This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Galois representations, (φ,Γ)(\varphi,\Gamma)-modules and prismatic F-crystals

Zhiyou Wu
Abstract.

We prove that both local Galois representations and (φ,Γ)(\varphi,\Gamma)-modules can be recovered from prismatic F-crystals, from which we obtain a new proof of the equivalence of Galois representations and (φ,Γ)(\varphi,\Gamma)-modules.

1. Introduction

The theory of (φ,Γ)(\varphi,\Gamma)-modules was developed by Fontaine ([1]) to study local Galois representations. It plays an important role in the study of families of Galois representations and pp-adic Langlands correspondence.

The main result of the theory is that (φ,Γ)(\varphi,\Gamma)-modules are equivalent to Galois representations. The rough idea is to encode the difficult deeply ramified part of Galois theory into complicated rings. In other words, representations of complicated groups with simple coefficients are traded with representations of simple groups but with complicated coefficients.

The key part of the theory is then the construction of these complicated coefficient rings. It is based on the theory of fields of norms, which is a machine to switch between characteristic 0 and characteristic pp worlds. There is another, probably more well-known, theory that serves the same purpose, namely perfectoid fields. Indeed, theory of fields of norms can be viewed as a deperfection of perfectoid fields. The coefficient rings appearing in (φ,Γ)(\varphi,\Gamma)-modules are certain infinitesimal lifting of fields of norms along the pp-direction, in technical terms, they are Cohen rings of fields of norms.

The insight of this work is to put these rings in a world in which they naturally live, namely the framework of prisms as developed by Bhatt and Scholze ([2]). More precisely, these mysterious rings have natural integral structures which can be viewed as prisms, and the rings themselves are viewed as a structure sheaf on the prismatic site. Then (φ,Γ)(\varphi,\Gamma)-modules are vector bundles (with extra structures) on the prismatic site. This perspective is useful since prismatic sites are very rich. In particular, we can encode infinitesimal lifting of perfectoid fields into the prismatic world as well, which links with Galois representations. We can deduce the classical equivalence of Galois representations and (φ,Γ)(\varphi,\Gamma)-modules from this perspective, namely they are both equivalent to a third, arguably more fundamental object, the prismatic F-crystals. In summary, we have

Theorem 1.1.

Let kk be a perfect field of characteristic pp, and KK be a finite extension of W(k)[1p]W(k)[\frac{1}{p}]. Then (φ,Γ)(\varphi,\Gamma)-modules over AK\mathbb{A}_{K} are equivalent to prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over (𝒪K)Δ(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}.

Moreover, continuous finite free Zp\mathbb{Z}_{p}-representations of the absolute Galois group GKG_{K} are also equivalent to prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over (𝒪K)Δ(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}.

Corollary 1.2.

The category of continuous finite free Zp\mathbb{Z}_{p}-representations of the absolute Galois group GKG_{K} is equivalent to the category of (φ,Γ)(\varphi,\Gamma)-modules over AK\mathbb{A}_{K}.

See the main text for explanations of the notation.

The equivalence of Galois representations and prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules is also contained in the work of Bhatt and Scholze [3]. The proof for (φ,Γ)(\varphi,\Gamma)-modules follows the same line as the proof for Galois representations.

Acknowledgments

I would like to thank Peter Scholze for helpful discussions and encouragement. I would like to thank Heng Du, Koji Shimiz, Yu Min and Liang Xiao for discussions on the initial draft. I would like to thank Tong Liu for pointing out a mistake in the early version of the paper. I would also like to thank the anonymous referee for many suggestions any corrections. I am grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and financial support.

Convention

We follow the notation of [2]. Fixing a prime pp, a δ\delta-ring is a Z(p)\mathbb{Z}_{(p)}-algebra RR equipped with a map δ:RR\delta:R\rightarrow R such that δ(0)=δ(1)=0\delta(0)=\delta(1)=0 satisfying

δ(x+y)=δ(x)+δ(y)+xp+yp(x+y)pp\delta(x+y)=\delta(x)+\delta(y)+\frac{x^{p}+y^{p}-(x+y)^{p}}{p}
δ(xy)=xpδ(y)+ypδ(x)+pδ(x)δ(y)\delta(xy)=x^{p}\delta(y)+y^{p}\delta(x)+p\delta(x)\delta(y)

for any x,yRx,y\in R. We write

ϕ(x):=xp+pδ(x)\phi(x):=x^{p}+p\delta(x)

which is a ring homomorphism lifting the Frobenius. An element xx of a δ\delta-ring RR is called distinguished if δ(x)\delta(x) is a unit.

Following the notation of Scholze, for an integral perfectoid ring RR, we denote by R:=limϕR/pR^{\flat}:=\lim_{\phi}R/p the tilt of RR. We can also identify RR^{\flat} with limxxpR\lim_{x\rightarrow x^{p}}R as a multiplicative monoid, then there exists a natural monoid map RRR^{\flat}\rightarrow R given by

x=(x0,x1,)x:=x0,x=(x_{0},x_{1},\cdots)\rightarrow x^{\sharp}:=x_{0},

where xi+1p=xix_{i+1}^{p}=x_{i}, so (x0,x1,)(x_{0},x_{1},\cdots) represents an element of limxxpR\lim_{x\rightarrow x^{p}}R. As a standard notation in pp-adic Hodge theory, we denote

Ainf(R):=W(R).A_{\text{inf}}(R):=W(R^{\flat}).

There exists a canonical surjection of rings

θ:W(R)R\theta:W(R^{\flat})\rightarrow R

characterized by θ([x])=x\theta([x])=x^{\sharp}. Moreover, we know that Ker(θ)\text{Ker}(\theta) is principal and is generated by any distinguished element in the kernel, see [2] lemma 3.8, lemma 2.33 and lemma 2.24 for example. In particular, if RR contains a compatible system of pp-power roots of unit ζpn\zeta_{p^{n}}, then

ϵ:=(1,ζp,ζp2,)R\epsilon:=(1,\zeta_{p},\zeta_{p^{2}},\cdots)\in R^{\flat}

and 1+[ϵ]1p++[ϵ]p1p1+[\epsilon]^{\frac{1}{p}}+\cdots+[\epsilon]^{\frac{p-1}{p}} generates Ker(θ)\text{Ker}(\theta).

We will use the theory of diamonds as developed in [4] and [5] in a rudimentary way. Recall that a diamond is a sheaf on the pro-étale site of characteristic pp perfectoid spaces which can be written as the quotient of a representable sheaf by a pro-étale equivalence relation. There is a functor from analytic adic spaces over Spa(Zp)\text{Spa}(\mathbb{Z}_{p}) into diamonds, which sends

XXX\longrightarrow X^{\diamond}

where XX^{\diamond} is the sheaf whose value on a characteristic pp perfectoid space SS is the set of untilts SS^{\sharp} of SS together with a map SXS^{\sharp}\rightarrow X of adic spaces. When X=Spa(R,R+)X=\text{Spa}(R,R^{+}) is affinoid, we sometimes denote

Spd(R,R+):=Spa(R,R+).\text{Spd}(R,R^{+}):=\text{Spa}(R,R^{+})^{\diamond}.

When A=RSRA=R\otimes_{S}R and MM is an RR-module, we will write

MRAM\otimes_{R}A

when AA is viewed as an RR-algebra with respect to the first factor, i.e. the RR-algebra structure is RRSRR\rightarrow R\otimes_{S}R is xx1x\rightarrow x\otimes 1. Similarly, we write

ARMA\otimes_{R}M

when AA is equipped with the RR-algebra structure with respect to the second factor. The convention applies also to other situations when AA has two structure maps, such as A=R^SRA=R\hat{\otimes}_{S}R.

2. Prisms

We recall the basic theory of prisms as developed in [2], and introduce the primary examples that will be relevant to us.

2.1. Definitions and Examples

Definition 2.1.

A prism is a pair (A,I)(A,I), where AA is a δ\delta-ring, and II is an ideal of AA such that AA is derived (p,I)(p,I)-complete, II defines a Cartier divisor on Spec(A)Spec(A), and pI+ϕ(I)Ap\in I+\phi(I)A. The category of prisms has objects the prisms, and the arrows are δ\delta-ring maps preserving the given ideals.

A prism (A,I)(A,I) is called bounded if A/I[p]=A/I[pn]A/I[p^{\infty}]=A/I[p^{n}] for some nn.

Definition 2.2.

Let XX be a pp-adic formal scheme, then the (absolute) prismatic site XΔX_{{{\mathbbl{\Delta}}}} of XX has objects bounded prisms (A,I)(A,I) together with a map of formal schemes Spf(A/I)XSpf(A/I)\rightarrow X. The arrows are morphisms of prisms preserving the structure map to XX. An arrow (A,I)(B,J)(A,I)\rightarrow(B,J) is a cover if BB is (p,I)(p,I)-completely flat over AA.

When X=Spf(R)X=Spf(R) is affine, we simplify the notation by writing RΔ:=XΔR_{{{\mathbbl{\Delta}}}}:=X_{{{\mathbbl{\Delta}}}}.

Example 2.3.

Let kk be a perfect field of characteristic pp, then

(W(k)[[q1]],([p]q))(W(k)[[q-1]],([p]_{q}))

is a prism in W(k)ΔW(k)_{{{\mathbbl{\Delta}}}}, where [p]q:=qp1q1[p]_{q}:=\frac{q^{p}-1}{q-1}, and the δ\delta-structure is given by the usual δ\delta-structure on W(k)W(k) and δ(q)=0\delta(q)=0. It is clearly (p,q1)(p,q-1)-complete, which is equivalent to being (p,[p]q)(p,[p]_{q})-complete as [p]qpmod(q1)[p]_{q}\equiv p\ \text{mod}(q-1) and [p]q(q1)p1modp[p]_{q}\equiv(q-1)^{p-1}\ \text{mod}\ p. Moreover, from [p]qpmod(q1)[p]_{q}\equiv p\ \text{mod}(q-1) we have

p=[p]q+(q1)αp=[p]_{q}+(q-1)\alpha

for some αW(k)[[q1]]\alpha\in W(k)[[q-1]]. Applying ϕ\phi to both sides, we have

p=ϕ([p]q)+(qp1)ϕ(α)=ϕ([p]q)+[p]q(q1)ϕ(α),p=\phi([p]_{q})+(q^{p}-1)\phi(\alpha)=\phi([p]_{q})+[p]_{q}(q-1)\phi(\alpha),

proving p([p]q,ϕ([p]q))p\in([p]_{q},\phi([p]_{q})).

Example 2.4.

Let C\mathbb{C} be the completion of algebraic closure of W(k)W(k), and 𝒪C\mathcal{O}_{\mathbb{C}} its ring of integers. Then (W(𝒪C),Ker(θ))(W(\mathcal{O}_{\mathbb{C}}^{\flat}),Ker(\theta)) is a prism, where θ:W(𝒪C)𝒪C\theta:W(\mathcal{O}_{\mathbb{C}}^{\flat})\rightarrow\mathcal{O}_{\mathbb{C}} is the canonical map characterized by θ([α])=α\theta([\alpha])=\alpha^{\sharp}. We choose a compatible system {ζpn}\{\zeta_{p^{n}}\} of pp-power roots in C\mathbb{C}, and let

ϵ:=(1,ζp,ζp2,)𝒪C,\epsilon:=(1,\zeta_{p},\zeta_{p^{2}},\cdots)\in\mathcal{O}_{\mathbb{C}}^{\flat},

then it is well-known that 1+[ϵ1p]+[ϵ2p]++[ϵp1p]1+[\epsilon^{\frac{1}{p}}]+[\epsilon^{\frac{2}{p}}]+\cdots+[\epsilon^{\frac{p-1}{p}}] generates Ker(θ)Ker(\theta), and we have a map of δ\delta-rings

W(k)[[q1]]W(𝒪C)W(k)[[q-1]]\rightarrow W(\mathcal{O}_{\mathbb{C}}^{\flat})

by sending qq to [ϵ1p][\epsilon^{\frac{1}{p}}], then [p]q[p]_{q} is mapped to 1+[ϵ1p]+[ϵ2p]++[ϵp1p]1+[\epsilon^{\frac{1}{p}}]+[\epsilon^{\frac{2}{p}}]+\cdots+[\epsilon^{\frac{p-1}{p}}], and the condition p(Ker(θ),ϕ(Ker(θ)))p\in(Ker(\theta),\phi(Ker(\theta))) follows from the same condition for the prism (W(k)[[q1]],([p]q))(W(k)[[q-1]],([p]_{q})).

Moreover, W(𝒪C)W(\mathcal{O}_{\mathbb{C}}^{\flat}) is obviously (p,[ϖ])(p,[\varpi])-complete, where ϖ𝒪C\varpi\in\mathcal{O}_{\mathbb{C}}^{\flat} is any nonzero topologically nilpotent element of 𝒪C\mathcal{O}_{\mathbb{C}}^{\flat}. This implies (p,Ker(θ))(p,Ker(\theta))-completeness since 1+[ϵ1p]+[ϵ2p]++[ϵp1p]modp1+[\epsilon^{\frac{1}{p}}]+[\epsilon^{\frac{2}{p}}]+\cdots+[\epsilon^{\frac{p-1}{p}}]\ mod\ p is such a ϖ\varpi.

We made use of an embedding W(k)[[q1]]W(𝒪C)W(k)[[q-1]]\rightarrow W(\mathcal{O}_{\mathbb{C}}^{\flat}) sending qq to [ϵ1p][\epsilon^{\frac{1}{p}}] in the previous example. This is not standard, and from now on we view W(k)[[q1]]W(k)[[q-1]] as embedded into W(𝒪C)W(\mathcal{O}_{\mathbb{C}}^{\flat}) using the embedding

W(k)[[q1]]W(𝒪C)W(k)[[q-1]]\rightarrow W(\mathcal{O}_{\mathbb{C}}^{\flat})

which sends qq to [ϵ][\epsilon]. It is the ϕ\phi-twist of the previous embedding.

We now recall the theory of fields of norms, see [6] for details. Let KK be a finite totally ramified extension of W(k)[1p]W(k)[\frac{1}{p}] contained in a fixed completed algebraically closure C\mathbb{C} of W(k)[1p]W(k)[\frac{1}{p}], then we can associate the cyclotomic tower

KK(ζp)K(ζp2)K\subset K(\zeta_{p})\subset K(\zeta_{p^{2}})\subset\cdots

the field of norms EK\mathbb{E}_{K}, whose ring of integers EK+\mathbb{E}_{K}^{+} can be characterized as a subring of 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat}, namely

EK+={(αn)nlim𝒪K(ζp)/p|αn𝒪K(ζpn)/p for n sufficiently large}𝒪K(ζp).\mathbb{E}_{K}^{+}=\{(\alpha_{n})_{n}\in\text{lim}\ \mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}/p\ |\ \ \alpha_{n}\in\mathcal{O}_{K(\zeta_{p^{n}})}/p\text{ for n sufficiently large}\}\subset\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat}.

Then EK+\mathbb{E}_{K}^{+} is a complete discrete valuation ring of characteristic pp, which by construction contains EW(k)[1p]+\mathbb{E}_{W(k)[\frac{1}{p}]}^{+}. Moreover, we know that EK\mathbb{E}_{K} is a finite separable extension of EW(k)[1p]\mathbb{E}_{W(k)[\frac{1}{p}]}.

We can compute EW(k)[1p]+\mathbb{E}_{W(k)[\frac{1}{p}]}^{+} explicitly as

EW(k)[1p]+=k[[ϵ1]]𝒪W(k)[1p](ζp)𝒪C.\mathbb{E}_{W(k)[\frac{1}{p}]}^{+}=k[[\epsilon-1]]\subset\mathcal{O}_{W(k)[\frac{1}{p}](\zeta_{p^{\infty}})^{\wedge}}^{\flat}\subset\mathcal{O}_{\mathbb{C}}^{\flat}.

We observe that

W(k)((q1)):=W(k)[[q1]][1q1]pW(C)W(k)((q-1)):=W(k)[[q-1]][\frac{1}{q-1}]^{\wedge}_{p}\subset W(\mathbb{C}^{\flat})

is a Cohen ring of EW(k)[1p]\mathbb{E}_{W(k)[\frac{1}{p}]}. By the henselian property of W(k)((q1))W(k)((q-1)), the extension

EW(k)[1p]EKC\mathbb{E}_{W(k)[\frac{1}{p}]}\subset\mathbb{E}_{K}\subset\mathbb{C}^{\flat}

lifts canonically to

W(k)((q1))AKW(C)W(k)((q-1))\subset\mathbb{A}_{K}\subset W(\mathbb{C}^{\flat})

for a Cohen ring AK\mathbb{A}_{K} of EK\mathbb{E}_{K}. Then as W(k)((q1))W(C)W(k)((q-1))\subset W(\mathbb{C}^{\flat}) is invariant under the lift of Frobenius ϕ\phi on W(C)W(\mathbb{C}^{\flat}), so is AK\mathbb{A}_{K} by naturality of AK\mathbb{A}_{K} being extension of W(k)((q1))W(k)((q-1)) inside W(C)W(\mathbb{C}^{\flat}).

Let W(k)[[q1]]¯K\overline{W(k)[[q-1]]}^{K} be the integral closure of W(k)[[q1]]W(k)[[q-1]] in AK\mathbb{A}_{K}, and

AK+:=(W(k)[[q1]]¯K)p,\mathbb{A}_{K}^{+}:=(\overline{W(k)[[q-1]]}^{K})^{\wedge}_{p},

i.e. the pp-adic completion of W(k)[[q1]]¯K\overline{W(k)[[q-1]]}^{K}. We know that W(k)[[q1]]W(k)[[q-1]] is invariant under the Frobenius, so is W(k)[[q1]]¯K\overline{W(k)[[q-1]]}^{K} 111For yW(k)[[q1]]¯Ky\in\overline{W(k)[[q-1]]}^{K} satisfying f(y)=0f(y)=0 with f=xn+a1xn1++anf=x^{n}+a_{1}x^{n-1}+\cdots+a_{n} a monic polynomial with W(k)[[q1]]W(k)[[q-1]] coefficients, ϕ(y)\phi(y) satisfies ϕ(y)n+ϕ(a1)ϕ(y)n1++ϕ(an)=0\phi(y)^{n}+\phi(a_{1})\phi(y)^{n-1}+\cdots+\phi(a_{n})=0.. Passing to the pp-adic completion, this equips AK+\mathbb{A}_{K}^{+} with a δ\delta-ring structure such that the embedding AK+AK\mathbb{A}_{K}^{+}\subset\mathbb{A}_{K} is a δ\delta-ring map. The inclusion W(k)[[q1]]AK+W(k)[[q-1]]\subset\mathbb{A}_{K}^{+} enables us to view [p]q[p]_{q} as elements of AK+\mathbb{A}_{K}^{+}. We have the following lemmas.

Lemma 2.5.

The inclusion AK+AK\mathbb{A}_{K}^{+}\subset\mathbb{A}_{K} induces an isomorphism

AK+/pEK+EKAK/p.\mathbb{A}_{K}^{+}/p\cong\mathbb{E}_{K}^{+}\subset\mathbb{E}_{K}\cong\mathbb{A}_{K}/p.
Proof.

First we show that the natural map AK+/p=W(k)[[q1]]¯K/pAK/p\mathbb{A}_{K}^{+}/p=\overline{W(k)[[q-1]]}^{K}/p\rightarrow\mathbb{A}_{K}/p is an inclusion. Suppose that xW(k)[[q1]]¯Kx\in\overline{W(k)[[q-1]]}^{K} is in the kernel, then x=pyx=py for some yAKy\in\mathbb{A}_{K}. If xx satisfies the minimal ploynomial equation xn+a1xn1++an=0x^{n}+a_{1}x^{n-1}+\cdots+a_{n}=0 with aiW(k)[[q1]]a_{i}\in W(k)[[q-1]], then we have that yy satisfies the minimal polynomial equation yn+a1pxn1++anpn=0y^{n}+\frac{a_{1}}{p}x^{n-1}+\cdots+\frac{a_{n}}{p^{n}}=0 with coefficients in the fraction field of the complete discrete valuation ring W(k)((q1))W(k)((q-1)), but yAKy\in\mathbb{A}_{K} is integral over W(k)((q1))W(k)((q-1)) as it is an extension of complete DVRs, which tells us that a1pxn1,,anpnW(k)((q1))\frac{a_{1}}{p}x^{n-1},\cdots,\frac{a_{n}}{p^{n}}\in W(k)((q-1)). Further, aiw(k)[[q1]]a_{i}\in w(k)[[q-1]] forces us that a1pxn1,,anpnW(k)[[q1]]\frac{a_{1}}{p}x^{n-1},\cdots,\frac{a_{n}}{p^{n}}\in W(k)[[q-1]], so yW(k)[[q1]]¯Ky\in\overline{W(k)[[q-1]]}^{K} proving the injectivity.

Next we note that by definition AK+/p\mathbb{A}_{K}^{+}/p is integral over W(k)[[q1]]/pk[[ϵ1]]W(k)[[q-1]]/p\cong k[[\epsilon-1]], so

AK+/pEK+.\mathbb{A}_{K}^{+}/p\subset\mathbb{E}_{K}^{+}.

If α¯EK+\bar{\alpha}\in\mathbb{E}_{K}^{+}, and f¯k[[ϵ1]][x]\bar{f}\in k[[\epsilon-1]][x] is the minimal monic polynomial of α¯\bar{\alpha}, then ff is separable as EK\mathbb{E}_{K} is a separable extension of k((ϵ1))k((\epsilon-1)). We choose a monic lift fW(k)[[q1]][x]f\in W(k)[[q-1]][x] of f¯\bar{f}, then Hensel’s lemma tells us that ff has a root α\alpha in AK\mathbb{A}_{K} that reduces to α¯\bar{\alpha}, which means that αW(k)[[q1]]¯K\alpha\in\overline{W(k)[[q-1]]}^{K} is a lift of α¯\bar{\alpha}, so EK+AK+/p\mathbb{E}_{K}^{+}\subset\mathbb{A}_{K}^{+}/p. ∎

Corollary 2.6.

AK+\mathbb{A}_{K}^{+} is a Noetherian ring.

Proof.

This follows immediately from [7] tag 05GH. ∎

Lemma 2.7.

For every nNn\in\mathbb{N}, (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))) is a prism.

Proof.

Being a subring of AK\mathbb{A}_{K}, AK+\mathbb{A}_{K}^{+} is an integral domain, so ϕn([p]q)\phi^{n}([p]_{q}) is a non-zero divisor. Since (W(k)[[q1]],([p]q))(W(k)[[q-1]],([p]_{q})) is a prism, we have p=a[p]q+bϕ([p]q)p=a[p]_{q}+b\phi([p]_{q}) for some a,bW(k)[[q1]]a,b\in W(k)[[q-1]]. Applying ϕn\phi^{n} to it, we have p=ϕn(a)ϕn([p]q)+ϕn(b)ϕn+1([p]q)p=\phi^{n}(a)\phi^{n}([p]_{q})+\phi^{n}(b)\phi^{n+1}([p]_{q}), proving p(ϕn([p]q),ϕ(ϕn([p]q)))p\in(\phi^{n}([p]_{q}),\phi(\phi^{n}([p]_{q}))). Lastly, AK+\mathbb{A}_{K}^{+} is pp-complete by construction and AK+/pEK+\mathbb{A}_{K}^{+}/p\cong\mathbb{E}_{K}^{+}, which is a complete DVR. We have ϕn([p]q)(q1)pn(p1)modp\phi^{n}([p]_{q})\equiv(q-1)^{p^{n}(p-1)}\ \text{mod}\ p, which is a pseudouniformizer in EW(k)[1p]+k[[q1]]\mathbb{E}_{W(k)[\frac{1}{p}]}^{+}\cong k[[q-1]], hence a pseudouniformizer in EK+\mathbb{E}_{K}^{+}. This proves that AK+\mathbb{A}_{K}^{+} is (p,ϕn([p]q))(p,\phi^{n}([p]_{q}))-complete, by [7] tag 0DYC. ∎

We record some simple algebraic properties of the prism (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))).

Lemma 2.8.

The canonical inclusion W(k)[[q1]]AK+W(k)[[q-1]]\rightarrow\mathbb{A}_{K}^{+} is faithfully flat.

Proof.

By remark 4.31 of [8], it is enough to prove flatness of the maps after reduction mod pp, which is k[[q1]]EK+k[[q-1]]\rightarrow\mathbb{E}^{+}_{K}. This is an injective map from a DVR to an integral domain, hence flat.

To show it is faithfully flat, it is enough to show that for any finitely generated W(k)[[q1]]W(k)[[q-1]]-module MM such that MW(k)[[q1]]AK+=0M\otimes_{W(k)[[q-1]]}\mathbb{A}_{K}^{+}=0, then M=0M=0. We have

M/pW(k)[[q1]]/pAK+/p(MW(k)[[q1]]AK+)AK+AK+/p=0,M/p\otimes_{W(k)[[q-1]]/p}\mathbb{A}_{K}^{+}/p\cong(M\otimes_{W(k)[[q-1]]}\mathbb{A}_{K}^{+})\otimes_{\mathbb{A}_{K}^{+}}\mathbb{A}_{K}^{+}/p=0,

but W(k)[[q1]]/p=k[[q1]]EK+=AK+/pW(k)[[q-1]]/p=k[[q-1]]\rightarrow\mathbb{E}_{K}^{+}=\mathbb{A}_{K}^{+}/p is faithfully flat as it is a local flat map between DVRs. Thus we have M/p=0M/p=0, which implies that M=0M=0 by Nakayama. ∎

Corollary 2.9.

AK+/ϕn([p]q)\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}) is pp-torsionfree, so the prism (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))) is bounded.

Proof.

We have that

W(k)[[q1]]/ϕn([p]q)AK+/ϕn([p]q)W(k)[[q-1]]/\phi^{n}([p]_{q})\rightarrow\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q})

is flat since it is the base change of W(k)[[q1]]AK+W(k)[[q-1]]\rightarrow\mathbb{A}_{K}^{+}. We observe that

W(k)[[q1]]/ϕn([p]q)W(k)[ζpn],W(k)[[q-1]]/\phi^{n}([p]_{q})\cong W(k)[\zeta_{p^{n}}],

which is pp-torsionfree. Then the flatness tells us that AK+/ϕn([p]q)\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}) is also pp-torsionfree. ∎

Lemma 2.10.

The map ϕ:AK+AK+\phi:\mathbb{A}^{+}_{K}\rightarrow\mathbb{A}^{+}_{K} is faithfully flat.

Proof.

Again by remark 4.31 of [8], it is enough to show the flatness mod pp, which is the Frobenius ϕ:EK+EK+\phi:\mathbb{E}^{+}_{K}\rightarrow\mathbb{E}^{+}_{K}. It is an injective map of DVRs, so flat.

To show it is faithfully flat, it is enough to show that for any finitely generated AK+\mathbb{A}_{K}^{+}-module MM such that MAK+,ϕAK+=0M\otimes_{\mathbb{A}_{K}^{+},\phi}\mathbb{A}_{K}^{+}=0, then M=0M=0. We have M/pAK+/p,ϕAK+/p(MAK+,ϕAK+)AK+AK+/p=0M/p\otimes_{\mathbb{A}_{K}^{+}/p,\phi}\mathbb{A}_{K}^{+}/p\cong(M\otimes_{\mathbb{A}_{K}^{+},\phi}\mathbb{A}_{K}^{+})\otimes_{\mathbb{A}_{K}^{+}}\mathbb{A}_{K}^{+}/p=0, but ϕ:AK+/p=EK+EK+\phi:\mathbb{A}_{K}^{+}/p=\mathbb{E}_{K}^{+}\rightarrow\mathbb{E}_{K}^{+} is faithfully flat as it is a local flat map between DVRs. Thus we have M/p=0M/p=0, which implies that M=0M=0 by Nakayama. ∎

2.2. Perfect prisms and perfectoid rings

There is an important class of prisms that has close connection with perfectoid rings.

Definition 2.11.

A prism (A,I)(A,I) is called perfect if ϕ\phi is an automorphism of AA.

We have a natural perfection functor for prisms.

Proposition 2.12.

([2] lemma 3.8) Let (A,I)(A,I) be a prism, and

Aperf:=(colimϕA)(p,I),A_{\text{perf}}:=(\underset{\phi}{colim}\ A)^{\wedge}_{(p,I)},

then (Aperf,IAperf)(A_{perf},IA_{perf}) is a perfect prism. Moreover, it is the universal perfect prism over (A,I)(A,I).

Perfect prisms are canonically equivalent to integral perfectoid rings as defined in [8]. We recall the definition of integral perfectoid rings first.

Definition 2.13.

A ring RR is integral perfectoid if it is π\pi-adically complete for some πR\pi\in R such that πp\pi^{p} divides pp, the Frobenius on R/pR/p is surjective, and the canonical map θ:W(R)R\theta:W(R^{\flat})\rightarrow R has principal kernel.

The desired equivalence with perfect prisms is the following theorem.

Theorem 2.14.

([2] theorem 3.9) The category of perfect prisms is equivalent to the category of integral perfectoid rings. The equivalence functors are (A,I)A/I(A,I)\rightarrow A/I, and R(W(R),Ker(θ))R\rightarrow(W(R^{\flat}),Ker(\theta)).

There is another notion of perfectoid rings used in the theory of perfectoid spaces. We recall the definition and compare it with integral perfectoid rings. Recall that a complete Tate ring is a complete Huber ring that contains a topological nilpotent unit. In more concrete terms, it is a complete topological ring RR which contains an open subring R+R^{+} whose topology is π\pi-adic for some element πR+\pi\in R^{+}, and R=R+[1π]R=R^{+}[\frac{1}{\pi}]. For any Huber ring RR, we denote by RR^{\circ} the subring of power bounded elements.

Definition 2.15.

A perfectoid Tate ring is a uniform complete Tate ring RR, i.e. RR^{\circ} is bounded, such that there exists a topological nilpotent unit πR\pi\in R^{\circ} such that πp\pi^{p} divides pp, and Frobenius is surjective on R/πpR^{\circ}/\pi^{p}.

We have the following comparison between the two notions of perfectoid rings. Recall that a ring of integral elements of a Huber ring RR is an open and integrally closed subring R+R^{+} of RR^{\circ}.

Proposition 2.16.

([8] lemma 3.20) Let RR be a complete Tate ring, and R+RR^{+}\subset R be a ring of integral elements. Then RR is a perfectoid Tate ring if and only if R+R^{+} is bounded in RR and integral perfectoid.

The proposition characterizes integral perfectoid subrings of a perfectoid Tate ring. We can also build a perfectoid Tate ring from a integral perfectoid ring as in the following proposition.

Proposition 2.17.

Let RR be an integral perfectoid ring and πR\pi\in R be an element such that RR is π\pi-adically complete and πp\pi^{p} divides pp, then R/Ann(π)R/Ann(\pi) is integral perfectoid, and R[1π]R[\frac{1}{\pi}] is a perfectoid Tate ring with ring of definition R/Ann(π)R/Ann(\pi).

Similarly, for RR integral perfectoid, then R/Ann(p)R/Ann(p) is integral perfectoid and R[1p]R[\frac{1}{p}] is a perfectoid Tate ring with ring of definition R/AnnR(p)R/Ann_{R}(p).

Proof.

By [8] lemma 3.9, there are units u,vu,v of RR such that both πu\pi u and pvpv has compatible systems of pp-power roots in RR. Then by [9] 16.3.69, R/AnnR(πu)R/\text{Ann}_{R}(\pi u), resp. R/AnnR(pv)R/\text{Ann}_{R}(pv), is integral perfectoid without π\pi-, resp. pp-, torsion (the definition of perfectoid in [9] is the same as being integral perfectoid, as [8] remark 3.8 shows). Now R[1π]R[\frac{1}{\pi}], resp. R[1p]R[\frac{1}{p}], is a perfectoid Tate ring with ring of definition R/AnnR(πu)R/\text{Ann}_{R}(\pi u), resp. R/AnnR(πu)R/\text{Ann}_{R}(\pi u), by [8] lemma 3.21. ∎

Remark 2.18.

We have not excluded the zero ring in the proposition. For example, any perfect ring of characteristic pp is integral perfectoid with π=0\pi=0, then the rings produced in the proposition are all zero. This tells us that in some sense the integral perfectoid rings are more general than being perfectoid Tate. For example, finite fields are integral perfectoid, but can not be nonzero (ring of integers of) perfectoid Tate in any way.

We can compute the perfection of the prism (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))).

Lemma 2.19.

We have

(AK+)perfW(𝒪K(ζp)).(\mathbb{A}_{K}^{+})_{perf}\cong W(\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat}).
Proof.

Let I=(ϕn([p]q))I=(\phi^{n}([p]_{q})). By [2] corollary 2.31, we have

(AK+)perfW((AK+)perf/p)W((colimϕAK+)I/p)W((colimϕAK+/p)I)W((colimϕEK+)I)(\mathbb{A}_{K}^{+})_{\text{perf}}\cong W((\mathbb{A}_{K}^{+})_{\text{perf}}/p)\cong W((\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+})^{\wedge}_{I}/p)\cong W((\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/p)^{\wedge}_{I})\cong W((\underset{\phi}{\text{colim}}\ \mathbb{E}_{K}^{+})^{\wedge}_{I})

where we use lemma 10.96.1 (1) of Stacks project, and commutation of colimit with tensoring with Z/p\mathbb{Z}/p, in the third equality. From the theory of fields of norms, we know that

(colimϕEK+)=𝒪K(ζp),(\underset{\phi}{\text{colim}}\ \mathbb{E}_{K}^{+})^{\wedge}=\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat},

where the completion is with respect to the natural valuation. We know that ϕn([p]q)(q1)pn(p1)modp\phi^{n}([p]_{q})\equiv(q-1)^{p^{n}(p-1)}\ \text{mod}\ p is a pseudouniformizer in k[[q1]]EK+k[[q-1]]\subset\mathbb{E}_{K}^{+}, hence the completion is the same as completion with respect to II. Then we have

(AK+)perfW(𝒪K(ζp))(\mathbb{A}_{K}^{+})_{\text{perf}}\cong W(\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat})

as desired. ∎

Corollary 2.20.

The automorphism group of (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))) in the category Spf(𝒪K)ΔSpf(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}} is Γ=Gal(K(ζp)/K)\Gamma=Gal(K(\zeta_{p^{\infty}})/K).

Proof.

Let γ\gamma be an automorphism of (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))), then γ\gamma by definition is a δ\delta-ring morphism, and is continuous with respect to (p,ϕn([p]q))(p,\phi^{n}([p]_{q}))-topology, hence γ\gamma extends to an automorphism of (AK+,(ϕn([p]q)))perf(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))_{\text{perf}}. By theorem 3.10 of [2], the automorphism group of (AK+,(ϕn([p]q)))perf(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))_{\text{perf}} as an abstract prism is the same as the automorphism group of the corresponding integral perfectoid ring, which is 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}} by the proposition. The automorphism of (AK+,(ϕn([p]q)))perf(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))_{\text{perf}} as objects of Spf(𝒪K)Δ\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}} is then the 𝒪K\mathcal{O}_{K}-algebra automorphism of 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}, so

γAut(𝒪K(ζp)/𝒪K)=Γ.\gamma\in\text{Aut}(\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}/\mathcal{O}_{K})=\Gamma.

But we observe that Γ\Gamma already acts on (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))). The action on AK+\mathbb{A}_{K}^{+} is clear from its construction, and we need to check that it preserves the ideal (ϕn([p]q))(\phi^{n}([p]_{q})).

First,

γ(q)=qα=(1+q1)α=i=0(αi)(q1)i\gamma(q)=q^{\alpha}=(1+q-1)^{\alpha}=\sum_{i=0}^{\infty}\binom{\alpha}{i}(q-1)^{i}

for some αZp×\alpha\in\mathbb{Z}_{p}^{\times}, where (αi):=α(α1)(αi+1)i!\binom{\alpha}{i}:=\frac{\alpha\cdot(\alpha-1)\cdots(\alpha-i+1)}{i!}. This follows from the definition q=[ϵ]q=[\epsilon], and α\alpha is the value at γ\gamma of the cyclotomic character. Then

γ(ϕn([p]q))=qαpn+11qαpn1=qpn1qαpn1×qαpn+11qpn+11×ϕn([p]q)\gamma(\phi^{n}([p]_{q}))=\frac{q^{\alpha p^{n+1}}-1}{q^{\alpha p^{n}}-1}=\frac{q^{p^{n}}-1}{q^{\alpha p^{n}}-1}\times\frac{q^{\alpha p^{n+1}}-1}{q^{p^{n+1}}-1}\times\phi^{n}([p]_{q})

and we claim that qpn1qαpn1×qαpn+11qpn+11\frac{q^{p^{n}}-1}{q^{\alpha p^{n}}-1}\times\frac{q^{\alpha p^{n+1}}-1}{q^{p^{n+1}}-1} is a unit, which is what we want to prove. This follows from the computation

qpn1qαpn1=(α+i=1(αi+1)(qpn1)i)1=α1+(q1)()\frac{q^{p^{n}}-1}{q^{\alpha p^{n}}-1}=(\alpha+\sum_{i=1}^{\infty}\binom{\alpha}{i+1}(q^{p^{n}}-1)^{i})^{-1}=\alpha^{-1}+(q-1)(\cdots)
qαpn+11qpn+11=α+i=1(αi+1)(qpn+11)i=α+(q1)()\frac{q^{\alpha p^{n+1}}-1}{q^{p^{n+1}}-1}=\alpha+\sum_{i=1}^{\infty}\binom{\alpha}{i+1}(q^{p^{n+1}}-1)^{i}=\alpha+(q-1)(\cdots)

which are units in W(k)[[q1]]W(k)[[q-1]] as αZp×.\alpha\in\mathbb{Z}_{p}^{\times}.

Now the corollary follows from the fact that AK+(AK+)perf\mathbb{A}_{K}^{+}\rightarrow(\mathbb{A}_{K}^{+})_{\text{perf}} is injective (ϕ\phi is injective as AK+\mathbb{A}_{K}^{+} is a δ\delta-subring of the perfect δ\delta-ring W(C)W(\mathbb{C}^{\flat})). ∎

Moreover, we have the following proposition.

Proposition 2.21.

There exists nNn\in\mathbb{N} such that

(AK+,(ϕn([p]q)))(𝒪K)Δ,(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\in(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}},

i.e. there exists a map 𝒪KAK+/ϕn([p]q)\mathcal{O}_{K}\rightarrow\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}).

Remark 2.22.

AK+\mathbb{A}_{K}^{+} depends only on K(ζp)K(\zeta_{p^{\infty}}). In other words, AK+\mathbb{A}_{K}^{+} cannot see the difference between K(ζpk)K(\zeta_{p^{k}}) and KK, and this is taken care by the choice of ϕn([p]q)\phi^{n}([p]_{q}).

Proof.

Let I=([p]q)I=([p]_{q}), we have by lemma 2.19

(AK+)perf/IW(𝒪K(ζp))/I𝒪K(ζp),(\mathbb{A}_{K}^{+})_{\text{perf}}/I\cong W(\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat})/I\cong\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}},

where the last isomorphism follows from and ϕ\phi being an automorphism and Ker(θ)=(ϕ1([p]q))\text{Ker}(\theta)=(\phi^{-1}([p]_{q})), for θ:W(𝒪K(ζp))𝒪K(ζp)\theta:W(\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}^{\flat})\twoheadrightarrow\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}. On the other hand, we also have

(AK+)perf/I(colimϕAK+)(p,I)/I(colimϕAK+)p/I(colimϕAK+/ϕi(I))p(\mathbb{A}_{K}^{+})_{\text{perf}}/I\cong(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+})^{\wedge}_{(p,I)}/I\cong(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+})^{\wedge}_{p}/I\cong(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I))^{\wedge}_{p}

by definition of (AK+)perf(\mathbb{A}_{K}^{+})_{\text{perf}}, hence

(colimϕAK+/ϕi(I))p𝒪K(ζp),(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I))^{\wedge}_{p}\cong\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}},

and we claim that this implies that

colimϕAK+/ϕi(I)𝒪K(ζp).\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I)\cong\mathcal{O}_{K(\zeta_{p^{\infty}})}. (1)

Observe that AK+/ϕi(I)\mathbb{A}_{K}^{+}/\phi^{i}(I) is integral over W(k)W(k), so colimϕAK+/ϕi(I)\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I) is also integral over W(k)W(k). Since there is no non-trivial integral extension of 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})} in its completion 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}, colimϕAK+/ϕi(I)\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I), being integral over a subring of 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})}, has to be contained in 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})}. We look at the short exact sequence of (colimϕAK+/ϕi(I))(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I))-modules

0colimϕAK+/ϕi(I)𝒪K(ζp)𝒪K(ζp)/colimϕAK+/ϕi(I)=:M0.0\longrightarrow\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I)\longrightarrow\mathcal{O}_{K(\zeta_{p^{\infty}})}\longrightarrow\mathcal{O}_{K(\zeta_{p^{\infty}})}/\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I)=:M\longrightarrow 0.

From

(colimϕAK+/ϕi(I))p𝒪K(ζp)(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I))^{\wedge}_{p}\cong\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}}

and Stacks project lemma 10.96.1, we have Mp=0M^{\wedge}_{p}=0. The identification after completion also implies that colimϕAK+/ϕi(I)\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I) and 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})} have the same fraction field, in other words, MM is pp-torsion. Further, we observe that colimϕAK+/ϕi(I)\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I) contains

colimϕW(k)[[q1]]/ϕi([p]q)W(k)[ζp]\underset{\phi}{\text{colim}}\ W(k)[[q-1]]/\phi^{i}([p]_{q})\cong W(k)[\zeta_{p^{\infty}}]

over which 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})} is finite. This implies that MM is a finitely generated (colimϕAK+/ϕi(I))(\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I))-module, which, together with being pp-torsion, tells us that MM is killed by pkp^{k} for some kk, so MM is pp-adically complete. Then we have M=Mp=0M=M^{\wedge}_{p}=0, proving the claim.

Now as 𝒪K𝒪K(ζp)\mathcal{O}_{K}\subset\mathcal{O}_{K(\zeta_{p^{\infty}})} is finite over W(k)W(k), (1) implies that 𝒪K\mathcal{O}_{K} factorizes through 𝒪KAK+/ϕn(I)\mathcal{O}_{K}\rightarrow\mathbb{A}_{K}^{+}/\phi^{n}(I) for some nn. Indeed, let 𝒪K=W(k)[z]/f(z)\mathcal{O}_{K}=W(k)[z]/f(z) for some polymonial ff with coefficients in W(k)W(k). Then zz, as an element of 𝒪K(ζp)=colimϕAK+/ϕi(I)\mathcal{O}_{K(\zeta_{p^{\infty}})}=\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}(I), lifts to an element z1AK+/ϕn(I)z_{1}\in\mathbb{A}_{K}^{+}/\phi^{n}(I) for some n>0n>0, and the relation f(z)=0f(z)=0 in the colimit forces that ϕm(f(z1))=0\phi^{m}(f(z_{1}))=0 in the ring AK+/ϕn+m(I)\mathbb{A}_{K}^{+}/\phi^{n+m}(I) for some mm, which implies that 𝒪KAK+/ϕn+m(I)\mathcal{O}_{K}\rightarrow\mathbb{A}_{K}^{+}/\phi^{n+m}(I). Note that we have used the fact that 𝒪K𝒪KW(k),ϕnW(k)W(k)[x]/ϕn(f)(x)\mathcal{O}_{K}\cong\mathcal{O}_{K}\otimes_{W(k),\phi^{n}}W(k)\cong W(k)[x]/\phi^{n}(f)(x), where the first isomorphism follows from the perfectness of W(k)W(k). ∎

Remark 2.23.

We have used freely in the above proof the fact that there is no algebraic extension of nonarchimedean fields in their completion. More precisely, let LL be an algebraic extension of W(k)[1p]W(k)[\frac{1}{p}], then there is no nontrivial algebraic extension in its completion LL^{\wedge}. Equivalently, completion induces an equivalence between algebraic extensions M/LM/L of LL and algebraic extension M/LM^{\wedge}/L^{\wedge} of LL^{\wedge}. This follows immediately from the fact that CGal(L¯/M)=M\mathbb{C}^{\text{Gal}(\bar{L}/M)}=M^{\wedge}, where C\mathbb{C} is a completed algebraic closure of LL.

We extract the following lemma from the proof, which will be useful later.

Lemma 2.24.

The map 𝒪KAK+/ϕn([p]q)\mathcal{O}_{K}\longrightarrow\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}) is flat.

Proof.

Since 𝒪K\mathcal{O}_{K} is a valuation ring, it is enough to show that every non-zero element of 𝒪K\mathcal{O}_{K} is not a zero-divisor of AK+/ϕn([p]q)\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}). We observe that

𝒪K𝒪K(ζp)colimϕAK+/ϕi([p]q)\mathcal{O}_{K}\rightarrow\mathcal{O}_{K(\zeta_{p^{\infty}})}\cong\underset{\phi}{\text{colim}}\ \mathbb{A}_{K}^{+}/\phi^{i}([p]_{q})

is flat, so if x𝒪K0x\in\mathcal{O}_{K}\setminus 0 satisfies xy=0xy=0 for some yAK+/ϕn([p]q)y\in\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}), then yy defines a zero-divisor of xx in the colimit, which has to be 0 by the flatness of 𝒪K\mathcal{O}_{K} over 𝒪K(ζp)\mathcal{O}_{K(\zeta_{p^{\infty}})}. Thus ϕk(y)=0\phi^{k}(y)=0 for some kk, which implies that y=0y=0 by the faithfully flatness of ϕ\phi established in lemma 2.10. ∎

3. Prismatic F-crystals

We recall the definition of prismatic F-crystals and make explicit an example that is relevant for us. Recall that we have a natural structure sheaf of δ\delta-rings 𝒪Δ\mathcal{O}_{{{\mathbbl{\Delta}}}} on XΔX_{{{\mathbbl{\Delta}}}}, together with an ideal sheaf IΔI_{{{\mathbbl{\Delta}}}}.

Definition 3.1.

Let XX be a pp-adic formal scheme, and \mathcal{R} be 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}, the pp-adic completion of the structure sheaf 𝒪Δ\mathcal{O}_{{{\mathbbl{\Delta}}}} with (locally) a generator of IΔI_{{{\mathbbl{\Delta}}}} inverted. A prismatic FF-crystal on XX in \mathcal{R}-modules is a finite locally free \mathcal{R}-module \mathcal{M} over XΔX_{{{\mathbbl{\Delta}}}} such that

(A,I)(A,I)(B,IB)(B,IB)\mathcal{M}(A,I)\otimes_{\mathcal{R}(A,I)}\mathcal{R}(B,IB)\cong\mathcal{M}(B,IB)

for any arrow (A,I)(B,IB)(A,I)\rightarrow(B,IB) in XΔX_{{{\mathbbl{\Delta}}}}, together with an isomorphism

F:ϕ[1IΔ][1IΔ]F:\phi^{*}\mathcal{M}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]\cong\mathcal{M}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]

of \mathcal{R}-modules.

A concrete way to work with prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules is to choose a cover (A,I)(A,I) of the final object * of the topos XΔX_{{{\mathbbl{\Delta}}}}, suppose that (A,I)×(A,I)(A,I)\times_{*}(A,I) is representable, and

(B,J):=(A,I)×(A,I),(B,J):=(A,I)\times_{*}(A,I),

then a prismatic F-crystal in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules is a finite projective φ\varphi-A[1I]pA[\frac{1}{I}]^{\wedge}_{p}-module MM together with an isomorphism

β:MA[1I]pB[1J]pB[1J]pA[1I]pM\beta:M\otimes_{A[\frac{1}{I}]^{\wedge}_{p}}B[\frac{1}{J}]^{\wedge}_{p}\cong B[\frac{1}{J}]^{\wedge}_{p}\otimes_{A[\frac{1}{I}]^{\wedge}_{p}}M

of φ\varphi-B[1J]pB[\frac{1}{J}]^{\wedge}_{p}-modules satisfying cocycle conditions. Indeed, it is obvious that we can obtain such an object from a prismatic FF-crystal. Conversely, if we are given such data, we can build a prismatic FF-crystal \mathcal{M} as follows. Given a prism (C,K)XΔ(C,K)\in X_{{{\mathbbl{\Delta}}}}, since (A,I)(A,I) covers the final object, there exists a cover (C,K)(C^{\prime},K^{\prime}) of (C,K)(C,K), which also lies over (A,I)(A,I). Then we can define

(C,K):=Eq(MA[1I]pC[1K]pMA[1I]pC′′[1K′′]p)\mathcal{M}(C,K):=\text{Eq}(M\otimes_{A[\frac{1}{I}]^{\wedge}_{p}}C^{\prime}[\frac{1}{K^{\prime}}]^{\wedge}_{p}\rightrightarrows M\otimes_{A[\frac{1}{I}]^{\wedge}_{p}}C^{\prime\prime}[\frac{1}{K^{\prime\prime}}]^{\wedge}_{p})

where (C′′,K′′):=(C,K)×(C,K)(C,K),(C^{\prime\prime},K^{\prime\prime}):=(C^{\prime},K^{\prime})\times_{(C,K)}(C^{\prime},K^{\prime}), which lives over (B,J)(B,J), and the two arrows comes from the base change descent data βB[1J]pC′′[1K′′]p\beta\otimes_{B[\frac{1}{J}]^{\wedge}_{p}}C^{\prime\prime}[\frac{1}{K^{\prime\prime}}]^{\wedge}_{p}. Now by the next proposition, the descent data is effective on finite projective modules, so (C,K)\mathcal{M}(C,K) is a finite projective module over C[1K]pC[\frac{1}{K}]^{\wedge}_{p}.

Proposition 3.2.

Let (A,I)(B,IB)(A,I)\rightarrow(B,IB) be a cover in the category of bounded prisms, and (B,IB)(B^{\bullet},IB^{\bullet}) be the corresponding Čech nerve, then we have an equivalence of categories

Vect(A[1I]p)lim(Vect(B[1I]p)Vect(B2[1I]p)),\text{Vect}(A[\frac{1}{I}]^{\wedge}_{p})\overset{\sim}{\rightarrow}\underset{\leftarrow}{\lim}(Vect(B[\frac{1}{I}]^{\wedge}_{p})\rightrightarrows Vect(B^{2}[\frac{1}{I}]^{\wedge}_{p})\begin{subarray}{c}\longrightarrow\\[-10.00002pt] \longrightarrow\\[-10.00002pt] \longrightarrow\end{subarray}\cdots),

where Vect(R) denotes the category of finite projective modules over the ring RR.

Proof.

Since A[1I]pA[\frac{1}{I}]^{\wedge}_{p} (resp. B[1I]pB^{\bullet}[\frac{1}{I}]^{\wedge}_{p}) is pp-complete, by [7] tag 0D4B, Vect(A[1I]p)Vect(A[\frac{1}{I}]^{\wedge}_{p}) (resp. Vect(B[1I]pVect(B^{\bullet}[\frac{1}{I}]^{\wedge}_{p})) is equivalent to lim𝑛Vect(A[1I]/pn)\underset{n}{\lim}\ Vect(A[\frac{1}{I}]/p^{n}) (resp. lim𝑛Vect(B[1I]/pn)\underset{n}{\lim}\ Vect(B^{\bullet}[\frac{1}{I}]/p^{n})). Thus it suffices to prove the equivalence

Vect(A/pn[1I])lim(Vect(B/pn[1I])Vect(B2/pn[1I])).\text{Vect}(A/p^{n}[\frac{1}{I}])\overset{\sim}{\rightarrow}\underset{\leftarrow}{\lim}(Vect(B/p^{n}[\frac{1}{I}])\rightrightarrows Vect(B^{2}/p^{n}[\frac{1}{I}])\begin{subarray}{c}\longrightarrow\\[-10.00002pt] \longrightarrow\\[-10.00002pt] \longrightarrow\end{subarray}\cdots). (2)

We know from the proof of [2] corollary 3.12 that B2B^{2} is the derived (p,I)(p,I)-completion of BALBB\otimes_{A}^{\mathbb{L}}B, which is proved in loc.cit.loc.\ cit. to be discrete and classically (p,I)(p,I)-complete. Then lemma 3.3 shows that

B2=(BAB)(p,I),B^{2}=(B\otimes_{A}B)^{\wedge}_{(p,I)},

i.e. it is the classical (p,I)(p,I)-completion of BABB\otimes_{A}B, and similarly for BB^{\bullet}. Indeed, by the discreteness and classical (p,I)(p,I)-completeness of BALB^\widehat{B\otimes_{A}^{\mathbb{L}}B}, the derived (p,I)(p,I)-completion of BALBB\otimes_{A}^{\mathbb{L}}B, we have

B2=H0(BALB^)=H0(BALB^)(p,I)=H0(BALB)(p,I)=(BAB)(p,I),B^{2}=H^{0}(\widehat{B\otimes_{A}^{\mathbb{L}}B})=H^{0}(\widehat{B\otimes_{A}^{\mathbb{L}}B})^{\wedge}_{(p,I)}=H^{0}(B\otimes_{A}^{\mathbb{L}}B)^{\wedge}_{(p,I)}=(B\otimes_{A}B)^{\wedge}_{(p,I)},

where the third equality follows from lemma 3.3. Then we have

B2/pn=(B/pnA/pnB/pn)IB^{2}/p^{n}=(B/p^{n}\otimes_{A/p^{n}}B/p^{n})^{\wedge}_{I}
B3/pn=(B/pnA/pnB/pnA/pnB/pn)IB^{3}/p^{n}=(B/p^{n}\otimes_{A/p^{n}}B/p^{n}\otimes_{A/p^{n}}B/p^{n})^{\wedge}_{I}

and similarly for B/pnB^{\bullet}/p^{n}. Since ABA\rightarrow B is assumed to be (p,I)(p,I)-completely faithfully flat, A/pnB/pnA/p^{n}\rightarrow B/p^{n} is II-completely faithfully flat, and (2) follows from [10] theorem 7.8. ∎

Lemma 3.3.

Let RR be a ring and II be a finitely generated ideal of RR. Let KD0(R)K\in D^{\leq 0}(R) be a complex of RR-modules with zero cohomology in positive degrees, and K^\hat{K} its derived II-completion, then we have a canonical identification

H0(K^)IH0(K)I,H^{0}(\hat{K})^{\wedge}_{I}\cong H^{0}(K)^{\wedge}_{I},

in other words, the classical II-completion of H0(K^)H^{0}(\hat{K}) is the same as the classical II-completion of H0(K)H^{0}(K).

Proof.

For any RR-module MM, we denote M^\hat{M} its derived II-completion by viewing MM as a complex concentrated in zero degree. Recall that there is a natural map MH0(M^)M\rightarrow H^{0}(\hat{M}) which is initial among maps MNM\rightarrow N with NN a derived II-complete RR-module, see [10] definition 2.27 for example. By the spectral sequence in [7] tag 0BKE, we have

H0(K^)=H0(H0(K)^),H^{0}(\hat{K})=H^{0}(\widehat{H^{0}(K)}),

so we see that

H0(K)H0(K^)H^{0}(K)\rightarrow H^{0}(\hat{K})

is the initial map among H0(K)NH^{0}(K)\rightarrow N with NN a derived II-complete RR-module. We now claim that the composite map

H0(K)H0(K^)H0(K^)IH^{0}(K)\rightarrow H^{0}(\hat{K})\rightarrow H^{0}(\hat{K})^{\wedge}_{I}

is initial among H0(K)NH^{0}(K)\rightarrow N^{\prime} where NN^{\prime} is classical II-complete. This is exactly the universal property of the classical II-completion of H0(K)H^{0}(K), whence H0(K^)I=H0(K)IH^{0}(\hat{K})^{\wedge}_{I}=H^{0}(K)^{\wedge}_{I}.

We now prove the claim. Let H0(K)NH^{0}(K)\rightarrow N^{\prime} where NN^{\prime} be as given, since classical II-completeness implies derived II-completeness ([7] tag 091T), we have a unique factorization

H0(K)H0(K^)N,H^{0}(K)\rightarrow H^{0}(\hat{K})\rightarrow N^{\prime},

which further factors as

H0(K)H0(K^)H0(K^)INH^{0}(K)\rightarrow H^{0}(\hat{K})\rightarrow H^{0}(\hat{K})^{\wedge}_{I}\rightarrow N^{\prime}

by the universal property of H0(K^)IH^{0}(\hat{K})^{\wedge}_{I}. ∎

Example 3.4.

Let kk be a perfect field of characteristic pp, KK be a finite totally ramified extension of W(k)[1p]W(k)[\frac{1}{p}], and X=Spf(𝒪K)X=\text{Spf}(\mathcal{O}_{K}). Let nNn\in\mathbb{N} be chosen as in proposition 2.21 such that

(AK+,(ϕn([p]q)))XΔ,(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\in X_{{{\mathbbl{\Delta}}}},

then it is a cover of the final object by the following lemma 3.5. Moreover, we have by lemma 3.6

(AK+,(ϕn([p]q)))×(AK+,(ϕn([p]q)))=(C,J),(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\times_{\ast}(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))=(C,J),

where CC is (p,ϕn([p]q)1)(p,\phi^{n}([p]_{q})\otimes 1)-completion of AK+^W(k)AK+{ω11ωϕn([p]q)1,1ϕn([p]q)ϕn([p]q)1}\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}\{\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1},\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1}\}, which is freely adjoining ω11ωϕn([p]q)1\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1} and 1ϕn([p]q)ϕn([p]q)1\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1} to AK+^W(k)AK+\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+} as δ\delta-rings, and J=(ϕn([p]q)1)J=(\phi^{n}([p]_{q})\otimes 1).

Thus a prismatic F-crystal in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over XX is a AK\mathbb{A}_{K}-module MM together with an isomorphism

MAKC[1J]pC[1J]pAKMM\otimes_{\mathbb{A}_{K}}C[\frac{1}{J}]^{\wedge}_{p}\cong C[\frac{1}{J}]^{\wedge}_{p}\otimes_{\mathbb{A}_{K}}M

satisfying cocycle conditions. The ring CC is difficult to understand explicitly, we will see below how we can bypass this difficulty by passing to perfections.

Lemma 3.5.

Let KK be a finite totally ramified extension of W(k)[1p]W(k)[\frac{1}{p}], X=Spf(𝒪K)X=Spf(\mathcal{O}_{K}), and nNn\in\mathbb{N} be chosen as in proposition 2.21 such that

(AK+,(ϕn([p]q)))XΔ,(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\in X_{{{\mathbbl{\Delta}}}},

then it covers the final object in XΔX_{{{\mathbbl{\Delta}}}}.

Proof.

Let (A,I)(A,I) be an object of XΔX_{{{\mathbbl{\Delta}}}}, then A/IA/I is a 𝒪K\mathcal{O}_{K}-algebra. We have a quasisyntomic cover 𝒪K[ζp]p\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p} of 𝒪K\mathcal{O}_{K}, hence

A/I^𝒪K𝒪K[ζp]pA/I\hat{\otimes}_{\mathcal{O}_{K}}\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}

is a quasisyntomic cover of A/IA/I. By [2] proposition 7.11, we can find a prism (C,J)(C,J) that covers (A,I)(A,I) such that there is a morphism

A/I^𝒪K𝒪K[ζp]pC/J.A/I\hat{\otimes}_{\mathcal{O}_{K}}\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}\rightarrow C/J.

Now as 𝒪K[ζp]p\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p} is integral perfectoid, the composition

𝒪K[ζp]pA/I^𝒪K𝒪K[ζp]pC/J\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}\rightarrow A/I\hat{\otimes}_{\mathcal{O}_{K}}\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}\rightarrow C/J

lifts to a map of prisms

(Ainf(𝒪K[ζp]p),Ker(θ))(C,J)(A_{\text{inf}}(\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}),\text{Ker}(\theta))\rightarrow(C,J)

by [2] lemma 4.7. We have that

(AK+,(ϕn([p]q)))perf=(Ainf(𝒪K[ζp]p),ϕn+1(Ker(θ)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))_{\text{perf}}=(A_{\text{inf}}(\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}),\phi^{n+1}(\text{Ker}(\theta)))

by lemma 2.19, so we have a map

(AK+,(ϕn([p]q)))(Ainf(𝒪K[ζp]p),ϕn+1(Ker(θ)))ϕn1(Ainf(𝒪K[ζp]p),Ker(θ))(C,J)(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\rightarrow(A_{\text{inf}}(\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}),\phi^{n+1}(\text{Ker}(\theta)))\overset{\phi^{-n-1}}{\longrightarrow}(A_{\text{inf}}(\mathcal{O}_{K}[\zeta_{p^{\infty}}]^{\wedge}_{p}),\text{Ker}(\theta))\rightarrow(C,J)

of prisms. As (C,J)(C,J) covers (A,I)(A,I), we have finished the proof. ∎

Lemma 3.6.

Let kk be a perfect field of characteristic pp, KK be a finite totally ramified extension of W(k)[1p]W(k)[\frac{1}{p}], and ωAK+\omega\in\mathbb{A}_{K}^{+} be an element which modulo ϕn([p]q)\phi^{n}([p]_{q}) becomes a uniformizer of 𝒪K\mathcal{O}_{K} under the inclusion 𝒪KAK+/ϕn([p]q)\mathcal{O}_{K}\subset\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}). Then as objects of Spf(𝒪K)ΔSpf(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}, we have

(AK+,(ϕn([p]q)))×(AK+,(ϕn([p]q)))=(C,J),(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\times_{\ast}(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))=(C,J),

where

(C,J):=(AK+^W(k)AK+{ω11ωϕn([p]q)1,1ϕn([p]q)ϕn([p]q)1},(ϕn([p]q)1)).(C,J):=(\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}\{\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1},\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1}\}^{\wedge},(\phi^{n}([p]_{q})\otimes 1)).

The ring displayed is (p,ϕn([p]q)1)(p,\phi^{n}([p]_{q})\otimes 1)-completion of AK+^W(k)AK+{ω11ωϕn([p]q)1,1ϕn([p]q)ϕn([p]q)1}\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}\{\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1},\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1}\}, which is freely adjoining ω11ωϕn([p]q)1\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1} and 1ϕn([p]q)ϕn([p]q)1\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1} to AK+^W(k)AK+\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+} as δ\delta-rings.

Proof.

By definition, an object of XΔX_{{{\mathbbl{\Delta}}}} is a prism (A,I)(A,I) equipped with a morphism 𝒪KA/I\mathcal{O}_{K}\rightarrow A/I. The 𝒪K\mathcal{O}_{K}-algebra structure does not necessarily lift to AA, but the corresponding W(k)W(k)-algebra structure does. Indeed, by deformation theory of perfect rings, W(k)𝒪KA/IW(k)\subset\mathcal{O}_{K}\rightarrow A/I lifts canonically to a morphism W(k)AW(k)\rightarrow A, hence objects of XΔX_{{{\mathbbl{\Delta}}}} are naturally equipped with W(k)W(k)-algebra structures, and all arrows in XΔX_{{{\mathbbl{\Delta}}}} are W(k)W(k)-algebra morphisms.

Now given such an (A,I)(A,I), together with two arrows (AK+,(ϕn([p]q)))(A,I)(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\rightarrow(A,I) in XΔX_{{{\mathbbl{\Delta}}}}, they give rise canonically to a δ\delta-ring morphism

f:AK+^W(k)AK+A.f:\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}\longrightarrow A.

We know from properties of prisms that I=(f(ϕn([p]q)1))=(f(1ϕn([p]q)))I=(f(\phi^{n}([p]_{q})\otimes 1))=(f(1\otimes\phi^{n}([p]_{q}))). Moreover, being arrows in XΔX_{{{\mathbbl{\Delta}}}}, the two arrows are 𝒪K\mathcal{O}_{K}-algebra morphisms modϕn([p]q)\text{mod}\ \phi^{n}([p]_{q}), which means that ff maps 1ωω1modϕn([p]q)11\otimes\omega-\omega\otimes 1\ \text{mod}\ \phi^{n}([p]_{q})\otimes 1 to 0 in A/IA/I. Thus ff factors through AK+^W(k)AK+{ω11ωϕn([p]q)1,1ϕn([p]q)ϕn([p]q)1}\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}\{\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1},\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1}\}^{\wedge}.

It remains to show that (C,J)(C,J) is a prism. First we observe that 1ϕn([p]q)ϕn([p]q)1\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1} is a unit in CC, whence (1ϕn([p]q))=(ϕn([p]q)1)(1\otimes\phi^{n}([p]_{q}))=(\phi^{n}([p]_{q})\otimes 1). This follows from the equation

1ϕn([p]q)=ϕn([p]q)11ϕn([p]q)ϕn([p]q)11\otimes\phi^{n}([p]_{q})=\phi^{n}([p]_{q})\otimes 1\cdot\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1}

and [2] lemma 2.24.

We now claim that {1ϕn([p]q),ω11ω}\{1\otimes\phi^{n}([p]_{q}),\omega\otimes 1-1\otimes\omega\} is a regular sequence of AK+^W(k)AK+\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}. Viewing AK+^W(k)AK+\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+} as a AK+\mathbb{A}_{K}^{+}-algebra along the first factor, then it follows from [2] proposition 3.13 that (C,J)(C,J) is a prism. It remains to prove the claim, which puts us into the setting of [2] proposition 3.13.

Observe that 1ϕn([p]q)1\otimes\phi^{n}([p]_{q}) is regular since ϕn([p]q)\phi^{n}([p]_{q}) is regular in AK+\mathbb{A}_{K}^{+} (being an integral domain), and AK+^W(k)AK+\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+} is flat over AK+\mathbb{A}_{K}^{+}. We want to show that ω11ω\omega\otimes 1-1\otimes\omega is regular in

AK+^W(k)AK+/1ϕn([p]q)AK+^W(k)(AK+/ϕn([p]q)).\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}/1\otimes\phi^{n}([p]_{q})\cong\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}(\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q})).

We note that

ω11ωAK+^W(k)𝒪KAK+^W(k)(AK+/ϕn([p]q))\omega\otimes 1-1\otimes\omega\in\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathcal{O}_{K}\subset\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}(\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}))

by definition of ω\omega. By our assumption on kk, 𝒪K\mathcal{O}_{K} is totally ramified over W(k)W(k), so 𝒪KW(k)[x]/E\mathcal{O}_{K}\cong W(k)[x]/E for an Eisenstein polynomial EW(k)[x]E\in W(k)[x]. Then

AK+^W(k)𝒪KAK+[x]/E,\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathcal{O}_{K}\cong\mathbb{A}_{K}^{+}[x]/E,

and by Eisenstein criterion, EE is irreducible in AK+[x]\mathbb{A}_{K}^{+}[x]. Note that AK+\mathbb{A}_{K}^{+} is a regular local ring, whence a UFD by Auslander–Buchsbaum theorem. Then Gauss’s lemma tells us AK+[x]\mathbb{A}_{K}^{+}[x] is a UFD as well, so irreducible polynomials are prime. Then AK+[x]/E\mathbb{A}_{K}^{+}[x]/E is an integral domain, and ω11ω\omega\otimes 1-1\otimes\omega is regular in AK+^W(k)𝒪K\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathcal{O}_{K}. We know from lemma 2.24 that 𝒪KAK+/ϕn([p]q)\mathcal{O}_{K}\rightarrow\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q}) is flat, so ω11ω\omega\otimes 1-1\otimes\omega is regular in AK+^W(k)(AK+/ϕn([p]q))\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}(\mathbb{A}_{K}^{+}/\phi^{n}([p]_{q})). ∎

4. étale φ\varphi-modules

In this section, we prove that étale φ\varphi-modules on prisms does not change by passing to perfections. We first recall the definition of étale φ\varphi-modules.

Definition 4.1.

Let RR be a ring equipped with a ring morphism φ:RR\varphi:R\rightarrow R, an étale φ\varphi-modules over RR is a finite projective RR-module MM equipped with an RR-module isomorphism

F:φM=MR,φRM.F:\varphi^{*}M=M\otimes_{R,\varphi}R\overset{\sim}{\longrightarrow}M.

The morphisms between étale φ\varphi-modules are RR-module morphisms preserving FF. We denote by ÉM/R\textbf{ÉM}_{/R} the category of étale φ\varphi-modules over RR.

First, we observe that by passing to naive perfections, the category does not change.

Proposition 4.2.

There is an equivalence of categories

ÉM/RÉM/colim𝜑R\textbf{ÉM}_{/R}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/\underset{\varphi}{colim}\ R}

induced by base changing to colim𝜑R\underset{\varphi}{colim}\ R.

Proof.

For notational convenience, we index the rings RR in the relevant system by RnR_{n}, i.e. the ring colim𝜑R\underset{\varphi}{\text{colim}}\ R is the colimit of the cofiltered system

R0𝜑R1𝜑R2𝜑R_{0}\overset{\varphi}{\longrightarrow}R_{1}\overset{\varphi}{\longrightarrow}R_{2}\overset{\varphi}{\longrightarrow}\cdots

with each Ri=RR_{i}=R. As the data of an étale φ\varphi-module is finite in nature, an étale φ\varphi-module over colim𝜑R\underset{\varphi}{\text{colim}}\ R comes via base change from an étale φ\varphi-module over RnR_{n} for some nn. We need to show that it has further descent to R0R_{0}. Now let MM be an étale φ\varphi-module over RnR_{n}. Since Rn=R=R0R_{n}=R=R_{0}, we can view MM as an étale φ\varphi-module over R0R_{0}, and we claim that MRoRn=(φn)MM\otimes_{R_{o}}R_{n}=(\varphi^{n})^{*}M is isomorphic to MM as étale φ\varphi-modules over RnR_{n}. Iterate the φ\varphi-module structure F:φMMF:\varphi^{*}M\cong M, we obtain an RR-module isomorphism

G:=FφF(φn1)F:(φn)MMG:=F\circ\varphi^{*}F\circ\cdots\circ(\varphi^{n-1})^{*}F:(\varphi^{n})^{*}M\overset{\sim}{\longrightarrow}M

we need to check that this is an étale φ\varphi-module isomorphism, i.e. G(φn)F=FφGG\circ(\varphi^{n})^{*}F=F\circ\varphi^{*}G, but this is clear. This proves essential surjectivity.

For fully faithfullness, we need to show that for (M,FM),(N,FN)ÉM/R0(M,F_{M}),(N,F_{N})\in\textbf{ÉM}_{/R_{0}}, an arrow MR0colim𝜑RNR0colim𝜑RM\otimes_{R_{0}}\underset{\varphi}{\text{colim}}\ R\rightarrow N\otimes_{R_{0}}\underset{\varphi}{\text{colim}}\ R in ÉM/colim𝜑R\textbf{ÉM}_{/\underset{\varphi}{\text{colim}}\ R} comes uniquely from an arrow in ÉM/R0\textbf{ÉM}_{/R_{0}} via base change. The arrow comes from an arrow in ÉM/Rn\textbf{ÉM}_{/R_{n}} for some nn by standard finiteness argument, and we are reduced to showing that any arrow

f:MR0RnNR0Rnf:M\otimes_{R_{0}}R_{n}\longrightarrow N\otimes_{R_{0}}R_{n}

in ÉM/Rn\textbf{ÉM}_{/R_{n}} has a unique descent to R0R_{0}. We show that it descends uniquely to Rn1R_{n-1}, which proves the claim by iteration. Now we can assume n=1n=1, the previous paragraph shows that

FM:φMMF_{M}:\varphi^{*}M\overset{\sim}{\longrightarrow}M
FN:φNNF_{N}:\varphi^{*}N\overset{\sim}{\longrightarrow}N

are isomorphisms as étale φ\varphi-modules over RR (being denoted by GG in the previous paragraph). Let

g:=FNfFM1:MNg:=F_{N}\circ f\circ F_{M}^{-1}:M\longrightarrow N

then gg is an arrow in ÉM/R0\textbf{ÉM}_{/R_{0}}, and we claim that φg=f\varphi^{*}g=f. Since ff is an arrow in ÉM/R1\textbf{ÉM}_{/R_{1}}, we have

φFNφf=fφFM\varphi^{*}F_{N}\circ\varphi^{*}f=f\circ\varphi^{*}F_{M}

and then

φg=φFNφfφFM1=fφFMφFM1=f,\varphi^{*}g=\varphi^{*}F_{N}\circ\varphi^{*}f\circ\varphi^{*}F_{M}^{-1}=f\circ\varphi^{*}F_{M}\circ\varphi^{*}F_{M}^{-1}=f,

proving the existence of the descent. It is unique since any descent hh of ff satisfies the relation φh=f\varphi^{*}h=f by definition, and hh satisfies the relation hFM=FNφhh\circ F_{M}=F_{N}\circ\varphi^{*}h as it is in ÉM/R0\textbf{ÉM}_{/R_{0}}, combining the two we have

hFM=FNφh=FNfh\circ F_{M}=F_{N}\circ\varphi^{*}h=F_{N}\circ f

proving

h=FNfFM1=g.h=F_{N}\circ f\circ F_{M}^{-1}=g.

Next we show that pp-adic completion of the perfection does not lose information of étale φ\varphi-modules over pp-complete rings.

Lemma 4.3.

Let RR be a pp-adically complete ring equipped with a ring morphism φ:RR\varphi:R\longrightarrow R, then base change induces an equivalence of categories

ÉM/RÉM/(colim𝜑R)p.\textbf{ÉM}_{/R}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/\underset{\varphi}{(colim}\ R)^{\wedge}_{p}}.
Proof.

By pp-completeness of (colim𝜑R)p\underset{\varphi}{(\text{colim}}\ R)^{\wedge}_{p}, we have

ÉM/(colim𝜑R)p=lim𝑛ÉM/(colim𝜑R)p/pn=lim𝑛ÉM/(colim𝜑R)/pn=\textbf{ÉM}_{/\underset{\varphi}{(\text{colim}}\ R)^{\wedge}_{p}}=\underset{n}{\text{lim}}\ \textbf{ÉM}_{/\underset{\varphi}{(\text{colim}}\ R)^{\wedge}_{p}/p^{n}}=\underset{n}{\text{lim}}\ \textbf{ÉM}_{/\underset{\varphi}{(\text{colim}}\ R)/p^{n}}=
lim𝑛ÉM/colim𝜑(R/pn)=lim𝑛ÉM/(R/pn)=ÉM/R\underset{n}{\text{lim}}\ \textbf{ÉM}_{/\underset{\varphi}{\text{colim}}\ (R/p^{n})}=\underset{n}{\text{lim}}\ \textbf{ÉM}_{/(R/p^{n})}=\textbf{ÉM}_{/R}

where we use the commutativity of colimit with tensoring with Z/pn\mathbb{Z}/p^{n} in the third equality, proposition 4.2 in the fourth equality and pp-completeness in the last one. ∎

We now specialize to the case of prisms and closely related rings. Let (A,I)(A,I) be a bounded prism, we want to study étale φ\varphi-modules over A[1I]pA[\frac{1}{I}]^{\wedge}_{p}. There are two natural ways to form a perfection of the ring. The first is take the perfection directly and then pp-complete it, namely

(colimϕA[1I]p)p,(\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p},

while the second is to take the perfection of the prism (A,I)(A,I) first, then inverting II and pp-complete, i.e.

((colimϕA)(p,I)[1I])p.((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}[\frac{1}{I}])^{\wedge}_{p}.

It is the second one that will ultimately help us, and we want to understand étale φ\varphi-modules over it. Note that we have already understand étale φ\varphi-modules over the first ring, namely lemma 4.3 tells us that étale φ\varphi-modules over (colimϕA[1I]p)p(\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p} is the same as étale φ\varphi-modules over A[1I]pA[\frac{1}{I}]^{\wedge}_{p}. Observe that we have a natural morphism

(colimϕA[1I]p)p((colimϕA)(p,I)[1I])p(\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p}\longrightarrow((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}[\frac{1}{I}])^{\wedge}_{p}

and we have the following theorem characterizing étale φ\varphi-modules over ((colimϕA)(p,I)[1I])p((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}[\frac{1}{I}])^{\wedge}_{p}.

Theorem 4.4.

Let (A,I)(A,I) be a bounded prism such that ϕ(I)modp\phi(I)\ \text{mod}\ p is generated by a non-zero divisor in A/pA/p, then we have an equivalence of categories

ÉM/(colimϕA[1I]p)pÉM/((colimϕA)(p,I)[1I])p\textbf{ÉM}_{/(\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p}}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}[\frac{1}{I}])^{\wedge}_{p}}

induced by base change.

Proof.

We compute (colimϕA[1I]p)p(\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p} first. Being a pp-complete perfect δ\delta-ring, we know from [2] corollary 2.31 that

(colimϕA[1I]p)p=W((colimϕA[1I]p)p/p)=(\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p}=W((\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})^{\wedge}_{p}/p)=
W((colimϕA[1I]p)/p)=W(colimϕ(A[1I]p/p))=W(colimϕ(A/p[1I]))W((\underset{\phi}{\text{colim}}\ A[\frac{1}{I}]^{\wedge}_{p})/p)=W(\underset{\phi}{\text{colim}}\ (A[\frac{1}{I}]^{\wedge}_{p}/p))=W(\underset{\phi}{\text{colim}}\ (A/p[\frac{1}{I}]))

where we use again the commutation of colimit with tensoring with Z/p\mathbb{Z}/p. AA is (p,I)(p,I)-complete as (A,I)(A,I) is a bounded prism, so A/pA/p is II-adically complete. By [2] lemma 3.6, ϕ(I)A\phi(I)A is principal, so ϕ(I)Ipmodp\phi(I)\equiv I^{p}\ \text{mod}\ p is principal which is generated by a non-zero divisor by assumption. It follows that A/p[1I]A/p[\frac{1}{I}] is a Tate ring with ring of definition A/pA/p.

On the other hand,

((colimϕA)(p,I)[1I])p=W((colimϕA)(p,I)/p[1I])=W((colimϕA/p)I[1I])((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}[\frac{1}{I}])^{\wedge}_{p}=W((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}/p[\frac{1}{I}])=W((\underset{\phi}{\text{colim}}\ A/p)^{\wedge}_{I}[\frac{1}{I}])

by [2] corollary 2.31 again.

We know that étale φ\varphi-modules over W(R)W(R) are equivalent to lisse sheaves on RR for a perfect ring RR by [11] proposition 3.2.7, hence it is enough to compare the finite étale sites of (colimϕA/p)I[1I](\underset{\phi}{\text{colim}}\ A/p)^{\wedge}_{I}[\frac{1}{I}] and colimϕ(A/p[1I])\underset{\phi}{\text{colim}}\ (A/p[\frac{1}{I}]).

We note that (colimϕA/p)I[1I](\underset{\phi}{\text{colim}}\ A/p)^{\wedge}_{I}[\frac{1}{I}] is the completed perfection of the Tate ring A/p[1I]A/p[\frac{1}{I}], and by the following lemma the finite étale site of (colimϕA/p)I[1I](\underset{\phi}{\text{colim}}\ A/p)^{\wedge}_{I}[\frac{1}{I}] is the same as that of A/p[1I]A/p[\frac{1}{I}]. But perfection also does not change finite étale site (see [11] theorem 3.1.15(a)), hence finite étale site of colimϕ(A/p[1I])\underset{\phi}{\text{colim}}\ (A/p[\frac{1}{I}]) is also identified with A/p[1I]A/p[\frac{1}{I}]. This proves that the finite étale sites of (colimϕA/p)I[1I](\underset{\phi}{\text{colim}}\ A/p)^{\wedge}_{I}[\frac{1}{I}] and colimϕ(A/p[1I])\underset{\phi}{\text{colim}}\ (A/p[\frac{1}{I}]) are equivalent via base change (as all intermediate equivalences here are through base change). ∎

Lemma 4.5.

Let RR be a Banach ring of characteristic pp (in the sense of [11] definition 2.2.1), then the finite étale site of (colimϕR)(\underset{\phi}{colim}\ R)^{\wedge} is equivalent to that of RR via base change.

Proof.

Let RuR^{u} be the uniformization of RR as defined in [11] definition 2.8.13, then by [11] proposition 2.8.16, the finite étale site of RuR^{u} is equivalent to that of RR under base change. Moreover, by [11] theorem 3.1.15 (b), the finite étale sites of (colimϕRu)(\underset{\phi}{colim}\ R^{u})^{\wedge} and RuR^{u} are equivalent, so we have the comparison between finite étale sites of RR and (colimϕRu)(\underset{\phi}{colim}\ R^{u})^{\wedge}. We claim that (colimϕRu)=(colimϕR)(\underset{\phi}{colim}\ R^{u})^{\wedge}=(\underset{\phi}{colim}\ R)^{\wedge}. By [11] lemma 2.6.2, there exists an affionid system RiR_{i} (see [11] definition 2.6.1 for definition) such that R=(colimRi)R=(\text{colim}\ R_{i})^{\wedge}, then Ru=(colimRired)R^{u}=(\text{colim}\ R_{i}^{\text{red}})^{\wedge} by [11] corollary 2.5.6. Let Rperf:=colimϕRR_{\text{perf}}:=\underset{\phi}{colim}\ R, then

(Rperf)=((colimRi)perf)=(colim(Ri)perf)=(colim(Rired)perf)=(Rperfu)(R_{\text{perf}})^{\wedge}=((\text{colim}\ R_{i})_{\text{perf}})^{\wedge}=(\text{colim}\ (R_{i})_{\text{perf}})^{\wedge}=(\text{colim}\ (R_{i}^{\text{red}})_{\text{perf}})^{\wedge}=(R^{u}_{\text{perf}})^{\wedge}

where we use that Tperfred=TperfT^{\text{red}}_{\text{perf}}=T_{\text{perf}} for any ring TT of characteristic pp, which can be checked directly. ∎

Combining all the equivalences we have established, we have the following theorem.

Theorem 4.6.

With assumptions as in theorem 4.4, we have an equivalence of categories

ÉM/A[1I]pÉM/((colimϕA)(p,I)[1I])p\textbf{ÉM}_{/A[\frac{1}{I}]^{\wedge}_{p}}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/((\underset{\phi}{\text{colim}}\ A)^{\wedge}_{(p,I)}[\frac{1}{I}])^{\wedge}_{p}}

induced by base change.

5. (φ,Γ)(\varphi,\Gamma)-modules and prismatic FF-crystals

In this section, we interpret (φ,Γ)(\varphi,\Gamma)-modules in terms of prismatic FF-crystals. We recover the equivalence between Galois representations and (φ,Γ)(\varphi,\Gamma)-modules using the new interpretation.

Let us first recall the definition of (φ,Γ)(\varphi,\Gamma)-modules. Let KK be a finite totally ramified extension of W(k)[1p]W(k)[\frac{1}{p}], and AK+\mathbb{A}_{K}^{+} be as in section 2. Recall that AKW(C)\mathbb{A}_{K}\subset W(\mathbb{C}^{\flat}) is stable by the canonical Frobenius lifting ϕ\phi and the action of the Galois group Gal(K¯/K\bar{K}/K) on W(𝒪C)W(\mathcal{O}_{\mathbb{C}}^{\flat}). Moreover, the action factorizes through

Γ:=Gal(K(ζp)/K).\Gamma:=\text{Gal}(K(\zeta_{p^{\infty}})/K).
Definition 5.1.

A (φ,Γ)(\varphi,\Gamma)-module over AK\mathbb{A}_{K} is an étale φ\varphi-module MM over AK\mathbb{A}_{K} (with respect to the ϕ\phi-structure on AK\mathbb{A}_{K}), i.e. a finite projective AK\mathbb{A}_{K}-module MM equipped with an isomorphism

F:ϕMM,F:\phi^{*}M\cong M,

together with an action of Γ\Gamma on MM that commutes with FF, and semilinear with respect to the action of Γ\Gamma on AK\mathbb{A}_{K}.

We have the following theorem.

Theorem 5.2.

The category of prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over Spf(𝒪K)Spf(\mathcal{O}_{K}) is equivalent to the category of (φ,Γ)(\varphi,\Gamma)-modules over AK\mathbb{A}_{K}.

Proof.

By example 3.4, we see that a prismatic F-crystal in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over Spf(𝒪K)Spf(\mathcal{O}_{K}) is an étale φ\varphi-module over AK\mathbb{A}_{K} together with an isomorphism

MAKC[1J]pC[1J]pAKMM\otimes_{\mathbb{A}_{K}}C[\frac{1}{J}]^{\wedge}_{p}\cong C[\frac{1}{J}]^{\wedge}_{p}\otimes_{\mathbb{A}_{K}}M

of étale φ\varphi-modules over C[1J]pC[\frac{1}{J}]^{\wedge}_{p} satisfying cocycle conditions, with

(C,J)=(AK+^W(k)AK+{ω11ωϕn([p]q)1,1ϕn([p]q)ϕn([p]q)1},(ϕn([p]q)1))(C,J)=(\mathbb{A}_{K}^{+}\hat{\otimes}_{W(k)}\mathbb{A}_{K}^{+}\{\frac{\omega\otimes 1-1\otimes\omega}{\phi^{n}([p]_{q})\otimes 1},\frac{1\otimes\phi^{n}([p]_{q})}{\phi^{n}([p]_{q})\otimes 1}\}^{\wedge},(\phi^{n}([p]_{q})\otimes 1))

as in example 3.4. Then theorem 4.6 implies that this is equivalent (via base change) to an étale φ\varphi-module \mathcal{M} over

(AK+)perf[1J]pAinf(𝒪K(ζp)p)[1J]pW((K(ζp)p))(\mathbb{A}_{K}^{+})_{\text{perf}}[\frac{1}{J}]^{\wedge}_{p}\cong A_{\text{inf}}(\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}_{p}})[\frac{1}{J}]^{\wedge}_{p}\cong W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat})

together with an isomorphism

W((K(ζp)p))B[1I]pB[1I]pW((K(ζp)p))\mathcal{M}\otimes_{W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat})}B[\frac{1}{I}]^{\wedge}_{p}\cong B[\frac{1}{I}]^{\wedge}_{p}\otimes_{W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat})}\mathcal{M}

as étale φ\varphi-modules over B[1I]pB[\frac{1}{I}]^{\wedge}_{p}, where (B,I)=(C,J)perf(B,I)=(C,J)_{\text{perf}}. Then the lemma below tells us that the descent data is equivalent to an action of Γ\Gamma on \mathcal{M} that is semilinear with respect to the action of Γ\Gamma on W((K(ζp)p))W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat}). As the action of Γ\Gamma is already defined on AK\mathbb{A}_{K}, theorem 4.6 tells us that this is equivalent to an action of Γ\Gamma on MM that is semilinear with respect to the action of Γ\Gamma on AK\mathbb{A}_{K}, which is exactly a (φ,Γ)(\varphi,\Gamma)-module over AK\mathbb{A}_{K}. ∎

Lemma 5.3.

Let (B,I)(B,I) be the perfection of the prism (C,J)(C,J) in lemma 3.6, then

B[1I]pC0(Γ,W((K(ζp)p)))B[\frac{1}{I}]^{\wedge}_{p}\cong C^{0}(\Gamma,W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat}))

where C0(Γ,W((K(ζp)p)))C^{0}(\Gamma,W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat})) is the ring of continuous functions on Γ\Gamma with values in W((K(ζp)p))W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat}). Moreover, the two structure maps from W((K(ζp)p))W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat}) to C0(Γ,W((K(ζp)p)))C^{0}(\Gamma,W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat})) are the obvious constant function map, and the one sending xW((K(ζp)p))x\in W((K(\zeta_{p^{\infty}})^{\wedge}_{p})^{\flat}) to {γγ(x)}\{\gamma\rightarrow\gamma(x)\}.

Proof.

Let

(F,F+):=(K(ζp)p,𝒪K(ζp)p).(F,F^{+}):=(K(\zeta_{p^{\infty}})^{\wedge}_{p},\mathcal{O}_{K(\zeta_{p^{\infty}})^{\wedge}_{p}}).

By lemma 3.6, (B,I)(B,I) is the initial perfect prism in Spf(𝒪K)Δ\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}} equipped with two arrows from (AK+,(ϕn([p]q)))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))) into it. This is the same as the initial perfect prism in Spf(𝒪K)Δ\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}} with two arrows from

(AK+,(ϕn([p]q)))perf=(Ainf(F+),Ker(θ)),(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))_{\text{perf}}=(A_{\text{inf}}(F^{+}),\text{Ker}(\theta)),

where we use lemma 2.19. Since perfect prisms are equivalent to integral perfectoid rings, we see that B/IB/I is the initial integral perfectoid 𝒪K\mathcal{O}_{K}-algebra with two maps (as 𝒪K\mathcal{O}_{K}-algebras) from F+F^{+}. We claim that B/I[1p]B/I[\frac{1}{p}] is the initial perfectoid Tate KK-algebra with two maps from FF. This follows immediately form proposition 2.17 and proposition 2.16.

Now for any perfectoid Tate KK-algebra AA with two maps from FF, we obtain two maps from Spa(A,A)\text{Spa}(A,A^{\circ}) to Spa(F,F+)\text{Spa}(F,F^{+}), as perfectoid spaces over Spa(K,𝒪K)\text{Spa}(K,\mathcal{O}_{K}) . We view them as diamonds over Spd(K,𝒪K)\text{Spd}(K,\mathcal{O}_{K}). Since diamonds is determined by their values on (affinoid) perfectoid test objects, the previous paragraph shows that

Spa(B/I[1p],B/I[1p]+)=Spa(F,F+)×Spd(K,𝒪K)Spa(F,F+)\text{Spa}(B/I[\frac{1}{p}],B/I[\frac{1}{p}]^{+})^{\diamond}=\text{Spa}(F,F^{+})^{\diamond}\times_{\text{Spd}(K,\mathcal{O}_{K})}\text{Spa}(F,F^{+})^{\diamond}

for some ring of definition B/I[1p]+B/I[\frac{1}{p}]^{+}, which can be identified as the image of B/IB/I in B/I[1p]B/I[\frac{1}{p}], providing we know the right hand side is affinoid perfectoid. But it is well-known that

Spd(K,𝒪K)=Spa(F,F+)/Γ,\text{Spd}(K,\mathcal{O}_{K})=\text{Spa}(F,F^{+})^{\diamond}/\Gamma,

see [5] lemma 10.1.7 for example, so

Spa(F,F+)×Spd(K,𝒪K)Spa(F,F+)Spa(F,F+)×Γ¯Spa(C0(Γ,F),C0(Γ,F+))\text{Spa}(F,F^{+})^{\diamond}\times_{\text{Spd}(K,\mathcal{O}_{K})}\text{Spa}(F,F^{+})^{\diamond}\cong\text{Spa}(F,F^{+})^{\diamond}\times\underline{\Gamma}\cong\text{Spa}(C^{0}(\Gamma,F),C^{0}(\Gamma,F^{+}))^{\diamond}

where C0(Γ,F)C^{0}(\Gamma,F), resp. C0(Γ,F+)C^{0}(\Gamma,F^{+}), is the ring of continuous functions on Γ\Gamma with values in FF, resp. F+F^{+}, see [4] example 11.12 for the last isomorphism. We then have

B/I[1p]C0(Γ,F).B/I[\frac{1}{p}]\cong C^{0}(\Gamma,F).

as the functor from perfectoid spaces over Spa(K,𝒪K)\text{Spa}(K,\mathcal{O}_{K}) to diamonds over Spd(K,𝒪K)\text{Spd}(K,\mathcal{O}_{K}) is fully faithful. The two structure maps from FF to C0(Γ,F)C^{0}(\Gamma,F) is then the constant function map, and the one sending xFx\in F to {γγ(x)}\{\gamma\rightarrow\gamma(x)\}, which is easy to see by chasing through the above canonical isomorphisms. Now

B[1I]p=W((B/I)[1ω])=W((B/I[1p]))B[\frac{1}{I}]^{\wedge}_{p}=W((B/I)^{\flat}[\frac{1}{\omega}])=W((B/I[\frac{1}{p}])^{\flat})

for a uniformizer ϖ=(a0,a1,)(B/I)\varpi=(a_{0},a_{1},\cdots)\in(B/I)^{\flat} which we can choose so that a0a_{0} divides pp in B/IB/I. Thus

B[1I]pW(C0(Γ,F))W(C0(Γ,F))C0(Γ,W(F))B[\frac{1}{I}]^{\wedge}_{p}\cong W(C^{0}(\Gamma,F)^{\flat})\cong W(C^{0}(\Gamma,F^{\flat}))\cong C^{0}(\Gamma,W(F^{\flat}))

where the second isomorphism follows directly from the description F=limxxpFF^{\flat}=\lim_{x\rightarrow x^{p}}F, and the same descrition for C0(Γ,F)C^{0}(\Gamma,F)^{\flat}. The last isomorphism follows from the concrete description of the Witt vector, namely W(F)=(F)NW(F^{\flat})=(F^{\flat})^{\mathbb{N}}. This clearly commutes with taking continuous functions. Moreover, the ring structure is defined by polynomial equations that is independent of the input ring, whence the last isomorphism. The description of the two structure maps is straightforward by chasing through the various canonical isomorphisms. ∎

Remark 5.4.

The action of Γ\Gamma can be directly detected as follows. For a prismatic F-crystal MM over 𝒪K\mathcal{O}_{K}, and γΓ\gamma\in\Gamma. The action of γ\gamma on M((AK+,(ϕn([p]q))))M((\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))) is induced by the base change isomorphism (the crystal structure)

M((AK+,(ϕn([p]q))))AK,γAKM((AK+,(ϕn([p]q))))M((\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))))\otimes_{\mathbb{A}_{K},\gamma}\mathbb{A}_{K}\cong M((\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))))

corresponding to the arrow

γ:(AK+,(ϕn([p]q)))(AK+,(ϕn([p]q)))\gamma:(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\overset{\sim}{\longrightarrow}(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))

in (𝒪K)Δ(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}} as described in the proof of corollary 2.20.

Remark 5.5.

The proof also shows that prismatic FF-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over Spf(𝒪K)\text{Spf}(\mathcal{O}_{K}) are equivalent to FF-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over Spf(𝒪K)Δperf\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}^{\text{perf}}, i.e. the site of perfect prisms over Spf(𝒪K)Spf(\mathcal{O}_{K}), and the equivalence is induced by the obvious restriction functor. Indeed, prismatic FF-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over Spf(𝒪K)\text{Spf}(\mathcal{O}_{K}) (resp. Spf(𝒪K)Δperf\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}^{\text{perf}}) are equivalent to φ\varphi-modules over AK+[1I]p\mathbb{A}_{K}^{+}[\frac{1}{I}]^{\wedge}_{p} together with descent data over C[1I]pC[\frac{1}{I}]^{\wedge}_{p} (resp. φ\varphi-modules over (AK+)perf[1I]p(\mathbb{A}_{K}^{+})_{perf}[\frac{1}{I}]^{\wedge}_{p} together with descent data over Cperf[1I]pC_{perf}[\frac{1}{I}]^{\wedge}_{p}), and the proof shows that the latter objects are equivalent.

With exactly the same idea, we can recover Galois representations from prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules. As it is along the same reasoning as above, we only sketch the argument.

Theorem 5.6.

The category of prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules over Spf(𝒪K)Spf(\mathcal{O}_{K}) is equivalent to the category of finite free continuous Zp\mathbb{Z}_{p}-representations of G:=Gal(K¯/K)G:=\text{Gal}(\overline{K}/K).

Proof.

Let C:=K¯^\mathbb{C}:=\hat{\overline{K}} and 𝒪C\mathcal{O}_{\mathbb{C}} be the ring of integers of it. By remark 5.5, it enough to work in Spf(𝒪K)Δperf\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}^{\text{perf}}. We can evaluate a prismatic F-crystal at (Ainf(𝒪C),Ker(θ))(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)). Let (B,J)(B,J) be the product

(Ainf(𝒪C),Ker(θ))×(Ainf(𝒪C),Ker(θ))(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))\times(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))

in Spf(𝒪K)Δperf\text{Spf}(\mathcal{O}_{K})^{\text{perf}}_{{{\mathbbl{\Delta}}}}, and we need to compute

B[1J]p=W((B/J[1p])).B[\frac{1}{J}]^{\wedge}_{p}=W((B/J[\frac{1}{p}])^{\flat}).

We know that B/J[1p]B/J[\frac{1}{p}] is a perfectoid Tate KK-algebra and can be interpreted as

Spa(B/J[1p],B/J[1p]+)=Spd(C,𝒪C)×Spd(K,𝒪K)Spd(C,𝒪C).\text{Spa}(B/J[\frac{1}{p}],B/J[\frac{1}{p}]^{+})^{\diamond}=\text{Spd}(\mathbb{C},\mathcal{O}_{\mathbb{C}})\times_{\text{Spd}(K,\mathcal{O}_{K})}\text{Spd}(\mathbb{C},\mathcal{O}_{\mathbb{C}}).

We know that

Spd(C,𝒪C)×Spd(K,𝒪K)Spd(C,𝒪C)Spd(C,𝒪C)×G¯=Spd(C0(G,C),C0(G,𝒪C)),\text{Spd}(\mathbb{C},\mathcal{O}_{\mathbb{C}})\times_{\text{Spd}(K,\mathcal{O}_{K})}\text{Spd}(\mathbb{C},\mathcal{O}_{\mathbb{C}})\cong\text{Spd}(\mathbb{C},\mathcal{O}_{\mathbb{C}})\times\underline{G}=\text{Spd}(C^{0}(G,\mathbb{C}),C^{0}(G,\mathcal{O}_{\mathbb{C}})),

so

B[1J]pC0(G,W(C)).B[\frac{1}{J}]^{\wedge}_{p}\cong C^{0}(G,W(\mathbb{C}^{\flat})).

With the help of theorem 4.6, this proves that a prismatic F-crystal is the same as an étale φ\varphi-module over W(C)W(\mathbb{C}^{\flat}) together with a GG-action which is semilinear with respect to the action of GG on W(C)W(\mathbb{C}^{\flat}). Now as C\mathbb{C}^{\flat} is algebraically closed, it is well-known that the category of étale φ\varphi-modules over W(C)W(\mathbb{C}^{\flat}) is equivalent to the category of finite free Zp\mathbb{Z}_{p}-modules via taking FF-invariants, see [11] proposition 3.2.7 for example. This shows that the prismatic F-crystals are equivalent to finite free Zp\mathbb{Z}_{p}-representations of GG. ∎

Remark 5.7.

Similarly as before, for a prismatic F-crystal MM, the GG-action on M((Ainf(𝒪C),Ker(θ)))M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))) is induced by the base change isomorphism (the crystal structure)

M((Ainf(𝒪C),Ker(θ)))W(C),gW(C)M((Ainf(𝒪C),Ker(θ)))M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)))\otimes_{W(\mathbb{C}^{\flat}),g}W(\mathbb{C}^{\flat})\cong M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)))

with respect to the arrow

g:(Ainf(𝒪C),Ker(θ))(Ainf(𝒪C),Ker(θ))g:(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))\overset{\sim}{\longrightarrow}(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))

in (𝒪K)Δ(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}.

Corollary 5.8.

The category of (φ,Γ)(\varphi,\Gamma)-modules over AK\mathbb{A}_{K} is equivalent to the category of finite free Zp\mathbb{Z}_{p}-representations of G=Gal(K¯/K)G=\text{Gal}(\overline{K}/K). The equivalence functors are

(AKW(C))Fϕ=1\mathcal{M}\rightarrow(\mathcal{M}\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat}))^{F\otimes\phi=1}
T(TZpW(C))H=1deperfection()T\rightarrow(T\otimes_{\mathbb{Z}_{p}}W(\mathbb{C}^{\flat}))^{H=1}\overset{\text{deperfection}}{\longrightarrow}(\cdot)

where \mathcal{M} is a (φ,Γ)(\varphi,\Gamma)-module over AK\mathbb{A}_{K}, TT is a finite free Zp\mathbb{Z}_{p}-representation of GG, and

H:=Gal(K¯/K(ζp))G.H:=Gal(\overline{K}/K(\zeta_{p^{\infty}}))\subset G.

The action of GG is diagonal on both TZpW(C)T\otimes_{\mathbb{Z}_{p}}W(\mathbb{C}^{\flat}) and AKW(C)\mathcal{M}\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat}), where GG acts on \mathcal{M} through the canonical quotient GΓG\rightarrow\Gamma. The φ\varphi-structure on TZpW(C)T\otimes_{\mathbb{Z}_{p}}W(\mathbb{C}^{\flat}) is defined by ϕ\phi on the second factor. Moreover, the deperfection functor is the equivalence from the category of (φ,Γ)(\varphi,\Gamma)-modules over W(K(ζp))W(K(\zeta_{p^{\infty}})^{\flat}) to the category of (φ,Γ)(\varphi,\Gamma)-modules over AK\mathbb{A}_{K}, as induced from theorem 4.6.

Proof.

Both categories are equivalent to prismatic F-crystals in 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}-modules. We check the equivalence functors are given by the stated ones. Given a prismatic F-crystal MM, the associated (φ,Γ)(\varphi,\Gamma)-module is M((AK+,(ϕn([p]q))))M((\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))), while the associated Galois representation is M((Ainf(𝒪C),Ker(θ)))φ=1M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)))^{\varphi=1}. MM being a crystal, we have a canonical identification

M((Ainf(𝒪C),Ker(θ)))M((AK+,(ϕn([p]q))))AKW(C)W(C),ϕn1W(C)M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)))\cong M((\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))))\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat})\otimes_{W(\mathbb{C}^{\flat}),\phi^{-n-1}}W(\mathbb{C}^{\flat}) (3)

using the arrow

(AK+,(ϕn([p]q)))(Ainf(𝒪C),(ϕn([p]q)))ϕn1(Ainf(𝒪C),Ker(θ))(\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q})))\rightarrow(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),(\phi^{n}([p]_{q})))\overset{\phi^{-n-1}}{\longrightarrow}(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))

in Spf(𝒪K)Δ\text{Spf}(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}. We have seen in the proof of proposition 4.2 that the base change along ϕn+1\phi^{n+1} does not affect étale φ\varphi-modules, namely for any étale φ\varphi-module NN over AA with respect to ϕ:AA\phi:A\rightarrow A, there is a canonical identification NA,ϕn+1ANN\otimes_{A,\phi^{n+1}}A\cong N of étale φ\varphi-modules over AA. Hence we have a canonical idenfication

M((Ainf(𝒪C),Ker(θ)))M((AK+,(ϕn([p]q))))AKW(C)M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)))\cong M((\mathbb{A}_{K}^{+},(\phi^{n}([p]_{q}))))\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat}) (4)

of étale φ\varphi-modules over W(C)W(\mathbb{C}^{\flat}). Thus the functor from (φ,Γ)(\varphi,\Gamma)-modules to Galois representations is of the expected form, we still need to identify the Galois action. This follows easily from remarks 5.7 and 5.4, as the Galois action on both sides of (3) are induced by base change, while the identification (3) itself is also induced by base change. An easy base change computation together with the observation that the action of GG on AK+\mathbb{A}_{K}^{+} through the inclusion AK+Ainf(𝒪C)\mathbb{A}_{K}^{+}\rightarrow A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}) is via the quotient GΓG\rightarrow\Gamma proves the compatibility of Galois action in (3). Then the naturality of the identification NA,ϕn+1ANN\otimes_{A,\phi^{n+1}}A\cong N gives us the desired description of Galois action on both sides of (4).

On the other hand, we have a canonical map

(Ainf(𝒪K(ζp)p),Ker(θ))(Ainf(𝒪C),Ker(θ))/H(A_{\text{inf}}(\mathcal{O}_{K(\zeta_{p^{\infty}})_{p}^{\wedge}}),\text{Ker}(\theta))\longrightarrow(A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta))/H

in the site (𝒪K)Δperf(\mathcal{O}_{K})_{{{\mathbbl{\Delta}}}}^{\text{perf}}, which is not necessarily an isomorphism, but becomes so on the structure sheaf 𝒪Δ[1IΔ]p\mathcal{O}_{{{\mathbbl{\Delta}}}}[\frac{1}{I_{{{\mathbbl{\Delta}}}}}]^{\wedge}_{p}. Indeed, this follows from that C\mathbb{C} has (continuous) Galois group HH over K(ζp)pK(\zeta_{p}^{\infty})^{\wedge}_{p} and the tilting equivalence of perfectoid fields. This tells us that

M((Ainf(𝒪K(ζp)p),Ker(θ)))M((Ainf(𝒪C),Ker(θ)))H=1.M((A_{\text{inf}}(\mathcal{O}_{K(\zeta_{p^{\infty}})_{p}^{\wedge}}),\text{Ker}(\theta)))\cong M((A_{\text{inf}}(\mathcal{O}_{\mathbb{C}}),\text{Ker}(\theta)))^{H=1}.

Moreover, by looking at the descent data of the FF-crystal, the Γ\Gamma-action on the right hand side is carried to the descent data of the left hand side. Then theorem 4.6 applied to AK\mathbb{A}_{K} gives the other direction. Note that the categorical equivalence in theorem 4.6 implies that base change preserves not only the φ\varphi-structure, but also Γ\Gamma-action, thereby inducing an equivalence of (φ,Γ)(\varphi,\Gamma)-modules. ∎

Remark 5.9.

The fact that twist by ϕn+1\phi^{n+1} does not change étale φ\varphi-modules and has all the expected functoriality is used secretly throughout the above proof. For example, it is needed in checking the two functors are quasi-inverse to each other. All that says is that we can ignore the issue caused by twisting by ϕ\phi.

The equivalence functors in the above corollary may look different from the treatment one usually finds in the literature. We now check that they are equivalent.

Let A\mathbb{A} be the pp-adic completion of the maximal unramified extension of AK\mathbb{A}_{K} inside W(C)W(\mathbb{C}^{\flat}), i.e. A\mathbb{A} is the Cohen ring of EKsep\mathbb{E}_{K}^{\text{sep}}, the separable closure of EK\mathbb{E}_{K}, which lies inside W(C)W(\mathbb{C}^{\flat}) and extends AK\mathbb{A}_{K}. It is stable by ϕ\phi and the action of the Galois group GG. If we can write A\mathbb{A} as A[1I]pA[\frac{1}{I}]^{\wedge}_{p} for some prism (A,I)(A,I), then we can repeat the above argument with W(C)W(\mathbb{C}^{\flat}) replaced by A\mathbb{A}, and deduce the usual description of equivalence functors between Galois representations and (φ,Γ)(\varphi,\Gamma)-modules. However, this is not possible since EKsep\mathbb{E}_{K}^{\text{sep}} is not complete. Instead, we proceed with the following lemma.

Lemma 5.10.

There is an equivalence of categories

ÉM/AÉM/W(C)\textbf{ÉM}_{/\mathbb{A}}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/W(\mathbb{C}^{\flat})}

induced by base change.

Proof.

By [2] corollary 2.31,

(colimϕA)pW(colimϕA/p)W(colimϕEKsep)W(EKalg),(\underset{\phi}{\text{colim}}\ \mathbb{A})^{\wedge}_{p}\cong W(\underset{\phi}{\text{colim}}\ \mathbb{A}/p)\cong W(\underset{\phi}{\text{colim}}\ \mathbb{E}_{K}^{\text{sep}})\cong W(\mathbb{E}_{K}^{\text{alg}}),

then lemma 4.3 implies that

ÉM/AÉM/W(EKalg).\textbf{ÉM}_{/\mathbb{A}}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/W(\mathbb{E}_{K}^{\text{alg}})}.

As both EKalg\mathbb{E}_{K}^{\text{alg}} and C\mathbb{C}^{\flat} are algebraically closed, étale φ\varphi-modules over W(EKalg)W(\mathbb{E}_{K}^{\text{alg}}) and W(C)W(\mathbb{C}^{\flat}) are both equivalent to finite free Zp\mathbb{Z}_{p}-modules by taking FF-invariants, we have the equivalence

ÉM/W(EKalg)ÉM/W(C).\textbf{ÉM}_{/W(\mathbb{E}_{K}^{\text{alg}})}\overset{\sim}{\longrightarrow}\textbf{ÉM}_{/W(\mathbb{C}^{\flat})}.

Combining the two we have the desired equivalence. ∎

Theorem 5.11.

The category of (φ,Γ)(\varphi,\Gamma)-modules over AK\mathbb{A}_{K} is equivalent to the category of finite free Zp\mathbb{Z}_{p}-representations of G=Gal(K¯/K)G=\text{Gal}(\overline{K}/K). The equivalence functors are

(AKA)Fϕ=1\mathcal{M}\rightarrow(\mathcal{M}\otimes_{\mathbb{A}_{K}}\mathbb{A})^{F\otimes\phi=1}
T(TZpA)H=1T\rightarrow(T\otimes_{\mathbb{Z}_{p}}\mathbb{A})^{H=1}

where \mathcal{M} is a (φ,Γ)(\varphi,\Gamma)-module over AK\mathbb{A}_{K}, TT is a finite free Zp\mathbb{Z}_{p}-representation of GG, and

H:=Gal(K¯/K(ζp))G.H:=Gal(\overline{K}/K(\zeta_{p^{\infty}}))\subset G.

The action of GG is diagonal on both TZpAT\otimes_{\mathbb{Z}_{p}}\mathbb{A} and AKA\mathcal{M}\otimes_{\mathbb{A}_{K}}\mathbb{A}, where GG acts on \mathcal{M} through the canonical quotient GΓG\rightarrow\Gamma. The φ\varphi-structure on TZpAT\otimes_{\mathbb{Z}_{p}}\mathbb{A} is defined by ϕ\phi on the second factor.

Proof.

By lemma 5.10, the functor

(AKW(C))Fϕ=1\mathcal{M}\rightarrow(\mathcal{M}\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat}))^{F\otimes\phi=1}

in corollary 5.8 is the same as

(AKA)Fϕ=1.\mathcal{M}\rightarrow(\mathcal{M}\otimes_{\mathbb{A}_{K}}\mathbb{A})^{F\otimes\phi=1}.

Indeed, as étale φ\varphi-modules over W(C)W(\mathbb{C}^{\flat}) are all isomorphic to the trivial ones (W(C)n,ϕ)(W(\mathbb{C}^{\flat})^{n},\phi), lemma 5.10 tells us that étale φ\varphi-modules over A\mathbb{A} are also of the form (An,ϕ)(\mathbb{A}^{n},\phi), so taking FF-invariants produces the same finite free Zp\mathbb{Z}_{p}-modules, namely

(NAW(C))F=1NF=1(N\otimes_{\mathbb{A}}W(\mathbb{C}^{\flat}))^{F=1}\cong N^{F=1}

for any étale φ\varphi-module NN over A\mathbb{A}. This gives the identification of the Zp\mathbb{Z}_{p}-modules, the identification of Galois actions also follows since the equivalence in lemma 5.10 is a categorical one, so arrows corresponding to Galois action are also preserved.

Conversely, let 𝒩\mathcal{N} be the image of the functor

T(TZpW(C))H=1deperfection()T\rightarrow(T\otimes_{\mathbb{Z}_{p}}W(\mathbb{C}^{\flat}))^{H=1}\overset{\text{deperfection}}{\rightarrow}(\cdot)

in corollary 5.8. Then by definition, 𝒩\mathcal{N} is a (φ,Γ)(\varphi,\Gamma)-module over AK\mathbb{A}_{K} such that

𝒩AKW((K(ζp)))(TZpW(C))H=1.\mathcal{N}\otimes_{\mathbb{A}_{K}}W((K(\zeta_{p^{\infty}})^{\wedge})^{\flat})\cong(T\otimes_{\mathbb{Z}_{p}}W(\mathbb{C}^{\flat}))^{H=1}.

Since the functor is the quasi-inverse of (AKW(C))Fϕ=1,\mathcal{M}\rightarrow(\mathcal{M}\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat}))^{F\otimes\phi=1}, we have

𝒩AKW(C)TZpW(C),\mathcal{N}\otimes_{\mathbb{A}_{K}}W(\mathbb{C}^{\flat})\cong T\otimes_{\mathbb{Z}_{p}}W(\mathbb{C}^{\flat}),

whence

(𝒩AKA)AW(C)(TZpA)AW(C).(\mathcal{N}\otimes_{\mathbb{A}_{K}}\mathbb{A})\otimes_{\mathbb{A}}W(\mathbb{C}^{\flat})\cong(T\otimes_{\mathbb{Z}_{p}}\mathbb{A})\otimes_{\mathbb{A}}W(\mathbb{C}^{\flat}).

Then lemma 5.10 gives us

𝒩AKATZpA,\mathcal{N}\otimes_{\mathbb{A}_{K}}\mathbb{A}\cong T\otimes_{\mathbb{Z}_{p}}\mathbb{A},

so

𝒩(TZpA)H=1.\mathcal{N}\cong(T\otimes_{\mathbb{Z}_{p}}\mathbb{A})^{H=1}.

We have now proved that the functors in corollary 5.8 is the same as the ones described in the statement of the theorem, so we can conclude using corollary 5.8. ∎

References

  • [1] Jean-Marc Fontaine. Représentations p-adiques des corps locaux (1ère partie), pages 249–309. Birkhäuser Boston, Boston, MA, 2007.
  • [2] Bhargav Bhatt and Peter Scholze. Prisms and Prismatic Cohomology. arXiv e-prints, page arXiv:1905.08229, May 2019.
  • [3] Bhargav Bhatt and Peter Scholze. Prismatic f-crystals and crystalline galois representations, 2021.
  • [4] Peter Scholze. Etale cohomology of diamonds. arXiv e-prints, page arXiv:1709.07343, September 2017.
  • [5] Peter Scholze and Jared Weinstein. Berkeley lectures on p-adic geometry. Princeton University Press, Princeton, NJ, 2020.
  • [6] Jean-Pierre Wintenberger. Le corps des normes de certaines extensions infinies de corps locaux ; applications. Annales scientifiques de l’École Normale Supérieure, 4e série, 16(1):59–89, 1983.
  • [7] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2021.
  • [8] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic hodge theory. Publications mathématiques de l'IHÉS, 128(1):219–397, November 2018.
  • [9] Ofer Gabber and Lorenzo Ramero. Foundations for almost ring theory – Release 7.5. arXiv Mathematics e-prints, page math/0409584, September 2004.
  • [10] Akhil Mathew. Faithfully flat descent of almost perfect complexes in rigid geometry. arXiv e-prints, page arXiv:1912.10968, December 2019.
  • [11] Kiran Kedlaya and Ruochuan Liu. Relative p-adic Hodge theory : foundations. Société mathématique de France, Paris, 2015.