This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Further Development in Convex Conic Reformulation of Geometric Nonconvex Conic Optimization Problems

Naohiko Arima nao_\_[email protected].    Sunyoung Kim Department of Mathematics, Ewha W. University, 52 Ewhayeodae-gil, Sudaemoon-gu, Seoul 03760, Korea ([email protected]). The research was supported by NRF 2021-R1A2C1003810.    Masakazu Kojima Department of Industrial and Systems Engineering, Chuo University, Tokyo 192-0393, Japan ([email protected]).
Abstract

A geometric nonconvex conic optimization problem (COP) was recently proposed by Kim, Kojima and Toh (SIOPT 30:1251-1273, 2020) as a unified framework for convex conic reformulation of a class of quadratic optimization problems and polynomial optimization problems. The nonconvex COP minimizes a linear function over the intersection of a nonconvex cone 𝕂\mathbb{K}, a convex subcone 𝕁\mathbb{J} of the convex hull co𝕂\mathbb{K} of 𝕂\mathbb{K}, and an affine hyperplane with a normal vector 𝑯H. Under the assumption co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J}, the original nonconvex COP in their paper was shown to be equivalently formulated as a convex conic program by replacing the constraint set with the intersection of 𝕁\mathbb{J} and the affine hyperplane. This paper further studies the key assumption co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J} in their framework and provides three sets of necessary-sufficient conditions for the assumption. Based on the conditions, we propose a new wide class of quadratically constrained quadratic programs with multiple nonconvex equality and inequality constraints, which can be solved exactly by their semidefinite relaxation.

Key words. Convex conic reformulation, geometric conic optimization problem, quadratically constrained quadratic program, polynomial optimization problem, positive semidefinite cone, exact semidefinite relaxation.

AMS Classification. 90C20, 90C22, 90C25, 90C26,

1 Introduction

Convex conic reformulation of a geometric nonconvex conic optimization problem (COP) was studied by Kim, Kojima and Toh in [15] as a unified framework for completely positive programming reformulation of a wide class of nonconvex quadratic optimization problems (QOPs). This class includes a wide range of QOPs, such as QOPs over the standard simplex [6], maximum stable set problems [9], graph partitioning problems [20] and quadratic assignment problems [9], and its extension to polynomial optimization problems (POPs) [3, 4, 18]. The class of QOPs also covers Burer’s class of QOPs with linear equality and complementarity constraints in nonnegative and binary variables [8]. Their geometric nonconvex COP denoted by COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) below is quite simple, but it is powerful enough to capture the basic essentials to investigate convex conic reformulation of general nonconvex COPs. In fact, it minimizes a linear function in a finite dimensional vector space 𝕍\mathbb{V} over the intersection of three geometrically represented sets, a nonconvex cone 𝕂\mathbb{K}, a convex subcone 𝕁\mathbb{J} of the convex hull co𝕂\mathbb{K} of 𝕂\mathbb{K}, and an affine hyperplane with a normal vector 𝑯H. The framework was also used in the recent paper [10] which proposed a large class of quadratically constrained quadratic programs with stochastic data. See also [7].

Throughout the paper, 𝕍\mathbb{V} denotes a finite dimensional vector space endowed with the inner product 𝑨,𝑩\langle\mbox{\boldmath$A$},\,\mbox{\boldmath$B$}\rangle for every pair of 𝑨A and 𝑩B in 𝕍\mathbb{V}, and 𝑶𝑯𝕍\mbox{\boldmath$O$}\not=\mbox{\boldmath$H$}\in\mathbb{V} and 𝑸𝕍\mbox{\boldmath$Q$}\in\mathbb{V} are arbitrarily fixed, unless specified. For every cone 𝕍\mathbb{C}\subseteq\mathbb{V}, let COP(\mathbb{C}) denote the conic optimization problem (COP) of the form

ζp()=inf{𝑸,𝑿:𝑿,𝑯,𝑿=1}.\displaystyle\zeta_{p}(\mathbb{C})=\inf\left\{\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle:\mbox{\boldmath$X$}\in\mathbb{C},\ \langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1\right\}. (1)

Here we say that 𝕍\mathbb{C}\subseteq\mathbb{V} is a cone, which is not necessarily convex nor closed, if λ𝑨\lambda\mbox{\boldmath$A$}\in\mathbb{C} for every 𝑨\mbox{\boldmath$A$}\in\mathbb{C} and λ0\lambda\geq 0. If COP(\mathbb{C}) is infeasible, we let ζp()=\zeta_{p}(\mathbb{C})=\infty. By replacing \mathbb{C} by its convex hull co\mathbb{C}, we obtain a convex relaxation COP(co\mathbb{C}) of the problem. When the original nonconvex COP(\mathbb{C}) and the relaxed convex COP(co\mathbb{C}) share a common optimal value, i.e., ζp()=ζp(co)\zeta_{p}(\mathbb{C})=\zeta_{p}(\mbox{co}\mathbb{C}), the convex COP is called a convex conic reformulation of the nonconvex COP.

A nonconvex COP introduced in [15] is described as

COP(𝕂𝕁):ζp(𝕂𝕁)=inf{𝑸,𝑿:𝑿𝕂𝕁,𝑯,𝑿=1}\displaystyle\mbox{COP($\mathbb{K}\cap\mathbb{J}$):}\quad\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\inf\left\{\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle:\mbox{\boldmath$X$}\in\mathbb{K}\cap\mathbb{J},\ \langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1\right\}

under the following conditions:
(A) 𝕂\mathbb{K} is a nonempty cone in 𝕍\mathbb{V} and <ζp(𝕂𝕁)<-\infty<\zeta_{p}(\mathbb{K}\cap\mathbb{J})<\infty (i.e., COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) is feasible and has a finite optimal value).
(B) 𝕁\mathbb{J} is a convex cone contained in co𝕂\mathbb{K} such that co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J}.
Among the theoretical results established in [15], we mention the following equivalence result (see [15, Theorem 3.1], [2, Theorem 5.1] for more details).

Theorem 1.1.

Assume that Conditions (A) and (B) are satisfied. Then,

<ζp(𝕁)<,<ζp(𝕂𝕁)=ζp(𝕁)<(i.e., COP(𝕁) is a convex reformulation of COP(𝕂𝕁)).}\displaystyle\left.\begin{array}[]{c}-\infty<\zeta_{p}(\mathbb{J})<\infty,\\ \Updownarrow\\ -\infty<\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\zeta_{p}(\mathbb{J})<\infty\\ \mbox{({\it i.e.}, COP($\mathbb{J}$) is a convex reformulation of COP($\mathbb{K}\cap\mathbb{J}$))}.\end{array}\right\} (6)

First, we briefly discuss some remaining issues, which were not throughly studied in [15]:

(a) The feasibility preserving property [27] (Section 2.1).

(b) Strong duality of the reformulated convex COP (Section 2.2).

(c) The existence of a common optimal solution of a nonconvex COP and the reformulated convex COP (Section 2.3).

If 𝕁\mathbb{J} is a face of co𝕂\mathbb{K}, then co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J} (Condition (B)) is satisfied. This case was throughly studied and played an essential role in convex conic reformulation of QOPs and POPs in [15]. Another case mentioned in [15, Lemma 2.1 (iv)] for Condition (B) is: 𝕁\mathbb{J} is the convex hull of the union of (possibly infinitely many) faces of co𝕂\mathbb{K}. But neither its implication nor its application was discussed there. In Section 3 of this paper, we introduce the family ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}) of all 𝕁\mathbb{J} which satisfy co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J}, and study its fundamental properties. In particular, we establish the following characterization of ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}).

Theorem 1.2.

 

(i) 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) iff 𝕁=co𝕂\mathbb{J}=\mbox{co}\mathbb{K}^{\prime} for some cone 𝕂𝕂\mathbb{K}^{\prime}\subseteq\mathbb{K}.

(ii) 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) iff 𝕁=co()\mathbb{J}=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} for some ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}).

(iii) Assume that 𝕂\mathbb{K} and 𝕁\mathbb{J} are closed and 𝑯int(𝕂)\mbox{\boldmath$H$}\in\mbox{int}(\mathbb{K}^{*}), where int(𝕂)\mbox{int}(\mathbb{K}^{*}) denotes the interior of 𝕂\mathbb{K}^{*}. Then 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) iff ζp(𝕂𝕁)=ζp(𝕁)\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\zeta_{p}(\mathbb{J}) for every 𝑸𝕍\mbox{\boldmath$Q$}\in\mathbb{V}.

A proof is given in Section 3.3. Based on assertion (ii), we discuss a decomposition of the convex reformulation COP(co())(\mbox{co}(\bigcup\mbox{$\cal F$})) of COP(𝕂(co()))(\mathbb{K}\cap\big{(}\mbox{co}(\bigcup\mbox{$\cal F$})\big{)}) with ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}) into the convex reformulations COP(𝔽\mathbb{F}) of COP(𝕂𝔽\mathbb{K}\cap\mathbb{F}) (𝔽)(\mathbb{F}\in\mbox{$\cal F$}) (Theorem 3.6).

In Section 4, we focus on the case where 𝕂\mathbb{K} is represented as 𝕂={𝒙𝒙T:𝒙n}𝕊n\mathbb{K}=\{\mbox{\boldmath$x$}\mbox{\boldmath$x$}^{T}:\mbox{\boldmath$x$}\in\mathbb{R}^{n}\}\subseteq\mathbb{S}^{n} (the space of n×nn\times n symmetric matrices) and 𝕁\mathbb{J} by multiple inequalities such that 𝕁=𝕁{𝑿co𝕂:𝑩k,𝑿0(1km)}\mathbb{J}=\mathbb{J}_{-}\equiv\{\mbox{\boldmath$X$}\in\mbox{co}\mathbb{K}:\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0\ (1\leq k\leq m)\} for some 𝑩k𝕊n\mbox{\boldmath$B$}_{k}\in\mathbb{S}^{n} (1km)(1\leq k\leq m). In this case, co𝕂\mathbb{K} forms the cone 𝕊+n\mathbb{S}^{n}_{+} of positive semidefinite matrices in 𝕊n\mathbb{S}^{n}, and COP(𝕁)(\mathbb{J}_{-}) serves as a semidefinite programming (SDP) relaxation of COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}_{-}), which can be regarded as a quadratically constrained quadratic program (QCQP) with nonconvex inequality constraints 𝒙T𝑩k𝒙0\mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{k}\mbox{\boldmath$x$}\leq 0 (1km)(1\leq k\leq m) and an equality constraint 𝒙T𝑯𝒙=1\mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1. By using Theorem 1.2 (iii) and [26, Lemma 2.2], we establish that 𝕁{𝑿co𝕂:𝑩k,𝑿0(1km)}^(𝕂)\mathbb{J}_{-}\equiv\{\mbox{\boldmath$X$}\in\mbox{co}\mathbb{K}:\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0\ (1\leq k\leq m)\}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) if condition

𝕁0(𝑩k){𝑿𝕊+n:𝑩k,𝑿=0}𝕁(1km)\displaystyle\mathbb{J}_{0}(\mbox{\boldmath$B$}_{k})\equiv\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}:\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle=0\}\subseteq\mathbb{J}_{-}\ (1\leq k\leq m) (7)

is satisfied. This result leads to a wide class of QCQPs with multiple nonconvex constraints, COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}_{-}) with 𝑩k𝕊n\mbox{\boldmath$B$}_{k}\in\mathbb{S}^{n} (1km)(1\leq k\leq m), which can be solved by their SDP relaxation COP(𝕁)(\mathbb{J}_{-}). See Figure 1 for a geometrical image of condition (7). We know that if 𝑿X is a common optimal solution of COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}_{-}) and its SDP relaxation COP(𝕁)(\mathbb{J}_{-}), then rank𝑿=1\mbox{\boldmath$X$}=1. In case (a), every extreme ray of 𝕁\mathbb{J}_{-} on which COP(𝕁)(\mathbb{J}_{-}) can attain an optimal solution 𝑿X lies on the boundary of 𝕊+n\mathbb{S}^{n}_{+} whose extreme rays are known to be generated by rank-1 matrices. In case (b), 𝕁\mathbb{J}_{-} includes an extreme ray not included on the boundary of 𝕊+n\mathbb{S}^{n}_{+}; hence such an extreme ray may include a matrix with rank greater than 11. Thus, condition (7) is quite natural to ensure the equivalence of COP(𝕁)(\mathbb{J}_{-}) and its SDP relaxation COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}_{-}) for any 𝑸𝕊n\mbox{\boldmath$Q$}\in\mathbb{S}^{n}. We also see that 𝕁=co𝕂\mathbb{J}_{-}=\mbox{co}\mathbb{K}^{\prime} for some 𝕂𝕂\mathbb{K}^{\prime}\subseteq\mathbb{K} in case (a) but 𝕁co𝕂\mathbb{J}_{-}\not=\mbox{co}\mathbb{K}^{\prime} for any 𝕂𝕂\mathbb{K}^{\prime}\subseteq\mathbb{K} in case (b). Therefore, by Theorem 1.2 (i), 𝕁^(𝕂)\mathbb{J}_{-}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) in case (a) but 𝕁^(𝕂)\mathbb{J}_{-}\not\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) in case (b). We note that if n3n\geq 3 then the intersection of the boundary of 𝕊+n\mathbb{S}^{n}_{+} with 𝕁0(𝑩)\mathbb{J}_{0}(\mbox{\boldmath$B$}) (𝑩𝕊n\mbox{\boldmath$B$}\in\mathbb{S}^{n}) generally includes matrices with rank in {0,1,,n1}\{0,1,\ldots,n-1\}, presenting a more complicated situation. The aforementioned explanation represents the case when n=2n=2.

Refer to caption

            Refer to caption

Figure 1: Geometrical illustrations for condition (7) with m=3m=3. (a) illustrates a case where (7) is satisfied, and (b) a case where (7) is not satisfied. Here 𝕁(𝑩k)={𝑿𝕊+n:𝑩k,𝑿0}\mathbb{J}_{-}(\mbox{\boldmath$B$}_{k})=\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}:\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0\} (1km)(1\leq k\leq m) and 𝕁=k=13𝕁(𝑩k)\mathbb{J}_{-}=\cap_{k=1}^{3}\mathbb{J}_{-}(\mbox{\boldmath$B$}_{k}).

1.1 Contribution of the paper and related literature

Our primary contribution lies in presenting a new and wide class of QCQPs with multiple nonconvex constraints that can be solved exactly by their SDP relaxation. The equivalence of QCQPs and their SDP relaxation was extensively studied in the literature, including [5, 11, 12, 19, 22, 23, 25, 26, 28]. The classes of QCQPs studied there can be classified into two categories. The first category requires particular sign patterns of the data matrices involved in QCQPs [5, 12, 22, 28]. The studies on the second category have focused on cases where the number of nonconvex constraints is limited at most two [26], and some additional assumption on the quadratic functions involved in the constraint [11, 19, 23, 25, 26]. Trust-region subproblems of nonlinear programs have been frequently studied in relation to the second category. Our class of QCQPs is also related to the second category, but represents a significantly wider class than them, in the sense that QCQPs can involve any finite number of nonconvex constraints. Condition (7) is both quite general and intuitively natural, ensuring the equivalence of QCQPs and their SDP relaxation (see Figure 1).

The second contribution is that we present more precise characterizations of Condition (B), which plays a central role in the theory of convex conic reformulation of geometric COPs, as shown in Theorem 1.2. This contribution, together with (a), (b) and (c) mentioned above, makes the theory solid and enhances its applicability to a wide range of problems. In particular, the discovery of the new class of QCQPs in the first contribution is based on them.

1.2 Outline of the paper

In Section 2, we discuss the three issues (a), (b) and (c) in detail. In Section 3, we present some fundamental properties on ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}), and prove Theorem 1.2. We also discuss decompositions of a nonconvex COP and its convex conic reformulation based on Theorem 1.2 (ii). In Section 4, we present the class of QCQPs with multiple nonconvex inequality and equality constraints that can be reformulated as their SDP relaxation. Some representative QCQP examples in this class are presented. We conclude in Section 5 with remarks on the features of the geometric nonconvex COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}) as a unified framework, and its possible application to the completely positive cone.

1.3 Remarks on notation and symbols

We note that a cone \mathbb{C} is convex if 𝑿=k=1m𝑿k\mbox{\boldmath$X$}=\sum_{k=1}^{m}\mbox{\boldmath$X$}^{k}\in\mathbb{C} whenever 𝑿k\mbox{\boldmath$X$}^{k}\in\mathbb{C} (k=1,,m)(k=1,...,m). The convex hull co\mathbb{C} of a cone \mathbb{C} is represented as co={k=1m𝑿k:𝑿k(k=1,,m)for some m}\mathbb{C}=\{\sum_{k=1}^{m}\mbox{\boldmath$X$}^{k}:\mbox{\boldmath$X$}^{k}\in\mathbb{C}\ (k=1,\ldots,m)\ \mbox{for some }m\}. The dual ={𝒀𝕍:𝑿,𝒀0for every 𝑿}\mathbb{C}^{*}=\{\mbox{\boldmath$Y$}\in\mathbb{V}:\langle\mbox{\boldmath$X$},\,\mbox{\boldmath$Y$}\rangle\geq 0\ \mbox{for every }\mbox{\boldmath$X$}\in\mathbb{C}\} of a cone \mathbb{C} always forms a closed convex cone in 𝕍\mathbb{V}. Let \mathbb{C} be a convex cone in 𝕍\mathbb{V}. A convex cone 𝔽\mathbb{F}\subset\mathbb{C} is a face of \mathbb{C} if 𝑿k𝔽\mbox{\boldmath$X$}^{k}\in\mathbb{F} (1km)(1\leq k\leq m) whenever 𝑿=k=1m𝑿k𝔽\mbox{\boldmath$X$}=\sum_{k=1}^{m}\mbox{\boldmath$X$}^{k}\in\mathbb{F} and 𝑿k\mbox{\boldmath$X$}^{k}\in\mathbb{C} (1km)(1\leq k\leq m). An extreme ray of \mathbb{C} is a face which spans a 11-dimensional linear subspace of 𝕍\mathbb{V}.

2 Some remaining issues

In this section, we discuss issues (a) and (b) and (c) mentioned in Section 1.

2.1 The feasibility preserving property - (a)

The property that the nonconvex problem is feasible iff its convex relaxation is feasible is called feasibility preserving. This property was fully studied in [27] for convex relaxation of nonconvex QOPs. We present a simple proof that our geometric framework is feasibility preserving.

Lemma 2.1.

Let \mathbb{C} be a nonempty cone in 𝕍\mathbb{V}. COP()(\mathbb{C}) is feasible (infeasible, respectively) iff COP(co)(\mbox{co}\mathbb{C}) is feasible (infeasible, respectively).

Proof.

It suffices to show that if COP(co\mathbb{C}) is feasible, then COP(\mathbb{C}) is feasible. Let 𝑿¯\overline{\mbox{\boldmath$X$}} be a feasible solution of COP(co\mathbb{C}). Then, there exist 𝑿k\mbox{\boldmath$X$}_{k}\in\mathbb{C} (1km)(1\leq k\leq m) such that 𝑿¯=k=1m𝑿k\overline{\mbox{\boldmath$X$}}=\sum_{k=1}^{m}\mbox{\boldmath$X$}_{k}. Since 1=𝑯,𝑿¯=𝑯,k=1m𝑿k1=\langle\mbox{\boldmath$H$},\,\overline{\mbox{\boldmath$X$}}\rangle=\langle\mbox{\boldmath$H$},\,\sum_{k=1}^{m}\mbox{\boldmath$X$}_{k}\rangle, 𝑯,𝑿k>0\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}_{k}\rangle>0 for some kk. Let 𝑿^=𝑿k/𝑯,𝑿k\widehat{\mbox{\boldmath$X$}}=\mbox{\boldmath$X$}_{k}/\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}_{k}\rangle. Then 𝑿^\widehat{\mbox{\boldmath$X$}}\in\mathbb{C} and 𝑯,𝑿^=1\langle\mbox{\boldmath$H$},\,\widehat{\mbox{\boldmath$X$}}\rangle=1. Hence 𝑿^\widehat{\mbox{\boldmath$X$}} is a feasible solution of COP(\mathbb{C}). ∎

By Lemma 2.1, we can weaken Condition (A).

(A)’

𝕂\mathbb{K} is a nonempty (not necessarily convex) cone in 𝕍\mathbb{V}.

Corollary 2.2.

Assume Conditions (A)’ and (B). Then (6) holds.

Proof.

If <ζp(𝕁)<-\infty<\zeta_{p}(\mathbb{J})<\infty, then <ζp(𝕁)ζp(𝕂𝕁)<-\infty<\zeta_{p}(\mathbb{J})\leq\zeta_{p}(\mathbb{K}\cap\mathbb{J})<\infty holds by Lemma 2.1. Hence Condition (A) is satisfied. Therefore, (6) holds by Theorem 1.1. ∎

By the corollary and the lemma above, we know under Conditions (A)’ and (B) that if COP(𝕁)(\mathbb{J}) attains the finite optimal value ζp(𝕁)\zeta_{p}(\mathbb{J}), then ζp(𝕂𝕁)=ζp(𝕁)\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\zeta_{p}(\mathbb{J}), and that if COP(𝕁)(\mathbb{J}) is infeasible, then so is COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}).

2.2 Strong duality of COP(𝕁\mathbb{J}) - (b)

As a straightforward application of [14, Theorem 2.1] to the primal-dual pair COP(𝕁\mathbb{J}) and DCOP(𝕁\mathbb{J}) with 𝑯𝕁\mbox{\boldmath$H$}\in\mathbb{J}^{*}, we obtain Theorem 2.3 below. Here the dual of COP(𝕁)(\mathbb{J}) is given by

DCOP(𝕁):ζd(𝕁)=sup{t:𝑸𝑯t𝕁}.\displaystyle\mbox{DCOP$(\mathbb{J})$:}\ \zeta_{d}(\mathbb{J})=\sup\{t:\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t\in\mathbb{J}^{*}\}. (8)
Theorem 2.3.

Assume that 𝕁\mathbb{J} is a closed convex cone in 𝕍\mathbb{V}, 𝐇𝕁\mbox{\boldmath$H$}\in\mathbb{J}^{*} and that <ζp(𝕁)<-\infty<\zeta_{p}(\mathbb{J})<\infty or <ζd(𝕁)<-\infty<\zeta_{d}(\mathbb{J})<\infty. Then the following assertions hold.

(i) <ζp(𝕁)=ζd(𝕁)<-\infty<\zeta_{p}(\mathbb{J})=\zeta_{d}(\mathbb{J})<\infty holds.

(ii) Dual DCOP(𝕁\mathbb{J}) has an optimal solution.

(iii) The set of optimal solutions of primal COP(𝕁\mathbb{J}) is nonempty and bounded iff 𝑸𝑯tint𝕁\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t\in\mbox{int}\mathbb{J}^{*} for some tt\in\mathbb{R}.

(iv) The set of optimal solutions of primal COP(𝕁\mathbb{J}) is nonempty and unbounded if 𝕁\mathbb{J} is not pointed and 𝑸𝑯trelint𝕁\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t\in\mbox{relint}\mathbb{J}^{*} for some tt\in\mathbb{R}, where relint𝕁\mbox{relint}\mathbb{J}^{*} denotes the relative interior of 𝕁\mathbb{J}^{*} with respect to the linear subspace of 𝕍\mathbb{V} spanned by 𝕁\mathbb{J}^{*}.

We note that the condition “𝕁\mathbb{J} is closed” is natural when the existence of an optimal solution of COP(𝕁\mathbb{J}) is discussed, and the condition 𝑯𝕁\mbox{\boldmath$H$}\in\mathbb{J}^{*} holds naturally when QCQPs and POPs are converted into COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}). See [15, Sections 3.2, 4 and 5].

2.3 Existence of a common optimal solution of COP(𝕁\mathbb{J}) and COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) - (c)

If 𝑿X is an optimal solution of COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}), then the identity ζp(𝕂𝕁)=ζp(𝕁)\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\zeta_{p}(\mathbb{J}) ensures that 𝑿X is also an optimal solution of COP(𝕁\mathbb{J}) since 𝕂𝕁𝕁\mathbb{K}\cap\mathbb{J}\subseteq\mathbb{J}. In general, however, a nonconvex (or even convex) COP may have no optimal solution even when it has a finite optimal value. See, for example, [13, Section 4]. The following theorem provides a sufficient condition for a common optimal solution of COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) and COP(𝕁\mathbb{J}).

Theorem 2.4.

Assume that 𝕂\mathbb{K} is a closed cone in 𝕍\mathbb{V}, 𝕁co𝕂\mathbb{J}\subseteq\mbox{co}\mathbb{K} is a closed convex cone satisfying co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J}, COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}) is feasible, 𝐇𝕁\mbox{\boldmath$H$}\in\mathbb{J}^{*}, and that 𝐐𝐇tint𝕁\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t\in\mbox{int}\mathbb{J}^{*} (the interior of 𝕁\mathbb{J}^{*}) for some tt\in\mathbb{R}. Then,

<ζd(𝕁)=ζp(𝕁)=ζp(𝕂𝕁)<,COP(𝕂𝕁) and COP(𝕁) have a common optimal solution,DCOP(𝕁) has an optimal solution.}\displaystyle\left.\begin{array}[]{l}-\infty<\zeta_{d}(\mathbb{J})=\zeta_{p}(\mathbb{J})=\zeta_{p}(\mathbb{K}\cap\mathbb{J})<\infty,\\[3.0pt] \mbox{COP$(\mathbb{K}\cap\mathbb{J})$ and COP$(\mathbb{J})$ have a common optimal solution,}\\[3.0pt] \mbox{DCOP$(\mathbb{J})$ has an optimal solution.}\end{array}\right\} (12)

The strict feasibility of DCOP(𝕁)(\mathbb{J}) (i.e., Slater’s constraint qualification 𝑸𝑯tint𝕁\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t\in\mbox{int}\mathbb{J}^{*} for some tt) is assumed here for the existence of solutions of COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}) and COP(𝕁)(\mathbb{J}). It should be emphasized that none of the finite optimal values for COP (𝕂𝕁)(\mathbb{K}\cap\mathbb{J}), COP(𝕁)(\mathbb{J}) and DCOP(𝕁)(\mathbb{J}) is assumed in advance.

Proof of Theorem 2.4. We prove that COP(𝕁\mathbb{J}) and COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) have a common optimal solution 𝑿\mbox{\boldmath$X$}^{*}. Choose a feasible solution 𝑿¯𝕂𝕁\overline{\mbox{\boldmath$X$}}\in\mathbb{K}\cap\mathbb{J} of COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}). We consider the level sets of COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) and COP(𝕁\mathbb{J}) given by

S(𝕂𝕁)\displaystyle S(\mathbb{K}\cap\mathbb{J}) \displaystyle\equiv {𝑿𝕂𝕁:𝑯,𝑿=1,𝑸,𝑿𝑸,𝑿¯},\displaystyle\left\{\mbox{\boldmath$X$}\in\mathbb{K}\cap\mathbb{J}:\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1,\ \langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle\leq\langle\mbox{\boldmath$Q$},\,\overline{\mbox{\boldmath$X$}}\rangle\right\},
S(𝕁)\displaystyle S(\mathbb{J}) \displaystyle\equiv {𝑿𝕁:𝑯,𝑿=1,𝑸,𝑿𝑸,𝑿¯}.\displaystyle\left\{\mbox{\boldmath$X$}\in\mathbb{J}:\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1,\ \langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle\leq\langle\mbox{\boldmath$Q$},\,\overline{\mbox{\boldmath$X$}}\rangle\right\}.

Then 𝑿¯S(𝕂𝕁)S(𝕁)\overline{\mbox{\boldmath$X$}}\in S(\mathbb{K}\cap\mathbb{J})\subseteq S(\mathbb{J}). Since 𝕂\mathbb{K} and 𝕁\mathbb{J} are closed, both S(𝕂𝕁)S(\mathbb{K}\cap\mathbb{J}) and S(𝕁)S(\mathbb{J}) are closed. We will show that S(𝕁)S(\mathbb{J}) is bounded. Assume on the contrary that S(𝕁)S(\mathbb{J}) is unbounded. Then, there exists a sequence {𝑿kS(𝕁)}\{\mbox{\boldmath$X$}_{k}\in S(\mathbb{J})\} such that 𝑿k\parallel\mbox{\boldmath$X$}_{k}\parallel\rightarrow\infty as kk\rightarrow\infty. We may assume without loss of generality that 𝑿k/𝑿k𝕁\mbox{\boldmath$X$}_{k}/\parallel\mbox{\boldmath$X$}_{k}\parallel\in\mathbb{J} converges to Δ𝑿𝕁\Delta\mbox{\boldmath$X$}\in\mathbb{J} such that

Δ𝑿𝕁,Δ𝑿=1,𝑯,Δ𝑿=0,𝑸,Δ𝑿0.\displaystyle\Delta\mbox{\boldmath$X$}\in\mathbb{J},\ \parallel\Delta\mbox{\boldmath$X$}\parallel=1,\ \langle\mbox{\boldmath$H$},\,\Delta\mbox{\boldmath$X$}\rangle=0,\ \langle\mbox{\boldmath$Q$},\,\Delta\mbox{\boldmath$X$}\rangle\leq 0.

By OΔ𝑿𝕁O\not=\Delta\mbox{\boldmath$X$}\in\mathbb{J} and the assumption that 𝑸𝑯tint𝕁\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t\in\mbox{int}\mathbb{J}^{*} for some tt\in\mathbb{R}, we see that

0\displaystyle 0 <\displaystyle< 𝑸𝑯t,Δ𝑿=𝑸,Δ𝑿𝑯,Δ𝑿t0,\displaystyle\langle\mbox{\boldmath$Q$}-\mbox{\boldmath$H$}t,\,\Delta\mbox{\boldmath$X$}\rangle=\langle\mbox{\boldmath$Q$},\,\Delta\mbox{\boldmath$X$}\rangle-\langle\mbox{\boldmath$H$},\,\Delta\mbox{\boldmath$X$}\rangle t\leq 0,

which is a contradiction. Hence we have shown that both S(𝕁)S(\mathbb{J}) and S(𝕂𝕁)S(\mathbb{K}\cap\mathbb{J}) are nonempty closed and bounded. Therefore, both COP(𝕁\mathbb{J}) and COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}) have optimal solutions, say 𝑿^\widehat{\mbox{\boldmath$X$}} and 𝑿\mbox{\boldmath$X$}^{*}, respectively. It follows that <ζp(𝕁)ζp(𝕂𝕁)=𝑸,𝑿<-\infty<\zeta_{p}(\mathbb{J})\leq\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}^{*}\rangle<\infty. Since the equivalence relation (6) holds by Corollary 2.2, we see that ζp(𝕁)=ζp(𝕂𝕁)=𝑸,𝑿.\zeta_{p}(\mathbb{J})=\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}^{*}\rangle. Therefore, 𝑿\mbox{\boldmath$X$}^{*} is a common optimal solution of COP(𝕁\mathbb{J}) and COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}). All other assertions in (12) follow from Theorem 2.3. ∎

3 On Condition (B)

If 𝕁\mathbb{J} is a face of co𝕂\mathbb{K} or the convex hull of the union of a family of faces of co𝕂\mathbb{K}, then Condition (B) holds. The former case was studied throughly in [15] for its applications to convex conic reformulation of QOPs and POPs. In this section, we further investigate fundamental properties of Condition (B).

To characterize Condition (B), we define

^(𝕂)\displaystyle\widehat{\mbox{$\cal F$}}(\mathbb{K}) =\displaystyle= {𝕁:𝕁satisfies Condition (B),i.e.,𝕁 is a convex cone in co𝕂 satisfying co(𝕂𝕁)=𝕁}.\displaystyle\left\{\mathbb{J}:\begin{array}[]{l}\mathbb{J}\ \mbox{satisfies Condition (B)},\ {\it i.e.},\\ \mbox{$\mathbb{J}$ is a convex cone in co$\mathbb{K}$ satisfying co$(\mathbb{K}\cap\mathbb{J})=\mathbb{J}$}\end{array}\right\}. (15)

3.1 Illustrative examples

We show 44 examples of 𝕁^(𝕂r)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}_{r}) for 𝕂r\mathbb{K}_{r} (r=1,2)(r=1,2) whose convex hull forms a common semicircular cone in the 33-dimensional space in Figure 2, where a 22-dim. section of 𝕂r\mathbb{K}_{r} is illustrated (r=1,2)(r=1,2). We identify a set SS on the 22-dim. section of co𝕂r\mathbb{K}_{r} with the 3-dim. coneS={(λ,λ𝑿):𝑿S,λ0}S=\{(\lambda,\lambda\mbox{\boldmath$X$}):\mbox{\boldmath$X$}\in S,\ \lambda\geq 0\} (the cone generated by SS). In particular, an extreme point (or a 11-dimensional face, respectively) of the section of co𝕂r\mathbb{K}_{r} corresponds to an extreme ray (or a 22-dimensional face, respectively) of the semicircular cone co𝕂r\mathbb{K}_{r}. 𝕂1\mathbb{K}_{1} consists of all extreme rays of the semicircular cone, which correspond to the half circle. 𝕂2\mathbb{K}_{2} includes the 2-dim. face of the semicircular cone, which corresponds to the line segment [𝒆,𝒇][\mbox{\boldmath$e$},\mbox{\boldmath$f$}], in addition to all extreme rays. Note that the common 𝕂=𝕂1\mathbb{K}=\mathbb{K}_{1} is used for Examples 3.1, 3.2 and 3.3, and 𝕂=𝕂2\mathbb{K}=\mathbb{K}_{2} for Example 3.4. In each example, it is easy to verify that assertions (i), (ii) and (iii) of Theorem 3.5 with 𝕂=𝕂r\mathbb{K}=\mathbb{K}_{r} hold.

Refer to caption

                    Refer to caption Refer to caption                     Refer to caption

Figure 2: A 22-dim. section of a 33-dim. semicircular cone co𝕂\mathbb{K}. (a) — Example 3.1, (b) — Example 3.2, (c) — Example 3.3 and (d) — Example 3.4. In (a), (b) and (c), each point on the solid half circle is identified with an extreme ray of the 33-dim. semicircular cone co𝕂\mathbb{K}. In (d), the line segment [𝒆,𝒇][\mbox{\boldmath$e$},\mbox{\boldmath$f$}] is identified with the 22-dim. face of the 33-dim. semicircular cone co𝕂\mathbb{K}.
Example 3.1.

If we choose 33 distinct extreme points 𝒂,𝒃,𝒄\mbox{\boldmath$a$},\ \mbox{\boldmath$b$},\ \mbox{\boldmath$c$} on the half circle as in Figure 2 (a), their convex hull 𝕁1^(𝕂1)\mathbb{J}_{1}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}_{1}) forms a closed polyhedral cone. Letting 1=cone({𝒂,𝒃,𝒄})\mathbb{C}_{1}=\mbox{cone}(\{\mbox{\boldmath$a$},\ \mbox{\boldmath$b$},\ \mbox{\boldmath$c$}\}), we can write 𝕁1=co(1)\mathbb{J}_{1}=\mbox{co}(\mathbb{C}_{1}).

Example 3.2.

Let 2\mathbb{C}_{2} be the cone generated by the union of all extreme points contained in the arc 𝒂a to 𝒃b along the half circle and an extreme point 𝒄c (see Figure 2 (b)), their convex hull 𝕁2=co(2)\mathbb{J}_{2}=\mbox{co}(\mathbb{C}_{2}) forms a non-polyhedral closed convex cone. We see that 𝕁2^(𝕂1)\mathbb{J}_{2}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}_{1}).

Example 3.3.

We modify Example 3.2 by letting 3=2\cone({𝒃})\mathbb{C}_{3}=\mathbb{C}_{2}\backslash\mbox{cone}(\{\mbox{\boldmath$b$}\}) as in Figure 2 (c). Then 𝕁3=co(3)^(𝕂1)\mathbb{J}_{3}=\mbox{co}(\mathbb{C}_{3})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}_{1}). In this case, 𝕁3\mathbb{J}_{3} is not closed. Hence, this example shows that ^(𝕂1)\widehat{\mbox{$\cal F$}}(\mathbb{K}_{1}) contains non-closed convex cone in general.

Example 3.4.

In this example, 𝕂2\mathbb{K}_{2} includes the 22-dim. face of co𝕂2\mathbb{K}_{2}, which corresponds to the line segment [𝒆,𝒇][\mbox{\boldmath$e$},\mbox{\boldmath$f$}] of its section as in Figure 2 (d). Let 4\mathbb{C}_{4} be the cone generated by the union of all extreme points contained in the arc 𝒂a to 𝒃b along the half circle and the semi-closed interval (𝒅,𝒄](\mbox{\boldmath$d$},\mbox{\boldmath$c$}] on [𝒆,𝒇][\mbox{\boldmath$e$},\mbox{\boldmath$f$}]. Then 𝕁4=co(4)^(𝕂2)\mathbb{J}_{4}=\mbox{co}(\mathbb{C}_{4})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}_{2}). It should be noted that 𝕁4^(𝕂2)\mathbb{J}_{4}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}_{2}) cannot be generated in Examples 3.1, 3.2 and 3.3 since the 22-dim. face cone([𝒆,𝒇])([\mbox{\boldmath$e$},\mbox{\boldmath$f$}]) is not included in 𝕂1\mathbb{K}_{1}.

3.2 Basic properties on ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K})

We now show some fundamental properties on ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}) including the ones observed in the examples above. For a family 𝒮\cal S of subsets of 𝕍\mathbb{V} and a subset TT of 𝕍\mathbb{V}, we use notation 𝒮\bigcup\mbox{$\cal S$} to denotes the union of all U𝒮U\in\mbox{$\cal S$}, i.e., 𝒮=U𝒮U\bigcup\mbox{$\cal S$}=\bigcup_{U\in\mbox{\scriptsize$\mbox{$\cal S$}$}}U, and T𝒮T\cap\mbox{$\cal S$} to denote {TU:U𝒮}\{T\cap U:U\in\mbox{$\cal S$}\}.

Theorem 3.5.

The following assertions hold.

(i) 𝔽^(𝕂)\mathbb{F}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) for every face 𝔽\mathbb{F} of 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

(ii) 𝕁𝔽^(𝕂)\mathbb{J}\cap\mathbb{F}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) for every face 𝔽\mathbb{F} of co𝕂\mathbb{K} and 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

(iii) 𝔽𝕂\mathbb{F}\subseteq\mathbb{K} for every extreme ray 𝔽\mathbb{F} of 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

(iv) (𝕂)𝕂co()co()\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\subseteq\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}\subseteq\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} for every ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}).

(v) co((𝕂))=co(𝕂co())=co()\mbox{co}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))=\mbox{co}(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} (hence co()^(𝕂)\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}\in\widehat{\mbox{$\cal F$}}(\mathbb{K})) for every ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}).

Proof of Theorem 3.5 (i): Let 𝔽\mathbb{F} be a face of 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). co(𝕂𝔽)𝔽(\mathbb{K}\cap\mathbb{F})\subseteq\mathbb{F} is obvious. To show the converse inclusion relation, let 𝑿𝔽𝕁=co(𝕂𝕁)\mbox{\boldmath$X$}\in\mathbb{F}\subseteq\mathbb{J}=\mbox{co}(\mathbb{K}\cap\mathbb{J}). Then 𝑿=k=1m𝑿k\mbox{\boldmath$X$}=\sum_{k=1}^{m}\mbox{\boldmath$X$}_{k} for some 𝑿k𝕂𝕁\mbox{\boldmath$X$}_{k}\in\mathbb{K}\cap\mathbb{J} (1km)(1\leq k\leq m). Since 𝔽\mathbb{F} is a face of 𝕁\mathbb{J}, 𝑿k𝔽\mbox{\boldmath$X$}_{k}\in\mathbb{F} (1km)(1\leq k\leq m). Hence, 𝑿co(𝕂𝔽)\mbox{\boldmath$X$}\in\mbox{co}(\mathbb{K}\cap\mathbb{F}), and we have shown that co(𝕂𝔽)𝔽(\mathbb{K}\cap\mathbb{F})\supset\mathbb{F}. ∎

Obviously co𝕂^(𝕂)\mathbb{K}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Taking 𝕁=co𝕂\mathbb{J}=\mbox{co}\mathbb{K} in (i), we see that 𝔽^(𝕂)\mathbb{F}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) for every face 𝔽\mathbb{F} of co𝕂\mathbb{K}. In particular, every extreme ray of co𝕂\mathbb{K} is in ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}).

Proof of Theorem 3.5 (ii): Assume that 𝔽\mathbb{F} is a face of co𝕂\mathbb{K} and 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Then 𝕁𝔽\mathbb{J}\cap\mathbb{F} is a convex cone and 𝕂𝕁𝔽𝕁𝔽\mathbb{K}\cap\mathbb{J}\cap\mathbb{F}\subseteq\mathbb{J}\cap\mathbb{F}. Hence co(𝕂𝕁𝔽)𝕁𝔽(\mathbb{K}\cap\mathbb{J}\cap\mathbb{F})\subseteq\mathbb{J}\cap\mathbb{F} follows. To show the converse inclusion co(𝕂𝕁𝔽)𝕁𝔽(\mathbb{K}\cap\mathbb{J}\cap\mathbb{F})\supset\mathbb{J}\cap\mathbb{F}, suppose that 𝑿𝕁𝔽\mbox{\boldmath$X$}\in\mathbb{J}\cap\mathbb{F}. Since 𝕁=co(𝕂𝕁)\mathbb{J}=\mbox{co}(\mathbb{K}\cap\mathbb{J}) by assumption, 𝔽𝑿=k=1m𝑿k\mathbb{F}\ni\mbox{\boldmath$X$}=\sum_{k=1}^{m}\mbox{\boldmath$X$}_{k} for some 𝑿k𝕂𝕁co𝕂\mbox{\boldmath$X$}_{k}\in\mathbb{K}\cap\mathbb{J}\subseteq\mbox{co}\mathbb{K} (1km)(1\leq k\leq m). Since 𝔽\mathbb{F} is a face of co𝕂\mathbb{K}, 𝑿k𝔽\mbox{\boldmath$X$}_{k}\in\mathbb{F} (1km)(1\leq k\leq m). Hence 𝑿=k=1m𝑿kco(𝕂𝕁𝔽)\mbox{\boldmath$X$}=\sum_{k=1}^{m}\mbox{\boldmath$X$}_{k}\in\mbox{co}(\mathbb{K}\cap\mathbb{J}\cap\mathbb{F}). Thus, we have shown co(𝕂𝕁𝔽)=𝕁𝔽(\mathbb{K}\cap\mathbb{J}\cap\mathbb{F})=\mathbb{J}\cap\mathbb{F} and 𝕁𝔽^(𝕂)\mathbb{J}\cap\mathbb{F}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).∎

Proof of Theorem 3.5 (iii): Assume that 𝔽\mathbb{F} is an extreme ray of 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). To show 𝔽𝕂\mathbb{F}\subseteq\mathbb{K}, choose an arbitrary nonzero 𝑿𝔽\mbox{\boldmath$X$}\in\mathbb{F}. Then, 𝑿𝔽𝕁=co(𝕂𝕁)\mbox{\boldmath$X$}\in\mathbb{F}\subseteq\mathbb{J}=\mbox{co}(\mathbb{K}\cap\mathbb{J}) is represented as 𝑿=k=1m𝑿k\mbox{\boldmath$X$}=\sum_{k=1}^{m}\mbox{\boldmath$X$}_{k} for some nonzero 𝑿k𝕂𝕁\mbox{\boldmath$X$}_{k}\in\mathbb{K}\cap\mathbb{J} (k=1,,m)(k=1,\ldots,m). Since 𝔽\mathbb{F} is an extreme ray of 𝕁\mathbb{J}, nonzero 𝑿k\mbox{\boldmath$X$}_{k} (1km)(1\leq k\leq m) all lie in the extreme ray 𝔽\mathbb{F}. Hence, 𝑿=λk𝑿k\mbox{\boldmath$X$}=\lambda_{k}\mbox{\boldmath$X$}_{k} for some λk>0\lambda_{k}>0 (1km)(1\leq k\leq m). Let kk be arbitrarily fixed. Since 𝕂\mathbb{K} is a cone and 𝑿k𝕂\mbox{\boldmath$X$}_{k}\in\mathbb{K}, 𝑿=λk𝑿k𝕂\mbox{\boldmath$X$}=\lambda_{k}\mbox{\boldmath$X$}_{k}\in\mathbb{K}. Thus, we have shown 𝔽𝕂\mathbb{F}\subseteq\mathbb{K}. ∎

Proof of Theorem 3.5 (iv): Assume that ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}). Let 𝑿(𝕂)\mbox{\boldmath$X$}\in\bigcup(\mathbb{K}\cap\mbox{$\cal F$}). Then, there exists a 𝕁\mathbb{J}\in\mbox{$\cal F$} such that 𝑿𝕂𝕁\mbox{\boldmath$X$}\in\mathbb{K}\cap\mathbb{J}, which implies that 𝑿𝕂co()\mbox{\boldmath$X$}\in\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}. Hence, (𝕂)𝕂co()\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\subseteq\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} holds. The second inclusion relation is straightforward. ∎

Proof of Theorem 3.5 (v): Assume that ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}). By (iv), it suffices to show that co((𝕂))co()(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))\supset\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}. By assumption, co((𝕂))co(𝕂𝕁)=𝕁\mbox{co}\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)}\supset\mbox{co}(\mathbb{K}\cap\mathbb{J})=\mathbb{J} for every 𝕁\mathbb{J}\in\mbox{$\cal F$}. Hence, co((𝕂))\mbox{co}\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)}\supset\bigcup\mbox{$\cal F$} follows. Since co((𝕂))\mbox{co}\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)} is a convex cone, we obtain that co((𝕂))co()\mbox{co}\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)}\supset\mbox{co}(\bigcup\mbox{$\cal F$}). ∎

3.3 Proof of Theorem 1.2

‘only if part’ of (i): Assume that 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Let 𝕂=𝕂𝕁\mathbb{K}^{\prime}=\mathbb{K}\cap\mathbb{J}. Then, 𝕂\mathbb{K}^{\prime} is a cone in 𝕂\mathbb{K} and 𝕁=co(𝕂𝕁)=co𝕂\mathbb{J}=\mbox{co}\big{(}\mathbb{K}\cap\mathbb{J}\big{)}=\mbox{co}\mathbb{K}^{\prime}.

‘if part’ of (i): Assume that 𝕁=co𝕂\mathbb{J}=\mbox{co}\mathbb{K}^{\prime} for some cone 𝕂𝕂\mathbb{K}^{\prime}\subseteq\mathbb{K}. Since 𝕁\mathbb{J} is convex, we obviously see that co(𝕂𝕁)𝕁\mbox{co}\big{(}\mathbb{K}\cap\mathbb{J}\big{)}\subseteq\mathbb{J}. We also see from 𝕂𝕂\mathbb{K}^{\prime}\subseteq\mathbb{K} and co𝕂=𝕁\mbox{co}\mathbb{K}^{\prime}=\mathbb{J} that 𝕂=𝕂co𝕂𝕂𝕁\mathbb{K}^{\prime}=\mathbb{K}^{\prime}\cap\mbox{co}\mathbb{K}^{\prime}\subseteq\mathbb{K}\cap\mathbb{J}. Hence 𝕁=co𝕂co(𝕂𝕁)\mathbb{J}=\mbox{co}\mathbb{K}^{\prime}\subseteq\mbox{co}\big{(}\mathbb{K}\cap\mathbb{J}\big{)}. Therefore, we have shown co(𝕂𝕁)=𝕁\mbox{co}\big{(}\mathbb{K}\cap\mathbb{J}\big{)}=\mathbb{J} and 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

‘only if part’ of (ii): Assume that 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Let ={𝕁}\mbox{$\cal F$}=\{\mathbb{J}\}. Then, ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}) and 𝕁=co𝕁=co()\mathbb{J}=\mbox{co}\mathbb{J}=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} holds since 𝕁\mathbb{J} is convex.

‘if part’ of (ii): Assume that 𝕁=co()\mathbb{J}=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} for some ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}). Then, 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) follows from Theorem 3.5 (v).

Since 𝕁co𝕂\mathbb{J}\subseteq\mbox{co}\mathbb{K} and 𝑯int𝕂\mbox{\boldmath$H$}\in\mbox{int}\mathbb{K}^{*} by the assumption, the feasible region {𝑿𝕂𝕁:𝑯,𝑿=1}\{\mbox{\boldmath$X$}\in\mathbb{K}\cap\mathbb{J}:\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1\} of COP(𝕂𝕁\mathbb{K}\cap\mathbb{J}), the feasible region {𝑿𝕁:𝑯,𝑿=1}\{\mbox{\boldmath$X$}\in\mathbb{J}:\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1\} of COP(𝕁\mathbb{J}) and the feasible region S{𝑿co(𝕂𝕁):𝑯,𝑿=1}S\equiv\{\mbox{\boldmath$X$}\in\mbox{co}(\mathbb{K}\cap\mathbb{J}):\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1\} of COP(co(𝕂𝕁)\mbox{co}(\mathbb{K}\cap\mathbb{J})) are all bounded and closed.

‘only if part’ of (iii): Assume that 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Let 𝑸Q, arbitrarily chosen from 𝕍\mathbb{V}, be fixed. The feasible region of COP(𝕁)(\mathbb{J}) is either empty, or closed and bounded. If it is empty, then ζp(𝕁)=ζp(𝕂𝕁)=\zeta_{p}(\mathbb{J})=\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\infty. Otherwise, it is nonempty, closed and bounded. Hence, <ζp(𝕁)<-\infty<\zeta_{p}(\mathbb{J})<\infty. Therefore, Conditions (A)’ and (B) hold, and ζp(𝕂𝕁)=ζp(𝕁)\zeta_{p}(\mathbb{K}\cap\mathbb{J})=\zeta_{p}(\mathbb{J}) follows from Corollary 2.2.

‘if part’ of (iii): Assuming 𝕁^(𝕂)\mathbb{J}\not\in\widehat{\mbox{$\cal F$}}(\mathbb{K}), we show that <ζp(𝕁)<ζp(𝕂𝕁)<-\infty<\zeta_{p}(\mathbb{J})<\zeta_{p}(\mathbb{K}\cap\mathbb{J})<\infty for some 𝑸𝕍\mbox{\boldmath$Q$}\in\mathbb{V}. It follows from 𝕁^(𝕂)\mathbb{J}\not\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) that the convex cone co(𝕂𝕁)\mbox{co}(\mathbb{K}\cap\mathbb{J}) is a proper subset of the closed convex cone 𝕁\mathbb{J}. Hence, there exists a nonzero 𝑿¯𝕁\(co(𝕂𝕁))co𝕂\overline{\mbox{\boldmath$X$}}\in\mathbb{J}\backslash\big{(}\mbox{co}(\mathbb{K}\cap\mathbb{J})\big{)}\subseteq\mbox{co}\mathbb{K}. Let 𝑿~=𝑿¯/𝑯,𝑿¯𝕁\(co(𝕂𝕁))co𝕂\widetilde{\mbox{\boldmath$X$}}=\overline{\mbox{\boldmath$X$}}/\langle\mbox{\boldmath$H$},\,\overline{\mbox{\boldmath$X$}}\rangle\in\mathbb{J}\backslash\big{(}\mbox{co}(\mathbb{K}\cap\mathbb{J})\big{)}\subseteq\mbox{co}\mathbb{K}. Then, 𝑿~\widetilde{\mbox{\boldmath$X$}} is a feasible solution of COP(𝕁)(\mathbb{J}) but not in the bounded and closed feasible region S={𝑿co(𝕂𝕁):𝑯,𝑿=1}S=\{\mbox{\boldmath$X$}\in\mbox{co}\big{(}\mathbb{K}\cap\mathbb{J}):\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1\} of COP(co(𝕂𝕁)\mbox{co}(\mathbb{K}\cap\mathbb{J})). By the separation theorem of convex sets (see, for example, [21, Theorem 11.4.1]), there exist 𝑸𝕍\mbox{\boldmath$Q$}\in\mathbb{V} such that 𝑸,𝑿~<inf{𝑸,𝑿:𝑿S}=ζp(co(𝕂𝕁))\langle\mbox{\boldmath$Q$},\,\widetilde{\mbox{\boldmath$X$}}\rangle<\inf\{\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle:\mbox{\boldmath$X$}\in S\}=\zeta_{p}(\mbox{co}(\mathbb{K}\cap\mathbb{J})). Therefore, we obtain that

<ζp(𝕁)𝑸,𝑿~<ζp(co(𝕂𝕁))ζp(𝕂𝕁).\displaystyle-\infty<\zeta_{p}(\mathbb{J})\leq\langle\mbox{\boldmath$Q$},\,\widetilde{\mbox{\boldmath$X$}}\rangle<\zeta_{p}(\mbox{co}(\mathbb{K}\cap\mathbb{J}))\leq\zeta_{p}(\mathbb{K}\cap\mathbb{J}).

Given a convex cone \mathbb{C}, there are various ways to represent \mathbb{C} as the convex hull of a nonconvex cone. For example, when the convex cone \mathbb{C} is closed and pointed, \mathbb{C} can be represented as the convex hull of the nonconvex cone consisting of the extreme rays of \mathbb{C} [21, Theorem 18.5]. However, any face of \mathbb{C} can be added to the nonconvex cone. Thus, the representation of \mathbb{C} in terms of the convex hull of a nonconvex cone 𝕂\mathbb{K} is not unique. Theorem 1.2 (i) shows the possibility of the ‘finest’ representation of 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}), and (ii) the possibility of various coarse representations of 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). A similar observation can be applied to co𝕂\mathbb{K}; two distinct nonconvex cones 𝕂1𝕍\mathbb{K}_{1}\subseteq\mathbb{V} and 𝕂2𝕍\mathbb{K}_{2}\subseteq\mathbb{V} induce a common convex cone as their convex hull, co𝕂1=co𝕂2\mathbb{K}_{1}=\mbox{co}\mathbb{K}_{2}, such that ^(𝕂1)^(𝕂2)\widehat{\mbox{$\cal F$}}(\mathbb{K}_{1})\not=\widehat{\mbox{$\cal F$}}(\mathbb{K}_{2}). This fact has been observed in Examples 3.4.

3.4 Decompositions of COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J})

We now focus on Theorems 3.5 (v) and 1.2 (ii). Let 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Assume that 𝕁\mathbb{J} is decomposed into 𝔽\mathbb{F}\in\mbox{$\cal F$}\subseteq for some ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}) such that 𝕁=co()\mathbb{J}=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} as in Theorem 1.2 (ii). In general, (𝕂)\bigcup(\mathbb{K}\cap\mbox{$\cal F$}) could be a proper subset of 𝕂co()\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} by Theorem 3.5 (iv). By Theorem 3.5 (v), however, their convex hulls coincide with each other, and COP(co((𝕂))(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))) and COP(co(𝕂co())(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})) both induce a common convex relaxation, COP(co()\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}). We also know that each 𝔽\mathbb{F}\in\mbox{$\cal F$} satisfies co(𝕂𝔽)=𝔽(\mathbb{K}\cap\mathbb{F})=\mathbb{F}; hence COP(𝔽)(\mathbb{F}) is a convex relaxation of COP(𝕂𝔽)(\mathbb{K}\cap\mathbb{F}). The following theorem summarizes the relations of the three pairs of COPs and their convex conic relaxation, COP((𝕂)\bigcup(\mathbb{K}\cap\mbox{$\cal F$})) and COP(co()\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}), COP(𝕂co()\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}) and COP(co()\mbox{co}\big{(}\bigcup\mbox{$\cal F$})), and COP(𝕂𝔽\mathbb{K}\cap\mathbb{F}) and COP(𝔽\mathbb{F}) (𝔽\mathbb{F}\in\mbox{$\cal F$}). In particular, assertion (iii) of the theorem means that COP(𝕂co())(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}) can be decomposed into the family of subproblems COP(𝕂𝔽)(\mathbb{K}\cap\mathbb{F}), which is reformulated by COP(𝔽)(\mathbb{F}), (𝔽)(\mathbb{F}\in\mbox{$\cal F$}).

Theorem 3.6.

Assume that ^(𝕂)\mbox{$\cal F$}\subseteq\widehat{\mbox{$\cal F$}}(\mathbb{K}) and that <ζp(co())<-\infty<\zeta_{p}(\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})<\infty. Then, the following assertions hold.

(i) ζp((𝕂))=ζp(𝕂co())=ζp(co())\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))=\zeta_{p}(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})=\zeta_{p}(\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}).

(ii) ζp(𝕂𝔽)=ζp(𝔽)\zeta_{p}(\mathbb{K}\cap\mathbb{F})=\zeta_{p}(\mathbb{F}) (𝔽)(\mathbb{F}\in\mbox{$\cal F$}).

(iii) ζp(𝕂co())=inf{ζp(𝕂𝔽):𝔽}=inf{ζp(𝔽):𝔽}\zeta_{p}(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})=\inf\{\zeta_{p}(\mathbb{K}\cap\mathbb{F}):\mathbb{F}\in\mbox{$\cal F$}\}=\inf\{\zeta_{p}(\mathbb{F}):\mathbb{F}\in\mbox{$\cal F$}\}.

Proof.

(i) The pair of 𝕂\mathbb{K} and 𝕁=co()\mathbb{J}=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} satisfies Condition (A) by Lemma 2.1, and Condition (B) by Theorem 3.5 (v). Hence <ζp(𝕂co())=ζp(co())<-\infty<\zeta_{p}(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})=\zeta_{p}(\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})<\infty by Theorem 1.1. We now prove the identity ζp((𝕂))=ζp(co())\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))=\zeta_{p}(\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}). First, we show that <ζp((𝕂))<-\infty<\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))<\infty. Since (𝕂)𝕂co()\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\subseteq\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} by Theorem 3.5 (iv), we see that <ζp(𝕂co())ζp((𝕂))-\infty<\zeta_{p}(\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})\leq\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$})). It remains to show that COP((𝕂)\bigcup(\mathbb{K}\cap\mbox{$\cal F$})) is feasible. By Condition (A), there exists a feasible solution 𝑿¯\overline{\mbox{\boldmath$X$}} of COP(𝕂co()\mathbb{K}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}), which satisfies 𝑿¯𝕂\overline{\mbox{\boldmath$X$}}\in\mathbb{K}, 𝑿¯co()\overline{\mbox{\boldmath$X$}}\in\mbox{co}(\bigcup\mbox{$\cal F$}) and 𝑯,𝑿¯=1\langle\mbox{\boldmath$H$},\,\overline{\mbox{\boldmath$X$}}\rangle=1. From 𝑿¯co()\overline{\mbox{\boldmath$X$}}\in\mbox{co}(\bigcup\mbox{$\cal F$}), there exist 𝑿k\mbox{\boldmath$X$}^{k}\in\bigcup\mbox{$\cal F$} (1km)(1\leq k\leq m) such that 𝑿¯=k=1m𝑿k\overline{\mbox{\boldmath$X$}}=\sum_{k=1}^{m}\mbox{\boldmath$X$}^{k}. Since 1=𝑯,𝑿¯=k=1m𝑯,𝑿k1=\langle\mbox{\boldmath$H$},\,\overline{\mbox{\boldmath$X$}}\rangle=\sum_{k=1}^{m}\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}^{k}\rangle, 𝑯,𝑿k>0\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}^{k}\rangle>0 for some kk. Let 𝑿^=𝑿k/𝑯,𝑿k\widehat{\mbox{\boldmath$X$}}=\mbox{\boldmath$X$}^{k}/\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}^{k}\rangle. Then 𝑿^𝕂𝔽\widehat{\mbox{\boldmath$X$}}\in\mathbb{K}\cap\mathbb{F} for some 𝔽\mathbb{F}\in\mbox{$\cal F$} and 𝑯,𝑿^=1\langle\mbox{\boldmath$H$},\,\widehat{\mbox{\boldmath$X$}}\rangle=1, which implies that 𝑿^\widehat{\mbox{\boldmath$X$}} is a feasible solution of COP((𝕂)\bigcup(\mathbb{K}\cap\mbox{$\cal F$})). Hence, we have shown that <ζp((𝕂))<-\infty<\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))<\infty. Now, we observe that ((𝕂))co()=(𝕂)\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}=\bigcup(\mathbb{K}\cap\mbox{$\cal F$}) and that co((𝕂))co()=co((𝕂))=co()\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)}\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}=\mbox{co}\big{(}\bigcup(\mathbb{K}\cap\mbox{$\cal F$})\big{)}=\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)} by Theorem 3.5 (v). Therefore ζp((𝕂))=ζp((𝕂))co())=ζp(co())\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))=\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))\cap\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})=\zeta_{p}(\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}) follows from Theorem 1.1 with replacing 𝕂\mathbb{K} by (𝕂)\bigcup(\mathbb{K}\cap\mbox{$\cal F$}) and 𝕁\mathbb{J} by co()\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}.

(ii) Let 𝔽\mathbb{F}\in\mbox{$\cal F$} be arbitrarily fixed. Then, co(𝕂𝔽)=𝔽(\mathbb{K}\cap\mathbb{F})=\mathbb{F}. By Lemma 2.1, if COP(𝕂𝔽\mathbb{K}\cap\mathbb{F}) is infeasible then ζp(𝕂𝔽)=ζp(𝔽)=\zeta_{p}(\mathbb{K}\cap\mathbb{F})=\zeta_{p}(\mathbb{F})=\infty. Otherwise, COP(𝔽\mathbb{F}) is feasible; hence ζp(𝔽)<\zeta_{p}(\mathbb{F})<\infty. We also see that <ζp(co())ζp(𝔽)-\infty<\zeta_{p}(\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)})\leq\zeta_{p}(\mathbb{F}) from 𝔽co()\mathbb{F}\subseteq\mbox{co}\big{(}\bigcup\mbox{$\cal F$}\big{)}. By applying Corollary 2.2 with replacing 𝕁\mathbb{J} by 𝔽\mathbb{F}, we obtain ζp(𝕂𝔽)=ζp(𝔽)\zeta_{p}(\mathbb{K}\cap\mathbb{F})=\zeta_{p}(\mathbb{F}).

(iii) By (i) and (ii), it suffices to show ζp((𝕂))=inf{ζp(𝕂𝔽):𝔽}\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))=\inf\{\zeta_{p}(\mathbb{K}\cap\mathbb{F}):\mathbb{F}\in\mbox{$\cal F$}\}. Since 𝕂𝔽(𝕂)\mathbb{K}\cap\mathbb{F}\subseteq\bigcup(\mathbb{K}\cap\mbox{$\cal F$}) for every 𝔽\mathbb{F}\in\mbox{$\cal F$}, we see ζp((𝕂))inf{ζp(𝕂𝔽):𝔽}\zeta_{p}(\bigcup(\mathbb{K}\cap\mbox{$\cal F$}))\leq\inf\{\zeta_{p}(\mathbb{K}\cap\mathbb{F}):\mathbb{F}\in\mbox{$\cal F$}\}. To show the converse inequality, let 𝑿¯\overline{\mbox{\boldmath$X$}} be an arbitrary feasible solution of COP((𝕂)\bigcup(\mathbb{K}\cap\mbox{$\cal F$})) with the objective value ζ¯p=𝑸,𝑿¯\bar{\zeta}_{p}=\langle\mbox{\boldmath$Q$},\,\overline{\mbox{\boldmath$X$}}\rangle. Then 𝑯,𝑿¯=1\langle\mbox{\boldmath$H$},\,\overline{\mbox{\boldmath$X$}}\rangle=1 and 𝑿¯(𝕂)\overline{\mbox{\boldmath$X$}}\in\bigcup(\mathbb{K}\cap\mbox{$\cal F$}), i.e., 𝑿¯𝕂𝔽¯\overline{\mbox{\boldmath$X$}}\in\mathbb{K}\cap\overline{\mathbb{F}} for some 𝔽¯\overline{\mathbb{F}}\in\mbox{$\cal F$}. Hence 𝑿¯\overline{\mbox{\boldmath$X$}} is a feasible solution of COP(𝕂𝔽¯\mathbb{K}\cap\overline{\mathbb{F}}). Therefore, inf{ζp(𝕂𝔽):𝔽}ζp(𝕂𝔽¯)ζ¯p.\inf\{\zeta_{p}(\mathbb{K}\cap\mathbb{F}):\mathbb{F}\in\mbox{$\cal F$}\}\leq\zeta_{p}(\mathbb{K}\cap\overline{\mathbb{F}})\leq\bar{\zeta}_{p}.

4 A class of quadratically constrained quadratic programs with multiple nonconvex constraints

Throughout this section, we assume that 𝕂={𝒙𝒙T:𝒙n}\mathbb{K}=\{\mbox{\boldmath$x$}\mbox{\boldmath$x$}^{T}:\mbox{\boldmath$x$}\in\mathbb{R}^{n}\}, where n\mathbb{R}^{n} denotes the nn-dimensional linear space of column vectors 𝒙=(x1,,,xn)\mbox{\boldmath$x$}=(x_{1},\ldots,,x_{n}). Thus, co𝕂\mathbb{K} forms the positive semidefinite cone 𝕊+n\mathbb{S}^{n}_{+} in the space 𝕊n\mathbb{S}^{n} of n×nn\times n symmetric matrices. Let 𝕁𝕊n\mathbb{J}\subseteq\mathbb{S}^{n} be a closed convex cone and 𝑸,𝑯𝕊n\mbox{\boldmath$Q$},\ \mbox{\boldmath$H$}\in\mathbb{S}^{n}. We use COP(𝕂𝕁,𝑸,𝑯)(\mathbb{K}\cap\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) for COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}) and ζp(𝕂𝕁,𝑸,𝑯)\zeta_{p}(\mathbb{K}\cap\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) for ζp(𝕂𝕁)\zeta_{p}(\mathbb{K}\cap\mathbb{J}) to display their dependency on 𝑸𝕊n\mbox{\boldmath$Q$}\in\mathbb{S}^{n} and 𝑯𝕊n\mbox{\boldmath$H$}\in\mathbb{S}^{n}. Similarly, COP(𝕁,𝑸,𝑯)(\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) for COP(𝕁)(\mathbb{J}), ζp(𝕁,𝑸,𝑯)\zeta_{p}(\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) for ζp(𝕁)\zeta_{p}(\mathbb{J}), DCOP(𝕁,𝑸,𝑯)(\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) for DCOP(𝕁)(\mathbb{J}), and ζd(𝕁,𝑸,𝑯)\zeta_{d}(\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) for ζd(𝕁)\zeta_{d}(\mathbb{J}).

COP(𝕂𝕁,𝑸,𝑯)(\mathbb{K}\cap\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) represents a general (or extended) quadratically constrained quadratic program (QCQP)

ζp(𝕂𝕁,𝑸,𝑯)\displaystyle\zeta_{p}(\mathbb{K}\cap\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) =\displaystyle= inf{𝒙T𝑸𝒙:𝒙n,𝒙𝒙T𝕁,𝒙T𝑯𝒙=1},\displaystyle\inf\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}\in\mathbb{R}^{n},\ \mbox{\boldmath$x$}\mbox{\boldmath$x$}^{T}\in\mathbb{J},\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\},

and COP(𝕁,𝑸,𝑯)(\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) its semidefinite programming (SDP) relaxation. Recall that Theorem 1.2 (i) states a necessary and sufficient condition

𝕁=co𝕂\mathbb{J}=\mbox{co}\mathbb{K}^{\prime} for some cone 𝕂𝕂={all extreme rays of 𝕊+n}\mathbb{K}^{\prime}\subseteq\mathbb{K}=\cup\{\mbox{all extreme rays of }\mathbb{S}^{n}_{+}\}

for 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}), and Theorem 3.5 (iii) describes a necessary condition

every extreme ray of 𝕁\mathbb{J} lies in 𝕂\mathbb{K}

for 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). See Figure 2 in Section 3. These two conditions are independent from the description of 𝕁\mathbb{J}. When applying to QCQPs, however, 𝕁\mathbb{J} is usually described in terms of inequalities 𝑩k,𝑿0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0 and/or equalities 𝑩k,𝑿=0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle=0 with 𝑩k𝕊n\mbox{\boldmath$B$}_{k}\in\mathbb{S}^{n} (1km)(1\leq k\leq m). In this section, we focus on the cases where 𝕁={𝑿𝕊+n:𝑩k,𝑿0(1km)}\mathbb{J}=\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}:\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0\ (1\leq k\leq m)\}, and present a sufficient condition on 𝑩k𝕊n\mbox{\boldmath$B$}_{k}\in\mathbb{S}^{n} (1km)(1\leq k\leq m) for 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). The condition should be sufficient for the above mentioned conditions to hold.

For each 𝑩𝕊n\mbox{\boldmath$B$}\in\mathbb{S}^{n}, let

𝕁0(𝑩)={𝑿𝕊+n:𝑩,𝑿=0},𝕁(𝑩)={𝑿𝕊+n:𝑩,𝑿0}.\displaystyle\mathbb{J}_{0}(\mbox{\boldmath$B$})=\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle=0\},\ \mathbb{J}_{-}(\mbox{\boldmath$B$})=\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle\leq 0\}.

Let mm be a nonnegative integer, 𝑸,𝑯,𝑩1,,𝑩m𝕊n\mbox{\boldmath$Q$},\ \mbox{\boldmath$H$},\ \mbox{\boldmath$B$}_{1},\ldots,\mbox{\boldmath$B$}_{m}\in\mathbb{S}^{n}, and 𝕁=k=1m𝕁(𝑩k)\mathbb{J}_{-}=\cap_{k=1}^{m}\mathbb{J}_{-}(\mbox{\boldmath$B$}_{k}). We note that 𝕁=𝕊+n^(𝕂)\mathbb{J}_{-}=\mathbb{S}^{n}_{+}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) if m=0m=0. We consider COP(𝕂𝕁,𝑸,𝑯)(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) and its convex relaxation COP(𝕁,𝑸,𝑯)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}). We can rewrite COP(𝕂𝕁,𝑸,𝑯)(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) as a QCQP:

ζp(𝕂𝕁,𝑸,𝑯)\displaystyle\zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) =\displaystyle= inf{𝒙T𝑸𝒙:𝒙n,𝒙T𝑩k𝒙0(1km),𝒙T𝑯𝒙=1}.\displaystyle\inf\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\begin{array}[]{l}\mbox{\boldmath$x$}\in\mathbb{R}^{n},\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{k}\mbox{\boldmath$x$}\leq 0\ (1\leq k\leq m),\\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\end{array}\right\}. (18)

COP(𝕁,𝑸,𝑯)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}) serves as an SDP relaxation of the QCQP (18). We establish the following result.

Theorem 4.1.

Assume that

𝕁0(𝑩k)𝕁=1m𝕁(𝑩)(1km).\displaystyle\mathbb{J}_{0}(\mbox{\boldmath$B$}_{k})\subseteq\mathbb{J}_{-}\equiv\cap_{\ell=1}^{m}\mathbb{J}_{-}(\mbox{\boldmath$B$}_{\ell})\ (1\leq k\leq m). (19)

(Recall Figure 1 in Section 1). Then,

(i) 𝕁^(𝕂)\mathbb{J}_{-}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

(ii) Let 𝑸𝕊n\mbox{\boldmath$Q$}\in\mathbb{S}^{n} and 𝑯𝕊n\mbox{\boldmath$H$}\in\mathbb{S}^{n}. Then <ζp(𝕁,𝑸,𝑯)=ζp(𝕂𝕁,𝑸,𝑯)<-\infty<\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$})=\zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$})<\infty iff <ζp(𝕁,𝑸,𝑯)<-\infty<\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$})<\infty.

We provide some illustrative examples in Section 4.1, before presenting a proof of the theorem in Section 4.2. If m=0m=0 or 11, then condition (19) obviously holds. The following proposition presents sufficient conditions for (19), which can be algebraically verified. In particular, condition (21) is used in the examples.

Proposition 4.2.

Suppose that m2m\geq 2. If

𝑩𝑩kτ𝕊+nfor some τ(1k,m,k),\displaystyle-\mbox{\boldmath$B$}_{\ell}-\mbox{\boldmath$B$}_{k}\tau\in\mathbb{S}^{n}_{+}\ \mbox{for some }\tau\in\mathbb{R}\ (1\leq k,\ \ell\leq m,\ k\not=\ell), (20)

where τ\tau can depend on both kk and \ell, or

𝑩k+𝑩,𝑿0for every 𝐗𝕊+nor(𝑩k+𝑩)𝕊+n(1k<m),\displaystyle\hskip 8.53581pt\;\;\;\langle\mbox{\boldmath$B$}_{k}+\mbox{\boldmath$B$}_{\ell},\,\mbox{\boldmath$X$}\rangle\leq 0\ \mbox{for every }\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}\ \mbox{or}-(\mbox{\boldmath$B$}_{k}+\mbox{\boldmath$B$}_{\ell})\in\mathbb{S}^{n}_{+}\ (1\leq k<\ell\leq m), (21)

then (19) holds.

Proof.

Condition (20) can be rewritten as

𝑩𝕊+n+{𝑩kτ:τ}(1k,m,k).\displaystyle-\mbox{\boldmath$B$}_{\ell}\in\mathbb{S}^{n}_{+}+\{\mbox{\boldmath$B$}_{k}\tau:\tau\in\mathbb{R}\}\ (1\leq k,\ \ell\leq m,\ k\not=\ell).

Also, condition (19) can be rewritten as

𝑩𝕁0(𝑩k)\displaystyle-\mbox{\boldmath$B$}_{\ell}\in\mathbb{J}_{0}(\mbox{\boldmath$B$}_{k})^{*} =\displaystyle= (𝕊+n{𝑿𝕊n:𝑩k,𝑿=0})\displaystyle\big{(}\mathbb{S}^{n}_{+}\cap\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}:\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle=0\}\big{)}^{*}
=\displaystyle= cl(𝕊+n+{𝑩kτ:τ})(1k,m,k),\displaystyle\mbox{cl}\big{(}\mathbb{S}^{n}_{+}+\{\mbox{\boldmath$B$}_{k}\tau:\tau\in\mathbb{R}\}\big{)}\ (1\leq k,\ \ell\leq m,\ k\not=\ell),

where clCC denotes the closure of C𝕊nC\subseteq\mathbb{S}^{n} (see [17] for the second identity). Therefore (20) implies (19). Condition (21) is a special case of (20) with taking τ=1\tau=1. Hence (21) implies (19). ∎

We note that (20) is not necessary for condition of (19). For example, take n=m=2n=m=2, 𝑩1=(1110)\mbox{\boldmath$B$}_{1}={\scriptsize\begin{pmatrix}1&1\\ 1&0\end{pmatrix}} and 𝑩2=(1000)\mbox{\boldmath$B$}_{2}={\scriptsize\begin{pmatrix}-1&0\\ 0&0\end{pmatrix}}. Then 𝑩1𝑩2τ𝕊+2-\mbox{\boldmath$B$}_{1}-\mbox{\boldmath$B$}_{2}\tau\not\in\mathbb{S}^{2}_{+} for any τ\tau\in\mathbb{R} but

𝕁0(𝑩1)𝕊+2=𝕁(𝑩2),𝕁0(𝑩2)={(000X22):X220}𝕁(𝑩1).\displaystyle\mathbb{J}_{0}(\mbox{\boldmath$B$}_{1})\subseteq\mathbb{S}^{2}_{+}=\mathbb{J}_{-}(\mbox{\boldmath$B$}_{2}),\ \mathbb{J}_{0}(\mbox{\boldmath$B$}_{2})=\left\{\begin{pmatrix}0&0\\ 0&X_{22}\end{pmatrix}:X_{22}\geq 0\right\}\subseteq\mathbb{J}_{-}(\mbox{\boldmath$B$}_{1}).

Hence condition (19) holds. If τ0\tau\leq 0 in (20), then 𝑩,𝑿0\langle\mbox{\boldmath$B$}_{\ell},\,\mbox{\boldmath$X$}\rangle\leq 0 for every 𝑿𝕊+n\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+} satisfying 𝑩k,𝑿0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0; hence the constraint 𝑩,𝑿0\langle\mbox{\boldmath$B$}_{\ell},\,\mbox{\boldmath$X$}\rangle\leq 0 (or 𝕁(𝑩)\mathbb{J}_{-}(\mbox{\boldmath$B$}_{\ell})) is redundant. If we assume that none of the constraints 𝑩k,𝑿0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0 (1km)(1\leq k\leq m) is redundant, then we can take τ>0\tau>0 in (20)

In Section 4.3, we prove the following result.

Theorem 4.3.

Let 𝐁𝕊n\mbox{\boldmath$B$}\in\mathbb{S}^{n}.

(i) 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) and 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) are equivalent.

(ii) 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

In Section 4.4, we briefly discuss how multiple equality constraints can be added to QCQPs (18).

4.1 Some examples

We present six examples.

Example 4.4.

If m=1m=1, then (19) is satisfied for any 𝑩1𝕊n\mbox{\boldmath$B$}_{1}\in\mathbb{S}^{n}. Let 𝑸0,𝑸1,𝑸2𝕊\mbox{\boldmath$Q$}_{0},\ \mbox{\boldmath$Q$}_{1},\ \mbox{\boldmath$Q$}_{2}\in\mathbb{S}^{\ell}. Consider the QCQP

ζQCQP\displaystyle\zeta_{\rm QCQP} =\displaystyle= inf{𝒖T𝑸0𝒖:𝒖,𝒖T𝑸1𝒖1,𝒖T𝑸2𝒖1}.\displaystyle\inf\left\{\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{0}\mbox{\boldmath$u$}:\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{1}\mbox{\boldmath$u$}\leq 1,\ \mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{2}\mbox{\boldmath$u$}\leq 1\right\}. (22)

This form of QCQP was studied in [19, 26]. They showed that QCQP (22) can be solved by its SDP relaxation under strong duality of its SDP relaxation, which is not assumed here. We can transform QCQP (22) into

ηQCQP\displaystyle\eta_{\rm QCQP} =\displaystyle= inf{𝒖T𝑸0𝒖:𝒖,u+1,𝒖T𝑸1𝒖1,𝒖T𝑸2𝒖+u+12=1}\displaystyle\inf\left\{\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{0}\mbox{\boldmath$u$}:\begin{array}[]{l}\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},\ u_{\ell+1}\in\mathbb{R},\\ \mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{1}\mbox{\boldmath$u$}\leq 1,\ \mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{2}\mbox{\boldmath$u$}+u_{\ell+1}^{2}=1\end{array}\right\}
=\displaystyle= inf{𝒖T𝑸0𝒖:𝒖,u+1,𝒖T(𝑸1𝑸2)𝒖u+120,𝒖T𝑸2𝒖+u+12=1}\displaystyle\inf\left\{\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{0}\mbox{\boldmath$u$}:\begin{array}[]{l}\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},\ u_{\ell+1}\in\mathbb{R},\\ \mbox{\boldmath$u$}^{T}(\mbox{\boldmath$Q$}_{1}-\mbox{\boldmath$Q$}_{2})\mbox{\boldmath$u$}-u_{\ell+1}^{2}\leq 0,\ \mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{2}\mbox{\boldmath$u$}+u_{\ell+1}^{2}=1\end{array}\right\}
=\displaystyle= inf{𝒙T𝑸𝒙:𝒙n,𝒙T𝑩1𝒙0,𝒙T𝑯𝒙=1}\displaystyle\inf\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}\in\mathbb{R}^{n},\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{1}\mbox{\boldmath$x$}\leq 0,\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\}
=\displaystyle= ζp(𝕁,𝑸,𝑯)(with m=1),\displaystyle\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$})\ \mbox{(with $m=1$)},

where n=+1n=\ell+1,

𝒙=(𝒖ul+1),𝑸=(𝑸000T0),𝑩1=(𝑸1𝑸200T1),𝑯=(𝑸200T1).\displaystyle\mbox{\boldmath$x$}=\begin{pmatrix}\mbox{\boldmath$u$}\\ u_{l+1}\end{pmatrix},\ \mbox{\boldmath$Q$}=\begin{pmatrix}\mbox{\boldmath$Q$}_{0}&\mbox{\bf 0}\\ \mbox{\bf 0}^{T}&0\end{pmatrix},\ \mbox{\boldmath$B$}_{1}=\begin{pmatrix}\mbox{\boldmath$Q$}_{1}-\mbox{\boldmath$Q$}_{2}&\mbox{\bf 0}\\ \mbox{\bf 0}^{T}&-1\end{pmatrix},\ \mbox{\boldmath$H$}=\begin{pmatrix}\mbox{\boldmath$Q$}_{2}&\mbox{\bf 0}\\ \mbox{\bf 0}^{T}&1\end{pmatrix}.

Thus, condition (19) is satisfied with m=1m=1.

Example 4.5.

Let 𝑸,𝑯,𝑩𝕊n\mbox{\boldmath$Q$},\ \mbox{\boldmath$H$},\ \mbox{\boldmath$B$}\in\mathbb{S}^{n}. Consider a QCQP with two equality constraints.

ηQCQP\displaystyle\eta_{\rm QCQP} =\displaystyle= {𝒙T𝑸𝒙:𝒙T𝑩𝒙=1,𝒙T𝑯𝒙=1}\displaystyle\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}\mbox{\boldmath$x$}=1,\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\}
=\displaystyle= {𝒙T𝑸𝒙:𝒙T(𝑩𝑯)𝒙=0,𝒙T𝑯𝒙=1}=ζp(𝕁0(𝑩1),𝑸,𝑯),\displaystyle\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}^{T}(\mbox{\boldmath$B$}-\mbox{\boldmath$H$})\mbox{\boldmath$x$}=0,\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\}\ =\ \zeta_{p}(\mathbb{J}_{0}(\mbox{\boldmath$B$}_{1}),\mbox{\boldmath$Q$},\mbox{\boldmath$H$}),

where 𝑩1=𝑩𝑯\mbox{\boldmath$B$}_{1}=\mbox{\boldmath$B$}-\mbox{\boldmath$H$}. By Theorem 4.3 (ii), 𝕁0(𝑩1)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$}_{1})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). We can also rewrite the QCQP as

ηQCQP\displaystyle\eta_{\rm QCQP} =\displaystyle= {𝒙T𝑸𝒙:𝒙T(𝑩1)𝒙0,𝒙T(𝑩2)𝒙0,𝒙T𝑯𝒙=1},\displaystyle\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}^{T}(\mbox{\boldmath$B$}_{1})\mbox{\boldmath$x$}\leq 0,\ \mbox{\boldmath$x$}^{T}(\mbox{\boldmath$B$}_{2})\mbox{\boldmath$x$}\leq 0,\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\},

where 𝑩2=(𝑩𝑯)\mbox{\boldmath$B$}_{2}=-(\mbox{\boldmath$B$}-\mbox{\boldmath$H$}). Then (𝑩1+𝑩2)=𝑶𝕊+n-(\mbox{\boldmath$B$}_{1}+\mbox{\boldmath$B$}_{2})=\mbox{\boldmath$O$}\in\mathbb{S}^{n}_{+}; hence (21) holds with m=2m=2. This also shows that 𝕁0(𝑩1)=𝕁(𝑩1)𝕁(𝑩1)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$}_{1})=\mathbb{J}_{-}(\mbox{\boldmath$B$}_{1})\cap\mathbb{J}_{-}(-\mbox{\boldmath$B$}_{1})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) for every 𝑩1𝕊n\mbox{\boldmath$B$}_{1}\in\mathbb{S}^{n}.

Example 4.6.

Let qk(𝒖)=𝒖T𝑸k𝒖+2𝒃kT𝒖q_{k}(\mbox{\boldmath$u$})=\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{k}\mbox{\boldmath$u$}+2\mbox{\boldmath$b$}_{k}^{T}\mbox{\boldmath$u$} be a quadratic function in 𝒖\mbox{\boldmath$u$}\in\mathbb{R}^{\ell}, where 𝑸k𝕊\mbox{\boldmath$Q$}_{k}\in\mathbb{S}^{\ell}, 𝒃k\mbox{\boldmath$b$}_{k}\in\mathbb{R}^{\ell} (k=0,1)(k=0,1). Consider a QCQP:

ζQCQP\displaystyle\zeta_{\rm QCQP} =\displaystyle= inf{q0(𝒖):𝒖,1q1(𝒖)1}.\displaystyle\inf\left\{q_{0}(\mbox{\boldmath$u$}):\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},-1\leq q_{1}(\mbox{\boldmath$u$})\leq 1\right\}. (25)

This type of QCQP was studied in [23] in connection with indefinite trust region subproblems. See also [11, 26]. QCQP (25) can be rewritten as

ηQCQP\displaystyle\eta_{\rm QCQP} =\displaystyle= inf{𝒖T𝑸0𝒖+2𝒃0T𝒖u+1:𝒖,u+1,u+12=1,𝒖T𝑸1𝒖2𝒃1T𝒖u+1u+120,𝒖T𝑸1𝒖+2𝒃1T𝒖u+1u+120}\displaystyle\inf\left\{\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{0}\mbox{\boldmath$u$}+2\mbox{\boldmath$b$}_{0}^{T}\mbox{\boldmath$u$}u_{\ell+1}:\begin{array}[]{l}\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},\ u_{\ell+1}\in\mathbb{R},\ u_{\ell+1}^{2}=1,\\ -\mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{1}\mbox{\boldmath$u$}-2\mbox{\boldmath$b$}_{1}^{T}\mbox{\boldmath$u$}u_{\ell+1}-u_{\ell+1}^{2}\leq 0,\\ \mbox{\boldmath$u$}^{T}\mbox{\boldmath$Q$}_{1}\mbox{\boldmath$u$}+2\mbox{\boldmath$b$}_{1}^{T}\mbox{\boldmath$u$}u_{\ell+1}-u_{\ell+1}^{2}\leq 0\end{array}\right\}
=\displaystyle= inf{𝒙T𝑸𝒙:𝒙T𝑩1𝒙0,𝒙T𝑩2𝒙0,𝒙T𝑯𝒙=1}\displaystyle\inf\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{1}\mbox{\boldmath$x$}\leq 0,\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{2}\mbox{\boldmath$x$}\leq 0,\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\}
=\displaystyle= ζp(𝕁,𝑸,𝑯)(with m=2),\displaystyle\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$H$})\ \mbox{(with $m=2$)},

where n=+1n=\ell+1,

𝒙=(𝒖ul+1)n,𝑸=(𝑸0𝒃0𝒃0T0)𝕊n,\displaystyle\mbox{\boldmath$x$}=\begin{pmatrix}\mbox{\boldmath$u$}\\ u_{l+1}\end{pmatrix}\in\mathbb{R}^{n},\ \mbox{\boldmath$Q$}=\begin{pmatrix}\mbox{\boldmath$Q$}_{0}&\mbox{\boldmath$b$}_{0}\\ \mbox{\boldmath$b$}_{0}^{T}&0\end{pmatrix}\in\mathbb{S}^{n},
𝑩1=(𝑸1𝒃1𝒃1T1)𝕊n,𝑩2=(𝑸1𝒃1𝒃1T1)𝕊n,𝑯=(𝑶00T1)𝕊n.\displaystyle\mbox{\boldmath$B$}_{1}=\begin{pmatrix}-\mbox{\boldmath$Q$}_{1}&-\mbox{\boldmath$b$}_{1}\\ -\mbox{\boldmath$b$}_{1}^{T}&-1\end{pmatrix}\in\mathbb{S}^{n},\ \mbox{\boldmath$B$}_{2}=\begin{pmatrix}\mbox{\boldmath$Q$}_{1}&\mbox{\boldmath$b$}_{1}\\ \mbox{\boldmath$b$}_{1}^{T}&-1\end{pmatrix}\in\mathbb{S}^{n},\ \mbox{\boldmath$H$}=\begin{pmatrix}\mbox{\boldmath$O$}&\mbox{\bf 0}&\\ \mbox{\bf 0}^{T}&1\end{pmatrix}\in\mathbb{S}^{n}.

It is easy to verify that

𝑩1,𝑿+𝑩2,𝑿=2Xnn0for every 𝑿𝕊+n.\displaystyle\langle\mbox{\boldmath$B$}_{1},\,\mbox{\boldmath$X$}\rangle+\langle\mbox{\boldmath$B$}_{2},\,\mbox{\boldmath$X$}\rangle=-2X_{nn}\leq 0\ \mbox{for every }\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}. (27)

Therefore, condition (21) is satisfied with m=2m=2.

Example 4.7.

We add the constraint 𝒖2/γγ\parallel\mbox{\boldmath$u$}\parallel^{2}/\gamma\geq\gamma to QCQP (25) in Example 4.6, where γ>0\gamma>0 is a parameter determined later. Then, the resulting QCQP can be written as

ηQCQP\displaystyle\eta_{\rm QCQP} =\displaystyle= inf{q0(𝒖):𝒖,1q1(𝒖)1,𝒖2/γγ}\displaystyle\inf\left\{q_{0}(\mbox{\boldmath$u$}):\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},-1\leq q_{1}(\mbox{\boldmath$u$})\leq 1,\ \parallel\mbox{\boldmath$u$}\parallel^{2}/\gamma\geq\gamma\right\} (28)
=\displaystyle= inf{𝒙T𝑸𝒙:𝒙T𝑩k𝒙0(k=1,2,3),𝒙T𝑯𝒙=1},\displaystyle\inf\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{k}\mbox{\boldmath$x$}\leq 0\ (k=1,2,3),\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1\right\},

where nn, 𝒙x, 𝑸Q, 𝑩1\mbox{\boldmath$B$}_{1}, 𝑩2\mbox{\boldmath$B$}_{2} and 𝑯H are the same as in Example 4.6 and 𝑩3=(𝑰/γ00Tγ)𝕊n\mbox{\boldmath$B$}_{3}={\scriptsize\begin{pmatrix}-\mbox{\boldmath$I$}/\gamma&\mbox{\bf 0}\\ \mbox{\bf 0}^{T}&\gamma\end{pmatrix}}\in\mathbb{S}^{n}. In addition to (27),

𝑩1,𝑿+𝑩3,𝑿=(𝑸1𝑰/γ𝒃1𝒃1T1+γ),𝑿0for every 𝑿𝕊+n,𝑩2,𝑿+𝑩3,𝑿=(𝑸1𝑰/γ𝒃1𝒃1T1+γ),𝑿0for every 𝑿𝕊+n}\displaystyle\left.\begin{array}[]{lcl}\langle\mbox{\boldmath$B$}_{1},\,\mbox{\boldmath$X$}\rangle+\langle\mbox{\boldmath$B$}_{3},\,\mbox{\boldmath$X$}\rangle&=&\langle{\scriptsize\begin{pmatrix}-\mbox{\boldmath$Q$}_{1}-\mbox{\boldmath$I$}/\gamma&-\mbox{\boldmath$b$}_{1}\\ -\mbox{\boldmath$b$}_{1}^{T}&-1+\gamma\end{pmatrix}},\,\mbox{\boldmath$X$}\rangle\leq 0\ \mbox{for every }\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+},\\[3.0pt] \langle\mbox{\boldmath$B$}_{2},\,\mbox{\boldmath$X$}\rangle+\langle\mbox{\boldmath$B$}_{3},\,\mbox{\boldmath$X$}\rangle&=&\langle{\scriptsize\begin{pmatrix}\mbox{\boldmath$Q$}_{1}-\mbox{\boldmath$I$}/\gamma&\mbox{\boldmath$b$}_{1}\\ \mbox{\boldmath$b$}_{1}^{T}&-1+\gamma\end{pmatrix}},\,\mbox{\boldmath$X$}\rangle\leq 0\ \mbox{for every }\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}\end{array}\right\} (31)

hold if we take a sufficiently small γ>0\gamma>0. Therefore, condition (21) is satisfied with m=3m=3.

Adding the constraint 𝒖2/γγ\parallel\mbox{\boldmath$u$}\parallel^{2}/\gamma\geq\gamma to QCQP (25) is interpreted as removing the ball {𝒖n:𝒖/γ<γ}\{\mbox{\boldmath$u$}\in\mathbb{R}^{n}:\parallel\mbox{\boldmath$u$}\parallel/\gamma<\gamma\} with the center 0, which lies the interior of the feasible region, from the feasible region. The above result implies that if the size of the ball is sufficiently small then we can remove the ball from the feasible region without destroying 𝕁^(𝕂)\mathbb{J}_{-}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). For example, suppose that 𝑸1=𝑶\mbox{\boldmath$Q$}_{1}=\mbox{\boldmath$O$} and 𝒃1=(01/2)\mbox{\boldmath$b$}_{1}={\scriptsize\begin{pmatrix}\mbox{\bf 0}\\ 1/2\end{pmatrix}}\in\mathbb{R}^{\ell}. Then QCQP (28) turns out to be

ηQCQP\displaystyle\eta_{\rm QCQP} =\displaystyle= inf{q0(𝒖):𝒖,1u1,𝒖2/γγ}.\displaystyle\inf\left\{q_{0}(\mbox{\boldmath$u$}):\mbox{\boldmath$u$}\in\mathbb{R}^{\ell},\ -1\leq u_{\ell}\leq 1,\ \parallel\mbox{\boldmath$u$}\parallel^{2}/\gamma\geq\gamma\right\}.

In this case, if 0<γ4/50<\gamma\leq 4/5, then (31) is satisfied. It is interesting to note that the unit ball {𝒖:𝒖1}\{\mbox{\boldmath$u$}\in\mathbb{R}^{\ell}:\parallel\mbox{\boldmath$u$}\parallel\leq 1\} is included in {𝒖:1u1}\{\mbox{\boldmath$u$}\in\mathbb{R}^{\ell}:-1\leq u_{\ell}\leq 1\}, but we cannot take γ=1\gamma=1 to satisfy (31).

Example 4.8.

Let 𝑩k\mbox{\boldmath$B$}_{k} be a matrix in 𝕊n\mathbb{S}^{n} whose elements satisfy

[Bk]ij=[Bk]ji{(,1]if i=j=k,(,2]if i=jk,[1/(2n),1/(2n)]otherwise.\displaystyle[B_{k}]_{ij}=[B_{k}]_{ji}\in\left\{\begin{array}[]{ll}(-\infty,1]&\mbox{if $i=j=k$},\\ {(-\infty,-2]}&\mbox{if $i=j\not=k$},\\ {[-1/(2n),1/(2n)]}&\mbox{otherwise}.\end{array}\right.

(k=1,,n)(k=1,\ldots,n). Then,

([Bk]ij+[B]ij)=([Bk]ji+[B]ji){[1,)if i=j,[1/n,1/n]otherwise,\displaystyle-([B_{k}]_{ij}+[B_{\ell}]_{ij})=-([B_{k}]_{ji}+[B_{\ell}]_{ji})\in\left\{\begin{array}[]{ll}[1,\infty)&\mbox{if $i=j$},\\ {[-1/n,1/n]}&\mbox{otherwise},\end{array}\right.

which implies that (𝑩k+𝑩)-(\mbox{\boldmath$B$}_{k}+\mbox{\boldmath$B$}_{\ell}) is diagonally dominant; hence positive semidefinite (1k<n)(1\leq k<\ell\leq n). Therefore, condition (21) is satisfied with m=nm=n.

Example 4.9.

Let 𝑨A be an r×nr\times n matrix. Adding a homogeneous linear equality constraint 𝑨𝒙=0\mbox{\boldmath$A$}\mbox{\boldmath$x$}=\mbox{\bf 0} to QCQP (18), we have

η¯QCQP\displaystyle\bar{\eta}_{\rm QCQP} =\displaystyle= inf{𝒙T𝑸𝒙:𝒙n,𝒙T𝑩k𝒙0(1km),𝒙T𝑯𝒙=1,𝑨𝒙=0}\displaystyle\inf\left\{\mbox{\boldmath$x$}^{T}\mbox{\boldmath$Q$}\mbox{\boldmath$x$}:\begin{array}[]{l}\mbox{\boldmath$x$}\in\mathbb{R}^{n},\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$B$}_{k}\mbox{\boldmath$x$}\leq 0\ (1\leq k\leq m),\\ \mbox{\boldmath$x$}^{T}\mbox{\boldmath$H$}\mbox{\boldmath$x$}=1,\ \mbox{\boldmath$A$}\mbox{\boldmath$x$}=\mbox{\bf 0}\end{array}\right\}
=\displaystyle= inf{𝑸,𝑿:𝑿𝕂𝕁𝔽}=ζp(𝕂𝕁𝔽,𝑸,𝑯),\displaystyle\inf\left\{\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle:\mbox{\boldmath$X$}\in\mathbb{K}\cap\mathbb{J}_{-}\cap\mathbb{F}\right\}\ =\ \zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-}\cap\mathbb{F},\mbox{\boldmath$Q$},\mbox{\boldmath$H$}),

where 𝔽{𝑿𝕊+n:𝑨T𝑨,𝑿=0}\mathbb{F}\equiv\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+}:\langle\mbox{\boldmath$A$}^{T}\mbox{\boldmath$A$},\,\mbox{\boldmath$X$}\rangle=0\} forms a face of 𝕊+n\mathbb{S}^{n}_{+} since 𝑨T𝑨𝕊+n\mbox{\boldmath$A$}^{T}\mbox{\boldmath$A$}\in\mathbb{S}^{n}_{+}. By Theorem 3.5 (ii), 𝕁𝔽^(𝕂)\mathbb{J}_{-}\cap\mathbb{F}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) if 𝕁^(𝕂)\mathbb{J}_{-}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Therefore, we can add 𝑨𝒙=0\mbox{\boldmath$A$}\mbox{\boldmath$x$}=\mbox{\bf 0} to any of the examples above so that the resulting QCQP can still be solved exactly by its SDP relaxation as long as <ζp(𝕁𝔽,𝑸,𝑯)<-\infty<\zeta_{p}(\mathbb{J}_{-}\cap\mathbb{F},\mbox{\boldmath$Q$},\mbox{\boldmath$H$})<\infty.

4.2 Proof of Theorem 4.1

We need the following lemma.

Lemma 4.10.

([26, Lemma 2.2], see also [24, Proposition 3]) Let 𝐁𝕊n\mbox{\boldmath$B$}\in\mathbb{S}^{n} and 𝐗𝕊+n\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+} with rank𝐗=r\mbox{\boldmath$X$}=r. Suppose that 𝐁,𝐗0\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle\leq 0. Then, there exists a rank-1 decomposition of 𝐗X such that 𝐗=i=1r𝐱i𝐱iT\mbox{\boldmath$X$}=\sum_{i=1}^{r}\mbox{\boldmath$x$}_{i}\mbox{\boldmath$x$}_{i}^{T} and 𝐱iT𝐁𝐱i0\mbox{\boldmath$x$}_{i}^{T}\mbox{\boldmath$B$}\mbox{\boldmath$x$}_{i}\leq 0 (1ir)(1\leq i\leq r). If, in particular, 𝐁,𝐗=0\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle=0, then 𝐱iT𝐁𝐱i=0\mbox{\boldmath$x$}_{i}^{T}\mbox{\boldmath$B$}\mbox{\boldmath$x$}_{i}=0 (1ir)(1\leq i\leq r).

Proof Theorem 4.1 (i): For the proof, we utilize Theorem 1.2 (iii) and Lemma 4.10. Choose a 𝑸𝕊n\mbox{\boldmath$Q$}\in\mathbb{S}^{n} arbitrarily, and consider COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). We first observe that the feasible region of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) is either empty or bounded since every feasible 𝑿X satisfies 𝑿𝕊+n\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+} and 𝑰,𝑿=1\langle\mbox{\boldmath$I$},\,\mbox{\boldmath$X$}\rangle=1. If 𝕁={𝑶}\mathbb{J}_{-}=\{\mbox{\boldmath$O$}\}, then the feasible region of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) is empty; hence ζp(𝕁,𝑸,𝑰)=ζp(𝕂𝕁,𝑸,𝑰)=\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})=\zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})=\infty. Otherwise, there exists a nonzero 𝑿𝕁𝕊+n\mbox{\boldmath$X$}\in\mathbb{J}_{-}\subseteq\mathbb{S}^{n}_{+}, and 𝑿/𝑰,𝑿\mbox{\boldmath$X$}/\langle\mbox{\boldmath$I$},\,\mbox{\boldmath$X$}\rangle lies in the feasible region. Hence, the feasible region is bounded, and COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) has a nonzero optimal solution with a finite optimal value ζp(𝕁,𝑸,𝑰)\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). Obviously 𝑰𝕊+n𝕁\mbox{\boldmath$I$}\in\mathbb{S}^{n}_{+}\subseteq\mathbb{J}_{-}^{*}. By Theorem 2.3, DCOP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) has an optimal solution (t¯,𝒀¯)×𝕁(\bar{t},\overline{\mbox{\boldmath$Y$}})\in\mathbb{R}\times\mathbb{J}_{-}^{*} such that

0\displaystyle 0 =\displaystyle= ζp(𝕁,𝑸,𝑰)ζd(𝕁,𝑸,𝑰)=𝑿,𝒀¯\displaystyle\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})-\zeta_{d}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})=\langle\mbox{\boldmath$X$},\,\overline{\mbox{\boldmath$Y$}}\rangle

for every optimal solutions 𝑿X of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). The following two cases occur. Case (a): there exists a nonzero optimal solution 𝑿X and a k{1,,m}k\in\{1,\ldots,m\} such that 𝑿𝕁0(𝑩k)\mbox{\boldmath$X$}\in\mathbb{J}_{0}(\mbox{\boldmath$B$}_{k}), i.e., 𝑩k,𝑿=0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle=0. Case (b): 𝑩k,𝑿<0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle<0 for all optimal solutions of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) and all k{1,,m}k\in\{1,\ldots,m\}.

Case (a): Let r=rank𝑿r=\mbox{rank}\mbox{\boldmath$X$}. By Lemma 4.10, there exists a rank-1 decomposition of 𝑿X such that 𝑿=i=1r𝒙i𝒙iT\mbox{\boldmath$X$}=\sum_{i=1}^{r}\mbox{\boldmath$x$}_{i}\mbox{\boldmath$x$}_{i}^{T} and 𝒙iT𝑩k𝒙i=0\mbox{\boldmath$x$}_{i}^{T}\mbox{\boldmath$B$}_{k}\mbox{\boldmath$x$}_{i}=0 (i.e., 𝒙i𝒙iT𝕁0(𝑩k)\mbox{\boldmath$x$}_{i}\mbox{\boldmath$x$}_{i}^{T}\in\mathbb{J}_{0}(\mbox{\boldmath$B$}_{k})) (1ir)(1\leq i\leq r). By assumption (19), 𝒙i𝒙iT𝕁(1ir)\mbox{\boldmath$x$}_{i}\mbox{\boldmath$x$}_{i}^{T}\in\mathbb{J}_{-}\ (1\leq i\leq r). Since 1=𝑰,𝑿=i=1r𝒙iT𝒙i1=\langle\mbox{\boldmath$I$},\,\mbox{\boldmath$X$}\rangle=\sum_{i=1}^{r}\mbox{\boldmath$x$}_{i}^{T}\mbox{\boldmath$x$}_{i}, there exist a τ(0,1]\tau\in(0,1] and a j{1,,r}j\in\{1,\ldots,r\} such that 𝒙jT𝒙j=τ\mbox{\boldmath$x$}_{j}^{T}\mbox{\boldmath$x$}_{j}=\tau. Let 𝑿¯=𝒙j𝒙jT/τ\overline{\mbox{\boldmath$X$}}=\mbox{\boldmath$x$}_{j}\mbox{\boldmath$x$}_{j}^{T}/\tau. Since 𝒙j𝒙jT𝕁\mbox{\boldmath$x$}_{j}\mbox{\boldmath$x$}_{j}^{T}\in\mathbb{J}_{-}, 𝑿¯𝕁\overline{\mbox{\boldmath$X$}}\in\mathbb{J}_{-}. We also see that 𝑰,𝑿¯=𝑰,𝒙j𝒙jT/τ=1\langle\mbox{\boldmath$I$},\,\overline{\mbox{\boldmath$X$}}\rangle=\langle\mbox{\boldmath$I$},\,\mbox{\boldmath$x$}_{j}\mbox{\boldmath$x$}_{j}^{T}/\tau\rangle=1. Hence 𝑿¯\overline{\mbox{\boldmath$X$}} is a rank-11 feasible solution of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). Furthermore, we see from 𝒀¯𝕁\overline{\mbox{\boldmath$Y$}}\in\mathbb{J}_{-}^{*} and 𝒙i𝒙iT𝕁\mbox{\boldmath$x$}_{i}\mbox{\boldmath$x$}_{i}^{T}\in\mathbb{J}_{-} (1ir)(1\leq i\leq r) that

0𝒀¯,𝑿¯=𝒀¯,𝒙j𝒙jTτ𝒀¯,𝑿τ=0.\displaystyle 0\leq\langle\overline{\mbox{\boldmath$Y$}},\,\overline{\mbox{\boldmath$X$}}\rangle=\frac{\langle\overline{\mbox{\boldmath$Y$}},\,\mbox{\boldmath$x$}_{j}\mbox{\boldmath$x$}_{j}^{T}\rangle}{\tau}\leq\frac{\langle\overline{\mbox{\boldmath$Y$}},\,\mbox{\boldmath$X$}\rangle}{\tau}=0.

Hence, 𝑿¯\overline{\mbox{\boldmath$X$}} is a rank-1 optimal solution of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}), and it is an optimal solution of COP(𝕂𝕁,𝑸,𝑰)(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) with the same objective value 𝑸,𝑿¯\langle\mbox{\boldmath$Q$},\,\overline{\mbox{\boldmath$X$}}\rangle. Therefore, we have shown that ζp(𝕁,𝑸,𝑰)=ζp(𝕂𝕁,𝑸,𝑰)\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})=\zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}).

Case (b): Let SS denote the optimal solution set of COP(𝕁,𝑸,𝑰)(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). By the assumption of this case, 𝑩k,𝑿<0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle<0 (1km)(1\leq k\leq m) for all 𝑿S\mbox{\boldmath$X$}\in S. Hence SS coincides with the optimal solution set of COP(𝕊+n,𝑸,𝑰)(\mathbb{S}^{n}_{+},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}), an SDP of minimizing 𝑸,𝑿\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle subject to 𝑿𝕊+n\mbox{\boldmath$X$}\in\mathbb{S}^{n}_{+} and the single equality constraint 𝑯,𝑿=1\langle\mbox{\boldmath$H$},\,\mbox{\boldmath$X$}\rangle=1. It is well-known that every solvable SDP with rr equality constraints has an optimal solution 𝑿X with rank 2r\leq\sqrt{2r} (see, for example, [16]). Hence, there exists an 𝑿¯S\overline{\mbox{\boldmath$X$}}\in S such that rank𝑿¯=1\overline{\mbox{\boldmath$X$}}=1, which is a common optimal solution of COP(𝕁,𝑸,𝑰)(\mathbb{J},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}) and COP(𝕂𝕁,𝑸,𝑰)(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). Therefore, ζp(𝕁,𝑸,𝑰)=ζp(𝕂𝕁,𝑸,𝑰)\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})=\zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}).

In both Cases (a) and (b), we have shown that ζp(𝕁,𝑸,𝑰)=ζp(𝕂𝕁,𝑸,𝑰)\zeta_{p}(\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$})=\zeta_{p}(\mathbb{K}\cap\mathbb{J}_{-},\mbox{\boldmath$Q$},\mbox{\boldmath$I$}). Since 𝑸Q is chosen arbitrarily from 𝕊n\mathbb{S}^{n}, we can conclude by Theorem 1.2 (iii) that 𝕁^(𝕂)\mathbb{J}_{-}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). ∎

Proof Theorem 4.1 (ii): The desired result follows from Corollary 2.2. ∎

4.3 Proof of Theorem 4.3

(i) We first show that 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) \Rightarrow 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Since 𝕁(𝑩)\mathbb{J}_{-}(\mbox{\boldmath$B$}) is a convex set containing 𝕂𝕁(𝑩)\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$}), co(𝕂𝕁(𝑩))𝕁(𝑩)(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$}))\subseteq\mathbb{J}_{-}(\mbox{\boldmath$B$}) is obvious. To show 𝕁(𝑩)co(𝕂𝕁(𝑩))\mathbb{J}_{-}(\mbox{\boldmath$B$})\subseteq\mbox{co}(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})), let 𝑿𝕁(𝑩)\mbox{\boldmath$X$}\in\mathbb{J}_{-}(\mbox{\boldmath$B$}). Then there exists an 𝑿i𝕂\mbox{\boldmath$X$}^{i}\in\mathbb{K} such that

𝑿=i=1m𝑿i, 0𝑩,𝑿=i=1m𝑩,𝑿i.\displaystyle\mbox{\boldmath$X$}=\sum_{i=1}^{m}\mbox{\boldmath$X$}^{i},\ 0\geq\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle=\sum_{i=1}^{m}\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{i}\rangle.

Let I+={i:𝑩,𝑿i>0}and I0={i:𝑩,𝑿i=0},I={i:𝑩,𝑿i<0}.I_{+}=\{i:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{i}\rangle>0\}\ \mbox{and }\ I_{0}=\{i:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{i}\rangle=0\},\ I_{-}=\{i:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{i}\rangle<0\}. By definition, 𝑿i𝕂𝕁(𝑩)(iI0I)\mbox{\boldmath$X$}^{i}\in\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})\ (i\in I_{0}\cup I_{-}). Hence, if I+=I_{+}=\emptyset then 𝑿co(𝕂𝕁(𝑩))\mbox{\boldmath$X$}\in\mbox{co}(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})). Now assume that I+I_{+}\not=\emptyset. Then, II_{-}\not=\emptyset since otherwise 𝑩,𝑿=i=1m𝑩,𝑿i>0\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle=\sum_{i=1}^{m}\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{i}\rangle>0, a contradiction. Let

𝑿+=iI+𝑿ico𝕂,𝑿0={iI0𝑿iif I0,0otherwise ,𝑿=iI𝑿i.\displaystyle\mbox{\boldmath$X$}^{+}=\sum_{i\in I_{+}}\mbox{\boldmath$X$}^{i}\in\mbox{co}\mathbb{K},\ \ \mbox{\boldmath$X$}^{0}=\left\{\begin{array}[]{ll}\displaystyle\sum_{i\in I_{0}}\mbox{\boldmath$X$}^{i}&\mbox{if }I_{0}\not=\emptyset,\\ \mbox{\bf 0}&\mbox{otherwise }\end{array},\right.\ \ \mbox{\boldmath$X$}^{-}=\sum_{i\in I_{-}}\mbox{\boldmath$X$}^{i}.

Then,

𝑿0co(𝕂𝕁0(𝑩)),𝑿co(𝕂𝕁(𝑩)),𝑿=𝑿++𝑿0+𝑿,\displaystyle\mbox{\boldmath$X$}^{0}\in\mbox{co}(\mathbb{K}\cap\mathbb{J}_{0}(\mbox{\boldmath$B$})),\ \mbox{\boldmath$X$}^{-}\in\mbox{co}(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})),\ \mbox{\boldmath$X$}=\mbox{\boldmath$X$}^{+}+\mbox{\boldmath$X$}^{0}+\mbox{\boldmath$X$}^{-}, (36)
α+𝑩,𝑿+>0,α0𝑩,𝑿0=0,α𝑩,𝑿>0,\displaystyle\alpha^{+}\equiv\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{+}\rangle>0,\ \alpha^{0}\equiv\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{0}\rangle=0,\ \alpha^{-}\equiv-\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{-}\rangle>0,
0𝑩,𝑿=𝑩,𝑿++𝑿0+𝑿=α+α.\displaystyle 0\geq\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle=\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{+}+\mbox{\boldmath$X$}^{0}+\mbox{\boldmath$X$}^{-}\rangle=\alpha^{+}-\alpha^{-}. (37)

Define

𝑿¯\displaystyle\overline{\mbox{\boldmath$X$}} \displaystyle\equiv α𝑿++α+𝑿α++α,which implies 𝑿+=α++αα𝑿¯α+α𝑿.\displaystyle\frac{\alpha^{-}\mbox{\boldmath$X$}^{+}+\alpha^{+}\mbox{\boldmath$X$}^{-}}{\alpha^{+}+\alpha^{-}},\ \mbox{which implies }\mbox{\boldmath$X$}^{+}=\frac{\alpha^{+}+\alpha^{-}}{\alpha^{-}}\overline{\mbox{\boldmath$X$}}-\frac{\alpha^{+}}{\alpha^{-}}\mbox{\boldmath$X$}^{-}. (38)

Then,

𝑿¯co𝕂,𝑩,𝑿¯=α𝑩,𝑿++α+𝑩,𝑿α++α=αα+α+αα++α=0.\displaystyle\overline{\mbox{\boldmath$X$}}\in\mbox{co}\mathbb{K},\ \langle\mbox{\boldmath$B$},\,\overline{\mbox{\boldmath$X$}}\rangle=\frac{\alpha^{-}\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{+}\rangle+\alpha^{+}\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}^{-}\rangle}{\alpha^{+}+\alpha^{-}}=\frac{\alpha^{-}\alpha^{+}-\alpha^{+}\alpha^{-}}{\alpha^{+}+\alpha^{-}}=0.

Hence, 𝑿¯𝕁0(𝑩)=co(𝕂𝕁0(𝑩))co(𝕂𝕁(𝑩))\overline{\mbox{\boldmath$X$}}\in\mathbb{J}_{0}(\mbox{\boldmath$B$})=\mbox{co}(\mathbb{K}\cap\mathbb{J}_{0}(\mbox{\boldmath$B$}))\subseteq\mbox{co}(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})). It follows from (36) and (38) that

𝑿=𝑿++𝑿0+𝑿=α++αα𝑿¯+αα+α𝑿+𝑿0.\displaystyle\mbox{\boldmath$X$}=\mbox{\boldmath$X$}^{+}+\mbox{\boldmath$X$}^{0}+\mbox{\boldmath$X$}^{-}=\frac{\alpha^{+}+\alpha^{-}}{\alpha^{-}}\overline{\mbox{\boldmath$X$}}+\frac{\alpha^{-}-\alpha^{+}}{\alpha^{-}}\mbox{\boldmath$X$}^{-}+\mbox{\boldmath$X$}^{0}.

Since we have already shown that the three points 𝑿¯,𝑿0\overline{\mbox{\boldmath$X$}},\mbox{\boldmath$X$}^{0} and 𝑿\mbox{\boldmath$X$}^{-} lies in co(𝕂𝕁(𝑩))(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})) and α++αα0\frac{\alpha^{+}+\alpha^{-}}{\alpha^{-}}\geq 0 and αα+α0\frac{\alpha^{-}-\alpha^{+}}{\alpha^{-}}\geq 0 (by (37)), we obtain 𝑿co(𝕂𝕁(𝑩))\mbox{\boldmath$X$}\in co(\mathbb{K}\cap\mathbb{J}_{-}(\mbox{\boldmath$B$})). Thus we have shown that 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) \Rightarrow 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}).

We show that 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) \Rightarrow 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). It is easy to verify that 𝕁0(𝑩)\mathbb{J}_{0}(\mbox{\boldmath$B$}) is a face of 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Then 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) follows by Theorem 3.5 (i). Therefore, we have shown that 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) \Leftrightarrow 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). ∎

(ii) Since 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) is equivalent to 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) by (i), 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) follows from Theorem 4.1 (i) with m=1m=1. ∎

Remark 4.11.

Assertion (i) of Theorem 4.3 holds for a more general case where 𝕂\mathbb{K} is a cone in a finite dimensional space 𝕍\mathbb{V} and 𝑩𝕍\mbox{\boldmath$B$}\in\mathbb{V}. Define

𝕁0(𝑩)={𝑿co𝕂:𝑩,𝑿=0},𝕁(𝑩)={𝑿co𝕂:𝑩,𝑿0}.\displaystyle\mathbb{J}_{0}(\mbox{\boldmath$B$})=\{\mbox{\boldmath$X$}\in\mbox{co}\mathbb{K}:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle=0\},\ \mathbb{J}_{-}(\mbox{\boldmath$B$})=\{\mbox{\boldmath$X$}\in\mbox{co}\mathbb{K}:\langle\mbox{\boldmath$B$},\,\mbox{\boldmath$X$}\rangle\leq 0\}.

Then, 𝕁0(𝑩)^(𝕂)\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) and 𝕁(𝑩)^(𝕂)\mathbb{J}_{-}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) are equivalent. The proof of Theorem 4.3 (i) stated above remains valid for this general case without any change.

4.4 Adding equality constraints

Assume that, in general,

𝕁{𝑿𝕊n:𝑩j,𝑿=0(jI0),𝑩k,𝑿0(kI)}^(𝕂),\displaystyle\mathbb{J}\equiv\left\{\mbox{\boldmath$X$}\in\mathbb{S}^{n}:\langle\mbox{\boldmath$B$}_{j},\,\mbox{\boldmath$X$}\rangle=0\ (j\in I_{0}),\ \langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0\ (k\in I_{-})\right\}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}), (39)

where I0I_{0} and II_{-} denote a partition of {1,,m}\{1,\ldots,m\} and 𝑸,𝑯,𝑩k𝕊n\mbox{\boldmath$Q$},\ \mbox{\boldmath$H$},\ \mbox{\boldmath$B$}_{k}\in\mathbb{S}^{n} (kI0I)(k\in I_{0}\cup I_{-}). We present a method for adding an equality constraint 𝑩m+1,𝑿=0\langle\mbox{\boldmath$B$}_{m+1},\,\mbox{\boldmath$X$}\rangle=0 to 𝕁\mathbb{J} so that 𝕁𝕁0(𝑩m+1)\mathbb{J}\cap\mathbb{J}_{0}(\mbox{\boldmath$B$}_{m+1}) remains in ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}). The method can be used recursively by replacing I0I_{0} with I0{m+1}I_{0}\cup\{m+1\}. Note that II_{-} is not updated. Initially, we take 𝕁k=1m𝕁(𝑩k)\mathbb{J}_{-}\equiv\cap_{k=1}^{m}\mathbb{J}_{-}(\mbox{\boldmath$B$}_{k}) with 𝑩k𝕊n\mbox{\boldmath$B$}_{k}\in\mathbb{S}^{n} (1km)(1\leq k\leq m) satisfying (19) or 𝕁0(𝑩1)\mathbb{J}_{0}(\mbox{\boldmath$B$}_{1}) with 𝑩1𝕊n\mbox{\boldmath$B$}_{1}\in\mathbb{S}^{n} for 𝕁\mathbb{J}.

If I0=I_{0}=\emptyset, we can choose any 𝑩𝕊n\mbox{\boldmath$B$}\in\mathbb{S}^{n} satisfying 𝕁0(𝑩)𝕁(𝑩k)\mathbb{J}_{0}(\mbox{\boldmath$B$})\subseteq\mathbb{J}_{-}(\mbox{\boldmath$B$}_{k}) (kI)(k\in I_{-}) so that 𝕁𝕁0(𝑩)=𝕁0(𝑩)^(𝕂)\mathbb{J}_{-}\cap\mathbb{J}_{0}(\mbox{\boldmath$B$})=\mathbb{J}_{0}(\mbox{\boldmath$B$})\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) by Theorem 4.3 (i). As a result, all inequality constraints 𝑩k,𝑿\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle (kI)(k\in I_{-}) become redundant. We exclude this trivial choice in the subsequent discussion.

Let 𝕂=𝕂𝕁\mathbb{K}^{\prime}=\mathbb{K}\cap\mathbb{J}, which is a cone in 𝕊n\mathbb{S}^{n}. It follows from 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}) that co(𝕂𝕁)=co(𝕂𝕁)=𝕁\mbox{co}(\mathbb{K}^{\prime}\cap\mathbb{J})=\mbox{co}(\mathbb{K}\cap\mathbb{J})=\mathbb{J}. Hence 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}^{\prime}). All the results in Section 3 is quite general so that the results can be applied even if 𝕂\mathbb{K} is replaced with 𝕂\mathbb{K}^{\prime} and 𝕊+n=co𝕂\mathbb{S}^{n}_{+}=\mbox{co}\mathbb{K} with co𝕂\mathbb{K}^{\prime}. However, it is difficult to extend Theorems 4.1 and 4.3 to the general case where 𝕊+n\mathbb{S}^{n}_{+} is replaced with 𝕁=co𝕂\mathbb{J}=\mbox{co}\mathbb{K}^{\prime} defined by (39). The main reason is that Lemma 4.10 is no longer valid for the general case. Consequently, it becomes clear that adding an equality constraint to 𝕁\mathbb{J} is more restrictive than adding inequalities as only the general results in Section 3 can be used.

In general, 𝕁0(𝑩)\mathbb{J}_{0}(\mbox{\boldmath$B$}) is a face of 𝕁\mathbb{J} iff

𝑩𝕁=cl{𝒀+jII0𝑩jyj:𝒀𝕊+n,yj(jI0),yk0(kI)}.\displaystyle\mbox{\boldmath$B$}\in\mathbb{J}^{*}=\mbox{cl}\left\{\mbox{\boldmath$Y$}+\sum_{j\in I_{-}\cup I_{0}}\mbox{\boldmath$B$}_{j}y_{j}:\mbox{\boldmath$Y$}\in\mathbb{S}^{n}_{+},\ y_{j}\in\mathbb{R}\ (j\in I_{0}),\ y_{k}\leq 0\ (k\in I_{-})\right\}.

(See [17] for the identity). Obviously, every 𝑩𝕊+n\mbox{\boldmath$B$}\in\mathbb{S}^{n}_{+} lies in 𝕁\mathbb{J}^{*}. In this case, 𝕁0(𝑩)\mathbb{J}_{0}(\mbox{\boldmath$B$}) forms a common face of 𝕁\mathbb{J} and 𝕊+n\mathbb{S}^{n}_{+}. It is also straightforward to see that 𝑩=𝑩𝕁\mbox{\boldmath$B$}=-\mbox{\boldmath$B$}_{\ell}\in\mathbb{J}^{*} for every I\ell\in I_{-}. In this case, 𝕁𝕁0(𝑩)=(jI0𝕁0(𝑩j))𝕁0(𝑩)\mathbb{J}\cap\mathbb{J}_{0}(-\mbox{\boldmath$B$}_{\ell})=\big{(}\cap_{j\in I_{0}}\mathbb{J}_{0}(\mbox{\boldmath$B$}_{j})\big{)}\cap\mathbb{J}_{0}(\mbox{\boldmath$B$}_{\ell}) and all inequalities 𝑩k,𝑿0\langle\mbox{\boldmath$B$}_{k},\,\mbox{\boldmath$X$}\rangle\leq 0 (kI)(k\in I_{-}) become redundant. (Recall that assumption (19) holds if II_{-}\not=\emptyset). More generally, if yk0y_{k}\leq 0 (kI)(k\in I_{-}) and yjy_{j}\in\mathbb{R} (jI0)(j\in I_{0}), then then 𝑩=jII0𝑩jyj𝕁\mbox{\boldmath$B$}=\sum_{j\in I_{-}\cup I_{0}}\mbox{\boldmath$B$}_{j}y_{j}\in\mathbb{J}^{*}.

5 Concluding discussion

By extending the condition co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J} with a face 𝕁\mathbb{J} of co𝕂\mathbb{K} in [15] to characterizations of the family ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}) of all convex cone 𝕁co𝕂\mathbb{J}\subseteq\mbox{co}\mathbb{K} satisfying co(𝕂𝕁)=𝕁(\mathbb{K}\cap\mathbb{J})=\mathbb{J}, we have established the fundamental properties of ^(𝕂)\widehat{\mbox{$\cal F$}}(\mathbb{K}) in Section 3. In particular, by applying the properties to nonconvex QCQPs, we have shown that a new class of QCQP with multiple nonconvex inequality and equality constraints can be solved exactly by its SDP relaxation in Section 4.

The important and distinctive feature of the geometric nonconvex COP(𝕂𝕁)(\mathbb{K}\cap\mathbb{J}) and its convex conic reformulation COP(𝕁)(\mathbb{J}) is independence from the description of 𝕂\mathbb{K} and 𝕁\mathbb{J}. The required main assumption is that 𝕂\mathbb{K} is a cone in 𝕍\mathbb{V} and 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}), which indicates that the results presented in Sections 2 and 3 can be applied in various cases. It should be noted that the other assumption <ζp(𝕁)<-\infty<\zeta_{p}(\mathbb{J})<\infty is necessary and sufficient to ensure ζp(𝕁)=ζp(𝕂𝕁)\zeta_{p}(\mathbb{J})=\zeta_{p}(\mathbb{K}\cap\mathbb{J}) under 𝕁^(𝕂)\mathbb{J}\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). We have not imposed any assumption on the objective function 𝑸,𝑿\langle\mbox{\boldmath$Q$},\,\mbox{\boldmath$X$}\rangle. See Corollary 2.2.

To the question of whether Theorem 4.1 can be applied to the completely positive relaxation of QCQPs, we should note that the answer is negative, as shown in the following simple example: Let 𝕂={𝒙𝒙T:𝒙+2}\mathbb{K}=\{\mbox{\boldmath$x$}\mbox{\boldmath$x$}^{T}:\mbox{\boldmath$x$}\in\mathbb{R}^{2}_{+}\} and 𝕁0={𝑿co𝕂:X11X22=0}\mathbb{J}_{0}=\{\mbox{\boldmath$X$}\in\mbox{co}\mathbb{K}:X_{11}-X_{22}=0\}. Then co(𝕂𝕁0)={λ(1111):λ0}\mbox{co}(\mathbb{K}\cap\mathbb{J}_{0})=\left\{\lambda{\scriptsize\begin{pmatrix}1&1\\ 1&1\end{pmatrix}}:\lambda\geq 0\right\} is a proper subset of 𝕁0\mathbb{J}_{0}; hence 𝕁0^(𝕂)\mathbb{J}_{0}\not\in\widehat{\mbox{$\cal F$}}(\mathbb{K}). Thus assertion (ii) of Theorem 4.3 does not hold for this case. Or, at least, some modification is necessary on assumption (19). This example also shows that Lemma 4.10 is no longer valid if 𝕊+n\mathbb{S}^{n}_{+} is replaced with the completely positive cone.

We recently became aware of the results in the paper [1] by Argue et al., which investigated the equivalence between QCQPs and their SDP relaxations. Some results there including their Proposition 1 are related to our main result, Theorem 4.1. We should mention that our approach is different from theirs and our results were obtained independently from theirs. Our approach, originated from our previous paper [15] which discussed the equivalent convex relaxation of a geometric conic optimization problem in a finite dimensional space, is geometric in nature. In contrast, theirs is limited to QCQP in n\mathbb{R}^{n} and its SDP relaxation, and does not involve geometric considerations. Their paper [1] was also written independently from our earlier paper [15]. Both approaches should be useful for further development of the subject.

References

  • [1] C. J. Argue, F. Kilinç-Karzan, and A.L. Wang. Necessary and sufficient conditions for rank-one- generated cones, Math. Oper. Res., 48 (2023), pp. 100–126.
  • [2] N. Arima. A convex reformation of linear optimization problems on non-convex cones (in Japanese). PhD thesis, University of Tsukuba, Tsukuba, Ibaraki, Japan 305-8577, March 2022.
  • [3] N Arima, S. Kim, and M. Kojima. Extension of completely positive cone relaxation to polynomial optimization, J. Optim. Theory Appl., 168 (2016), pp. 884–900.
  • [4] N. Arima, S. Kim, M. Kojima, and K. C. Toh. Lagrangian-conic relaxations, Part II: Applications to polynomial optimization problems, Pacific J. Optim, 15 (2019), pp. 415–439.
  • [5] G. Azuma, Fukuda M., S. Kim, and M. Yamashita. Exact SDP relaxations for quadratic programs with bipartite graph structures, J. of Global Optim., 86 (2023), pp. 671-691.
  • [6] I. M. Bomze, M. Du¨\ddot{\mbox{u}}r, E. de Klerk, C. Roos, A. Quist, and T. Terlaky. On copositive programming and standard quadratic optimization problems, J. Global Optim., 18 (2000), pp. 301–320.
  • [7] I. M. Bomze and M. Gabl. Optimization under uncertainty and risk: Quadratic and copositive approaches, Eur. J. Oper. Res., 310 (2023), pp. 449–476.
  • [8] S. Burer. On the copositive representation of binary and continuous non-convex quadratic programs, Math. Program., 120 (2009), pp. 479–495.
  • [9] E. de Klerk and D. V. Pasechnik. Approximation of the stability number of a graph via copositive programming, SIAM J. Optim., 12 (2002), pp. 875-892.
  • [10] M. Gabl. Sparse conic reformulation of structured QCQPs based on copositive optimization with applications in stochastic optimization, J. of Global Optim., 87 (2023), pp.1–34.
  • [11] V. Jeyakumar and Li. G. Y. Trust-region problems with linear inequality constraints: exact sdp relaxation, global optimality and robust optimization, Math. Program., 147 (2014), pp. 171–206.
  • [12] S. Kim and M. Kojima. Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations, Comput. Optim. Appl., 26 (2003), pp. 143–154.
  • [13] S. Kim and M. Kojima. Equivalent sufficient conditions for global optimality of quadratically constrained quadratic program, Technical Report arXiv:2303.05874, March 2023.
  • [14] S. Kim and M. Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone constraints strong duality of a conic optimization problem with a single hyperplane and two cone constraints, Optimization, To appear.
  • [15] S. Kim, M. Kojima, and K. C. Toh. A geometric analysis of a class of nonconvex conic programs for convex conic reformulations of quadratic and polynomial optimization problems, SIAM J. Optim., 30 (2020), pp. 1251–1273.
  • [16] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Math. Oper. Res., 23 (1998), pp. 339–358.
  • [17] G. Pataki. On the closedness of the linear image of a closed convex cone, Math. Oper. Res., 32 (2007), pp. 395–412.
  • [18] J. Pena, J. C. Vera, and L. F. Zuluaga. Completely positive reformulations for polynomial optimization, Math. Program., 151 (2015), pp. 405–431.
  • [19] B. T. Polyak. Convexity of quadratic transformations and its use in control and optimization, J. Optim. Theory Appl., 99 (1998), pp. 553–583.
  • [20] J. Povh and F. Rendl. A copositive programming approach to graph partitioning, SIAM J. Optim., 18 (2007), pp. 223–241.
  • [21] T. Rockafellar R. Convex Analysis. Princeton University Press, 1970.
  • [22] S. Sojoudi and J. Lavaei. Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure, SIAM J. Optim., 24 (2014), pp. 1746–1778.
  • [23] R. Stern and H. Wolkowicz. Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations, SIAM J. Optim., 5 (1995), pp. 286–313.
  • [24] J. F. Sturm and S. Zhang. On cones of nonnegative quadratic functions, Math. Oper. Res., 28 (2003), pp. 246–267.
  • [25] A. L. Wang and F. Kilinc-Karzan. On the tightness of SDP relaxations of QCQPs, Math. Program., 193 (2022), pp. 33–73.
  • [26] Y. Ye and S. Zhang. New results on quadratic minimization, SIAM J. Optim., 14 (2003), pp. 245–267.
  • [27] E. A. Yildirim. An alternative perspective on copositive and convex relaxations of nonconvex quadratic programs, J. Global Optim., 82 (2022), pp. 1–20.
  • [28] S. Zhang. Quadratic optimization and semidefinite relaxation, Math. Program., 87 (2000), pp. 453–465.