This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Surface Technology Research Unit (STRU), Faculty of Science and Technology,
Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand
bbinstitutetext: College of Graduate Studies, Walailak University, Thasala, Nakhon Si Thammarat,
80160, Thailand
ccinstitutetext: School of Science, Walailak University, Thasala, Nakhon Si Thammarat,
80160, Thailand

Further refining Swampland Conjecture on inflation in general scalar-tensor theories of gravity

Jureeporn Yuennan b,c    Phongpichit Channuie [email protected], [email protected]
Abstract

An alternative refined de Sitter conjecture giving rise to a natural combination of the first and second derivatives of the scalar potential was proposed recently by David Andriot and Christoph Roupec (Fortsch. Phys. 67 (2019) no.1-2, 1800105). In this work, we study the inflation models in a general scalar-tensor theory with exponential and hyperbolic tangent forms of potential as well as model with quantum corrected potential and examine whether these three models of inflation can satisfy this further refining de Sitter swampland conjecture or not. Regarding our analysis with proper choices of parameters a,b=1aa,\,b=1-a and qq, we find that these three inflationary models can always satisfy this new refined swampland conjecture. Therefore, all three inflationary models might all be in “landscape” since the “further refining de Sitter swampland conjecture” is satisfied.

Keywords:
Refining de Sitter swampland conjecture, General scalar-tensor theories of gravity, Inflation models

1 Introduction

In string theory, the swampland program has been recently developed for the phenomenology of quantum gravity theories. It connects to questions regarding effective field theories (EFTs) and their UV completions. Terminologically, the swampland is defined as the space of effective theories that cannot be consistently coupled to a theory of quantum gravity, and hence it includes the set of phenomenological models which cannot be derived as a low energy effective theory of a quantum gravity in the high energy regime. Therefore, it is required for consistent EFTs not to lie in the swamplands, see a comprehensive review on the Swampland Brennan:2017rbf ; Palti:2019pca ,

Recently, the refined version of the swampland conjecture has been suggested Garg:2018reu ; Ooguri:2018wrx . In various phenomenological models Wang:2018kly ; Fukuda:2018haz including inflation Kinney:2018nny ; Lin:2018rnx ; Cheong:2018udx and dark energy Agrawal:2018rcg ; Chiang:2018lqx ; Colgain:2019joh ; Banerjee:2020xcn , this refined de Sitter conjecture has been tested. Moreover it has been also discussed in relation to stringy constructions Olguin-Trejo:2018zun ; Garg:2018zdg ; Blaback:2018hdo ; Heckman:2018mxl ; Blanco-Pillado:2018xyn ; Junghans:2018gdb ; Emelin:2018igk ; Banlaki:2018ayh or in a more general swampland context Hebecker:2018vxz ; Dvali:2018jhn ; Schimmrigk:2018gch ; Ibe:2018ffn . More concretely, following a setup given in Ref.Andriot:2018mav , we consider a four-dimensional (4D4D) theory of real scalar field ϕi\phi^{i} coupled to gravity, and its dynamics is governed by a scalar potential V(ϕj)V(\phi^{j}). Hence the action can be written as

S=4Dd4xg[12Mp2R+12gμνhijμϕiνϕjV],\displaystyle S=\int_{4D}d^{4}x\sqrt{-g}\,\bigg{[}-\frac{1}{2}\,M_{p}^{2}\,R+\frac{1}{2}\,g^{\mu\nu}h_{ij}\partial_{\mu}\phi^{i}\,\partial_{\nu}\phi^{j}-V\bigg{]}, (1)

where hij(ϕk)h_{ij}(\phi^{k}) is the field space metric, MpM_{p} is the 4d Planck mass, and the 4D4D space-time indexes (μ,ν)(\mu,\,\nu) are raised and lowered with the 4D4D metric gμνg_{\mu\nu} with a signature (+,,,)(+,-,-,-). Various phenomenological models, such as multi-field cosmological inflation Dimopoulos:2005ac ; Wands:2007bd , can be described by the above action. Regarding the refined de Sitter conjecture, an effective theory for quantum gravity, i.e. not in the swampland, should satisfy one of the following two conditions Garg:2018reu ; Ooguri:2018wrx :

|V|c1MpV,\displaystyle|\nabla V|\geq\frac{c_{1}}{M_{p}}V\,, (2)

or

min(jjV)c2Mp2V,\displaystyle{\rm min}(\nabla_{j}\nabla_{j}V)\,\,\leq-\frac{c_{2}}{M^{2}_{p}}V\,, (3)

where c1c_{1} and c2c_{2} are both positive constants of the order of 𝒪(1){\cal O}(1) and |V|=gijjjV|\nabla V|=\sqrt{g^{ij}\nabla_{j}\nabla_{j}V}. Therefore, for any VV, the standard slow-roll parameters can be recast using the inequalities to yield

2ϵVc1,orηVc2.\displaystyle\sqrt{2\epsilon_{V}}\geq c_{1}\,,\quad{\rm or}\quad\eta_{V}\,\,\leq-c_{2}\,. (4)

The first condition corresponds to the original “swampland conjecture” proposed in Ref.Obied:2018sgi . However, a peculiarity of this conjecture regarding these two distinct conditions (2) and (3) on two different quantities ϵV\epsilon_{V} and ηV\eta_{V} was noticed. Based on this discussion, a single condition on both ϵV\epsilon_{V} and ηV\eta_{V} has been proposed. The authors named it as a further refining de Sitter swampland conjecture Andriot:2018mav .

The statement of an alternative refined de Sitter conjecture is suggested that a low energy effective theory of a quantum gravity that takes the form (1) should verify, at any point in field space where V>0V>0 Andriot:2018mav ,

(Mp|V|V)qaMP2min(jjV)Vbwitha+b=1,a,b>0,q>2,\displaystyle\Big{(}M_{p}\frac{|\nabla V|}{V}\Big{)}^{q}-aM^{2}_{P}\frac{{\rm min}(\nabla_{j}\nabla_{j}V)}{V}\geq b\,\quad{\rm with}\quad a+b=1,\,a,\,b>0,\,q>2\,, (5)

which gives a natural condition on a combination of the first and second derivatives of the scalar potential. In terms of the slow-roll parameters, the conjecture can be rewritten as [1]:

(2ϵV)q/2aηVb.\displaystyle(2\epsilon_{V})^{q/2}-a\eta_{V}\geq b\,. (6)

Interestingly, the authors of Ref.Liu:2021diz have examined if Higgs inflation model, Palatini Higgs inflation, and Higgs-Dilaton model can satisfy the further refining de Sitter swampland conjecture or not, and it is found that these three inflationary models can always satisfy a new swampland conjecture if only they adjust the relevant parameters a,b=1aa,\,b=1-a and qq.

In the present work, this interesting and concrete conjecture will be tested in inflation in general scalar-tensor theories of gravity. The paper is organized in the following way. In Section 2, we briefly review the inflation models in a general scalar-tensor theory including inflation with exponential and tangential forms of potential as well as model with quantum corrected potential. For each model, the spectral index and the tensor-to-scalar ration will be derived. In Section 3, we examine whether these models satisfy the further refining swampland conjecture or not. Finally, we conclude our findings in the last section.

2 Inflationary models in general scalar-tensor theory

In this section, we briefly review the inflation models in a general scalar-tensor theory: inflation with E-form potential, T-form potential, and the quantum corrected potential. We start our study with the action of a general scalar-tensor theory in the Jordan frame and it takes the form Amake:2021bee

SJ=d4xg[12Ω2(ϕ)Mp2R+12ω(ϕ)gμνμϕνϕVJ(ϕ)],\displaystyle S^{J}=\int d^{4}x\sqrt{-g}\,\bigg{[}-\frac{1}{2}\Omega^{2}(\phi)\,M_{p}^{2}\,R+\frac{1}{2}\omega(\phi)\,g^{\mu\nu}\partial_{\mu}\phi\,\partial_{\nu}\phi-V^{J}(\phi)\bigg{]}, (7)

where a superscript JJ stands for quantities in the Jordan frame and the reduced Planck mass is defined as Mp2=1/8πGM_{p}^{2}=1/8\pi G. Here Ω2(ϕ)\Omega^{2}(\phi) is given by

Ω2(ϕ)=Mp2+ξf(ϕ)Mp2,\displaystyle\Omega^{2}(\phi)=\frac{M^{2}_{p}+\xi f(\phi)}{M^{2}_{p}}, (8)

where f(ϕ)f(\phi) is an arbitrary function on the scalar field ϕ\phi and ξ\xi is a dimensionless coupling constant. By applying the conformal transformation g¯μν=Ω2(ϕ)gμν{\bar{g}}_{\mu\nu}=\Omega^{2}(\phi)g_{\mu\nu}, we can eliminate the non-minimal coupling between f(ϕ)f(\phi) and the gravitational field. The resulting action in the Einstein frame reads

SE=d4xg[12Mp2R+12gμνμψνψUE(ψ)],\displaystyle S^{E}=\int d^{4}x\sqrt{-g}\,\bigg{[}-\frac{1}{2}\,M_{p}^{2}\,R+\frac{1}{2}\,g^{\mu\nu}\partial_{\mu}\psi\,\partial_{\nu}\psi-U^{E}(\psi)\bigg{]}\,, (9)

where UE(ψ)=VJ(ϕ)/Ω4(ϕ)U^{E}(\psi)=V^{J}(\phi)/\Omega^{4}(\phi), and a superscript EE stands for quantities in the Einstein frame and

dψ2=[ω(ϕ)Ω2(ϕ)+6Mp2Ω2(ϕ)Ω2(ϕ)]dϕ2,\displaystyle d\psi^{2}=\bigg{[}\frac{\omega(\phi)}{\Omega^{2}(\phi)}+6M^{2}_{p}\frac{\Omega^{{}^{\prime}2}(\phi)}{\Omega^{2}(\phi)}\bigg{]}\,d\phi^{2},\, (10)

If a conformal factor Ω(ϕ)\Omega(\phi) and a kinetic coupling ω(ϕ)\omega(\phi) satisfy the condition

ω(ϕ)=Mp2ξΩ2(ϕ),\displaystyle\omega(\phi)=\frac{M^{2}_{p}}{\xi}\Omega^{{}^{\prime}2}(\phi)\,, (11)

then there exists an exact relationship between ϕ\phi and ψ\psi obtained from Eq.(10):

ψ=6αMplnΩ,Ω(ϕ)=e1/6αψ/Mp.\displaystyle\psi=\sqrt{6\alpha}\,M_{p}\ln\Omega,\,\,\,\,\,\,\Omega(\phi)=e^{\sqrt{1/6\alpha}\,\psi/M_{p}}\,. (12)

and

VJ(ϕ)=Ω4(ϕ)UE(6αMplnΩ(ϕ)),\displaystyle V^{J}(\phi)=\Omega^{4}(\phi)U^{E}\big{(}\sqrt{6\alpha}\,M_{p}\ln\Omega(\phi)\big{)}\,, (13)

where α=1+(6ξ)1\alpha=1+(6\xi)^{-1}. In order to obtain the action in the Einstein frame, the following identities in 4 spacetime dimensions Fujii2003 are necessary:

R¯\displaystyle{\bar{R}} =\displaystyle= 1Ω2[R6gμνμνlnϕ6gμν(μlnϕ)(νlnϕ)],\displaystyle\frac{1}{\Omega^{2}}\bigg{[}R-6\,g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\ln\phi-6\,g^{\mu\nu}(\partial_{\mu}\ln\phi)(\partial_{\nu}\ln\phi)\bigg{]}\,,
g¯μν\displaystyle{\bar{g}}^{\mu\nu} =\displaystyle= Ω2gμν,g¯=Ω4g,\displaystyle\Omega^{-2}g^{\mu\nu},\,\,\,\sqrt{-{\bar{g}}}=\Omega^{4}\sqrt{-g}\,,

where an argument of Ω\Omega is understood, and a bar denotes quantities in the Einstein frame, and we have omitted bars from here for convenience.

2.1 Inflation with exponential form of potential

In the first case scenario, we consider the condition (10). If we take VJ(ϕ)=V0(1Ω2(ϕ))2V^{J}(\phi)=V_{0}\big{(}1-\Omega^{2}(\phi)\big{)}^{2}, then we obtain the exponential form of the potential, named E-model, given in the Einstein frame of the form

UE(ψ)=V0(1e2/6αψ/Mp)2.\displaystyle U^{E}(\psi)=V_{0}\bigg{(}1-e^{-2/\sqrt{6\alpha}\,\psi/M_{p}}\bigg{)}^{2}\,. (14)

The associated conventional slow-roll parameters are given by

ε=Mp22(UψU)2,η=Mp2UψψU,\displaystyle\varepsilon=\frac{M_{p}^{2}}{2}\left(\frac{U_{\psi}}{U}\right)^{2}\,,\quad\quad\eta=M_{p}^{2}\,\frac{U_{\psi\psi}}{U}\,, (15)

where UψU_{\psi} denotes derivative with respect to ψ\psi, i.e., Uψ=dU/dψU_{\psi}=dU/d\psi and Uψψ=d2U/dψ2U_{\psi\psi}=d^{2}U/d\psi^{2}. We obtain

ε=43α(e23ψαMp1)2,η=4(e23ψαMp2)3α(e23ψαMp1)2.\displaystyle\varepsilon=\frac{4}{3\alpha\left(e^{\frac{\sqrt{\frac{2}{3}}\psi}{\sqrt{\alpha}M_{p}}}-1\right)^{2}}\,,\quad\quad\eta=-\frac{4\left(e^{\frac{\sqrt{\frac{2}{3}}\psi}{\sqrt{\alpha}M_{p}}}-2\right)}{3\alpha\left(e^{\frac{\sqrt{\frac{2}{3}}\psi}{\sqrt{\alpha}M_{p}}}-1\right)^{2}}\,. (16)

Inflation ends when ε=1\varepsilon=1 and we find

ψend=3α2Mplog(23α+1).\displaystyle\psi_{\rm end}=\sqrt{\frac{3\alpha}{2}}M_{p}\log\left(\frac{2}{\sqrt{3\alpha}}+1\right)\,. (17)

The number of e-foldings during inflation is defined via

N=1Mp2ψendψiniUUψ𝑑ψ3α4(e23ψiniαMpe23ψendαMp).\displaystyle N=\frac{1}{M^{2}_{p}}\int^{\psi_{\rm ini}}_{\psi_{\rm end}}\frac{U}{U_{\psi}}d\psi\simeq\frac{3\alpha}{4}\left(e^{\frac{\sqrt{\frac{2}{3}}\psi_{\rm{ini}}}{\sqrt{\alpha}M_{p}}}-e^{\frac{\sqrt{\frac{2}{3}}\psi_{\rm{end}}}{\sqrt{\alpha}M_{p}}}\right)\,. (18)

The above result can be combined with Eq.(17) allowing us to write:

ψini3α2Mplog(4N3α).\displaystyle\psi_{\rm ini}\simeq\sqrt{\frac{3\alpha}{2}}M_{p}\log\left(\frac{4N}{3\alpha}\right)\,. (19)

To generate the proper amplitude of the density perturbations the potential must satisfy at WMAP the normalization condition Planck:2018jri :

Uε|ψini=(0.0276Mp)44N2V0(13α4N)43α=(0.0276Mp)4\displaystyle\frac{U}{\varepsilon}\Big{|}_{\psi_{\rm ini}}=(0.0276M_{p})^{4}\quad\rightarrow\quad\frac{4N^{2}V_{0}\left(1-\frac{3\alpha}{4N}\right)^{4}}{3\alpha}=(0.0276M_{p})^{4} (20)

corresponding to the initial value assumed by the inflaton. We therefore obtain

V04.35×107αMp4N2(10.75αN)4.\displaystyle V_{0}\simeq\frac{4.35\times 10^{-7}\alpha M_{p}^{4}}{N^{2}\left(1-\frac{0.75\alpha}{N}\right)^{4}}\,. (21)

Ii is useful to write ε\varepsilon and η\eta in terms of the number of e-foldings. Substituting Eq.(19) into Eq.(16), we have

ε=3α4N2+9α28N3+O(α3),η=1N+9α216N3+O(α3).\displaystyle\varepsilon=\frac{3\alpha}{4N^{2}}+\frac{9\alpha^{2}}{8N^{3}}+O\left(\alpha^{3}\right)\,,\quad\eta=-\frac{1}{N}+\frac{9\alpha^{2}}{16N^{3}}+O\left(\alpha^{3}\right)\,. (22)

The spectral index of curvature perturbation nsn_{s} and the tensor-to-scalar ratio rr are given in terms of the e-foldings NN:

ns\displaystyle n_{s} =\displaystyle= 16ε+2η=(12N)9α2N2+O(α2),\displaystyle 1-6\varepsilon+2\eta=\left(1-\frac{2}{N}\right)-\frac{9\alpha}{2N^{2}}+O\left(\alpha^{2}\right)\,, (23)
r\displaystyle r =\displaystyle= 16ε=12αN2+18α2N3+O(α3).\displaystyle 16\varepsilon=\frac{12\alpha}{N^{2}}+\frac{18\alpha^{2}}{N^{3}}+O\left(\alpha^{3}\right)\,. (24)

Note that the above results still hold since NαN\gg\alpha. Setting α=1\alpha=1, we obtain the same results to those of the models found in the existing references including Higgs inflation Bezrukov:2007ep , Starobinsky inflation Starobinsky:1980te , Higgs Starobinsky inflation Calmet:2016fsr ; Salvio:2015kka ; Salvio:2016vxi , and even composite models of inflation Channuie:2015ewa ; Channuie:2016iyy .

2.2 Inflation with hyperbolic tangent form of potential

In the second model, under the condition (10), if we choose

VJ(ϕ)=V0Ω4(ϕ)(1Ω2(ϕ)1+Ω2(ϕ))2,\displaystyle V^{J}(\phi)=V_{0}\Omega^{4}(\phi)\bigg{(}\frac{1-\Omega^{2}(\phi)}{1+\Omega^{2}(\phi)}\bigg{)}^{2}\,, (25)

then we get the hyperbolic tangent form of the potential, named it as T-model, in the Einstein frame

UE(ψ)=V0tanh2(ψ6αMp).\displaystyle U^{E}(\psi)=V_{0}\tanh^{2}\bigg{(}\frac{\psi}{\sqrt{6\alpha}M_{p}}\bigg{)}\,. (26)

The associated slow-roll parameters are given by

ε=MP22(UψEUE)2,η=MP2UψψEUE,\displaystyle\varepsilon=\frac{M_{P}^{2}}{2}\left(\frac{U^{E}_{\psi}}{U^{E}}\right)^{2}\,,\quad\quad\eta=M_{P}^{2}\,\frac{U^{E}_{\psi\psi}}{U^{E}}\,, (27)

where UψEU^{E}_{\psi} denotes derivative with respect to ψ\psi, i.e., UψE=dUE/dψU^{E}_{\psi}=dU^{E}/d\psi and UψψE=d2UE/dψ2U^{E}_{\psi\psi}=d^{2}U^{E}/d\psi^{2}. We obtain

ε=4csch2(23ψαMP)3α,η=(csch2(ψ6αMp)2)sech2(ψ6αMp)3α.\displaystyle\varepsilon=\frac{4\text{csch}^{2}\left(\frac{\sqrt{\frac{2}{3}}\psi}{\sqrt{\alpha}M_{P}}\right)}{3\alpha}\,,\quad\quad\eta=\frac{\left(\text{csch}^{2}\left(\frac{\psi}{\sqrt{6}\sqrt{\alpha}M_{p}}\right)-2\right)\text{sech}^{2}\left(\frac{\psi}{\sqrt{6}\sqrt{\alpha}M_{p}}\right)}{3\alpha}\,. (28)

Inflation ends when ε=1\varepsilon=1 and we find

ψend=3α2Mpsinh1(23α).\displaystyle\psi_{\rm end}=\sqrt{\frac{3\alpha}{2}}M_{p}\sinh^{-1}\left(\frac{2}{\sqrt{3\alpha}}\right)\,. (29)

The number of e-foldings during inflation is defined via

N=1Mp2ψendψiniUUψ𝑑ψ34α(cosh(23αψiniMp)cosh(23αψendMP)).\displaystyle N=\frac{1}{M^{2}_{p}}\int^{\psi_{\rm ini}}_{\psi_{\rm end}}\frac{U}{U_{\psi}}d\psi\simeq\frac{3}{4}\alpha\Big{(}\cosh\Big{(}\sqrt{\frac{2}{3\alpha}}\frac{\psi_{\text{ini}}}{M_{p}}\Big{)}-\cosh\Big{(}\sqrt{\frac{2}{3\alpha}}\frac{\psi_{\text{end}}}{M_{P}}\Big{)}\Big{)}\,. (30)

The above result can be combined with Eq.(29) allowing us to write:

ψini3α2Mpcosh1(4N3α).\displaystyle\psi_{\rm ini}\simeq\sqrt{\frac{3\alpha}{2}}M_{p}\cosh^{-1}\left(\frac{4N}{3\alpha}\right)\,. (31)

To generate the proper amplitude of the density perturbations the potential must satisfy at WMAP the normalization condition Planck:2018jri :

Uε|ψini=(0.0276MP)4V0(4N3α)212α=(0.0276MP)4\displaystyle\frac{U}{\varepsilon}\Big{|}_{\psi_{\rm ini}}=(0.0276M_{P})^{4}\quad\rightarrow\quad\frac{V_{0}(4N-3\alpha)^{2}}{12\alpha}=(0.0276M_{P})^{4} (32)

corresponding to the initial value assumed by the inflaton. We therefore obtain

V06.96×106αMp4(4N3α)2.\displaystyle V_{0}\simeq\frac{6.96\times 10^{-6}\alpha M_{p}^{4}}{(4N-3\alpha)^{2}}\,. (33)

Ii is useful to write ε\varepsilon and η\eta in terms of the number of e-foldings. Substituting Eq.(19) into Eq.(16), we have

ε=3α4N2+O(α3),η=1N+3α2N29α216N3+O(α3).\displaystyle\varepsilon=\frac{3\alpha}{4N^{2}}+O\left(\alpha^{3}\right)\,,\quad\eta=-\frac{1}{N}+\frac{3\alpha}{2N^{2}}-\frac{9\alpha^{2}}{16N^{3}}+O\left(\alpha^{3}\right)\,. (34)

The spectral index of curvature perturbation nsn_{s} and the tensor-to-scalar ratio rr are given in terms of the e-foldings NN:

ns\displaystyle n_{s} =\displaystyle= 16ε+2η=(12N)3α2N29α28N3+O(α3),\displaystyle 1-6\varepsilon+2\eta=\left(1-\frac{2}{N}\right)-\frac{3\alpha}{2N^{2}}-\frac{9\alpha^{2}}{8N^{3}}+O\left(\alpha^{3}\right)\,, (35)
r\displaystyle r =\displaystyle= 16ε=12αN2+O(α3).\displaystyle 16\varepsilon=\frac{12\alpha}{N^{2}}+O\left(\alpha^{3}\right)\,. (36)

With the results given above, there was a class of inflationary models so called cosmological α\alpha-attractors has recently received considerable attention Kallosh:2013yoa ; Kallosh:2014rga ; Kallosh:2015lwa ; Roest:2015qya ; Linde:2016uec ; Terada:2016nqg ; Ueno:2016dim ; Odintsov:2016vzz . Note that the above results still hold since NαN\gg\alpha.

2.3 Quantum corrected inflation

We start with a action of the scalar field non-minimally coupled to gravity with a general form of the effective potential V(ϕ)V(\phi). It takes the form

SJ=g[12(Mp2+ξϕ2)R+gμνμϕνϕV(ϕ)]\displaystyle S^{J}=\int\sqrt{-g}\left[-\frac{1}{2}\left(M_{p}^{2}+\xi\,\phi^{2}\right)R+g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi-V(\phi)\right] (37)

where the action SJS_{J} stands for the gravitational action in the Jordan frame. While MP21/8πGM_{P}^{2}\equiv 1/8\pi G and ξ\xi are reduced Plank mass and the non-minimal coupling constant, respectively. It is more convenient to study the inflation dynamics of the non-minimal coupling in the Einstein frame, i.e., the gravitational sector of the action written in the Einstein-Hilbert form only. The Einstein frame can be achieved by using the conformal transformation via a re-defining metric tensor as,

g¯μν=Ω(ϕ)2gμν,Ω(ϕ)2=Mp2+ξϕ2Mp2.\displaystyle{\bar{g}}_{\mu\nu}=\Omega(\phi)^{2}\,g_{\mu\nu}\,,\qquad\Omega(\phi)^{2}=\frac{M_{p}^{2}+\xi\,\phi^{2}}{M_{p}^{2}}\,. (38)

Here all variables with tilde symbol represent the quantities in the Einstein frame and f(ϕ)=ϕ2f(\phi)=\phi^{2}. Applying the conformal transformation to the action (37), the action in Einstein frame is given by,

SE=g¯[12Mp2g¯μνR¯μν+g¯μνμψνψU(ψ)].\displaystyle S^{E}=\int\sqrt{-{\bar{g}}}\left[-\frac{1}{2}\,M_{p}^{2}\,{\bar{g}}^{\mu\nu}{\bar{R}}_{\mu\nu}+{\bar{g}}^{\mu\nu}\partial_{\mu}\psi\partial_{\nu}\psi-U(\psi)\right]. (39)

We have used the re-definition of new scalar field, ψ\psi in the Einstein frame to obtain the canonical form of the kinetic term of the scalar field, ψ\psi as

12(dψdϕ)2=1+3Mp2Ωϕ2Ω2,\displaystyle\frac{1}{2}\left(\frac{d\psi}{d\phi}\right)^{2}=\frac{1+3\,M_{p}^{2}\,\Omega_{\phi}^{2}}{\Omega^{2}}\,, (40)

where ΩϕdΩ/dϕ\Omega_{\phi}\equiv d\Omega/d\phi. Comparing Eq.(40) with Eq.(10), we find ω(ϕ)=2\omega(\phi)=2. The new effective potential in the Einstein frame, U(ψ)U(\psi) is also given by,

U(ψ)=Ω4V(ϕ(ψ)).\displaystyle U(\psi)=\Omega^{-4}\,V\left(\phi(\psi)\right). (41)

In this section, we will consider the self-interacting potential with phenomenological quantum correction and this potential has been proposed by authors of Ref.Joergensen:2014rya in order to analyze the characters of the quantum correction in the self-interacting scalar field phenomenology. They wrote the potential in the Jordan frame given by

V(ϕ)=λϕ4(ϕΛ)4γ.\displaystyle V(\phi)=\lambda\,\phi^{4}\left(\frac{\phi}{\Lambda}\right)^{4\gamma}\,. (42)

Here the quantum correction (real) parameter γ\gamma is introduced and will be used to characterize the quantum behavior of the self-interacting potential. The Λ\Lambda parameter is the cut-off at a given energy scale. It was shown that the range of the γ\gamma should be 𝒪(γ)0.1\mathcal{O}(\gamma)\sim 0.1 according to the constraint from observational data Joergensen:2014rya .

Before calculating the slow-roll parameters, we would like to express the form of the effective potential in the Einstein in Eq.(41) under the large field assumption during the inflation i.e., ϕMP/ξ\phi\gg{M_{P}/\sqrt{\xi}} . One finds,

ψκMpln(ξϕMp),κ2ξ+6\displaystyle\psi\simeq\kappa\,M_{p}\ln\Big{(}{\sqrt{\xi}\,\phi\over M_{p}}\Big{)},~{}~{}~{}~{}\kappa\equiv\sqrt{{2\over\xi}+6} (43)

Then the Einstein frame potential then takes the following form

U(ψ)=Ω4V(ϕ(ψ))\displaystyle U(\psi)=\Omega^{-4}V(\phi(\psi)) =\displaystyle= Mp4(Mp2+ξϕ2)2λϕ4(ϕΛ)4γ\displaystyle\frac{M_{p}^{4}}{\left(M_{p}^{2}+\xi\phi^{2}\right)^{2}}\lambda\,\phi^{4}\left(\frac{\phi}{\Lambda}\right)^{4\gamma} (44)
=\displaystyle= λMp4ξ2(exp[2ψκMp]+1)2(MpξΛ)4γexp[4γψκMp].\displaystyle{\lambda M_{p}^{4}\over\xi^{2}}\left(\exp\Bigg{[}{\frac{-2\psi}{\kappa M_{p}}}\Bigg{]}+1\right)^{-2}\left({M_{p}\over\sqrt{\xi}\Lambda}\right)^{4\gamma}\exp\Bigg{[}{4\gamma\psi\over\kappa M_{p}}\Bigg{]}\,.

The associated slow-roll parameters are given by

ε=Mp22(UψEUE)2,η=Mp2UψψEUE,\displaystyle\varepsilon=\frac{M_{p}^{2}}{2}\left(\frac{U^{E}_{\psi}}{U^{E}}\right)^{2}\,,\quad\quad\eta=M_{p}^{2}\,\frac{U^{E}_{\psi\psi}}{U^{E}}\,, (45)

where UψEU^{E}_{\psi} denotes derivative with respect to ψ\psi, i.e., UψE=dUE/dψU^{E}_{\psi}=dU^{E}/d\psi and UψψE=d2UE/dψ2U^{E}_{\psi\psi}=d^{2}U^{E}/d\psi^{2}. We obtain in terms of the field ϕ\phi

ε\displaystyle\varepsilon =\displaystyle= 8Mp4κ2(Mp2+ξϕ2)2+16γMp2κ2(Mp2+ξϕ2)+O(γ2),\displaystyle\frac{8M_{p}^{4}}{\kappa^{2}\left(M_{p}^{2}+\xi\phi^{2}\right)^{2}}+\frac{16\gamma M_{p}^{2}}{\kappa^{2}\left(M_{p}^{2}+\xi\phi^{2}\right)}+O\left(\gamma^{2}\right)\,, (46)
η\displaystyle\eta =\displaystyle= 8(Mp2(ξϕ22Mp2))κ2ξ2ϕ4+32γMp2(Mp2+ξϕ2)κ2ξ2ϕ4+O(γ2).\displaystyle-\frac{8\left(M_{p}^{2}\left(\xi\phi^{2}-2M_{p}^{2}\right)\right)}{\kappa^{2}\xi^{2}\phi^{4}}+\frac{32\gamma M_{p}^{2}\left(M_{p}^{2}+\xi\phi^{2}\right)}{\kappa^{2}\xi^{2}\phi^{4}}+O\left(\gamma^{2}\right)\,. (47)

Inflation ends when ε=1\varepsilon=1 and we find

ϕend\displaystyle\phi_{\rm end} =\displaystyle= 23/4Mp2κξ+(224)γMp2κξκ+O(γ2)\displaystyle 2^{3/4}\sqrt{\frac{M_{p}^{2}}{\kappa\xi}}+\frac{\left(2\sqrt[4]{2}\right)\gamma\sqrt{\frac{M_{p}^{2}}{\kappa\xi}}}{\kappa}+O\left(\gamma^{2}\right) (48)
=\displaystyle= (1.075+0.620γ+O(γ)2)Mpξforξ1.\displaystyle\big{(}1.075+0.620\gamma+O(\gamma)^{2}\big{)}\frac{M_{p}}{\sqrt{\xi}}\quad{\rm for}\quad\xi\gg 1\,. (49)

The number of e-foldings during inflation is defined via

N=1Mp2ψendψiniUUψ𝑑ψϕendϕiniκ2(ξϕ2Mp2+1)4ϕ(γ(ξϕ2)Mp2+1)𝑑ϕκ28γlog(γξϕ2Mp2+1)|ϕendϕini.\displaystyle N=\frac{1}{M^{2}_{p}}\int^{\psi_{\rm ini}}_{\psi_{\rm end}}\frac{U}{U_{\psi}}d\psi\simeq\int^{\phi_{\rm ini}}_{\phi_{\rm end}}\frac{\kappa^{2}\left(\frac{\xi\phi^{2}}{M_{p}^{2}}+1\right)}{4\phi\left(\frac{\gamma\left(\xi\phi^{2}\right)}{M_{p}^{2}}+1\right)}d\phi\simeq\frac{\kappa^{2}}{8\gamma}\log\left(\frac{\gamma\xi\phi^{2}}{M_{p}^{2}}+1\right)\Bigg{|}^{\phi_{\rm ini}}_{\phi_{\rm end}}\,. (50)

The above result can be combined with Eq.(49) allowing us to write:

ϕini\displaystyle\phi_{\rm ini} \displaystyle\simeq (22+42γNκ2+202γ2N23κ4)Nκ2Mpξ\displaystyle\Bigg{(}2\sqrt{2}+\frac{4\sqrt{2}\gamma N}{\kappa^{2}}+\frac{20\sqrt{2}\gamma^{2}N^{2}}{3\kappa^{4}}\Bigg{)}\sqrt{\frac{N}{\kappa^{2}}}\frac{M_{p}}{\sqrt{\xi}} (51)
\displaystyle\simeq (8.94+178.89γ+2981.42γ2)MpξforN=60,ξ1.\displaystyle\Big{(}8.94+178.89\gamma+2981.42\gamma^{2}\Big{)}\frac{M_{p}}{\sqrt{\xi}}\quad{\rm for}\quad N=60,\,\xi\gg 1\,. (52)

It is evident that the γ\gamma-correction lifts up inflation to higher field values. Since we have assumed that inflation takes place in the large field regime, ϕMp/ξ\phi\gg{M_{p}/\sqrt{\xi}}, it was found in Ref.Joergensen:2014rya that ξ𝒪(104)\xi\sim{\cal O}(10^{4}) is required to generate the proper amplitude of density perturbations featuring a generic behavior of non-minimally coupled theories of single-field inflation. We can further determine field values to obtain ϕini0.1Mp\phi_{\rm ini}\sim 0.1\,M_{p} for γ0.01,ξ104\gamma\sim 0.01,\,\xi\sim 10^{4} and N=60N=60. Interestingly, its value is sub-Planckian during inflation. However, with the large field assumption, we encounter the large field deviation since Δψ>Mp\Delta\psi>M_{p} given by Eq.(43). Similar to R2R^{2} and eternal inflation scenarios, it is in general a sense of difficulty of constructing models of large field inflation in string theory where the inflaton undergoes a super-Planckian excursion in field space. Nevertheless, a quantitative impression of this tension was suggested in Refs.Palti:2019pca ; Matsui:2018bsy where their analysis is applicable to that of our model. Therefore, we do not intentionally repeat it here and recommend the readers to follow those works. To generate the proper amplitude of the density perturbations the potential must satisfy at WMAP the normalization condition Planck:2018jri :

Uε|ψini=(0.0276Mp)4\displaystyle\frac{U}{\varepsilon}\Big{|}_{\psi_{\rm ini}}=(0.0276M_{p})^{4} (53)

corresponding to the initial value assumed by the inflaton:

4λMp4N23ξ24γMp4(12λN2log(2MpN3Λξ)+4λN3+6λN2)9ξ2(0.0276Mp)4.\displaystyle\frac{4\lambda M_{p}^{4}N^{2}}{3\xi^{2}}-\frac{4\gamma M_{p}^{4}\left(-12\lambda N^{2}\log\left(\frac{2M_{p}\sqrt{N}}{\sqrt{3}\Lambda\sqrt{\xi}}\right)+4\lambda N^{3}+6\lambda N^{2}\right)}{9\xi^{2}}\simeq(0.0276M_{p})^{4}\,. (54)

We therefore obtain

Λ0.7Ne(0.25γ1.1ξ2107(γλN2)0.33N)Mpξ.\displaystyle\Lambda\simeq 0.7\sqrt{N}e^{\big{(}\frac{0.25}{\gamma}-\frac{1.1\xi^{2}}{10^{7}\left(\gamma\lambda N^{2}\right)}-0.33N\big{)}}\frac{M_{p}}{{\sqrt{\xi}}}\,. (55)

Ii is useful to write ε\varepsilon and η\eta in terms of the number of e-foldings. Substituting Eq.(52) into Eq.(45), we have

ε34N2+γN,η1N+2γ3.\displaystyle\varepsilon\simeq\frac{3}{4N^{2}}+\frac{\gamma}{N}\,,\quad\eta\simeq-\frac{1}{N}+\frac{2\gamma}{3}\,. (56)

The spectral index of curvature perturbation nsn_{s} and the tensor-to-scalar ratio rr are given in terms of the e-foldings NN:

ns\displaystyle n_{s} =\displaystyle= 16ε+2η=12N92N2+O(γ),\displaystyle 1-6\varepsilon+2\eta=1-\frac{2}{N}-\frac{9}{2N^{2}}+O\left(\gamma\right)\,, (57)
r\displaystyle r =\displaystyle= 16ε=12N2+16γN+O(γ2).\displaystyle 16\varepsilon=\frac{12}{N^{2}}+\frac{16\gamma}{N}+O\left(\gamma^{2}\right)\,. (58)

Here usual ϕ4\phi^{4} inflation refers to the results when setting γ=0\gamma=0, that is, non-minimally coupled ϕ4\phi^{4} inflation. Note that we have expanded results in γ\gamma to clarify to what extend the results deviate from ϕ4\phi^{4} inflation. An expansion is, however, justified for tiny values of γ\gamma.

3 Examination with the further refining swampland conjecture

It is useful to define two new parameters for any scalar field V(ϕ)V(\phi)

F1=|dV(ϕ)/dϕ|V(ϕ),\displaystyle F_{1}=\frac{|dV(\phi)/d\phi|}{V(\phi)}\,, (59)

and

F2=d2V(ϕ)/dϕ2V(ϕ).\displaystyle F_{2}=\frac{d^{2}V(\phi)/d\phi^{2}}{V(\phi)}\,. (60)

Considering Eq.(4), the above parameters can be recast in terms of the slow-roll parameters to yield

F1=2εV,F2=ηV.\displaystyle F_{1}=\sqrt{2\varepsilon_{V}}\,,\quad F_{2}=\eta_{V}\,. (61)

Since F1F_{1} and F2F_{2} are written in terms of the slow-roll parameters, they can also be related to the spectrum index of the primordial curvature power spectrum nsn_{s} and tensor-to-scalar ratio rr. In the present case, it is rather straightforward to show that

F1=2εV=r8,\displaystyle F_{1}=\sqrt{2\varepsilon_{V}}=\sqrt{\frac{r}{8}}\,, (62)

and

F2=ηV=12(ns1+3r/8).\displaystyle F_{2}=\eta_{V}=\frac{1}{2}\big{(}n_{s}-1+3r/8\big{)}\,. (63)

Below we will consider three models of inflation and examine if they satisfy this new refined swampland conjecture, or not. In our analysis below, we constrain parameters of the models only for generic values of α>0\alpha>0.

3.1 Inflation with E-form potential

We can constrain values of α\alpha using a condition of r<0.06r<0.06

r12αN2+18α2N3<0.06,\displaystyle r\simeq\frac{12\alpha}{N^{2}}+\frac{18\alpha^{2}}{N^{3}}<0.06\,, (64)

to obtain

α<0.03333N3+100.N20.333N.\displaystyle\alpha<0.0333\sqrt{3N^{3}+100.N^{2}}-0.333N. (65)

For N=60N=60, we find α<13.5\alpha<13.5. With the above result, we then choose ns=0.965n_{s}=0.965 and obtain from Eq.(23):

α=0.222222N2(0.0352N).\displaystyle\alpha=0.222222N^{2}\left(0.035\,-\frac{2}{N}\right). (66)

Using N=60N=60 yields α=1.333\alpha=1.333, and therefore this model predicts ns0.965n_{s}\simeq 0.965 and r0.004r\simeq 0.004 which are consistent with the observed data Planck:2018jri . Inserting these values into Eq.(59) and Eq.(60), we obtain

F1\displaystyle F_{1} =\displaystyle= 2εV=r8=0.02236,\displaystyle\sqrt{2\varepsilon_{V}}=\sqrt{\frac{r}{8}}=0.02236\,, (67)
F2\displaystyle F_{2} =\displaystyle= ηV=12(ns1+3r/8)=0.01675.\displaystyle\eta_{V}=\frac{1}{2}\big{(}n_{s}-1+3r/8\big{)}=-0.01675\,. (68)

Considering the refined swampland conjecture (4), we find

c10.02236orc20.01675.\displaystyle c_{1}\leq 0.02236\quad{\rm or}\quad c_{2}\leq 0.01675\,. (69)

However, c1c_{1} and c2c_{2} are both not 𝒪(1){\cal O}(1), meaning that inflationary model with the E-form potential is in strong tension with the refined swampland conjecture. Let us examine whether the E-form model satisfies the refining swampland conjecture. Considering Eq.(5), we have

(2ϵV)q/2aηV1a,q>2.\displaystyle(2\epsilon_{V})^{q/2}-a\eta_{V}\geq 1-a\,,\quad q>2\,. (70)

Substituting Eq.(69) into Eq.(80), we find

0.02236q+0.01675a1aor0.02236q11.01675a.\displaystyle 0.02236^{q}+0.01675a\geq 1-a\,\quad{\rm or}\quad 0.02236^{q}\geq 1-1.01675\,a\,. (71)

If we can find aa to satisfy the condition

11.01675(10.02236q)a<1,q>2,\displaystyle\frac{1}{1.01675}(1-0.02236^{q})\leq a<1\,,\quad q>2, (72)

then the further refining swampland conjecture can be satisfied. In this case, when a=1/1.01675a=\nicefrac{{1}}{{1.01675}}, we have 11.01675a=01-1.01675\,a=0. Therefore, we can examine that when a<1/1.01675a<\nicefrac{{1}}{{1.01675}}, we can always find a qq whose value is larger than 22. It is possible to give an example of values of the parameters a,b,qa,\,b,\,q, which work for this model. From Eq.(72), we use q=2.2q=2.2 which is satisfied by a condition q>2q>2. We find for this particular case that 0.983296a<10.983296\leq a<1 and choose a=0.9834<1/1.01675=0.983526a=0.9834<\nicefrac{{1}}{{1.01675}}=0.983526 and 1a=10.9834=b=0.0166>01-a=1-0.9834=b=0.0166>0.

3.2 Inflation with T-form potential

We can constrain values of α\alpha using a condition of r<0.06r<0.06

r12αN2<0.06,\displaystyle r\simeq\frac{12\alpha}{N^{2}}<0.06\,, (73)

to obtain

α<0.005N2.\displaystyle\alpha<0.005N^{2}. (74)

For N=60N=60, we find α<18\alpha<18. With the above result, we then choose ns=0.965n_{s}=0.965 and obtain from Eq.(23):

α=0.666667N2(0.0352N).\displaystyle\alpha=0.666667N^{2}\left(0.035\,-\frac{2}{N}\right). (75)

Using N=60N=60 yields α=4\alpha=4, and therefore this model predicts ns0.965n_{s}\simeq 0.965 and r0.0133r\simeq 0.0133 which are consistent with the observed data Planck:2018jri . Inserting these values into Eq.(59) and Eq.(60), we obtain

F1\displaystyle F_{1} =\displaystyle= 2εV=r8=0.040825,\displaystyle\sqrt{2\varepsilon_{V}}=\sqrt{\frac{r}{8}}=0.040825\,, (76)
F2\displaystyle F_{2} =\displaystyle= ηV=12(ns1+3r/8)=0.0150.\displaystyle\eta_{V}=\frac{1}{2}\big{(}n_{s}-1+3r/8\big{)}=-0.0150\,. (77)

Considering the refined swanpland conjecture (4), we find

c10.040825orc20.0150.\displaystyle c_{1}\leq 0.040825\quad{\rm or}\quad c_{2}\leq 0.0150\,. (78)

However, neither c1c_{1} nor c2c_{2} is positive constant of the order of 𝒪(1){\cal O}(1), meaning that inflationary model with the E-form potential is in strong tension with the refined swampland conjecture. Let us examine whether the E-form model satisfies the refining swampland conjecture. Considering Eq.(5), we have

(2ϵV)q/2aηV1a,q>2.\displaystyle(2\epsilon_{V})^{q/2}-a\,\eta_{V}\geq 1-a\,,\quad q>2\,. (79)

Substituting Eq.(78) into Eq.(79), we find

0.040825q+0.0150a1a.\displaystyle 0.040825^{q}+0.0150\,a\geq 1-a\,. (80)

If we can find aa to satisfy the condition

11.0150(10.040825q)a<1,q>2,\displaystyle\frac{1}{1.0150}(1-0.040825^{q})\leq a<1\,,\quad q>2, (81)

then the further refining swampland conjecture can be satisfied. For the second model, when a=1/1.0150a=\nicefrac{{1}}{{1.0150}}, we have 11.0150a=01-1.0150\,a=0. Hence, we can examine that when a<1/1.0150a<\nicefrac{{1}}{{1.0150}}, we can always find a qq whose value is larger than 22. Similarly, we can give an example of values of the parameters a,b,qa,\,b,\,q, which work for this model. From Eq.(81), we use q=2.2q=2.2 which is satisfied by a condition q>2q>2. We find for this particular case that 0.984356a<10.984356\leq a<1 and choose a=0.9844<1/1.0150=0.985222a=0.9844<\nicefrac{{1}}{{1.0150}}=0.985222 and 1a=10.9844=b=0.0156>01-a=1-0.9844=b=0.0156>0.

3.3 Quantum corrected inflation

We can constrain values of α\alpha using a condition of r<0.06r<0.06

r12N2+16γN<0.06,\displaystyle r\simeq\frac{12}{N^{2}}+\frac{16\gamma}{N}<0.06\,, (82)

to obtain

γ<0.00375N(N2200).\displaystyle\gamma<\frac{0.00375}{N}\left(N^{2}-200\right). (83)

For N=60N=60, we find γ<0.2125\gamma<0.2125. Using N=60,γ=0.10N=60,\,\gamma=0.10, this model predicts ns0.965n_{s}\simeq 0.965 and r0.030r\simeq 0.030 which are consistent with the observed data Planck:2018jri . Inserting these values into Eq.(59) and Eq.(60), we obtain

F1\displaystyle F_{1} =\displaystyle= 2εV=r8=0.061237,\displaystyle\sqrt{2\varepsilon_{V}}=\sqrt{\frac{r}{8}}=0.061237\,, (84)
F2\displaystyle F_{2} =\displaystyle= ηV=12(ns1+3r/8)=0.011875.\displaystyle\eta_{V}=\frac{1}{2}\big{(}n_{s}-1+3r/8\big{)}=-0.011875\,. (85)

Considering the refined swanpland conjecture (5), we find

c10.061237orc20.011875.\displaystyle c_{1}\leq 0.061237\quad{\rm or}\quad c_{2}\leq 0.011875\,. (86)

Neither c1c_{1} nor c2c_{2} are of the order of 𝒪(1){\cal O}(1) which mean that inflationary model with the quantum corrected potential is in strong tension with the refined swampland conjecture. Let us examine if this model satisfies the refining swampland conjecture. Considering Eq.(5), we have

(2ϵV)q/2aηV1a,q>2.\displaystyle(2\epsilon_{V})^{q/2}-a\eta_{V}\geq 1-a\,,\quad q>2\,. (87)

Substituting Eq.(86) into Eq.(87), we find

0.061237q+0.011875a1a.\displaystyle 0.061237^{q}+0.011875\,a\geq 1-a\,. (88)

If we can find aa to satisfy the condition

11.011875(10.061237q)a<1,q>2,\displaystyle\frac{1}{1.011875}(1-0.061237^{q})\leq a<1\,,\quad q>2, (89)

then the further refining swampland conjecture can be satisfied. When a=1/1.011875a=\nicefrac{{1}}{{1.011875}}, we see that 11.011875a=01-1.011875\,a=0. Hence, we can examine that when a<1/1.011875a<\nicefrac{{1}}{{1.011875}}, we can always find a qq whose value is larger than 22. In the last model, we can also give an example of values of the parameters a,b,qa,\,b,\,q, which work for our model. From Eq.(89), we use q=2.2q=2.2 which is satisfied by a condition q>2q>2. We find for this particular case that 0.986145a<10.986145\leq a<1 and choose a=0.9862<1/1.011875=0.988264a=0.9862<\nicefrac{{1}}{{1.011875}}=0.988264 and 1a=10.9862=b=0.0138>01-a=1-0.9862=b=0.0138>0. Interestingly, for this model the scale Λ\Lambda can be constrained. For instance, substituting N=60,λ=1/4,γ=0.01504N=60,\,\lambda=\nicefrac{{1}}{{4}},\,\gamma=0.01504 and ξ=104\xi=10^{4}, we find that

Λ0.7Ne(0.25γ1.1ξ2107(γλN2)0.33N)Mpξ103Mp[0.2451.22]×1016GeV,\displaystyle\Lambda\simeq 0.7\sqrt{N}e^{\big{(}\frac{0.25}{\gamma}-\frac{1.1\xi^{2}}{10^{7}\left(\gamma\lambda N^{2}\right)}-0.33N\big{)}}\frac{M_{p}}{{\sqrt{\xi}}}\sim 10^{-3}\,M_{p}\simeq[0.245-1.22]\times 10^{16}\,{\rm GeV}\,, (90)

with λ=1/4\lambda=\nicefrac{{1}}{{4}} being a standard value Joergensen:2014rya . This value is close to the typical grand unification scale MGUTM_{\rm GUT} of 101610^{16} GeV with the lower value obtained for the reduced Planck mass of 2.44×10182.44\times 10^{18} GeV and the higher one for the standard one of 1.22×10191.22\times 10^{19} GeV.

4 Conclusion

In the present work, we have found that the inflation models in a general scalar-tensor theory with exponential and hyperbolic tangent forms of potential as well as model with quantum corrected potential are all in strong tension with the refined de Sitter swampland conjecture. In other words, we have demonstrated in all three models that positive values c1c_{1} and c2c_{2} are both not 𝒪(1){\cal O}(1). Similarly, notice that Palatini inflation model is also in strong tension with the refined de Sitter swampland conjecture Liu:2021qsr .

However, we have further tested if these three models of inflation can satisfy this further refining de Sitter swampland conjecture or not. Regarding our analysis, we have discovered that these three inflationary models can always satisfy this new refined swampland conjecture if only we adjust the relevant parameters a,b=1aa,\,b=1-a and qq. Therefore, the three inflationary models might all be in “landscape” since the “further refining de Sitter swampland conjecture” is satisfied.

Nevertheless, the upper and lower bounds of these three parameters a,b=1aa,\,b=1-a and qq using this new swampland conjecture can not be quantified. In the future work, to constrain the range of these physical parameters, new other swampland conjecture in string theory may be worth investigating.

Acknowledgements

P. Channuie acknowledged the Mid-Career Research Grant 2020 from National Research Council of Thailand (No.NRCT5-RSA63019-03) and is partially supported by the National Science, Research and Innovation Fund (SRF) with grant No. P2565B202.

CRediT authorship contribution statement

Jureeporn Yuennan: Writing – review & editing. Phongpichit Channuie: Formal analysis, Methodology, Writing – original draft, Writing – review & editing.

Conflict of Interest

The authors declare no conflict of interest.

References

  • (1) T. D. Brennan, F. Carta and C. Vafa, PoS TASI2017 (2017), 015 [arXiv:1711.00864 [hep-th]].
  • (2) E. Palti, Fortsch. Phys. 67 (2019) no.6, 1900037 [arXiv:1903.06239 [hep-th]].
  • (3) S. K. Garg and C. Krishnan, JHEP 11 (2019), 075 [arXiv:1807.05193 [hep-th]].
  • (4) H. Ooguri, E. Palti, G. Shiu and C. Vafa, Phys. Lett. B 788 (2019), 180-184 [arXiv:1810.05506 [hep-th]].
  • (5) S. J. Wang, Phys. Rev. D 99 (2019) no.2, 023529 [arXiv:1810.06445 [hep-th]].
  • (6) H. Fukuda, R. Saito, S. Shirai and M. Yamazaki, Phys. Rev. D 99 (2019) no.8, 083520 [arXiv:1810.06532 [hep-th]].
  • (7) W. H. Kinney, S. Vagnozzi and L. Visinelli, Class. Quant. Grav. 36 (2019) no.11, 117001 [arXiv:1808.06424 [astro-ph.CO]].
  • (8) C. M. Lin, Phys. Rev. D 99 (2019) no.2, 023519 [arXiv:1810.11992 [astro-ph.CO]].
  • (9) D. Y. Cheong, S. M. Lee and S. C. Park, Phys. Lett. B 789 (2019), 336-340 [arXiv:1811.03622 [hep-ph]].
  • (10) P. Agrawal and G. Obied, JHEP 06 (2019), 103 [arXiv:1811.00554 [hep-ph]].
  • (11) C. I. Chiang, J. M. Leedom and H. Murayama, Phys. Rev. D 100 (2019) no.4, 043505 [arXiv:1811.01987 [hep-th]].
  • (12) A. Banerjee, H. Cai, L. Heisenberg, E. Ó. Colgáin, M. M. Sheikh-Jabbari and T. Yang, Phys. Rev. D 103 (2021) no.8, L081305 [arXiv:2006.00244 [astro-ph.CO]].
  • (13) E. Ó. Colgáin and H. Yavartanoo, Phys. Lett. B 797 (2019), 134907 [arXiv:1905.02555 [astro-ph.CO]].
  • (14) Y. Olguin-Trejo, S. L. Parameswaran, G. Tasinato and I. Zavala, JCAP 01 (2019), 031 [arXiv:1810.08634 [hep-th]].
  • (15) S. K. Garg, C. Krishnan and M. Zaid Zaz, JHEP 03 (2019), 029 [arXiv:1810.09406 [hep-th]].
  • (16) J. Blåbäck, U. Danielsson and G. Dibitetto, [arXiv:1810.11365 [hep-th]].
  • (17) J. J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, Fortsch. Phys. 67 (2019) no.10, 1900057 [arXiv:1811.01959 [hep-th]].
  • (18) J. J. Blanco-Pillado, M. A. Urkiola and J. M. Wachter, JHEP 01 (2019), 187 [arXiv:1811.05463 [hep-th]].
  • (19) D. Junghans, JHEP 03 (2019), 150 [arXiv:1811.06990 [hep-th]].
  • (20) M. Emelin and R. Tatar, Int. J. Mod. Phys. A 34 (2019) no.28, 1950164 [arXiv:1811.07378 [hep-th]].
  • (21) A. Banlaki, A. Chowdhury, C. Roupec and T. Wrase, JHEP 03 (2019), 065 [arXiv:1811.07880 [hep-th]].
  • (22) A. Hebecker and T. Wrase, Fortsch. Phys. 67 (2019) no.1-2, 1800097 [arXiv:1810.08182 [hep-th]].
  • (23) G. Dvali, C. Gomez and S. Zell, Fortsch. Phys. 67 (2019) no.1-2, 1800094 [arXiv:1810.11002 [hep-th]].
  • (24) R. Schimmrigk, [arXiv:1810.11699 [hep-th]].
  • (25) M. Ibe, M. Yamazaki and T. T. Yanagida, Class. Quant. Grav. 36 (2019) no.23, 235020 [arXiv:1811.04664 [hep-th]].
  • (26) D. Andriot and C. Roupec, Fortsch. Phys. 67 (2019) no.1-2, 1800105 [arXiv:1811.08889 [hep-th]].
  • (27) S. Dimopoulos, S. Kachru, J. McGreevy and J. G. Wacker, JCAP 08 (2008), 003 [arXiv:hep-th/0507205 [hep-th]].
  • (28) D. Wands, Lect. Notes Phys. 738 (2008), 275-304 [arXiv:astro-ph/0702187 [astro-ph]].
  • (29) G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, [arXiv:1806.08362 [hep-th]].
  • (30) Y. Liu, Eur. Phys. J. C 81 (2021) no.12, 1122 [arXiv:2112.14571 [hep-th]].
  • (31) W. Amake, A. Payaka and P. Channuie, [arXiv:2111.07141 [gr-qc]].
  • (32) Y. Fujii and K. Maeda, “The scalar-tensor theory of gravitation”, Cambridge University Press, 2003.
  • (33) Y. Akrami et al. [Planck], Astron. Astrophys. 641 (2020), A10 [arXiv:1807.06211 [astro-ph.CO]].
  • (34) F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659 (2008), 703-706 [arXiv:0710.3755 [hep-th]].
  • (35) A. A. Starobinsky, Phys. Lett. B 91 (1980), 99-102
  • (36) X. Calmet and I. Kuntz, Eur. Phys. J. C 76 (2016) no.5, 289 [arXiv:1605.02236 [hep-th]].
  • (37) A. Salvio and A. Mazumdar, Phys. Lett. B 750 (2015), 194-200 [arXiv:1506.07520 [hep-ph]].
  • (38) A. Salvio, Phys. Rev. D 94 (2016) no.9, 096007 [arXiv:1608.01194 [hep-ph]].
  • (39) P. Channuie, Class. Quant. Grav. 33 (2016) no.15, 157001 [arXiv:1510.05262 [hep-ph]].
  • (40) P. Channuie and C. Xiong, Phys. Rev. D 95 (2017) no.4, 043521 [arXiv:1609.04698 [hep-ph]].
  • (41) R. Kallosh, A. Linde and D. Roest, JHEP 11 (2013), 198 [arXiv:1311.0472 [hep-th]].
  • (42) R. Kallosh, A. Linde and D. Roest, JHEP 08 (2014), 052 [arXiv:1405.3646 [hep-th]].
  • (43) R. Kallosh and A. Linde, Phys. Rev. D 91 (2015), 083528 [arXiv:1502.07733 [astro-ph.CO]].
  • (44) D. Roest and M. Scalisi, Phys. Rev. D 92 (2015), 043525 [arXiv:1503.07909 [hep-th]].
  • (45) A. Linde, JCAP 02 (2017), 028 [arXiv:1612.04505 [hep-th]].
  • (46) T. Terada, Phys. Lett. B 760 (2016), 674-680 [arXiv:1602.07867 [hep-th]].
  • (47) Y. Ueno and K. Yamamoto, Phys. Rev. D 93 (2016) no.8, 083524 [arXiv:1602.07427 [astro-ph.CO]].
  • (48) S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 94 (2016) no.12, 124026 [arXiv:1612.01126 [gr-qc]].
  • (49) J. Joergensen, F. Sannino and O. Svendsen, Phys. Rev. D 90 (2014) no.4, 043509 [arXiv:1403.3289 [hep-ph]].
  • (50) Y. Liu, Eur. Phys. J. Plus 136 (2021) no.9, 901 [arXiv:2112.15086 [hep-th]].
  • (51) E. Palti, Fortsch. Phys. 67 (2019) no.6, 1900037 [arXiv:1903.06239 [hep-th]].
  • (52) H. Matsui and F. Takahashi, Phys. Rev. D 99 (2019) no.2, 023533 [arXiv:1807.11938 [hep-th]].