This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Further Results on the Bivariate Semi-parametric Singular Family of Distributions

Durga Vasudevan and G. Asha111Corresponding author email: [email protected]
Department of Statistics
Cochin University of Science and Technology, Cochin, Kerala, India-682022
Email: [email protected], [email protected]
Abstract

General classes of bivariate distributions are well studied in literature. Most of these classes are proposed via a copula formulation or extensions of some characterisation properties in the univariate case. In Kundu (2022) we see one such semi-parametric family useful to model bivariate data with ties. This model is a general semi-parametric model with a baseline. In this paper we present a characterisation property of this class of distributions in terms of a functional equation. The general solution to this equation is explored. Necessary and sufficient conditions under which the solution becomes a bivariate distribution is investigated.

keywords:
Bivariate distributions, functional equation, proportional hazard models, semi-parametric class.

1 Introduction

Analysing bivariate datasets are very challenging as it involves association between two variables. Data with ties are also common. The Marshall-Olkin copula defined by

C(u1,u2)={u11au2;u1au2bu1u21b;u1au2bC(u_{1},u_{2})=\begin{cases}u_{1}^{1-a}u_{2}\leavevmode\nobreak\ ;\leavevmode\nobreak\ u_{1}^{a}\geq u_{2}^{b}\\ u_{1}u_{2}^{1-b}\leavevmode\nobreak\ ;\leavevmode\nobreak\ u_{1}^{a}\leq u_{2}^{b}\end{cases} (1.1)

where 0<a,b<10<a,b<1 and 0<ui<1;i=1,20<u_{i}<1;\leavevmode\nobreak\ i=1,2 is apt in modelling association of these types (see Nelsen (2007)). Many authors have proposed very general classes of bivariate distributions and studied their properties. In (1.1), when uiu_{i} is exponential(θi+θ3\theta_{i}+\theta_{3}) for i=1,2i=1,2 and a=θ3θ1+θ3a=\frac{\theta_{3}}{\theta_{1}+\theta_{3}} and b=θ3θ2+θ3b=\frac{\theta_{3}}{\theta_{2}+\theta_{3}}, the well studied Marshall-Olkin bivariate exponential distribution with a singular component is obtained as

F¯(x1,x2)={e(θ1+θ3)x1θ2x2;x1x2eθ1x1(θ2+θ3)x2;x1x2,\bar{F}(x_{1},x_{2})=\begin{cases}e^{-(\theta_{1}+\theta_{3})x_{1}-\theta_{2}x_{2}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ e^{-\theta_{1}x_{1}-(\theta_{2}+\theta_{3})x_{2}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2},\end{cases} (1.2)

where θi>0;i=1,2,3\theta_{i}>0;\leavevmode\nobreak\ i=1,2,3. Here (X1,X2)(X_{1},X_{2}) is a bivariate random vector with F¯(x1,x2)=P(X1>x1,X2>x2)\bar{F}(x_{1},x_{2})=P(X_{1}>x_{1},X_{2}>x_{2}) with support I(0,)×(0,)={(x1,x2); 0<x1<, 0<x2<}I_{(0,\infty)\times(0,\infty)}=\{(x_{1},x_{2});\leavevmode\nobreak\ 0<x_{1}<\infty,\leavevmode\nobreak\ 0<x_{2}<\infty\}. The distribution in (1.2) is characterised by the functional equation popularly known as bivariate lack of memory property (BLMP) given by

F¯(x1+t,x2+t)=F¯(x1,x2)F¯(t,t)\bar{F}(x_{1}+t,x_{2}+t)=\bar{F}(x_{1},x_{2})\bar{F}(t,t)

for all x1,x2,t0x_{1},x_{2},t\geq 0. Kolev and Pinto (2018b) worked on the Marshall-Olkin’s bivariate exponential distribution thus providing a weak version of the BLMP which can be used to construct bivariate distributions having a singularity component along arbitrary line through the origin. Lin et al. (2019) studied the moment generating function, product moments and dependence structure of the bivariate distributions satisfying BLMP. Many authors have studied the BLMP under different perspectives (Pinto and Kolev (2015) and Kolev and Pinto (2018a)). In fact the BLMP has been translated as a property of arbitrary bivariate continuous distributions (Galambos and Kotz (2006)).

If uiu_{i} is Weibull(θi+θ3,α\theta_{i}+\theta_{3},\alpha) for i=1,2i=1,2, the Marshall-Olkin copula in (1.1) gives a bivariate distribution with a singular component whose survival function is

F¯(x1,x2)={e(θ1+θ3)x1αθ2x2α;x1x2eθ1x1α(θ2+θ3)x2α;x1x2,\bar{F}(x_{1},x_{2})=\begin{cases}e^{-(\theta_{1}+\theta_{3})x_{1}^{\alpha}-\theta_{2}x_{2}^{\alpha}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ e^{-\theta_{1}x_{1}^{\alpha}-(\theta_{2}+\theta_{3})x_{2}^{\alpha}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2},\end{cases} (1.3)

where α,θi>0;i=1,2,3\alpha,\leavevmode\nobreak\ \theta_{i}>0;\leavevmode\nobreak\ i=1,2,3, characterised by the functional equation,

F¯((x1α+tα)1α,(x2α+tα)1α)=F¯(x1,x2)F¯(t,t),\bar{F}((x_{1}^{\alpha}+t^{\alpha})^{\frac{1}{\alpha}},(x_{2}^{\alpha}+t^{\alpha})^{\frac{1}{\alpha}})=\bar{F}(x_{1},x_{2})\bar{F}(t,t),

for all x1,x2,t0x_{1},x_{2},t\geq 0.

If uiu_{i} is Pareto(θi+θ3\theta_{i}+\theta_{3}) for i=1,2i=1,2, the Marshall-Olkin copula in (1.1) gives a bivariate distribution with a singular component whose survival function is

F¯(x1,x2)={(1x1)θ1+θ3(1x2)θ2;x1x2(1x1)θ1(1x2)θ2+θ3;x1x2,\bar{F}(x_{1},x_{2})=\begin{cases}(\frac{1}{x_{1}})^{\theta_{1}+\theta_{3}}(\frac{1}{x_{2}})^{\theta_{2}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ (\frac{1}{x_{1}})^{\theta_{1}}(\frac{1}{x_{2}})^{\theta_{2}+\theta_{3}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2},\end{cases} (1.4)

where θi>0;i=1,2,3\theta_{i}>0;\leavevmode\nobreak\ i=1,2,3, characterised by the functional equation,

F¯(x1t,x2t)=F¯(x1,x2)F¯(t,t),\bar{F}(x_{1}t,x_{2}t)=\bar{F}(x_{1},x_{2})\bar{F}(t,t),

for all x1,x2,t0x_{1},x_{2},t\geq 0.

If the marginals belong to the proportional hazard (PH) class given by ui=F¯i(xi)=[F¯0(xi)]θi+θ3u_{i}=\bar{F}_{i}(x_{i})=[\bar{F}_{0}(x_{i})]^{\theta_{i}+\theta_{3}} for i=1,2i=1,2, then (1.1) becomes the copula associated with the bivariate proportional hazard class (BPHC) mentioned in Kundu (2022) whose bivariate survival function is

F¯(x1,x2)={[F¯0(x1)]θ1+θ3[F¯0(x2)]θ2;x1x2[F¯0(x1)]θ1[F¯0(x2)]θ2+θ3;x1x2,\bar{F}(x_{1},x_{2})=\begin{cases}[\bar{F}_{0}(x_{1})]^{\theta_{1}+\theta_{3}}[\bar{F}_{0}(x_{2})]^{\theta_{2}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ [\bar{F}_{0}(x_{1})]^{\theta_{1}}[\bar{F}_{0}(x_{2})]^{\theta_{2}+\theta_{3}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2},\end{cases} (1.5)

where F¯0(x)=P(X>x)\bar{F}_{0}(x)=P(X>x) is the baseline distribution with F¯0(x)=0\bar{F}_{0}(x)=0 for x0x\leq 0 without loss of generality and θi>0;i=1,2,3\theta_{i}>0;\leavevmode\nobreak\ i=1,2,3. In this work, we study the functional equation characterised by singular family of bivariate distributions in (1.5). The rest of the paper is organised as below.

In Section 2, we propose a class of distributions as a general solution to the functional equation characterising (1.5). This functional equation characterises a very general class of distributions which includes (1.2), (1.3), (1.4) and (1.5). It is observed through a counter example that the general solutions of this functional equation need not necessarily generate a bivariate distribution function. But conditions on the marginals ensures that the solution is a bivariate distribution. In Section 3, necessary and sufficient conditions are derived for a univariate distribution to be a marginal for the bivariate distribution belonging to this class. In Section 4, we translate these in terms of failure rates for the ease of constructing bivariate distributions satisfying the functional equation.

2 Functional equation

In this section, we propose a characterisation of (1.5) in terms of a functional equation, the general solution of which includes many bivariate singular distributions including (1.5).

Theorem 2.1.

For some baseline survival function F¯0()\bar{F}_{0}(\cdot), the functional equation

F¯(F¯01(F¯0(t)F¯0(x1)),F¯01(F¯0(t)F¯0(x2)))=F¯(x1,x2)F¯(t,t)\bar{F}(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{1})),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{2})))=\bar{F}(x_{1},x_{2})\bar{F}(t,t) (2.1)

is satisfied if and only if

F¯(x1,x2)={F1¯(F¯01(F¯0(x1)F¯0(x2)))[F¯0(x2)]θ;x1x2F2¯(F¯01(F¯0(x2)F¯0(x1)))[F¯0(x1)]θ;x1x2,\bar{F}(x_{1},x_{2})=\begin{cases}\bar{F_{1}}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}\Big{)}[\bar{F}_{0}(x_{2})]^{\theta}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ \bar{F_{2}}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{2})}{\bar{F}_{0}(x_{1})}\big{)}\Big{)}[\bar{F}_{0}(x_{1})]^{\theta}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2},\end{cases} (2.2)

for some θ>0\theta>0 and x1,x20x_{1},x_{2}\geq 0 where Fi¯(xi)=F¯(x1,x2)|x3i=0;i=1,2\bar{F_{i}}(x_{i})=\bar{F}(x_{1},x_{2})_{|x_{3-i}=0};\leavevmode\nobreak\ i=1,2.

Proof.

In (2.1), for x1=x2=xx_{1}=x_{2}=x, we get

F¯(F¯01(F¯0(t)F¯0(x)),F¯01(F¯0(t)F¯0(x)))=F¯(x,x)F¯(t,t).\bar{F}(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x)),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x)))=\bar{F}(x,x)\bar{F}(t,t). (2.3)

Writing F¯(x,x)=H(x)\bar{F}(x,x)=H(x), (2.3) becomes,

H(F¯01(F¯0(t)F¯0(x)))=H(x)H(t)H(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x)))=H(x)H(t) (2.4)

which is of the form

T(us)=T(s)T(u),T(us)=T(s)T(u),

where s=F¯0(x)s=\bar{F}_{0}(x), u=F¯0(t)u=\bar{F}_{0}(t) and HF¯01=TH\circ\bar{F}_{0}^{-1}=T. Hence from (Aczél (1966), pg. 38), the most general solution of (2.4) is

H(t)=F¯(t,t)=[F¯0(t)]θ;θ>0.H(t)=\bar{F}(t,t)=[\bar{F}_{0}(t)]^{\theta};\leavevmode\nobreak\ \theta>0.

Therefore, (2.1) can be written as,

F¯(F¯01(F¯0(t)F¯0(x1)),F¯01(F¯0(t)F¯0(x2)))=F¯(x1,x2)[F¯0(t)]θ.\bar{F}(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{1})),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{2})))=\bar{F}(x_{1},x_{2})[\bar{F}_{0}(t)]^{\theta}.

For x1x2x_{1}\geq x_{2},

F¯(x1,x2)\displaystyle\bar{F}(x_{1},x_{2}) =F¯(F¯01(F¯0(x2)F¯0(x1)F¯0(x2)),F¯01(F¯0(x2)))\displaystyle=\bar{F}\Big{(}\bar{F}_{0}^{-1}\big{(}\bar{F}_{0}(x_{2})\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)},\bar{F}_{0}^{-1}(\bar{F}_{0}(x_{2}))\big{)}
=F¯1(F¯01(F¯0(x1)F¯0(x2)))[F¯0(x2)]θ.\displaystyle=\bar{F}_{1}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}\Big{)}[\bar{F}_{0}(x_{2})]^{\theta}.

Arguing similarly for x1x2x_{1}\leq x_{2}, (2.2) can be retrieved. The converse is direct. ∎

The next question of interest is whether this general equation F¯(x1,x2)\bar{F}(x_{1},x_{2}) in (2.2) represent proper bivariate distribution function? The following counter example shows it is not. It is further seen that arbitrary marginals do not admit a proper bivariate distribution.

Counter Example 2.1.

LFR-exponential: For the linear failure rate (LFR) marginals, Fi¯(xi)=e(xi+αxi2);xi>0,α>0,i=1,2\bar{F_{i}}(x_{i})=e^{-(x_{i}+\alpha x_{i}^{2})};\leavevmode\nobreak\ x_{i}>0,\alpha>0,\leavevmode\nobreak\ i=1,2 and exponential baseline, F¯0(x)=ex;x>0\bar{F}_{0}(x)=e^{-x};\leavevmode\nobreak\ x>0, equation (2.1) reduces to

F¯(x1+t,x2+t)=F¯(x1,x2)F¯(t,t)\bar{F}(x_{1}+t,x_{2}+t)=\bar{F}(x_{1},x_{2})\bar{F}(t,t) (2.5)

with the corresponding solution (2.2) as

F¯(x1,x2)={e(x1x2)α(x1x2)2θx2;x1x2e(x2x1)α(x2x1)2θx1;x1x2.\bar{F}(x_{1},x_{2})=\begin{cases}e^{-(x_{1}-x_{2})-\alpha(x_{1}-x_{2})^{2}-\theta x_{2}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ e^{-(x_{2}-x_{1})-\alpha(x_{2}-x_{1})^{2}-\theta x_{1}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2}.\end{cases} (2.6)

On closely examining F¯(x1,x2)\bar{F}(x_{1},x_{2}) we observe that P(1<X1<2,3<X2<5)0P(1<X_{1}<2,3<X_{2}<5)\ngeq 0 for the choice of α=1.5\alpha=1.5 and θ=3\theta=3 disqualifying it as a bivariate probability survival function. The functional equation (2.5) has been well studied under this perspective in Kulkarni (2006). Hence not all solution with arbitrary Fi¯()\bar{F_{i}}(\cdot) and F¯0()\bar{F}_{0}(\cdot) give bivariate probability distribution. Imposing some restrictions on the marginals ensures this. Motivated by this we develop the conditions to be satisfied by the marginals so that F¯(x1,x2)\bar{F}(x_{1},x_{2}) is a bivariate survival function.

3 Necessary and sufficient conditions for generating bivariate distributions

In this section, we discuss the conditions to be satisfied by the univariate distributions for them to qualify as a marginal for the bivariate survival function as in (2.2). Let Θ=(θ,\mathboldα,\mathboldβ)\Theta=(\theta,\mathbold{\alpha},\mathbold{\beta}), where \mathboldα=(α1,α2,,αk)\mathbold{\alpha}=(\alpha_{1},\alpha_{2},\dots,\alpha_{k}) is the vector of parameters involved in baseline F¯0()\bar{F}_{0}(\cdot) and \mathboldβ=(β1,β2,,βm)\mathbold{\beta}=(\beta_{1},\beta_{2},\dots,\beta_{m}) is the vector of parameters involved in the marginal Fi¯()\bar{F_{i}}(\cdot).

Theorem 3.2.

Let Fi(x)F_{i}(x) be a distribution function with absolutely continuous density fi(x)f_{i}(x) for which limxfi(x)=0;i=1,2\lim_{x\rightarrow\infty}f_{i}(x)=0;\leavevmode\nobreak\ i=1,2. The necessary and sufficient conditions for F¯(x1,x2)\bar{F}(x_{1},x_{2}) in (2.2) be a bivariate distribution is that

  1. (i)

    θu1(Θ)+u2(Θ)2θ\theta\leq u_{1}(\Theta)+u_{2}(\Theta)\leq 2\theta

  2. (ii)

    x3iln(xiFi¯(F¯01(F¯0(xi)F¯0(x3i))))θr0(x3i);i=1,2\frac{\partial}{\partial x_{3-i}}\ln\Big{(}-\frac{\partial}{\partial x_{i}}\bar{F_{i}}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\Big{)}\leq\theta r_{0}(x_{3-i});\leavevmode\nobreak\ i=1,2,

where ui(Θ)=[fi(F¯01(F¯0(xi)F¯0(x3i)))|F¯01(F¯0(xi)F¯0(x3i))(lnF¯0(x3i))|]|xi=x3i;i=1,2u_{i}(\Theta)=\Big{[}f_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\Big{|}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial(-\ln\bar{F}_{0}(x_{3-i}))}\Big{|}\Big{]}_{|x_{i}=x_{3-i}};\leavevmode\nobreak\ i=1,2.

Proof.

F¯(x1,x2)\bar{F}(x_{1},x_{2}) will be a bivariate survival function if and only if it can be written as a convex mixture of F¯a(x1,x2)\bar{F}_{a}(x_{1},x_{2}) and F¯s(x1,x2)\bar{F}_{s}(x_{1},x_{2}) where F¯a(x1,x2)\bar{F}_{a}(x_{1},x_{2}) is the absolutely continuous part and F¯s(x1,x2)\bar{F}_{s}(x_{1},x_{2}) is the singular part and F¯a(x1,x2)\bar{F}_{a}(x_{1},x_{2}) and F¯s(x1,x2)\bar{F}_{s}(x_{1},x_{2}) are survival functions. Observe, for 0α10\leq\alpha\leq 1,

2F¯(x1,x2)x1x2\displaystyle\frac{\partial^{2}\bar{F}(x_{1},x_{2})}{\partial x_{1}\partial x_{2}} =αfa(x1,x2)\displaystyle=\alpha f_{a}(x_{1},x_{2})
={[F¯0(x2)]θ[2F¯1(F¯01(F¯0(x1)F¯0(x2)))x1x2θf0(x2)F¯0(x2)F¯1(F¯01(F¯0(x1)F¯0(x2)))x1];x1x2[F¯0(x1)]θ[2F¯2(F¯01(F¯0(x2)F¯0(x1)))x1x2θf0(x1)F¯0(x1)F¯2(F¯01(F¯0(x2)F¯0(x1)))x2];x1x2.\displaystyle=\begin{cases}[\bar{F}_{0}(x_{2})]^{\theta}\big{[}\frac{\partial^{2}\bar{F}_{1}\big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}\big{)}}{\partial x_{1}\partial x_{2}}-\theta\frac{f_{0}(x_{2})}{\bar{F}_{0}(x_{2})}\frac{\partial\bar{F}_{1}\big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}\big{)}}{\partial x_{1}}\big{]}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ [\bar{F}_{0}(x_{1})]^{\theta}\big{[}\frac{\partial^{2}\bar{F}_{2}\big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{2})}{\bar{F}_{0}(x_{1})}\big{)}\big{)}}{\partial x_{1}\partial x_{2}}-\theta\frac{f_{0}(x_{1})}{\bar{F}_{0}(x_{1})}\frac{\partial\bar{F}_{2}\big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{2})}{\bar{F}_{0}(x_{1})}\big{)}\big{)}}{\partial x_{2}}\big{]}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2}.\end{cases} (3.1)

Also,

x1x2αfa(x1,x2)=\displaystyle\int_{x_{1}\geq x_{2}}\alpha f_{a}(x_{1},x_{2})= 11θ[f1(F¯01(F¯0(x1)F¯0(x2)))|F¯01(F¯0(x1)F¯0(x2))(lnF¯0(x2))|]|x1=x2\displaystyle 1-\frac{1}{\theta}\bigg{[}f_{1}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}\Big{)}\bigg{|}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}}{\partial(-\ln\bar{F}_{0}(x_{2}))}\bigg{|}\bigg{]}_{|x_{1}=x_{2}}

and

x1x2αfa(x1,x2)=11θ[f2(F¯01(F¯0(x2)F¯0(x1)))|F¯01(F¯0(x1)F¯0(x2))(lnF¯0(x2))|]|x2=x1.\int_{x_{1}\leq x_{2}}\alpha f_{a}(x_{1},x_{2})=1-\frac{1}{\theta}\bigg{[}f_{2}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{2})}{\bar{F}_{0}(x_{1})}\big{)}\Big{)}\bigg{|}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\big{)}}{\partial(-\ln\bar{F}_{0}(x_{2}))}\bigg{|}\bigg{]}_{|x_{2}=x_{1}}.

Writing,

ui(Θ)=[fi(F¯01(F¯0(xi)F¯0(x3i)))|F¯01(F¯0(xi)F¯0(x3i))(lnF¯0(x3i))|]|xi=x3i;i=1,2u_{i}(\Theta)=\Big{[}f_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\Big{|}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial(-\ln\bar{F}_{0}(x_{3-i}))}\Big{|}\Big{]}_{|x_{i}=x_{3-i}};\leavevmode\nobreak\ i=1,2

we have,

x1x2αfa(x1,x2)\displaystyle\int_{x_{1}\geq x_{2}}\alpha f_{a}(x_{1},x_{2}) =11θu1(Θ)\displaystyle=1-\frac{1}{\theta}u_{1}(\Theta)
andx1x2αfa(x1,x2)\displaystyle\text{and}\leavevmode\nobreak\ \int_{x_{1}\leq x_{2}}\alpha f_{a}(x_{1},x_{2}) =11θu2(Θ)\displaystyle=1-\frac{1}{\theta}u_{2}(\Theta)

so that

α=21θ(u1(Θ)+u2(Θ)).\alpha=2-\frac{1}{\theta}(u_{1}(\Theta)+u_{2}(\Theta)). (3.2)

Hence the absolutely continuous part has density fa(x1,x2)f_{a}(x_{1},x_{2}) given by (3.1) and (3.2). Also, we have

F¯a(x,x)=[F¯0(x)]θ.\bar{F}_{a}(x,x)=[\bar{F}_{0}(x)]^{\theta}.

But F¯(x,x)=[F¯0(x)]θ\bar{F}(x,x)=[\bar{F}_{0}(x)]^{\theta}, so that F¯s(x,x)=F¯(x,x)αF¯a(x,x)1α=[F¯0(x)]θ\bar{F}_{s}(x,x)=\frac{\bar{F}(x,x)-\alpha\bar{F}_{a}(x,x)}{1-\alpha}=[\bar{F}_{0}(x)]^{\theta}. Therefore, F¯\bar{F} is a valid survival function if

  1. (i)

    F¯\bar{F} is a convex mixture of FaF_{a} and FsF_{s}. From (3.2), since 0α10\leq\alpha\leq 1, we get

    θu1(Θ)+u2(Θ)2θ.\theta\leq u_{1}(\Theta)+u_{2}(\Theta)\leq 2\theta.
  2. (ii)

    F¯a\bar{F}_{a} is a valid survival function. From (3.1), since fa(x1,x2)0f_{a}(x_{1},x_{2})\geq 0, we get for xi>x3i;i=1,2x_{i}>x_{3-i};\leavevmode\nobreak\ i=1,2,

    x3iln(xiFi¯(F¯01(F¯0(xi)F¯0(x3i))))θr0(x3i).\frac{\partial}{\partial x_{3-i}}\ln\Big{(}-\frac{\partial}{\partial x_{i}}\bar{F_{i}}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\Big{)}\leq\theta r_{0}(x_{3-i}).

This completes the proof. ∎

Counter Example 2.1 (contd.) LFR-exponential: Consider again the bivariate function F¯(x1,x2)\bar{F}(x_{1},x_{2}) given in (2.6). Condition (ii) of Theorem 3.2 becomes

2α(xix3i)1xix3i+1θ;xi>x3i,i=1,2,2\alpha(x_{i}-x_{3-i})-\frac{1}{x_{i}-x_{3-i}}+1\leq\theta;\leavevmode\nobreak\ x_{i}>x_{3-i},\leavevmode\nobreak\ i=1,2,

which is not satisfied for the choice of α=1.5,θ=3,x1=5\alpha=1.5,\leavevmode\nobreak\ \theta=3,\leavevmode\nobreak\ x_{1}=5 and x2=3x_{2}=3. This again shows that a bivariate distribution cannot be formed with marginal being the linear failure rate model and baseline as exponential distribution in (2.2). However any proportional hazard distribution qualify as marginals in (2.2). This is discussed in detail in the next theorem.

Theorem 3.3.

The survival function F¯(x1,x2)\bar{F}(x_{1},x_{2}) with the marginals belonging to the PH class satisfies the functional equation (2.1) if and only if it is of the form

F¯(x1,x2)\displaystyle\bar{F}(x_{1},x_{2}) ={[F¯0(x1)]δ1[F¯0(x2)]θδ1;x1x2[F¯0(x1)]θδ2[F¯0(x2)]δ2;x1x2.\displaystyle=\begin{cases}[\bar{F}_{0}(x_{1})]^{\delta_{1}}[\bar{F}_{0}(x_{2})]^{\theta-\delta_{1}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ [\bar{F}_{0}(x_{1})]^{\theta-\delta_{2}}[\bar{F}_{0}(x_{2})]^{\delta_{2}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2}.\end{cases} (3.3)

for some θ,δ1,δ2>0\theta,\leavevmode\nobreak\ \delta_{1},\leavevmode\nobreak\ \delta_{2}>0 with δi<θ;i=1,2\delta_{i}<\theta;\leavevmode\nobreak\ i=1,2.

Proof.

Suppose (2.1) is satisfied. Then, the general solution of F¯(x1,x2)\bar{F}(x_{1},x_{2}) is given by (2.2). Let the marginals belong to the PH class so that Fi¯(xi)=[F¯0(xi)]δi;δi>0,i=1,2\bar{F_{i}}(x_{i})=[\bar{F}_{0}(x_{i})]^{\delta_{i}};\leavevmode\nobreak\ \delta_{i}>0,\leavevmode\nobreak\ i=1,2. Then, the bivariate function in (2.2) reduces to (3.3). Now, it remains to show that F¯(x1,x2)\bar{F}(x_{1},x_{2}) is a valid bivariate distribution. Proceeding as in Theorem 3.2,

2F¯(x1,x2)x1x2\displaystyle\frac{\partial^{2}\bar{F}(x_{1},x_{2})}{\partial x_{1}\partial x_{2}} =αfa(x1,x2)\displaystyle=\alpha f_{a}(x_{1},x_{2})
={δ1(θδ1)f0(x1)f0(x2)(F¯0(x1))δ11(F¯0(x2))θδ11;x1x2δ2(θδ2)f0(x1)f0(x2)(F¯0(x1))θδ21(F¯0(x2))δ21;x1x2.\displaystyle=\begin{cases}\delta_{1}(\theta-\delta_{1})f_{0}(x_{1})f_{0}(x_{2})(\bar{F}_{0}(x_{1}))^{\delta_{1}-1}(\bar{F}_{0}(x_{2}))^{\theta-\delta_{1}-1}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ \delta_{2}(\theta-\delta_{2})f_{0}(x_{1})f_{0}(x_{2})(\bar{F}_{0}(x_{1}))^{\theta-\delta_{2}-1}(\bar{F}_{0}(x_{2}))^{\delta_{2}-1}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2}.\end{cases} (3.4)

Then,

x1x2αfa(x1,x2)=\displaystyle\int_{x_{1}\geq x_{2}}\alpha f_{a}(x_{1},x_{2})= θδ1θ\displaystyle\frac{\theta-\delta_{1}}{\theta}
andx1x2αfa(x1,x2)=\displaystyle\text{and}\leavevmode\nobreak\ \int_{x_{1}\leq x_{2}}\alpha f_{a}(x_{1},x_{2})= θδ2θ\displaystyle\frac{\theta-\delta_{2}}{\theta}

so that α=2θδ1δ2θ\alpha=\frac{2\theta-\delta_{1}-\delta_{2}}{\theta}. Hence, the absolute continuous part has density given by,

fa(x1,x2)=θ2θδ1δ2×{δ1(θδ1)f0(x1)f0(x2)(F¯0(x1))δ11(F¯0(x2))θδ11;x1x2δ2(θδ2)f0(x1)f0(x2)(F¯0(x1))θδ21(F¯0(x2))δ21;x1x2.f_{a}(x_{1},x_{2})=\frac{\theta}{2\theta-\delta_{1}-\delta_{2}}\times\begin{cases}\delta_{1}(\theta-\delta_{1})f_{0}(x_{1})f_{0}(x_{2})(\bar{F}_{0}(x_{1}))^{\delta_{1}-1}(\bar{F}_{0}(x_{2}))^{\theta-\delta_{1}-1}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ \delta_{2}(\theta-\delta_{2})f_{0}(x_{1})f_{0}(x_{2})(\bar{F}_{0}(x_{1}))^{\theta-\delta_{2}-1}(\bar{F}_{0}(x_{2}))^{\delta_{2}-1}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2}.\end{cases} (3.5)

We have, F¯a(x1,x2)=[F¯0(x)]θ\bar{F}_{a}(x_{1},x_{2})=[\bar{F}_{0}(x)]^{\theta}. But, F¯(x,x)=[F¯0(x)]θ\bar{F}(x,x)=[\bar{F}_{0}(x)]^{\theta} so that F¯s(x1,x2)=F¯(x,x)αF¯a(x,x)1α=[F¯0(x)]θ\bar{F}_{s}(x_{1},x_{2})=\frac{\bar{F}(x,x)-\alpha\bar{F}_{a}(x,x)}{1-\alpha}=[\bar{F}_{0}(x)]^{\theta}. From (i) and (ii) as in Theorem 3.2, we have θδ1+δ22θ\theta\leq\delta_{1}+\delta_{2}\leq 2\theta which is true since δi<θ;i=1,2\delta_{i}<\theta;\leavevmode\nobreak\ i=1,2. Also, F¯a\bar{F}_{a} is a valid survival function implying fa(x1,x2)0f_{a}(x_{1},x_{2})\geq 0 which is true for any choice of the baseline distribution F¯0()\bar{F}_{0}(\cdot). The converse is direct. ∎

4 Construction of bivariate distributions satisfying functional equation (2.1)

The functional equation (2.1) can be equivalently represented in terms of the hazard gradient. The discussions above translated in terms of the hazard gradient would make it computationally easier to check if marginals qualify for the function (2.2) to be a bivariate survival function. Accordingly in this section we visit the functional equation in terms of its hazard gradient. The hazard gradient vector r(x1,x2)r(x_{1},x_{2}) (Johnson and Kotz (1975)) is defined as

r(x1,x2)\displaystyle r(x_{1},x_{2}) =(r1(x1,x2),r2(x1,x2))\displaystyle=(r_{1}(x_{1},x_{2}),r_{2}(x_{1},x_{2}))
=(lnF¯(x1,x2)x1,lnF¯(x1,x2)x2)\displaystyle=\Big{(}-\frac{\partial\ln\bar{F}(x_{1},x_{2})}{\partial x_{1}},-\frac{\partial\ln\bar{F}(x_{1},x_{2})}{\partial x_{2}}\Big{)}
=(x1R(x1,x2),x2R(x1,x2)),\displaystyle=\Big{(}\frac{\partial}{\partial x_{1}}R(x_{1},x_{2}),\frac{\partial}{\partial x_{2}}R(x_{1},x_{2})\Big{)},

where R(x1,x2)=lnF¯(x1,x2)R(x_{1},x_{2})=-\ln\bar{F}(x_{1},x_{2}).

Note that the functional equation (2.1) can be equivalently expressed as

R(F¯01(F¯0(t)F¯0(x1)),F¯01(F¯0(t)F¯0(x2)))=R(x1,x2)θlnF¯0(t).R(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{1})),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{2})))=R(x_{1},x_{2})-\theta\ln\bar{F}_{0}(t).

Differentiating with respect to tt, we get,

i=12[R(F¯01(F¯0(t)F¯0(x1)),F¯01(F¯0(t)F¯0(x2)))](F¯01(F¯0(t)F¯0(xi)))(F¯01(F¯0(t)F¯0(xi)))t=θr0(t)\displaystyle\sum_{i=1}^{2}\frac{\partial\big{[}R(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{1})),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{2})))]}{\partial(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{i})))}\frac{\partial(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{i})))}{\partial t}=\theta r_{0}(t)

which gives a condition in terms of the hazard gradient to satisfy the functional equation (2.1) as

i=12ri(F¯01(F¯0(t)F¯0(x1)),F¯01(F¯0(t)F¯0(x2)))(F¯01(F¯0(t)F¯0(xi)))t=θr0(t),\sum_{i=1}^{2}r_{i}(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{1})),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{2})))\frac{\partial(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{i})))}{\partial t}=\theta r_{0}(t), (4.1)

where r0()r_{0}(\cdot) is the baseline hazard function. On integrating (4.1), we can retrieve the functional equation (2.1).

Theorem 4.4.

A bivariate random vector X=(X1,X2)X=(X_{1},X_{2}) satisfy (2.1) if and only if

ri(x1,x2)={ri(F¯01(F¯0(xi)F¯0(x3i)))xi(F¯01(F¯0(xi)F¯0(x3i)));xi>x3ir3i(F¯01(F¯0(x3i)F¯0(xi)))|xi(F¯01(F¯0(x3i)F¯0(xi)))|+θr0(xi);xi<x3i,\displaystyle r_{i}(x_{1},x_{2})=\begin{cases}{r_{i}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\Big{)}\bigg{)}\frac{\partial}{\partial x_{i}}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\Big{)}\bigg{)}}&;\leavevmode\nobreak\ x_{i}>x_{3-i}\\ {-r_{3-i}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{3-i})}{\bar{F}_{0}(x_{i})}\Big{)}\bigg{)}\bigg{|}\frac{\partial}{\partial x_{i}}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{3-i})}{\bar{F}_{0}(x_{i})}\Big{)}\bigg{)}\bigg{|}+\theta r_{0}(x_{i})}&;\leavevmode\nobreak\ x_{i}<x_{3-i},\end{cases} (4.2)

where ri(x)r_{i}(x) is the marginal hazard rate of Xi;i=1,2X_{i};\leavevmode\nobreak\ i=1,2.

Proof.

Suppose (X1,X2)(X_{1},X_{2}) satisfy,

F¯(F¯01(F¯0(t)F¯0(x1)),F¯01(F¯0(t)F¯0(x2)))=F¯(x1,x2)[F¯0(t)]θ\displaystyle\bar{F}(\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{1})),\bar{F}_{0}^{-1}(\bar{F}_{0}(t)\bar{F}_{0}(x_{2})))=\bar{F}(x_{1},x_{2})[\bar{F}_{0}(t)]^{\theta}
F¯(x1,x2)=F¯(F¯01(F¯0(x1)F¯0(t)),F¯01(F¯0(x2)F¯0(t)))[F¯0(t)]θ\displaystyle\implies\bar{F}(x_{1},x_{2})=\bar{F}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(t)}\Big{)},\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{2})}{\bar{F}_{0}(t)}\Big{)}\bigg{)}[\bar{F}_{0}(t)]^{\theta}

For t=min{x1,x2}t=\text{min}\{x_{1},x_{2}\} we have for x1>x2x_{1}>x_{2},

F¯(x1,x2)\displaystyle\bar{F}(x_{1},x_{2}) =F¯(F¯01(F¯0(x1)F¯0(x2)),0)[F¯0(x2)]θ\displaystyle=\bar{F}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\Big{)},0\bigg{)}[\bar{F}_{0}(x_{2})]^{\theta}
=F¯1(F¯01(F¯0(x1)F¯0(x2)))[F¯0(x2)]θ.\displaystyle=\bar{F}_{1}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\Big{)}\bigg{)}[\bar{F}_{0}(x_{2})]^{\theta}.

Taking negative of the logarithms on both sides and differentiating w.r.t xi;i=1,2x_{i};\leavevmode\nobreak\ i=1,2 we get,

r1(x1,x2)=r1(F¯01(F¯0(x1)F¯0(x2)))x1(F¯01(F¯0(x1)F¯0(x2)))r_{1}(x_{1},x_{2})=r_{1}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\Big{)}\bigg{)}\frac{\partial}{\partial x_{1}}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\Big{)}\bigg{)}

and

r2(x1,x2)=r1(F¯01(F¯0(x1)F¯0(x2)))|x2(F¯01(F¯0(x1)F¯0(x2)))|+θr0(x2).r_{2}(x_{1},x_{2})=-r_{1}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\Big{)}\bigg{)}\bigg{|}\frac{\partial}{\partial x_{2}}\bigg{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{1})}{\bar{F}_{0}(x_{2})}\Big{)}\bigg{)}\bigg{|}+\theta r_{0}(x_{2}).

In a similar manner we can prove the result for x1<x2x_{1}<x_{2} to obtain (4.2). The converse is straight forward through the representation

F¯(x1,x2)=exp[0x1r1(u,0)𝑑u0x2r2(x1,u)𝑑u]\bar{F}(x_{1},x_{2})=exp\Bigg{[}-\int_{0}^{x_{1}}r_{1}(u,0)du-\int_{0}^{x_{2}}r_{2}(x_{1},u)du\Bigg{]}

or

F¯(x1,x2)=exp[0x1r1(u,x2)𝑑u0x2r2(0,u)𝑑u]\bar{F}(x_{1},x_{2})=exp\Bigg{[}-\int_{0}^{x_{1}}r_{1}(u,x_{2})du-\int_{0}^{x_{2}}r_{2}(0,u)du\Bigg{]}

(Johnson and Kotz (1975)). ∎

If we closely investigate equation (4.2), we see that the marginal hazard function ri(x)r_{i}(x) should satisfy the condition

ri(F¯01(F¯0(xi)F¯0(x3i)))|x3i(F¯01(F¯0(xi)F¯0(x3i)))|θr0(x3i);for i=1,2r_{i}\Big{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\Big{)}\Big{)}\bigg{|}\frac{\partial}{\partial x_{3-i}}\Big{(}\bar{F}_{0}^{-1}\Big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\Big{)}\Big{)}\bigg{|}\leq\theta r_{0}(x_{3-i});\leavevmode\nobreak\ \text{for $i=1,2$} (4.3)

since ri(x1,x2)0r_{i}(x_{1},x_{2})\geq 0. Based on these observations necessary and sufficient conditions for differentiable ri(x)r_{i}(x) to qualify as marginal failure rates for F¯(x1,x2)\bar{F}(x_{1},x_{2}) to be a bivariate survival function is discussed in the next theorem.

Theorem 4.5.

The necessary and sufficient conditions for differentiable functions ri(x);i=1,2r_{i}(x);\leavevmode\nobreak\ i=1,2 to qualify as marginal failure rates of F¯(x1,x2)\bar{F}(x_{1},x_{2}) in (2.2) is that for xi>x3i;i=1,2x_{i}>x_{3-i};\leavevmode\nobreak\ i=1,2,

  1. (i)

    0ri(F¯01(F¯0(xi)F¯0(x3i)))|F¯01(F¯0(xi)F¯0(x3i))x3i|θr0(x3i)0\leq r_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\bigg{|}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial x_{3-i}}\bigg{|}\leq\theta r_{0}(x_{3-i})

  2. (ii)

    0ri(x)𝑑x=\int_{0}^{\infty}r_{i}(x)dx=\infty

  3. (iii)

    ri(F¯01(F¯0(xi)F¯0(x3i)))F¯01(F¯0(xi)F¯0(x3i))xi[θr0(x3i)+ri(F¯01(F¯0(xi)F¯0(x3i)))F¯01(F¯0(xi)F¯0(x3i))x3i]r_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial x_{i}}\Big{[}\theta r_{0}(x_{3-i})+r_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial x_{3-i}}\Big{]}-
    x3i[ri(F¯01(F¯0(xi)F¯0(x3i)))F¯01(F¯0(xi)F¯0(x3i))xi]0\frac{\partial}{\partial x_{3-i}}[r_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial x_{i}}]\geq 0

  4. (iv)

    θv1(Θ)+v2(Θ)2θ\theta\leq v_{1}(\Theta)+v_{2}(\Theta)\leq 2\theta

where vi(Θ)=[ri(F¯01(F¯0(xi)F¯0(x3i)))exp{0F¯01(F¯0(xi)F¯0(x3i))ri(u)𝑑u}|F¯01(F¯0(xi)F¯0(x3i))(lnF¯0(x3i))|]|xi=x3i;i=1,2v_{i}(\Theta)=\Big{[}r_{i}\Big{(}\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}\Big{)}exp\{-\int_{0}^{\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}r_{i}(u)du\}\Big{|}\frac{\partial\bar{F}_{0}^{-1}\big{(}\frac{\bar{F}_{0}(x_{i})}{\bar{F}_{0}(x_{3-i})}\big{)}}{\partial(-\ln\bar{F}_{0}(x_{3-i}))}\Big{|}\Big{]}_{|x_{i}=x_{3-i}};\leavevmode\nobreak\ i=1,2. The bivariate function F¯(x1,x2)\bar{F}(x_{1},x_{2}) given by equation (2.2) is a survival function satisfying the functional equation in (2.1) where

F¯i(x)=exp(0xri(u)𝑑u);x0,i=1,2.\bar{F}_{i}(x)=exp\big{(}-\int_{0}^{x}r_{i}(u)du\big{)};\leavevmode\nobreak\ x\geq 0,\leavevmode\nobreak\ i=1,2. (4.4)
Proof.

Condition (i) follows from equation (4.3) and condition (ii) is necessary for ri;i=1,2r_{i};\leavevmode\nobreak\ i=1,2 to be a hazard rate function. Conditions (iii) and (iv) implies conditions (i) and (ii) of Theorem 3.2.

Conversely the hazard gradient associated with F¯(x1,x2)\bar{F}(x_{1},x_{2}) is given by (4.2) and the condition (i) follows from the non-negativity of ri(x1,x2);i=1,2r_{i}(x_{1},x_{2});\leavevmode\nobreak\ i=1,2. Since ri();i=1,2r_{i}(\cdot);\leavevmode\nobreak\ i=1,2 are univariate failure rates, condition (ii) follows. Condition (iii) follows from the non-negativity of the density function associated with F¯(x1,x2)\bar{F}(x_{1},x_{2}) and condition (iv) follows from Theorem 3.2. ∎

Counter Example 2.1 (contd.) LFR-exponential: The marginal failure rates are given by

ri(xi)=2αxi+1;i=1,2.r_{i}(x_{i})=2\alpha x_{i}+1;\leavevmode\nobreak\ i=1,2.

Then the condition (i) in Theorem 4.5 becomes 02α(xix3i)+1θ;xi>x3i0\leq 2\alpha(x_{i}-x_{3-i})+1\leq\theta;\leavevmode\nobreak\ x_{i}>x_{3-i} which is not satisfied for the choice of α=1.5,θ=3,x1=5\alpha=1.5,\leavevmode\nobreak\ \theta=3,\leavevmode\nobreak\ x_{1}=5 and x2=3x_{2}=3. Hence, we cannot construct a bivariate survival function F¯(x1,x2)\bar{F}(x_{1},x_{2}) with the marginals as linear failure rate and baseline distribution as exponential.

Example 4.1.

BPHC-Weibull: For a proportional hazard rate,

ri(xi)=(θi+θ3)r0(xi);xi>0,i=1,2r_{i}(x_{i})=(\theta_{i}+\theta_{3})r_{0}(x_{i});\leavevmode\nobreak\ x_{i}>0,\leavevmode\nobreak\ i=1,2

with θi>0;i=1,2,3\theta_{i}>0;\leavevmode\nobreak\ i=1,2,3 and r0(x)=αxα1;x>0,α>0r_{0}(x)=\alpha x^{\alpha-1};\leavevmode\nobreak\ x>0,\leavevmode\nobreak\ \alpha>0, it is easily seen that conditions of Theorem 4.5 is satisfied. For

  1. (i)

    0θi+θ3θ1+θ2+θ30\leq\theta_{i}+\theta_{3}\leq\theta_{1}+\theta_{2}+\theta_{3}

  2. (ii)

    0α(θi+θ3)xiα1𝑑xi=\int_{0}^{\infty}\alpha(\theta_{i}+\theta_{3})x_{i}^{\alpha-1}dx_{i}=\infty

  3. (iii)

    θi+θ30\theta_{i}+\theta_{3}\geq 0

  4. (iv)

    θ1+θ2+θ3θ1+θ2+2θ32(θ1+θ2+θ3)\theta_{1}+\theta_{2}+\theta_{3}\leq\theta_{1}+\theta_{2}+2\theta_{3}\leq 2(\theta_{1}+\theta_{2}+\theta_{3}).

for xi>x3i;i=1,2x_{i}>x_{3-i};\leavevmode\nobreak\ i=1,2. From (4.4), F¯i(xi)=[F¯0(xi)]θi+θ3;i=1,2\bar{F}_{i}(x_{i})=[\bar{F}_{0}(x_{i})]^{\theta_{i}+\theta_{3}};\leavevmode\nobreak\ i=1,2, where F¯0(x)=exα;x>0,α>0\bar{F}_{0}(x)=e^{-x^{\alpha}};\leavevmode\nobreak\ x>0,\leavevmode\nobreak\ \alpha>0. Substituting in (2.2), we get

F¯(x1,x2)\displaystyle\bar{F}(x_{1},x_{2}) ={e(θ1+θ3)x1αθ2x2α;x1x2eθ1x1α(θ2+θ3)x2α;x1x2.\displaystyle=\begin{cases}e^{-(\theta_{1}+\theta_{3})x_{1}^{\alpha}-\theta_{2}x_{2}^{\alpha}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\geq x_{2}\\ e^{-\theta_{1}x_{1}^{\alpha}-(\theta_{2}+\theta_{3})x_{2}^{\alpha}}&\leavevmode\nobreak\ ;\leavevmode\nobreak\ x_{1}\leq x_{2}.\end{cases}

Hence a class of distributions which include the bivariate semi-parametric singular family of distributions given by Kundu (2022) has been proposed as a general solution to the functional equation in (2.1). The estimation of popular distributions belonging to this class have been already discussed in the literature (see Proschan and Sullo (1976), Pena and Gupta (1990), Kundu (2022)).

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Acknowledgments

This work was financially supported by the Council of Scientific & Industrial Research (CSIR), Government of India through the Senior Research Fellowship scheme vide No 09/239(0551) /2019-EMR-I.

References

  • Aczél (1966) J. Aczél. Lectures on functional equations and their applications. Academic press, 1966.
  • Galambos and Kotz (2006) J. Galambos and S. Kotz. Characterizations of Probability Distributions.: A Unified Approach with an Emphasis on Exponential and Related Models., volume 675. Springer, 2006.
  • Johnson and Kotz (1975) N. L. Johnson and S. Kotz. A vector multivariate hazard rate. Journal of Multivariate Analysis, 5(1):53–66, 1975.
  • Kolev and Pinto (2018a) N. Kolev and J. Pinto. Functional equations involving sibuya’s dependence function. Aequationes mathematicae, 92(3):441–451, 2018a.
  • Kolev and Pinto (2018b) N. Kolev and J. Pinto. A weak version of bivariate lack of memory property. Brazilian Journal of Probability and Statistics, 32(4):873–906, 2018b.
  • Kulkarni (2006) H. Kulkarni. Characterizations and modelling of multivariate lack of memory property. Metrika, 64(2):167–180, 2006.
  • Kundu (2022) D. Kundu. Bivariate semi-parametric singular family of distributions and its applications. Sankhya B, pages 1–27, 2022.
  • Lin et al. (2019) G. D. Lin, X. Dou, and S. Kuriki. The bivariate lack-of-memory distributions. Sankhya A, 81(2):273–297, 2019.
  • Nelsen (2007) R. B. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.
  • Pena and Gupta (1990) E. A. Pena and A. K. Gupta. Bayes estimation for the marshall–olkin exponential distribution. Journal of the Royal Statistical Society: Series B (Methodological), 52(2):379–389, 1990.
  • Pinto and Kolev (2015) J. Pinto and N. Kolev. Sibuya-type bivariate lack of memory property. Journal of Multivariate Analysis, 134:119–128, 2015.
  • Proschan and Sullo (1976) F. Proschan and P. Sullo. Estimating the parameters of a multivariate exponential distribution β\beta β\upbeta. Journal of the American Statistical Association, 71(354):465–472, 1976.