This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gauge invariance and amplitudes of two-photon processes

P. A. Krachkov [email protected] Budker Institute of Nuclear Physics of SB RAS, 630090 Novosibirsk, Russia    A. I. Milstein [email protected] Budker Institute of Nuclear Physics of SB RAS, 630090 Novosibirsk, Russia    A. G. Shamov [email protected] Budker Institute of Nuclear Physics of SB RAS, 630090 Novosibirsk, Russia
Abstract

A method to derive the convenient representations for many two-photon amplitudes is suggested. It is based on the use of the gauge in which the photon propagator has only space components. The amplitudes obtained have no any strong numerical cancellations and, therefore, are very convenient for numerical evaluations. Our approach is illustrated by the consideration of the processes e+ee+ee+ee^{+}e^{-}\to e^{+}e^{-}e^{+}e^{-}, e+ee+eμ+μe^{+}e^{-}\rightarrow e^{+}e^{-}\mu^{+}\mu^{-}, and e+eμ+μπ+πe^{+}e^{-}\to\mu^{+}\mu^{-}\pi^{+}\pi^{-}. The method is extended on the case of polarized particles. The amplitudes obtained in this approach have been employed for extension of the event generator developed by F.A. Berends, P.H. Daverveldt, and R. Kleiss.

pacs:
11.15.-q; 13.10.+q; 13.38.-b; 13.40.-f; 14.70.-e

I Introduction

Investigations of processes e+ee+eXe^{+}e^{-}\rightarrow e^{+}e^{-}X (two-photon processes), where XX are pairs of leptons (e,μ,τe,\,\mu,\,\tau) or hadrons with C-parity C=+1C=+1 give an important experimental information on physics of γγ\gamma\gamma collisions. Such investigations are the important parts of the physical programs of C- and B- factories. Since the leptonic two-photon processes are completely described by QED, they provide firstly a possibility to test QED in higher orders of the perturbation theory and secondly are important for calibration of the experiments and suppression of backgrounds.

There are a few generators that simulate leptonic two-photon processes beyond the equivalent photon approximation BDK86 ; Schu98 ; Ver83 ; HKD93 ; BPP2001 . The most popular is a generator of F.A. Berends, P.H. Daverveldt, and R. Kleiss (DIAG36 or BDK generator ) BDK86 . It includes all Feynman diagrams and accounts for identity effect. It is worth noting that this effect is not taken into account in other two-photon event generators.

The BDK prediction of the identity effect in e+e2(e+e)e^{+}e^{-}\rightarrow 2(e^{+}e^{-}) process has been presented in Ref. KMRS2019 . The unexpected growth of the effect with the cut on the invariant mass of produced e+ee^{+}e^{-} pair motivated us to make calculations with the BDK generator in which the alternative matrix elements expression were embedded. The BDK prediction on the identity effect were confirmed at the increased accuracy of the numerical calculations.

These alternative matrix element expressions are presented below. Unlike to those used in BDK BDK85 , they contain only spatial components of the involved particle momenta which ensure their numerical stability. Another advantage of them is an easiness of the modification for semi-leptonic final states. Simulation of the semi-leptonic processes such as e+eμ+μπ+πe^{+}e^{-}\rightarrow\mu^{+}\mu^{-}\pi^{+}\pi^{-} became actual in context of BELLE analysis of e+eΥ(nS)π+πe^{+}e^{-}\rightarrow\Upsilon(nS)\pi^{+}\pi^{-} with Υ(nS)l+l\Upsilon(nS)\rightarrow l^{+}l^{-} Mizuk2019 . In this case two-photon processes are main sources of the background.

II Method of calculation

First of all, to obtain the explicit form of the matrix element, it is necessary to introduce some convenient basis for the Dirac spinors. Since the number of the Feynman diagrams is quite large, for numerical calculations it is important to have the most simple expression for the total amplitude. Then, the following circumstance must be taken into account. In the two-photon processes, the main contribution to the cross section is given by kinematics where a virtual photon is emitted almost along the initial electron momentum 𝒑\bm{p}. In such kinematics the corresponding current JμJ_{\mu} has large components J0J_{0} and JJ_{\parallel}, i.e., J0JγJγ2(J0J)J_{0}\sim J_{\parallel}\sim\gamma J_{\perp}\sim\gamma^{2}\,(J_{0}-J_{\parallel}), where J=𝑱𝒑/pJ_{\parallel}=\bm{J}\cdot\bm{p}/p and γ=ε/me\gamma=\varepsilon/m_{e} (mem_{e} is the electron mass, we set =c=1\hbar=c=1). As a result, using the Feynman gauge leads to a huge numerical cancellation between J02J_{0}^{2} and J2J_{\parallel}^{2} at high energies, which is a problem for numerical calculations with high accuracy. In our work we avoid this problem by means of the gauge in which the photon propagator Dμν(k)D_{\mu\nu}(k) contains only spatial components:

Dij(k)=1ω2𝒌2+i 0(δijkikjω2),D0μ(k)=0,kμ=(ω,𝒌).\displaystyle D_{ij}(k)=-\frac{1}{\omega^{2}-\bm{k}^{2}+i\,0}\left(\delta_{ij}-\frac{k_{i}k_{j}}{\omega^{2}}\right)\,,\quad D_{0\mu}(k)=0\,,\quad k^{\mu}=\,(\omega,\,\bm{k})\,. (1)

To calculate the amplitude of the process, we use the following explicit form of the positive-energy Dirac spinor Ua,λaU_{a,\lambda_{a}} and negative-energy Dirac spinor VV LL

Ua,λa=Na(ϕλa𝝈𝑷aϕλa),Vb,λb=Nb(𝝈𝑷bϕλbϕλa),\displaystyle U_{a,\,\lambda_{a}}=N_{a}\begin{pmatrix}\phi_{\lambda_{a}}\\ \bm{\sigma}\cdot\bm{P}_{a}\,\phi_{\lambda_{a}}\end{pmatrix}\,,\quad V_{b,\,\lambda_{b}}=N_{b}\begin{pmatrix}\bm{\sigma}\cdot\bm{P}_{b}\,\phi_{\lambda_{b}}\\ \phi_{\lambda_{a}}\end{pmatrix}\,,
𝑷a=𝒑aεa+m,𝑷b=𝒑bεb+m,Na=εa+m2εa,Nb=εb+m2εb.\displaystyle\bm{P}_{a}=\dfrac{\bm{p}_{a}}{\varepsilon_{a}+m}\,,\quad\bm{P}_{b}=\dfrac{\bm{p}_{b}}{\varepsilon_{b}+m}\,,\quad N_{a}=\sqrt{\dfrac{\varepsilon_{a}+m}{2\varepsilon_{a}}}\,,\quad N_{b}=\sqrt{\dfrac{\varepsilon_{b}+m}{2\varepsilon_{b}}}\,. (2)

Here 𝝈\bm{\sigma} are Pauli matrices, 𝒑a\bm{p}_{a} and εa\varepsilon_{a} are the electron momentum and energy, 𝒑b\bm{p}_{b} and εb\varepsilon_{b} are the positron momentum and energy, ϕλ\phi_{\lambda} is the two-component spinor, λ=±1\lambda=\pm 1 denotes two possible polarizations, the same basis of spinors for all particles is used. We introduce three unit orthogonal vectors 𝒆x\bm{e}_{x}, 𝒆y\bm{e}_{y}, 𝒆z\bm{e}_{z} (so that [𝒆x×𝒆y]=𝒆z[\bm{e}_{x}\times\bm{e}_{y}]=\bm{e}_{z}) and choose ϕλ\phi_{\lambda} to be the eigenstate of the operator 𝝈𝒆z\bm{\sigma}\cdot\bm{e}_{z}, i.e., (𝝈𝒆z)ϕλ=λϕλ(\bm{\sigma}\cdot\bm{e}_{z})\,\phi_{\lambda}=\lambda\,\phi_{\lambda}. It is convenient to direct 𝒆z\bm{e}_{z} along the momentum of initial electron. Then we have

ϕλaϕλb+=12(Aab+𝝈𝑩ab),\displaystyle\phi_{\lambda_{a}}\phi_{\lambda_{b}}^{+}=\dfrac{1}{2}(A_{ab}+\bm{\sigma}\cdot\bm{B}_{ab})\,,
Aab=δλaλb,𝑩ab=λaδλaλb𝒆z+δλaλ¯b(𝒆x+iλa𝒆y),λ¯=λ,\displaystyle A_{ab}=\delta_{\lambda_{a}\lambda_{b}}\,,\quad\bm{B}_{ab}=\lambda_{a}\delta_{\lambda_{a}\lambda_{b}}\bm{e}_{z}+\delta_{\lambda_{a}\bar{\lambda}_{b}}(\bm{e}_{x}+i\lambda_{a}\bm{e}_{y})\,,\quad\bar{\lambda}=-\lambda\,, (3)

Using the quantities AabA_{ab} and 𝑩ab\bm{B}_{ab}, we obtain the matrices UaU¯b,UaV¯b,VaU¯b,VaV¯b,U_{a}\bar{U}_{b}\,,U_{a}\bar{V}_{b}\,,V_{a}\bar{U}_{b}\,,V_{a}\bar{V}_{b}\,, which are necessary for further calculations:

UaU¯b=14NaNb[γ0fab(0)fab(1)+γ0γ5fab(2)+γ5fab(3)\displaystyle U_{a}\bar{U}_{b}=\dfrac{1}{4}N_{a}N_{b}[\gamma^{0}f^{(0)}_{ab}-f^{(1)}_{ab}+\gamma^{0}\gamma^{5}f^{(2)}_{ab}+\gamma^{5}f^{(3)}_{ab}
+γ0𝚺𝒈ab(0)𝚺𝒈ab(1)𝜸𝒈ab(2)𝜶𝒈ab(3)],\displaystyle+\gamma^{0}\bm{\Sigma}\cdot\bm{g}^{(0)}_{ab}-\bm{\Sigma}\cdot\bm{g}^{(1)}_{ab}-\bm{\gamma}\cdot\bm{g}^{(2)}_{ab}-\bm{\alpha}\cdot\bm{g}^{(3)}_{ab}]\,,
VaV¯b=14NaNb[γ0fab(0)+fab(1)+γ0γ5fab(2)γ5fab(3)\displaystyle V_{a}\bar{V}_{b}=\dfrac{1}{4}N_{a}N_{b}[\gamma^{0}f^{(0)}_{ab}+f^{(1)}_{ab}+\gamma^{0}\gamma^{5}f^{(2)}_{ab}-\gamma^{5}f^{(3)}_{ab}
+γ0𝚺𝒈ab(0)+𝚺𝒈ab(1)𝜸𝒈ab(2)+𝜶𝒈ab(3)],\displaystyle+\gamma^{0}\bm{\Sigma}\cdot\bm{g}^{(0)}_{ab}+\bm{\Sigma}\cdot\bm{g}^{(1)}_{ab}-\bm{\gamma}\cdot\bm{g}^{(2)}_{ab}+\bm{\alpha}\cdot\bm{g}^{(3)}_{ab}]\,,
VaU¯b=14NaNb[γ0γ5fab(0)+γ5fab(1)+γ0fab(2)fab(3)\displaystyle V_{a}\bar{U}_{b}=\dfrac{1}{4}N_{a}N_{b}[\gamma^{0}\gamma^{5}f^{(0)}_{ab}+\gamma^{5}f^{(1)}_{ab}+\gamma^{0}f^{(2)}_{ab}-f^{(3)}_{ab}
𝜸𝒈ab(0)𝜶𝒈ab(1)+γ0𝚺𝒈ab(2)𝚺𝒈ab(3)],\displaystyle-\bm{\gamma}\cdot\bm{g}^{(0)}_{ab}-\bm{\alpha}\cdot\bm{g}^{(1)}_{ab}+\gamma^{0}\bm{\Sigma}\cdot\bm{g}^{(2)}_{ab}-\bm{\Sigma}\cdot\bm{g}^{(3)}_{ab}]\,,
UaV¯b=14NaNb[γ0γ5fab(0)γ5fab(1)+γ0fab(2)+fab(3)\displaystyle U_{a}\bar{V}_{b}=\dfrac{1}{4}N_{a}N_{b}[\gamma^{0}\gamma^{5}f^{(0)}_{ab}-\gamma^{5}f^{(1)}_{ab}+\gamma^{0}f^{(2)}_{ab}+f^{(3)}_{ab}
𝜸𝒈ab(0)+𝜶𝒈ab(1)+γ0𝚺𝒈ab(2)+𝚺𝒈ab(3)].\displaystyle-\bm{\gamma}\cdot\bm{g}^{(0)}_{ab}+\bm{\alpha}\cdot\bm{g}^{(1)}_{ab}+\gamma^{0}\bm{\Sigma}\cdot\bm{g}^{(2)}_{ab}+\bm{\Sigma}\cdot\bm{g}^{(3)}_{ab}]\,. (4)

Here

fab(0)=(𝑷a𝑷b+1)Aabi[𝑷a×𝑷b]𝑩ab,fab(2)=(𝑷a+𝑷b)𝑩ab,\displaystyle f^{(0)}_{ab}=(\bm{P}_{a}\bm{P}_{b}+1)A_{ab}-i[\bm{P}_{a}\times\bm{P}_{b}]\cdot\bm{B}_{ab}\,,\quad f^{(2)}_{ab}=(\bm{P}_{a}+\bm{P}_{b})\cdot\bm{B}_{ab}\,,
𝒈ab(0)=(𝑩ab𝑷a)𝑷b+(𝑩ab𝑷b)𝑷a(𝑷a𝑷b1)𝑩ab+i[𝑷a×𝑷b]Aab,\displaystyle\bm{g}^{(0)}_{ab}=(\bm{B}_{ab}\cdot\bm{P}_{a})\bm{P}_{b}+(\bm{B}_{ab}\cdot\bm{P}_{b})\bm{P}_{a}-(\bm{P}_{a}\cdot\bm{P}_{b}-1)\bm{B}_{ab}+i[\bm{P}_{a}\times\bm{P}_{b}]A_{ab}\,,
𝒈ab(2)=(𝑷a+𝑷b)Aabi[𝑩ab×(𝑷a𝑷b)],\displaystyle\bm{g}^{(2)}_{ab}=(\bm{P}_{a}+\bm{P}_{b})A_{ab}-i[\bm{B}_{ab}\times(\bm{P}_{a}-\bm{P}_{b})]\,,
fab(1)=fab(0)(𝑷b𝑷b),fab(3)=fab(2)(𝑷b𝑷b),\displaystyle f^{(1)}_{ab}=-f^{(0)}_{ab}(\bm{P}_{b}\rightarrow-\bm{P}_{b})\,,\quad f^{(3)}_{ab}=-f^{(2)}_{ab}(\bm{P}_{b}\rightarrow-\bm{P}_{b})\,,
𝒈ab(1)=𝒈ab(0)(𝑷b𝑷b),𝒈ab(3)=𝒈ab(2)(𝑷b𝑷b).\displaystyle\bm{g}^{(1)}_{ab}=-\bm{g}^{(0)}_{ab}(\bm{P}_{b}\rightarrow-\bm{P}_{b})\,,\quad\bm{g}^{(3)}_{ab}=-\bm{g}^{(2)}_{ab}(\bm{P}_{b}\rightarrow-\bm{P}_{b})\,. (5)

All Feynman diagrams have a block structure and can be easily expressed via several quantities. For one-photon emission (or absorption) and annihilation these quantities are

U¯b𝜸Va=V¯b𝜸Ua=NaNb𝒈ab(0),\displaystyle\bar{U}_{b}\bm{\gamma}V_{a}=\bar{V}_{b}\bm{\gamma}U_{a}=N_{a}N_{b}\,\bm{g}^{(0)}_{ab}\,,\quad U¯b𝜸Ua=V¯b𝜸Va=NaNb𝒈ab(2).\displaystyle\quad\bar{U}_{b}\bm{\gamma}U_{a}=\bar{V}_{b}\bm{\gamma}V_{a}=N_{a}N_{b}\,\bm{g}^{(2)}_{ab}\,. (6)

For two-photon emission (or absorption) and annihilation, the block terms are

Sab(1)ij(k)(k2+2kpb)1U¯bγj(p^b+k^+m)γiUa=NaNb(k2+2kpb)1\displaystyle S^{(1)ij}_{ab}(k)\equiv(k^{2}+2kp_{b})^{-1}\bar{U}_{b}\gamma^{j}(\hat{p}_{b}+\hat{k}+m)\gamma^{i}U_{a}=N_{a}N_{b}(k^{2}+2kp_{b})^{-1}
×[2pbjgab(2)i+(δijfab(0)iϵijlgab(0)l)ω+iϵijlklfab(2)+gab(2)jki+gab(2)ikjδij𝒈ab(2)𝒌],\displaystyle\times\Big{[}2p_{b}^{j}g^{(2)i}_{ab}+(\delta^{ij}f^{(0)}_{ab}-i\epsilon^{ijl}g^{(0)l}_{ab})\,\omega+i\epsilon^{ijl}k^{l}f^{(2)}_{ab}+g^{(2)j}_{ab}k^{i}+g^{(2)i}_{ab}k^{j}-\delta^{ij}\bm{g}^{(2)}_{ab}\cdot\bm{k}\Big{]}\,,
Sab(2)ij(k)(k22kpb)1V¯bγj(p^b+k^+m)γiVa=NaNb(k22kpb)1\displaystyle S^{(2)ij}_{ab}(k)\equiv(k^{2}-2kp_{b})^{-1}\bar{V}_{b}\gamma^{j}(-\hat{p}_{b}+\hat{k}+m)\gamma^{i}V_{a}=N_{a}N_{b}(k^{2}-2kp_{b})^{-1}
×[2pbjgab(2)i+(δijfab(0)iϵijlgab(0)l)ω+iϵijlklfab(2)+gab(2)jki+gab(2)ikjδij𝒈ab(2)𝒌],\displaystyle\times\Big{[}-2p_{b}^{j}g^{(2)i}_{ab}+(\delta^{ij}f^{(0)}_{ab}-i\epsilon^{ijl}g^{(0)l}_{ab})\,\omega+i\epsilon^{ijl}k^{l}f^{(2)}_{ab}+g^{(2)j}_{ab}k^{i}+g^{(2)i}_{ab}k^{j}-\delta^{ij}\bm{g}^{(2)}_{ab}\cdot\bm{k}\Big{]}\,,
Sab(3)ij(k)(k2+2kpb)1U¯bγj(p^b+k^+m)γiVa=NaNb(k2+2kpb)1\displaystyle S^{(3)ij}_{ab}(k)\equiv(k^{2}+2kp_{b})^{-1}\bar{U}_{b}\gamma^{j}(\hat{p}_{b}+\hat{k}+m)\gamma^{i}V_{a}=N_{a}N_{b}(k^{2}+2kp_{b})^{-1}
×[2pbjgab(0)i+(δijfab(2)iϵijlgab(2)l)ω+iϵijlklfab(0)+gab(0)jki+gab(0)ikjδij𝒈ab(0)𝒌],\displaystyle\times\Big{[}2p_{b}^{j}g^{(0)i}_{ab}+(\delta^{ij}f^{(2)}_{ab}-i\epsilon^{ijl}g^{(2)l}_{ab})\,\omega+i\epsilon^{ijl}k^{l}f^{(0)}_{ab}+g^{(0)j}_{ab}k^{i}+g^{(0)i}_{ab}k^{j}-\delta^{ij}\bm{g}^{(0)}_{ab}\cdot\bm{k}\Big{]}\,,
Sab(4)ij(k)(k22kpb)1V¯bγj(p^b+k^+m)γiUa=NaNb(k22kpb)1\displaystyle S^{(4)ij}_{ab}(k)\equiv(k^{2}-2kp_{b})^{-1}\bar{V}_{b}\gamma^{j}(-\hat{p}_{b}+\hat{k}+m)\gamma^{i}U_{a}=N_{a}N_{b}(k^{2}-2kp_{b})^{-1}
×[2pbjgab(0)i+(δijfab(2)iϵijlgab(2)l)ω+iϵijlklfab(0)+gab(0)jki+gab(0)ikjδij𝒈ab(0)𝒌].\displaystyle\times\Big{[}-2p_{b}^{j}g^{(0)i}_{ab}+(\delta^{ij}f^{(2)}_{ab}-i\epsilon^{ijl}g^{(2)l}_{ab})\,\omega+i\epsilon^{ijl}k^{l}f^{(0)}_{ab}+g^{(0)j}_{ab}k^{i}+g^{(0)i}_{ab}k^{j}-\delta^{ij}\bm{g}^{(0)}_{ab}\cdot\bm{k}\Big{]}\,. (7)

By means of Eqs. (II)-(II), one can easily write the explicit expressions for the amplitudes of huge amount of processes. These expressions are rather simple and have no any strong numerical cancellations. Therefore, they are very convenient for numerical evaluations.

Consider, as an example, the process e+ee+ee+ee^{+}e^{-}\to e^{+}e^{-}e^{+}e^{-}. Let 𝒑1,𝒑2,𝒑3\bm{p}_{1},\,\bm{p}_{2},\,\bm{p}_{3} be the momenta of initial electron and two final electrons, and 𝒑4,𝒑5,𝒑6\bm{p}_{4},\,\bm{p}_{5},\,\bm{p}_{6} be the momenta of the initial positron and two final positrons, respectively. Typical Feynman diagrams, which contribute to the amplitude of the process, are shown in Fig. 1. The differential cross section, averaged over polarizations of the initial particles and summed up over polarizations of the final particles, reads

dσ=α44π4jd𝒑2d𝒑3d𝒑5d𝒑6δ(p2+p3+p5+p6p1p4)λi|a=15T{λi}(a)|2,\displaystyle d\sigma=\dfrac{\alpha^{4}}{4\pi^{4}\,j}\,d\bm{p}_{2}d\bm{p}_{3}d\bm{p}_{5}d\bm{p}_{6}\delta(p_{2}+p_{3}+p_{5}+p_{6}-p_{1}-p_{4})\,\sum\limits_{\lambda_{i}}\,\left|\sum\limits_{a=1}^{5}T^{(a)}_{\{\lambda_{i}\}}\right|^{2}\,,
T{λi}(a)=t123456(a)t132456(a)t123465(a)+t132465(a),j=(p1p4)2m4ε1ε4.\displaystyle T^{(a)}_{\{\lambda_{i}\}}=t^{(a)}_{123456}-t^{(a)}_{132456}-t^{(a)}_{123465}+t^{(a)}_{132465}\,,\quad j=\dfrac{\sqrt{(p_{1}p_{4})^{2}-m^{4}}}{\varepsilon_{1}\varepsilon_{4}}\,. (8)

Here α\alpha is the fine structure constant, t(1)t^{(1)} is the contribution of the diagram shown in Fig. 1(a), t(2)t^{(2)} is the contribution of the diagram shown in Fig. 1(b), t(3)t^{(3)} is similar to t(2)t^{(2)} but with the photon emission from positron line, t(4)t^{(4)} corresponds to one-photon annihilation of initial e+ee^{+}e^{-} pair with subsequent virtual photon decay into two e+ee^{+}e^{-} pairs (Fig. 1(c)), and t(5)t^{(5)} corresponds to two-photon annihilation of initial e+ee^{+}e^{-} pair with subsequent decay of each virtual photon into e+ee^{+}e^{-} pair (Fig. 1(d)).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Typical diagrams contributing to the amplitude of the process e+ee+ee+ee^{+}e^{-}\to e^{+}e^{-}e^{+}e^{-}; wavy lines correspond to photons and straight lines to electrons and positrons. (a) Additional e+ee^{+}e^{-} pair is a result of annihilation of two virtual photons. (b) Emission of photon with its subsequent decay into e+ee^{+}e^{-} pair. (c) One-photon annihilation of initial e+ee^{+}e^{-} pair with subsequent virtual photon decay into two e+ee^{+}e^{-} pairs. (d) Two-photon annihilation of initial e+ee^{+}e^{-} pair with subsequent decay of each virtual photon into e+ee^{+}e^{-} pair.

The amplitudes t(a)t^{(a)} have the following form

t123456(1)=(k=16Nk)[g12(2)j(p2jp1j)(𝒑2𝒑1,𝒈12(2))(ε2ε1)2][g54(2)i(p5ip4i)(𝒑5𝒑4,𝒈54(2))(ε5ε4)2]\displaystyle t^{(1)}_{123456}=\left(\prod\limits_{k=1}^{6}N_{k}\right)\Big{[}g^{(2)j}_{12}-\dfrac{(p_{2}^{j}-p_{1}^{j})(\bm{p}_{2}-\bm{p}_{1},\bm{g}^{(2)}_{12})}{(\varepsilon_{2}-\varepsilon_{1})^{2}}\Big{]}\Big{[}g^{(2)i}_{54}-\dfrac{(p_{5}^{i}-p_{4}^{i})(\bm{p}_{5}-\bm{p}_{4},\bm{g}^{(2)}_{54})}{(\varepsilon_{5}-\varepsilon_{4})^{2}}\Big{]}
×1(p2p1)2(p5p4)2[S63(3)ij(p2p1)+S63(3)ji(p5p4)],\displaystyle\times\dfrac{1}{(p_{2}-p_{1})^{2}(p_{5}-p_{4})^{2}}\Big{[}S^{(3)ij}_{63}(p_{2}-p_{1})+S^{(3)ji}_{63}(p_{5}-p_{4})\Big{]}\,,
t123456(2)=(k=16Nk)[g63(0)j(p3j+p6j)(𝒑3+𝒑6,𝒈63(0))(ε3+ε6)2][g54(2)i(p5ip4i)(𝒑5𝒑4,𝒈54(2))(ε5ε4)2]\displaystyle t^{(2)}_{123456}=\left(\prod\limits_{k=1}^{6}N_{k}\right)\Big{[}g^{(0)j}_{63}-\dfrac{(p_{3}^{j}+p_{6}^{j})(\bm{p}_{3}+\bm{p}_{6},\bm{g}^{(0)}_{63})}{(\varepsilon_{3}+\varepsilon_{6})^{2}}\Big{]}\Big{[}g^{(2)i}_{54}-\dfrac{(p_{5}^{i}-p_{4}^{i})(\bm{p}_{5}-\bm{p}_{4},\bm{g}^{(2)}_{54})}{(\varepsilon_{5}-\varepsilon_{4})^{2}}\Big{]}
×1(p3+p6)2(p5p4)2[S12(1)ij(p3+p6)+S12(1)ji(p5p4)],\displaystyle\times\dfrac{1}{(p_{3}+p_{6})^{2}(p_{5}-p_{4})^{2}}\Big{[}S^{(1)ij}_{12}(p_{3}+p_{6})+S^{(1)ji}_{12}(p_{5}-p_{4})\Big{]}\,,
t123456(3)=(k=16Nk)[g63(0)j(p3j+p6j)(𝒑3+𝒑6,𝒈63(0))(ε3+ε6)2][g12(2)i(p2ip1i)(𝒑2𝒑1,𝒈12(2))(ε2ε1)2]\displaystyle t^{(3)}_{123456}=\left(\prod\limits_{k=1}^{6}N_{k}\right)\Big{[}g^{(0)j}_{63}-\dfrac{(p_{3}^{j}+p_{6}^{j})(\bm{p}_{3}+\bm{p}_{6},\bm{g}^{(0)}_{63})}{(\varepsilon_{3}+\varepsilon_{6})^{2}}\Big{]}\Big{[}g^{(2)i}_{12}-\dfrac{(p_{2}^{i}-p_{1}^{i})(\bm{p}_{2}-\bm{p}_{1},\bm{g}^{(2)}_{12})}{(\varepsilon_{2}-\varepsilon_{1})^{2}}\Big{]}
×1(p2p1)2(p3+p6)2[S54(2)ij(p3+p6)+S54(2)ji(p2p1)],\displaystyle\times\dfrac{1}{(p_{2}-p_{1})^{2}(p_{3}+p_{6})^{2}}\Big{[}S^{(2)ij}_{54}(p_{3}+p_{6})+S^{(2)ji}_{54}(p_{2}-p_{1})\Big{]}\,,
t123456(4)=(k=16Nk)[g63(0)j(p3j+p6j)(𝒑3+𝒑6,𝒈63(0))(ε3+ε6)2][g14(0)i(p1i+p4i)(𝒑1+𝒑4,𝒈14(0))(ε1+ε4)2]\displaystyle t^{(4)}_{123456}=-\left(\prod\limits_{k=1}^{6}N_{k}\right)\Big{[}g^{(0)j}_{63}-\dfrac{(p_{3}^{j}+p_{6}^{j})(\bm{p}_{3}+\bm{p}_{6},\bm{g}^{(0)}_{63})}{(\varepsilon_{3}+\varepsilon_{6})^{2}}\Big{]}\Big{[}g^{(0)i}_{14}-\dfrac{(p_{1}^{i}+p_{4}^{i})(\bm{p}_{1}+\bm{p}_{4},\bm{g}^{(0)}_{14})}{(\varepsilon_{1}+\varepsilon_{4})^{2}}\Big{]}
×1(p3+p6)2(p1+p4)2[S52(3)ij(p3+p6)+S52(3)ji(p1p4)],\displaystyle\times\dfrac{1}{(p_{3}+p_{6})^{2}(p_{1}+p_{4})^{2}}\Big{[}S^{(3)ij}_{52}(p_{3}+p_{6})+S^{(3)ji}_{52}(-p_{1}-p_{4})\Big{]}\,,
t123456(5)=(k=16Nk)[g63(0)j(p3j+p6j)(𝒑3+𝒑6,𝒈63(0))(ε3+ε6)2][g52(0)i(p5i+p2i)(𝒑5+𝒑2,𝒈52(0))(ε5+ε2)2]\displaystyle t^{(5)}_{123456}=-\left(\prod\limits_{k=1}^{6}N_{k}\right)\Big{[}g^{(0)j}_{63}-\dfrac{(p_{3}^{j}+p_{6}^{j})(\bm{p}_{3}+\bm{p}_{6},\bm{g}^{(0)}_{63})}{(\varepsilon_{3}+\varepsilon_{6})^{2}}\Big{]}\Big{[}g^{(0)i}_{52}-\dfrac{(p_{5}^{i}+p_{2}^{i})(\bm{p}_{5}+\bm{p}_{2},\bm{g}^{(0)}_{52})}{(\varepsilon_{5}+\varepsilon_{2})^{2}}\Big{]}
×1(p3+p6)2(p2+p5)2[S14(4)ij(p3+p6)+S14(4)ji(p2+p5)].\displaystyle\times\dfrac{1}{(p_{3}+p_{6})^{2}(p_{2}+p_{5})^{2}}\Big{[}S^{(4)ij}_{14}(p_{3}+p_{6})+S^{(4)ji}_{14}(p_{2}+p_{5})\Big{]}\,. (9)

We now consider the process e+ee+eμ+μe^{+}e^{-}\rightarrow e^{+}e^{-}\mu^{+}\mu^{-}. Let 𝒑1\bm{p}_{1} and 𝒑4\bm{p}_{4} are the initial electron and positron momenta, 𝒑2\bm{p}_{2} and 𝒑5\bm{p}_{5} are momenta of the final electron and positron, 𝒑3\bm{p}_{3} and 𝒑6\bm{p}_{6} are momenta of μ\mu^{-} and μ+\mu^{+}. The cross section of the processes e+ee+eμ+μe^{+}e^{-}\rightarrow e^{+}e^{-}\mu^{+}\mu^{-} is given by Eq. (8) with the substitution T(a)=t123456(a)T^{(a)}=t^{(a)}_{123456}, where t123456(a)t^{(a)}_{123456} is given by Eq. (II) with p1,2,4,52=me2p_{1,2,4,5}^{2}=m_{e}^{2} and p3,62=mμ2p_{3,6}^{2}=m_{\mu}^{2}.

It is easy to generalize our formulas to the case of polarized particles, which is actual in context of the c-tau factory project CTAU . Let electron and positron are described by the Dirac spinors ua,𝜻au_{a,\,\bm{\zeta}_{a}} and vb,𝜻bv_{b,\,\bm{\zeta}_{b}}, where 𝜻a\bm{\zeta}_{a} and 𝜻b\bm{\zeta}_{b} are unit vectors directed along the electron and positron spin, respectively. Then we note that the following relations hold

λaεamUa,λaU¯a,λa=p^a+m2m,λbεbmVb,λbV¯b,λb=p^bm2m.\displaystyle\sum_{\lambda_{a}}\dfrac{\varepsilon_{a}}{m}U_{a,\lambda_{a}}\bar{U}_{a,\lambda_{a}}=\dfrac{\hat{p}_{a}+m}{2m}\,,\quad\sum_{\lambda_{b}}\dfrac{\varepsilon_{b}}{m}V_{b,\lambda_{b}}\bar{V}_{b,\lambda_{b}}=\dfrac{\hat{p}_{b}-m}{2m}\,. (10)

Therefore, using the Dirac equation we can make the following transformation

ua,𝜻a=(λaεmUa,λaU¯a,λa)ua,𝜻a=λaUa,λaZλa,𝜻a,\displaystyle u_{a,\,\bm{\zeta}_{a}}=\left(\sum_{\lambda_{a}}\dfrac{\varepsilon}{m}U_{a,\lambda_{a}}\bar{U}_{a,\lambda_{a}}\right)\cdot u_{a,\,\bm{\zeta}_{a}}=\sum_{\lambda_{a}}U_{a,\lambda_{a}}\,Z_{\lambda_{a},\bm{\zeta}_{a}}\,,
v¯b,𝜻b=v¯b,𝜻b(λbεmVb,λbV¯b,λb)=λbV¯b,λbZ~λb,𝜻b,\displaystyle{\bar{v}}_{b,\,\bm{\zeta}_{b}}=-{\bar{v}}_{b,\,\bm{\zeta}_{b}}\left(\sum_{\lambda_{b}}\dfrac{\varepsilon}{m}V_{b,\lambda_{b}}\bar{V}_{b,\lambda_{b}}\right)=\sum_{\lambda_{b}}{\bar{V}}_{b,\lambda_{b}}\,{\widetilde{Z}}_{\lambda_{b},\bm{\zeta}_{b}}\,,
Zλa,𝜻a=ϕa,λaϕa,𝜻a,Z~λb,𝜻b=χb,𝜻bϕb,λb.\displaystyle Z_{\lambda_{a},\bm{\zeta}_{a}}=\phi_{a\,,\lambda_{a}}^{\dagger}\phi_{a\,,\bm{\zeta}_{a}}\,,\quad{\widetilde{Z}}_{\lambda_{b},\bm{\zeta}_{b}}=\chi_{b,\,\bm{\zeta}_{b}}^{\dagger}\phi_{b,\,\lambda_{b}}\,. (11)

As a result, the cross section for the polarized initial electron and positron has the form

dσ=α4π4jd𝒑2d𝒑3d𝒑5d𝒑6δ(p2+p3+p5+p6p1p4)\displaystyle d\sigma=\dfrac{\alpha^{4}}{\pi^{4}\,j}\,d\bm{p}_{2}d\bm{p}_{3}d\bm{p}_{5}d\bm{p}_{6}\delta(p_{2}+p_{3}+p_{5}+p_{6}-p_{1}-p_{4})\,
×λ2,λ3,λ5,λ6|λ1,λ4(a=15T{λi}(a))Zλ1,𝜻1Z~λ4,𝜻4|2.\displaystyle\times\sum\limits_{\lambda_{2},\lambda_{3},\lambda_{5},\lambda_{6}}\,\left|\sum\limits_{\lambda_{1},\lambda_{4}}\,\left(\sum\limits_{a=1}^{5}T^{(a)}_{\{\lambda_{i}\}}\right)\,Z_{\lambda_{1},\bm{\zeta}_{1}}{\widetilde{Z}}_{\lambda_{4},\bm{\zeta}_{4}}\right|^{2}\,. (12)

Then we use the relations

ϕ1,𝜻1ϕ1,𝜻1=12[1+(𝜻1𝝈)],χ4,𝜻4χ4,𝜻4=12[1(𝜻4𝝈)],\displaystyle\phi_{1,\bm{\zeta}_{1}}\phi_{1,\bm{\zeta}_{1}}^{\dagger}=\dfrac{1}{2}[1+(\bm{\zeta}_{1}\cdot\bm{\sigma})]\,,\quad\chi_{4,\bm{\zeta}_{4}}\chi_{4,\bm{\zeta}_{4}}^{\dagger}=\dfrac{1}{2}[1-(\bm{\zeta}_{4}\cdot\bm{\sigma})]\,,
ϕλϕλ=12(1+λσ3)δλ,λ+12(ϵλ𝝈)δλ,λ,\displaystyle\phi_{\lambda^{\prime}}\phi_{\lambda}^{\dagger}=\dfrac{1}{2}(1+\lambda\sigma_{3})\delta_{\lambda^{\prime},\lambda}+\dfrac{1}{2}(\bm{\epsilon}_{\lambda^{\prime}}\cdot\bm{\sigma})\delta_{\lambda^{\prime},-\lambda}\,,
ϵλ=𝒆x+iλ𝒆y,\displaystyle\bm{\epsilon}_{\lambda}=\bm{e}_{x}+i\lambda\bm{e}_{y}\,, (13)

and the definition of Zλa,𝜻aZ_{\lambda_{a},\bm{\zeta}_{a}} and Z~λb,𝜻b{\widetilde{Z}}_{\lambda_{b},\bm{\zeta}_{b}}. We have

λ1,λ4,λ1,λ4=Zλ1,𝜻1Z~λ4,𝜻4Zλ1,𝜻1Z~λ4,𝜻4=14{δλ1,λ1δλ4,λ4[1+λ1(𝜻1𝒆3)][1λ4(𝜻4𝒆3)]\displaystyle{\cal M}_{\lambda_{1},\lambda_{4},\lambda_{1}^{\prime},\lambda_{4}^{\prime}}=Z_{\lambda_{1},\bm{\zeta}_{1}}{\widetilde{Z}}_{\lambda_{4},\bm{\zeta}_{4}}Z^{*}_{\lambda_{1}^{\prime},\bm{\zeta}_{1}}{\widetilde{Z}}^{*}_{\lambda_{4}^{\prime},\bm{\zeta}_{4}}=\dfrac{1}{4}\Big{\{}\delta_{\lambda_{1},\lambda_{1}^{\prime}}\,\delta_{\lambda_{4},\lambda_{4}^{\prime}}[1+\lambda_{1}(\bm{\zeta}_{1}\cdot\bm{e}_{3})][1-\lambda_{4}(\bm{\zeta}_{4}\cdot\bm{e}_{3})]
δλ1,λ1δλ4,λ4[1+λ1(𝜻1𝒆3)](𝜻4ϵλ4)+δλ1,λ1δλ4,λ4(𝜻1ϵλ1)[1λ4(𝜻4𝒆3)]\displaystyle-\delta_{\lambda_{1},\lambda_{1}^{\prime}}\,\delta_{\lambda_{4},-\lambda_{4}^{\prime}}[1+\lambda_{1}\,(\bm{\zeta}_{1}\cdot\bm{e}_{3})](\bm{\zeta}_{4}\cdot\bm{\epsilon}_{\lambda_{4}})+\delta_{\lambda_{1},-\lambda_{1}^{\prime}}\,\delta_{\lambda_{4},\lambda_{4}^{\prime}}(\bm{\zeta}_{1}\cdot\bm{\epsilon}_{\lambda_{1}^{\prime}})[1-\lambda_{4}(\bm{\zeta}_{4}\cdot\bm{e}_{3})]
δλ1,λ1δλ4,λ4(𝜻1ϵλ1)(𝜻4ϵλ4)}.\displaystyle-\delta_{\lambda_{1},-\lambda_{1}^{\prime}}\,\delta_{\lambda_{4},-\lambda_{4}^{\prime}}(\bm{\zeta}_{1}\cdot\bm{\epsilon}_{\lambda_{1}^{\prime}})(\bm{\zeta}_{4}\cdot\bm{\epsilon}_{\lambda_{4}})\Big{\}}\,. (14)

Here 𝜻1\bm{\zeta}_{1} and 𝜻4\bm{\zeta}_{4} are the average polarization vectors in the electron and positron beams, respectively, |𝜻1,4|1|\bm{\zeta}_{1,4}|\leq 1. Finally we obtain the explicit expression for the cross section with the polarized initial particles:

dσ=α4π4jd𝒑2d𝒑3d𝒑5d𝒑6δ(p2+p3+p5+p6p1p4)\displaystyle d\sigma=\dfrac{\alpha^{4}}{\pi^{4}\,j}\,d\bm{p}_{2}d\bm{p}_{3}d\bm{p}_{5}d\bm{p}_{6}\delta(p_{2}+p_{3}+p_{5}+p_{6}-p_{1}-p_{4})\,
×λiλi(a=15T{λi}(a))(b=15T{λi}(b))δλ2,λ2δλ3,λ3δλ5,λ5δλ6,λ6λ1,λ4,λ1,λ4.\displaystyle\times\sum\limits_{\lambda_{i}}\sum\limits_{\lambda_{i}^{\prime}}\,\left(\sum\limits_{a=1}^{5}T^{(a)}_{\{\lambda_{i}\}}\right)\left(\sum\limits_{b=1}^{5}T^{(b)*}_{\{\lambda_{i}^{\prime}\}}\right)\delta_{\lambda_{2},\lambda_{2}^{\prime}}\delta_{\lambda_{3},\lambda_{3}^{\prime}}\delta_{\lambda_{5},\lambda_{5}^{\prime}}\delta_{\lambda_{6},\lambda_{6}^{\prime}}\,{\cal M}_{\lambda_{1},\lambda_{4},\lambda_{1}^{\prime},\lambda_{4}^{\prime}}\,. (15)

Another example is the differential cross section of the process e+eμ+μπ+πe^{+}e^{-}\to\mu^{+}\mu^{-}\pi^{+}\pi^{-}. Let 𝒑1\bm{p}_{1} and 𝒑4\bm{p}_{4} be the momenta ee^{-} and e+e^{+}, 𝒑2\bm{p}_{2} and 𝒑5\bm{p}_{5} are the momenta of μ\mu^{-} and μ+\mu^{+}, 𝒑3\bm{p}_{3} and 𝒑6\bm{p}_{6} are the momenta of π\pi^{-} and π+\pi^{+}. In this process, the main contribution to the amplitude is given by the two types of diagrams shown in Fig. 2. Other contributions are suppressed by the pion electromagnetic form factor Fπ(q2)F_{\pi}(q^{2}) with q2=(p1+p4)2q^{2}=(p_{1}+p_{4})^{2}. As a result, the differential cross section reads

dσ=α416π4jε3ε6d𝒑2d𝒑3d𝒑5d𝒑6δ(p2+p3+p5+p6p1p4)λi=±1|tπ(4)+tπ(5)|2,\displaystyle d\sigma=\dfrac{\alpha^{4}}{16\pi^{4}\,j\varepsilon_{3}\varepsilon_{6}}\,d\bm{p}_{2}d\bm{p}_{3}d\bm{p}_{5}d\bm{p}_{6}\delta(p_{2}+p_{3}+p_{5}+p_{6}-p_{1}-p_{4})\,\sum\limits_{\lambda_{i}=\pm 1}\left|t^{(4)}_{\pi}+t^{(5)}_{\pi}\right|^{2}\,,
tπ(4)=Fπ((p3+p6)2))(p3j+p6j)[1(𝒑3+𝒑6)2(ε3+ε6)2][g14(0)i(p1i+p4i)(𝒑1+𝒑4,𝒈14(0))(ε1+ε4)2]\displaystyle t^{(4)}_{\pi}=-F_{\pi}\left((p_{3}+p_{6})^{2}\right))(p_{3}^{j}+p_{6}^{j})\Big{[}1-\dfrac{(\bm{p}_{3}+\bm{p}_{6})^{2}}{(\varepsilon_{3}+\varepsilon_{6})^{2}}\Big{]}\Big{[}g^{(0)i}_{14}-\dfrac{(p_{1}^{i}+p_{4}^{i})(\bm{p}_{1}+\bm{p}_{4},\bm{g}^{(0)}_{14})}{(\varepsilon_{1}+\varepsilon_{4})^{2}}\Big{]}
×N1N2N4N5(p3+p6)2(p1+p4)2[S52(3)ij(p3+p6)+S52(3)ji(p1p4)],\displaystyle\times\dfrac{N_{1}N_{2}N_{4}N_{5}}{(p_{3}+p_{6})^{2}(p_{1}+p_{4})^{2}}\Big{[}S^{(3)ij}_{52}(p_{3}+p_{6})+S^{(3)ji}_{52}(-p_{1}-p_{4})\Big{]}\,,
tπ(5)=Fπ((p3+p6)2))(p3j+p6j)[1(𝒑3+𝒑6)2(ε3+ε6)2][g52(0)i(p5i+p2i)(𝒑5+𝒑2,𝒈52(0))(ε5+ε2)2]\displaystyle t^{(5)}_{\pi}=-F_{\pi}\left((p_{3}+p_{6})^{2}\right))(p_{3}^{j}+p_{6}^{j})\Big{[}1-\dfrac{(\bm{p}_{3}+\bm{p}_{6})^{2}}{(\varepsilon_{3}+\varepsilon_{6})^{2}}\Big{]}\Big{[}g^{(0)i}_{52}-\dfrac{(p_{5}^{i}+p_{2}^{i})(\bm{p}_{5}+\bm{p}_{2},\bm{g}^{(0)}_{52})}{(\varepsilon_{5}+\varepsilon_{2})^{2}}\Big{]}
×N1N2N4N5(p3+p6)2(p2+p5)2[S14(4)ij(p3+p6)+S14(4)ji(p2+p5)].\displaystyle\times\dfrac{N_{1}N_{2}N_{4}N_{5}}{(p_{3}+p_{6})^{2}(p_{2}+p_{5})^{2}}\Big{[}S^{(4)ij}_{14}(p_{3}+p_{6})+S^{(4)ji}_{14}(p_{2}+p_{5})\Big{]}\,. (16)

where a structure of the pion electromagnetic vertex has been taken into account. Similarly, the cross section of the process e+ee+eπ+πe^{+}e^{-}\to e^{+}e^{-}\pi^{+}\pi^{-} can easily be obtained. We do not present the corresponding result here because of its bulkiness.

Refer to caption
Refer to caption
Figure 2: Two types of diagrams giving the main contribution to the amplitude of the process e+eμ+μπ+πe^{+}e^{-}\to\mu^{+}\mu^{-}\pi^{+}\pi^{-}. Wavy lines correspond to photons, thin straight lines correspond to electrons and positrons, double lines correspond to muons, and dotted lines correspond to pions.

III Conclusion

In the present work we have suggested a method to write the convenient representations for many two-photon amplitudes. Our approach is based on the use of the gauge in which the photon propagator Dμν(k)D_{\mu\nu}(k) has only space components (Dμ0(k)=0D_{\mu 0}(k)=0). The amplitudes obtained have no any strong numerical cancellations and, therefore, are very convenient for numerical evaluations. We have illustrated our approach on the examples of the processes e+ee+ee+ee^{+}e^{-}\to e^{+}e^{-}e^{+}e^{-}, e+ee+eμ+μe^{+}e^{-}\rightarrow e^{+}e^{-}\mu^{+}\mu^{-}, and e+eμ+μπ+πe^{+}e^{-}\to\mu^{+}\mu^{-}\pi^{+}\pi^{-}. It is shown how the results can be extended on the case of polarized particles.

Basing on this approach the extension of BDK generator KMRS2019 was developed allowing for the simulation of e+e4le^{+}e^{-}\rightarrow 4l processes at increased numerical precision and of e+el+lπ+πe^{+}e^{-}\rightarrow l^{+}l^{-}\pi^{+}\pi^{-} processes with π+π\pi^{+}\pi^{-} pair in the 11^{--} state Shamov . The contribution of narrow 11^{--} resonances are accounted via the vacuum polarization effects.

References

  • (1) F.A. Berends, P.H. Daverveldt and R. Kleiss, Comput. Phys. Commun. 40, 286 (1986).
  • (2) G.A. Schuler, Comput. Phys. Commun. 108, 279 (1998).
  • (3) J.A.M. Vermaseren, Nucl. Phys. B229, 347 (1983).
  • (4) J. Hilgart, R. Kleiss, F. Le Diberder, Comput. Phys. Commun. 75, 191 (1993).
  • (5) F.A. Berends, C.G. Papadopoulos, R. Pittau, Comput. Phys. Commun. 136, 148 (2001).
  • (6) P.A. Krachkov, A.I. Milstein, O.L. Rezanova, and A. G. Shamov; An extension of BDK event generator; EPJ Web of Conferences 212, 04010 (2019).
  • (7) F.A. Berends, P.H. Daverveldt and R. Kleiss, Nucl. Phys. B253, 441 (1985).
  • (8) R. Mizuk et. al. [BELLE collaboration]; JHEP 10, 220 (2019).
  • (9) L. D. Landau and E. M. Lifshitz, Quantum Mechanics: NonRelativistic Theory, Course of Theoretical Physics (Elsevier Science, New York, 1981).
  • (10) A.E. Bondar et. al. [Charm-Tau Factory], Yad. Fiz. 76, 1132 (2013) [ Phys. Atom. Nucl. 76, 1072 (2013)].
  • (11) The source code and the detail description of the generator can be obtained by e-mail [email protected].