This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Jajati Keshari Sahoo 22institutetext: Department of Matheamtic, BITS Pilani K.K. Birla Goa Campus, Goa, India. 22email: [email protected] 33institutetext: Pradeep Boggarapu 44institutetext: Department of Matheamtic, BITS Pilani K.K. Birla Goa Campus, Goa, India. 44email: [email protected] 55institutetext: Ratikanta Behera, 66institutetext: Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India, 66email: [email protected] 77institutetext: M. Zuhair Nashed, 88institutetext: Department of Mathematics, University of Central Florida, Orlando, Florida, USA, 88email: [email protected]

GD1 inverse and 1GD inverse for Hilbert space operators

Jajati Keshari Sahoo    Prdeep Boggarapu    Ratikanta Behera    M. Zuhair Nashed
(Received: date / Accepted: date)
Abstract

Mosić and Djordjević introduced the notation of the gDMP inverse for Hilbert space operators in [J. Spectr. Theory, 8(2):555–573, 2018] by considering generalized Drazin inverse with the Moore-Penrose inverse. This paper introduces two new classes of inverses: GD1 (generalized Drazin and inner) inverse and 1GD (inner and generalized Drazin) inverse for Hilbert space operators. The existence and uniqueness of the GD1 (also 1GD) inverse are discussed along with some properties through core-quasinilpotent decomposition and closed range decomposition operator. We further establish a few explicit representations of the GD1 inverse and their interconnections with generalized Drazin inverse. In addition, we discuss a few properties of GD1 (also 1GD) inverse through binary relation.

Keywords:
Drazin inverseinner inverse Generalized Drazin inverse gDMP inverse Hilbert space operators
MSC:
47A05 47A62 15A09

1 Introduction

1.1 Background and motivation

For any complex Hilbert spaces \mathcal{H} and 𝒦\mathcal{K}, we denote (,𝒦)\mathcal{B}(\mathcal{H},\mathcal{K}) for the space of all bounded operators from \mathcal{H} into 𝒦\mathcal{K} and ():=(,)\mathcal{B}(\mathcal{H}):=\mathcal{B}(\mathcal{H},\mathcal{H}). For any operator T(,𝒦)T\in\mathcal{B}(\mathcal{H},\mathcal{K}), we denote the null space, range space, spectrum and adjoint of TT by 𝒩(T),(T)\mathcal{N}(T),\mathcal{R}(T), σ(T)\sigma(T) and TT^{*} respectively. It is easy to see that for an operator TB(,𝒦)T\in B(\mathcal{H},\mathcal{K}), (T)\mathcal{R}(T) is closed if and only if there exists X(𝒦,)X\in\mathcal{B}(\mathcal{K},\mathcal{H}) such that TXT=TTXT=T, in this case, we call XX is an inner generalized inverse of TT and the operator TT is relatively regular. We denote the set of inner inverses of TT by T{1}T\{1\} and element of T{1}T\{1\}, by TT^{-}. Further, an element AA of a complex Hilbert space \mathcal{H} is called regular (or relatively regular) if there is XX\in\mathcal{H}. We now recall the Drazin inverse for Hilbert space operators. For an operator T()T\in\mathcal{B}(\mathcal{H}), if there exists an operator X()X\in\mathcal{B}(\mathcal{H}) satisfying the following:

XTX=X,TX=XT,TT2Xis nilpotentXTX=X,\quad TX=XT,\quad T-T^{2}X~{}\text{is nilpotent} (1)

then TT is said to be Drazin invertible and such an XX is called Drazin inverse of TT and denoted by TDT^{D}. The Drazin inverse has various applications such as differential and singular difference equations and Markov chain Camp79 ; Chate83 ; Rako01 . Because of the non-reflexive condition, the Drazin inverse is very useful in ring theory, matrix theory (specifically in spectral theory), and various applications of matrix computation. Further, Drazin has discussed the definitions of generalized inverses that give a generalization of the original Drazin inverse in Drazin92 . It is known that the Drazin inverse of TT exists if and only if 0 is a pole of the resolvent operator Rλ(T)=(λIT)1R_{\lambda}(T)=(\lambda I-T)^{-1} of finite order, say kk. In this case, kk is called the Drazin index of TT denoted by ind(TT) and the Drazin inverse of TT is unique. If an operator T()T\in\mathcal{B}(\mathcal{H}) has a Drazin index of at most 1, it is called group invertible and TDT^{D} is called group inverse of TT denoted by T#T^{\#}. The representations and properties of the Drazin inverses on Hilbert space operators were derived in koli ; stan1 ; du ; Kol ; nas87 ; wei3 .

Indeed, Moore BenBook proposed the concept of generalized inverses of matrices in the 1920s, and Groetsch in Groetsch77 generalized the original idea to the bounded linear operators between Hilbert spaces with closed range. Further, Nashed Nashed discussed the perturbation and approximations of generalized inverses of linear operators between more general Banach spaces. It is well known that the perturbation analysis of generalized inverses in Hilbert and Banach spaces has significantly impacted in practical applications of operator theory (see Jipu8 ; Nashed71 ; Wei01 . Motivated by the work of Mosić and Djordjević mosic18 , and the idea of recent works on matrices GDMP22 ; mp1 ; sahoo22 , in this paper, we introduce and study the properties of GD1inverses and 1GD inverses for Hilbert space operators. A brief summarization of the main points of the contribution in this article is listed below.

  • \bullet

    We have introduced the GD1 inverse and its dual (1GD inverse) for Hilbert space operators by extending these inverses as more comprehensive classes of generalized Drazin inverse and an inner inverse.

  • \bullet

    We have discussed several characterizations of GD1 inverse and 1GD inverse through core-quasinilpotent and closed range decomposition.

  • \bullet

    A few explicit representations of the GD1 inverse and their interconnections with generalized Drazin inverse have been presented explicitly.

  • \bullet

    A binary relation for both GD1 and 1GD inverse is introduced. Further, we have shown that the relation is a pre-order under some suitable conditions.

1.2 Outline

The outline of the paper is as follows. We present some necessary definitions and notation in Sect. 2. Definition, existence, and several explicit representations of the GD1 inverse and their interconnections with generalized Drazin inverses for Hilbert space operators are considered in Sect. 3. In Sect. 4, we discuss a few properties of binary relations for the GD1 inverse through gDMP partial order. Given the GD1 inverse, we discuss several representations and characterizations of the 1GD inverse in Sect. 5. In addition, we discuss the properties of binary relations for the GD1 through gDMP partial order. The work is concluded along with a few future perspective problems in Sect. 5.

2 Preliminaries

In this section, we present a few notations, and definitions, which will be used in the subsequent sections.

2.1 Generalized Drazin Inverse

An operator T()T\in\mathcal{B}(\mathcal{H}) is said to be quasinilpotent if IXTI-XT is invertible in ()\mathcal{B}(\mathcal{H}) for every X()X\in\mathcal{B}(\mathcal{H}) with XT=TXXT=TX. TT is quasinilpotent if and only if Tn1/n0\|T^{n}\|^{1/n}\to 0 which is equivalent to λIT\lambda I-T is invertible for all λ{0}.\lambda\in\mathbb{C}-\{0\}. If we replace nilpotent in (1) by quasinilpotent, we get the definition of generalized Drazin inverse.

For T()T\in\mathcal{B}(\mathcal{H}), if there exists X()X\in\mathcal{B}(\mathcal{H}) satisfying the following:

XTX=X,TX=XT,TT2Xis quasinilpotentXTX=X,\quad TX=XT,\quad T-T^{2}X~{}\text{is quasinilpotent} (2)

then TT is said to be Drazin invertible and such an XX is called generalized Drazin inverse of TT and denoted by TdT^{d}. Since every nilpotent operator is quasinilpotent, the Drazin inverse is the special case of generalized Drazin inverse.

It is proved that (see Kol Lemma 2.4), T()T\in\mathcal{B}(\mathcal{H}) is generalized Drazin invertible i.e., TdT^{d} exists in ()\mathcal{B}(\mathcal{H}) if and only if there is an idempotent P()P\in\mathcal{B}(\mathcal{H}) commuting with TT such that

TPis quasinilipotent,T+Pis invertible.TP~{}\text{is quasinilipotent},\quad T+P~{}\text{is invertible}.

Here in this case, the generalized Drazin inverse TdT^{d} is unique and is given by

Td=(T+P)1(IP).T^{d}=(T+P)^{-1}(I-P).

And then it is proved that the preceding statement is true if and only if 0accσ(T)0\notin acc\;\sigma(T).

2.2 Core-Quasinilpotent Decomposition

If T()T\in\mathcal{B}(\mathcal{H}) and 0accσ(T)0\notin acc\,\sigma(T) then the spectral projector (idempotent) PP of TT corresponding to {0}\{0\} is given by P=ITTdP=I-TT^{d}. In (drag, , Lemma 1.1), it is proved that TT has the following operator matrix form

T=[T100T2]:[𝒩(P)(P)][𝒩(P)(P)]T=\begin{bmatrix}T_{1}~{}&~{}0\\ 0~{}&~{}T_{2}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix} (3)

with respect to the decomposition =𝒩(P)(P)\mathcal{H}=\mathcal{N}(P)\oplus\mathcal{R}(P), where T1:𝒩(P)𝒩(P)T_{1}:\mathcal{N}(P)\to\mathcal{N}(P) is invertible and T2:(P)(P)T_{2}:\mathcal{R}(P)\to\mathcal{R}(P) is quasinilpotent. And the generalized Drazin inverse of TT is given by

Td=[T11000]:[𝒩(P)(P)][𝒩(P)(P)].T^{d}=\begin{bmatrix}T_{1}^{-1}~{}&~{}0\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}.

In view of (3), if we denote CT=[T1000]C_{T}=\begin{bmatrix}T_{1}~{}&~{}0\\ 0~{}&~{}0\end{bmatrix} and QT=[000T2]Q_{T}=\begin{bmatrix}0~{}&~{}0\\ 0~{}&~{}T_{2}\end{bmatrix}, then we have T=CT+QTT=C_{T}+Q_{T} and it is known as core-quasinilpotent decomposition of TT. It can be proved that CT=T2TdC_{T}=T^{2}T^{d}, known as the core part of TT and QT=TPQ_{T}=TP, known as the quasinilpotent part of TT.

2.3 Closed Range Decomposition

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. It is known that (see (drag, , Lemma 1.2) we have the decomposition =(T)𝒩(T)\mathcal{H}=\mathcal{R}(T)\oplus^{\perp}\mathcal{N}(T^{*}) with respect to which the operator TT has the following matrix representation:

T=[A1A200]:[(T)𝒩(T)][(T)𝒩(T)]T=\begin{bmatrix}A_{1}~{}&~{}A_{2}\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}\to\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix} (4)

where D=A1A1+A2A2:R(T)R(T)D=A_{1}A_{1}^{*}+{A}_{2}A_{2}^{*}:R(T)\to R(T) is positive invertible operator. The generalized Drazin inverse of TT with respect to this decomposition is given by (see mosic18 )

Td=[A1d(A1d)2A200]:[(T)𝒩(T)][(T)𝒩(T)].T^{d}=\begin{bmatrix}A_{1}^{d}~{}&~{}(A_{1}^{d})^{2}A_{2}\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}\to\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}.

3 GD1 inverses

In this section, we introduce GD1 inverse for Hilbert space operators by combining generalized Drazin inverse and an inner inverse. In addition, we discuss a few characterizations of these inverses along with its interconnection with other generalized inverses.

3.1 Existence of GD1 inverses

Proposition 1

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then X=TdTTX=T^{d}TT^{-} is the unique solution of the following conditions:

TX=P(TTdT),𝒩(TdT) and (X)(TTd).TX=P_{\mathcal{R}(TT^{d}T),\mathcal{N}(T^{d}T^{-})}\mbox{ and }\mathcal{R}(X)\subset\mathcal{R}(TT^{d}). (5)
Proof

Let X=TdTTX=T^{d}TT^{-}. Then we verify that (TX)2=TTdTTTTdTT=TTdTT=TX(TX)^{2}=TT^{d}TT^{-}TT^{d}TT^{-}=TT^{d}TT^{-}=TX and (X)=(TdTT)(TTd)\mathcal{R}(X)=\mathcal{R}(T^{d}TT^{-})\subset\mathcal{R}(TT^{d}). The range condition (TX)=(TTdT)\mathcal{R}(TX)=\mathcal{R}(TT^{d}T) is follows from TTdT=TTdTTT=TXTTT^{d}T=TT^{d}TT^{-}T=TXT. From TdT=(Td)2TTdTT=(Td)2TXT^{d}T^{-}=(T^{d})^{2}TT^{d}TT^{-}=(T^{d})^{2}TX and TX=T2TdTTX=T^{2}T^{d}T^{-}, we obtain 𝒩(TX)=𝒩(TdT)\mathcal{N}(TX)=\mathcal{N}(T^{d}T^{-}). Next, we will show the uniqueness of XX. Suppose there are two operators, X1X_{1} and X2X_{2}, which satisfy (5). Then T(X1X2)=𝟎T(X_{1}-X_{2})=\bf 0 and subsequently, (X1X2)𝒩(T)𝒩(TdT)\mathcal{R}(X_{1}-X_{2})\subset\mathcal{N}(T)\subset\mathcal{N}(T^{d}T). Using (X1)(TTd)\mathcal{R}(X_{1})\subset\mathcal{R}(TT^{d}) and (X2)(TTd)\mathcal{R}(X_{2})\subset\mathcal{R}(TT^{d}), we can conclude that (X1X2)(TTd)𝒩(TTd)={0}\mathcal{R}(X_{1}-X_{2})\subset\mathcal{R}(TT^{d})\cap\mathcal{N}(TT^{d})=\{0\}. Hence X1=X2X_{1}=X_{2}.

In view of the Proposition 1, we define the following representation of GD1 inverse for Hilbert space operators.

Definition 1

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range and TT^{-} be a fixed inner inverse of TT. An operator XX is called the GD1 inverse of TT if it satisfies

TX=P(TTdT),𝒩(TdT) and (X)(TTd)TX=P_{\mathcal{R}(TT^{d}T),\mathcal{N}(T^{d}T^{-})}\mbox{ and }\mathcal{R}(X)\subset\mathcal{R}(TT^{d}).

The GD1 inverse of TT is denoted by TGDT^{GD-} and it is explicitly represented by TGD=TdTTT^{GD-}=T^{d}TT^{-}.

One may observe that for every fixed inner TT^{-} of TT, we may get different GD1 inverse of TT. So, it is important to study the equivalent class of inner inverses, for which we get the same GD1 inverse. For any operator T()T\in\mathcal{B}(\mathcal{H}) with closed range, consider the core-quasinilpotent decomposition of TT, as given 3. That is,

T=[T100T2]:[𝒩(P)(P)][𝒩(P)(P)].T=\begin{bmatrix}T_{1}~{}&~{}0\\ 0~{}&~{}T_{2}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}.

Any inner inverse of TT will be of the form:

T=[T11YZT2]:[𝒩(P)(P)][𝒩(P)(P)], where (T2)𝒩(Y)(Z)𝒩(T2) and T2T2{1}.T^{-}=\begin{bmatrix}{T_{1}}^{-1}~{}&~{}Y\\ Z~{}&~{}T_{2}^{-}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix},\mbox{ where $\mathcal{R}(T_{2})\subset\mathcal{N}(Y)$, $\mathcal{R}(Z)\subset\mathcal{N}(T_{2})$ and $T_{2}^{-}\in T_{2}\{1\}$}. (6)

Thus the GD1 inverse of TT is given by

TGD=[T11Y00]:[𝒩(P)(P)][𝒩(P)(P)].T^{GD-}=\begin{bmatrix}{T_{1}}^{-1}~{}&~{}Y\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}. (7)

Next, we define a binary relation 1\sim_{1} on the set T{1}T\{1\}. For T,T=T{1}T^{-},~{}T^{=}\in T\{1\},

T1T= if and only if TdTT=TdTT=.T^{-}\sim_{1}T^{=}\mbox{ if and only if }T^{d}TT^{-}=T^{d}TT^{=}.

It is clear that 1\sim_{1} is an equivalent relation on T{1}T\{1\} and the equivalence class of TT{1}T^{-}\in T\{1\} is given by [T]1={T=T{1}:TdTT=TdTT=}[T^{-}]_{\sim_{1}}=\{T^{=}\in T\{1\}~{}:~{}T^{d}TT^{-}=T^{d}TT^{=}\}. We can represent the inner inverse T=T^{=} of TT, as

T==[T11Y1Z1T2=]:[𝒩(P)(P)][𝒩(P)(P)], where (T2)𝒩(Y1)(Z1)𝒩(T2) and T2=T2{1}).T^{=}=\begin{bmatrix}{T_{1}}^{-1}~{}&~{}Y_{1}\\ Z_{1}~{}&~{}T_{2}^{=}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix},\mbox{ where $\mathcal{R}(T_{2})\subset\mathcal{N}(Y_{1})$, $\mathcal{R}(Z_{1})\subset\mathcal{N}(T_{2})$ and $T_{2}^{=}\in T_{2}\{1\}$)}.

Hence T=[T]1T^{=}\in[T^{-}]_{\sim_{1}} if and only if Y=Y1Y=Y_{1}. Further,

[T]1={[T11YZ1X1]:[𝒩(P)(P)][𝒩(P)(P)]T{1}:(Z1)𝒩(T2) and X1T2{1}}.[T^{-}]_{\sim_{1}}=\left\{\begin{bmatrix}{T_{1}}^{-1}~{}&~{}Y\\ Z_{1}~{}&~{}X_{1}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\in T\{1\}~{}:~{}\mathcal{R}(Z_{1})\subset\mathcal{N}(T_{2})\mbox{ and }X_{1}\in T_{2}\{1\}\right\}.

Therefore, TGDT^{GD-} is invariant to the operators of [T]1[T^{-}]_{\sim_{1}}.

Using the the above computations, we state the following result.

Theorem 3.1

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range and let

T=[T100T2]:[𝒩(P)(P)][𝒩(P)(P)].T=\begin{bmatrix}T_{1}~{}&~{}0\\ 0~{}&~{}T_{2}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}.

be a core quasinilpotent decomposition of TT, as defined in (3). For an inner inverse of TT of the form

T=[T11YZT2]:[𝒩(P)(P)][𝒩(P)(P)], where (T2)𝒩(Y) and (Z)𝒩(T2),T^{-}=\begin{bmatrix}{T_{1}}^{-1}~{}&~{}Y\\ Z~{}&~{}T_{2}^{-}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix},\mbox{ where $\mathcal{R}(T_{2})\subset\mathcal{N}(Y)$ and $\mathcal{R}(Z)\subset\mathcal{N}(T_{2})$},

the GD1 inverse of TT is given by

TGD=[T11Y00]=Td+[0Y00]:[𝒩(P)(P)][𝒩(P)(P)].T^{GD-}=\begin{bmatrix}{T_{1}}^{-1}~{}&~{}Y\\ 0~{}&~{}0\end{bmatrix}=T^{d}+\begin{bmatrix}0~{}&~{}Y\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}. (8)

Consequently, TGD=TdT^{GD-}=T^{d} if and only if Y=0Y=0.

In view of the decomposition (4), we can verify the following theorem.

Theorem 3.2

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range and let

T=[A1A200]:[(T)𝒩(T)][(T)𝒩(T)]T=\begin{bmatrix}A_{1}~{}&~{}A_{2}\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}\to\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}

be the decomposition of TT, as defined in (4). For an inner inverse

T=[Z1Z2Z3Z4]:[(T)𝒩(T)][(T)𝒩(T)]T^{-}=\begin{bmatrix}Z_{1}~{}&~{}Z_{2}\\ Z_{3}~{}&~{}Z_{4}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}\to\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix} (with A1Z1+A2Z3=IA_{1}Z_{1}+A_{2}Z_{3}=I),

the GD1 inverse of TT is given by

TGD=[A1dA1d(A1Z2+A2Z4)00]:[(T)𝒩(T)][(T)𝒩(T)],Z2(𝒩(T),(T)),Z4(𝒩(T)).T^{GD-}=\begin{bmatrix}A_{1}^{d}~{}&~{}A_{1}^{d}(A_{1}Z_{2}+A_{2}Z_{4})\\ 0~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}\to\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix},~{}Z_{2}\in\mathcal{B}(\mathcal{N}(T^{*}),\mathcal{R}(T)),~{}Z_{4}\in\mathcal{B}(\mathcal{N}(T^{*})).

Consequently, TGD=TdT^{GD-}=T^{d} if and only if A1d(A1Z2+A2Z4)=(A1d)2A2A_{1}^{d}(A_{1}Z_{2}+A_{2}Z_{4})=(A_{1}^{d})^{2}A_{2}.

3.2 Example

Here we will give an example of operator with closed range on l2l^{2}, we will find its generalized Drazin inverse and the class of GD1GD1 inverses. Consider the standard Schauder basis {e1,e2,}\{e_{1},e_{2},\ldots\} for the Hilbert space l2l^{2}and let B1={e1,e2,e3}B_{1}=\{e_{1},e_{2},e_{3}\} and B2={e4,e5,}B_{2}=\{e_{4},e_{5},\ldots\}, 1=span(B1)\mathcal{H}_{1}=span(B_{1}), 2=span(B2)¯\mathcal{H}_{2}=\overline{span(B_{2})}, and l2=12l^{2}=\mathcal{H}_{1}\oplus\mathcal{H}_{2}. Define T:l2l2T:l^{2}\to l^{2} using the block matrix by

T=[A00D]T=\begin{bmatrix}A~{}&~{}0\\ 0~{}&~{}D\end{bmatrix} (9)

with respect the decomposition l2=12l^{2}=\mathcal{H}_{1}\oplus\mathcal{H}_{2}, where A:11A:\mathcal{H}_{1}\to\mathcal{H}_{1} whose matrix representation with respect to the basis B1B_{1} is given by

A=[123020010]A=\begin{bmatrix}1~{}&~{}2~{}&~{}3\\ 0~{}&~{}2~{}&~{}0\\ 0~{}&~{}1~{}&~{}0\end{bmatrix}

and D:22D:\mathcal{H}_{2}\to\mathcal{H}_{2} is the diagonal operator defined by Den=(2n1n)en\displaystyle De_{n}=\Big{(}\frac{2n-1}{n}\Big{)}e_{n} for n4n\geq 4. Since DD is invertible, it can be verified that

Td=[Ad00D1]:[12][12].T^{d}=\begin{bmatrix}A^{d}~{}&~{}0\\ 0~{}&~{}D^{-1}\end{bmatrix}:\begin{bmatrix}\mathcal{H}_{1}\\ \mathcal{H}_{2}\end{bmatrix}\to\begin{bmatrix}\mathcal{H}_{1}\\ \mathcal{H}_{2}\end{bmatrix}.

It is easy to compute that

Ad=[113/4301/2001/40]A^{d}=\begin{bmatrix}1~{}&~{}-13/4~{}&~{}3\\ 0~{}&~{}1/2~{}&~{}0\\ 0~{}&~{}1/4~{}&~{}0\end{bmatrix}

and

D1en=(n2n1)enforn4.D^{-1}e_{n}=\Big{(}\frac{n}{2n-1}\Big{)}e_{n}~{}\text{for}~{}n\geq 4.

Now will find the class T{1}T\{1\}. Let

T=[X1X2X3X4]:[12][12]T^{-}=\begin{bmatrix}X_{1}~{}&~{}X_{2}\\ X_{3}~{}&~{}X_{4}\end{bmatrix}:\begin{bmatrix}\mathcal{H}_{1}\\ \mathcal{H}_{2}\end{bmatrix}\to\begin{bmatrix}\mathcal{H}_{1}\\ \mathcal{H}_{2}\end{bmatrix}

In view of (9) and TTT=TTT^{-}T=T with easy computations we get that X1A{1},AX2=0,X3A=0X_{1}\in A\{1\},~{}AX_{2}=0,~{}X_{3}A=0 and X4=D1X_{4}=D^{-1}. Thus

TGD=TdTT=[AdAA0X3D1]:[12][12].T^{GD-}=T^{d}TT^{-}=\begin{bmatrix}A^{d}AA^{-}~{}&~{}0\\ X_{3}~{}&~{}D^{-1}\end{bmatrix}:\begin{bmatrix}\mathcal{H}_{1}\\ \mathcal{H}_{2}\end{bmatrix}\to\begin{bmatrix}\mathcal{H}_{1}\\ \mathcal{H}_{2}\end{bmatrix}.

Hence the class of GD1 inverses of TT is parameterized by AA{1}A^{-}\in A\{1\} and X3(1,2)X_{3}\in\mathcal{B}(\mathcal{H}_{1},\mathcal{H}_{2}) with X3A=0.X_{3}A=0.

3.3 Characterizations of GD1 inverses

The GD1 inverse can be obtained from outer inverse (XX is called an outer inverse of TT if XTX=XXTX=X) with a prescribed range and null space, as presented below.

Theorem 3.3

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

  1. (i)

    TGDT=TdTT^{GD-}T=T^{d}T is a projector onto (TdT)\mathcal{R}(T^{d}T) along 𝒩(TdT)\mathcal{N}(T^{d}T).

  2. (ii)

    TTGDTT^{GD-} is a projector onto (TTdT)\mathcal{R}(TT^{d}T) along 𝒩(TdT)\mathcal{N}(T^{d}T^{-}).

  3. (iii)

    TGDTTGD=TGDT^{GD-}TT^{GD-}=T^{GD-}, (TGD)=(TdT)\mathcal{R}(T^{GD-})=\mathcal{R}(T^{d}T) and 𝒩(TGD)=𝒩(TdT)\mathcal{N}(T^{GD-})=\mathcal{N}(T^{d}T^{-}).

Proof

(i) It is trivial.
(ii) Using the representation of TGDT^{GD-}, we obtain

(TTGD)2=TTdTTTTdTT=TTdTTdTT=TTdTT=TTGD(TT^{GD-})^{2}=TT^{d}TT^{-}TT^{d}TT^{-}=TT^{d}TT^{d}TT^{-}=TT^{d}TT^{-}=TT^{GD-} (10)

and

TTdT=TdTTT=TGDT.TT^{d}T=T^{d}TT^{-}T=T^{GD-}T. (11)

Using (10) and (11), we get (TTGD)=(TTdT)\mathcal{R}(TT^{GD-})=\mathcal{R}(TT^{d}T). Since TTGD=T2TdTTT^{GD-}=T^{2}T^{d}T^{-} and TdT=TdTGDT^{d}T^{-}=T^{d}T^{GD-}, we have 𝒩(TTGD)=𝒩(TdT)\mathcal{N}(TT^{GD-})=\mathcal{N}(T^{d}T^{-}).

Clearly TGDTTGD=TGDT^{GD-}TT^{GD-}=T^{GD-}. From TGD=TdTTT^{GD-}=T^{d}TT^{-}, TdT=TGDTT^{d}T=T^{GD-}T, and TdT=TdTGDT^{d}T^{-}=T^{d}T^{GD-}, we obtain (TGD)=(TdT)\mathcal{R}(T^{GD-})=\mathcal{R}(T^{d}T) and 𝒩(TGD)=𝒩(TdT)\mathcal{N}(T^{GD-})=\mathcal{N}(T^{d}T^{-}). ∎

Notice that if TTGD=TGDTTT^{GD-}=T^{GD-}T then TGD=TdTTGD=TdTGDT=TdT^{GD-}=T^{d}TT^{GD-}=T^{d}T^{GD-}T=T^{d}. Conversely, if TGD=TdT^{GD-}=T^{d}, then we can easily verify that TTGD=TGDTTT^{GD-}=T^{GD-}T. Thus we state the following result.

Theorem 3.4

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then TTGD=TGDTTT^{GD-}=T^{GD-}T if and only if TGD=TdT^{GD-}=T^{d}.

Theorem 3.5

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then X=TdTTX=T^{d}TT^{-} is the unique solution of operator equations:

XTX=X,TdX=TdT,andXT=TdT.XTX=X,~{}~{}T^{d}X=T^{d}T^{-},~{}~{}\text{and}~{}~{}XT=T^{d}T. (12)
Proof

In view of Theorem 3.3 (i) and (iii), X=TdTTX=T^{d}TT^{-} satisfies XT=TdTXT=T^{d}T and XTX=XXTX=X. For X=TdTTX=T^{d}TT^{-}, we have that TdX=(Td)2TT=TdTT^{d}X=(T^{d})^{2}TT^{-}=T^{d}T^{-}. Therefore X=TdTTX=T^{d}TT^{-} satisfies the operator equations (12).

Now we will prove the uniqueness. Suppose there exists X1X_{1} and X2X_{2} which satisfies the operator equations (12). Then

X1=X1TX1=TdTX1=TTdT=TTdX2=X2TX2=X2.\displaystyle X_{1}=X_{1}TX_{1}=T^{d}TX_{1}=TT^{d}T^{-}=TT^{d}X_{2}=X_{2}TX_{2}=X_{2}.

The idempotent property of GD1 inverse is discussed in the below result.

Proposition 2

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

  • (i)

    (TGD)2=TdT(T^{GD-})^{2}=T^{d}T^{-}.

  • (ii)

    TGDT^{GD-} is idempotent if and only if TGD=TdTT^{GD-}=T^{d}T^{-} if and only if TGD=TTGDT^{GD-}=TT^{GD-}.

Proof

(i) (TGD)2=TdTTTTdT=TdTTdT=TdT(T^{GD-})^{2}=T^{d}TT^{-}TT^{d}T^{-}=T^{d}TT^{d}T^{-}=T^{d}T^{-}.
(ii) Let TGDT^{GD-} be idempotent. Then by part (i), we have

TGD=TdTT^{GD-}=T^{d}T- and TGD=TTdT=TTGDT^{GD-}=TT^{d}T^{-}=TT^{GD-}.

Conversely, if TGD=TdTT^{GD-}=T^{d}T-, then (TGD)2=TdT=(TGD)2(T^{GD-})^{2}=T^{d}T^{-}=(T^{GD-})^{2}. Further if TGD=TTGDT^{GD-}=TT^{GD-}, then

TGD=T(TdTT)=T(TdTTd)(TT)=TTd(TTT)TdTT=(TTGD)(TTGD)=(TGD)2T^{GD-}=T(T^{d}TT^{-})=T(T^{d}TT^{d})(TT^{-})=TT^{d}(TT^{-}T)T^{d}TT^{-}=(TT^{GD-})(TT^{GD-})=(T^{GD-})^{2}.

Theorem 3.6

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

  1. (i)

    TTGD=TTTT^{GD-}=TT^{-} if and only if TTdT=TTT^{d}T=T.

  2. (ii)

    TTGD=TTdTT^{GD-}=TT^{d} if and only if TGD=TdT^{GD-}=T^{d}.

  3. (iii)

    (TGD)m=(Td)m1T(T^{GD-})^{m}=(T^{d})^{m-1}T^{-} for m2m\geq 2.

Proof

(i) Let TTGD=TTTT^{GD-}=TT^{-}. Then

TTdT=TTdTTT=TTGDT=TTT=TTT^{d}T=TT^{d}TT^{-}T=TT^{GD-}T=TT^{-}T=T.

Conversely, let TTdT=TTT^{d}T=T. Post-multiplying by TT^{-}, we obtain TTGD=TTTT^{GD-}=TT^{-}.
(ii) Let TTGD=TTdTT^{GD-}=TT^{d}. Then TGD=TdTTGD=TdTTd=TdT^{GD-}=T^{d}TT^{GD-}=T^{d}TT^{d}=T^{d}. The converse part is trivial.
(iii) We prove this identity by induction on mm. The identity is true for mm since

(TGD)2=(TdTT)(TdTT)=Td(TTT)TdT=TdT(T^{GD-})^{2}=(T^{d}TT^{-})(T^{d}TT^{-})=T^{d}(TT^{-}T)T^{d}T^{-}=T^{d}T^{-}.

Now assume the identity is true for m=km=k, that is , (TGD)k=(Td)k1T(T^{GD-})^{k}=(T^{d})^{k-1}T^{-}. Now

(TGD)k+1=(TGD)kTTdT=(Td)k1TTTdT=(Td)kTTTTdT=(Td)kT.\displaystyle(T^{GD-})^{k+1}=(T^{GD-})^{k}TT^{d}T^{-}=(T^{d})^{k-1}T^{-}TT^{d}T^{-}=(T^{d})^{k}TT^{-}TT^{d}T^{-}=(T^{d})^{k}T^{-}.
Theorem 3.7

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. TGDT^{GD-} is idempotent if and only if TGD=Tn(TGD)mT^{GD-}=T^{n}(T^{GD-})^{m} for any n{0}n\in\mathbb{N}\cup\{0\} and mm\in\mathbb{N}.

Proof

Suppose that TGDT^{GD-} is idempotent. Let n{0}n\in\mathbb{N}\cup\{0\} and mm\in\mathbb{N}. In view of Proposition 2 (ii), we have Tn(TGD)m=TnTDG=TDGT^{n}(T^{GD-})^{m}=T^{n}T^{DG-}=T^{DG-}. Converse follows from Proposition 2 by taking n=1n=1 and m=1.m=1.

Remark 1

If TT is idempotent element then then TT is generalized Drazin invertible and Td=TT^{d}=T. Indeed, if TT is idempotent then for X=TX=T we have XTX=X,XT=TXXTX=X,XT=TX and TT2X=0T-T^{2}X=0 is quasinilpotent.

Next we will prove that GD1 inverse of TT is the Generalized Drazin inverse of T2T1T^{2}T^{-1}. In order to that we need the following proposition:

Proposition 3

If T()T\in\mathcal{B}(\mathcal{H}) is generalized Drazin invertible with closed range and XX is any solution of operator equations:

XTX=XandXT=TdT,XTX=X~{}~{}\text{and}~{}~{}XT=T^{d}T, (13)

then T2(XT)T^{2}(X-T^{-}) is quasinilpotent. In particular (TdTI)T2T(T^{d}T-I)T^{2}T^{-} is quasinilpotent.

Proof

Since a bounded operator is quasinipotent if and only if its spectrum is {0}\{0\}, it is enough to prove that σ(T2(XT)){0}={0}\sigma(T^{2}(X-T^{-}))\cup\{0\}=\{0\}.

σ(T2(XT)){0}=σ(T(XT)T){0}=σ(TXTT){0}=σ(T2TdT)){0}={0},\sigma(T^{2}(X-T^{-}))\cup\{0\}=\sigma(T(X-T^{-})T)\cup\{0\}=\sigma(TXT-T)\cup\{0\}=\sigma(T^{2}T^{d}-T))\cup\{0\}=\{0\},

since T2TdTT^{2}T^{d}-T is quasinilpotent.

We know that X=TdTTX=T^{d}TT^{-} satisfies operator equations (13) hence T2(TdTTT)=(TdTI)T2TT^{2}(T^{d}TT^{-}-T^{-})=(T^{d}T-I)T^{2}T^{-} is quasinipotent.

Theorem 3.8

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then T2TT^{2}T^{-} is generalized Drazin invertible and (T2T)d=TGD(T^{2}T^{-})^{d}=T^{GD-}.

Proof

We need to claim that TGD(T2T)TGD=TGD,(T2T)TGD=TGD(T2T),T^{GD-}(T^{2}T^{-})T^{GD-}=T^{GD-},~{}(T^{2}T^{-})T^{GD-}=T^{GD-}(T^{2}T^{-}), and T2T(T2T)2TGDT^{2}T^{-}-(T^{2}T^{-})^{2}T^{GD-} is quasinilpotent. Using the definition of TGDT^{GD-}, we verify that

TGD(T2T)TGD=TdTT(T2T)TdTT=(Td)2T2T=TGD,T^{GD-}(T^{2}T^{-})T^{GD-}=T^{d}TT^{-}(T^{2}T^{-})T^{d}TT^{-}=(T^{d})^{2}T^{2}T^{-}=T^{GD-},

and

(T2T)TGD=(T2T)(TdTT)=T2TdT=TdT2T=(TdTT)(T2T)=TGD(T2T).(T^{2}T^{-})T^{GD-}=(T^{2}T^{-})(T^{d}TT^{-})=T^{2}T^{d}T^{-}=T^{d}T^{2}T^{-}=(T^{d}TT^{-})(T^{2}T^{-})=T^{GD-}(T^{2}T^{-}).

In view of Proposition 3,

T2T(T2T)2TGD=T2T(T2T)(T2T)TdTT=T2TT3TdT=(ITdT)(T2T)T^{2}T^{-}-(T^{2}T^{-})^{2}T^{GD-}=T^{2}T^{-}-(T^{2}T^{-})(T^{2}T^{-})T^{d}TT^{-}=T^{2}T^{-}-T^{3}T^{d}T^{-}=(I-T^{d}T)(T^{2}T^{-})

is quasinilpotent.

Remark 2

We can also prove Theorem 3.8 using the Cline’s formula of generalized Drazin invertibility (see Jchen , Theorem 2.1), which is stated below.

Lemma 1

Let T(,𝒦)T\in\mathcal{B}(\mathcal{H},\mathcal{K}) and S(𝒦,)S\in\mathcal{B}(\mathcal{K},\mathcal{H}). If TSTS is generalized Drazin invertible in (𝒦)\mathcal{B}(\mathcal{K}), then so is STST in ()\mathcal{B}(\mathcal{H}) and

(ST)d=S((TS)d)2T.(ST)^{d}=S((TS)^{d})^{2}T.
Theorem 3.9

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

limn(TTn+1TdTn+1TdT)=0\lim_{n\to\infty}(T^{-}T^{n+1}T^{d}-T^{n+1}T^{d}T^{-})=0

if and only if limn(TTn+2TdTn+1Td)=0\displaystyle\lim_{n\to\infty}(T^{-}T^{n+2}T^{d}-T^{n+1}T^{d})=0 and limn(Tn+2TdTTn+1Td)=0\displaystyle\lim_{n\to\infty}(T^{n+2}T^{d}T^{-}-T^{n+1}T^{d})=0.

Proof

Let limn(TTn+1TdTn+1TdT)=0\lim_{n\to\infty}(T^{-}T^{n+1}T^{d}-T^{n+1}T^{d}T^{-})=0. Then

TTn+2TdTn+1Td\displaystyle\|T^{-}T^{n+2}T^{d}-T^{n+1}T^{d}\| =\displaystyle= TTn+2TdTnTdT=TTn+1TdTTnTdTTT\displaystyle\|T^{-}T^{n+2}T^{d}-T^{n}T^{d}T\|=\|T^{-}T^{n+1}T^{d}T-T^{n}T^{d}TT^{-}T\|
\displaystyle\leq TTn+1TdTn+1TdTT0 as n\displaystyle\|T^{-}T^{n+1}T^{d}-T^{n+1}T^{d}T^{-}\|\|T\|\to 0\mbox{ as }n\to\infty

and

Tn+2TdTTn+1TdTTTn+1TdTn+1TdT0 as n.\|T^{n+2}T^{d}T^{-}-T^{n+1}T^{d}\|\leq\|T\|\|T^{-}T^{n+1}T^{d}-T^{n+1}T^{d}T^{-}\|\to 0\mbox{ as }n\to\infty.

conversely,

TTn+2TdTn+2TdT\displaystyle\|T^{-}T^{n+2}T^{d}-T^{n+2}T^{d}T^{-}\| =\displaystyle= =TTn+2TdTn+1Td+Tn+1TdTn+2TdT\displaystyle=\|T^{-}T^{n+2}T^{d}-T^{n+1}T^{d}+T^{n+1}T^{d}-T^{n+2}T^{d}T^{-}\|
\displaystyle\leq TTn+2TdTn+1Td+Tn+1TdTn+2TdT\displaystyle\|T^{-}T^{n+2}T^{d}-T^{n+1}T^{d}\|+\|T^{n+1}T^{d}-T^{n+2}T^{d}T^{-}\|
\displaystyle\to 0 as n.\displaystyle 0\mbox{ as }n\to\infty.

4 A binary relation based on GD1 inverse

In view of gDMP pre-order mosic18 , we introduce the following binary relation for GD1 inverse.

Definition 2

Let T()T\in\mathcal{B}(\mathcal{H}) and S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. We will say that SS is below TT under the relation GD\leq^{GD-} if SSGD=TSGDSS^{GD-}=TS^{GD-} and SGDS=SGDTS^{GD-}S=S^{GD-}T. We denote such relation by SGDTS\leq^{GD-}T.

Proposition 4

Let T()T\in\mathcal{B}(\mathcal{H}) and S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which have closed range. Then

  1. (i)

    SSGD=TSGDSS^{GD-}=TS^{GD-} if and only if SSd=TSdSS^{d}=TS^{d}.

  2. (ii)

    SGDS=SGDTS^{GD-}S=S^{GD-}T if and only if Sd=SdSTS^{d}=S^{d}S^{-}T.

Proof

(i) Let SSGD=TSGDSS^{GD-}=TS^{GD-}. Then

SSd=SSGDSSd=TSGDSSd=TSdSSSSd=TSdSSd=TSd.SS^{d}=SS^{GD-}SS^{d}=TS^{GD-}SS^{d}=TS^{d}SS^{-}SS^{d}=TS^{d}SS^{d}=TS^{d}.

Conversely, let SSd=TSdSS^{d}=TS^{d}. Then SSGD=SSdSS=TSdSS=TSGDSS^{GD-}=SS^{d}SS^{-}=TS^{d}SS^{-}=TS^{GD-}.
(ii) Let SGDS=SGDTS^{GD-}S=S^{GD-}T. Then Sd=SdSSd=SdSGDS=SdSGDT=SdSTS^{d}=S^{d}SS^{d}=S^{d}S^{GD-}S=S^{d}S^{GD-}T=S^{d}S^{-}T. Conversely, if Sd=SdSTS^{d}=S^{d}S^{-}T then SGDT=SSdST=SSd=SGDSS^{GD-}T=SS^{d}S^{-}T=SS^{d}=S^{GD-}S.

In view of Definition 2 and Proposition 4, we can verify the following result.

Corollary 1

Let T()T\in\mathcal{B}(\mathcal{H}) and S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which have closed range. Then the following statements are equivalent:

  1. (i)

    SGDTS\leq^{GD-}T.

  2. (ii)

    SSdS=SSGDT=TSSdSS^{d}S=SS^{GD-}T=TSS^{d}.

  3. (iii)

    SSd=SGDT=TSdSS^{d}=S^{GD-}T=TS^{d}.

Applying the core quasi-nilpotent decomposition, we state the following result in which we can classify all the operators ( say XjX_{j} ) such that TT is below XjX_{j} under the relation GD\leq^{GD-}.

Theorem 4.1

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range and consider the same decomposition as given in Theorem 3.1, for TT and TT^{-}. Then the following conditions are equivalent:

  1. (i)

    TGDXT\leq^{GD-}X.

  2. (ii)

    X=[T1T1YX40X4]:[𝒩(P)(P)][𝒩(P)(P)]X=\begin{bmatrix}T_{1}~{}&~{}-T_{1}YX_{4}\\ 0~{}&~{}X_{4}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}, where X4((P))X_{4}\in\mathcal{B}(\mathcal{R}(P)).

Theorem 4.2

Let S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Consider Sd1\|S^{d}\|\leq 1 and limn(SSn+1SdSn+1SdS)=0\lim_{n\to\infty}(S^{-}S^{n+1}S^{d}-S^{n+1}S^{d}S^{-})=0. Then SGDTS\leq^{GD-}T if and only if SdTS\leq^{d}T.

Proof

Let SGDTS\leq^{GD-}T. From SSGD=TSGDSS^{GD-}=TS^{GD-}, we obtain SSdSS=TSdSSSS^{d}SS^{-}=TS^{d}SS^{-} and consequently,

SSd=SSdSSSSd=TSdSSSSd=TSdSS^{d}=SS^{d}SS^{-}SS^{d}=TS^{d}SS^{-}SS^{d}=TS^{d}.

Applying SdS=SGDS=SGDT=SdSSTS^{d}S=S^{GD-}S=S^{GD-}T=S^{d}SS^{-}T, we get

SdSSdT\displaystyle S^{d}S-S^{d}T =\displaystyle= SdSSTSdT=((Sd)n+2Sn+2S(Sd)n+2Sn+1)T\displaystyle S^{d}SS^{-}T-S^{d}T=\left((S^{d})^{n+2}S^{n+2}S^{-}-(S^{d})^{n+2}S^{n+1}\right)T
=\displaystyle= (Sd)n+1(Sn+2SdSSn+1Sd)T.\displaystyle(S^{d})^{n+1}\left(S^{n+2}S^{d}S^{-}-S^{n+1}S^{d}\right)T.

Using Theorem 3.9, we have SdSSdT(Sd)m+1Sn+2SdSSn+1SdT0 as m\|S^{d}S-S^{d}T\|\leq\|(S^{d})^{m+1}\|\|S^{n+2}S^{d}S^{-}-S^{n+1}S^{d}\|\|T\|\to 0\mbox{ as $m\to\infty$}. Hence SdTS\leq^{d}T.
Conversely, let SdTS\leq^{d}T. Then SdT=SdS=TSdS^{d}T=S^{d}S=TS^{d}. Further,

SSGD=SSdSS=TSdSS=TSGDSS^{GD-}=SS^{d}SS^{-}=TS^{d}SS^{-}=TS^{GD-}, and

SGDSSGDT\displaystyle S^{GD-}S-S^{GD-}T =\displaystyle= SSdSdSST=SdTSdSST=((Sd)n+2Sn+1(Sd)n+2Sn+2S)T\displaystyle SS^{d}-S^{d}SS^{-}T=S^{d}T-S^{d}SS^{-}T=\left((S^{d})^{n+2}S^{n+1}-(S^{d})^{n+2}S^{n+2}S^{-}\right)T
=\displaystyle= (Sd)n+1(Sn+1SdSn+2SdS)T.\displaystyle(S^{d})^{n+1}\left(S^{n+1}S^{d}-S^{n+2}S^{d}S^{-}\right)T.

Again applying Theorem 3.9, we have

SGDSSGDT(Sd)n+1Sn+1SdSn+2SdST0 as m\|S^{GD-}S-S^{GD-}T\|\leq\|(S^{d})^{n+1}\|\|S^{n+1}S^{d}-S^{n+2}S^{d}S^{-}\|\|T\|\to 0\mbox{ as $m\to\infty$}.

Hence, SGDTS\leq^{GD-}T.

Notice that, in the proof of Theorem 4.2, we have not used both limiting conditions from the Theorem 3.9. Hence Theorem 4.2 is still true if we replace the limiting condition limn(SSn+1SdSn+1SdS)=0\displaystyle\lim_{n\to\infty}(S^{-}S^{n+1}S^{d}-S^{n+1}S^{d}S^{-})=0 by limn(Sn+2SdSSn+1Sd)=0\displaystyle\lim_{n\to\infty}(S^{n+2}S^{d}S^{-}-S^{n+1}S^{d})=0, which is restated in the below result.

Corollary 2

Let S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Consider Sd1\|S^{d}\|\leq 1 and limn(Sn+2SdSSn+1Sd)=0\displaystyle\lim_{n\to\infty}(S^{n+2}S^{d}S^{-}-S^{n+1}S^{d})=0. Then SGDTS\leq^{GD-}T if and only if SdTS\leq^{d}T.

Corollary 3

Let S,T𝒫𝒪S,T\in\mathcal{PO}, where 𝒫𝒪={S():Sd1,limnSn+2SdSSn+1Sd=0}\mathcal{PO}=\left\{S\in\mathcal{B}(\mathcal{H}):\|S^{d}\|\leq 1,\displaystyle\lim_{n\to\infty}\|S^{n+2}S^{d}S^{-}-S^{n+1}S^{d}\|=0\right\}. Then the relation GD\leq^{GD-} is a pre-order on 𝒫𝒪\mathcal{PO}.

5 1GD inverse

In this section, we introduce 1GD inverse (called the dual of GD1) for bounded Hilbert space operators. In addition, we state a few results in which the proofs are similar to those for GD1 inverses.

Proposition 5

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then X=TTTdX=T^{-}TT^{d} is the unique solution of the following conditions:

TX=P(TdT),𝒩(TdT) and (X)(TT).TX=P_{\mathcal{R}(T^{d}T),\mathcal{N}(T^{d}T)}\mbox{ and }\mathcal{R}(X)\subset\mathcal{R}(T^{-}T).

In view of the Proposition 5, we define the following representation of 1GD inverse for Hilbert space operators.

Definition 3

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range and TT^{-} be a fixed inner inverse of TT. An operator XX is called the 1GD inverse of TT if it satisfies

TX=P(TdT),𝒩(TdT) and (X)(TT).TX=P_{\mathcal{R}(T^{d}T),\mathcal{N}(T^{d}T)}\mbox{ and }\mathcal{R}(X)\subset\mathcal{R}(T^{-}T).

The 1GD inverse of TT is denoted by TGDT^{-GD} and it is explicitly represented by TGD=TTTdT^{GD-}=T^{-}TT^{d}.

Theorem 5.1

Consider T()T\in\mathcal{B}(\mathcal{H}) and TT^{-} as defined in the Theorem 3.1. The GD1 inverse of TT is given by

TGD=[T110Z0]=Td+[00Z0]:[𝒩(P)(P)][𝒩(P)(P)].T^{-GD}=\begin{bmatrix}{T_{1}}^{-1}~{}&~{}0\\ Z~{}&~{}0\end{bmatrix}=T^{d}+\begin{bmatrix}0~{}&~{}0\\ Z~{}&~{}0\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}.

Consequently, TGD=TdT^{-GD}=T^{d} if and only if Z=0Z=0.

Theorem 5.2

Consider T()T\in\mathcal{B}(\mathcal{H}) and TT^{-} as defined in the Theorem 3.2. The 1GD inverse of TT is given by

TGD=[Z1A1A1dZ1A1dA2A1dZ3A1dA2]=Z1A1[A1d(A1d)2A200]+Z3[00A1A1dA1dA2]:[(T)𝒩(T)][(T)𝒩(T)].T^{-GD}=\begin{bmatrix}Z_{1}A_{1}A_{1}^{d}~{}&~{}Z_{1}A_{1}^{d}A_{2}\\ A_{1}^{d}~{}&~{}Z_{3}A_{1}^{d}A_{2}\end{bmatrix}=Z_{1}A_{1}\begin{bmatrix}A_{1}^{d}~{}&~{}(A_{1}^{d})^{2}A_{2}\\ 0~{}&~{}0\end{bmatrix}+Z_{3}\begin{bmatrix}0~{}&~{}0\\ A_{1}A_{1}^{d}~{}&~{}A_{1}^{d}A_{2}\end{bmatrix}:~{}\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}\to\begin{bmatrix}\mathcal{R}(T)\\ \mathcal{N}(T^{*})\end{bmatrix}.

Consequently, TGD=TdT^{-GD}=T^{d} if Z3=0Z_{3}=0 and A1Z1=Z1A1A_{1}Z_{1}=Z_{1}A_{1}.

Theorem 5.3

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

  1. (i)

    TTGD=TGDTTT^{-GD}=T^{-GD}T if and only if TGD=TdT^{-GD}=T^{d}.

  2. (ii)

    TTGD=TGDTTT^{-GD}=T^{-GD}T if and only if TGD=TGD=TdT^{-GD}=T^{GD-}=T^{d}.

Theorem 5.4

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then X=TTTdX=T^{-}TT^{d} is the unique solution of operator equations:

XTX=X,XTd=TTd,andTX=TTd.XTX=X,~{}~{}XT^{d}=T^{-}T^{d},~{}~{}\text{and}~{}~{}TX=TT^{d}.
Definition 4

Let T()T\in\mathcal{B}(\mathcal{H}) and S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. We will say that SS is below TT under the relation GD\leq^{-GD} if SSGD=TSGDSS^{-GD}=TS^{-GD} and SGDS=SGDTS^{-GD}S=S^{-GD}T. We denote such relation by SGDTS\leq^{-GD}T.

Proposition 6

Let T()T\in\mathcal{B}(\mathcal{H}) and S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

  1. (i)

    SGDS=SGDTS^{-GD}S=S^{-GD}T if and only if SdS=SdTS^{d}S=S^{d}T.

  2. (ii)

    SSGD=TSGDSS^{-GD}=TS^{-GD} if and only if Sd=TSSdS^{d}=TS^{-}S^{d}.

Corollary 4

Let T()T\in\mathcal{B}(\mathcal{H}) and S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then the following statements are equivalent:

  1. (i)

    SGDTS\leq^{-GD}T.

  2. (ii)

    SSdS=TSGDS=SSdTSS^{d}S=TS^{-GD}S=SS^{d}T.

  3. (iii)

    SSd=TSGD=SdTSS^{d}=TS^{-GD}=S^{d}T.

Theorem 5.5

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range and consider the same decomposition as given in Theorem 3.1, for TT and TT^{-}. Then the following conditions are equivalent:

  1. (i)

    TGDXT\leq^{-GD}X.

  2. (ii)

    X=[T10X4ZT1X4]:[𝒩(P)(P)][𝒩(P)(P)]X=\begin{bmatrix}T_{1}~{}&~{}0\\ -X_{4}ZT_{1}~{}&~{}X_{4}\end{bmatrix}~{}:~{}\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}\to\begin{bmatrix}\mathcal{N}(P)\\ \mathcal{R}(P)\end{bmatrix}, where X4((P))X_{4}\in\mathcal{B}(\mathcal{R}(P)).

Theorem 5.6

Let T()T\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Then

limn(Tn+1TdTTTn+1Td)=0\lim_{n\to\infty}(T^{n+1}T^{d}T^{-}-T^{-}T^{n+1}T^{d})=0

if and only if limn(Tn+2TdTTn+1Td)=0\displaystyle\lim_{n\to\infty}(T^{n+2}T^{d}T^{-}-T^{n+1}T^{d})=0 and limn(TTn+2TdTn+1Td)=0\displaystyle\lim_{n\to\infty}(T^{-}T^{n+2}T^{d}-T^{n+1}T^{d})=0.

Theorem 5.7

Let S()S\in\mathcal{B}(\mathcal{H}) be generalized Drazin invertible which has closed range. Consider Sd1\|S^{d}\|\leq 1 and limn(SSn+2SdSn+1Sd)=0\displaystyle\lim_{n\to\infty}(S^{-}S^{n+2}S^{d}-S^{n+1}S^{d})=0. Then SGDTS\leq^{-GD}T if and only if SdTS\leq^{d}T.

Corollary 5

Let S,T𝒫𝒪S,T\in\mathcal{PO}, where 𝒫𝒪={S():Sd1,limnSSn+2SdSn+1Sd=0}\mathcal{PO}=\left\{S\in\mathcal{B}(\mathcal{H}):\|S^{d}\|\leq 1,\displaystyle\lim_{n\to\infty}\|S^{-}S^{n+2}S^{d}-S^{n+1}S^{d}\|=0\right\}. Then the relation GD\leq^{-GD} is a pre-order on 𝒫𝒪\mathcal{PO}.

6 Conclusion

Our research introduces two new classes of inverses: GD1 and 1GD inverses for Hilbert space operators employing specific definitions. We have investigated some properties of these inverses along with its interconnection with the generalized Drazin inverse. Further, some of the properties have also been investigated by considering the idempotent condition and decomposition’s. Finally, GD1 inverses and 1GD inverses allow us to introduce binary relations. It will be helpful to mention a few key points for future work.

  1. \bullet

    Perturbation bounds related to the GD1 and 1GD inverses is an interesting for possible research.

  2. \bullet

    GD1 and 1GD inverses of the sum of operators can be studied.

  3. \bullet

    Investigation of the reverse order law for the class GD1 and 1 GD inverses, for Hilbert space operators would be an interesting idea for further research.

  4. \bullet

    It is interesting to study the GD1 and 1GD inverses over the algebraic structure of a ring.

Conflict of interest

None.

Data availability

None.

Acknowledgements.

References

  • [1] A. Ben-Israel and T. N. E. Greville. Generalized inverses: theory and applications. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
  • [2] S. L. Campbell and C. D. Meyer, Jr. Generalized inverses of linear transformations, volume 4 of Surveys and Reference Works in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
  • [3] N. Castro González, J. J. Koliha, and V. Rakočević. Continuity and general perturbation of the Drazin inverse for closed linear operators. Abstr. Appl. Anal., 7(6):335–347, 2002.
  • [4] F. Chatelin. Spectral approximation of linear operators. Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With a foreword by P. Henrici, With solutions to exercises by Mario Ahués.
  • [5] D. S. Djordjević and N. Dinčić. Reverse order law for the Moore-Penrose inverse. J. Math. Anal. Appl., 361(1):252–261, 2010.
  • [6] D. S. Djordjević and P. S. Stanimirović. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math. J., 51(126)(3):617–634, 2001.
  • [7] M. P. Drazin. Extremal definitions of generalized inverses. Linear Algebra Appl., 165:185–196, 1992.
  • [8] H.-K. Du and C.-Y. Deng. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl., 407:117–124, 2005.
  • [9] C. W. Groetsch. Generalized inverses of linear operators: representation and approximation. Monographs and Textbooks in Pure and Applied Mathematics, No. 37. Marcel Dekker, Inc., New York-Basel, 1977.
  • [10] M. V. Hernández, M. B. Lattanzi, and N. Thome. Gdmp-inverses of a matrix and their duals. Linear Multilinear Algebra, 2020.
  • [11] M. V. Hernández, M. B. Lattanzi, and N. Thome. From projectors to 1MP and MP1 generalized inverses and their induced partial orders. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115(3):Paper No. 148, 13, 2021.
  • [12] J. J. Koliha. A generalized Drazin inverse. Glasgow Math. J., 38(3):367–381, 1996.
  • [13] Y. Liao, J. Chen, and J. Cui. Cline’s formula for the generalized Drazin inverse. Bull. Malays. Math. Sci. Soc. (2), 37(1):37–42, 2014.
  • [14] J. Ma. Complete rank theorem of advanced calculus and singularities of bounded linear operators. Front. Math. China, 3(2):305–316, 2008.
  • [15] D. Mosić and D. S. Djordjević. The gDMP inverse of Hilbert space operators. J. Spectr. Theory, 8(2):555–573, 2018.
  • [16] M. Z. Nashed. Generalized inverses, normal solvability, and iteration for singular operator equations. In Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970), pages 311–359. Academic Press, New York, 1971.
  • [17] M. Z. Nashed. Perturbations and approximations for generalized inverses and linear operator equations. In Generalized inverses and applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973), Publ. Math. Res. Center Univ. Wisconsin, No. 32, pages 325–396. Academic Press, New York, 1976.
  • [18] M. Z. Nashed. Inner, outer, and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim., 9(3-4):261–325, 1987.
  • [19] V. Rakočević and Y. Wei. The perturbation theory for the Drazin inverse and its applications. II. J. Aust. Math. Soc., 70(2):189–197, 2001.
  • [20] J. K. Sahoo, G. Maharana, B. Sitha, and N. Thome. 1D inverse and D1 inverse of square matrices. Miskolc Math. Notes (submitted), 2022.
  • [21] Y. Wei and G. Chen. Perturbation of least squares problem in Hilbert spaces. Appl. Math. Comput., 121(2-3):177–183, 2001.
  • [22] Y. Wei and S. Qiao. The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Appl. Math. Comput., 138(1):77–89, 2003.