\alpha)\cdot\eta=L_{k-1,k}^{+}(\alpha)L_{ik}^{+}(z)\cdot\eta, (6.10)

from which we find (6.4) when j=kj=k follows by noting Lik+(α)η=Lik+(z)η=0{L}_{ik}^{+}(\alpha)\cdot\eta={L}_{ik}^{+}(z)\cdot\eta=0 and b¯(z/α)0\overline{b}(z/\alpha)\neq 0.

(6.5) follows from the case k=ik=i of (6.8). Setting z1=zz_{1}=z, z2=αz_{2}=\alpha and acting on η\eta yields

b¯(z/α)Lkk+(z)Lk1,k+(α)η+c¯(z/α,Πk1,k)Lk1,k+(z)Lkk+(α)η=Lk1,k+(α)Lkk+(z)η,\displaystyle\overline{b}(z/\alpha)L_{kk}^{+}(z)L_{k-1,k}^{+}(\alpha)\cdot\eta+\overline{c}(z/\alpha,\Pi_{k-1,k})L_{k-1,k}^{+}(z)L_{kk}^{+}(\alpha)\cdot\eta=L_{k-1,k}^{+}(\alpha)L_{kk}^{+}(z)\cdot\eta, (6.11)

and using Lkk+(z)η=μk(z)ηL_{kk}^{+}(z)\cdot\eta=\mu_{k}(z)\eta, b¯(z/α)0\overline{b}(z/\alpha)\neq 0 and the additional assumption on the singular vector Lkk+(α)η=0L_{kk}^{+}(\alpha)\cdot\eta=0 gives (6.5).

Finally, (6.6) follows from the case j=ij=i of (6.7). Setting z1=zz_{1}=z, z2=αz_{2}=\alpha and acting on η\eta, we get

b¯(z/α)Lii+(z)Lk1,k+(α)η+c¯(z/α,Πk1,i)Lk1,i+(z)Lik+(α)η\displaystyle\overline{b}(z/\alpha)L_{ii}^{+}(z)L_{k-1,k}^{+}(\alpha)\cdot\eta+\overline{c}(z/\alpha,\Pi_{k-1,i})L_{k-1,i}^{+}(z)L_{ik}^{+}(\alpha)\cdot\eta
=\displaystyle= c(z/α,Πki)Lk1,i+(α)Lik+(z)η+b¯(z/α)Lk1,k+(α)Lii+(z)η,\displaystyle c(z/\alpha,\Pi^{*}_{ki})L_{k-1,i}^{+}(\alpha)L_{ik}^{+}(z)\cdot\eta+\overline{b}(z/\alpha)L_{k-1,k}^{+}(\alpha)L_{ii}^{+}(z)\cdot\eta, (6.12)

and we note (6.6) follows by using Lik+(α)η=Lik+(z)η=0L_{ik}^{+}(\alpha)\cdot\eta=L_{ik}^{+}(z)\cdot\eta=0, Lii+(z)η=μi(z)ηL_{ii}^{+}(z)\cdot\eta=\mu_{i}(z)\eta and b¯(z/α)0\overline{b}(z/\alpha)\neq 0.

6.1 The vector representation

Let (πw,V^w)(\pi_{w},\widehat{V}_{w}) be the vector representation of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) with V^=μ=1N𝔽vμ\widehat{V}=\bigoplus_{\mu=1}^{N}{\mathbb{F}}v_{\mu} and V^w=V^[w,w1]\widehat{V}_{w}=\widehat{V}[w,w^{-1}]. See [22], B.2. We assume eQαvμ=vμe^{Q_{\alpha}}v_{\mu}=v_{\mu} (α¯\alpha\in\overline{\mathfrak{H}}^{*}). The action of the LL-operator L+(z){L}^{+}(z) on V^w\widehat{V}_{w} is given by

πw(Lij+(z))vν=πw(Lij+(z,Π))eQϵ¯jvν=μ=1N\displaystyle\displaystyle\pi_{w}(L_{ij}^{+}(z))v_{\nu}=\pi_{w}(L_{ij}^{+}(z,\Pi^{*}))e^{-Q_{\overline{\epsilon}_{j}}}v_{\nu}=\sum_{\mu=1}^{N} R~(z/w,Π)iμjνvμ\displaystyle{{\widetilde{R}}}(z/w,\Pi^{*})_{i\mu}^{j\nu}v_{\mu} (6.13)

where we take

R~(z,Π)=a(z)R¯(z,Π)\displaystyle{\widetilde{R}}(z,\Pi^{*})=a(z){{\overline{R}}}(z,\Pi^{*}) (6.14)

with a(z)=θ(q2z)a(z)=\theta(q^{2}z). See Figure 6.1. Then the action of L+(z)L^{+}(z) on V^z~V^w1~~V^wn\widehat{V}_{z}\widetilde{\otimes}\widehat{V}_{w_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}\widehat{V}_{w_{n}} is given by the following ([24], Proposition 4.1).

Proposition 6.2.
(πw1πwn)Δ(n1)(L+(z))\displaystyle(\pi_{w_{1}}\otimes\cdots\otimes\pi_{w_{n}})\Delta^{\prime(n-1)}(L^{+}(z))
=\displaystyle= R¯+(0n)(z/wn,Πq2j=1n1h(j))R¯+(0n1)(z/wn1,Πq2j=1n2h(j))R¯+(01)(z/w1,Π).\displaystyle\overline{R}^{+(0n)}(z/w_{n},\Pi^{*}q^{2\sum_{j=1}^{n-1}h^{(j)}})\overline{R}^{+(0n-1)}(z/w_{n-1},\Pi^{*}q^{2\sum_{j=1}^{n-2}h^{(j)}})\cdots\overline{R}^{+(01)}(z/w_{1},\Pi^{*}). (6.15)

Here Δ\Delta^{\prime} denotes the opposite comultiplication of Δ\Delta in Sec.2.8.

For brevity, we denote (πw1πwn)Δ(n1)(L+(z))(\pi_{w_{1}}\otimes\cdots\otimes\pi_{w_{n}})\Delta^{\prime(n-1)}(L^{+}(z)) by L+(z)L^{+}(z). We set

L+(z)=k,l=1NEk,l~Lkl+(z)\displaystyle L^{+}(z)=\sum_{k,l=1}^{N}E_{k,l}\widetilde{\otimes}L^{+}_{kl}(z)

with Lij+(z)End𝔽(V^w1~~V^wn)L^{+}_{ij}(z)\in\operatorname{End}_{\mathbb{F}}(\widehat{V}_{w_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}\widehat{V}_{w_{n}}).

Refer to caption
Figure 6.1: Graphical description of the matrix elements R~(z/w,Π)i1i2j1j2{\widetilde{R}}(z/w,\Pi^{*})_{i_{1}i_{2}}^{j_{1}j_{2}}.

Now let us consider the action of Lkl+(z)L^{+}_{kl}(z) on the standard basis of V^w1~~V^wn\widehat{V}_{w_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}\widehat{V}_{w_{n}} i.e. {v𝝁:=vμ1~~vμn|𝝁=(μ1,,μn)[1,N]n}\{v_{{\boldsymbol{\mu}}}:=v_{\mu_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}v_{\mu_{n}}\ |\ {\boldsymbol{\mu}}=({\mu_{1}},\dots,{\mu_{n}})\in[1,N]^{n}\ \}. We then set for 𝜶[1,N]n{\boldsymbol{\alpha}}\in[1,N]^{n}

Lkl+(z)v𝜶=𝜷[1,N]nTkl+(z;w1,,wn;Π)𝜷𝜶v𝜷.\displaystyle\displaystyle L^{+}_{kl}(z)\cdot v_{\boldsymbol{\alpha}}=\sum_{\boldsymbol{\beta}\in[1,N]^{n}}T_{kl}^{+}(z;w_{1},\dots,w_{n};\Pi^{*})_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}}v_{\boldsymbol{\beta}}. (6.16)

Making this action repeatedly, one obtains

Lkmlm+(zm)Lkm1lm1+(zm1)Lk1l1+(z1)v𝜶\displaystyle L^{+}_{k_{m}l_{m}}(z_{m})L^{+}_{k_{m-1}l_{m-1}}(z_{m-1})\cdots L^{+}_{k_{1}l_{1}}(z_{1})v_{\boldsymbol{\alpha}}
=\displaystyle= 𝜷[1,N]nZ𝐊𝜷𝐋𝜶(z1,,zm;w1,,wn;Π)v𝜷\displaystyle\sum_{\boldsymbol{\beta}\in[1,N]^{n}}Z_{{\bf K}\boldsymbol{\beta}}^{{\bf L}\boldsymbol{\alpha}}(z_{1},\dots,z_{m};w_{1},\dots,w_{n};\Pi^{*})v_{\boldsymbol{\beta}} (6.17)

with

Z𝐊𝜷𝐋𝜶(z1,,zm;w1,,wn;Π)\displaystyle Z_{{\bf K}\boldsymbol{\beta}}^{{\bf L}\boldsymbol{\alpha}}(z_{1},\dots,z_{m};w_{1},\dots,w_{n};\Pi^{*})
=\displaystyle= 𝜶1,,𝜶m1[1,N]nTkmlm+(zm;z1,,zn;Π)𝜷𝜶m1Tkm1lm1+(zm1;w1,,wn;Πq2ϵ¯lm,h)𝜶m1𝜶m2\displaystyle\sum_{\boldsymbol{\alpha}_{1},\dots,\boldsymbol{\alpha}_{m-1}\in[1,N]^{n}}T_{k_{m}l_{m}}^{+}(z_{m};z_{1},\dots,z_{n};\Pi^{*})_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}_{m-1}}T_{k_{m-1}l_{m-1}}^{+}(z_{m-1};w_{1},\dots,w_{n};\Pi^{*}q^{2\langle\bar{\epsilon}_{l_{m}},h\rangle})_{\boldsymbol{\alpha}_{m-1}}^{\boldsymbol{\alpha}_{m-2}}\cdots
Tk1l1+(z1;w1,,wn;Πq2i=2mϵ¯li,h)𝜶1𝜶,\displaystyle\qquad\qquad\cdots T_{k_{1}l_{1}}^{+}(z_{1};w_{1},\dots,w_{n};\Pi^{*}q^{2\sum_{i=2}^{m}\langle\bar{\epsilon}_{l_{i}},h\rangle})_{\boldsymbol{\alpha}_{1}}^{\boldsymbol{\alpha}}, (6.18)

where 𝐊=(k1,,km){\bf K}=(k_{1},\dots,k_{m}), 𝐋=(l1,,lm){\bf L}=(l_{1},\dots,l_{m}), 𝜶=(α1,,αn)\boldsymbol{\alpha}=(\alpha_{1},\dots,\alpha_{n}), 𝜷=(β1,,βn)[1,N]n\boldsymbol{\beta}=(\beta_{1},\dots,\beta_{n})\in[1,N]^{n}. Note that from (6.15) each coefficient Z𝐊𝜷𝐋𝜶Z_{{\bf K}{\boldsymbol{\beta}}}^{{\bf L}{\boldsymbol{\alpha}}} is given as a product of RR-matrices R~+(z,Π){\widetilde{R}}^{+}(z,\Pi^{*}) with the dynamical shifts. See Figure 6.2. The dynamical parameters in the matrix element R~+(z,Πq2ϵ¯a,h)ijkl{\widetilde{R}}^{+}(z,\Pi^{*}q^{2\langle\bar{\epsilon}_{a},h\rangle})_{ij}^{kl} should be treated as Πi,jq2ϵ¯a,hi,j=Πi,jq2(δa,iδa,j)\Pi^{*}_{i,j}q^{2\langle\bar{\epsilon}_{a},h_{i,j}\rangle}=\Pi^{*}_{i,j}q^{2(\delta_{a,i}-\delta_{a,j})}.

Refer to caption
Figure 6.2: Graphical description of Z𝐊𝜷𝐋𝜶(z1,,zm;w1,,wn;Π)Z_{{\bf K}\boldsymbol{\beta}}^{{\bf L}\boldsymbol{\alpha}}(z_{1},\dots,z_{m};w_{1},\dots,w_{n};\Pi^{*}).

6.2 The Gelfand-Tsetlin bases for V^w1~~V^wn\widehat{V}_{w_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}\widehat{V}_{w_{n}}

Let us consider 𝒱=V^w1~~V^wn{\cal V}=\widehat{V}_{w_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}\widehat{V}_{w_{n}} with generic evaluation parameters w1,,wnw_{1},\cdots,w_{n}. By the action (6.15), 𝒱{\cal V} is a NnN^{n}-dimensional irreducible representation of Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}). It is the highest weight representation with the highest vector ζ=v(1n)\zeta=v_{(1^{n})}. Here (1n)=(1,,1)(1^{n})=(1,\cdots,1). Using Proposition 6.2, we can check

L11+(z)ζ=l=1na(z/wl)ζ=l=1nθ(q2z/wl)ζ,\displaystyle\displaystyle L_{11}^{+}(z)\cdot\zeta=\prod_{l=1}^{n}a(z/w_{l})\zeta=\prod_{l=1}^{n}\theta(q^{2}z/w_{l})\zeta, (6.19)

and

Lii+(z)ζ=l=1na(z/wl)b¯(z/wl)ζ=l=1nθ(z/wl)ζ,\displaystyle\displaystyle L_{ii}^{+}(z)\cdot\zeta=\prod_{l=1}^{n}a(z/w_{l})\overline{b}(z/w_{l})\zeta=\prod_{l=1}^{n}\theta(z/w_{l})\zeta, (6.20)

for i=2,,Ni=2,\dots,N, hence the highest weight λ(z)=(λ1(z),,λN(z))\lambda(z)=(\lambda_{1}(z),\dots,\lambda_{N}(z)) is given by

λ1(z)\displaystyle\lambda_{1}(z) =l=1nθ(q2z/wl),\displaystyle=\prod_{l=1}^{n}\theta(q^{2}z/w_{l}), (6.21)
λi(z)\displaystyle\lambda_{i}(z) =l=1nθ(z/wl),i=2,,N.\displaystyle=\prod_{l=1}^{n}\theta(z/w_{l}),\ \ \ i=2,\dots,N. (6.22)

In order to describe the Gelfand-Tsetlin bases, let us introduce a partition I=(I1,,IN)I=(I_{1},\dots,I_{N}) of [1,n]={1,,n}[1,n]=\{1,\dots,n\}, i.e.

I1IN=[1,n],IkIl=ϕ(kl).\displaystyle I_{1}\cup\cdots\cup I_{N}=[1,n],\ \ \ I_{k}\cap I_{l}=\phi\ (k\neq l). (6.23)

Let n{\cal I}_{n} be a set of all partitions of [1,n][1,n]. For 𝝁=(μ1,μ2,,μn)[1,N]n{\boldsymbol{\mu}}=(\mu_{1},\mu_{2},\dots,\mu_{n})\in[1,N]^{n}, we define Il={i[1,n]|μi=l}I_{l}=\{i\in[1,n]\ |\ \mu_{i}=l\} (l=1,,Nl=1,\dots,N). Then I=(I1,,IN)nI=(I_{1},\dots,I_{N})\in{\cal I}_{n}. We often write thus obtained II as I=I𝝁I=I_{\boldsymbol{\mu}}, and the corresponding standard base as vI=v𝝁=vμ1~~vμnv_{I}=v_{\boldsymbol{\mu}}=v_{\mu_{1}}\widetilde{\otimes}\cdots\widetilde{\otimes}v_{\mu_{n}}.

In addition, for an index set S={i1,i2,,ir}S=\{i_{1},i_{2},\dots,i_{r}\} with i1<i2<<iri_{1}<i_{2}<\dots<i_{r} and the LL-operators Lkl+(zia)L^{+}_{kl}(z_{i_{a}}) (iaS)(i_{a}\in S), we write

Lkl+(zS):=jSLkl+(zj)=Lkl+(zir)Lkl+(zi2)Lkl+(zi1).\displaystyle L^{+}_{kl}(z_{S}):=\prod_{j\in S}^{\curvearrowleft}L^{+}_{kl}(z_{j})=L^{+}_{kl}(z_{i_{r}})\cdots L^{+}_{kl}(z_{i_{2}})L^{+}_{kl}(z_{i_{1}}).

Now we construct the Gelfand-Tsetlin bases in terms of the LL-operators.

Definition 6.2.

For InI\in{\cal I}_{n}, let us define a vector ξ~I𝒱\widetilde{\xi}_{I}\in{\cal V} by

ξ~I=LN1,N+(wIN)LN2,N1+(wIN1IN)L12+(wI2IN)ζ.\displaystyle\widetilde{\xi}_{I}=L_{N-1,N}^{+}(w_{I_{N}})L_{N-2,N-1}^{+}(w_{I_{N-1}\cup I_{N}})\cdots L_{12}^{+}(w_{I_{2}\cup\cdots\cup I_{N}})\cdot\zeta. (6.24)

Example. Consider the case N=3N=3, n=9n=9, I=I231213231I=I_{231213231}. Then I1={3<5<9}I_{1}=\{3<5<9\}, I2={1<4<7}I_{2}=\{1<4<7\}, I3={2<6<8}I_{3}=\{2<6<8\}. We have

ξ~I\displaystyle\widetilde{\xi}_{I} =L23+(wI3)L12+(wI2I3)ζ\displaystyle=L_{23}^{+}(w_{I_{3}})L_{12}^{+}(w_{I_{2}\cup I_{3}})\cdot\zeta
=L23+(w8)L23+(w6)L23+(w2)L12+(w8)L12+(w7)L12+(w6)L12+(w4)L12+(w2)L12+(w1)ζ.\displaystyle=L_{23}^{+}(w_{8})L_{23}^{+}(w_{6})L_{23}^{+}(w_{2})L_{12}^{+}(w_{8})L_{12}^{+}(w_{7})L_{12}^{+}(w_{6})L_{12}^{+}(w_{4})L_{12}^{+}(w_{2})L_{12}^{+}(w_{1})\cdot\zeta. (6.25)

We show that the set of vectors {ξ~I}In\{\widetilde{\xi}_{I}\}_{I\in{\cal I}_{n}} forms a basis of 𝒱{\cal V}, on which all the generators A(z)A_{\ell}(z) of the Gelfand-Tsetlin subalgebras of Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{\mathfrak{gl}}_{N}) are simultaneously diagonalized.

Proposition 6.3.

The vector ξ~I\widetilde{\xi}_{I} is an eigenvector of Al(z)A_{l}(z), l=1,,Nl=1,\dots,N

Al(z)ξ~I=k=1Nl+1λNl+1,kI(q2k+2z)ξ~I,\displaystyle A_{l}(z)\cdot\widetilde{\xi}_{I}=\prod_{k=1}^{N-l+1}\lambda_{N-l+1,k}^{I}(q^{-2k+2}z)\widetilde{\xi}_{I}, (6.26)

where λjkI(z)\lambda_{jk}^{I}(z), 1kjN1\leq k\leq j\leq N are given by

λj1I(z)\displaystyle\lambda_{j1}^{I}(z) =m=1nθ(q2δmINj+1INz/wm),\displaystyle=\prod_{m=1}^{n}\theta(q^{2\delta_{m\in I_{N-j+1}\cup\cdots\cup I_{N}}}z/w_{m}), (6.27)
λjkI(z)\displaystyle\lambda_{jk}^{I}(z) =m=1nθ(z/wm),k1.\displaystyle=\prod_{m=1}^{n}\theta(z/w_{m}),\ \ \ k\neq 1. (6.28)

Here

δsS={1(sS)0(sS)\displaystyle\delta_{s\in S}=\left\{\begin{matrix}1&\ (s\in S)\cr 0&\ (s\not\in S)\cr\end{matrix}\right.

for any index set SS.

Proof.

Define ξ~I(l)\widetilde{\xi}_{I}^{(l)} as

ξ~I(l):=LNl,Nl+1+(wINl+1IN)LNl1,Nl+(wINlIN)L12+(wI2IN)ζ.\displaystyle\widetilde{\xi}_{I}^{(l)}:=L_{N-l,N-l+1}^{+}(w_{I_{N-l+1}\cup\cdots\cup I_{N}})L_{N-l-1,N-l}^{+}(w_{I_{N-l}\cup\cdots\cup I_{N}})\cdots L_{12}^{+}(w_{I_{2}\cup\cdots\cup I_{N}})\cdot\zeta. (6.29)

Then ξ~I\widetilde{\xi}_{I} can be expressed as

ξ~I=LN1,N+(wIN)Ll,l+1+(wIl+1IN)ξ~I(Nl+1).\displaystyle\widetilde{\xi}_{I}=L_{N-1,N}^{+}(w_{I_{N}})\cdots L_{l,l+1}^{+}(w_{I_{l+1}\cup\cdots\cup I_{N}})\cdot\widetilde{\xi}_{I}^{(N-l+1)}. (6.30)

We first examine the action of Al(z)A_{l}(z) on ξ~I(Nl+1)\widetilde{\xi}_{I}^{(N-l+1)}. By applying Lemma 6.1 repeatedly, one finds that ξ~I(Nl+1)\widetilde{\xi}_{I}^{(N-l+1)} is a singular vector of weight (λNl+1,1I(z),λNl+1,2I(z),,λNl+1,Nl+1I(z))(\lambda_{N-l+1,1}^{I}(z),\lambda_{N-l+1,2}^{I}(z),\cdots,\lambda_{N-l+1,N-l+1}^{I}(z)) with respect to the subalgebra Eq,p(𝔤𝔩^Nl+1)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N-l+1}). Note λNkI(z)=λk(z)\lambda_{Nk}^{I}(z)=\lambda_{k}(z), k=1,,Nk=1,\dots,N, where (λ1(z),λ2(z),,λN(z))(\lambda_{1}(z),\lambda_{2}(z),\dots,\lambda_{N}(z)) is the weight for the highest vector ξ~I(N)=ζ\widetilde{\xi}_{I}^{(N)}=\zeta. Since ξ~I(Nl+1)\widetilde{\xi}_{I}^{(N-l+1)} is a singular vector, we have

Lij+(z)ξ~I(Nl+1)\displaystyle L^{+}_{ij}(z)\cdot\widetilde{\xi}_{I}^{(N-l+1)} =0,lj<iN,\displaystyle=0,\ \ \qquad l\leq j<i\leq N, (6.31)
Ll+k1,l+k1+(z)ξ~I(Nl+1)\displaystyle L^{+}_{l+k-1,l+k-1}(z)\cdot\widetilde{\xi}_{I}^{(N-l+1)} =λNl+1,kI(z)ξ~I(Nl+1),k=1,,Nl+1,\displaystyle=\lambda_{N-l+1,k}^{I}(z)\widetilde{\xi}_{I}^{(N-l+1)},\ \ \qquad k=1,\dots,N-l+1, (6.32)

From (2.83), we have

Al(z)=σ𝔖Nl+1sgn[l,N](σ,Π)Llσ(l)+(z)Ll+1σ(l+1)+(q2z)LN,σ(N)+(q2N+2lz).\displaystyle A_{l}(z)=\sum_{\sigma\in\mathfrak{S}_{N-l+1}}\mathrm{sgn}_{{[}l,N{]}}^{*}(\sigma,\Pi^{*})L^{+}_{l\sigma(l)}(z)L^{+}_{l+1\sigma(l+1)}(q^{-2}z)\cdots L^{+}_{N,\sigma(N)}(q^{-2N+2l}z). (6.33)

Using (6.31), (6.32) and (6.33), we find that ξ~I(Nl+1)\widetilde{\xi}_{I}^{(N-l+1)} is an eigenvector of Al(z)A_{l}(z):

Al(z)ξ~I(Nl+1)=k=1Nl+1λNl+1,kI(q2k+2z)ξ~I(Nl+1).\displaystyle A_{l}(z)\cdot\widetilde{\xi}_{I}^{(N-l+1)}=\prod_{k=1}^{N-l+1}\lambda_{N-l+1,k}^{I}(q^{-2k+2}z)\widetilde{\xi}_{I}^{(N-l+1)}. (6.34)

Next, we consider the action of Al(z)A_{l}(z) on ξ~I\widetilde{\xi}_{I}. Recall Al(z)A_{l}(z) is the center of the subalgebra Eq,p(𝔤𝔩^Nl+1)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N-l+1}) generated by Lij+(w),li,jNL^{+}_{ij}(w),\ l\leq i,j\leq N

[Al(z),Lij+(w)]=0,li,jN.\displaystyle[A_{l}(z),L^{+}_{ij}(w)]=0,\ \ \ l\leq i,j\leq N. (6.35)

Using (6.30), (6.34) and (6.35), we find that ξ~I\widetilde{\xi}_{I} is an eigenvector of Al(u)A_{l}(u):

Al(z)ξ~I\displaystyle A_{l}(z)\cdot\widetilde{\xi}_{I} =Al(z)LN1,N+(wIN)Ll,l+1+(wIl+1IN)ξ~I(Nl+1)\displaystyle=A_{l}(z)L_{N-1,N}^{+}(w_{I_{N}})\cdots L_{l,l+1}^{+}(w_{I_{l+1}\cup\cdots\cup I_{N}})\cdot\widetilde{\xi}_{I}^{(N-l+1)}
=LN1,N+(wIN)Ll,l+1+(wIl+1IN)Al(z)ξ~I(Nl+1)\displaystyle=L_{N-1,N}^{+}(w_{I_{N}})\cdots L_{l,l+1}^{+}(w_{I_{l+1}\cup\cdots\cup I_{N}})A_{l}(z)\cdot\widetilde{\xi}_{I}^{(N-l+1)}
=k=1Nl+1λNl+1,kI(q2k+2z)LN1,N+(wIN)Ll,l+1+(wIl+1IN)ξ~I(Nl+1)\displaystyle=\prod_{k=1}^{N-l+1}\lambda_{N-l+1,k}^{I}(q^{-2k+2}z)L_{N-1,N}^{+}(w_{I_{N}})\cdots L_{l,l+1}^{+}(w_{I_{l+1}\cup\cdots\cup I_{N}})\cdot\widetilde{\xi}_{I}^{(N-l+1)}
=k=1Nl+1λNl+1,kI(q2k+2z)ξ~I.\displaystyle=\prod_{k=1}^{N-l+1}\lambda_{N-l+1,k}^{I}(q^{-2k+2}z)\widetilde{\xi}_{I}. (6.36)

Theorem 6.3.

The set of vectors {ξ~I}In\{\widetilde{\xi}_{I}\}_{I\in{\cal I}_{n}} forms a basis of 𝒱{\cal V}.

Proof.

From Proposition 6.3, each vector ξ~I\widetilde{\xi}_{I} belongs to the different simultaneous eigenvalues of Al(z)A_{l}(z) (1lN)(1\leq l\leq N) so that ξ~I(In)\widetilde{\xi}_{I}\ {(I\in{\cal I}_{n})} are linearly independent. The number of these vectors is

(|I1|,,|IN|)Na=1N|Ia|=nn!|I1|!|IN|!=Nn.\displaystyle\sum_{(|I_{1}|,\cdots,|I_{N}|)\in{\mathbb{N}}^{N}\atop\sum_{a=1}^{N}|I_{a}|=n}\frac{n!}{|I_{1}|!\cdots|I_{N}|!}=N^{n}.

In [24], the Gelfand-Tsetlin bases of 𝒱{\cal V} was constructed in a different way. Let us denote them by ξI\xi_{I}^{\prime} (In)(I\in{\cal I}_{n}). The construction is as follows. Let us define S~i(Π)\widetilde{S}_{i}(\Pi^{*}) by

S~i(Π):=𝒫(ii+1)R¯(ii+1)(zi/zi+1,Πq2j=1i1h(j))siz,\displaystyle\widetilde{S}_{i}(\Pi^{*}):={\cal P}^{(ii+1)}{\overline{R}}^{(ii+1)}(z_{i}/z_{i+1},\Pi^{*}q^{2{\sum_{j=1}^{i-1}h^{(j)}}})s^{z}_{i},

where 𝒫{\cal P} and sizs^{z}_{i} are the following permutation operators

𝒫:v~ww~v,sizf(,zi,zi+1,)=f(,zi+1,zi,)\displaystyle{\cal P}:v\widetilde{\otimes}w\mapsto w\widetilde{\otimes}v,\qquad s^{z}_{i}f(\cdots,z_{i},z_{i+1},\cdots)=f(\cdots,z_{i+1},z_{i},\cdots)

for any function f(z1,,zn)f(z_{1},\cdots,z_{n}). Then by using the dynamical Yang-Baxter equation (2.15) and the unitarity relation for R¯(z,Π){\overline{R}}(z,\Pi^{*}) one can show the following.

Proposition 6.4.
S~i(Π)S~i+1(Π)S~i(Π)=S~i+1(Π)S~i(Π)S~i+1(Π),\displaystyle\widetilde{S}_{i}(\Pi^{*})\widetilde{S}_{i+1}(\Pi^{*})\widetilde{S}_{i}(\Pi^{*})=\widetilde{S}_{i+1}(\Pi^{*})\widetilde{S}_{i}(\Pi^{*})\widetilde{S}_{i+1}(\Pi^{*}),
S~i(Π)S~j(Π)=S~j(Π)S~i(Π)(|ij|>1)\displaystyle\widetilde{S}_{i}(\Pi^{*})\widetilde{S}_{j}(\Pi^{*})=\widetilde{S}_{j}(\Pi^{*})\widetilde{S}_{i}(\Pi^{*})\qquad\qquad(|i-j|>1)
S~i(Π)2=1.\displaystyle\widetilde{S}_{i}(\Pi^{*})^{2}=1.

For I,JnI,J\in{\cal I}_{n} with |Il|=|Jl||I_{l}|=|J_{l}| (l=1,,N)(l=1,\cdots,N), let I(l)={i1(l)<<iλ(l)(l)}I^{(l)}=\{i^{(l)}_{1}<\cdots<i^{(l)}_{\lambda^{(l)}}\} and J(l)={j1(l)<<jλ(l)(l)}J^{(l)}=\{j^{(l)}_{1}<\cdots<j^{(l)}_{\lambda^{(l)}}\} (l=1,,N)(l=1,\cdots,N). We define a partial ordering \leqslant by

IJia(l)ja(l)l,a.\displaystyle I\leqslant J\Leftrightarrow i^{(l)}_{a}\leq j^{(l)}_{a}\qquad\forall l,a.

One then can construct the Gelfand-Tsetlin bases ξI\xi^{\prime}_{I} (In)(I\in{\cal I}_{n}) by

ξImax:=vImax,ξsi(I):=S~i(Π)ξI,\displaystyle\xi^{\prime}_{I^{max}}:=v_{I^{max}},\qquad\xi^{\prime}_{s_{i}(I)}:=\widetilde{S}_{i}(\Pi^{*})\xi_{I}, (6.37)

where si(I)=I,μi+1,μi,s_{i}(I)=I_{\cdots,\mu_{i+1},\mu_{i},\cdots} for I=I,μi,μi+1,I=I_{\cdots,\mu_{i},\mu_{i+1},\cdots}, and

Imax=INN|IN|11|I1|.\displaystyle I^{max}=I_{\tiny\underbrace{N\cdots N}_{|I_{N}|}\ \cdots\underbrace{1\cdots 1}_{|I_{1}|}}.

In [24], the level-0 action of the Drinfeld generators on ξI\xi_{I}^{\prime} was explicitly obtained. In particular the Kl+(z)K^{+}_{l}(z) (1lN)(1\leq l\leq N) are simultaneously diagonalized as

Kj+(z)ξI\displaystyle\displaystyle K^{+}_{j}(z)\cdot\xi_{I}^{\prime} =m=1nθ(q2z/wm)k=1j1aIkθ(z/wa)θ(q2z/wa)l=j+1NbIlθ(q2z/wb)θ(z/wb)ξI.\displaystyle=\prod_{m=1}^{n}\theta(q^{2}z/w_{m})\prod_{k=1}^{j-1}\prod_{a\in I_{k}}\frac{\theta(z/w_{a})}{\theta(q^{2}z/w_{a})}\prod_{l=j+1}^{N}\prod_{b\in I_{l}}\frac{\theta(q^{-2}z/w_{b})}{\theta(z/w_{b})}\xi_{I}^{\prime}. (6.38)

Here we modified the formula obtained in [24] by considering the difference of the vector representations of L+(z)L^{+}(z) used there and in this section: in [24] it is defined by the RR-matrix R¯(z/w,Π){{\overline{R}}}(z/w,\Pi^{*}) (2.11) instead of R~(z/w,Π)=a(z/w)R¯(z/w,Π){\widetilde{R}}(z/w,\Pi^{*})=a(z/w){{\overline{R}}}(z/w,\Pi^{*}) (6.14). One can rewrite this as

Kj+(z)ξI\displaystyle\displaystyle K^{+}_{j}(z)\cdot\xi_{I}^{\prime} =m=1nθ(q2δmIjINz/wm)m=1nθ(q2z/wm)m=1nθ(q2δmIj+1IN2z/wm)ξI.\displaystyle=\frac{\prod_{m=1}^{n}\theta(q^{2\delta_{m\in I_{j}\cup\cdots\cup I_{N}}}z/w_{m})\prod_{m=1}^{n}\theta(q^{-2}z/w_{m})}{\prod_{m=1}^{n}\theta(q^{2\delta_{m\in I_{j+1}\cup\cdots\cup I_{N}}-2}z/w_{m})}\xi_{I}^{\prime}. (6.39)

Hence we have

Al(z)ξI\displaystyle A_{l}(z)\cdot\xi_{I}^{\prime} =Kl+(z)Kl+1+(q2z)KN+(q2N+2lz)ξI\displaystyle=K^{+}_{l}(z)K^{+}_{l+1}(q^{-2}z)\cdots K^{+}_{N}(q^{-2N+2l}z)\cdot\xi_{I}^{\prime}
=m=1nθ(q2δmIjINz/wm)m=1nl=1Njθ(q2lz/wm)ξI,\displaystyle=\prod_{m=1}^{n}\theta(q^{2\delta_{m\in I_{j}\cup\cdots\cup I_{N}}}z/w_{m})\prod_{m=1}^{n}\prod_{l=1}^{N-j}\theta(q^{-2l}z/w_{m})\xi_{I}^{\prime}, (6.40)

which is in agreement with (6.26). Therefore the difference between ξ~I\widetilde{\xi}_{I} and ξI\xi_{I}^{\prime} is a multiplication by a scalar function. We determine this scalar function in Sec.6.4

6.3 Relation between ξ𝝂\xi_{\boldsymbol{\nu}} and ξ~I\widetilde{\xi}_{I}

Let us compare the Gelfand-Tsetlin bases ξ𝝂\xi_{{\boldsymbol{\nu}}}’s (5.15) in the previous section with ξ~I\widetilde{\xi}_{I}’s (6.24). First, let us specialize the construction in the previous subsection to the tensor product of the vector representations. This means we restrict the tuples of Gelfand-Tsetlin patterns 𝝀=(𝝀(1),,𝝀(n)){\boldsymbol{\lambda}}=({\boldsymbol{\lambda}}^{(1)},\dots,{\boldsymbol{\lambda}}^{(n)}) to those labelled by II. By comparing the eigenvalues of Al(z)A_{l}(z) (also recall A¯N+1l(z)=Al(z)\overline{A}_{N+1-l}(z)=A_{l}(z)), we find the following correspondence: a(s)=wsa^{(s)}=w_{s}, and

λj,1(s)=δsINj+1IN,\displaystyle\lambda_{j,1}^{(s)}=\delta_{s\in I_{N-j+1}\cup\cdots\cup I_{N}},
λj,k(s)=0,kj\displaystyle\lambda_{j,k}^{(s)}=0,\qquad k\neq j\qquad

for j=1,,Nj=1,\dots,N. In terms of 𝝂=(𝝂(1),,𝝂(n)){\boldsymbol{\nu}}=({\boldsymbol{\nu}}^{(1)},\dots,{\boldsymbol{\nu}}^{(n)}), the correspondence is

νj,j(s)=δsINj+1IN,\displaystyle\nu_{j,j}^{(s)}=\delta_{s\in I_{N-j+1}\cup\cdots\cup I_{N}},
νj,k(s)=0,k=1,,j1\displaystyle\nu_{j,k}^{(s)}=0,\qquad k=1,\dots,j-1

for j=1,,Nj=1,\dots,N. Then the B¯\overline{B}_{\ell}-operators which contribute to the product in (5.15) are only those specified by (,j,s)(\ell,j,s) satisfying =j\ell=j, νj,j(s)=δsINj+1IN=1\nu^{(s)}_{j,j}=\delta_{s\in I_{N-j+1}\cup\cdots\cup I_{N}}=1, i.e. B¯j(ws)\overline{B}_{j}(w_{s}) (1jN1)(1\leq j\leq N-1) with sINj+1INs\in I_{N-j+1}\cup\cdots\cup I_{N}. Let us denote this ξ𝝂\xi_{{\boldsymbol{\nu}}} by ξI{\xi}_{I}. Noting B¯j(w)=BN+1j(w)=+(w){Nj,Nj+2,,N}[N+1j,N]\overline{B}_{j}(w)=B_{N+1-j}(w)=\ell^{+}(w)_{\{N-j,N-j+2,\dots,N\}}^{[N+1-j,N]}, we have

ξI=+(wIN){N1}{N}+(wIN1IN){N2,N}[N1,N]+(wI2IN){1,3,,N}[2,N]ζ.\displaystyle{\xi}_{I}=\ell^{+}(w_{I_{N}})_{\{N-1\}}^{\{N\}}\ell^{+}(w_{I_{N-1}\cup I_{N}})_{\{N-2,N\}}^{[N-1,N]}\cdots\ell^{+}(w_{I_{2}\cup\cdots\cup I_{N}})_{\{1,3,\dots,N\}}^{[2,N]}\cdot\zeta. (6.41)

Let us derive the scalar coefficient which relates ξI{\xi}_{I} (6.41) and ξ~I\widetilde{\xi}_{I} (6.24). We first show the following.

Proposition 6.4.

Let II and JJ be two partitions of [1,n][1,n] such that Il+2==IN=ϕI_{l+2}=\cdots=I_{N}=\phi, Jl+2==JN=ϕJ_{l+2}=\cdots=J_{N}=\phi, Jl=Il{k}J_{l}=I_{l}\cup\{k\}, Jl+1=Il+1\{k}J_{l+1}=I_{l+1}\backslash\{k\}, Jj=Ij(jl,l+1)J_{j}=I_{j}\ (j\neq l,l+1). We have

+(wk){l,l+2,,N}[l+1,N]ξ~J=j=1na=1Nl1θ(q2awk/wj)ξ~I.\displaystyle\displaystyle\ell^{+}(w_{k})_{\{l,l+2,\dots,N\}}^{[l+1,N]}\cdot\widetilde{\xi}_{J}=\prod_{j=1}^{n}\prod_{a=1}^{N-l-1}\theta(q^{-2a}w_{k}/w_{j})\widetilde{\xi}_{I}. (6.42)
Proof.

Using (2.89), we have

+(wk){l,l+2,,N}[l+1,N]ξ~J=j=1Nl1a<jθ(q2Πij,ia)θ(Πia,ij)+(q2wk){l,l+2,,N}\{ij}[l+2,N]Lij,l+1+(wk)ξ~J,\displaystyle\displaystyle\ell^{+}(w_{k})_{\{l,l+2,\dots,N\}}^{[l+1,N]}\cdot\widetilde{\xi}_{J}=\sum_{j=1}^{N-l}\prod_{1\leq a<j}\frac{\theta(q^{2}\Pi_{i_{j},i_{a}})}{\theta(\Pi_{i_{a},i_{j}})}\ell^{+}(q^{-2}w_{k})_{\{l,l+2,\dots,N\}\backslash\{i_{j}\}}^{[l+2,N]}L^{+}_{i_{j},l+1}(w_{k})\cdot\widetilde{\xi}_{J}, (6.43)

where i1=li_{1}=l, ia=l+ai_{a}=l+a (a=2,,Nla=2,\dots,N-l). From Lij+(z)ξ~J=0\displaystyle L_{ij}^{+}(z)\cdot\widetilde{\xi}_{J}=0, l+1j<iNl+1\leq j<i\leq N, we note that only the summand corresponding to j=1j=1 in (6.43) survives. Noting also Ll,l+1+(wk)ξ~J=ξ~IL^{+}_{l,l+1}(w_{k})\cdot\widetilde{\xi}_{J}=\widetilde{\xi}_{I}, we get

+(wk){l,l+2,,N}[l+1,N]ξ~J=+(q2wk)[l+2,N][l+2,N]Ll,l+1+(wk)ξ~J=+(q2wk)[l+2,N][l+2,N]ξ~I.\displaystyle\displaystyle\ell^{+}(w_{k})_{\{l,l+2,\dots,N\}}^{[l+1,N]}\cdot\widetilde{\xi}_{J}=\ell^{+}(q^{-2}w_{k})_{[l+2,N]}^{[l+2,N]}L^{+}_{l,l+1}(w_{k})\cdot\widetilde{\xi}_{J}=\ell^{+}(q^{-2}w_{k})_{[l+2,N]}^{[l+2,N]}\cdot\widetilde{\xi}_{I}. (6.44)

Noting that our vector ξ~I\widetilde{\xi}_{I} here is ξ~I(Nl)\widetilde{\xi}_{I}^{(N-l)}, one can evaluate the right hand side of (6.44) by using (2.83) and the following properties.

Lij+(z)ξ~I\displaystyle L^{+}_{ij}(z)\cdot\widetilde{\xi}_{I} =0,l+1j<iN,\displaystyle=0,\ \ \ l+1\leq j<i\leq N, (6.45)
Ll+k,l+k+(z)ξ~I\displaystyle L^{+}_{l+k,l+k}(z)\cdot\widetilde{\xi}_{I} =λNl,kI(z)ξ~I,k=1,,Nl.\displaystyle=\lambda_{N-l,k}^{I}(z)\widetilde{\xi}_{I},\ \ \ k=1,\dots,N-l. (6.46)

These are obtained by replacing ll in (6.31) and (6.32) by l+1l+1. Then the result is

+(q2wk)[l+2,N][l+2,N]ξ~I\displaystyle\ell^{+}(q^{-2}w_{k})_{[l+2,N]}^{[l+2,N]}\cdot\widetilde{\xi}_{I}
=\displaystyle= σ𝔖Nl1sgn[+2,N](σ,Π)Ll+2,σ(l+2)+(q2wk)Ll+3,σ(l+3)+(q4wk)LN,σ(N)+(q2N+2+2lwk)ξ~I\displaystyle\sum_{\sigma\in\mathfrak{S}_{N-l-1}}\mathrm{sgn}_{[\ell+2,N]}^{*}(\sigma,\Pi^{*})L^{+}_{l+2,\sigma(l+2)}(q^{-2}w_{k})L^{+}_{l+3,\sigma(l+3)}(q^{-4}w_{k})\cdots L^{+}_{N,\sigma(N)}(q^{-2N+2+2l}w_{k})\cdot\widetilde{\xi}_{I}
=\displaystyle= λNl,2I(q2wk)λNl,3I(q4wk)λNl,NlI(q2N+2+2lwk)ξ~I\displaystyle\lambda_{N-l,2}^{I}(q^{-2}w_{k})\lambda_{N-l,3}^{I}(q^{-4}w_{k})\cdots\lambda_{N-l,N-l}^{I}(q^{-2N+2+2l}w_{k})\widetilde{\xi}_{I}
=\displaystyle= j=1na=1Nl1θ(q2awk/wj)ξ~I.\displaystyle\prod_{j=1}^{n}\prod_{a=1}^{N-l-1}\theta(q^{-2a}w_{k}/w_{j})\widetilde{\xi}_{I}. (6.47)

From (6.44) and (6.47), we get (6.42).

From (6.42) and Ll,l+1+(wk)ξ~J=ξ~IL^{+}_{l,l+1}(w_{k})\cdot\widetilde{\xi}_{J}=\widetilde{\xi}_{I}, we have the following relation.

Proposition 6.5.
ξI=j=1nl=1N1a=1Nl1θ(q2awIl+1IN/wj)ξ~I.\displaystyle\displaystyle{\xi}_{I}=\prod_{j=1}^{n}\prod_{l=1}^{N-1}\prod_{a=1}^{N-l-1}\theta(q^{-2a}w_{I_{l+1}\cup\cdots\cup I_{N}}/w_{j})\widetilde{\xi}_{I}. (6.48)

6.4 The change of basis matrix

Now let us make a connection between ξ~I\widetilde{\xi}_{I} and ξI\xi^{\prime}_{I}. As shown in Sec.6.2, their difference is a multiplication by a scalar function

ξ~I=N(𝐰)ξI.\displaystyle\widetilde{\xi}_{I}=N({\bf w})\xi_{I}^{\prime}. (6.49)

We determine a function N(𝐰)N({\bf w}) of the evaluation parameters 𝐰=(w1,,wn){\bf w}=(w_{1},\cdots,w_{n}). As a byproduct we obtain an explicit formula for the partition function of the 2-dimensional square lattice model defined by the elliptic RR-matrix R~(z,Π){\widetilde{R}}(z,\Pi^{*}) (6.14) in terms of the elliptic weight function.

For this purpose let us consider the change of basis matrix (X~IJ)I,Jn(\widetilde{X}_{IJ})_{I,J\in{\cal I}_{n}} from the standard basis {vI}In\{v_{I}\}_{I\in{\cal I}_{n}} to the Gelfand-Tsetlin basis {ξ~I}In\{\widetilde{\xi}_{I}\}_{I\in{\cal I}_{n}}.

ξ~I=JnX~IJvJ.\displaystyle\widetilde{\xi}_{I}=\sum_{J\in{\cal I}_{n}}\widetilde{X}_{IJ}v_{J}.

From (6.17) and (6.24) with ζ=v(1n)\zeta=v_{(1^{n})}, the matrix element X~IJ\widetilde{X}_{IJ} for J=J𝝁J=J_{{\boldsymbol{\mu}}} with 𝝁=(μ1,,μn){\boldsymbol{\mu}}=(\mu_{1},\dots,\mu_{n}) is given by

X~IJ=Z𝐊𝝁𝐋(1n)(wI2IN,wI3IN,,wIN;w1,,wn;Π),\displaystyle\widetilde{X}_{IJ}=Z_{{\bf K}\;{\boldsymbol{\mu}}}^{{\bf L}(1^{n})}(w_{I_{2}\cup\cdots\cup I_{N}},w_{I_{3}\cup\cdots\cup I_{N}},\dots,w_{I_{N}};w_{1},\dots,w_{n};\Pi^{*}), (6.50)

where 𝐊=(1|I2IN|,2|I3IN|,,(N1)|IN|){\bf K}=(1^{|I_{2}\cup\cdots\cup I_{N}|},2^{|I_{3}\cup\cdots\cup I_{N}|},\dots,(N-1)^{|I_{N}|}) and 𝐋=(2|I2IN|,3|I3IN|,,N|IN|){\bf L}=(2^{|I_{2}\cup\cdots\cup I_{N}|},3^{|I_{3}\cup\cdots\cup I_{N}|},\dots,N^{|I_{N}|}).

As a statistical model, X~IJ\widetilde{X}_{IJ} is a partition function of the 2-dimensional n×nn\times n square lattice model defined by assigning the RR-matrix elements R~(zi/wj,Πq2h)i1i2j1j2{\widetilde{R}}(z_{i}/w_{j},\Pi^{*}q^{2h_{\bullet}})_{i_{1}i_{2}}^{j_{1}j_{2}} on the vertex at (i,j)(i,j) (Figure 6.1)444We count the row from the bottom to the top and the column from the left to the right. as statistical weights. Here (z1,,zn)(z_{1},\cdots,z_{n}) is taken as (wI2IN,wI3IN,,wIN)(w_{I_{2}\cup\cdots\cup I_{N}},w_{I_{3}\cup\cdots\cup I_{N}},\dots,w_{I_{N}}). On each link, the overlapped indices of the neighbor RR-matrices are summed over 1,,N1,\cdots,N (Figure 6.2).

On the other hand, in [24] the change of basis matrix from {vI}\{v_{I}\} to {ξI}\{\xi^{\prime}_{I}\} was obtained explicitly in terms of the elliptic weight functions. Let us recall them. Let us set I(l):=I1IlI^{(l)}:=I_{1}\cup\cdots\cup I_{l} and denote its elements as I(l)={i1(l)<<iλ(l)(l)}I^{(l)}=\{i_{1}^{(l)}<\cdots<i_{\lambda^{(l)}}^{(l)}\}, where we set λl=|Il|\lambda_{l}=|I_{l}| and λ(l):=λ1++λl\lambda^{(l)}:=\lambda_{1}+\cdots+\lambda_{l}. To each ia(l)i_{a}^{(l)} (l=1,,Nl=1,\dots,N, a=1,,λ(l)a=1,\dots,\lambda^{(l)}), we associate a variable ta(l)t(ia(l))t_{a}^{(l)}\equiv t(i_{a}^{(l)}) with ta(N)=wat_{a}^{(N)}=w_{a} (a=1,,n)(a=1,\dots,n) and set 𝐭=(ta(l)){\bf t}=(t_{a}^{(l)}) (l=1,,N,a=1,,λ(l))(l=1,\dots,N,a=1,\dots,\lambda^{(l)}) and 𝐰=(wa){\bf w}=(w_{a}) (a=1,,n)(a=1,\dots,n). Then the elliptic weight functions [22, 24] are given by

W~I(𝐭,𝐰,Π)\displaystyle\widetilde{W}_{I}({\bf t},{\bf w},\Pi^{*}) =Symt(1)Symt(N1)U~I(t,w,Π),\displaystyle=\mathrm{Sym}_{t^{(1)}}\cdots\mathrm{Sym}_{t^{(N-1)}}\widetilde{U}_{I}(t,w,\Pi^{*}), (6.51)
U~I(t,w,Π)\displaystyle\widetilde{U}_{I}(t,w,\Pi^{*}) =l=1N1a=1λ(l)(θ(q2Cμs,l+1(s)Πμs,l+1tb(l+1)/ta(l))θ(q2)θ(q2tb(l+1)/ta(l))θ(q2Cμs,l+1(s)Πμs,l+1)|ib(l+1)=ia(l)=s\displaystyle=\prod_{l=1}^{N-1}\prod_{a=1}^{{\lambda}^{(l)}}\Bigg{(}\frac{\theta(q^{-2C_{\mu_{s},l+1}(s)}\Pi^{*}_{\mu_{s},l+1}t_{b}^{(l+1)}/t_{a}^{(l)})\theta(q^{2})}{\theta(q^{2}t_{b}^{(l+1)}/t_{a}^{(l)})\theta(q^{-2C_{\mu_{s},l+1}(s)}\Pi^{*}_{\mu_{s},l+1})}\Bigg{|}_{i_{b}^{(l+1)}=i_{a}^{(l)}=s}
×b=1ib(l+1)>ia(l)λ(l+1)θ(tb(l+1)/ta(l))θ(q2tb(l+1)/ta(l))b=a+1λ(l)θ(q2ta(l)/tb(l))θ(ta(l)/tb(l))),\displaystyle\times\prod_{\begin{subarray}{c}b=1\\ i_{b}^{(l+1)}>i_{a}^{(l)}\end{subarray}}^{\lambda^{(l+1)}}\frac{\theta(t_{b}^{(l+1)}/t_{a}^{(l)})}{\theta(q^{2}t_{b}^{(l+1)}/t_{a}^{(l)})}\prod_{b=a+1}^{\lambda^{(l)}}\frac{\theta(q^{-2}t_{a}^{(l)}/t_{b}^{(l)})}{\theta(t_{a}^{(l)}/t_{b}^{(l)})}\Bigg{)}, (6.52)

where we set Cμs,l+1(s):=j=s+1nϵ¯μj,hμs,l+1C_{\mu_{s},l+1}(s):=\sum_{j=s+1}^{n}\langle\overline{\epsilon}_{\mu_{j}},h_{\mu_{s},l+1}\rangle (μsl)(\mu_{s}\leq l), and Symt(l)\mathrm{Sym}_{t^{(l)}} denotes symmetrization over the variables t1(l),,tλ(l)(l)t_{1}^{(l)},\dots,t_{\lambda^{(l)}}^{(l)}.

Define the specialization 𝐭=𝐰I{\bf t}={\bf w}_{I} by ta(l)=wia(l)(l=1,,N1,a=1,,λ(l))t_{a}^{(l)}=w_{i_{a}^{(l)}}(l=1,\dots,N-1,a=1,\dots,\lambda^{(l)}). One obtains the lower triangular matrix X=(W~J(𝐰I,𝐰,Π))I,JλX=(\widetilde{W}_{J}({\bf w}_{I},{\bf w},\Pi^{*}))_{I,J\in{\cal I}_{\lambda}}[22]. Here we put the matrix elements in the decreasing order ImaxIminI^{max}\geqslant\cdots\geqslant I^{min}. For λ=(λ1,,λN)N\lambda=(\lambda_{1},\cdots,\lambda_{N})\in{\mathbb{N}}^{N}, λ\mathcal{I}_{\lambda} denotes the set of all partition II of [1,n][1,n] satisfying Il=λlI_{l}=\lambda_{l} l=1,,Nl=1,\dots,N. Then one obtains the following statement.

Theorem 6.6.

([24] Thm 4.5)

ξI=JλW~J(𝐰I,𝐰,Πq2j=1nϵ¯μj,h)vJ.\displaystyle\displaystyle\xi_{I}^{\prime}=\sum_{J\in\mathcal{I}_{\lambda}}\widetilde{W}_{J}({\bf w}_{I},{\bf w},\Pi^{*}q^{2\sum_{j=1}^{n}\langle\overline{\epsilon}_{\mu_{j}},h\rangle})v_{J}. (6.53)

From (6.49) and the invertibility of the change of basis matrices, one obtains the following formula for the partition function.

Proposition 6.5.
Z𝐊𝝁𝐋(1n)(wI2IN,wI3IN,,wIN;𝐰;Π)=N(𝐰)W~J(𝐰I,𝐰,Πq2j=1nϵ¯μj,h)\displaystyle Z_{{\bf K}\;{\boldsymbol{\mu}}}^{{\bf L}(1^{n})}(w_{I_{2}\cup\cdots\cup I_{N}},w_{I_{3}\cup\cdots\cup I_{N}},\dots,w_{I_{N}};{\bf w};\Pi^{*})=N({\bf w})\widetilde{W}_{J}({\bf w}_{I},{\bf w},\Pi^{*}q^{2\sum_{j=1}^{n}\langle\overline{\epsilon}_{\mu_{j}},h\rangle})

with J=J𝛍J=J_{{\boldsymbol{\mu}}}, 𝐊=(1|I2IN|,2|I3IN|,,(N1)|IN|){\bf K}=(1^{|I_{2}\cup\cdots\cup I_{N}|},2^{|I_{3}\cup\cdots\cup I_{N}|},\dots,(N-1)^{|I_{N}|}) and 𝐋=(2|I2IN|,3|I3IN|,,N|IN|){\bf L}=(2^{|I_{2}\cup\cdots\cup I_{N}|},3^{|I_{3}\cup\cdots\cup I_{N}|},\dots,N^{|I_{N}|}).

Example. The case of N=2N=2, n=3n=3, λ=(2,1)\lambda=(2,1): one has

W~I211(wI112,w,Π)\displaystyle\displaystyle\widetilde{W}_{I_{211}}(w_{I_{112}},w,\Pi^{*}) =θ(q2Π1,2w3/w1)θ(q2)θ(q2w3/w1)θ(q2Π1,2),\displaystyle=\frac{\theta(q^{-2}\Pi^{*}_{1,2}w_{3}/w_{1})\theta(q^{2})}{\theta(q^{2}w_{3}/w_{1})\theta(q^{-2}\Pi^{*}_{1,2})}, (6.54)
W~I121(wI112,w,Π)\displaystyle\displaystyle\widetilde{W}_{I_{121}}(w_{I_{112}},w,\Pi^{*}) =θ(w3/w1)θ(Π1,2w3/w2)θ(q2)θ(q2w3/w1)θ(q2w3/w2)θ(Π1,2),\displaystyle=\frac{\theta(w_{3}/w_{1})\theta(\Pi^{*}_{1,2}w_{3}/w_{2})\theta(q^{2})}{\theta(q^{2}w_{3}/w_{1})\theta(q^{2}w_{3}/w_{2})\theta(\Pi^{*}_{1,2})}, (6.55)
W~I111(wI112,w,Π)\displaystyle\displaystyle\widetilde{W}_{I_{111}}(w_{I_{112}},w,\Pi^{*}) =θ(w3/w1)θ(w3/w2)θ(q2w3/w1)θ(q2w3/w2),\displaystyle=\frac{\theta(w_{3}/w_{1})\theta(w_{3}/w_{2})}{\theta(q^{2}w_{3}/w_{1})\theta(q^{2}w_{3}/w_{2})}, (6.56)

and

ξ112=\displaystyle\displaystyle\xi_{112}^{\prime}= W~I211(wI112,w,Πq2<2ϵ¯1+ϵ¯2,h>)v211+W~I121(wI112,w,Πq2<2ϵ¯1+ϵ¯2,h>)v121\displaystyle\displaystyle\widetilde{W}_{I_{211}}(w_{I_{112}},w,\Pi^{*}q^{2<2\overline{\epsilon}_{1}+\overline{\epsilon}_{2},h>})v_{211}+\displaystyle\widetilde{W}_{I_{121}}(w_{I_{112}},w,\Pi^{*}q^{2<2\overline{\epsilon}_{1}+\overline{\epsilon}_{2},h>})v_{121}
+W~I111(wI112,w,Πq2<2ϵ¯1+ϵ¯2,h>)v111\displaystyle+\displaystyle\widetilde{W}_{I_{111}}(w_{I_{112}},w,\Pi^{*}q^{2<2\overline{\epsilon}_{1}+\overline{\epsilon}_{2},h>})v_{111}
=\displaystyle= θ(Π1,2w3/w1)θ(q2)θ(q2w3/w1)θ(Π1,2)v211+θ(w3/w1)θ(q2Π1,2w3/w2)θ(q2)θ(q2w3/w1)θ(q2w3/w2)θ(q2Π1,2)v121\displaystyle\frac{\theta(\Pi^{*}_{1,2}w_{3}/w_{1})\theta(q^{2})}{\theta(q^{2}w_{3}/w_{1})\theta(\Pi^{*}_{1,2})}v_{211}+\frac{\theta(w_{3}/w_{1})\theta(q^{2}\Pi^{*}_{1,2}w_{3}/w_{2})\theta(q^{2})}{\theta(q^{2}w_{3}/w_{1})\theta(q^{2}w_{3}/w_{2})\theta(q^{2}\Pi^{*}_{1,2})}v_{121}
+θ(w3/w1)θ(w3/w2)θ(q2w3/w1)θ(q2w3/w2)v112.\displaystyle+\frac{\theta(w_{3}/w_{1})\theta(w_{3}/w_{2})}{\theta(q^{2}w_{3}/w_{1})\theta(q^{2}w_{3}/w_{2})}v_{112}. (6.57)

On the other hand, by direct computation, we find

ξ~112=\displaystyle\widetilde{\xi}_{112}= θ(Π1,2w3/w1)θ(q2)2θ(q2w3/w2)θ(Π1,2)v211+θ(w3/w1)θ(q2Π1,2w3/w2)θ(q2)2θ(q2Π1,2)v121\displaystyle\frac{\theta(\Pi^{*}_{1,2}w_{3}/w_{1})\theta(q^{2})^{2}\theta(q^{2}w_{3}/w_{2})}{\theta(\Pi^{*}_{1,2})}v_{211}+\frac{\theta(w_{3}/w_{1})\theta(q^{2}\Pi^{*}_{1,2}w_{3}/w_{2})\theta(q^{2})^{2}}{\theta(q^{2}\Pi^{*}_{1,2})}v_{121}
+θ(w3/w1)θ(w3/w2)θ(q2)v112.\displaystyle+\theta(w_{3}/w_{1})\theta(w_{3}/w_{2})\theta(q^{2})v_{112}. (6.58)

The relation between ξ~112\widetilde{\xi}_{112} and ξ112\xi_{112}^{\prime} is ξ~112=θ(q2)θ(q2w3/w2)θ(q2w3/w1)ξ112\widetilde{\xi}_{112}=\theta(q^{2})\theta(q^{2}w_{3}/w_{2})\theta(q^{2}w_{3}/w_{1})\xi_{112}^{\prime}.

In the rest of this section, we determine N(𝐰)N({\bf w}) as the ratio of the diagonal elements of X~\widetilde{X} and XX. For XX, we have the result.

Proposition 6.7.

([22], Prop 5.1)

W~I(𝐰I,𝐰,Π)=1k<l<NaIkbIla<bθ(wb/wa)θ(q2wb/wa).\displaystyle\widetilde{W}_{I}({\bf w}_{I},{\bf w},\Pi^{*})=\prod_{1\leq k<l<N}\prod_{a\in I_{k}}\prod_{\begin{subarray}{c}b\in I_{l}\\ a<b\end{subarray}}\frac{\theta(w_{b}/w_{a})}{\theta(q^{2}w_{b}/w_{a})}. (6.59)

We show that the diagonal elements X~II\widetilde{X}_{II} can be calculated recursively and have a factored expression. To illustrate the calculation, let us show an example.

Example. Take N=3N=3, n=9n=9, I=I231213231I=I_{231213231}. From the example in Sec.6.2, we have

X~II=\displaystyle\widetilde{X}_{II}= Z(16,23),(231213231)(26,33),(19)(w1,w2,w4,w6,w7,w8,w2,w6,w8;w1,,w9;Π)\displaystyle Z_{(1^{6},2^{3}),(231213231)}^{(2^{6},3^{3}),(1^{9})}(w_{1},w_{2},w_{4},w_{6},w_{7},w_{8},w_{2},w_{6},w_{8};w_{1},\dots,w_{9};\Pi^{*})
=\displaystyle= 𝜶1,,𝜶8[1,3]9T23+(w8;w1,,w9;Π)(231213231)𝜶8\displaystyle\sum_{\boldsymbol{\alpha}_{1},\dots,\boldsymbol{\alpha}_{8}\in[1,3]^{9}}T_{23}^{+}(w_{8};w_{1},\dots,w_{9};\Pi^{*})_{(231213231)}^{\boldsymbol{\alpha}_{8}}
×T23+(w6;w1,,w9;Πq2hϵ¯3)𝜶8𝜶7T23+(w2;w1,,w9;Πq2h2ϵ¯3)𝜶7𝜶6\displaystyle\times T_{23}^{+}(w_{6};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{8}}^{\boldsymbol{\alpha}_{7}}T_{23}^{+}(w_{2};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{2\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{7}}^{\boldsymbol{\alpha}_{6}}
×T12+(w8;w1,,w9;Πq2h3ϵ¯3)𝜶6𝜶5T12+(w7;w1,,w9;Πq2hϵ¯2+3ϵ¯3)𝜶5𝜶4\displaystyle\times T_{12}^{+}(w_{8};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{3\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{6}}^{\boldsymbol{\alpha}_{5}}T_{12}^{+}(w_{7};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{5}}^{\boldsymbol{\alpha}_{4}}
×T12+(w6;w1,,w9;Πq2h2ϵ¯2+3ϵ¯3)𝜶4𝜶3T12+(w4;w1,,w9;Πq2h3ϵ¯2+3ϵ¯3)𝜶3𝜶2\displaystyle\times T_{12}^{+}(w_{6};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{2\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{4}}^{\boldsymbol{\alpha}_{3}}T_{12}^{+}(w_{4};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{3\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{3}}^{\boldsymbol{\alpha}_{2}}
×T12+(w2;w1,,w9;Πq2h4ϵ¯2+3ϵ¯3)𝜶2𝜶1T12+(w1;w1,,w9;Πq2h5ϵ¯2+3ϵ¯3)𝜶1(19).\displaystyle\times T_{12}^{+}(w_{2};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{4\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{2}}^{\boldsymbol{\alpha}_{1}}T_{12}^{+}(w_{1};w_{1},\dots,w_{9};\Pi^{*}q^{2h_{5\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\boldsymbol{\alpha}_{1}}^{(1^{9})}. (6.60)

See Figure 6.3 for a graphical description of (6.60).

Refer to caption
Figure 6.3: The partition function corresponding to X~II\widetilde{X}_{II} for N=3N=3, I=231213231I=231213231.

Taking 𝜶j=(αj,𝜶j)\boldsymbol{\alpha}_{j}=(\alpha_{j},\boldsymbol{\alpha}_{j}^{\prime}) with αj[1,3]\alpha_{j}\in[1,3] and 𝜶j[1,3]8{\boldsymbol{\alpha}}_{j}^{\prime}\in[1,3]^{8}, j=1,,8j=1,\dots,8, we decompose (6.60) as

α1,,α8,μ1,,μ9[1,3]C(α1,,α8;μ1,,μ9)Z(α1,,α8;μ1,,μ9),\displaystyle\sum_{\alpha_{1},\dots,\alpha_{8},\mu_{1},\dots,\mu_{9}\in[1,3]}C(\alpha_{1},\dots,\alpha_{8};\mu_{1},\dots,\mu_{9})Z(\alpha_{1},\dots,\alpha_{8};\mu_{1},\dots,\mu_{9}), (6.61)

where we set

C(α1,,α8;μ1,,μ9)\displaystyle C(\alpha_{1},\dots,\alpha_{8};\mu_{1},\dots,\mu_{9})
=R~(w8/w1,Π)μ923α8R~(w6/w1,Πq2hϵ¯3)μ8α83α7R~(w2/w1,Πq2h2ϵ¯3)μ7α73α6\displaystyle={\widetilde{R}}(w_{8}/w_{1},\Pi^{*})_{\mu_{9}2}^{3\alpha_{8}}{\widetilde{R}}(w_{6}/w_{1},\Pi^{*}q^{2h_{\overline{\epsilon}_{3}}})_{\mu_{8}\alpha_{8}}^{3\alpha_{7}}{\widetilde{R}}(w_{2}/w_{1},\Pi^{*}q^{2h_{2\overline{\epsilon}_{3}}})_{\mu_{7}\alpha_{7}}^{3\alpha_{6}}
×R~(w8/w1,Πq2h3ϵ¯3)μ6α62α5R~(w7/w1,Πq2hϵ¯2+3ϵ¯3)μ5α52α4\displaystyle\times{\widetilde{R}}(w_{8}/w_{1},\Pi^{*}q^{2h_{3\overline{\epsilon}_{3}}})_{\mu_{6}\alpha_{6}}^{2\alpha_{5}}{\widetilde{R}}(w_{7}/w_{1},\Pi^{*}q^{2h_{\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{5}\alpha_{5}}^{2\alpha_{4}}
×R~(w6/w1,Πq2h2ϵ¯2+3ϵ¯3)μ4α42α3R~(w4/w1,Πq2h3ϵ¯2+3ϵ¯3)μ3α32α2\displaystyle\times{\widetilde{R}}(w_{6}/w_{1},\Pi^{*}q^{2h_{2\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{4}\alpha_{4}}^{2\alpha_{3}}{\widetilde{R}}(w_{4}/w_{1},\Pi^{*}q^{2h_{3\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{3}\alpha_{3}}^{2\alpha_{2}}
×R~(w2/w1,Πq2h4ϵ¯2+3ϵ¯3)μ2α22α1R~(w1/w1,Πq2h5ϵ¯2+3ϵ¯3)μ1α121,\displaystyle\times{\widetilde{R}}(w_{2}/w_{1},\Pi^{*}q^{2h_{4\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{2}\alpha_{2}}^{2\alpha_{1}}{\widetilde{R}}(w_{1}/w_{1},\Pi^{*}q^{2h_{5\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{1}\alpha_{1}}^{21}, (6.62)
Z(α1,,α8;μ1,,μ9)\displaystyle Z(\alpha_{1},\dots,\alpha_{8};\mu_{1},\dots,\mu_{9})
=𝜶1,,𝜶8[1,3]8T2μ9+(w8;w2,,w9;Πq2hϵ¯2)(31213231)𝜶8\displaystyle=\sum_{\boldsymbol{\alpha}_{1}^{\prime},\dots,\boldsymbol{\alpha}_{8}^{\prime}\in[1,3]^{8}}T_{2\mu_{9}}^{+}(w_{8};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{2}}})_{(31213231)}^{\boldsymbol{\alpha}_{8}^{\prime}}
×T2μ8+(w6;w2,,w9;Πq2hϵ¯3+ϵ¯α8)𝜶8𝜶7T2μ7+(w2;w2,,w9;Πq2h2ϵ¯3+ϵ¯α7)𝜶7𝜶6\displaystyle\times T_{2\mu_{8}}^{+}(w_{6};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{8}}}})_{\boldsymbol{\alpha}_{8}^{\prime}}^{\boldsymbol{\alpha}_{7}^{\prime}}T_{2\mu_{7}}^{+}(w_{2};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{2\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{7}}}})_{\boldsymbol{\alpha}_{7}^{\prime}}^{\boldsymbol{\alpha}_{6}^{\prime}}
×T1μ6+(w8;w2,,w9;Πq2h3ϵ¯3+ϵ¯α6)𝜶6𝜶5T1μ5+(w7;w2,,w9;Πq2hϵ¯2+3ϵ¯3+ϵ¯α5)𝜶5𝜶4\displaystyle\times T_{1\mu_{6}}^{+}(w_{8};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{3\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{6}}}})_{\boldsymbol{\alpha}_{6}^{\prime}}^{\boldsymbol{\alpha}_{5}^{\prime}}T_{1\mu_{5}}^{+}(w_{7};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{5}}}})_{\boldsymbol{\alpha}_{5}^{\prime}}^{\boldsymbol{\alpha}_{4}^{\prime}}
×T1μ4+(w6;w2,,w9;Πq2h2ϵ¯2+3ϵ¯3+ϵ¯α4)𝜶4𝜶3T1μ3+(w4;w2,,w9;Πq2h3ϵ¯2+3ϵ¯3+ϵ¯α3)𝜶3𝜶2\displaystyle\times T_{1\mu_{4}}^{+}(w_{6};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{2\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{4}}}})_{\boldsymbol{\alpha}_{4}^{\prime}}^{\boldsymbol{\alpha}_{3}^{\prime}}T_{1\mu_{3}}^{+}(w_{4};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{3\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{3}}}})_{\boldsymbol{\alpha}_{3}^{\prime}}^{\boldsymbol{\alpha}_{2}^{\prime}}
×T1μ2+(w2;w2,,w9;Πq2h4ϵ¯2+3ϵ¯3+ϵ¯α2)𝜶2𝜶1T1μ1+(w1;w2,,w9;Πq2h5ϵ¯2+3ϵ¯3+ϵ¯α1)𝜶1(18).\displaystyle\times T_{1\mu_{2}}^{+}(w_{2};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{4\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{2}}}})_{\boldsymbol{\alpha}_{2}^{\prime}}^{\boldsymbol{\alpha}_{1}^{\prime}}T_{1\mu_{1}}^{+}(w_{1};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{5\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}+\overline{\epsilon}_{\alpha_{1}}}})_{\boldsymbol{\alpha}_{1}^{\prime}}^{(1^{8})}. (6.63)

The C(α1,,α8;μ1,,μ9)C(\alpha_{1},\dots,\alpha_{8};\mu_{1},\dots,\mu_{9}) part corresponds to the 1st column (the left most column ) in Figure 6.3. We now show that α1,,α8\alpha_{1},\dots,\alpha_{8}, μ1,,μ9\mu_{1},\dots,\mu_{9} in (6.61) are determined uniquely. In fact, applying the property

R~(z,P)klij=0unlessi=k,j=lori=l,j=k\displaystyle{{\widetilde{R}}}(z,P)_{kl}^{ij}=0\ \ \ \mathrm{unless}\ \ \ i=k,\ j=l\ \ \ \mathrm{or}\ \ \ i=l,\ j=k (6.64)

to each factor in C(α1,,α8;μ1,,μ9)C(\alpha_{1},\dots,\alpha_{8};\mu_{1},\dots,\mu_{9}), one finds

  • R~(w8/w1,Π)μ923α8{\widetilde{R}}(w_{8}/w_{1},\Pi^{*})_{\mu_{9}2}^{3\alpha_{8}} yields α8=2\alpha_{8}=2, μ9=3\mu_{9}=3

  • R~(w6/w1,Πq2hϵ¯3)μ8α83α7{\widetilde{R}}(w_{6}/w_{1},\Pi^{*}q^{2h_{\overline{\epsilon}_{3}}})_{\mu_{8}\alpha_{8}}^{3\alpha_{7}} with α8=2\alpha_{8}=2 yields α7=2\alpha_{7}=2, μ8=3\mu_{8}=3

  • R~(w2/w1,Πq2h2ϵ¯3)μ7α73α6{{\widetilde{R}}}(w_{2}/w_{1},\Pi^{*}q^{2h_{2\overline{\epsilon}_{3}}})_{\mu_{7}\alpha_{7}}^{3\alpha_{6}} with α7=2\alpha_{7}=2 yields α6=2\alpha_{6}=2, μ7=3\mu_{7}=3.

  • R~(w1/w1,Πq2h5ϵ¯2+3ϵ¯3)μ1α121{\widetilde{R}}(w_{1}/w_{1},\Pi^{*}q^{2h_{5\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{1}\alpha_{1}}^{21} yields α1=2\alpha_{1}=2, μ1=1\mu_{1}=1 due to R~(w1/w1,Πq2h5ϵ¯2+3ϵ¯3)2121=θ(w1/w1)=0{\widetilde{R}}(w_{1}/w_{1},\Pi^{*}q^{2h_{5\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{21}^{21}=\theta(w_{1}/w_{1})=0

  • the factors R~(w2/w1,Πq2h4ϵ¯2+3ϵ¯3)μ2α22α1{\widetilde{R}}(w_{2}/w_{1},\Pi^{*}q^{2h_{4\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{2}\alpha_{2}}^{2\alpha_{1}}, R~(w4/w1,Πq2h3ϵ¯2+3ϵ¯3)μ3α32α2{\widetilde{R}}(w_{4}/w_{1},\Pi^{*}q^{2h_{3\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{3}\alpha_{3}}^{2\alpha_{2}}, R~(w6/w1,Πq2h2ϵ¯2+3ϵ¯3)μ4α42α3{\widetilde{R}}(w_{6}/w_{1},\Pi^{*}q^{2h_{2\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{4}\alpha_{4}}^{2\alpha_{3}},
    R~(w7/w1,Πq2hϵ¯2+3ϵ¯3)μ5α52α4{\widetilde{R}}(w_{7}/w_{1},\Pi^{*}q^{2h_{\overline{\epsilon}_{2}+3\overline{\epsilon}_{3}}})_{\mu_{5}\alpha_{5}}^{2\alpha_{4}} and R~(w8/w1,Πq2h3ϵ¯3)μ6α62α5{\widetilde{R}}(w_{8}/w_{1},\Pi^{*}q^{2h_{3\overline{\epsilon}_{3}}})_{\mu_{6}\alpha_{6}}^{2\alpha_{5}} in this order with α1=2\alpha_{1}=2 yield α2==α6=μ2==μ6=2\alpha_{2}=\cdots=\alpha_{6}=\mu_{2}=\cdots=\mu_{6}=2.

Therefore we obtain

X~II=\displaystyle\displaystyle\widetilde{X}_{II}= C(28;1,25,33)Z(16,23),(31213231)(1,25,33),(18)(w1,w2,w4,w6,w7,w8,w2,w6,w8;w2,,w9;Πq2hϵ¯2).\displaystyle C(2^{8};1,2^{5},3^{3})Z_{(1^{6},2^{3}),(31213231)}^{(1,2^{5},3^{3}),(1^{8})}(w_{1},w_{2},w_{4},w_{6},w_{7},w_{8},w_{2},w_{6},w_{8};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{2}}}). (6.65)

Here we made the identification

Z(28;1,25,33)=Z(16,23),(31213231)(1,25,33),(18)(w1,w2,w4,w6,w7,w8,w2,w6,w8;w2,,w9;Πq2hϵ¯2).\displaystyle Z(2^{8};1,2^{5},3^{3})=Z_{(1^{6},2^{3}),(31213231)}^{(1,2^{5},3^{3}),(1^{8})}(w_{1},w_{2},w_{4},w_{6},w_{7},w_{8},w_{2},w_{6},w_{8};w_{2},\dots,w_{9};\Pi^{*}q^{2h_{\overline{\epsilon}_{2}}}).

We can repeat this process and find that X~II\widetilde{X}_{II} can be written as a product of the RR-matrix elements uniquely determined by the configuration at the boundary of the lattice (Figure 6.4). From the perspective of partition functions, this means that there is only one configuration which gives nonzero contribution.

Refer to caption
Figure 6.4: The unique configuration corresponding to X~II\widetilde{X}_{II} for N=3N=3, I=231213231I=231213231.
Theorem 6.6.
X~II=\displaystyle\displaystyle\widetilde{X}_{II}= θ(q2)k=2N(k1)|Ik|l=1N1{jINl+1INkI1INl1θ(wj/wk)\displaystyle\ \theta(q^{2})^{\sum_{k=2}^{N}(k-1)|I_{k}|}\prod_{l=1}^{N-1}\Bigg{\{}\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{1}\cup\cdots\cup I_{N-l-1}\end{subarray}}\theta(w_{j}/w_{k})
×jINl+1INkINlINj<kθ(q2wj/wk)jINl+1INkINl+1INj>kθ(q2wj/wk)jINl+1INkINlj>kθ(wj/wk)}.\displaystyle\times\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l+1}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l}\\ j>k\end{subarray}}\theta(w_{j}/w_{k})\Bigg{\}}. (6.66)
Proof.

The diagonal matrix element X~II\widetilde{X}_{II} is given by (6.50) with I=J𝝁I=J_{{\boldsymbol{\mu}}}, 𝝁=(μ1,,μn){\boldsymbol{\mu}}=(\mu_{1},\cdots,\mu_{n}). We show that X~II\widetilde{X}_{II} is factored into a product of the matrix elements of the RR-matrices determined uniquely by the boundary configuration.

To show this inductively in the number of columns in the lattice, let us introduce the following. For k=1,,nk=1,\dots,n and j=1,,Nj=1,\cdots,N, let us set n(I,k,j):=|{μ1,,μkIj}|n(I,k,j):=|\{\mu_{1},\dots,\mu_{k}\in I_{j}\}| and IjIN={i1[j,N]<i2[j,N]<<i|IjIN|[j,N]}{I_{j}\cup\cdots\cup I_{N}}=\{i_{1}^{[j,N]}<i_{2}^{[j,N]}<\cdots<i_{|I_{j}\cup\cdots\cup I_{N}|}^{[j,N]}\}. We define the kk-th partition function by

Zk:=Z𝐊k(μk,,μn)𝐋(1n+1k)(wi1[2,N],,wi|I2IN|[2,N],wi1[3,N],,wi|I3IN|[3,N],,wi1[N,N],,wi|IN|[N,N];\displaystyle Z_{k}:=Z_{{\bf K}_{k}\;(\mu_{k},\dots,\mu_{n})}^{{\bf L}(1^{n+1-k})}(w_{i_{1}^{[2,N]}},\dots,w_{i_{|I_{2}\cup\cdots\cup I_{N}|}^{[2,N]}},w_{i_{1}^{[3,N]}},\dots,w_{i_{|I_{3}\cup\cdots\cup I_{N}|}^{[3,N]}},\dots,w_{i_{1}^{[N,N]}},\dots,w_{i_{|I_{N}|}^{[N,N]}};
wk,,wn;Πql=1k12hϵ¯μl).\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad w_{k},\dots,w_{n};\Pi^{*}q^{\sum_{l=1}^{k-1}2h_{\overline{\epsilon}_{\mu_{l}}}}). (6.67)

Here, 𝐊k=(1n(I,k,2)++n(I,k,N),2|I2IN|n(I,k,2),3|I3IN|n(I,k,3),,N|IN|n(I,k,N)){\bf K}_{k}=(1^{n(I,k,2)+\cdots+n(I,k,N)},2^{|I_{2}\cup\dots\cup I_{N}|-n(I,k,2)},3^{|I_{3}\cup\dots\cup I_{N}|-n(I,k,3)},\dots,N^{|I_{N}|-n(I,k,N)}), and we fix the order of the variables (wI2IN,wI3IN,,wIN)(w_{I_{2}\cup\cdots\cup I_{N}},w_{I_{3}\cup\cdots\cup I_{N}},\dots,w_{I_{N}}) as

(wi1[2,N],,wi|I2IN|[2,N],wi1[3,N],,wi|I3IN|[3,N],,wi1[N,N],,wi|IN|[N,N]).\displaystyle(w_{i_{1}^{[2,N]}},\dots,w_{i_{|I_{2}\cup\cdots\cup I_{N}|}^{[2,N]}},w_{i_{1}^{[3,N]}},\dots,w_{i_{|I_{3}\cup\cdots\cup I_{N}|}^{[3,N]}},\dots,w_{i_{1}^{[N,N]}},\dots,w_{i_{|I_{N}|}^{[N,N]}}).

We show that from the kk-th partition function ZkZ_{k} one can obtain the k+1k+1-th partition Zk+1Z_{k+1} by removing the kk-th column as illustrated in the above example. The precise relation between ZkZ_{k} and Zk+1Z_{k+1} is given below. We also set Zn+1:=1Z_{n+1}:=1.

Lemma 6.8.

For kIlk\in I_{l}, the relation between ZkZ_{k} and Zk+1Z_{k+1} is given by

Zk=WkZk+1,\displaystyle Z_{k}=W_{k}Z_{k+1}, (6.68)

where

Wk\displaystyle W_{k} =Wk1Wk2Wk3,\displaystyle=W_{k}^{1}W_{k}^{2}W_{k}^{3}, (6.69)
Wk1\displaystyle W_{k}^{1} =jINθ(wj/wk)jIN1INθ(wj/wk)jIl+2INθ(wj/wk),\displaystyle=\prod_{\begin{subarray}{c}j\in I_{N}\end{subarray}}\theta(w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-1}\cup I_{N}\end{subarray}}\theta(w_{j}/w_{k})\cdots\prod_{\begin{subarray}{c}j\in I_{l+2}\cup\cdots\cup I_{N}\end{subarray}}\theta(w_{j}/w_{k}), (6.70)
Wk2\displaystyle W_{k}^{2} =jIl+1INj>kθ(wj/wk)jIl+1INj<kθ(q2wj/wk),\displaystyle=\prod_{\begin{subarray}{c}j\in I_{l+1}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{l+1}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k}), (6.71)
Wk3\displaystyle W_{k}^{3} ={θ(q2)jIlINj>kθ(q2wj/wk)jIlINj<kθ(q2wj/wk)}\displaystyle=\Bigg{\{}\theta(q^{2})\prod_{\begin{subarray}{c}j\in I_{l}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{l}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\Bigg{\}}
×{θ(q2)jIl1INj>kθ(q2wj/wk)jIl1INj<kθ(q2wj/wk)}\displaystyle\times\Bigg{\{}\theta(q^{2})\prod_{\begin{subarray}{c}j\in I_{l-1}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{l-1}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\Bigg{\}}
××{θ(q2)jI2INj>kθ(q2wj/wk)jI2INj<kθ(q2wj/wk)}.\displaystyle\times\cdots\times\Bigg{\{}\theta(q^{2})\prod_{\begin{subarray}{c}j\in I_{2}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{2}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\Bigg{\}}. (6.72)
Proof.

We show by induction on kk. Figure 6.5 is a graphical description of the kk-th column of the partition function corresponding to X~II\tilde{X}_{II} or equivalently the leftmost column of the partition function ZkZ_{k} when kIlk\in I_{l}. By inductive assumption, the left boundary condition of the column which corresponds to the left boundary condition of ZkZ_{k} is given by 𝐊k=(1n(I,k,2)++n(I,k,N),2|I2IN|n(I,k,2),3|I3IN|n(I,k,3),,N|IN|n(I,k,N)){\bf K}_{k}=(1^{n(I,k,2)+\cdots+n(I,k,N)},2^{|I_{2}\cup\dots\cup I_{N}|-n(I,k,2)},3^{|I_{3}\cup\dots\cup I_{N}|-n(I,k,3)},\dots,N^{|I_{N}|-n(I,k,N)}). We find in the same way as in Example that the empty circles in Figure 6.5 are uniquely filled with the numbers as given in Figure 6.6. This means that from this column we have products of RR-matrix elements denoted as WkW_{k}, which can be read out explicitly from Figure 6.6 as Wk=Wk1Wk2Wk3W_{k}=W_{k}^{1}W_{k}^{2}W_{k}^{3} where Wk1W_{k}^{1}, Wk2W_{k}^{2}, Wk3W_{k}^{3} are (6.70), (6.71) and (6.72). Figure 6.6 also implies Zk=WkZk+1Z_{k}=W_{k}Z_{k+1}. The right boundary of the column in Figure 6.6 is 𝐊k+1=(1n(I,k+1,2)++n(I,k+1,N),2|I2IN|n(I,k+1,2),3|I3IN|n(I,k+1,3),,N|IN|n(I,k+1,N)){\bf K}_{k+1}=(1^{n(I,k+1,2)+\cdots+n(I,k+1,N)},2^{|I_{2}\cup\dots\cup I_{N}|-n(I,k+1,2)},3^{|I_{3}\cup\dots\cup I_{N}|-n(I,k+1,3)},\\ \dots,N^{|I_{N}|-n(I,k+1,N)}) and this becomes the left boundary of Zk+1Z_{k+1}. ∎

Refer to caption
Figure 6.5: A graphical representation of the kk-th column of the partition function corresponding to X~II\tilde{X}_{II} or equivalently the leftmost column of the partition function ZkZ_{k}, when kIlk\in I_{l}. The long line which is bended corresponds to the space V^wk\widehat{V}_{w_{k}}. Note there are also RR-matrices in the dotted lines. The left boundary condition of this column is (reading the numbers in circles from bottom to top) 𝐊k=(1n(I,k,2)++n(I,k,N),2|I2IN|n(I,k,2),3|I3IN|n(I,k,3),,N|IN|n(I,k,N)){\bf K}_{k}=(1^{n(I,k,2)+\cdots+n(I,k,N)},2^{|I_{2}\cup\dots\cup I_{N}|-n(I,k,2)},3^{|I_{3}\cup\dots\cup I_{N}|-n(I,k,3)},\dots,N^{|I_{N}|-n(I,k,N)}).
Refer to caption
Figure 6.6: A graphical representation of the kk-th column of the partition function corresponding to X~II\tilde{X}_{II} or equivalently the leftmost column of the partition function ZkZ_{k}, when kIlk\in I_{l}. We find in the same way as in Example that the empty circles in Figure 6.5 are uniquely filled with the numbers as given in this figure. The product of the RR-matrix elements for this configuration gives the factor WkW_{k}. The first part from left in this figure gives Wk1W_{k}^{1} (6.70). The second part from left gives Wk2W_{k}^{2} (6.71). The remaining part gives Wk3W_{k}^{3} (6.72). The right boundary of this column becomes (reading the numbers in circles from bottom to top) 𝐊k+1=(1n(I,k+1,2)++n(I,k+1,N),2|I2IN|n(I,k+1,2),3|I3IN|n(I,k+1,3),,N|IN|n(I,k+1,N)){\bf K}_{k+1}=(1^{n(I,k+1,2)+\cdots+n(I,k+1,N)},2^{|I_{2}\cup\dots\cup I_{N}|-n(I,k+1,2)},3^{|I_{3}\cup\dots\cup I_{N}|-n(I,k+1,3)},\dots,N^{|I_{N}|-n(I,k+1,N)}). Also note there is no Π\Pi^{*}-dependence on WkW_{k}.

To get the expression (6.66), first note X~II=k=1nWk=k=1nWk1Wk2Wk3\widetilde{X}_{II}=\prod_{k=1}^{n}W_{k}=\prod_{k=1}^{n}W_{k}^{1}W_{k}^{2}W_{k}^{3}. Also recall the disjoint union of I1,,INI_{1},\dots,I_{N} is [1,n]{[}1,n{]}. Then one notes from the expressions (6.70), (6.71), (6.72) that k=1nWk1\prod_{k=1}^{n}W_{k}^{1}, k=1nWk2\prod_{k=1}^{n}W_{k}^{2} and k=1nWk3\prod_{k=1}^{n}W_{k}^{3} can be expressed as

k=1nWk1\displaystyle\prod_{k=1}^{n}W_{k}^{1} =l=1N1jINl+1INkI1INl1θ(wj/wk),\displaystyle=\displaystyle\prod_{l=1}^{N-1}\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{1}\cup\cdots\cup I_{N-l-1}\end{subarray}}\theta(w_{j}/w_{k}), (6.73)
k=1nWk2\displaystyle\prod_{k=1}^{n}W_{k}^{2} =l=1N1{jINl+1INkINlj>kθ(wj/wk)jINl+1INkINlj<kθ(q2wj/wk)},\displaystyle=\displaystyle\prod_{l=1}^{N-1}\Bigg{\{}\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l}\\ j>k\end{subarray}}\theta(w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\Bigg{\}}, (6.74)
k=1nWk3\displaystyle\prod_{k=1}^{n}W_{k}^{3} =θ(q2)k=2N(k1)|Ik|l=1N1{jINl+1INkINl+1INj<kθ(q2wj/wk)jINl+1INkINl+1INj>kθ(q2wj/wk)}.\displaystyle=\displaystyle\theta(q^{2})^{\sum_{k=2}^{N}(k-1)|I_{k}|}\prod_{l=1}^{N-1}\Bigg{\{}\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l+1}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l+1}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\Bigg{\}}. (6.75)

Multiplying (6.73), (6.74) and (6.75) and rearranging, one gets (6.66).

As a corollary, we obtain N(𝐰)=X~II/XIIN({\bf w})=\widetilde{X}_{II}/X_{II} as follows.

Corollary 6.7.
N(𝐰)\displaystyle N({\bf w}) =θ(q2)k=2N(k1)|Ik|1k<l<NaIkbIla<bθ(q2wb/wa)θ(wb/wa)l=1N1{jINl+1INkI1INl1θ(wj/wk)\displaystyle=\theta(q^{2})^{\sum_{k=2}^{N}(k-1)|I_{k}|}\prod_{1\leq k<l<N}\prod_{a\in I_{k}}\prod_{\begin{subarray}{c}b\in I_{l}\\ a<b\end{subarray}}\frac{\theta(q^{2}w_{b}/w_{a})}{\theta(w_{b}/w_{a})}\prod_{l=1}^{N-1}\Bigg{\{}\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{1}\cup\cdots\cup I_{N-l-1}\end{subarray}}\theta(w_{j}/w_{k})
×jINl+1INkINlINj<kθ(q2wj/wk)jINl+1INkINl+1INj>kθ(q2wj/wk)jINl+1INkINlj>kθ(wj/wk)}.\displaystyle\times\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l}\cup\cdots\cup I_{N}\\ j<k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l+1}\cup\cdots\cup I_{N}\\ j>k\end{subarray}}\theta(q^{2}w_{j}/w_{k})\prod_{\begin{subarray}{c}j\in I_{N-l+1}\cup\cdots\cup I_{N}\\ k\in I_{N-l}\\ j>k\end{subarray}}\theta(w_{j}/w_{k})\Bigg{\}}.

Example. For the case N=2N=2, we have

N(𝐰)\displaystyle N({\bf w}) =aI1bI2θ(q2wb/wa)aI2bI2θ(q2wb/wa).\displaystyle=\prod_{a\in I_{1}}\prod_{b\in I_{2}}\theta(q^{2}w_{b}/w_{a})\prod_{a\in I_{2}}\prod_{b\in I_{2}}\theta(q^{2}w_{b}/w_{a}).

Acknowledgments

This work was partially supported by grant-in-Aid for Scientific Research (C) 20K03507, 21K03176, 20K03793.


Appendix A Defining Relations of Uq,p(gl^N)U_{q,p}(\widehat{\mbox{\fourteeneufm gl}}_{N}) and Uq,p(sl^N)U_{q,p}(\widehat{\mbox{\fourteeneufm sl}}_{N})

A.1 Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{\mathfrak{gl}}_{N})

For g(P),g(P+h)𝔽g(P),g(P+h)\in{\mathbb{F}},

g(P+h)ej(z)=ej(z)g(P+h),g(P)ej(z)=ej(z)g(PQαj,P),\displaystyle g({P+h})e_{j}(z)=e_{j}(z)g({P+h}),\quad g({P})e_{j}(z)=e_{j}(z)g(P-\langle Q_{\alpha_{j}},P\rangle), (A.1)
g(P+h)fj(z)=fj(z)g(P+hαj,P+h),g(P)fj(z)=fj(z)g(P),\displaystyle g({P+h})f_{j}(z)=f_{j}(z)g(P+h-\langle{\alpha_{j}},P+h\rangle),\quad g({P})f_{j}(z)=f_{j}(z)g(P), (A.2)
g(P)kl+(z)=kl+(z)g(PQϵ¯l,P),g(P+h)kl+(z)=kl+(z)g(P+hQϵ¯l,P),\displaystyle g({P})k^{+}_{l}(z)=k^{+}_{l}(z)g(P-\langle Q_{\bar{\epsilon}_{l}},P\rangle),\quad g({P+h})k^{+}_{l}(z)=k^{+}_{l}(z)g(P+h-\langle Q_{\bar{\epsilon}_{l}},P\rangle),
(A.3)
ρ++(z2/z1)kl+(z1)kl+(z2)=ρ++(z1/z2)kl+(z2)kl+(z1),(1lN),\displaystyle\rho^{+}_{+}(z_{2}/z_{1})k^{+}_{l}(z_{1})k^{+}_{l}(z_{2})=\rho^{+}_{+}(z_{1}/z_{2})k^{+}_{l}(z_{2})k^{+}_{l}(z_{1}),\qquad(1\leq l\leq N), (A.4)
ρ++(z2/z1)(pz2/z1;p)(pq2z2/z1;p)(pq2z2/z1;p)(pz2/z1;p)kj+(z1)kl+(z2)\displaystyle\rho^{+}_{+}(z_{2}/z_{1})\frac{(p^{*}z_{2}/z_{1};p^{*})_{\infty}(pq^{2}z_{2}/z_{1};p)_{\infty}}{(p^{*}q^{2}z_{2}/z_{1};p^{*})_{\infty}(pz_{2}/z_{1};p)_{\infty}}k^{+}_{j}(z_{1})k^{+}_{l}(z_{2})
=ρ++(z1/z2)(q2z1/z2;p)(z1/zz;p)(z1/z2;p)(q2z1/z2;p)kl+(z2)kj+(z1)(1j<lN),\displaystyle\qquad={\rho}^{+}_{+}(z_{1}/z_{2})\frac{(q^{-2}z_{1}/z_{2};p^{*})_{\infty}(z_{1}/z_{z};p)_{\infty}}{(z_{1}/z_{2};p^{*})_{\infty}(q^{-2}z_{1}/z_{2};p)_{\infty}}k^{+}_{l}(z_{2})k^{+}_{j}(z_{1})\quad(1\leq j<l\leq N), (A.5)
(pqc+2jz2/z1;p)(pqcjz2/z1;p)kj+(z1)ej(z2)=q1(qc+jz1/z2;p)(qc2+jz1/z2;p)ej(z2)kj+(z1),\displaystyle\frac{(p^{*}q^{c+2-j}z_{2}/z_{1};p^{*})_{\infty}}{(p^{*}q^{c-j}z_{2}/z_{1};p^{*})_{\infty}}k_{j}^{+}(z_{1})e_{j}(z_{2})=q^{-1}\frac{(q^{-c+j}z_{1}/z_{2};p^{*})_{\infty}}{(q^{-c-2+j}z_{1}/z_{2};p^{*})_{\infty}}e_{j}(z_{2})k_{j}^{+}(z_{1}), (A.6)
(pqc2jz2/z1;p)(pqcjz2/z1;p)kj+1+(z1)ej(z2)=q(qc+jz1/z2;p)(qc+2+jz1/z2;p)ej(z2)kj+1+(z1),\displaystyle\frac{(p^{*}q^{c-2-j}z_{2}/z_{1};p^{*})_{\infty}}{(p^{*}q^{c-j}z_{2}/z_{1};p^{*})_{\infty}}k_{j+1}^{+}(z_{1})e_{j}(z_{2})=q\frac{(q^{-c+j}z_{1}/z_{2};p^{*})_{\infty}}{(q^{-c+2+j}z_{1}/z_{2};p^{*})_{\infty}}e_{j}(z_{2})k_{j+1}^{+}(z_{1}), (A.7)
kl+(z1)ej(z2)kl+(z1)1=ej(z2)(lj,j+1),\displaystyle k_{l}^{+}(z_{1})e_{j}(z_{2})k_{l}^{+}(z_{1})^{-1}=e_{j}(z_{2})\qquad\qquad(l\not=j,j+1), (A.8)
(pqjz2/z1;p)(pq2jz2/z1;p)kj+(z1)fj(z2)=q(q2+jz1/z2;p)(qjz1/z2;p)fj(z2)kj+(z1),\displaystyle\frac{(pq^{-j}z_{2}/z_{1};p)_{\infty}}{(pq^{2-j}z_{2}/z_{1};p)_{\infty}}k_{j}^{+}(z_{1})f_{j}(z_{2})=q\frac{(q^{-2+j}z_{1}/z_{2};p)_{\infty}}{(q^{j}z_{1}/z_{2};p)_{\infty}}f_{j}(z_{2})k_{j}^{+}(z_{1}), (A.9)
(pqjz2/z1;p)(pq2jz2/z1;p)kj+1+(z1)fj(z2)=q1(q2+jz1/z2;p)(qjz1/z2;p)fj(z2)kj+1+(z1),\displaystyle\frac{(pq^{-j}z_{2}/z_{1};p)_{\infty}}{(pq^{-2-j}z_{2}/z_{1};p)_{\infty}}k_{j+1}^{+}(z_{1})f_{j}(z_{2})=q^{-1}\frac{(q^{2+j}z_{1}/z_{2};p)_{\infty}}{(q^{j}z_{1}/z_{2};p)_{\infty}}f_{j}(z_{2})k_{j+1}^{+}(z_{1}), (A.10)
kl+(z1)fj(z2)kl+(z1)1=fj(z2)(lj,j+1),\displaystyle k_{l}^{+}(z_{1})f_{j}(z_{2})k_{l}^{+}(z_{1})^{-1}=f_{j}(z_{2})\qquad\qquad(l\not=j,j+1), (A.11)
z1(q2z2/z1;p)(pq2z2/z1;p)ej(z1)ej(z2)=z2(q2z1/z2;p)(pq2z1/z2;p)ej(z2)ej(z1),\displaystyle z_{1}\frac{(q^{2}z_{2}/z_{1};p^{*})_{\infty}}{(p^{*}q^{-2}z_{2}/z_{1};p^{*})_{\infty}}e_{j}(z_{1})e_{j}(z_{2})=-z_{2}\frac{(q^{2}z_{1}/z_{2};p^{*})_{\infty}}{(p^{*}q^{-2}z_{1}/z_{2};p^{*})_{\infty}}e_{j}(z_{2})e_{j}(z_{1}), (A.12)
z1(q1z2/z1;p)(pqz2/z1;p)ej(z1)ej+1(z2)=z2(q1z1/z2;p)(pqz1/z2;p)ej+1(z2)ej(z1),\displaystyle z_{1}\frac{(q^{-1}z_{2}/z_{1};p^{*})_{\infty}}{(p^{*}qz_{2}/z_{1};p^{*})_{\infty}}e_{j}(z_{1})e_{j+1}(z_{2})=-z_{2}\frac{(q^{-1}z_{1}/z_{2};p^{*})_{\infty}}{(p^{*}qz_{1}/z_{2};p^{*})_{\infty}}e_{j+1}(z_{2})e_{j}(z_{1}), (A.13)
ej(z1)el(z2)=el(z2)ej(z1)(|jl|>1)\displaystyle e_{j}(z_{1})e_{l}(z_{2})=e_{l}(z_{2})e_{j}(z_{1})\qquad\qquad(|j-l|>1) (A.14)
z1(q2z2/z1;p)(pq2z2/z1;p)fj(z1)fj(z2)=z2(q2z1/z2;p)(pq2z1/z2;p)fj(z2)fj(z1),\displaystyle z_{1}\frac{(q^{-2}z_{2}/z_{1};p)_{\infty}}{(pq^{2}z_{2}/z_{1};p)_{\infty}}f_{j}(z_{1})f_{j}(z_{2})=-z_{2}\frac{(q^{-2}z_{1}/z_{2};p)_{\infty}}{(pq^{2}z_{1}/z_{2};p)_{\infty}}f_{j}(z_{2})f_{j}(z_{1}), (A.15)
z1(qz2/z1;p)(pq1z2/z1;p)fj(z1)fj+1(z2)=z2(qz1/z2;p)(pq1z1/z2;p)fj+1(z2)fj(z1),\displaystyle z_{1}\frac{(qz_{2}/z_{1};p)_{\infty}}{(pq^{-1}z_{2}/z_{1};p)_{\infty}}f_{j}(z_{1})f_{j+1}(z_{2})=-z_{2}\frac{(qz_{1}/z_{2};p)_{\infty}}{(pq^{-1}z_{1}/z_{2};p)_{\infty}}f_{j+1}(z_{2})f_{j}(z_{1}), (A.16)
fj(z1)fl(z2)=fl(z2)fj(z1)(|jl|>1)\displaystyle f_{j}(z_{1})f_{l}(z_{2})=f_{l}(z_{2})f_{j}(z_{1})\qquad\qquad(|j-l|>1) (A.17)
[ei(z1),fj(z2)]=δi,jκqq1(δ(qcz1/z2)kj(qc2z1)kj+1(qc2z1)1\displaystyle[e_{i}(z_{1}),f_{j}(z_{2})]=\frac{\delta_{i,j}\kappa}{q-q^{-1}}\left(\delta(q^{-c}z_{1}/z_{2})k_{j}^{-}(q^{-\frac{c}{2}}z_{1})k_{j+1}^{-}(q^{-\frac{c}{2}}z_{1})^{-1}\right.
δ(qcz1/z2)kj+(qc2z2)kj+1+(qc2z2)1),\displaystyle\left.\qquad\qquad\qquad\qquad\qquad\qquad\qquad-\delta(q^{c}z_{1}/z_{2})k_{j}^{+}(q^{-\frac{c}{2}}z_{2})k_{j+1}^{+}(q^{-\frac{c}{2}}z_{2})^{-1}\right), (A.18)
(pq2z2/z1;p)(pq2z2/z1;p){(pq1z1/w;p)(pqz1/w;p)(pq1z2/w;p)(pqz2/w;p)ej(w)ei(z1)ei(z2)\displaystyle\frac{(p^{*}q^{2}{z_{2}}/{z_{1}};p^{*})_{\infty}}{(p^{*}q^{-2}{z_{2}}/{z_{1}};p^{*})_{\infty}}\left\{\frac{(p^{*}q^{-1}{z_{1}}/{w};p^{*})_{\infty}}{(p^{*}qz_{1}/{w};p^{*})_{\infty}}\frac{(p^{*}q^{-1}{z_{2}}/w;p^{*})_{\infty}}{(p^{*}q{z_{2}}/w;p^{*})_{\infty}}e_{j}(w)e_{i}(z_{1})e_{i}(z_{2})\right.
[2]q(pq1w/z1;p)(pqw/z1;p)(pq1z2/w;p)(pqz2/w;p)ei(z1)ej(w)ei(z2)\displaystyle\left.\qquad\qquad\qquad-[2]_{q}\frac{(p^{*}q^{-1}w/{z_{1}};p^{*})_{\infty}}{(p^{*}qw/z_{1};p^{*})_{\infty}}\frac{(p^{*}q^{-1}{z_{2}}/w;p^{*})_{\infty}}{(p^{*}q{z_{2}}/w;p^{*})_{\infty}}e_{i}(z_{1})e_{j}(w)e_{i}(z_{2})\right.
+(pq1w/z1;p)(pqw/z1;p)(pq1w/z2;p)(pqw/z2;p)ei(z1)ei(z2)ej(w)}+(z1z2)=0,\displaystyle\left.\qquad+\frac{(p^{*}q^{-1}w/{z_{1}};p^{*})_{\infty}}{(p^{*}qw/z_{1};p^{*})_{\infty}}\frac{(p^{*}q^{-1}w/{z_{2}};p^{*})_{\infty}}{(p^{*}qw/{z_{2}};p^{*})_{\infty}}e_{i}(z_{1})e_{i}(z_{2})e_{j}(w)\right\}+(z_{1}\leftrightarrow z_{2})=0, (A.19)
(pq2z2/z1;p)(pq2z2/z1;p){(pqz1/w;p)(pq1z1/w;p)(pqz2/w;p)(pq1z2/w;p)fj(w)fi(z1)fi(z2)\displaystyle\frac{(pq^{-2}{z_{2}}/{z_{1}};p)_{\infty}}{(pq^{2}{z_{2}}/{z_{1}};p)_{\infty}}\left\{\frac{(pq{z_{1}}/{w};p)_{\infty}}{(pq^{-1}z_{1}/{w};p)_{\infty}}\frac{(pq{z_{2}}/w;p)_{\infty}}{(pq^{-1}{z_{2}}/w;p)_{\infty}}f_{j}(w)f_{i}(z_{1})f_{i}(z_{2})\right.
[2]q(pqw/z1;p)(pq1w/z1;p)(pqz2/w;p)(pq1z2/w;p)fi(z1)fj(w)fi(z2)\displaystyle\left.\qquad\qquad\qquad-[2]_{q}\frac{(pqw/{z_{1}};p)_{\infty}}{(pq^{-1}w/z_{1};p)_{\infty}}\frac{(pq{z_{2}}/w;p)_{\infty}}{(pq^{-1}{z_{2}}/w;p)_{\infty}}f_{i}(z_{1})f_{j}(w)f_{i}(z_{2})\right.
+(pqw/z1;p)(pq1w/z1;p)(pqw/z2;p)(pq1w/z2;p)fi(z1)fi(z2)fj(w)}+(z1z2)=0|ij|=1,\displaystyle\left.\qquad+\frac{(pqw/{z_{1}};p)_{\infty}}{(pq^{-1}w/z_{1};p)_{\infty}}\frac{(pqw/{z_{2}};p)_{\infty}}{(pq^{-1}w/{z_{2}};p)_{\infty}}f_{i}(z_{1})f_{i}(z_{2})f_{j}(w)\right\}+(z_{1}\leftrightarrow z_{2})=0\quad|i-j|=1,
(A.20)

where δ(z)=nzn\delta(z)=\sum_{n\in{\mathbb{Z}}}z^{n}, ρ(z)=ρ+(z)/ρ+(z)\rho(z)=\rho^{+*}(z)/\rho^{+}(z),

ρ++(z)={q2z}{q2q2Nz}{z}{q2Nz}{z}{q2Nz}{q2z}{q2q2Nz},{z}=(z;q2N,p),{z}=(z;q2N,p),\displaystyle\rho^{+}_{+}(z)=\frac{\{q^{2}z\}^{*}\{q^{-2}q^{2N}z\}^{*}\{z\}\{q^{2N}z\}}{\{z\}^{*}\{q^{2N}z\}^{*}\{q^{2}z\}\{q^{-2}q^{2N}z\}},\quad\{z\}=(z;q^{2N},p)_{\infty},\quad\{z\}^{*}=(z;q^{2N},p^{*})_{\infty},

and κ\kappa is given by

κ=(p;p)(pq2;p)(p;p)(pq2;p).\displaystyle\kappa=\frac{(p;p)_{\infty}(p^{*}q^{2};p^{*})_{\infty}}{(p^{*};p^{*})_{\infty}(pq^{2};p)_{\infty}}. (A.21)

We treat these relations as formal Laurent series in z,wz,w and zjz_{j}’s. All the coefficients in zjz_{j}’s are well defined in the pp-adic topology.

A.2 Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N})

The defining relations of Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}) consists of (2.46), (A.1), (A.2), the Serre relations (A.19) and (A.20), and the following relations.

z1(qaijz2/z1;p)(pqaijz2/z1;p)ei(z1)ej(z2)=z2(qaijz1/z2;p)(pqaijz1/z2;p)ej(z2)ei(z1),\displaystyle z_{1}\frac{(q^{a_{ij}}z_{2}/z_{1};p^{*})_{\infty}}{(p^{*}q^{-a_{ij}}z_{2}/z_{1};p^{*})_{\infty}}e_{i}(z_{1})e_{j}(z_{2})=-z_{2}\frac{(q^{a_{ij}}z_{1}/z_{2};p^{*})_{\infty}}{(p^{*}q^{-a_{ij}}z_{1}/z_{2};p^{*})_{\infty}}e_{j}(z_{2})e_{i}(z_{1}), (A.22)
z1(qaijz2/z1;p)(pqaijz2/z1;p)fi(z1)fj(z2)=z2(qaijz1/z2;p)(pqaijz1/z2;p)fj(z2)fi(z1),\displaystyle z_{1}\frac{(q^{-a_{ij}}z_{2}/z_{1};p)_{\infty}}{(pq^{a_{ij}}z_{2}/z_{1};p)_{\infty}}f_{i}(z_{1})f_{j}(z_{2})=-z_{2}\frac{(q^{-a_{ij}}z_{1}/z_{2};p)_{\infty}}{(pq^{a_{ij}}z_{1}/z_{2};p)_{\infty}}f_{j}(z_{2})f_{i}(z_{1}), (A.23)
[ei(z1),fj(z2)]=δi,jqq1(δ(qcz1/z2)ψj(qc2z2)δ(qcz1/z2)ψj+(qc2z2)).\displaystyle[e_{i}(z_{1}),f_{j}(z_{2})]=\frac{\delta_{i,j}}{q-q^{-1}}\left(\delta(q^{-c}z_{1}/z_{2})\psi_{j}^{-}(q^{\frac{c}{2}}z_{2})-\delta(q^{c}z_{1}/z_{2})\psi_{j}^{+}(q^{-\frac{c}{2}}z_{2})\right). (A.24)

References

  • [1] M. Aganagic and A. Okounkov, Elliptic Stable Envelopes, Journal of the American Mathematical Society 34, (2021), 79-133.
  • [2] J.Beck, Braid Group Action and Quantum Affine Algebras. Comm.Math.Phys.165 (1994), 555-568.
  • [3] V.Chari and A.N.Pressley, Yangians and RR-matrices, L’Enseignement Math. 36 (1990), 267–302.
  • [4] V. Chari and A. N. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), 261–283.
  • [5] V. Chari and A. N. Pressley, Quantum affine algebras and their representations, Proceedings of the Canadian Mathematical Society Annual Seminar Representations of Groups, Banff, 1994
  • [6] V. Chari and A. N. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
  • [7] V.G. Drinfeld, Hopf Algebras and the Quantum Yang-Baxter Equation, Soviet Math.Dokl. 32 (1985) 264–268; V.G. Drinfeld, Quantum Groups, Proceedings of the ICM, Berkeley (1986).
  • [8] V.G. Drinfeld, A New Realization of Yangians and Quantized Affine Algebras. Soviet Math. Dokl. 36 (1988) 212-216.
  • [9] P.Etingof and A.Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys. 196 (1998), 591–640 ; Exchange Dynamical Quantum Groups, Comm.Math.Phys. 205 (1999), 19–52.
  • [10] R.M.Farghly, H.Konno, K.Oshima, Elliptic Algebra Uq,p(𝔤^)U_{q,p}(\widehat{\mathfrak{g}}) and Quantum Z-algebras, Alg. Rep. Theory 18 (2014), 103-135.
  • [11] G. Felder, Elliptic Quantum Groups, Proc. ICMP Paris-1994 (1995), 211–218.
  • [12] I. M. Gelfand and M. L. Tsetlin, Finite-Dimensional Representations of the Group of Uni-modular Matrices, Dokl. Akad. Nauk SSSR 71 (1950), 825-828 (Russian).
  • [13] V.Gorbounov, R.Rimányi, V.Tarasov and A.Varchenko, Cohomology of the Cotangent Bundle of a Flag Variety as a Yangian Bethe Algebra, J.Geom.Phys., 74 (2013) 56–86.
  • [14] M.Jimbo, A qq-difference analogue of U(𝔤)U(\mathfrak{g}) and the Yang-Baxter Equation, Lett.Math.Phys. 10 (1985) 63–69.
  • [15] M. Jimbo, in Field Theory, Quantum Gravity and Strings, Lecture Notes in Physics 246, Springer, 1985, p. 335.
  • [16] M.Jimbo, A qq-Analogue of U(𝔤𝔩(N+1))U({\mathfrak{gl}}(N+1)), Hecke Algebra, and the Yang-Baxter Equation, Lett.Math.Phys. 11 (1986) 247–252.
  • [17] M. Jimbo, H. Konno, S. Odake and J. Shiraishi, Quasi-Hopf Twistors for Elliptic Quantum Groups, Transformation Groups 4 (1999) 303–327.
  • [18] M. Jimbo, H. Konno, S. Odake and J. Shiraishi, Elliptic Algebra Uq,p(𝔰𝔩^2)U_{q,p}(\widehat{\mathfrak{sl}}_{2}): Drinfeld Currents and Vertex Operators, Comm. Math. Phys. 199 (1999), 605–647
  • [19] E.Koelink and H.Rosengren, Harmonic Analysis on the SU(2)SU(2) Dynamical Quantum Group, Acta.Appl.Math., 69 (2001), 163–220.
  • [20] T. Kojima and H. Konno, The Elliptic Algebra Uq,p(𝔰𝔩^N)U_{q,p}(\widehat{\mathfrak{sl}}_{N}) and the Drinfeld Realization of the Elliptic Quantum Group q,λ(𝔰𝔩^N)\mathcal{B}_{q,\lambda}(\widehat{\mathfrak{sl}}_{N}), Comm. Math. Phys. 239 (2003), 405–447.
  • [21] H. Konno, Elliptic Quantum Group Uq,p(𝔰𝔩^2)U_{q,p}(\widehat{\mathfrak{sl}}_{2}), Hopf Algebroid Structure and Elliptic Hypergeometric Series, Journal of Geometry and Physics 59 (2009), 1485-1511.
  • [22] H. Konno, Elliptic Weight Functions and Ellitpic qq-KZ equation, J. Int. Sys. 2 (2017), 1-43.
  • [23] H. Konno, Elliptic Quantum Groups Uq,p(𝔤𝔩^N)U_{q,p}(\widehat{{\mathfrak{gl}}}_{N}) and Eq,p(𝔤𝔩^N)E_{q,p}(\widehat{{\mathfrak{gl}}}_{N}), Advanced Studies in Pure Mathematics 76 (2018), 347-417.
  • [24] H. Konno, Elliptic Stable Envelops and Finite-Dimensional Representations of Elliptic Quantum Group, J. Int. Sys. 3 (2018), 1-43.
  • [25] Y.Koyama, Staggered Polarization of Vertex Models with Uq(𝔰𝔩(n)^)U_{q}(\widehat{\mathfrak{sl}(n)}) - Symmetry, Comm.Math.Phys. 164 (1994), 277–291.
  • [26] D.Maulik and A.Okounkov, Quantum Groups and Quantum Cohomology, Astérisque 408 (2019), Societe mathematique de France
  • [27] A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI,. 2007.
  • [28] M. Nazarov and V. Tarasov, Yangians and Gelfand-Zetlin Bases, Publ.RIMS, Kyoto Univ. 30 (1994), 459–478.
  • [29] M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand-Zetlin Bases, Journal fur die Reine und Angewandte Mathematik 496 (1998), 181-212.
  • [30] A.Okounkov, Lectures on K-theoretic Computations in Enumerative Geometry. (2015), arXiv: 1512.07363.
  • [31] R. Rimányi, V. Tarasov, A. Varchenko, Trigonometric Weight Functions as KK-theoretic Stable Envelope Maps for the Cotangent Bundle of a Flag Variety, J. Geom. Phys. 94 (2015), 81-119.
  • [32] R.Rimányi, V.Tarasov and A.Varchenko, Elliptic and KK-theoretic Stable Envelopes and Newton Polytopes, Selecta Math. (N.S.) 25 (2019), no. 1, Paper No.16, 43 pp.
  • [33] V.Tarasov, Irreducible Monodromy Matrices for the RR Matrix of the XXZXXZ Model and Local Lattice Quantum Hamiltonians, Theor.Math.Phys. 63 (1985) 440–454.
  • [34] H. Rosengren, An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices, Adv. in Appl. Math. 43 (2009) 137–155.
  • [35] K.Ueno, T.Takebayashi and Y.Shibukawa, Gelfand-Zetlin Basis for Uq(𝔤𝔩(N+1))U_{q}({\mathfrak{gl}}(N+1)) Modules, Lett.Math.Phys. 18 (1989) 215–221.