This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Further approximations of Durrmeyer modification of Szász-Mirakjan operators

Abstract.

The main purpose of this paper is to determine the approximations of Durrmeyer modification of Szász-Mirakjan operators, defined by Mishra et al. (Boll. Unione Mat. Ital. (2016) 8(4):297-305). We estimate the order of approximation of the operators for the functions belonging to the different spaces. Here, the rate of convergence of the said operators is established by means of the function with derivative of the bounded variation. At last, the graphical analysis is discussed to support the approximation results of the operators.

Rishikesh Yadav1,†, Ramakanta Meher1,⋆, Vishnu Narayan Mishra2,⊛
1
Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology Surat, Surat-395 007 (Gujarat), India.

2Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak-484 887, Anuppur, Madhya Pradesh, India


MSC 2010: 41A25, 41A35, 41A36.

1. Introduction

In 1944, Mirakjan [13] and 1950, Szász [21] introduced operators on unbounded interval [0,)[0,\infty), known as Szász-Mirakjan operators defined by

(1.1) Sn(g;x)=j=0sn,j(x)g(jn),\displaystyle S_{n}(g;x)=\sum\limits_{j=0}^{\infty}s_{n,j}(x)g\left(\frac{j}{n}\right),

where sn,j=enx(nx)jj!s_{n,j}=e^{-nx}\frac{(nx)^{j}}{j!}, gC2[0,)={gC[0,):limxf(x)1+x2exists and finite}g\in C_{2}[0,\infty)=\{g\in C[0,\infty):\underset{x\to\infty}{\lim}\frac{f(x)}{1+x^{2}}\;\text{exists and finite}\}, x0x\geq 0 and for all nn\in\mathbb{N}.

An integral modification of the above operators (1.1) can bee seen in [2] to estimate the approximation results for the integrable function. The important properties including global results, local results, simultaneous approximation, convergence properties etc. have been studied with the above operators and their modifications in various studies (see [1, 4, 14, 15, 16, 17]). One of them, an interesting modification was the Durrmeyer modification of the Szász-Mirakjan operators and which can can be written as:

(1.2) Dn(g;x)=j=0sn,j(x)0sn,j(t)g(t)𝑑t,\displaystyle D_{n}(g;x)=\sum\limits_{j=0}^{\infty}s_{n,j}(x)\int\limits_{0}^{\infty}s_{n,j}(t)g(t)dt,

seen in [8]. Also, another modification into Stancu variant appeared in [18] of the above operators (1.2) and related properties like density, direct results as well as Voronovskaya type theorem are studied.

A natural generalization is carried out for the above operators (1.2) in [9] by Mishra et al. for the study of simultaneous approximation, like

(1.3) Bn(g;x)=unj=0sun,j(x)0sun,j(t)g(t)𝑑t,\displaystyle B_{n}^{*}(g;x)=u_{n}\sum\limits_{j=0}^{\infty}s_{u_{n},j}(x)\int\limits_{0}^{\infty}s_{u_{n},j}(t)g(t)dt,

where sun,j(x)=eunx(unx)jj!s_{u_{n},j}(x)=e^{-u_{n}x}\frac{(u_{n}x)^{j}}{j!} by considering the sequence unu_{n} is strictly increasing of positive real number as well as unu_{n}\to\infty as nn\to\infty with u1=1u_{1}=1.

Our main motive is to study the approximation properties of the proposed operators (1.3) for the functions belonging from different spaces. The important properties of the above proposed operators (1.3) are studied by authors which can also be applied to the operators defined by (1.2).

In order to study the operators (1.3), we divide the paper into sections. Section second contains preliminaries results, which are used to prove the main theorems. Section third deals with the approximation properties of the operators for the function belong to the different spaces of functions classes. In section fourth, the rate of convergence is estimated of the operators for the functions with derivative of bounded variation. At last, we present the graphical and numerical representation for the operators in order to show the convergence of the operators.

2. Preliminary

This section contains the basic properties of the defined operators (1.3). In order to prove approximations properties, we need basic lemmas.

Lemma 2.1.

For all x0x\geq 0 and nn\in\mathbb{N}, we have

Bn(1;x)\displaystyle B_{n}^{*}(1;x) =\displaystyle= 1\displaystyle 1
Bn(t;x)\displaystyle B_{n}^{*}(t;x) =\displaystyle= 1un+x\displaystyle\frac{1}{u_{n}}+x
Bn(t2;x)\displaystyle B_{n}^{*}(t^{2};x) =\displaystyle= 2+4xun+x2un2un2\displaystyle\frac{2+4xu_{n}+x^{2}u_{n}^{2}}{u_{n}^{2}}
Bn(t3;x)\displaystyle B_{n}^{*}(t^{3};x) =\displaystyle= 6+18xun+9x2un2+x3un3un3\displaystyle\frac{6+18xu_{n}+9x^{2}u_{n}^{2}+x^{3}u_{n}^{3}}{u_{n}^{3}}
Proof.

We can easily proof the above parts of the lemma, so we omit the proof. ∎

Lemma 2.2.

Consider the function gg is integrable, continuous, bounded on given interval [0,)[0,\infty), then the central moments can be obtained as:

(2.1) Ωn,m=unj=0sun,j(x)0sun,j(t)(tx)m𝑑t,\displaystyle\Omega_{n,m}=u_{n}\sum\limits_{j=0}^{\infty}s_{u_{n},j}(x)\int\limits_{0}^{\infty}s_{u_{n},j}(t)(t-x)^{m}dt,

where m=0,1,2,m=0,1,2,\ldots. So for m=0,1m=0,1, we get the the central moments as follows:

(2.2) Ωn,0=1,Ωn,1=1un,\displaystyle\Omega_{n,0}=1,\Omega_{n,1}=\frac{1}{u_{n}},

in general, we have

(2.3) unΩn,m+1=x(Ωn,m+2mΩn,m1+(1+m)Ωn,m),\displaystyle u_{n}\Omega_{n,m+1}=x\left(\Omega_{n,m}^{\prime}+2m\Omega_{n,m-1}+(1+m)\Omega_{n,m}\right),

this lead us to

(2.4) Ωn,m=O(un[m+12]).\displaystyle\Omega_{n,m}=O\left(u_{n}^{-\left[\frac{m+1}{2}\right]}\right).
Lemma 2.3.

Let the function gg be the continuous and bounded on [0,)[0,\infty) endowed with supremum norm g(x)=supx0|g|\|g(x)\|=\underset{x\geq 0}{\sup}|g| then, we have

(2.5) |Bn(g;x)|g.\displaystyle|B_{n}^{*}(g;x)|\leq\|g\|.
Remark 2.1.

For second order central moment, it can be written as

(2.6) Ωn,2=2(1+unx)un2=2un(x+1un)=2unζn2(x),\displaystyle\Omega_{n,2}=\frac{2(1+u_{n}x)}{u_{n}^{2}}=\frac{2}{u_{n}}\left(x+\frac{1}{u_{n}}\right)=\frac{2}{u_{n}}\zeta_{n}^{2}(x),

where ζn2(x)=(x+1un).\zeta_{n}^{2}(x)=\left(x+\frac{1}{u_{n}}\right).

3. Approximation properties

Consider CB[0,)C_{B}[0,\infty) be the space of all continuous and bounded function defined on [0,)[0,\infty), endowed with supremum norm g=supx0|g(x)|\|g\|=\underset{x\geq 0}{\sup}|g(x)|, also let for any δ>0\delta>0

(3.1) K2(g;δ)=inffE{gf+δf′′}\displaystyle K_{2}(g;\delta)=\underset{f\in E}{\inf}\{\|g-f\|+\delta\|f^{\prime\prime}\|\}

be the Peetre’s KK-functional, where E={fCB[0,):f,f′′CB[0,)}E=\{f\in C_{B}[0,\infty):f^{\prime},f^{\prime\prime}\in C_{B}[0,\infty)\}. Also a relation can be seen for which there exists a positive constant MM such that:

(3.2) K2(g;δ)Mω2(g,δ),δ>0,\displaystyle K_{2}(g;\delta)\leq M\omega_{2}(g,\sqrt{\delta}),~{}~{}\delta>0,

where ω2(g,δ)\omega_{2}(g,\sqrt{\delta}) is second order modulus of smoothness the function gCB[0,)g\in C_{B}[0,\infty), which is defined by:

(3.3) ω2(g,δ)=sup{g(x+h)2g(x)+g(xh):x,x±h[0,),0hδ},\displaystyle\omega_{2}(g,\delta)=\sup\{g(x+h)-2g(x)+g(x-h):x,x\pm h\in[0,\infty),0\leq h\leq\delta\},

also usual modulus of continuity can be defined for the function gCB[0,)g\in C_{B}[0,\infty) as follows:

(3.4) ω(g,δ)={g(y)g(x):x,y[0,),|yx|δ,δ>0}.\displaystyle\omega(g,\delta)=\{g(y)-g(x):x,y\in[0,\infty),|y-x|\leq\delta,\delta>0\}.
Theorem 3.1.

Consider gCB[0,)g\in C_{B}[0,\infty) and for all x0x\geq 0 then there exists a positive constant MM such that

(3.5) |Bn(g;x)g(x)|Cω2(g,δn2)+ω(g,γn),\displaystyle|B_{n}^{*}(g;x)-g(x)|\leq C\omega_{2}\left(g,\frac{\sqrt{\delta_{n}}}{2}\right)+\omega\left(g,\gamma_{n}\right),

where δn=B~n((tx)2;x)+1un2\delta_{n}=\tilde{B}_{n}^{*}((t-x)^{2};x)+\frac{1}{u_{n}^{2}} and γn=B~n((tx);x).\gamma_{n}=\tilde{B}_{n}^{*}((t-x);x).

Proof.

Here, we consider the auxiliary operators such that

(3.6) S~n(g;x)=Bn(g;x)g(1un+x)+g(x).\displaystyle{\tilde{S}}_{n}^{*}(g;x)=B_{n}^{*}(g;x)-g\left(\frac{1}{u_{n}}+x\right)+g(x).

Let fEf\in E, x0x\geq 0 the using Taylor’s formula, we have

(3.7) f(t)f(x)=(tx)f(x)+0t(tv)f′′(v)𝑑v\displaystyle f(t)-f(x)=(t-x)f^{\prime}(x)+\int\limits_{0}^{t}(t-v)f^{\prime\prime}(v)dv

Applying the operators B~n\tilde{B}_{n}^{*} on the both sides to the above expression, it yields:

(3.8) B~n(f;x)f(x)\displaystyle\tilde{B}_{n}^{*}(f;x)-f(x) =\displaystyle= f(x)B~n(tx;x)+B~n(xt(tv)f′′(v)𝑑v)\displaystyle f^{\prime}(x)\tilde{B}_{n}^{*}(t-x;x)+\tilde{B}_{n}^{*}\left(\int\limits_{x}^{t}(t-v)f^{\prime\prime}(v)dv\right)
=\displaystyle= B~n(xt(tv)f′′(v)𝑑v)\displaystyle\tilde{B}_{n}^{*}\left(\int\limits_{x}^{t}(t-v)f^{\prime\prime}(v)dv\right)
=\displaystyle= Sn(xt(tv)f′′(v)𝑑v)(x(1un+x)(1un+xv)f′′(v)𝑑v).\displaystyle S_{n}^{*}\left(\int\limits_{x}^{t}(t-v)f^{\prime\prime}(v)dv\right)-\left(\int\limits_{x}^{\left(\frac{1}{u_{n}}+x\right)}\left(\frac{1}{u_{n}}+x-v\right)f^{\prime\prime}(v)dv\right).

Here, the inequalities are as:

(3.9) |xt(tv)f′′(v)𝑑v|(tx)2f′′\displaystyle\left|\int\limits_{x}^{t}(t-v)f^{\prime\prime}(v)dv\right|\leq(t-x)^{2}\|f^{\prime\prime}\|

and

(3.10) |x(1un+x)(1un+xv)f′′(v)𝑑v|1un2f′′.\displaystyle\left|\int\limits_{x}^{\left(\frac{1}{u_{n}}+x\right)}\left(\frac{1}{u_{n}}+x-v\right)f^{\prime\prime}(v)dv\right|\leq\frac{1}{u_{n}^{2}}\|f^{\prime\prime}\|.

By considering the above inequalities (3.9, 3.10) and with (3.8), we obtain

(3.11) B~n(f;x)f(x)\displaystyle\tilde{B}_{n}^{*}(f;x)-f(x) =\displaystyle= {B~n((tx)2;x)+1un2}f′′\displaystyle\left\{\tilde{B}_{n}^{*}((t-x)^{2};x)+\frac{1}{u_{n}^{2}}\right\}\|f^{\prime\prime}\|
(3.12) =\displaystyle= δnf′′.\displaystyle\delta_{n}\|f^{\prime\prime}\|.

Also, |Sn(g;x)|g|S_{n}^{*}(g;x)|\leq\|g\|. Using this property, we get

|Sn(g;x))g(x)|\displaystyle|S_{n}^{*}(g;x))-g(x)| \displaystyle\leq |B~n(gf;x)(gf)(x)|+|B~n(f;x)f(x)|\displaystyle|\tilde{B}_{n}^{*}(g-f;x)-(g-f)(x)|+|\tilde{B}_{n}^{*}(f;x)-f(x)|
+|g(1un+x)g(x)|\displaystyle+\left|g\left(\frac{1}{u_{n}}+x\right)-g(x)\right|
\displaystyle\leq 4gf+|B~n(f;x)f(x)|+|g(1un+x)g(x)|,\displaystyle 4\|g-f\|+|\tilde{B}_{n}^{*}(f;x)-f(x)|+\left|g\left(\frac{1}{u_{n}}+x\right)-g(x)\right|,

using (3.11) and with the help of modulus of continuity, we obtain

|Sn(g;x)g(x)|\displaystyle|S_{n}^{*}(g;x)-g(x)| \displaystyle\leq 4gf+δnf′′+ω(g,γn).\displaystyle 4\|g-f\|+\delta_{n}\|f^{\prime\prime}\|+\omega\left(g,\gamma_{n}\right).

Taking the infimum for all fEf\in E on the right hand side and by relation (3.2), we get

|Sn(g;x)g(x)|\displaystyle|S_{n}^{*}(g;x)-g(x)| \displaystyle\leq 4K2(g;14δn)+ω(g,γn)\displaystyle 4K_{2}\left(g;\frac{1}{4}\delta_{n}\right)+\omega\left(g,\gamma_{n}\right)
\displaystyle\leq Cω2(g,δn2)+ω(g,γn).\displaystyle C\omega_{2}\left(g,\frac{\sqrt{\delta_{n}}}{2}\right)+\omega\left(g,\gamma_{n}\right).

Thus, the proof is completed. ∎

Now, we estimate the approximation of the defined operators (1.3), by new type of Lipschitz maximal function with order s(0,1]s\in(0,1], defined by Lenze [7] as

(3.13) τs(g,x)=supx,t0|g(t)g(x)||tx|s,tx.\displaystyle\tau_{s}(g,x)=\underset{x,t\geq 0}{\sup}\frac{|g(t)-g(x)|}{|t-x|^{s}},~{}~{}t\neq x.

Using Lipschitz maximal function definition, we have following theorem.

Theorem 3.2.

For any gCB[0,)g\in C_{B}[0,\infty) with s(0,1]s\in(0,1] then one can obtain

|Bn(g;x)g(x)|\displaystyle\left|B_{n}^{*}(g;x)-g(x)\right| τs(g,x)(Ωn,2)s2.\displaystyle\leq\tau_{s}(g,x)\left(\Omega_{n,2}\right)^{\frac{s}{2}}.
Proof.

By equation (3.13), we can write

|Bn(g;x)g(x)|\displaystyle\left|B_{n}^{*}(g;x)-g(x)\right| τs(g,x)Bn(|tx|s;x).\displaystyle\leq\tau_{s}(g,x)B_{n}^{*}(|t-x|^{s};x).

Using, Ho¨\ddot{\text{o}}lder’s inequality with j=2sj=\frac{2}{s}, l=22sl=\frac{2}{2-s}, one can get

|Bn(g;x)g(x)|\displaystyle\left|B_{n}^{*}(g;x)-g(x)\right| \displaystyle\leq τs(g,x)(Bn(g;x)((tx)2;x))s2=τs(f,x)(Ωn,2)s2.\displaystyle\tau_{s}(g,x)\left(B_{n}^{*}(g;x)((t-x)^{2};x)\right)^{\frac{s}{2}}=\tau_{s}(f,x)\left(\Omega_{n,2}\right)^{\frac{s}{2}}.

Next theorem is based on modified Lipschitz type spaces [19] and this spaces is defined by

LipMm1,m2(s)={gCB[0,):|g(l1)g(l2)|M|l1l2|s(l1+l22m1+l2m2)s2,wherel1,l20are variables,s(0,1]}\displaystyle Lip_{M}^{m_{1},m_{2}}(s)=\Bigg{\{}g\in C_{B}[0,\infty):|g(l_{1})-g(l_{2})|\leq M\frac{|l_{1}-l_{2}|^{s}}{\left(l_{1}+l_{2}^{2}m_{1}+l_{2}m_{2}\right)^{\frac{s}{2}}},~{}~{}\text{where}~{}l_{1},l_{2}\geq 0~{}\text{are~{}variables},~{}s\in(0,1]\Bigg{\}}

and m1,m2m_{1},m_{2} are the fixed numbers and M>0M>0 is a constant.

Theorem 3.3.

For gLipMm1,m2(s)g\in Lip_{M}^{m_{1},m_{2}}(s) and 0<s10<s\leq 1, an inequality holds:

|Bn(g;x)g(x)|\displaystyle\left|B_{n}^{*}(g;x)-g(x)\right| \displaystyle\leq M(Ωn,2x(xm1+m2))s2,M>0,x[0,).\displaystyle M\left(\frac{\Omega_{n,2}}{x(xm_{1}+m_{2})}\right)^{\frac{s}{2}},~{}~{}M>0,x\in[0,\infty).
Proof.

We have s(0,1]s\in(0,1] and in order to prove the above theorem, we discuss the cases on ss.

Case 1. if we consider s=1s=1 then for all t,x0t,x\geq 0, we can observe that 1t+x2m1+xm2)1x(xm1+m2)\frac{1}{t+x^{2}m_{1}+xm_{2})}\leq\frac{1}{x(xm_{1}+m_{2})} then

|Bn(g;x)g(x)|\displaystyle\left|B_{n}^{*}(g;x)-g(x)\right| \displaystyle\leq Bn(|g(t)g(x)|;x)\displaystyle B_{n}^{*}(|g(t)-g(x)|;x)
\displaystyle\leq MBn(|tx|(t+x2m1+xm2)12;x)\displaystyle MB_{n}^{*}\left(\frac{|t-x|}{\left(t+x^{2}m_{1}+xm_{2}\right)^{\frac{1}{2}}};x\right)
\displaystyle\leq M(x(xm1+m2))12Bn(|tx|;x)\displaystyle\frac{M}{\left(x(xm_{1}+m_{2})\right)^{\frac{1}{2}}}B_{n}^{*}(|t-x|;x)
\displaystyle\leq M(x(xa1+a2))12(Ωn,2)12\displaystyle\frac{M}{\left(x(xa_{1}+a_{2})\right)^{\frac{1}{2}}}\left(\Omega_{n,2}\right)^{\frac{1}{2}}
\displaystyle\leq M(Ωn,2x(xm1+m2))12.\displaystyle M\left(\frac{\Omega_{n,2}}{x(xm_{1}+m_{2})}\right)^{\frac{1}{2}}.

Case 2. for s(0,1)s\in(0,1) then using Ho¨\ddot{\text{o}}lder inequality with p=2s,q=22sp=\frac{2}{s},q=\frac{2}{2-s}, we get

|Bn(g;x)g(x)|\displaystyle\left|B_{n}^{*}(g;x)-g(x)\right| \displaystyle\leq (Bn(|g(t)g(x)|2s;x))s2MBn(|tx|2(t+x2m1+xm2);x)s2\displaystyle\left(B_{n}^{*}(|g(t)-g(x)|^{\frac{2}{s}};x)\right)^{\frac{s}{2}}\leq MB_{n}^{*}\left(\frac{|t-x|^{2}}{\left(t+x^{2}m_{1}+xm_{2}\right)};x\right)^{\frac{s}{2}}
\displaystyle\leq MBn(|tx|2(x(xm1+m2));x)s2\displaystyle MB_{n}^{*}\left(\frac{|t-x|^{2}}{\left(x(xm_{1}+m_{2})\right)};x\right)^{\frac{s}{2}}
\displaystyle\leq M(Ωn,2x(xm1+m2))s2.\displaystyle M\left(\frac{\Omega_{n,2}}{x(xm_{1}+m_{2})}\right)^{\frac{s}{2}}.

This complete the proof. ∎

Theorem 3.4.

For the function gg which is continuous and bounded on [0,)[0,\infty), the convergence of the operators can be obtained as:

(3.14) limnBn(g;x)=g(x),\displaystyle\underset{n\to\infty}{\lim}B_{n}^{*}(g;x)=g(x),

uniformly on any compact interval of [0,)[0,\infty).

Proof.

Using Bohman-Korovkin theorem, we can get our required result. Since limnBn(1;x)1\underset{n\to\infty}{\lim}B_{n}^{*}(1;x)\to 1, limnBn(t;x)x\underset{n\to\infty}{\lim}B_{n}^{*}(t;x)\to x, limnBn(t2;x)x2\underset{n\to\infty}{\lim}B_{n}^{*}(t^{2};x)\to x^{2} and hence the proposed operators Bn(g;x)B_{n}^{*}(g;x) converge uniformly to the function g(x)g(x) on any compact interval of [0,)[0,\infty). ∎

4. Rate of convergence by means of the function with derivative of bounded variation

This section consists the rate of convergence by means of the function with derivative of bounded variation. Let DBV[0,)DBV[0,\infty) be the set of all class of function having derivative of bounded variation on every compact interval of [0,)[0,\infty). The following representation for the function gDBV[0,)g\in DBV[0,\infty), is as follows:

(4.1) g(x)=0xh(t)𝑑t+g(0),\displaystyle g(x)=\int\limits_{0}^{x}h(t)dt+g(0),

where h(t)h(t) is a function with derivative of bounded variation on any compact interval of [0,)[0,\infty).

For investigation of the convergence of the above operators (1.3) to the function with derivative of bounded variation, we rewrite (1.3) as follows:

(4.2) Bn(g;x)=0Yn(x,t)g(t)𝑑t,\displaystyle B_{n}^{*}(g;x)=\int_{0}^{\infty}Y_{n}(x,t)g(t)dt,

where

Yn(x,t)=unj=0sun,j(x)sun,j(t).\displaystyle Y_{n}(x,t)=u_{n}\sum\limits_{j=0}^{\infty}s_{u_{n},j}(x)\ s_{u_{n},j}(t).

Such type of properties have been studied by researchers using various operators (see[5, 6, 22, 23, 24].)

Lemma 4.1.

For sufficiently large value of nn and for all x0x\geq 0, we have

  1. (1)

    In(x,t)=0yYn(x,t)𝑑t2(xy)2unζn2(x),0y<x,I_{n}(x,t)=\int\limits_{0}^{y}Y_{n}(x,t)dt\leq\frac{2}{(x-y)^{2}u_{n}}\zeta_{n}^{2}(x),~{}~{}~{}0\leq y<x,

  2. (2)

    1In(x,t)=zYn(x,t)𝑑t2(zx)2unζn2(x),xz<.1-I_{n}(x,t)=\int\limits_{z}^{\infty}Y_{n}(x,t)dt\leq\frac{2}{(z-x)^{2}u_{n}}\zeta_{n}^{2}(x),~{}~{}~{}x\leq z<\infty.

Proof.

Using the Lemma 2.2 and since the value of nn is sufficiently large, so we have

In(x,t)\displaystyle I_{n}(x,t) =\displaystyle= 0yYn(x,t)𝑑t0y((xt)2(xy)2)Yn(x,t)𝑑t\displaystyle\int\limits_{0}^{y}Y_{n}(x,t)dt\leq\int\limits_{0}^{y}\left(\frac{(x-t)^{2}}{(x-y)^{2}}\right)Y_{n}(x,t)dt
=\displaystyle= 2(xy)2unζn2(x).\displaystyle\frac{2}{(x-y)^{2}u_{n}}\zeta_{n}^{2}(x).

Similarly, we can prove other inequality. ∎

Theorem 4.1.

Let gDBV[0,)g\in DBV[0,\infty), then for all x0x\geq 0, an upper bound of the operators to the function can be as:

|Bn(g;x)g(x)|\displaystyle|B_{n}^{*}(g;x)-g(x)| \displaystyle\leq 12un|g(x+)+g(x)|+12un|g(x+)g(x)|ζn(x)\displaystyle\frac{1}{2u_{n}}|g^{\prime}(x+)+g^{\prime}(x-)|+\sqrt{\frac{1}{2u_{n}}}|g^{\prime}(x+)-g^{\prime}(x-)|\zeta_{n}(x)
+2ζn2(x)xunj=0[un](Vxxjtgx)+xun(Vxxunxgx)\displaystyle+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}\left(V_{x-\frac{x}{j}}^{t}g^{\prime}_{x}\right)+\frac{x}{\sqrt{u_{n}}}\left(V_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}\right)
+xunVxx+xun(gx)+2ζn2(x)xunj=0[un]Vxx+xj(gx),\displaystyle+\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}V_{x}^{x+\frac{x}{j}}(g^{\prime}_{x}),

where

(4.3) gx(t)\displaystyle g_{x}(t) =\displaystyle= {g(t)g(x),0t<x,0,t=x,g(t)g(x+),x<t<\displaystyle\begin{cases}g(t)-g(x-),&0\leq t<x,\\ 0,&t=x,\\ g(t)-g(x+),&x<t<\infty\end{cases}

be an auxiliary operator and Vabg(x)V_{a}^{b}g(x) denotes the total variation of the function g(x)g(x) on [a,b][a,b].

Proof.

Since, Bn(1;x)=1B_{n}^{*}(1;x)=1 and hence, one can write

Bn(g;x)g(x)\displaystyle B_{n}^{*}(g;x)-g(x) =\displaystyle= 0(g(t)g(x))Yn(x,t)𝑑t\displaystyle\int_{0}^{\infty}(g(t)-g(x))Y_{n}(x,t)dt
=\displaystyle= 0Yn(x,t)𝑑txtg(u)𝑑u.\displaystyle\int_{0}^{\infty}Y_{n}(x,t)dt\int\limits_{x}^{t}g^{\prime}(u)du.

Now, for gDBV[0,)g\in DBV[0,\infty), we can write as:

g(u)=12(g(x+)+g(x))+gx(u)+12(g(x+)+g(x))(sgn(ux))+η(u)(g(u)12(g(x+)+g(x))),\displaystyle g^{\prime}(u)=\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))+g_{x}^{\prime}(u)+\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))\left(sgn(u-x)\right)+\eta(u)\left(g^{\prime}(u)-\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))\right),

where

(4.4) η(u)={1u=x0ux.\displaystyle\eta(u)=\begin{cases}1&u=x\\ 0&u\neq x.\end{cases}

And then, one can show

(4.5) 0Yn(x,t)xt(η(u){g(u)12(g(x+)+g(x))}du)𝑑t=0.\displaystyle\int\limits_{0}^{\infty}Y_{n}(x,t)\int\limits_{x}^{t}\left(\eta(u)\{g^{\prime}(u)-\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))\}du\right)dt=0.

Using (4.2), we can get

(4.6) 0Yn(x,t)(xs12(g(x+)+g(x))𝑑u)𝑑t\displaystyle\int\limits_{0}^{\infty}Y_{n}(x,t)\left(\int\limits_{x}^{s}\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))~{}du\right)dt =\displaystyle= 12(g(x+)+g(x))0Yn(x,t)(tx)𝑑t\displaystyle\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))\int\limits_{0}^{\infty}Y_{n}(x,t)(t-x)~{}dt
=\displaystyle= 12(g(x+)+g(x))Ωn,1.\displaystyle\frac{1}{2}(g^{\prime}(x+)+g^{\prime}(x-))\Omega_{n,1}.

And

(4.7) |0Yn(x,t)(12xt(g(x+)g(x))sgn(ux)𝑑u)𝑑t|\displaystyle\left|\int\limits_{0}^{\infty}Y_{n}(x,t)\left(\frac{1}{2}\int\limits_{x}^{t}(g^{\prime}(x+)-g^{\prime}(x-))\text{sgn}(u-x)~{}du\right)dt\right| \displaystyle\leq 12|(g(x+)g(x))|0Yn(x,t)|tx|𝑑t\displaystyle\frac{1}{2}|(g^{\prime}(x+)-g^{\prime}(x-))|\int\limits_{0}^{\infty}Y_{n}(x,t)|t-x|~{}dt
\displaystyle\leq 12|(g(x+)g(x))|0|tx|Yn(x,t)𝑑t\displaystyle\frac{1}{2}|(g^{\prime}(x+)-g^{\prime}(x-))|\int\limits_{0}^{\infty}|t-x|Y_{n}(x,t)dt
\displaystyle\leq 12|(g(x+)g(x)|(Ωn,2)12\displaystyle\frac{1}{2}|(g^{\prime}(x+)-g^{\prime}(x-)|\left(\Omega_{n,2}\right)^{\frac{1}{2}}

Using (2.6), we get:

(4.8) |Bn(g;x)g(x)|\displaystyle|B_{n}^{*}(g;x)-g(x)| \displaystyle\leq 12|g(x+)+g(x)|Ωn,1+12|g(x+)g(x)|2unζn(x)\displaystyle\frac{1}{2}|g^{\prime}(x+)+g^{\prime}(x-)|\Omega_{n,1}+\frac{1}{2}|g^{\prime}(x+)-g^{\prime}(x-)|\sqrt{\frac{2}{u_{n}}}\zeta_{n}(x)
+|0Yn(x,t)(12xs(gx(u))𝑑u)𝑑t|\displaystyle+\left|\int\limits_{0}^{\infty}Y_{n}(x,t)\left(\frac{1}{2}\int\limits_{x}^{s}(g^{\prime}_{x}(u))~{}du\right)dt\right|

Here,

(4.9) 0Yn(x,t)(xs(gx(u))𝑑u)𝑑t\displaystyle\int\limits_{0}^{\infty}Y_{n}(x,t)\left(\int\limits_{x}^{s}(g^{\prime}_{x}(u))~{}du\right)dt =\displaystyle= 0xYn(x,t)(xs(gx(u))𝑑u)𝑑t+xYn(x,t)(x,t)(xt(gx(u))𝑑u)𝑑t\displaystyle\int\limits_{0}^{x}Y_{n}(x,t)\left(\int\limits_{x}^{s}(g^{\prime}_{x}(u))~{}du\right)dt+\int\limits_{x}^{\infty}Y_{n}(x,t)(x,t)\left(\int\limits_{x}^{t}(g^{\prime}_{x}(u))~{}du\right)dt
=\displaystyle= P1+P2,\displaystyle P_{1}+P_{2},

where

(4.10) P1\displaystyle P_{1} =\displaystyle= 0x(xt(gx(u))𝑑u)t(In(x,t))𝑑t\displaystyle\int\limits_{0}^{x}\left(\int\limits_{x}^{t}(g^{\prime}_{x}(u))~{}du\right)\frac{\partial}{\partial t}(I_{n}(x,t))dt
=\displaystyle= 0xgx(t)In(x,t)𝑑t\displaystyle\int\limits_{0}^{x}g^{\prime}_{x}(t)I_{n}(x,t)dt
=\displaystyle= 0ygx(t)In(x,t)𝑑t+yxgx(t)In(x,t)𝑑t\displaystyle\int\limits_{0}^{y}g^{\prime}_{x}(t)I_{n}(x,t)dt+\int\limits_{y}^{x}g^{\prime}_{x}(t)I_{n}(x,t)dt

Here, we consider y=xxuny=x-\frac{x}{\sqrt{u_{n}}} then by above equality, one can write

(4.11) |xxunxgx(t)In(x,t)𝑑t|\displaystyle\left|\int\limits_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}(t)I_{n}(x,t)dt\right| \displaystyle\leq xxunx|gx(t)||In(x,t)|𝑑t\displaystyle\int\limits_{x-\frac{x}{\sqrt{u_{n}}}}^{x}|g^{\prime}_{x}(t)||I_{n}(x,t)|dt
\displaystyle\leq xxunx|gx(t)gx(x)|𝑑t,gx(x)=0,(where|In(x,t)|1)\displaystyle\int\limits_{x-\frac{x}{\sqrt{u_{n}}}}^{x}|g^{\prime}_{x}(t)-g^{\prime}_{x}(x)|dt,~{}~{}~{}~{}g^{\prime}_{x}(x)~{}=0,(\text{where}~{}|I_{n}(x,t)|\leq 1)
\displaystyle\leq xxunxVtxgx𝑑t\displaystyle\int\limits_{x-\frac{x}{\sqrt{u_{n}}}}^{x}V_{t}^{x}g^{\prime}_{x}dt
\displaystyle\leq Vxxunxgxxxunx𝑑t\displaystyle V_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}\int\limits_{x-\frac{x}{\sqrt{u_{n}}}}^{x}dt
=\displaystyle= xun(Vxxunxgx)\displaystyle\frac{x}{\sqrt{u_{n}}}\left(V_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}\right)

Using Lemma 4.1 for solving second term by substituting t=xxut=x-\frac{x}{u}, we get

(4.12) xxxun|gx(t)|In(x,t)𝑑t\displaystyle\int\limits_{x}^{x-\frac{x}{\sqrt{u_{n}}}}|g^{\prime}_{x}(t)|I_{n}(x,t)dt \displaystyle\leq 2ζn2(x)unxxxun|gx(t)|(xt)2𝑑t\displaystyle\frac{2\zeta_{n}^{2}(x)}{u_{n}}\int\limits_{x}^{x-\frac{x}{\sqrt{u_{n}}}}\frac{|g^{\prime}_{x}(t)|}{(x-t)^{2}}dt
\displaystyle\leq 2ζn2(x)unxxxunVtxgx1(xt)2𝑑t\displaystyle\frac{2\zeta_{n}^{2}(x)}{u_{n}}\int\limits_{x}^{x-\frac{x}{\sqrt{u_{n}}}}V_{t}^{x}g^{\prime}_{x}\frac{1}{(x-t)^{2}}dt
=\displaystyle= 2ζn2(x)xunxunVxxusgx𝑑u\displaystyle\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\int\limits_{x}^{\sqrt{u_{n}}}V_{x-\frac{x}{u}}^{s}g^{\prime}_{x}du
\displaystyle\leq 2ζn2(x)xunj=0[un](Vxxjtgx).\displaystyle\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}\left(V_{x-\frac{x}{j}}^{t}g^{\prime}_{x}\right).

Hence,

(4.13) |P1|2ζn2(x)xunj=0[un](Vxxjtgx)+xun(Vxxunxgx).\displaystyle|P_{1}|\leq\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}\left(V_{x-\frac{x}{j}}^{t}g^{\prime}_{x}\right)+\frac{x}{\sqrt{u_{n}}}\left(V_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}\right).

To solve P2P_{2}, we reform P2P_{2} and integrating by parts, we have

|P2|\displaystyle|P_{2}| =\displaystyle= |xz(xtgx(u)𝑑u)t(1In(x,t))𝑑t+z(xtgx(u)𝑑u)t(1In(x,t))𝑑t|\displaystyle\Bigg{|}\int\limits_{x}^{z}\left(\int\limits_{x}^{t}g^{\prime}_{x}(u)du\right)\frac{\partial}{\partial t}(1-I_{n}(x,t))dt+\int\limits_{z}^{\infty}\left(\int\limits_{x}^{t}g^{\prime}_{x}(u)du\right)\frac{\partial}{\partial t}(1-I_{n}(x,t))dt\Bigg{|}
\displaystyle\leq |xz(xtgx(u)𝑑u)t(1In(x,t))𝑑t|+|z(xtgx(u)𝑑u)t(1In(x,t))𝑑t|\displaystyle\left|\int\limits_{x}^{z}\left(\int\limits_{x}^{t}g^{\prime}_{x}(u)du\right)\frac{\partial}{\partial t}(1-I_{n}(x,t))dt\right|+\left|\int\limits_{z}^{\infty}\left(\int\limits_{x}^{t}g^{\prime}_{x}(u)du\right)\frac{\partial}{\partial t}(1-I_{n}(x,t))dt\right|
=\displaystyle= |[xtgx(u)du(1In(x,t))]xzxzgx(t)(1In(x,t))dt\displaystyle\Bigg{|}\left[\int\limits_{x}^{t}g^{\prime}_{x}(u)du(1-I_{n}(x,t))\right]_{x}^{z}-\int\limits_{x}^{z}g^{\prime}_{x}(t)(1-I_{n}(x,t))dt
+[xtgx(u)du(1In(x,t))]zzgx(t)(1In(x,t))dt|\displaystyle+\left[\int\limits_{x}^{t}g^{\prime}_{x}(u)du(1-I_{n}(x,t))\right]_{z}^{\infty}-\int\limits_{z}^{\infty}g^{\prime}_{x}(t)(1-I_{n}(x,t))dt\Bigg{|}
=\displaystyle= |xzgx(u)du(1In(x,z))xzgx(t)(1In(x,t))dt\displaystyle\Bigg{|}\int\limits_{x}^{z}g^{\prime}_{x}(u)du(1-I_{n}(x,z))-\int\limits_{x}^{z}g^{\prime}_{x}(t)(1-I_{n}(x,t))dt
xzgx(u)du(1In(x,z))zgx(t)(1In(x,t))dt|\displaystyle-\int\limits_{x}^{z}g^{\prime}_{x}(u)du(1-I_{n}(x,z))-\int\limits_{z}^{\infty}g^{\prime}_{x}(t)(1-I_{n}(x,t))dt\Bigg{|}
=\displaystyle= |xzgx(t)(1In(x,t))𝑑t+zgx(t)(1In(x,t))𝑑t|\displaystyle\Bigg{|}\int\limits_{x}^{z}g^{\prime}_{x}(t)(1-I_{n}(x,t))dt+\int\limits_{z}^{\infty}g^{\prime}_{x}(t)(1-I_{n}(x,t))dt\Bigg{|}
\displaystyle\leq xzVxt(gx)𝑑t+2ζn2(x)unzVxt(gx)1(tx)2𝑑t\displaystyle\int\limits_{x}^{z}V_{x}^{t}(g^{\prime}_{x})dt+\frac{2\zeta_{n}^{2}(x)}{u_{n}}\int\limits_{z}^{\infty}V_{x}^{t}(g^{\prime}_{x})\frac{1}{(t-x)^{2}}dt
\displaystyle\leq xunVxx+xun(gx)+2ζn2(x)unx+xunVxt(gx)1(tx)2𝑑t.\displaystyle\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{u_{n}}\int\limits_{x+\frac{x}{\sqrt{u_{n}}}}^{\infty}V_{x}^{t}(g^{\prime}_{x})\frac{1}{(t-x)^{2}}dt.

On substituting t=x(1+1β)t=x\left(1+\frac{1}{\beta}\right), we obtain

|P2|\displaystyle|P_{2}| \displaystyle\leq xunVxx+xun(gx)+2ζn2(x)xun0unVxx+xβ(gx)𝑑β\displaystyle\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\int\limits_{0}^{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\beta}}(g^{\prime}_{x})d\beta
\displaystyle\leq xunVxx+xun(gx)+2ζn2(x)xunj=0[un]jj+1Vxx+xj(gx)𝑑β\displaystyle\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}\int\limits_{j}^{\sqrt{j+1}}V_{x}^{x+\frac{x}{j}}(g^{\prime}_{x})d\beta
=\displaystyle= xunVxx+xun(gx)+2ζn2(x)xunj=0[un]Vxx+xj(gx).\displaystyle\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}V_{x}^{x+\frac{x}{j}}(g^{\prime}_{x}).

Using the value of P1,P2P_{1},P_{2} in (4.9), we obtain

(4.14) 0Yn(x,t)(xs(gx(u))𝑑u)𝑑t\displaystyle\int\limits_{0}^{\infty}Y_{n}(x,t)\left(\int\limits_{x}^{s}(g^{\prime}_{x}(u))~{}du\right)dt =\displaystyle= 2ζn2(x)xunj=0[un](Vxxjtgx)+xun(Vxxunxgx)\displaystyle\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}\left(V_{x-\frac{x}{j}}^{t}g^{\prime}_{x}\right)+\frac{x}{\sqrt{u_{n}}}\left(V_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}\right)
+xunVxx+xun(gx)+2ζn2(x)xunj=0[un]Vxx+xj(gx)\displaystyle+\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}V_{x}^{x+\frac{x}{j}}(g^{\prime}_{x})

Put the above value from (4.14) in (4.8), we obtain required result

|Bn(g;x)g(x)|\displaystyle|B_{n}^{*}(g;x)-g(x)| \displaystyle\leq 12un|g(x+)+g(x)|+12un|g(x+)g(x)|ζn(x)\displaystyle\frac{1}{2u_{n}}|g^{\prime}(x+)+g^{\prime}(x-)|+\sqrt{\frac{1}{2u_{n}}}|g^{\prime}(x+)-g^{\prime}(x-)|\zeta_{n}(x)
+2ζn2(x)xunj=0[un](Vxxjtgx)+xun(Vxxunxgx)\displaystyle+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}\left(V_{x-\frac{x}{j}}^{t}g^{\prime}_{x}\right)+\frac{x}{\sqrt{u_{n}}}\left(V_{x-\frac{x}{\sqrt{u_{n}}}}^{x}g^{\prime}_{x}\right)
+xunVxx+xun(gx)+2ζn2(x)xunj=0[un]Vxx+xj(gx).\displaystyle+\frac{x}{\sqrt{u_{n}}}V_{x}^{x+\frac{x}{\sqrt{u_{n}}}}(g^{\prime}_{x})+\frac{2\zeta_{n}^{2}(x)}{xu_{n}}\sum\limits_{j=0}^{[\sqrt{u_{n}}]}V_{x}^{x+\frac{x}{j}}(g^{\prime}_{x}).

5. Graphical and numerical analysis of the operators

In this section, we study the graphical representation and numerical analysis of the operators to the function.

Example 5.1.

Let the function g:[0,2.5][0,)g:[0,2.5]\to[0,\infty) such that g(x)=x3e5xg(x)=-x^{3}e^{-5x}(blue) for all x[0,2.5].x\in[0,2.5]. Choosing un=n=15,35,50u_{n}=n=15,35,50 and then corresponding operators are S15(g;x),S35(g;x),S50(g;x)S_{15}^{*}(g;x),S_{35}^{*}(g;x),S_{50}^{*}(g;x) represent green, red and black colors respectively in the given Figure 1. One can observe that as the value of nn is increased, the error of the operators to the function is going to be least. We can say that the approach of the operators to the function is good for the large value of nn.

But for the same function, if we move towards the truncation type error, we can observe by Figure 2, the approximation is not better throughout the interval [0,2.5][0,2.5]. Here we consider the un=n=15,35,50u_{n}=n=15,35,50 and j=15,35,50j=15,35,50, using these values, the truncation is determined. So one can observe that at a some stage, its going good but not at all.

Refer to caption
Figure 1. The convergence of the operators Sn(g;x)S_{n}^{*}(g;x) to the function g(x)(blue)g(x)(blue).
Refer to caption
Figure 2. The convergence of the operators Sn(g;x)S_{n}^{*}(g;x) to the function g(x)(blue)g(x)(blue).

Now, we determine the convergence of the operators to the function by considering the different sequences for the operators and then we see that the variation of the convergence to the function is changed.

Example 5.2.

Let the function g(x)=x2e2xg(x)=x^{2}e^{2x}(black), for all 0x2.50\leq x\leq 2.5. Here, we consider un=nu_{n}=n and choosing the value of n=10,50,100,200,250,500,1000n=10,50,100,200,250,500,1000, for which the operators’s curve is red for the all values of nn. Then, we can observe the error estimations by Figure 3 as well Table 1 at different points of xx, which is going to be better as the value of nn is increased.

Refer to caption
Figure 3. The convergence of the operators Sn(g;x)S_{n}^{*}(g;x) to the function g(x)g(x).
xx\downarrow, un=nu_{n}=n\to at n=10 at n=50 at n=100 at n=200 at n=250 at n=500 at n=1000
0.1 0.202522 0.0156053 0.0069326 0.00326665 0.00258244 0.00126086 0.000622967
0.5 3.82396 0.325365 0.148479 0.0710035 0.0563036 0.0276615 0.0137104
0.9 27.2622 2.13631 0.969982 0.462837 0.366865 0.180094 0.0892291
1.0 42.1618 3.22439 1.46137 0.696735 0.552174 0.270979 0.134238
1.5 310.724 20.8491 9.3538 4.43876 3.51461 1.72172 0.852162
2.0 1888.96 110.236 48.9145 23.0939 18.2677 8.93151 4.4164
2.5 10237.6 516.742 226.689 106.464 84.1292 41.0503 20.2783
Table 1. Convergence estimations of the operators Bn(g;x)B_{n}^{*}(g;x) to the function g(x)g(x)
Example 5.3.

Let for the same function g(x)=x2e2xg(x)=x^{2}e^{2x}(black), for all 0x2.50\leq x\leq 2.5. Here, we consider un=n32u_{n}=n^{\frac{3}{2}} and choosing the value of n=10,50,100,200,250,500,1000n=10,50,100,200,250,500,1000, the curves of the operators (1.3) represent green color for all values of n32n^{\frac{3}{2}} for the operators (1.3). Hence, we can observe the error estimations by Figure 4 as well Table 2 at the different points of xx.

Refer to caption
Figure 4. The convergence of the operators Sn(g;x)S_{n}^{*}(g;x) to the function g(x)g(x).
xx\downarrow, un=n32u_{n}=n^{\frac{3}{2}}\to at n=10 at n=50 at n=100 at n=200 at n=250 at n=500 at n=1000
0.1 0.0282979 0.0018008 0.000622967 0.000218562 0.000156203 0.0000551185 0.0000194739
0.5 0.574288 0.0394044 0.0137104 0.0048201 0.00344596 0.0012166 0.000429916
0.9 3.79761 0.256632 0.0892291 0.0313623 0.0224205 0.00791509 0.00279694
1.0 5.74555 0.386191 0.134238 0.0471774 0.033726 0.011906 0.00420715
1.5 37.6466 2.45554 0.852162 0.299321 0.213959 0.0755213 0.0266852
2.0 201.92 12.7484 4.4164 1.55031 1.10808 0.391058 0.138172
2.5 960.667 58.6418 20.2783 7.11386 5.08411 1.79398 0.633827
Table 2. Convergence estimations of the operators Bn(g;x)B_{n}^{*}(g;x) to the function g(x).g(x).
Example 5.4.

Further for the function g(x)=x2e2xg(x)=x^{2}e^{2x}(black), for all 0x2.50\leq x\leq 2.5, one can see the error estimations of the operators (1.3). Here, we consider un=n2u_{n}=n^{2} and choosing the value of n=10,50,100,200,250,500,1000n=10,50,100,200,250,500,1000, the curves of the operators (1.3) represent Magenta color for all values of n2n^{2} of the operators. Hence, we can observe the error estimations by Figure 5 as well Table 3 at different points of xx. By observing, we can see, the function’s curve almost overlapped by the curves of the operators.

Refer to caption
Figure 5. The convergence of the operators Sn(g;x)S_{n}^{*}(g;x) to the function g(x)g(x).
un=n2u_{n}=n^{2}\to at n=10 at n=50 at n=100 at n=200 at n=250 at n=500 at n=1000
xx=0.1 0.0069326 0.000247412 0.0000616321 0.0000153943 9.85127×\times10-6 2.462477×\times10-6 6.15594×\times10-7
xx=0.5 0.148479 0.00545553 0.00136032 0.000339859 0.000217493 0.0000543675 0.0000135915
xx=0.9 0.969982 0.0354973 0.00885019 0.00221104 0.00141495 0.000353699 0.0000884224
xx=1.0 1.46137 0.053398 0.0133126 0.00332584 0.00212836 0.000532032 0.000133004
xx=1.5 9.3538 0.338802 0.0844444 0.0210951 0.0134997 0.00337451 0.000843601
xx=2.0 48.9145 1.75487 0.437267 0.109226 0.069898 0.0174722 0.0043679
xx=2.5 226.689 8.0529 2.00598 0.501045 0.320634 0.080147 0.020036
Table 3. Convergence estimations of the operators Bn(g;x)B_{n}^{*}(g;x) to the function g(x)g(x)
Example 5.5.

At the same time for the same function g(x)=x2e2xg(x)=x^{2}e^{2x}, 0x2.50\leq x\leq 2.5, we can observe by the given Figure 6 that the accuracy of the convergence for the operators (1.3) is better when un=n2u_{n}=n^{2} is taken rather than when we choose the sequences un=nu_{n}=n and un=n32u_{n}=n^{\frac{3}{2}} for the same operators (1.3).

Refer to caption
Figure 6. The convergence of the operators Sn(g;x)S_{n}^{*}(g;x) to the function g(x)g(x).

Concluding Remark: After observing by all the Figures (1,2,3,4,5,6) and Tables (1, 2, 3), we can conclude that the better approximation can be obtained by choosing the appropriate sequence for the operators (1.3) and in addition will get good approximation for the large value of nn of the positive and real sequence for the operators.

Conclusion: The approximation properties have been determined for the functions belonging to different spaces and moreover the rate of the convergence of the operators has been discussed. Not in theoretical sense to support of our approximation results but also using graphical means, we presented the graphical analysis.

References

  • [1] Acar T, Ulusoy G. Approximation by modified Szász-Durrmeyer operators. Periodica Mathematica Hungarica. 2016 Mar 1;72(1):64-75.
  • [2] Butzer PL. On the extensions of Bernstein polynomials to the infinite interval. Proceedings of the American Mathematical Society. 1954 Aug 1;5(4):547-53.
  • [3] Gandhi RB, Deepmala, Mishra VN. Local and global results for modified Szász-Mirakjan operators. Mathematical Methods in the Applied Sciences. 2017 May 15;40(7):2491-504.
  • [4] Gairola AR. Deepmala, and Mishra LN. Rate of approximation by finite iterates of qq-Durrmeyer operators, Proc. Nat. Acad. Sci., India, Sect. A Phys. Sci. 2016;86(2):229-34.
  • [5] Ispir N. Rate of convergence of generalized rational type Baskakov operators. Mathematical and computer modelling. 2007 Sep 1;46(5-6):625-31.
  • [6] Karsli H. Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation. Mathematical and computer modelling. 2007 Mar 1;45(5-6):617-24.
  • [7] Lenze B. On Lipschitz-type maximal functions and their smoothness spaces. In Indagationes Mathematicae (Proceedings) 1988 Jan 1 (Vol. 91, No. 1, pp. 53-63). North-Holland.
  • [8] Mazhar S, Totik V. Approximation by modified Sza´\acute{\text{a}}sz-operators. Acta Scientiarum Mathematicarum. 1985 Jan 1;49(1-4):257-69.
  • [9] Mishra VN, Gandhi RB, Nasaireh F. Simultaneous approximation by Szász-Mirakjan-Durrmeyer-type operators. Bollettino dell’ Unione Matematica Italiana. 2016 Jan 1;8(4):297-305.
  • [10] Mishra VN, Gandhi RB. Simultaneous approximation by Szász-Mirakjan-Stancu-Durrmeyer type operators. Periodica Mathematica Hungarica. 2017 Mar 1;74(1):118-27.
  • [11] Mishra VN, Gandhi RB. A summation-integral type modification of Szász-Mirakjan operators. Mathematical Methods in the Applied Sciences. 2017 Jan 15;40(1):175-82.
  • [12] Mishra VN, Gandhi RB, Mohapatra RN. A summation-integral type modification of Szász-Mirakjan-Stancu operators. J. Numer. Anal. Approx. Theory. 2016 Sep 19;45(1):27-36.
  • [13] Mirakjan GM. Approximation of continuous functions with the aid of polynomials. In Dokl. Acad. Nauk SSSR 1941 (Vol. 31, pp. 201-205).
  • [14] Mishra VN, Gandhi RB. Simultaneous approximation by Szász-Mirakjan-Stancu-Durrmeyer type operators. Periodica Mathematica Hungarica. 2017 Mar 1;74(1):118-27.
  • [15] Mishra VN, Khatri K, Mishra LN. Deepmala; Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators. Journal of Inequalities and Applications 2013; 2013:586.
  • [16] Mishra VN, Khan HH, Khatri K, Mishra LN. Hypergeometric representation for Baskakov-Durrmeyer-Stancu type operators. Bulletin of Mathematical Analysis and Applications. 2013 Jul 1;5(3).
  • [17] Mishra VN, Khatri K, Mishra LN. On simultaneous approximation for Baskakov-Durrmeyer-Stancu type operators. Journal of Ultra Scientist of Physical Sciences. 2012 Jan 1;24(3):567-77.
  • [18] Mishra VN, Gandhi RB. A summation-integral type modification of Szász-Mirakjan operators. Mathematical Methods in the Applied Sciences. 2017 Jan 15;40(1):175-82.
  • [19] O¨\ddot{\text{O}}zarslan MA, Actuǧlu H. Local approximation properties for certain King type operators. Filomat 27 (2013), no. 1, 173-181.
  • [20] O¨\ddot{\text{O}}zarslan MA, Duman O, Kaanog˘\breve{\text{g}}lu C. Rates of convergence of certain King-type operators for functions with derivative of bounded variation. Mathematical and Computer Modelling. 2010 Jul 1;52(1-2):334-45.
  • [21] Szász O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Standards. 1950 Sep;45:239-45.
  • [22] Yadav R, Meher R, Mishra VN. Approximations on Stancu variant of Szász-Mirakjan-Kantorovich type operators, Arxiv preprint arXiv:1911.11479v1 [math.FA].
  • [23] Yadav R, Meher R, Mishra VN. Approximation on Durrmeyer modification of generalized Szasz-Mirakjan operators, Arxiv preprint arXiv:1911.12972v1 [math.FA].
  • [24] Yadav R, Meher R, Mishra VN. Approximation properties by some modified Szasz-Mirakjan-Kantorovich operators, Arxiv preprint arXiv:1912.04537v1 [math.FA].