This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Furstenberg set problem and exceptional set estimate in prime fields: dimension two implies higher dimensions

Shengwen Gan Department of Mathematics
University of Wisconsin-Madison
Madison, WI-53706, USA
[email protected]
Abstract.

We study Furstenberg set problem, and exceptional set estimate for Marstrand’s orthogonal projection in prime fields for all dimensions. We define the Furstenberg index 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) and the Marstrand index 𝐌(a,s;n,k)\mathbf{M}(a,s;n,k).

It is shown that the two-dimensional result for Furstenberg set problem implies all higher dimensional results.

Key words and phrases:
Furstenberg problem
2020 Mathematics Subject Classification:
28A75, 28A78

1. Introduction

We study the Furstenberg set problem, as well as the exceptional set estimate in prime fields. The main novelty of this paper is that we prove, for these two problems, the two-dimensional result implies all higher dimensional results. In common sense, high dimensional version is harder than low dimensional version. For example, a closely related problem—Kakeya conjecture is known for dimension two but wide open for dimension bigger than two. Hence, it is surprising that for these two problems in prime fields, all higher dimensional results can be deduced from the two dimensional result.

1.1. Background

We first introduce the two problems—Furstenberg set problem and exceptional set estimate in Euclidean space.

1.1.1. Furstenberg set problem

The Furstenberg set problem was originally considered by Wolff [16] in 2\mathbb{R}^{2}. Fix s(0,1],t(0,2]s\in(0,1],t\in(0,2]. We say E2E\subset\mathbb{R}^{2} is a (s,t)(s,t)-set in 2\mathbb{R}^{2}, if EE is of the form

E=Y(),E=\bigcup_{\ell\in\mathcal{L}}Y(\ell),

where A(1,2)\mathcal{L}\subset A(1,2) is a set of lines with dim=t\dim\mathcal{L}=t and for each \ell\in\mathcal{L} there exists Y()Y(\ell)\subset\ell with dimY()=s\dim Y(\ell)=s. (dim\dim will always mean Hausdorff dimension.) Furstenberg set problem asks about the optimal lower bound on the Hausdorff dimension of (s,t)(s,t)-sets, i.e.,

infE is a (s,t)-setdim(E).\inf_{E\textup{~{}is~{}a~{}}(s,t)\textup{-set}}\dim(E).

Recently, Ren and Wang [15] resolved the Furstenberg set problem by proving

(1) infE is a (s,t)-setdim(E)=min{s+t,32s+12t,s+1}.\inf_{E\textup{~{}is~{}a~{}}(s,t)\textup{-set}}\dim(E)=\min\{s+t,\frac{3}{2}s+\frac{1}{2}t,s+1\}.

For more reference and the history on this problem, we refer to [15], [13].

Furstenberg set problem was also considered in higher dimensions, see for example [5], [1], [7]. It can be formulated similarly as follows.

Fix integers 1k<n1\leq k<n. Fix s[0,k],t[0,(k+1)(nk)]s\in[0,k],t\in[0,(k+1)(n-k)]. We say EnE\subset\mathbb{R}^{n} is a (s,t;n,k)(s,t;n,k)-set in n\mathbb{R}^{n}, if EE is of the form

E=V𝒱Y(V),E=\bigcup_{V\in\mathcal{V}}Y(V),

where 𝒱A(k,n)\mathcal{V}\subset A(k,n) is a set of kk-planes with dim𝒱=t\dim\mathcal{V}=t and for each V𝒱V\in\mathcal{V} there exists Y(V)VY(V)\subset V with dimY(V)=s\dim Y(V)=s. Furstenberg set problem in n\mathbb{R}^{n} for kk-planes asks to compute

infE is a (s,t;n,k)-setdim(E).\inf_{E\textup{~{}is~{}a~{}}(s,t;n,k)\textup{-set}}\dim(E).

The Furstenberg set problems in higher dimensions remains wide open.


1.1.2. Exceptional set estimate

Next, we introduce the problem of exceptional set estimate. We first introduce this problem over \mathbb{R}. The projection theory dates back to Marstrand [8], who showed that if AA is a Borel set in 2\mathbb{R}^{2}, then the projection of AA onto almost every one-dimensional subspace has Hausdorff dimension min{1,dimA}\min\{1,\dim A\}. This was generalized to n\mathbb{R}^{n} by Mattila [9] who showed that if AA is a Borel set in n\mathbb{R}^{n}, then the projection of AA onto almost every kk-dimensional subspace has Hausdorff dimension min{k,dimA}\min\{k,\dim A\}.

One can consider a refined version of the Marstrand’s projection problem, which is known as the exceptional set estimate.

For VG(k,n)V\in G(k,\mathbb{R}^{n}), we use πV:nV\pi_{V}:\mathbb{R}^{n}\rightarrow V to denote the orthogonal projection. For AnA\subset\mathbb{R}^{n} and s>0s>0, we define the exceptional set

Es(A;n,k):={VG(k,n):dim(πV(A))<s}.E_{s}(A;n,k):=\{V\in G(k,\mathbb{R}^{n}):\dim(\pi_{V}(A))<s\}.

The exceptional set estimate is about finding optimal upper bound of dim(Es(A;n,k))\dim(E_{s}(A;n,k)) (in terms of dimA,s,n,k\dim A,s,n,k), i.e.,

supAn,dim(A)=adim(Es(A;n,k)).\sup_{A\subset\mathbb{R}^{n},\dim(A)=a}\dim(E_{s}(A;n,k)).

Many progress have been made on this problem, see for example [6], [2], [14], [12], [13].

In 2\mathbb{R}^{2}, D. Oberlin [10] conjectured that for 0<smin{1,a}0<s\leq\min\{1,a\} and A2A\subset\mathbb{R}^{2} with dimA=a\dim A=a, one has the following exceptional set estimate

(2) dim(Es(A;2,1))max{2sa,0}.\dim(E_{s}(A;2,1))\leq\max\{2s-a,0\}.

This conjecture was proved by Ren and Wang in [15].


1.2. The problems in prime fields

In the rest of the paper, we only look at prime fields. Let pp be a prime and 𝔽p\mathbb{F}_{p} be the prime field with pp elements. Throughout the paper, ABA\lessapprox B means AC(logp)CBA\leq C(\log p)^{C}B for some large constant CC (independent of pp). ABA\approx B means both ABA\lessapprox B and BAB\lessapprox A. ABA\lesssim B means ACBA\leq CB for a large constant CC (independent of pp). ABA\sim B means both ABA\lesssim B and BAB\lesssim A.

1.2.1. Furstenberg set problem

Definition 1 ((s,t;n,k)(s,t;n,k)-set).

Fix integers 1k<n1\leq k<n, and numbers 0sk0\leq s\leq k, 0t(k+1)(nk)0\leq t\leq(k+1)(n-k). Let 0<λ10<\lambda\leq 1. We say EE is a (s,t;n,k;λ)(s,t;n,k;\lambda)-Furstenberg set (over 𝔽p\mathbb{F}_{p}), if EE is a subset of 𝔽pn\mathbb{F}_{p}^{n} of form

E=V𝒱Y(V).E=\bigcup_{V\in\mathcal{V}}Y(V).

Here, 𝒱A(k,𝔽pn)\mathcal{V}\subset A(k,\mathbb{F}_{p}^{n}) is a set of kk-planes with #𝒱λpt\#\mathcal{V}\geq\lambda p^{t}; for each V𝒱V\in\mathcal{V}, Y(V)Y(V) is a subset of VV with #Y(V)λps\#Y(V)\geq\lambda p^{s}.

Remark 2.

We remark that s,t,n,ks,t,n,k are important parameters, while λ\lambda is not. Since λ\lambda is not an important parameter, from now on, we will drop λ\lambda from notation and simply call (s,t;n,k;λ)(s,t;n,k;\lambda)-set as (s,t;n,k)(s,t;n,k)-set, thinking of λ\lambda as a constant in (0,1](0,1].

We make the following definition.

Definition 3.

We say (s,t;n,k)(s,t;n,k) is admissible, if 1k<n1\leq k<n are integers and 0sk0\leq s\leq k, 0t(k+1)(nk)0\leq t\leq(k+1)(n-k).

The Furstenberg set problem can be formulated as:

Question 1.

Suppose (s,t;n,k)(s,t;n,k) is admissible. Find the largest 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k), so that

(3) infE:(s,t;n,k)-set#Eεp𝐅(s,t;n,k)ε\inf_{E:\ (s,t;n,k)\textup{-set}}\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;n,k)-\varepsilon}

holds for any ε>0\varepsilon>0.

The ε\gtrsim_{\varepsilon} in the above inequality is actually s,t,n,k,ε\gtrsim_{s,t,n,k,\varepsilon}. We just view s,t,n,ks,t,n,k as fixed parameters, so we simplify it to ε\lesssim_{\varepsilon}. The crucial point is that the implicit constant in \gtrsim or \lesssim throughout this paper never depends on pp, but can depend on any other fixed parameters. We are interested in the behaviour as pp goes to infinity, so the goal is to find the index 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) for fixed (s,t;n,k)(s,t;n,k).

We see the problem consists of two parts: for fixed (s,t;n,k)(s,t;n,k),

  1. (1)

    (Lower bound) show for any (s,t;n,k)(s,t;n,k)-set EE, we have #Ep𝐅(s,t;n,k)ε\#E\gtrsim p^{\mathbf{F}(s,t;n,k)-\varepsilon};

  2. (2)

    (Upper bound) show the existence of a (s,t;n,k)(s,t;n,k)-set EE, such that #Ep𝐅(s,t;n,k)\#E\lesssim p^{\mathbf{F}(s,t;n,k)}.

Based on the Ren-Wang’s result (1), it is reasonable to make the conjecture in 𝔽p2\mathbb{F}_{p}^{2}.

Conjecture 4.

Fix s(0,1],t(0,2]s\in(0,1],t\in(0,2]. Then for any (s,t;2,1)(s,t;2,1)-set EE over 𝔽p\mathbb{F}_{p}, we have

#Eεpmin{s+t,32s+12t,s+1}ε,\#E\gtrsim_{\varepsilon}p^{\min\{s+t,\frac{3}{2}s+\frac{1}{2}t,s+1\}-\varepsilon},

for any ε>0\varepsilon>0.

Remark 5.

It is crucial to use prime field 𝔽p\mathbb{F}_{p}. Otherwise, the conjecture fails. Consider the problem in 𝔽p2\mathbb{F}_{p}^{2}, where q=p2q=p^{2} is the square of a prime. We choose the set of lines 𝒱={y=ax+b:a,b𝔽p}\mathcal{V}=\{y=ax+b:a,b\in\mathbb{F}_{p}\}, so #𝒱=q\#\mathcal{V}=q and hence t=1t=1. For each line V:y=ax+bV:y=ax+b in 𝒱\mathcal{V}, define Y(V):={(x,ax+b):x𝔽p}Y(V):=\{(x,ax+b):x\in\mathbb{F}_{p}\}, so #Y(V)=p=q12\#Y(V)=p=q^{\frac{1}{2}} and hence s=12s=\frac{1}{2}. One can calculate #(V𝒱Y(V))=p2=q\#\big{(}\bigcup_{V\in\mathcal{V}}Y(V)\big{)}=p^{2}=q. However, min{s+t,32s+12t,s+1}=54\min\{s+t,\frac{3}{2}s+\frac{1}{2}t,s+1\}=\frac{5}{4}.

Usually, people believe the problem in finite field is easier than in Euclidean space. However, Conjecture 4 remains open, while Euclidean version have been resolved.


In the paper, we explicitly find the function 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k). The definition for 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) is tricky, so we postpone it later in Definition 11. The following are main results.

Theorem 6 (Upper bound).

Suppose (s,t;n,k)(s,t;n,k) is admissible. Then for any prime pp, there exits a (s,t;n,k)(s,t;n,k)-set EE over 𝔽p\mathbb{F}_{p}, such that

#Ep𝐅(s,t;n,k).\#E\lesssim p^{\mathbf{F}(s,t;n,k)}.
Theorem 7 (Lower bound).

Suppose (s,t;n,k)(s,t;n,k) is admissible. If we assume Conjecture 4 holds, then for any (s,t;n,k)(s,t;n,k)-set EE over 𝔽p\mathbb{F}_{p}, we have

#Eεp𝐅(s,t;n,k)ε,\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;n,k)-\varepsilon},

for any ε>0\varepsilon>0.


1.2.2. Exceptional set estimate

We also study the exceptional set estimate in prime fields in all dimensions. We show that the two-dimensional result for Furstenberg set problem implies all higher dimensional results for exceptional set estimates.

To define the projection in 𝔽pn\mathbb{F}_{p}^{n}, we first consider an equivalent definition of projection in n\mathbb{R}^{n}.

Recall πV:nV\pi_{V}:\mathbb{R}^{n}\rightarrow V is the orthogonal projection. For VG(k,n)V\in G(k,\mathbb{R}^{n}), we also define the map

πV:nA(k,n)\pi_{V}^{*}:\mathbb{R}^{n}\rightarrow A(k,\mathbb{R}^{n})

as πV(x):=x+V\pi^{*}_{V}(x):=x+V. We see that πV(x)\pi_{V}^{*}(x) is the unique kk-plane in A(k,n)A(k,\mathbb{R}^{n}) that is parallel to VV and passes through xx. It is not hard to see that πV\pi_{V} and πV\pi^{*}_{V^{\perp}} are the same things. This motivates the definition of projections in 𝔽pn\mathbb{F}_{p}^{n}. We will still use the notations Es(A;n,k),πVE_{s}(A;n,k),\pi_{V}^{*} for 𝔽pn\mathbb{F}_{p}^{n} (which have been used for n\mathbb{R}^{n} in previous subsection). This will not cause any confusion.

Definition 8 (Exceptional set).

For VG(m,𝔽pn)V\in G(m,\mathbb{F}_{p}^{n}), define

πV:𝔽pnA(m,𝔽pn)\pi_{V}^{*}:\mathbb{F}_{p}^{n}\rightarrow A(m,\mathbb{F}_{p}^{n})

as πV(x):=x+V\pi_{V}^{*}(x):=x+V.

Suppose A𝔽pnA\subset\mathbb{F}_{p}^{n}. Let s>0s>0. We define

Es(A;n,k):={VG(nk,𝔽pn):#πV(A)<ps}.E_{s}(A;n,k):=\{V\in G(n-k,\mathbb{F}_{p}^{n}):\#\pi_{V}^{*}(A)<p^{s}\}.

(We remark that Es(A;n,k)E_{s}(A;n,k) also depends on pp, but for simplicity, we drop pp from the notation.)


We explicitly find the function 𝐌(a,s;n,k)\mathbf{M}(a,s;n,k), whose definition is tricky and therefore postponed to Definition 14. We state the following results.

Theorem 9 (Lower bound).

Fix 1k<n1\leq k<n, a(0,n]a\in(0,n] and 0<s0<s. Then for pp large enough, there exists A𝔽pnA\subset\mathbb{F}_{p}^{n} with #Apa\#A\gtrsim p^{a}, such that

(4) #Es(A;n,k)p𝐌(a,s;n,k).\#E_{s}(A;n,k)\gtrsim p^{\mathbf{M}(a,s;n,k)}.
Theorem 10 (Upper bound).

Assume Conjecture 4 holds. Fix 1k<n1\leq k<n, a(0,n]a\in(0,n] and 0<s0<s. If pp is large enough, then for any A𝔽pnA\subset\mathbb{F}_{p}^{n} with #Apa\#A\gtrsim p^{a}, we have

(5) #Esε(A;n,k)εpε+𝐌(a,s;n,k),\#E_{s-\varepsilon}(A;n,k)\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a,s;n,k)},

for any ε>0\varepsilon>0.


1.3. Strategy of the proof

The proof of Theorem 6 and Theorem 9 is by constructing examples. The proof of Theorem 7 and Theorem 10 is by a sequence of pigeonholing arguments and induction on both nn and kk. We explain the idea of the proof of Theorem 7.

We consider the case (n,k)=(3,1)(n,k)=(3,1). Suppose for any (s,t;2,1)(s^{\prime},t^{\prime};2,1)-set EE^{\prime}, we have #Ep𝐅(s,t;2,1)\#E^{\prime}\gtrsim p^{\mathbf{F}(s^{\prime},t^{\prime};2,1)}. The goal is to prove for any (s,t;3,1)(s,t;3,1)-set EE, #Ep𝐅(s,t;3,1)\#E\gtrsim p^{\mathbf{F}(s,t;3,1)}. We will carefully analyze the structure of EE and find subsets of EE which are (s,t;2,1)(s^{\prime},t^{\prime};2,1)-set. Then we use the estimate for those (s,t;2,1)(s^{\prime},t^{\prime};2,1)-sets.

Write E=LY(L)E=\bigcup_{L\in\mathcal{L}}Y(L), where A(1,𝔽p3)\mathcal{L}\subset A(1,\mathbb{F}_{p}^{3}) with #=pt\#\mathcal{L}=p^{t} and Y(L)LY(L)\subset L with #Y(L)=ps\#Y(L)=p^{s}. Project \mathcal{L} to 𝔽p2\mathbb{F}_{p}^{2}, and partition \mathcal{L} according to their images. For each WA(1,𝔽p2)W\in A(1,\mathbb{F}_{p}^{2}), define W\mathcal{L}_{W} to be the set of those LL\in\mathcal{L} whose image under the projection 𝔽p3𝔽p2\mathbb{F}_{p}^{3}\rightarrow\mathbb{F}_{p}^{2} is WW. We may assume all the lines in \mathcal{L} are not parallel to (0,0,1)(0,0,1) (by throwing away a small portion of \mathcal{L}). We obtain the partition

=WA(1,𝔽p2)W.\mathcal{L}=\bigsqcup_{W\in A(1,\mathbb{F}_{p}^{2})}\mathcal{L}_{W}.

By pigeonholing, we can find 𝒲A(1,𝔽p2)\mathcal{W}\subset A(1,\mathbb{F}_{p}^{2}) so that #W\#\mathcal{L}_{W} are comparable for all W𝒲W\in\mathcal{W}. Moreover, denoting #𝒲=pt1\#\mathcal{W}=p^{t_{1}}, #W=pt2\#\mathcal{L}_{W}=p^{t_{2}}, we may assume t1+t2=tt_{1}+t_{2}=t.

Next, we look at

EW:=LWY(L).E_{W}:=\bigcup_{L\in\mathcal{L}_{W}}Y(L).

This is a (s,t2;2,1)(s,t_{2};2,1)-set in W×𝔽p𝔽p2W\times\mathbb{F}_{p}\cong\mathbb{F}_{p}^{2}. By hypothesis, we have

#EWp𝐅(s,t2;2,1).\#E_{W}\gtrsim p^{\mathbf{F}(s,t_{2};2,1)}.

We write

EW=ξWEW(ξ×𝔽p).E_{W}=\bigsqcup_{\xi\in W}E_{W}\cap(\xi\times\mathbb{F}_{p}).

By pigeonholing on #EW(ξ×𝔽p)\#E_{W}\cap(\xi\times\mathbb{F}_{p}), we may assume there is a subset ΞWW\Xi_{W}\subset W so that #EW(ξ×𝔽p)\#E_{W}\cap(\xi\times\mathbb{F}_{p}) are comparable for ξΞW\xi\in\Xi_{W}. Moreover, denoting #Ξ=ps1\#\Xi=p^{s_{1}}, #EW(ξ×𝔽p)=ps2\#E_{W}\cap(\xi\times\mathbb{F}_{p})=p^{s_{2}}, we may assume

s1+s2𝐅(s,t2;2,1).s_{1}+s_{2}\geq\mathbf{F}(s,t_{2};2,1).

Also, we may assume s1,s2s_{1},s_{2} are the same for all W𝒲W\in\mathcal{W} by doing another pigeonholing on WW. We can also assume a strong condition on s1s_{1}: s1ss_{1}\geq s. But we do not expand the discussion here.

It turns out that the worst scenario for EWE_{W} is when

EW=ΞW×{1,,ps2}.E_{W}=\Xi_{W}\times\{1,\dots,p^{s_{2}}\}.

This will be made precise in the latter sections, so we do not expand the discussion here.

Now, we have

E(W𝒲ΞW)×{1,,ps2}.E\supset(\bigcup_{W\in\mathcal{W}}\Xi_{W})\times\{1,\dots,p^{s_{2}}\}.

Note that W𝒲ΞW\bigcup_{W\in\mathcal{W}}\Xi_{W} is a (s1,t1;2,1)(s_{1},t_{1};2,1)-set. Hence

#Ep𝐅(s1,t1;2,1)+s2.\#E\gtrsim p^{\mathbf{F}(s_{1},t_{1};2,1)+s_{2}}.

The problem boils down to the following linear programming problem: suppose

(6) {t1+t2=t,s1+s2𝐅(s,t2;2,1),s1s.\begin{cases}t_{1}+t_{2}=t,\\ s_{1}+s_{2}\geq\mathbf{F}(s,t_{2};2,1),\\ s_{1}\geq s.\end{cases}

Show that

𝐅(s1,t1;2,1)+s2𝐅(s,t;3,1).\mathbf{F}(s_{1},t_{1};2,1)+s_{2}\geq\mathbf{F}(s,t;3,1).

The proof of the last inequality will be done by brutal force.


1.4. Structure of the paper

In Section 2, we define 𝐅(s,t;n,k),𝐌(a,s;n,k)\mathbf{F}(s,t;n,k),\mathbf{M}(a,s;n,k) and prove some fundamental lemmas. In Section 3, we prove Theorem 6. In Section 4 and 5, we prove Theorem 7. In Section 6, we prove Theorem 9. In Section 7 and 8, we prove Theorem 10.


Acknowledgement. The author would like to thank Larry Guth, Bochen Liu, Hong Wang and Shukun Wu for some helpful communications.

2. Preliminary

2.1. Definition of 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) and 𝐌(a,s;n,k)\mathbf{M}(a,s;n,k)

Now, we make clear the mysterious 𝐅\mathbf{F} and 𝐌\mathbf{M} that appeared in Theorem 6, 7, 9, 10.

Definition 11 (Furstenberg index).

Suppose (s,t;n,k)(s,t;n,k) is admissible, we define 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) as follows.

(a) If s=0s=0, define

(7) 𝐅(0,t;n,k)=max{0,tk(nk)}.\mathbf{F}(0,t;n,k)=\max\{0,t-k(n-k)\}.

(b) If s>0s>0, write s=d+σs=d+\sigma where d,σ(0,1]d\in\mathbb{N},\sigma\in(0,1]. If also t[0,(kd1)(nk)]t\in[0,(k-d-1)(n-k)], define

(8) 𝐅(s,t;n,k)=s.\mathbf{F}(s,t;n,k)=s.

If we are not in Case (a) and (b), then s(0,k]s\in(0,k] and t((kd1)(nk),(k+1)(nk)]t\in((k-d-1)(n-k),(k+1)(n-k)], we write

(9) {s=d+σt=(kd1)(nk)+(d+2)m+τ,\begin{cases}s=d+\sigma\\ t=(k-d-1)(n-k)+(d+2)m+\tau,\end{cases}

where d{0,,k1}d\in\{0,\dots,k-1\}, σ(0,1]\sigma\in(0,1], m{0,,nk1}m\in\{0,\dots,n-k-1\}, τ(0,d+2]\tau\in(0,d+2].

(c) If τ(0,2]\tau\in(0,2], define

(10) 𝐅(s,t;n,k)=d+m+min{σ+τ,32σ+12τ,σ+1}=s+m+min{τ,12(σ+τ),1}.\begin{split}\mathbf{F}(s,t;n,k)&=d+m+\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}\\ &=s+m+\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.\end{split}

(d) If τ(2,d+2]\tau\in(2,d+2], define

(11) 𝐅(s,t;n,k)=s+m+1(=s+m+min{τ,12(σ+τ),1}).\mathbf{F}(s,t;n,k)=s+m+1(=s+m+\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}).
Remark 12.

Through this definition, we can calculate 𝐅(s,t;2,1)=min{s+t,32s+12t,s+1}\mathbf{F}(s,t;2,1)=\min\{s+t,\frac{3}{2}s+\frac{1}{2}t,s+1\} for s(0,1],t[0,2]s\in(0,1],t\in[0,2]. One sees that Conjecture 4 is equivalent to saying that infE:(s,t;2,1)-set#Eεp𝐅(s,t;2,1)ε\inf_{E:\ (s,t;2,1)\textup{-set}}\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;2,1)-\varepsilon}.

The following is a construction of (s,t;2,1)(s,t;2,1)-set, which provides evidence on why Conjecture 4 should be reasonable.

Proposition 13.

For 0t20\leq t\leq 2, there exists a (0,t;2,1)(0,t;2,1)-set EE such that

(12) #Epmax{0,t1}.\#E\lesssim p^{\max\{0,t-1\}}.

For 0<s1,0t20<s\leq 1,0\leq t\leq 2.  there exists a (s,t;2,1;12)(s,t;2,1;\frac{1}{2})-set EE such that

(13) #Epmin{s+t,32s+12t,s+1}.\#E\lesssim p^{\min\{s+t,\frac{3}{2}s+\frac{1}{2}t,s+1\}}.
Proof.

When s=0s=0, we construct E=LY(L)E=\bigcup_{L\in\mathcal{L}}Y(L) as follows. If t1t\leq 1, choose \mathcal{L} to be a set of ptp^{t} lines passing through (0,0)(0,0) and Y(L)=(0,0)Y(L)=(0,0). Then #E=1=p0\#E=1=p^{0}. If t>1t>1, we choose pt1p^{t-1} points EE on 𝔽p×{0}\mathbb{F}_{p}\times\{0\}, and for each xEx\in E, we choose p1p-1 lines through xx that are not parallel to 𝔽p×{0}\mathbb{F}_{p}\times\{0\}. If the line LL is through xEx\in E, then we let Y(L)=xY(L)=x. We see that EE is a (0,t;2,1;12)(0,t;2,1;\frac{1}{2})-set with cardinality pt1p^{t-1}. (Here, pt1p^{t-1} should actually be the integer pt1\lceil p^{t-1}\rceil, but we still write it as pt1p^{t-1} for simplicity, thinking of it as an integer. Same convention applies in the whole paper.)

Consider the case when s>0s>0. There are three terms in the “min” on the RHS of (13). We note that: when tst\leq s, minimum achieves at s+ts+t; when st2ss\leq t\leq 2-s, minimum achieves at 32s+12t\frac{3}{2}s+\frac{1}{2}t; when 2st2-s\leq t, minimum achieves at s+1s+1.

  1. (1)

    If E=LY(L)E=\bigcup_{L\in\mathcal{L}}Y(L) is a (s,t;2,1;12)(s,t;2,1;\frac{1}{2})-set, then #EL#Y(L)ps+t\#E\leq\sum_{L\in\mathcal{L}}\#Y(L)\leq p^{s+t}.

  2. (2)

    Choose \mathcal{L} to be a set of 12pt\frac{1}{2}p^{t} lines that are not parallel to the line 𝔽p×{0}\mathbb{F}_{p}\times\{0\}. Let Y(L)=L(𝔽p×{1,2,,ps})Y(L)=L\cap(\mathbb{F}_{p}\times\{1,2,\dots,p^{s}\}). Then EE is a (s,t;2,1;12)(s,t;2,1;\frac{1}{2})-set with E=LY(L)𝔽p×{1,,ps}E=\bigcup_{L\in\mathcal{L}}Y(L)\subset\mathbb{F}_{p}\times\{1,\dots,p^{s}\}. Therefore, #Eps+1\#E\leq p^{s+1}.

  3. (3)

    It remains to consider the case when s+t2,sts+t\leq 2,s\leq t. This example is of Szemerédi-Trotter type. The heuristic is shown in Figure 1, where we have pts2\sim p^{\frac{t-s}{2}} directions and for each direction, there are pt+s2\sim p^{\frac{t+s}{2}} lines. We also have a rectangle of size ps×ps+t2\sim p^{s}\times p^{\frac{s+t}{2}}. The rectangle intersects each line LL at ps\sim p^{s} points, which is defined to be Y(L)Y(L). We also see E=LY(L)E=\bigcup_{L}Y(L) is contained in the rectangle. Therefore, #Ep32s+12t\#E\lesssim p^{\frac{3}{2}s+\frac{1}{2}t}.

    Let ={y=ax+b:a=1,,pts2,b=1,,ps+t2}\mathcal{L}=\{y=ax+b:a=1,\dots,p^{\frac{t-s}{2}},b=1,\dots,p^{\frac{s+t}{2}}\}. Here, we view a,ba,b as elements in 𝔽p\mathbb{F}_{p}, and hence y=ax+by=ax+b as a line in 𝔽p2\mathbb{F}_{p}^{2}. For each LL\in\mathcal{L}, let Y(L)={(x,y)L:x=1,,12ps}Y(L)=\{(x,y)\in L:x=1,\dots,\frac{1}{2}p^{s}\}. We see that E=LY(L)E=\bigcup_{L\in\mathcal{L}}Y(L) is contained in {(x,y):x=1,,12ps,y=1,,2ps+t2}\{(x,y):x=1,\dots,\frac{1}{2}p^{s},y=1,\dots,2p^{\frac{s+t}{2}}\}. Therefore, #Ep32s+12t\#E\lesssim p^{\frac{3}{2}s+\frac{1}{2}t}.

Refer to caption
Figure 1.

Next, we define the index for Marstrand’s orthogonal projection.

Definition 14 (Marstrand index).

Let 1k<n1\leq k<n be integers. Let a(0,n],s>0a\in(0,n],s>0. We make the following definition for 𝐌(a,s;n,k)\mathbf{M}(a,s;n,k). We write a=m+β,s=l+γa=m+\beta,s=l+\gamma where m,lm,l\in\mathbb{N} and β,γ(0,1]\beta,\gamma\in(0,1]. For convenience, we call such expression of a,sa,s canonical.

Type 1: If s>min{a,k}s>\min\{a,k\}, define

(14) 𝐌(a,s;n,k)=k(nk).\displaystyle\mathbf{M}(a,s;n,k)=k(n-k).

Type 2: If smin{a,k}s\leq\min\{a,k\}, l+1mn+lkl+1\leq m\leq n+l-k and γ(β,1]\gamma\in(\beta,1], define

(15) 𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}.\displaystyle\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}.

Type 3: If smin{a,k}s\leq\min\{a,k\}, lmn+lk1l\leq m\leq n+l-k-1 and γ(0,β]\gamma\in(0,\beta], define

(16) 𝐌(a,s;n,k)=k(nk)(m+1l)(kl)+max{2γβ,0}.\displaystyle\mathbf{M}(a,s;n,k)=k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.

Type 4: If sa(nk)s\leq a-(n-k), define

(17) 𝐌(a,s;n,k)=.\displaystyle\mathbf{M}(a,s;n,k)=-\infty.
Remark 15.

𝐌(a,s;n,k)=\mathbf{M}(a,s;n,k)=-\infty corresponds to the case when exceptional set is empty. We remark that in the Euclidean setting, the empty set is assumed to have dimension -\infty, in order to satisfy a Fubini-type heuristic dim(A×B)=dimA×dimB\dim(A\times B)=\dim A\times\dim B.

One can check, when (n,k)=(2,1)(n,k)=(2,1),

(18) 𝐌(a,s;2,1)={1s>min{1,a}max{0,2sa}a1<smin{1,a}sa1.\mathbf{M}(a,s;2,1)=\begin{cases}1&s>\min\{1,a\}\\ \max\{0,2s-a\}&a-1<s\leq\min\{1,a\}\\ -\infty&s\leq a-1.\end{cases}

We discuss a construction of exceptional set.

Refer to caption
Figure 2.
Proposition 16.

Let a(0,2]a\in(0,2], s(a2,min{1,a}]s\in(\frac{a}{2},\min\{1,a\}]. Then for pp large enough, there exists A𝔽p2A\subset\mathbb{F}_{p}^{2} with #Apa\#A\gtrsim p^{a}, such that

#Es(A;2,1)p2sa.\#E_{s}(A;2,1)\gtrsim p^{2s-a}.
Proof.

The heuristic is shown in Figure 2. Our set AA is the lattice points in the rectangle of size 15pas×15ps\frac{1}{5}p^{a-s}\times\frac{1}{5}p^{s}. For any slope k[1,p2sa]k\in[1,p^{2s-a}], we are able to find <ps<p^{s} lines with slope kk to cover AA. Hence, this slope-kk direction belongs to the exceptional set.

Consider the set A={(x,y):|x|15pas,|y|15ps}𝔽p2A=\{(x,y):|x|\leq\frac{1}{5}p^{a-s},|y|\leq\frac{1}{5}p^{s}\}\subset\mathbb{F}_{p}^{2}. For k,m𝔽pk,m\in\mathbb{F}_{p}, we use k,m\ell_{k,m} to denote the line y=kx+my=kx+m. We claim that for each |k|15p2sa|k|\leq\frac{1}{5}p^{2s-a},

πk,0(A){k,m:|m|<12ps}.\pi_{\ell_{k,0}}^{*}(A)\subset\{\ell_{k,m}:|m|<\frac{1}{2}p^{s}\}.

Note that if (x,y)A(x,y)\in A and |k|15p2sa|k|\leq\frac{1}{5}p^{2s-a}, then |ykx|12ps|y-kx|\leq\frac{1}{2}p^{s}, which means there exists |m|<12ps|m|<\frac{1}{2}p^{s} such that (x,y)k,m(x,y)\in\ell_{k,m}. Hence, #πk,0(A)<ps\#\pi_{\ell_{k,0}}^{*}(A)<p^{s}. This means Es(A;2,1){k,0:|k|15p2sa}E_{s}(A;2,1)\supset\{\ell_{k,0}:|k|\leq\frac{1}{5}p^{2s-a}\}.

We see that #Apa\#A\gtrsim p^{a}, and Es(A;2,1)E_{s}(A;2,1) has cardinality p2sa\gtrsim p^{2s-a}. ∎

2.2. Useful lemmas

We prove several useful lemmas, which will be used in the later proof. We suggest the reader to skip this part in the first reading.

Lemma 17.

Suppose G(k,𝔽pn)G(k,\mathbb{F}_{p}^{n}) is the set of kk-dimensional subspaces in 𝔽pn\mathbb{F}_{p}^{n}, A(k,𝔽pn)A(k,\mathbb{F}_{p}^{n}) is the set of kk-planes in 𝔽pn\mathbb{F}_{p}^{n}. We have:

  1. (1)

    #G(k,𝔽pn)pk(nk)\#G(k,\mathbb{F}_{p}^{n})\sim p^{k(n-k)};

  2. (2)

    #A(k,𝔽pn)p(k+1)(nk)\#A(k,\mathbb{F}_{p}^{n})\sim p^{(k+1)(n-k)};

  3. (3)

    Fix integers l,kl,k with l+knl+k\geq n. Let W0A(l,𝔽pn)W_{0}\in A(l,\mathbb{F}_{p}^{n}). Then #{VA(k,𝔽pn):VW0 is a (l+kn)-plane}p(k+1)(nk)\#\{V\in A(k,\mathbb{F}_{p}^{n}):V\cap W_{0}\textup{~{}is~{}a~{}}(l+k-n)\textup{-plane}\}\gtrsim p^{(k+1)(n-k)}.

Proof.

(1) and (2) are fundamental. We prove (3). VW0V\cap W_{0} is a (l+kn)(l+k-n)-plane means VV intersects W0W_{0} transversely. (3) agrees with the intuition in n\mathbb{R}^{n}, since generic VA(k,n)V\in A(k,\mathbb{R}^{n}) intersect W0W_{0} transversely. Noting (2), we see that it suffices to prove

(19) #{VA(k,𝔽pn):VW0 is a r-plane}p(k+1)(nk)1,\#\{V\in A(k,\mathbb{F}_{p}^{n}):V\cap W_{0}\textup{~{}is~{}a~{}}r\textup{-plane}\}\lesssim p^{(k+1)(n-k)-1},

for r>l+knr>l+k-n. The proof of (19) is as follows. Choose a rr-plane LL in W0W_{0}. There are #G(r,𝔽pl)p(r+1)(lr)\#G(r,\mathbb{F}_{p}^{l})\sim p^{(r+1)(l-r)} choices for LL. If VW0=LV\cap W_{0}=L, then VLV\supset L. We have #{VA(k,𝔽pn):VL}=#G(kr,𝔽pnr)p(kr)(nk)\leq\#\{V\in A(k,\mathbb{F}_{p}^{n}):V\supset L\}=\#G(k-r,\mathbb{F}_{p}^{n-r})\sim p^{(k-r)(n-k)} choices for VV such that VW0=LV\cap W_{0}=L. The two estimates give (19). ∎

Lemma 18.

Let 0ln0\leq l\leq n, 1k,mn1\leq k,m\leq n be integers satisfying nkmln-k\geq m-l and lk,ml\leq k,m. If WG(m,𝔽pn)W\in G(m,\mathbb{F}_{p}^{n}), then

#{VG(nk,𝔽pn):#(πV(W))pl}pk(nk)(kl)(ml).\#\{V\in G(n-k,\mathbb{F}_{p}^{n}):\#(\pi^{*}_{V}(W))\leq p^{l}\}\sim p^{k(n-k)-(k-l)(m-l)}.
Proof.

By definition

{VG(nk,𝔽pn):#(πV(W))pl}\displaystyle\{V\in G(n-k,\mathbb{F}_{p}^{n}):\#(\pi_{V}^{*}(W))\leq p^{l}\} ={VG(nk,𝔽pn):#(VW)#W/pl=pml},\displaystyle=\{V\in G(n-k,\mathbb{F}_{p}^{n}):\#(V\cap W)\geq\#W/p^{l}=p^{m-l}\},

The latter set is

jmlUG(j,W){VG(nk,𝔽pn):VU}.\bigcup_{j\geq m-l}\bigcup_{U\in G(j,W)}\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\supset U\}.

It suffices to show for jmlj\geq m-l,

(20) #UG(j,W){VG(nk,𝔽pn):VU}pk(nk)(k+jm)j.\#\bigcup_{U\in G(j,W)}\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\supset U\}\sim p^{k(n-k)-(k+j-m)j}.

On the one hand, the LHS is

(21) UG(j,W)#{VG(nk,n):VU}=#G(j,𝔽pm)#G(nkj,𝔽pnj)pj(mj)p(nkj)k=pk(nk)(k+jm)j.\begin{split}&\leq\sum_{U\in G(j,W)}\#\{V\in G(n-k,n):V\supset U\}=\#G(j,\mathbb{F}_{p}^{m})\#G(n-k-j,\mathbb{F}_{p}^{n-j})\\ &\sim p^{j(m-j)}p^{(n-k-j)k}=p^{k(n-k)-(k+j-m)j}.\end{split}

On the other hand, for fixed UG(j,W)U\in G(j,W), we have

(22) {VG(nk,𝔽pn):VW=U}{VG(nk,𝔽pn):VU}j+1jnkUG(j,W),UU{VG(nk,𝔽pn):VU}\begin{split}&\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\cap W=U\}\\ \supset&\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\supset U\}\setminus\bigcup_{j+1\leq j^{\prime}\leq n-k}\bigcup_{U^{\prime}\in G(j^{\prime},W),U^{\prime}\supset U}\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\supset U^{\prime}\}\end{split}

One can check #{VG(nk,𝔽pn):VU}=#G(nkj,𝔽pnj)=pk(nkj)\#\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\supset U\}=\#G(n-k-j,\mathbb{F}_{p}^{n-j})=p^{k(n-k-j)}. j+1jnkUG(j,W),UU{VG(nk,𝔽pn):VU}\bigcup_{j+1\leq j^{\prime}\leq n-k}\bigcup_{U^{\prime}\in G(j^{\prime},W),U^{\prime}\supset U}\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\supset U^{\prime}\} has cardinality

(23) j+1jnk#G(jj,𝔽pmj)#G(nkj,nj)j+1jnkp(jj)(mj)+(nkj)k=j+1jnkpk(nkj)+(jj)(mkj)pk(nkj)1.\begin{split}&\leq\sum_{j+1\leq j^{\prime}\leq n-k}\#G(j^{\prime}-j,\mathbb{F}_{p}^{m-j})\#G(n-k-j^{\prime},n-j^{\prime})\\ &\sim\sum_{j+1\leq j^{\prime}\leq n-k}p^{(j^{\prime}-j)(m-j^{\prime})+(n-k-j^{\prime})k}\\ &=\sum_{j+1\leq j^{\prime}\leq n-k}p^{k(n-k-j)+(j^{\prime}-j)(m-k-j^{\prime})}\\ &\lesssim p^{k(n-k-j)-1}.\end{split}

In the last line, we use (jj)(mkj)mkj1mk(ml)11(j^{\prime}-j)(m-k-j^{\prime})\leq m-k-j-1\leq m-k-(m-l)-1\leq-1. Therefore,

#{VG(nk,𝔽pn):VW=U}pk(nkj).\#\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\cap W=U\}\sim p^{k(n-k-j)}.

We can bound the left hand side of (20) by

#UG(j,W){VG(nk,𝔽pn):VW=U}pj(mj)+k(nkj)=pk(nk)(k+jm)j.\geq\#\bigsqcup_{U\in G(j,W)}\{V\in G(n-k,\mathbb{F}_{p}^{n}):V\cap W=U\}\sim p^{j(m-j)+k(n-k-j)}=p^{k(n-k)-(k+j-m)j}.

Lemma 19.

Suppose (s,t;n,k)(s,t;n,k) is admissible, then

𝐅(s,t;n,k)s+max{0,tk(nk)}.\mathbf{F}(s,t;n,k)\geq s+\max\{0,t-k(n-k)\}.
Proof.

It is easy to check 𝐅(s,t;n,k)s\mathbf{F}(s,t;n,k)\geq s, so we just need to check 𝐅(s,t;n,k)s+tk(nk)\mathbf{F}(s,t;n,k)\geq s+t-k(n-k). We check four cases as in Definition 11.

(a) If s=0s=0, this is true by definition.

(b) If s>0s>0, write s=d+σ.s=d+\sigma. If t[0,(kd1)(nk)]t\in[0,(k-d-1)(n-k)], then

𝐅(s,t;n,k)=ss+tk(nk).\mathbf{F}(s,t;n,k)=s\geq s+t-k(n-k).

(c) If (9) holds and τ(0,2]\tau\in(0,2], then

𝐅(s,t;n,k)=s+m+min{τ,12(σ+τ),1}.\mathbf{F}(s,t;n,k)=s+m+\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

To show it is s+tk(nk)\geq s+t-k(n-k) is equivalent to show

(d+1)(nkm)+min{τ,12σ+12τ,1}τ.(d+1)(n-k-m)+\min\{\tau,\frac{1}{2}\sigma+\frac{1}{2}\tau,1\}\geq\tau.

Since (d+1)(nkm)112τ(d+1)(n-k-m)\geq 1\geq\frac{1}{2}\tau and min{τ,12σ+12τ,1}12τ\min\{\tau,\frac{1}{2}\sigma+\frac{1}{2}\tau,1\}\geq\frac{1}{2}\tau, it is proved.

(d) In the final case, we have

𝐅(s,t;n,k)=s+m+1.\mathbf{F}(s,t;n,k)=s+m+1.

To show it is s+tk(nk)\geq s+t-k(n-k) is equivalent to show

(d+1)(nkm)+1τ.(d+1)(n-k-m)+1\geq\tau.

This is true since (d+1)(nkm)d+1(d+1)(n-k-m)\geq d+1 and τd+2\tau\leq d+2. ∎

Lemma 20.

Suppose (s,t1+t2;n,k)(s,t_{1}+t_{2};n,k) is admissible, t1,t20t_{1},t_{2}\geq 0. Then

𝐅(s,t1+t2;n,k)t1+𝐅(s,t2;n,k).\mathbf{F}(s,t_{1}+t_{2};n,k)\leq t_{1}+\mathbf{F}(s,t_{2};n,k).
Proof.

This is equivalent to showing that for fixed s,n,ks,n,k, the map t𝐅(s,t;n,k)t\mapsto\mathbf{F}(s,t;n,k) is Lipschitz with Lipschitz constant 1\leq 1. We sketch the proof. First, it is not hard to show t𝐅(s,t;n,k)t\mapsto\mathbf{F}(s,t;n,k) is continuous. Since 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) is piecewise defined, we check each formula of 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k). We see the derivative on tt is 1\leq 1. ∎

𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) is continuous in tt, but not in ss. Nevertheless, we can still say something about ss.

Lemma 21.

𝐅(s,t;n,k)\mathbf{F}(s,t;n,k) is locally left-Lipschitz in ss. In other words, if we write s=d+σs=d+\sigma (d,σ(0,1]d\in\mathbb{N},\sigma\in(0,1]), we have

𝐅(sθ,t;n,k)𝐅(s,t;n,k)O(θ)\mathbf{F}(s-\theta,t;n,k)\geq\mathbf{F}(s,t;n,k)-O(\theta)

for any 0θ<σ0\leq\theta<\sigma.

Proof.

We just note that s𝐅(s,t;n,k)s\mapsto\mathbf{F}(s,t;n,k) is defined piecewise for ss in left-open intervals of form (d,d+1](d,d+1] where dd\in\mathbb{N}. Moreover, s𝐅(s,t;n,k)s\mapsto\mathbf{F}(s,t;n,k) is Lipschitz in each of these left-open intervals. ∎

The next results are for the Marstrand index.

Lemma 22.

Each pair (a,s)(a,s) satisfying a(0,n],s>0a\in(0,n],s>0 belongs to exactly one of the four types in Definition 14.

Proof.

To show this, we just need to prove for a fixed a(0,n]a\in(0,n], the ranges of ss determined by four cases form a partition of (0,)(0,\infty). Type 1 corresponds to s(min{a,k},)s\in(\min\{a,k\},\infty). Type 4 corresponds to s(0,a(nk)]s\in(0,a-(n-k)]. Note that a(nk)min{a,k}a-(n-k)\leq\min\{a,k\}, so we just need to show the ranges of ss determined by Type 2 and Type 3 from a partition of (a(nk),min{a,k}](a-(n-k),\min\{a,k\}]. Since the ranges of ss determined by Type2 and Type 3 are disjoint, we just need to show

{s:s satisfies Type 2}{s:s satisfies Type 3}=(a(nk),min{a,k}].\{s:s\textup{~{}satisfies~{}Type~{}}2\}\bigcup\{s:s\textup{~{}satisfies~{}Type~{}}3\}=(a-(n-k),\min\{a,k\}].

We first show “"\subset". Suppose ss satisfies the condition in Type 2. We want to show s>a(nk)s>a-(n-k), which is equivalent to m<n+lk+γβm<n+l-k+\gamma-\beta. This is true since mn+lkm\leq n+l-k and γ>β\gamma>\beta. Suppose ss satisfies condition in Type 3. Again, we want to show m<n+lk+γβm<n+l-k+\gamma-\beta. This is true since mn+lk1m\leq n+l-k-1 and γβ>β1\gamma-\beta>-\beta\geq-1.

Next, we show “\supset”. Suppose s=l+γ(a(nk),min{a,k}]s=l+\gamma\in(a-(n-k),\min\{a,k\}]. s>a(nk)s>a-(n-k) implies

m<n+lk+γβ.m<n+l-k+\gamma-\beta.

sas\leq a implies

ml+γβ.m\geq l+\gamma-\beta.

If γ(β,1]\gamma\in(\beta,1], then l+1mn+lkl+1\leq m\leq n+l-k. Hence, ss satisfies the condition in Type 2. If γ(0,β]\gamma\in(0,\beta], then lmn+lk1l\leq m\leq n+l-k-1. Hence, ss satisfies the condition in Type 3. ∎

Lemma 23.

For (a,s,n,k)(a,s,n,k) and (aθ,sθ;n,k)(a-\theta,s-\theta;n,k) that are in the domain of 𝐌\mathbf{M} and θ0\theta\geq 0, we have

𝐌(aθ,sθ;n,k)𝐌(a,s;n,k).\mathbf{M}(a-\theta,s-\theta;n,k)\leq\mathbf{M}(a,s;n,k).
Proof.

Let a=m+β,s=l+γa=m+\beta,s=l+\gamma be the canonical expression. We just check four types as in Definition 14.

Type 1: If s>min{a,k}s>\min\{a,k\}, then

𝐌(aθ,sθ;n,k)k𝐌(a,s;n,k).\mathbf{M}(a-\theta,s-\theta;n,k)\leq k\leq\mathbf{M}(a,s;n,k).

Type 4: If sa(nk)s\leq a-(n-k), then we have 𝐌(aθ,sθ;n,k)=𝐌(a,s;n,k)=\mathbf{M}(a-\theta,s-\theta;n,k)=\mathbf{M}(a,s;n,k)=-\infty.

Type 2: Suppose (a,s;n,k)(a,s;n,k) is of Type 2.

If θ<β\theta<\beta.

𝐌(aθ,sθ;n,k)=k(nk)(ml)(kl)+max{2(γθ)(βθ+1),0}\displaystyle\mathbf{M}(a-\theta,s-\theta;n,k)=k(n-k)-(m-l)(k-l)+\max\{2(\gamma-\theta)-(\beta-\theta+1),0\}
k(nk)(ml)(kl)+max{2γ(β+1),0}=𝐌(a,s;n,k).\displaystyle\leq k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}=\mathbf{M}(a,s;n,k).

If βθ<γ\beta\leq\theta<\gamma, then aθ=(m1)+(1+βθ),sθ=l+(γθ)a-\theta=(m-1)+(1+\beta-\theta),s-\theta=l+(\gamma-\theta). So, (aθ,sθ;n,k)(a-\theta,s-\theta;n,k) is of Type 3. We have the same estimate:

𝐌(aθ,sθ;n,k)=k(nk)(ml)(kl)+max{2(γθ)(βθ+1),0}\displaystyle\mathbf{M}(a-\theta,s-\theta;n,k)=k(n-k)-(m-l)(k-l)+\max\{2(\gamma-\theta)-(\beta-\theta+1),0\}
k(nk)(ml)(kl)+max{2γ(β+1),0}=𝐌(a,s;n,k).\displaystyle\leq k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}=\mathbf{M}(a,s;n,k).

Note that the integer part (m,l)(m,l) is reduced to (n1,l)(n-1,l), so we can keep doing the iteration.

Type 3: This is similar to Type 2, so we just omit the proof.

Lemma 24.

Suppose a(nk)<smin{k,a}a-(n-k)<s\leq\min\{k,a\}. Write a=m+β,s=l+γa=m+\beta,s=l+\gamma as in Definition 14. Then

𝐌(a,s;n,k)k(nk)(ml)(kl)+max{2γ(β+1),0},\mathbf{M}(a,s;n,k)\leq k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\},

and

𝐌(a,s;n,k)k(nk)(m+1l)(kl)+max{2γβ,0}.\mathbf{M}(a,s;n,k)\geq k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.
Proof.

The proof is simply by checking when (a,s;n,k)(a,s;n,k) is of Type 2 or Type 3. ∎

We also show two easy results about exceptional set estimate.

Lemma 25.

Recall Definition 14. Suppose we are in Type 1: s>min{k,a}s>\min\{k,a\}. Then there exists A𝔽pnA\subset\mathbb{F}_{p}^{n} with #Apa\#A\sim p^{a}, such that

#Es(A;n,k)pk(nk).\#E_{s}(A;n,k)\gtrsim p^{k(n-k)}.
Proof.

We just choose AA to be any set with cardinality pap^{a}. One can check by definition that Es(A;n,k)=G(k,𝔽pn)E_{s}(A;n,k)=G(k,\mathbb{F}_{p}^{n}). ∎

Lemma 26.

Recall Definition 14. Suppose we are in Type 4: sa(nk)s\leq a-(n-k). Then for any A𝔽pnA\subset\mathbb{F}_{p}^{n} with #Apa\#A\geq p^{a}, we have

#Es(A;n,k)=0.\#E_{s}(A;n,k)=0.
Proof.

If VEs(A;n,k)V\in E_{s}(A;n,k), then

pa=#A=LπV(A)#(LA)#πV(A)#V<ps+nk,p^{a}=\#A=\sum_{L\in\pi_{V}^{*}(A)}\#(L\cap A)\leq\#\pi_{V}^{*}(A)\cdot\#V<p^{s+n-k},

a contradiction! Therefore, Es(A;n,k)=E_{s}(A;n,k)=\emptyset. ∎

3. Furstenberg set problem: upper bound

In this section, we prove Theorem 6. In other words, we will construct a (s,t;n,k)(s,t;n,k)-set E=V𝒱Y(V)E=\bigcup_{V\in\mathcal{V}}Y(V), such that

#Es,t,n,kp𝐅(s,t;n,k).\#E\lesssim_{s,t,n,k}p^{\mathbf{F}(s,t;n,k)}.

3.1. Two special cases

To get familiar with 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k), we discuss two special cases: s=ks=k; k=1k=1.

When s=ks=k, we can morally view Y(V)Y(V) as VV. Therefore, a (k,t;n,k)(k,t;n,k)-set is of form

E=V𝒱V.E=\bigcup_{V\in\mathcal{V}}V.

Estimating the size of EE is known as the “union of kk-planes problem”. It has been resolved in finite fields by R. Oberlin [11]. The Euclidean version was resolved by the author in [3].

When k=1k=1, this is the Furstenberg set problem for lines. To construct a (s,t;n,1)(s,t;n,1)-set

E=LY(L)E=\bigcup_{L\in\mathcal{L}}Y(L)

with size as small as possible, we hope the lines in \mathcal{L} are compressed in low dimensional space. Write t=2m+βt=2m+\beta, where 0mn20\leq m\leq n-2 is an integer and β(0,2]\beta\in(0,2]. Since t2(m+1)t\leq 2(m+1), we can make \mathcal{L} contained in 𝔽pm+2\mathbb{F}_{p}^{m+2}. Therefore, our goal becomes to construct a small (s,t;m+2,1)(s,t;m+2,1)-set. The trick is to take Cartesian product of a (s,β;2,1)(s,\beta;2,1)-set with 𝔽pm\mathbb{F}_{p}^{m}. Let E𝔽p2E^{\prime}\subset\mathbb{F}_{p}^{2} be a (s,β;2,1)(s,\beta;2,1)-set and EE^{\prime} has the form

E=LY(L).E^{\prime}=\bigcup_{L^{\prime}\in\mathcal{L}^{\prime}}Y(L^{\prime}).

We will construct a (s,t;m+2,1)(s,t;m+2,1)-set EE based on EE^{\prime}. Let π𝔽p2:𝔽pm+2𝔽p2\pi_{\mathbb{F}_{p}^{2}}:\mathbb{F}_{p}^{m+2}\rightarrow\mathbb{F}_{p}^{2} be the projection onto the first two coordinates. Define \mathcal{L} to be the set of lines LL in 𝔽pm+2\mathbb{F}_{p}^{m+2} such that π𝔽p2(L)\pi_{\mathbb{F}_{p}^{2}}(L) is a line in \mathcal{L}^{\prime}. Then, ##G(1,𝔽pm+1)#p2m+β=pt\#\mathcal{L}\sim\#G(1,\mathbb{F}_{p}^{m+1})\cdot\#\mathcal{L}^{\prime}\sim p^{2m+\beta}=p^{t}. If LL\in\mathcal{L}, then L=π𝔽p2(L)L^{\prime}=\pi_{\mathbb{F}_{p}^{2}}(L)\in\mathcal{L}^{\prime}. We define Y(L):=Lπ𝔽p21(Y(L))Y(L):=L\cap\pi_{\mathbb{F}_{p}^{2}}^{-1}(Y(L^{\prime})). We see that #Y(L)=#Y(L)ps\#Y(L)=\#Y(L^{\prime})\sim p^{s}, so

E=LY(L)E=\bigcup_{L\in\mathcal{L}}Y(L)

is a (s,t;m+2,1)(s,t;m+2,1)-set. Also, since EE×𝔽pmE\subset E^{\prime}\times\mathbb{F}_{p}^{m}, we have

#E#Epmpm+min{s+β,32s+12β,s+1}\#E\leq\#E^{\prime}\cdot p^{m}\lesssim p^{m+\min\{s+\beta,\frac{3}{2}s+\frac{1}{2}\beta,s+1\}}

By checking Definition 11, one exactly sees that

m+min{s+β,32s+12β,s+1}=𝐅(s,t;m+2,1)=𝐅(s,t;n,1).m+\min\{s+\beta,\frac{3}{2}s+\frac{1}{2}\beta,s+1\}=\mathbf{F}(s,t;m+2,1)=\mathbf{F}(s,t;n,1).

3.2. Proof of Theorem 6

For admissible (s,t;n,k)(s,t;n,k), we will construct a (s,t;n,k)(s,t;n,k)-set

E=V𝒱Y(V)E=\bigcup_{V\in\mathcal{V}}Y(V)

such that

#Ep𝐅(s,t;n,k).\#E\gtrsim p^{\mathbf{F}(s,t;n,k)}.

Case (a): s=0s=0

If tk(nk)t\leq k(n-k), we choose 𝒱\mathcal{V} to be ptp^{t} kk-planes pass through the origin 𝟎n\mathbf{0}^{n}, and Y(V)={𝟎n}Y(V)=\{\mathbf{0}^{n}\}. Then #E1=p0\#E\leq 1=p^{0}. Here, 𝟎n\mathbf{0}^{n} means (0,,0n times )(\underbrace{0,\dots,0}_{n\textup{~{}times~{}}}).

If tk(nk)t\geq k(n-k), we choose ptk(nk)p^{t-k(n-k)} points XX in 𝔽pnk\mathbb{F}_{p}^{n-k}. For each such point xXx\in X, we choose pk(nk)\sim p^{k(n-k)} kk-planes that pass through xx, and require the kk-planes to be transverse to 𝔽pnk\mathbb{F}_{p}^{n-k}. We obtain pt\sim p^{t} kk-planes which is 𝒱\mathcal{V}. If VV pass through xXx\in X, we set Y(V)={x}Y(V)=\{x\}. We see that #E=#Xptk(nk)\#E=\#X\leq p^{t-k(n-k)}.


Case (b): s>0,t[0,(kd1)(nk)]s>0,t\in[0,(k-d-1)(n-k)]

We write s=d+σs=d+\sigma, where d{0,,k1},σ(0,1]d\in\{0,\dots,k-1\},\sigma\in(0,1]. The construction is similar to Case (a). We choose pt\sim p^{t} many kk-planes that contain 𝔽pd+1\mathbb{F}_{p}^{d+1}. This is doable since

#{VA(k,𝔽pn):VL}=#G(kd1,𝔽pnd1)p(kd1)(nk).\#\{V\in A(k,\mathbb{F}_{p}^{n}):V\supset L\}=\#G(k-d-1,\mathbb{F}_{p}^{n-d-1})\sim p^{(k-d-1)(n-k)}.

Let 𝒱\mathcal{V} be these kk-planes. Fix Y𝔽pd+1Y\subset\mathbb{F}_{p}^{d+1} with #Y=ps\#Y=p^{s}. For each V𝒱V\in\mathcal{V}, let Y(V)=YY(V)=Y. We see that #E=#Y=ps\#E=\#Y=p^{s}.


Case (c): s(0,k],t((kd1)(nk),(k+1)(nk)]s\in(0,k],t\in((k-d-1)(n-k),(k+1)(n-k)]

We write

(24) {s=d+σt=(kd1)(nk)+(d+2)m+τ,\begin{cases}s=d+\sigma\\ t=(k-d-1)(n-k)+(d+2)m+\tau,\end{cases}

where d{0,,k1}d\in\{0,\dots,k-1\}, σ(0,1]\sigma\in(0,1], m{0,,nk1}m\in\{0,\dots,n-k-1\}, τ[0,2]\tau\in[0,2]. We remark that here we allow τ=0\tau=0, though we assumed τ>\tau> in the canonical expression. Allowing τ=0\tau=0 will produce the example in Case (d).

We write 𝔽pn=𝔽pnk+d+1×𝔽pkd1\mathbb{F}_{p}^{n}=\mathbb{F}_{p}^{n-k+d+1}\times\mathbb{F}_{p}^{k-d-1}. Note that 1\gtrsim 1 fraction of kk-planes intersect 𝔽pnk+d+1\mathbb{F}_{p}^{n-k+d+1} at a (d+1)(d+1)-plane. Heuristically speaking, to make #E\#E as small as possible, we would like EE to be a subset of 𝔽pnk+d+1×𝟎kd1\mathbb{F}_{p}^{n-k+d+1}\times\mathbf{0}^{k-d-1}. For simplicity, we write 𝔽pnk+d+1×𝟎kd1\mathbb{F}_{p}^{n-k+d+1}\times\mathbf{0}^{k-d-1} as 𝔽pnk+d+1\mathbb{F}_{p}^{n-k+d+1}, thinking of it as a subspace of 𝔽pn\mathbb{F}_{p}^{n}. This will not cause any ambiguity.

Note that for each WA(d+1,𝔽pnk+d+1)W\in A(d+1,\mathbb{F}_{p}^{n-k+d+1}), the cardinality of

{VA(k,𝔽pn):VW,V is transverse to 𝔽pnk+d+1}\{V\in A(k,\mathbb{F}_{p}^{n}):V\supset W,V\textup{~{}is~{}transverse~{}to~{}}\mathbb{F}_{p}^{n-k+d+1}\}

is #G(kd1,𝔽pnk)p(kd1)(nk)\sim\#G(k-d-1,\mathbb{F}_{p}^{n-k})\sim p^{(k-d-1)(n-k)}. We just need to find 𝒲A(d+1,𝔽pnk+d+1)\mathcal{W}\subset A(d+1,\mathbb{F}_{p}^{n-k+d+1}) with #𝒲pt(kd1)(nk)=p(d+2)m+τ\#\mathcal{W}\sim p^{t-(k-d-1)(n-k)}=p^{(d+2)m+\tau}, and for each W𝒲W\in\mathcal{W}, to find Y(W)WY(W)\subset W with #Y(W)ps\#Y(W)\sim p^{s}, such that

(25) #W𝒲Y(W)p𝐅(s,t;n,k).\#\bigcup_{W\in\mathcal{W}}Y(W)\lesssim p^{\mathbf{F}(s,t;n,k)}.

If this is done, then we let 𝒱\mathcal{V} be those kk-planes VV that contain some W𝒲W\in\mathcal{W}, and Y(V)=Y(W)Y(V)=Y(W) if VWV\supset W. We see that #𝒱#{W}p(kd1)(nk)pt\#\mathcal{V}\sim\#\{W\}\cdot p^{(k-d-1)(n-k)}\sim p^{t}, and hence E=V𝒱Y(V)E=\bigcup_{V\in\mathcal{V}}Y(V) is a (s,t;n,k)(s,t;n,k)-set. Also, we have the upper bound

#E=#W𝒲Y(W)p𝐅(s,t;n,k).\#E=\#\bigcup_{W\in\mathcal{W}}Y(W)\lesssim p^{\mathbf{F}(s,t;n,k)}.

It suffices to find a (s,(d+2)m+τ;nk+d+1,d+1)(s,(d+2)m+\tau;n-k+d+1,d+1)-set E1=W𝒲Y(W)E_{1}=\bigcup_{W\in\mathcal{W}}Y(W) such that (25) holds. Note that #A(d+1,𝔽pm+d+2)p(d+2)(m+1)\#A(d+1,\mathbb{F}_{p}^{m+d+2})\sim p^{(d+2)(m+1)} and (d+2)m+τ(d+2)(m+1)(d+2)m+\tau\leq(d+2)(m+1). We will construct the (d+1)(d+1)-planes 𝒲\mathcal{W} so that they lie in 𝔽pm+d+2\mathbb{F}_{p}^{m+d+2}. It suffices to find a (s,(d+2)m+τ;m+d+2,d+1)(s,(d+2)m+\tau;m+d+2,d+1)-set E1=W𝒲Y(W)E_{1}=\bigcup_{W\in\mathcal{W}}Y(W) such that (25) holds.

We write 𝔽pm+d+2=𝔽pd+2×𝔽pm=𝔽p2×𝔽pd×𝔽pm\mathbb{F}_{p}^{m+d+2}=\mathbb{F}_{p}^{d+2}\times\mathbb{F}_{p}^{m}=\mathbb{F}_{p}^{2}\times\mathbb{F}_{p}^{d}\times\mathbb{F}_{p}^{m}. We first choose a (σ,τ;2,1)(\sigma,\tau;2,1)-set E2=LY(L)E_{2}=\bigcup_{L\in\mathcal{L}}Y(L) in 𝔽p2\mathbb{F}_{p}^{2}, such that

#E2pmin{σ+τ,32σ+12τ,σ+1}.\#E_{2}\lesssim p^{\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}}.

The existence of E2E_{2} was shown in Proposition 13.

Next, we define 𝒰:={L×𝔽pd:L}\mathcal{U}:=\{L\times\mathbb{F}_{p}^{d}:L\in\mathcal{L}\} which is a subset of A(d+1,𝔽pd+2)A(d+1,\mathbb{F}_{p}^{d+2}). And for each U=L×𝔽pd𝒰U=L\times\mathbb{F}_{p}^{d}\in\mathcal{U}, define Y(U)=Y(L)×𝔽pdY(U)=Y(L)\times\mathbb{F}_{p}^{d}. We see that #𝒰=#pτ\#\mathcal{U}=\#\mathcal{L}\sim p^{\tau}, #Y(U)=#Y(L)pdpσ+d=ps\#Y(U)=\#Y(L)\cdot p^{d}\sim p^{\sigma+d}=p^{s}. We also see that E3:=U𝒰Y(U)E_{3}:=\bigcup_{U\in\mathcal{U}}Y(U) is contained in E2×𝔽pdE_{2}\times\mathbb{F}_{p}^{d}, and hence

#E3pd+min{σ+τ,32σ+12τ,σ+1}.\#E_{3}\lesssim p^{d+\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}}.

Finally, we define 𝒲\mathcal{W}. For each U𝒰U\in\mathcal{U}, consider the (m+d+1)(m+d+1)-plane U×𝔽pmU\times\mathbb{F}_{p}^{m}. Let πU:U×𝔽pmU\pi_{U}:U\times\mathbb{F}_{p}^{m}\rightarrow U be the projection (naturally defined). We let 𝒲U\mathcal{W}_{U} be the set of (d+1)(d+1)-planes WW contained in U×𝔽pmU\times\mathbb{F}_{p}^{m} such that πU(W)=U\pi_{U}(W)=U. Note that 1\gtrsim 1 fraction of the (d+1)(d+1)-planes in U×𝔽pmU\times\mathbb{F}_{p}^{m} lie in 𝒲U\mathcal{W}_{U}, so #𝒲U#A(d+1,𝔽pm+d+1)p(d+2)m\#\mathcal{W}_{U}\sim\#A(d+1,\mathbb{F}_{p}^{m+d+1})\sim p^{(d+2)m}.

We define 𝒲=U𝒰𝒲U\mathcal{W}=\bigcup_{U\in\mathcal{U}}\mathcal{W}_{U} (actually this is a disjoint union). For W𝒲UW\in\mathcal{W}_{U}, define Y(W)=WπU1(Y(U))Y(W)=W\cap\pi_{U}^{-1}(Y(U)). We see that #𝒲#𝒰p(d+2)mp(d+2)m+τ\#\mathcal{W}\sim\#\mathcal{U}\cdot p^{(d+2)m}\sim p^{(d+2)m+\tau}, and #Y(W)=#Y(U)ps\#Y(W)=\#Y(U)\sim p^{s}. Hence, E1=W𝒲Y(W)E_{1}=\bigcup_{W\in\mathcal{W}}Y(W) is a (s,(d+2)m+τ;m+d+2,d+1)(s,(d+2)m+\tau;m+d+2,d+1)-set. Since E1E3×𝔽pmE_{1}\subset E_{3}\times\mathbb{F}_{p}^{m}, we have

#E1#E3pmpd+m+min{σ+τ,32σ+12τ,σ+1}.\#E_{1}\leq\#E_{3}\cdot p^{m}\lesssim p^{d+m+\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}}.

The construction is done.


Case (d)

We still use (24), but the range of τ\tau is τ(2,d+2]\tau\in(2,d+2]. Note the worst case is when τ=d+2\tau=d+2. What we need to do is, for

(26) {s=d+σt=(kd1)(nk)+(d+2)(m+1),\begin{cases}s=d+\sigma\\ t=(k-d-1)(n-k)+(d+2)(m+1),\end{cases}

construct a (s,t;n,k)(s,t;n,k)-set EE such that

#Eps+m+1.\#E\lesssim p^{s+m+1}.

The trick is to still use the construction in Case (c), with τ\tau replaced by 0 and mm replaced by m+1m+1. Therefore, we can construct a (s,t;n,k)(s,t;n,k)-set EE such that

#Epd+m+1+min{σ+0,32σ+120,σ+1}=pd+m+1+σ=ps+m+1.\#E\lesssim p^{d+m+1+\min\{\sigma+0,\frac{3}{2}\sigma+\frac{1}{2}0,\sigma+1\}=p^{d+m+1+\sigma}=p^{s+m+1}}.

4. Furstenberg set problem: Lower bound I

To get more familiar with the problem, we first prove two special cases of Theorem 7: s=0s=0; t=0t=0.

Proposition 27.

If EE is a (0,t;n,k)(0,t;n,k)-set, then

#Ep𝐅(0,t;n,k)=pmax{0,tk(nk)}.\#E\gtrsim p^{\mathbf{F}(0,t;n,k)}=p^{\max\{0,t-k(n-k)\}}.
Proof.

Suppose E=V𝒱Y(V)E=\bigcup_{V\in\mathcal{V}}Y(V). Note that each xEx\in E can lie in at most #G(k,𝔽pn)pk(nk)\#G(k,\mathbb{F}_{p}^{n})\sim p^{k(n-k)} different VV. We have

#Epk(nk)V𝒱#Y(V)pt.\#E\cdot p^{k(n-k)}\geq\sum_{V\in\mathcal{V}}\#Y(V)\gtrsim p^{t}.

Hence, #Eptk(nk)\#E\gtrsim p^{t-k(n-k)}. Also, trivially, #E1\#E\geq 1. ∎

Proposition 28.

If EE is a (s,0;n,k)(s,0;n,k)-set, then

#Ep𝐅(s,0;n,k)=ps.\#E\gtrsim p^{\mathbf{F}(s,0;n,k)}=p^{s}.
Proof.

By the definition of (s,0;n,k)(s,0;n,k)-set, #E#Y(V)ps\#E\geq\#Y(V)\gtrsim p^{s}. ∎

In this section, we prove Theorem 7 for (n,k)=(k+1,k)(n,k)=(k+1,k). The proof is by induction on kk. The goal of this section is to prove the following result.

Proposition 29.

Let kk\in\mathbb{N} and k2k\geq 2. Suppose for admissible (s,t;k,k1)(s,t;k,k-1), we know

(27) infE:(s,t;k,k1)-set#Eεp𝐅(s,t;k,k1)ε\inf_{E:\ (s,t;k,k-1)\textup{-set}}\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;k,k-1)-\varepsilon}

for any ε>0\varepsilon>0. Then for admissible (s,t;k+1,k)(s,t;k+1,k), we have

(28) infE:(s,t;k+1,k)-set#Eεp𝐅(s,t;k+1,k)ε,\inf_{E:\ (s,t;k+1,k)\textup{-set}}\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;k+1,k)-\varepsilon},

for any ε>0\varepsilon>0.

We first prove the following lemma.

Lemma 30.

Assume (27) holds. Suppose (s,t;k+1,k)(s,t;k+1,k) is admissible. Then for any (s,t;k+1,k)(s,t;k+1,k)-set EE, there exist numbers t1,t2,s1,s2,u,vt_{1},t_{2},s_{1},s_{2},u,v, such that

(29) {1pt1pk1,1pt2p2;1ps1p,1ps2ps;ps1pup,1pvp;\begin{cases}1\leq p^{t_{1}}\leq p^{k-1},1\leq p^{t_{2}}\leq p^{2};\\ 1\leq p^{s_{1}}\leq p,1\leq p^{s_{2}}\leq p^{s};\\ p^{s_{1}}\lesssim p^{u}\leq p,1\leq p^{v}\leq p;\end{cases}

and

(30) {pt1+t2pt;ps1+s2ps;pu+vεp𝐅(s1,t2;2,1)ε;\begin{cases}p^{t_{1}+t_{2}}\gtrapprox p^{t};\\ p^{s_{1}+s_{2}}\gtrapprox p^{s};\\ p^{u+v}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon};\end{cases}

and

(31) #Eεpu+max{𝐅(s2,t1+v;k,k1),s2+v}ε.\#E\gtrsim_{\varepsilon}p^{u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}-\varepsilon}.
Proof.

We will do several steps of pigeonholing, which lead to the parameters t1,t2,s1,s2,u,vt_{1},t_{2},s_{1},s_{2},u,v.

By the definition of (s,t;k+1,k)(s,t;k+1,k)-set, we write

E=V𝒱Y(V),E=\bigcup_{V\in\mathcal{V}}Y(V),

where 𝒱A(k,𝔽pk+1)\mathcal{V}\subset A(k,\mathbb{F}_{p}^{k+1}) with #𝒱pt\#\mathcal{V}\sim p^{t}, and Y(V)VY(V)\subset V with #Y(V)ps\#Y(V)\sim p^{s}.

The strategy is to find a subset of 𝒱\mathcal{V}, and a subset of Y(V)Y(V) for each VV, still denoted by 𝒱\mathcal{V}, Y(V)Y(V), so that the new 𝒱,Y(V)\mathcal{V},Y(V) satisfy certain uniformity. This is done by a sequence of pigeonhole arguments.

By properly choosing the coordinate, we can assume 1\gtrsim 1 fraction of the kk-planes in 𝒱\mathcal{V} are not parallel to 𝔽pk\mathbb{F}_{p}^{k}. Throwing away some V𝒱V\in\mathcal{V}, we can just assume all the kk-planes in 𝒱\mathcal{V} are not parallel to 𝔽pk\mathbb{F}_{p}^{k}.

Now, we partition 𝒱\mathcal{V} according to G(k1,𝔽pk×𝟎)G(k-1,\mathbb{F}_{p}^{k}\times\mathbf{0}). Since each V𝒱V\in\mathcal{V} is not parallel to 𝔽pk\mathbb{F}_{p}^{k} and the ambient space is 𝔽pk+1\mathbb{F}_{p}^{k+1}, VV must intersect 𝔽pk×𝟎\mathbb{F}_{p}^{k}\times\mathbf{0} at a (k1)(k-1)-plane. For each WG(k1,𝔽pk×𝟎)W\in G(k-1,\mathbb{F}_{p}^{k}\times\mathbf{0}), we define 𝒱W\mathcal{V}_{W} to be the set of V𝒱V\in\mathcal{V} such that V𝔽pkV\cap\mathbb{F}_{p}^{k} is parallel to WW. We obtain a partition

𝒱=WG(k1,𝔽pk×𝟎)𝒱W.\mathcal{V}=\bigsqcup_{W\in G(k-1,\mathbb{F}_{p}^{k}\times\mathbf{0})}\mathcal{V}_{W}.

First pigeonholing. We assume there exists 𝒲G(k1,𝔽pk×𝟎)\mathcal{W}\subset G(k-1,\mathbb{F}_{p}^{k}\times\mathbf{0}) with #𝒲pt1\#\mathcal{W}\sim p^{t_{1}} such that for each W𝒲W\in\mathcal{W}, #𝒱Wpt2\#\mathcal{V}_{W}\sim p^{t_{2}}. Here, 1pt1pk1,1pt2p21\leq p^{t_{1}}\leq p^{k-1},1\leq p^{t_{2}}\leq p^{2} are dyadic numbers and

(32) pt1pt2pt.p^{t_{1}}p^{t_{2}}\gtrapprox p^{t}.

(Recall ABA\gtrapprox B means A(logp)CBA\gtrsim(\log p)^{C}B.) We still use 𝒱\mathcal{V} to denote W𝒲𝒱W\bigcup_{W\in\mathcal{W}}\mathcal{V}_{W}. And we see that

#𝒱pt.\#\mathcal{V}\gtrapprox p^{t}.

Second pigeonholing. By properly choosing the coordinate and throw away 1\lesssim 1 fraction of WW in 𝒲\mathcal{W}, we can assume each WW in 𝒲\mathcal{W} satisfies W(𝔽p×𝟎k)=𝟎k+1W\cap(\mathbb{F}_{p}\times\mathbf{0}^{k})=\mathbf{0}^{k+1}. Denote 𝔽p2~=𝔽p×𝟎k1×𝔽p\widetilde{\mathbb{F}_{p}^{2}}=\mathbb{F}_{p}\times\mathbf{0}^{k-1}\times\mathbb{F}_{p}. If V𝒱WV\in\mathcal{V}_{W} and W𝒲W\in\mathcal{W}, then V𝔽p2~V\cap\widetilde{\mathbb{F}_{p}^{2}} is a line. We denote it by V:=V𝔽p2~\ell_{V}:=V\cap\widetilde{\mathbb{F}_{p}^{2}}. Note that V\ell_{V} is not parallel to the first coordinate in 𝔽p2~\widetilde{\mathbb{F}_{p}^{2}}.

For a fixed V𝒱WV\in\mathcal{V}_{W}, we do a Fubini-type argument. Write

V=xV(x+W).V=\bigsqcup_{x\in\ell_{V}}(x+W).

Noting that #Y(V)ps\#Y(V)\sim p^{s}, by pigeonholing, we find a subset Y(V)VY(\ell_{V})\subset\ell_{V}, so that #Y(V)s1(V)\#Y(\ell_{V})\sim s_{1}(V), and for each xY(V)x\in Y(\ell_{V}), #Y(V)(x+W)s2(V)\#Y(V)\cap(x+W)\sim s_{2}(V). Here, 1ps1(V)p,1ps2(V)ps1\leq p^{s_{1}(V)}\leq p,1\leq p^{s_{2}(V)}\leq p^{s} are dyadic numbers and satisfy

ps1(V)ps2(V)ps.p^{s_{1}(V)}\cdot p^{s_{2}(V)}\gtrapprox p^{s}.

By throwing away some horizontal slices of Y(V)Y(V), we can assume

Y(V)=xY(V)(Y(V)(x+W)).Y(V)=\bigsqcup_{x\in Y(\ell_{V})}\bigg{(}Y(V)\cap(x+W)\bigg{)}.

For the new Y(V)Y(V), we still have

#Y(V)ps.\#Y(V)\gtrapprox p^{s}.

For convenience, given V𝒱WV\in\mathcal{V}_{W} and xVx\in\ell_{V}, we denote

Y(V,x):=Y(V)(x+W).Y(V,x):=Y(V)\cap(x+W).

Y(V,x)Y(V,x) is called the horizontal xx-slice. (Note that there is no confusion, since VV uniquely determines WW.) Thus, we have

(33) Y(V)=xY(V)Y(V,x).Y(V)=\bigsqcup_{x\in Y(\ell_{V})}Y(V,x).

Third pigeonholing. For each W𝒲W\in\mathcal{W}, we can find dyadic numbers ps1(W),ps2(W)p^{s_{1}(W)},p^{s_{2}(W)} so that 1\gtrapprox 1 fraction of VV in 𝒱(W)\mathcal{V}(W) satisfy ps1(V)=ps1(W),ps2(V)=ps2(W)p^{s_{1}(V)}=p^{s_{1}(W)},p^{s_{2}(V)}=p^{s_{2}(W)}.

Fourth pigeonholing. There exist dyadic numbers ps1,ps2p^{s_{1}},p^{s_{2}} such that 1\gtrapprox 1 fraction of WW in 𝒲\mathcal{W} satisfy ps1(W)=ps1p^{s_{1}(W)}=p^{s_{1}} and ps2(W)=ps2p^{s_{2}(W)}=p^{s_{2}}.

We summarize what we have done so far. We can redefine 𝒲\mathcal{W}, 𝒱W\mathcal{V}_{W} and 𝒱\mathcal{V}, so that 𝒱=W𝒲𝒱W\mathcal{V}=\bigcup_{W\in\mathcal{W}}\mathcal{V}_{W} and the following uniformity holds.

#𝒲pt1.\#\mathcal{W}\gtrapprox p^{t_{1}}.
#𝒱Wpt2, for W𝒲.\#\mathcal{V}_{W}\gtrapprox p^{t_{2}},\textup{~{}for~{}}W\in\mathcal{W}.

For W𝒲W\in\mathcal{W} and each V𝒱WV\in\mathcal{V}_{W},

(34) Y(V)=xY(V)Y(V,x),Y(V)=\bigsqcup_{x\in Y(\ell_{V})}Y(V,x),

with #Y(V)ps1\#Y(\ell_{V})\sim p^{s_{1}} and for each xY(V)x\in Y(\ell_{V}), #Y(V,x)ps2\#Y(V,x)\sim p^{s_{2}}.

Fix a W𝒲W\in\mathcal{W}. We want to estimate V𝒱WY(V)(𝔽p2~)\bigcup_{V\in\mathcal{V}_{W}}Y(\ell_{V})(\subset\widetilde{\mathbb{F}_{p}^{2}}). This is some sort of Furstenberg set in two-dimensional space. Also, an important preperty is that each V\ell_{V} is not parallel to the first coordinate. We will exploit some “quasi-product” structure of this set.

Lemma 31.

Assume Conjecture 4 holds. Suppose E=Y()E=\bigcup_{\ell\in\mathcal{L}}Y(\ell) is a (s1,t2;2,1)(s_{1},t_{2};2,1)-set. Also, we assume each \ell\in\mathcal{L} is not parallel to 𝔽p×𝟎\mathbb{F}_{p}\times\mathbf{0}. Then there exist dyadic numbers pu,pvp^{u},p^{v} such that

ps1pup,p^{s_{1}}\lesssim p^{u}\lesssim p,
1pvp,1\leq p^{v}\leq p,

and

pupvεp𝐅(s1,t2;2,1)ε.p^{u}p^{v}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon}.

for any ε>0\varepsilon>0. Also, EE contains a subset of form

ξΞYξ,\bigsqcup_{\xi\in\Xi}Y_{\xi},

where Ξ𝟎×𝔽p\Xi\subset\mathbf{0}\times\mathbb{F}_{p} with #Ξpu\#\Xi\sim p^{u}, and YξE(ξ+(𝔽p×𝟎))Y_{\xi}\subset E\cap\bigg{(}\xi+(\mathbb{F}_{p}\times\mathbf{0})\bigg{)} with #Yξpv\#Y_{\xi}\sim p^{v}.

Proof.

For ξ𝟎×𝔽p\xi\in\mathbf{0}\times\mathbb{F}_{p}, define E(ξ):=E(ξ+(𝔽p×𝟎))E(\xi):=E\cap\bigg{(}\xi+(\mathbb{F}_{p}\times\mathbf{0})\bigg{)}. By pigeonholing on horizontal slices of EE, we can find Ξ𝟎×𝔽p\Xi\subset\mathbf{0}\times\mathbb{F}_{p} so that for all ξΞ\xi\in\Xi, E(ξ)E(\xi) have comparable cardinality. We may denote #Ξpu,#E(ξ)pv\#\Xi\sim p^{u},\#E(\xi)\sim p^{v} for two dyadic numbers pu,pv1p^{u},p^{v}\geq 1. We can also assume pupv#Ep^{u}p^{v}\gtrapprox\#E. Hence, assuming Conjecture 4, we have

pupvεp𝐅(s1,t2;2,1)ε.p^{u}p^{v}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon}.

However, we still need the condition pups1p^{u}\gtrsim p^{s_{1}}. This is handled by the following trick. We will conduct an algorithm to find a sequence E=E1E2EmE=E_{1}\supset E_{2}\supset\cdots\supset E_{m}, and disjoint subsets Ξ1,Ξ2,Ξm\Xi_{1},\Xi_{2}\cdots,\Xi_{m} of 𝟎×𝔽p\mathbf{0}\times\mathbb{F}_{p}. To start with, let E1=EE_{1}=E. By pigeonholing, we can find Ξ1𝟎×𝔽p\Xi_{1}\subset\mathbf{0}\times\mathbb{F}_{p}, such that #Ξ1pu1\#\Xi_{1}\sim p^{u_{1}}, #E(ξ)pv1\#E(\xi)\sim p^{v_{1}} for each ξΞ\xi\in\Xi, and

pu1pv1ε#E1εp𝐅(s1,t2;2,1)ε.p^{u_{1}}p^{v_{1}}\gtrsim_{\varepsilon}\#E_{1}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon}.

Suppose we have defined Ei,ΞiE_{i},\Xi_{i} for 1ij11\leq i\leq j-1. If i=1j1puips1\sum_{i=1}^{j-1}p^{u_{i}}\ll p^{s_{1}}, then we define

Ej:=E1ij1ξΞiE(ξ).E_{j}:=E\setminus\bigcup_{1\leq i\leq j-1}\bigsqcup_{\xi\in\Xi_{i}}E(\xi).

Since each \ell\in\mathcal{L} is not parallel to 𝔽p×𝟎\mathbb{F}_{p}\times\mathbf{0}, we see that EjE_{j} is still a (s1,t2;2,1)(s_{1},t_{2};2,1)-set. By the same pigeonholing, we find Ξj(𝟎×𝔽p)1ij1Ξi\Xi_{j}\subset(\mathbf{0}\times\mathbb{F}_{p})\setminus\bigcup_{1\leq i\leq j-1}\Xi_{i}, so that #Ξjpuj\#\Xi_{j}\sim p^{u_{j}}, #E(ξ)pvj\#E(\xi)\sim p^{v_{j}} for each ξΞj\xi\in\Xi_{j}, and

pujpvjεp𝐅(s1,t2;2,1)ε.p^{u_{j}}p^{v_{j}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon}.

If i=1j1puips1\sum_{i=1}^{j-1}p^{u_{i}}\gtrsim p^{s_{1}}, then we stop and let m=j1m=j-1.

The algorithm will stop in finite steps. Denote Ξ:=1imΞi\Xi:=\bigcup_{1\leq i\leq m}\Xi_{i}. Let pu,pvp^{u},p^{v} be dyadic numbers so that pv=min1impvip^{v}=\min_{1\leq i\leq m}p^{v_{i}}, pu#Ξp^{u}\sim\#\Xi. For each ξΞ\xi\in\Xi, let YξY_{\xi} be a subset of E(ξ)E(\xi) with #Yξpv\#Y_{\xi}\sim p^{v}. This is doable, since #E(ξ)pv\#E(\xi)\gtrsim p^{v} if ξΞ\xi\in\Xi. One can check

pupvεp𝐅(s1,t2;2,1)ε.p^{u}p^{v}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon}.

This is proved in the following way. Suppose pv=pvip^{v}=p^{v_{i}}, then

pupv=pupvipuipviεp𝐅(s1,t1;2,1)ε.p^{u}p^{v}=p^{u}p^{v_{i}}\geq p^{u_{i}}p^{v_{i}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{1};2,1)-\varepsilon}.

Also, one can check

pu=i=1mpuips1.p^{u}=\sum_{i=1}^{m}p^{u_{i}}\gtrsim p^{s_{1}}.

Return back to E~W:=V𝒱WY(V)\widetilde{E}_{W}:=\bigcup_{V\in\mathcal{V}_{W}}Y(\ell_{V}) (which lie in 𝔽p2~=𝔽p×𝟎k1×𝔽p\widetilde{\mathbb{F}_{p}^{2}}=\mathbb{F}_{p}\times\mathbf{0}^{k-1}\times\mathbb{F}_{p}). Recall #𝒱Wpt2\#\mathcal{V}_{W}\gtrapprox p^{t_{2}} and #Y(V)ps1\#Y(\ell_{V})\sim p^{s_{1}}. We see that E~W\widetilde{E}_{W} is a (s1,(t2ε)+;2,1)(s_{1},(t_{2}-\varepsilon)_{+};2,1)-set, for any ε>0\varepsilon>0. Here, (t2ε)+=max{t2ε,0}(t_{2}-\varepsilon)_{+}=\max\{t_{2}-\varepsilon,0\}.

By Lemma 31, there exist dyadic numbers pu(W),pv(W)p^{u(W)},p^{v(W)}, so that E~W\widetilde{E}_{W} contains a subset of form

ξΞWYW(ρξ).\bigsqcup_{\xi\in\Xi_{W}}Y_{W}(\rho_{\xi}).

Here, ΞW𝟎k×𝔽p\Xi_{W}\subset\mathbf{0}^{k}\times\mathbb{F}_{p} with #ΞWpu(W)\#\Xi_{W}\sim p^{u(W)}; ρξ:=ξ+(𝔽p×𝟎k)\rho_{\xi}:=\xi+(\mathbb{F}_{p}\times\mathbf{0}^{k}) and YW(ρξ)ρξY_{W}(\rho_{\xi})\subset\rho_{\xi} with #YW(ρξ)pv(W)\#Y_{W}(\rho_{\xi})\sim p^{v(W)}. We also have

pu(W)ps1.p^{u(W)}\gtrsim p^{s_{1}}.
pu(W)pv(W)εp𝐅(s1,(t2ε)+;2,1)ε.p^{u(W)}p^{v(W)}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},(t_{2}-\varepsilon)_{+};2,1)-\varepsilon}.

By pigeonholing on (u(W),v(W))(u(W),v(W)) again, we can throw away some W𝒲W\in\mathcal{W} so that the cardinality of 𝒲\mathcal{W} is still pt1\gtrapprox p^{t_{1}}, and assume there exist u,vu,v such that

(u(W),v(W))=(u,v), for all W𝒲,(u(W),v(W))=(u,v),\ \textup{~{}for~{}all~{}}W\in\mathcal{W},

and

pups1.p^{u}\gtrsim p^{s_{1}}.
pupvεp𝐅(s1,(t2ε)+;2,1)ε.p^{u}p^{v}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},(t_{2}-\varepsilon)_{+};2,1)-\varepsilon}.

By Lemma 20,

pupvεp𝐅(s1,t2;2,1)ε.p^{u}p^{v}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon}.

Finally, we are about to estimate the lower bound of the cardinality of E=W𝒲V𝒱WY(V).E=\bigcup_{W\in\mathcal{W}}\bigcup_{V\in\mathcal{V}_{W}}Y(V). This EE is not the original one, but the one after pigeonholing. Recall (34), we have

(35) V𝒱WY(V)=V𝒱WxY(V)Y(V,x)=xE~W(V:V𝒱W,xY(V)Y(V,x)).\begin{split}\bigcup_{V\in\mathcal{V}_{W}}Y(V)&=\bigcup_{V\in\mathcal{V}_{W}}\bigsqcup_{x\in Y(\ell_{V})}Y(V,x)\\ &=\bigcup_{x\in\widetilde{E}_{W}}\bigg{(}\bigcup_{V:V\in\mathcal{V}_{W},x\in Y(\ell_{V})}Y(V,x)\bigg{)}.\end{split}

We define

Y(W,x):=V:V𝒱W,xY(V)Y(V,x).Y(W,x):=\bigcup_{V:V\in\mathcal{V}_{W},x\in Y(\ell_{V})}Y(V,x).

Then Y(W,x)Y(W,x) is contained in the (k1)(k-1)-plane x+Wx+W.

If xE~Wx\in\widetilde{E}_{W}, then

#Y(W,x)ps2.\#Y(W,x)\gtrsim p^{s_{2}}.

Recall that

E~WξΞWYW(ρξ).\widetilde{E}_{W}\supset\bigsqcup_{\xi\in\Xi_{W}}Y_{W}(\rho_{\xi}).

We have

V𝒱WY(V)ξΞWxYW(ρξ)Y(W,x).\bigcup_{V\in\mathcal{V}_{W}}Y(V)\supset\bigcup_{\xi\in\Xi_{W}}\bigcup_{x\in Y_{W}(\rho_{\xi})}Y(W,x).

The reader can check, for fixed ξΞW\xi\in\Xi_{W}, xYW(ρξ)Y(W,x)\bigcup_{x\in Y_{W}(\rho_{\xi})}Y(W,x) lies in 𝔽pk×{ξ}\mathbb{F}_{p}^{k}\times\{\xi\}.

Now we see that

EW𝒲ξΞWxYW(ρξ)Y(W,x).E\supset\bigcup_{W\in\mathcal{W}}\bigcup_{\xi\in\Xi_{W}}\bigcup_{x\in Y_{W}(\rho_{\xi})}Y(W,x).

We want to estimate the lower bound of the right hand side. Intuitively, one can imagine the worst case is when ΞW\Xi_{W} are morally the same for all W𝒲W\in\mathcal{W}; otherwise we may translate them to the same (k+1)(k+1)-th coordinate so that their union becomes smaller. For example, if we have sets Ai×{ξi}𝔽pk×𝔽pA_{i}\times\{\xi_{i}\}\subset\mathbb{F}_{p}^{k}\times\mathbb{F}_{p} (iIi\in I). Then iIAi×{ξi}\bigcup_{i\in I}A_{i}\times\{\xi_{i}\} is the smallest when all the ξi\xi_{i} are the same.

Let us return to the estimate of

E:=W𝒲ξΞWxYW(ρξ)Y(W,x).E^{\prime}:=\bigcup_{W\in\mathcal{W}}\bigcup_{\xi\in\Xi_{W}}\bigcup_{x\in Y_{W}(\rho_{\xi})}Y(W,x).

There are two lower bounds. The first lower bound is obtained from a fixed WW. We have

#EξΞWxYW(ρξ)Y(W,x)pupvps2.\#E^{\prime}\geq\bigcup_{\xi\in\Xi_{W}}\bigcup_{x\in Y_{W}(\rho_{\xi})}Y(W,x)\gtrsim p^{u}p^{v}p^{s_{2}}.

For the second lower bound, we will estimate EE^{\prime} on each ξ\xi-slice. We define the ξ\xi-slice of EE^{\prime} by

Eξ:=E(𝔽pk×{ξ})=W:W𝒲,ξΞWxYW(ρξ)Y(W,x).E^{\prime}_{\xi}:=E^{\prime}\cap(\mathbb{F}_{p}^{k}\times\{\xi\})=\bigcup_{W:W\in\mathcal{W},\xi\in\Xi_{W}}\bigcup_{x\in Y_{W}(\rho_{\xi})}Y(W,x).

We will see that EξE^{\prime}_{\xi} is some sort of (s2,tξ;k,k1)(s_{2},t_{\xi};k,k-1)-set. Define

ptξ:=#{(W,x):W𝒲,ξΞW,xYW(ρξ)}.p^{t_{\xi}}:=\#\{(W,x):W\in\mathcal{W},\xi\in\Xi_{W},x\in Y_{W}(\rho_{\xi})\}.

We note two bounds for tξt_{\xi}:

(36) ptξ#𝒲#YW(ρξ)pt1pv;p^{t_{\xi}}\leq\#\mathcal{W}\cdot\#Y_{W}(\rho_{\xi})\lesssim p^{t_{1}}p^{v};
(37) ξ𝟎k×𝔽pptξ=W𝒲#ΞW#YW(ρξ)pt1pupv.\sum_{\xi\in\mathbf{0}^{k}\times\mathbb{F}_{p}}p^{t_{\xi}}=\sum_{W\in\mathcal{W}}\#\Xi_{W}\cdot\#Y_{W}(\rho_{\xi})\gtrapprox p^{t_{1}}p^{u}p^{v}.

We used that pt1#𝒲pt1p^{t_{1}}\gtrsim\#\mathcal{W}\gtrapprox p^{t_{1}}, #ΞWpu\#\Xi_{W}\sim p^{u}, #YW(ρξ)pv\#Y_{W}(\rho_{\xi})\sim p^{v}.

And note that Y(W,x)Y(W,x) is a subset of the line x+Wx+W such that #Y(W,x)ps2\#Y(W,x)\gtrsim p^{s_{2}}. Therefore, EξE_{\xi}^{\prime} is a (s2,tξ;k,k1)(s_{2},t_{\xi};k,k-1)-set. By (27), we have

#Eξεp𝐅(s2,tξ;k,k1)ε.\#E^{\prime}_{\xi}\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{2},t_{\xi};k,k-1)-\varepsilon}.

Therefore,

#Eεξ𝟎k×𝔽pp𝐅(s2,tξ;k,k1)ε.\#E\gtrsim_{\varepsilon}\sum_{\xi\in\mathbf{0}^{k}\times\mathbb{F}_{p}}p^{\mathbf{F}(s_{2},t_{\xi};k,k-1)-\varepsilon}.

We claim that the right hand side is

pup𝐅(s2,t1+v;k,k1)ε.\gtrapprox p^{u}p^{\mathbf{F}(s_{2},t_{1}+v;k,k-1)-\varepsilon}.

By pigeonholing, we can find a dyadic number ptpt1pvp^{t_{\circ}}\lesssim p^{t_{1}}p^{v} and Ξ𝟎k×𝔽p\Xi_{\circ}\subset\mathbf{0}^{k}\times\mathbb{F}_{p}, so that 2ptptξpt2p^{t_{\circ}}\geq p^{t_{\xi}}\geq p^{t_{\circ}} for ξΞ\xi\in\Xi_{\circ} and

#Ξptpt1pupv.\#\Xi_{\circ}\cdot p^{t_{\circ}}\gtrapprox p^{t_{1}}p^{u}p^{v}.

Hence,

#Ξpupt1+vt.\#\Xi_{\circ}\gtrapprox p^{u}p^{t_{1}+v-t_{\circ}}.

We can estimate

#EεξΞp𝐅(s2,tξ;k,k1)ε#Ξp𝐅(s2,t;k,k1)εpup𝐅(s2,t;k,k1)+t1+vtε.\#E\gtrsim_{\varepsilon}\sum_{\xi\in\Xi_{\circ}}p^{\mathbf{F}(s_{2},t_{\xi};k,k-1)-\varepsilon}\geq\#\Xi_{\circ}\cdot p^{\mathbf{F}(s_{2},t_{\circ};k,k-1)-\varepsilon}\gtrapprox p^{u}p^{\mathbf{F}(s_{2},t_{\circ};k,k-1)+t_{1}+v-t_{\circ}-\varepsilon}.

By Lemma 20, we have

#Eεpu+𝐅(s2,t1+v;k,k1)ε.\#E\gtrapprox_{\varepsilon}p^{u+\mathbf{F}(s_{2},t_{1}+v;k,k-1)-\varepsilon}.

The next lemma is a recursive inequality of 𝐅(s,t;k+1,k)\mathbf{F}(s,t;k+1,k), which can be used to bound the right hand side of (31).

Lemma 32.

Suppose (s,t;k+1,k)(s,t;k+1,k) is admissible. Suppose there exist numbers t1,t2,s1,s2,u,vt_{1},t_{2},s_{1},s_{2},u,v, such that

(38) {t1[0,k1],t2[0,2];s1[0,1],s2[0,s];u[s1,1],v[0,1];\begin{cases}t_{1}\in[0,k-1],t_{2}\in[0,2];\\ s_{1}\in[0,1],s_{2}\in[0,s];\\ u\in[s_{1},1],v\in[0,1];\end{cases}

and

(39) {t1+t2t;s1+s2s;u+v𝐅(s1,t2;2,1);\begin{cases}t_{1}+t_{2}\geq t;\\ s_{1}+s_{2}\geq s;\\ u+v\geq\mathbf{F}(s_{1},t_{2};2,1);\end{cases}

Then,

(40) u+max{𝐅(s2,t1+v;k,k1),s2+v}𝐅(s,t;k+1,k).u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}\geq\mathbf{F}(s,t;k+1,k).

Let us quickly see how Lemma 30 and Lemma 32 combined to prove Proposition 29.

Proof of Proposition 29 assuming Lemma 30 and Lemma 32.

If s=0s=0 or t=0t=0, by Proposition 27 or 28, we are done. So, we suppose s,t>0s,t>0.

Fix 0<ε<min{σ/2,t/2,1/2}0<\varepsilon<\min\{\sigma/2,t/2,1/2\}, where s=d+σs=d+\sigma with d,σ(0,1]d\in\mathbb{N},\sigma\in(0,1]. We just need to prove

(41) #Eεp𝐅(s,t;k+1,k)Cε\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;k+1,k)-C\varepsilon}

for any (s,t;k+1,k)(s,t;k+1,k)-set EE. Here, CC is a large number.

We only need to prove for large enough pp, since for small pp we can choose the constant to be large.

Suppose (27) holds. Then in particular, Conjecture 4 also holds. If EE is a (s,t;k+1,k)(s,t;k+1,k)-set, by Lemma 30, there exist numbers t1,t2,s1,s2,u,vt_{1},t_{2},s_{1},s_{2},u,v, such that

(42) {t1[0,k1],t2[0,2];s1[0,1],s2[0,s];u[s1ε,1],v[0,1];\begin{cases}t_{1}\in[0,k-1],t_{2}\in[0,2];\\ s_{1}\in[0,1],s_{2}\in[0,s];\\ u\in[s_{1}-\varepsilon,1],v\in[0,1];\end{cases}

and

(43) {t1+t2tε;s1+s2sε;u+v𝐅(s1,t2;2,1)ε;\begin{cases}t_{1}+t_{2}\geq t-\varepsilon;\\ s_{1}+s_{2}\geq s-\varepsilon;\\ u+v\geq\mathbf{F}(s_{1},t_{2};2,1)-\varepsilon;\end{cases}

and

(44) #Eεpu+max{𝐅(s2,t1+v;k,k1),s2+v}ε.\#E\gtrsim_{\varepsilon}p^{u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}-\varepsilon}.

Here, we used the fact that when pp is large enough (depending on ε\varepsilon), then pt1+t2ptp^{t_{1}+t_{2}}\gtrapprox p^{t} implies t1+t2tεt_{1}+t_{2}\geq t-\varepsilon. Also, by our assumption. tε,sε>0t-\varepsilon,s-\varepsilon>0. Let t=tεt^{\prime}=t-\varepsilon. s=sεs^{\prime}=s-\varepsilon.

Since 𝐅(s1,t2;2,1)2\mathbf{F}(s_{1},t_{2};2,1)\leq 2, we can find uumin{u+ε,1}u\leq u^{\prime}\leq\min\{u+\varepsilon,1\} and vvmin{v+ε,1}v\leq v^{\prime}\leq\min\{v+\varepsilon,1\}, so that us1u^{\prime}\geq s_{1}, u+v𝐅(s1,t2;2,1)u^{\prime}+v^{\prime}\geq\mathbf{F}(s_{1},t_{2};2,1). Now we have

(45) {t1[0,k1],t2[0,2];s1[0,1],s2[0,s];u[s1,1],v[0,1];\begin{cases}t_{1}\in[0,k-1],t_{2}\in[0,2];\\ s_{1}\in[0,1],s_{2}\in[0,s];\\ u^{\prime}\in[s_{1},1],v^{\prime}\in[0,1];\end{cases}

and

(46) {t1+t2t;s1+s2s;u+v𝐅(s1,t2;2,1);\begin{cases}t_{1}+t_{2}\geq t^{\prime};\\ s_{1}+s_{2}\geq s^{\prime};\\ u^{\prime}+v^{\prime}\geq\mathbf{F}(s_{1},t_{2};2,1);\end{cases}

and

(47) #Epu+max{𝐅(s2,t1+v;k,k1),s2+v}εpu+max{𝐅(s2,t1+v;k,k1),s2+v}O(ε).\#E\gtrsim p^{u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}-\varepsilon}\geq p^{u^{\prime}+\max\{\mathbf{F}(s_{2},t_{1}+v^{\prime};k,k-1),s_{2}+v^{\prime}\}-O(\varepsilon)}.

In the last inequality, we used Lemma 20.

Finally, by Lemma 32, we have

u+max{𝐅(s2,t1+v;k,k1),s2+v}𝐅(s,t;k+1,k)𝐅(s,t;n,k)O(ε).u^{\prime}+\max\{\mathbf{F}(s_{2},t_{1}+v^{\prime};k,k-1),s_{2}+v^{\prime}\}\geq\mathbf{F}(s^{\prime},t^{\prime};k+1,k)\geq\mathbf{F}(s,t;n,k)-O(\varepsilon).

The last inequality is by Proposition 21 and 20.

In summary, we finish the proof of

#Ep𝐅(s,t;k+1,k)Cε.\#E\gtrsim p^{\mathbf{F}(s,t;k+1,k)-C\varepsilon}.

It remains to prove Lemma 32. It can be reduced to the following lemma, with “\geq” in (39) all replaced by “==”.

Lemma 33.

Suppose (s,t;k+1,k)(s,t;k+1,k) is admissible. Suppose there exist numbers t1,t2,s1,s2,u,vt_{1},t_{2},s_{1},s_{2},u,v, such that

(48) {t1[0,k1],t2[0,2];s1[0,1],s2[0,s];u[s1,1],v[0,1];\begin{cases}t_{1}\in[0,k-1],t_{2}\in[0,2];\\ s_{1}\in[0,1],s_{2}\in[0,s];\\ u\in[s_{1},1],v\in[0,1];\end{cases}

and

(49) {t1+t2=t;s1+s2=s;u+v=𝐅(s1,t2;2,1);\begin{cases}t_{1}+t_{2}=t;\\ s_{1}+s_{2}=s;\\ u+v=\mathbf{F}(s_{1},t_{2};2,1);\end{cases}

Then,

(50) u+max{𝐅(s2,t1+v;k,k1),s2+v}𝐅(s,t;k+1,k).u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}\geq\mathbf{F}(s,t;k+1,k).

We show that Lemma 33 implies Lemma 32.

Proof of Lemma 32 assuming Lemma 33.

The idea is to slightly modify s1,s2,t1,t2,u,vs_{1},s_{2},t_{1},t_{2},u,v so that the “\geq” in (39) become “==”, and then we can apply Lemma 33.

For i=1,2i=1,2, we can find ti[0,ti],si[0,si]t_{i}^{\prime}\in[0,t_{i}],s^{\prime}_{i}\in[0,s_{i}], so that t1+t2=t,s1+s2=st_{1}^{\prime}+t_{2}^{\prime}=t,s_{1}^{\prime}+s_{2}^{\prime}=s. It is slightly trickier to modify u,vu,v. Noting that u+v𝐅(s1,t2;2,1)𝐅(s1,t2;2,1)s1u+v\geq\mathbf{F}(s_{1},t_{2};2,1)\geq\mathbf{F}(s_{1}^{\prime},t_{2}^{\prime};2,1)\geq s_{1}^{\prime}, we can find u[s1,u],v[0,v]u^{\prime}\in[s_{1}^{\prime},u],v^{\prime}\in[0,v] so that u+v=𝐅(s1,t2;2,1)u^{\prime}+v^{\prime}=\mathbf{F}(s_{1}^{\prime},t_{2}^{\prime};2,1). Now we can apply Lemma 33 to the numbers t1,t2,s1,s2,u,vt_{1}^{\prime},t_{2}^{\prime},s_{1}^{\prime},s_{2}^{\prime},u^{\prime},v^{\prime}. We obtain

u+max{𝐅(s2,t1+v;k,k1),s2+v}𝐅(s,t;k+1,k).u^{\prime}+\max\{\mathbf{F}(s^{\prime}_{2},t^{\prime}_{1}+v^{\prime};k,k-1),s^{\prime}_{2}+v^{\prime}\}\geq\mathbf{F}(s,t;k+1,k).

Since the new numbers are smaller than the old numbers and by using the monotonicity of 𝐅(,;n,k)\mathbf{F}(\cdot,\cdot;n,k), we have

u+max{𝐅(s2,t1+v;k,k1),s2+v}𝐅(s,t;k+1,k).u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}\geq\mathbf{F}(s,t;k+1,k).

It remains to prove Lemma 33.

Proof of Lemma 33.

For convenience, we recall the definition of Furstenberg index in the special case (n,k)=(k+1,k)(n,k)=(k+1,k).

(a) If s=0s=0,

𝐅(0,t;k+1,k)=max{0,tk}.\mathbf{F}(0,t;k+1,k)=\max\{0,t-k\}.

(b) If s>0s>0, write s=d+σs=d+\sigma. If also t[0,kd1]t\in[0,k-d-1],

𝐅(s,t;k+1,k)=s.\mathbf{F}(s,t;k+1,k)=s.

If we are not in Case (a) and (b), then s(0,k]s\in(0,k] and t(kd1,k+1]t\in(k-d-1,k+1], we write

{s=d+σt=kd1+τ,\begin{cases}s=d+\sigma\\ t=k-d-1+\tau,\end{cases}

where d{0,,k1}d\in\{0,\dots,k-1\}, σ(0,1]\sigma\in(0,1], τ(0,d+2]\tau\in(0,d+2].

(c) If τ(0,2]\tau\in(0,2],

𝐅(s,t;k+1,k)=d+min{σ+τ,32σ+12τ,σ+1}\mathbf{F}(s,t;k+1,k)=d+\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}

(d) If τ(2,d+2]\tau\in(2,d+2],

𝐅(s,t;k+1,k)=s+1.\mathbf{F}(s,t;k+1,k)=s+1.

Let us denote

𝐅:=u+max{𝐅(s2,t1+v;k,k1),s2+v}.\mathbf{F}:=u+\max\{\mathbf{F}(s_{2},t_{1}+v;k,k-1),s_{2}+v\}.

Our goal is to prove

𝐅𝐅(s,t;k+1,k).\mathbf{F}\geq\mathbf{F}(s,t;k+1,k).

When s=0s=0, then s1=s2=0s_{1}=s_{2}=0. We want to prove 𝐅max{0,tk}\mathbf{F}\geq\max\{0,t-k\}. Trivially, 𝐅0\mathbf{F}\geq 0. Also,

𝐅u+𝐅(0,t1+v;k,k1)u+t1+v(k1).\mathbf{F}\geq u+\mathbf{F}(0,t_{1}+v;k,k-1)\geq u+t_{1}+v-(k-1).

Using u+v=𝐅(s1,t2;2,1)t21u+v=\mathbf{F}(s_{1},t_{2};2,1)\geq t_{2}-1 and t1+t2=tt_{1}+t_{2}=t, we obtain

𝐅tk.\mathbf{F}\geq t-k.

When t[0,kd1]t\in[0,k-d-1], we have

𝐅u+s2+v=s2+𝐅(s1,t2;2,1)s2+s1=s=𝐅(s,t;k+1,k).\mathbf{F}\geq u+s_{2}+v=s_{2}+\mathbf{F}(s_{1},t_{2};2,1)\geq s_{2}+s_{1}=s=\mathbf{F}(s,t;k+1,k).

So we consider s>0s>0 and t>kd1t>k-d-1. Write

{s=d+σt=kd1+τ,\begin{cases}s=d+\sigma\\ t=k-d-1+\tau,\end{cases}

where d{0,,k1}d\in\{0,\dots,k-1\}, σ(0,1]\sigma\in(0,1], τ(0,d+2]\tau\in(0,d+2]. In this case,

𝐅(s,t;k+1,k)=d+min{σ+τ,32σ+12τ,σ+1}.\mathbf{F}(s,t;k+1,k)=d+\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}.

We just need to show either 𝐅d+σ+τ\mathbf{F}\geq d+\sigma+\tau, or 𝐅d+32σ+12τ\mathbf{F}\geq d+\frac{3}{2}\sigma+\frac{1}{2}\tau, or 𝐅d+σ+1\mathbf{F}\geq d+\sigma+1.

We first analyze 𝐅(s2,t1+v;k,k1)\mathbf{F}(s_{2},t_{1}+v;k,k-1). This is done by discussing the values of (s2,t1+v)(s_{2},t_{1}+v).

Case (a): s2=0s_{2}=0 By definition, we have 𝐅(s2,t1+v;k,k1)=max{0,t1+v(k1)}\mathbf{F}(s_{2},t_{1}+v;k,k-1)=\max\{0,t_{1}+v-(k-1)\}. Since s1+s2=s=d+σs_{1}+s_{2}=s=d+\sigma and s11s_{1}\leq 1, we have d=0,s1=σd=0,s_{1}=\sigma. We have

𝐅u+max{t1+v(k1),v}.\mathbf{F}\geq u+\max\{t_{1}+v-(k-1),v\}.

Recall u+v𝐅(σ,t2;2,1),t1+t2=t=k1+τu+v\geq\mathbf{F}(\sigma,t_{2};2,1),t_{1}+t_{2}=t=k-1+\tau. We have

𝐅𝐅(σ,t2;2,1)+max{τt2,0}.\mathbf{F}\geq\mathbf{F}(\sigma,t_{2};2,1)+\max\{\tau-t_{2},0\}.

If t2τt_{2}\geq\tau, then 𝐅(σ,t2;2,1)𝐅(σ,τ;2,1)\mathbf{F}(\sigma,t_{2};2,1)\geq\mathbf{F}(\sigma,\tau;2,1). If t2τt_{2}\leq\tau, then 𝐅(σ,t2;2,1)+τt2𝐅(σ,τ;2,1)\mathbf{F}(\sigma,t_{2};2,1)+\tau-t_{2}\geq\mathbf{F}(\sigma,\tau;2,1), by Lemma 20. Therefore, we have

𝐅𝐅(σ,τ;2,1)=min{σ+τ,32σ+12τ,σ+1}=𝐅(s,t;k+1,k).\mathbf{F}\geq\mathbf{F}(\sigma,\tau;2,1)=\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\}=\mathbf{F}(s,t;k+1,k).

The last inequality is because d=0d=0.

Case (b) t1+vkd2t_{1}+v\leq k-d-2 We have

𝐅u+v+s2𝐅(s1,t2;2,1)+s2.\mathbf{F}\geq u+v+s_{2}\geq\mathbf{F}(s_{1},t_{2};2,1)+s_{2}.

Subcase (b.0): s1=0s_{1}=0 In this case, 𝐅(s1,t2;2,1)=max{0,t21}\mathbf{F}(s_{1},t_{2};2,1)=\max\{0,t_{2}-1\}, s2=d+σs_{2}=d+\sigma. We have

𝐅max{0,t21}+d+σd+σ+τ.\mathbf{F}\geq\max\{0,t_{2}-1\}+d+\sigma\geq d+\sigma+\tau.

The last inequality is because

t2=tt1(kd1+τ)(kd2v)1+τ.t_{2}=t-t_{1}\geq(k-d-1+\tau)-(k-d-2-v)\geq 1+\tau.

Subcase (b.1): 𝐅(s1,t2;2,1)=s1+t2\mathbf{F}(s_{1},t_{2};2,1)=s_{1}+t_{2} We have

𝐅s1+t2+s2=s+t2d+σ+τ.\mathbf{F}\geq s_{1}+t_{2}+s_{2}=s+t_{2}\geq d+\sigma+\tau.

since t21+τt_{2}\geq 1+\tau.

Subcase (b.2): 𝐅(s1,t2;2,1)=32s1+12t2\mathbf{F}(s_{1},t_{2};2,1)=\frac{3}{2}s_{1}+\frac{1}{2}t_{2} We have

𝐅12(s1+t2)+d+σd+32σ+12τ.\mathbf{F}\geq\frac{1}{2}(s_{1}+t_{2})+d+\sigma\geq d+\frac{3}{2}\sigma+\frac{1}{2}\tau.

Since t21+τσ+τ.t_{2}\geq 1+\tau\geq\sigma+\tau.

Subcase (b.3): 𝐅(s1,t2;2,1)=s1+1\mathbf{F}(s_{1},t_{2};2,1)=s_{1}+1 We have

𝐅s+1=d+σ+1.\mathbf{F}\geq s+1=d+\sigma+1.

Case (c): s2>0s_{2}>0, kd2<t1+vkdk-d-2<t_{1}+v\leq k-d We write t1+v=kd2+τt_{1}+v=k-d-2+\tau^{\prime} for τ(0,2]\tau^{\prime}\in(0,2]. Since t1+t2=kd1+τt_{1}+t_{2}=k-d-1+\tau, we have τ=1+τ+vt2\tau^{\prime}=1+\tau+v-t_{2}.

Subcase (c.I): s1<σs_{1}<\sigma We have s2=ss1=d+(σs1)s_{2}=s-s_{1}=d+(\sigma-s_{1}). We have

(51) 𝐅(s2,t1+v;k,k1)=𝐅(d+(σs1),t1+v;k,k1)=d+min{σs1+τ,32(σs1)+12τ,(σs1)+1}.\begin{split}\mathbf{F}(s_{2},t_{1}+v;k,k-1)=\mathbf{F}(d+(\sigma-s_{1}),t_{1}+v;k,k-1)\\ =d+\min\{\sigma-s_{1}+\tau^{\prime},\frac{3}{2}(\sigma-s_{1})+\frac{1}{2}\tau^{\prime},(\sigma-s_{1})+1\}.\end{split}

Subsubcase (c.I.1): 𝐅(s2,t1+v;k,k1)=s2+τ\mathbf{F}(s_{2},t_{1}+v;k,k-1)=s_{2}+\tau^{\prime} We have

(52) 𝐅u+max{s2+τ,s2+v}=u+s2+max{τ,v}.\begin{split}\mathbf{F}&\geq u+\max\{s_{2}+\tau^{\prime},s_{2}+v\}\\ &=u+s_{2}+\max\{\tau^{\prime},v\}.\end{split}

Subsubsubcase (c.I.1.0): s1=0s_{1}=0 Then u+v=𝐅(0,t2;2,1)=max{0,t21}u+v=\mathbf{F}(0,t_{2};2,1)=\max\{0,t_{2}-1\}. We have

𝐅u+s2+τ=u+v+s2+1+τt2s2+τ=s+τ.\mathbf{F}\geq u+s_{2}+\tau^{\prime}=u+v+s_{2}+1+\tau-t_{2}\geq s_{2}+\tau=s+\tau.

Subsubsubcase (c.I.1.1): u+v=𝐅(s1,t2;2,1)=s1+t2u+v=\mathbf{F}(s_{1},t_{2};2,1)=s_{1}+t_{2} We have

𝐅u+s2+τ=u+s2+1+τ+vt2=s+τ+1.\mathbf{F}\geq u+s_{2}+\tau^{\prime}=u+s_{2}+1+\tau+v-t_{2}=s+\tau+1.

Subsubsubcase (c.I.1.2): u+v=𝐅(s1,t2;2,1)=32s1+12t2u+v=\mathbf{F}(s_{1},t_{2};2,1)=\frac{3}{2}s_{1}+\frac{1}{2}t_{2} We have

𝐅32s1+12t2+s2+1+τt2=s+12(s1+t2)+1+τt2s+1+τ12t2.\mathbf{F}\geq\frac{3}{2}s_{1}+\frac{1}{2}t_{2}+s_{2}+1+\tau-t_{2}=s+\frac{1}{2}(s_{1}+t_{2})+1+\tau-t_{2}\geq s+1+\tau-\frac{1}{2}t_{2}.

We also have

𝐅u+v+s2s+12t2.\mathbf{F}\geq u+v+s_{2}\geq s+\frac{1}{2}t_{2}.

Combining together gives

𝐅s+12(1+τ)d+32σ+12τ.\mathbf{F}\geq s+\frac{1}{2}(1+\tau)\geq d+\frac{3}{2}\sigma+\frac{1}{2}\tau.

Subsubsubcase (c.I.1.3): u+v=𝐅(s1,t2;2,1)=s1+1u+v=\mathbf{F}(s_{1},t_{2};2,1)=s_{1}+1 We have

𝐅u+v+s2s+1.\mathbf{F}\geq u+v+s_{2}\geq s+1.

SubSubcase (c.I.2): 𝐅(s2,t1+v;k,k1)=d+32(σs1)+12τ=s2+12(σs1+τ)\mathbf{F}(s_{2},t_{1}+v;k,k-1)=d+\frac{3}{2}(\sigma-s_{1})+\frac{1}{2}\tau^{\prime}=s_{2}+\frac{1}{2}(\sigma-s_{1}+\tau^{\prime}) We have

𝐅u+s2+max{12(σs1+τ),v}=u+s2+max{12(σ+1+τ+vt2s1),v}.\mathbf{F}\geq u+s_{2}+\max\{\frac{1}{2}(\sigma-s_{1}+\tau^{\prime}),v\}=u+s_{2}+\max\{\frac{1}{2}(\sigma+1+\tau+v-t_{2}-s_{1}),v\}.

Subsubsubcase (c,I.2.0): s1=0s_{1}=0 Then u+v=max{0,t21}u+v=\max\{0,t_{2}-1\}. We have

𝐅12u+s2+12(u+v+σ+1+τt2s1)s2+12(σ+τs1)=d+32σ+12τ.\mathbf{F}\geq\frac{1}{2}u+s_{2}+\frac{1}{2}(u+v+\sigma+1+\tau-t_{2}-s_{1})\geq s_{2}+\frac{1}{2}(\sigma+\tau-s_{1})=d+\frac{3}{2}\sigma+\frac{1}{2}\tau.

Subsubsubcase (c.I.2.1): u+v=s1+t2u+v=s_{1}+t_{2} We have

𝐅12u+s2+12(σ+τ+1)d+32σ+12τ.\mathbf{F}\geq\frac{1}{2}u+s_{2}+\frac{1}{2}(\sigma+\tau+1)\geq d+\frac{3}{2}\sigma+\frac{1}{2}\tau.

Here, we used us1,1s1u\geq s_{1},1\geq s_{1}.

Subsubsubcase (c.I.2.2): u+v=32s1+12t2u+v=\frac{3}{2}s_{1}+\frac{1}{2}t_{2} We have

𝐅12u+s2+12(σ+1+τ)+14(s1t2)\mathbf{F}\geq\frac{1}{2}u+s_{2}+\frac{1}{2}(\sigma+1+\tau)+\frac{1}{4}(s_{1}-t_{2})

To prove 𝐅d+32σ+12τ\mathbf{F}\geq d+\frac{3}{2}\sigma+\frac{1}{2}\tau, it suffices to prove

12(u+1)+14(s1t2)s1.\frac{1}{2}(u+1)+\frac{1}{4}(s_{1}-t_{2})\geq s_{1}.

This is true since u+1u+v=32s1+12t2u+1\geq u+v=\frac{3}{2}s_{1}+\frac{1}{2}t_{2}.

Subsubsubcase (c.I.2.3): u+v=s1+1u+v=s_{1}+1

𝐅u+v+s2=s+1.\mathbf{F}\geq u+v+s_{2}=s+1.

Subsubcase (c.I.3): 𝐅(s2,t1+v;k,k1)=s2+1\mathbf{F}(s_{2},t_{1}+v;k,k-1)=s_{2}+1 We have

𝐅u+s2+1s1+s2+1=s+1.\mathbf{F}\geq u+s_{2}+1\geq s_{1}+s_{2}+1=s+1.

Subcase (c.II): s1σs_{1}\geq\sigma We write s2=(d1)+(σ+1s1)s_{2}=(d-1)+(\sigma+1-s_{1}). We have

𝐅(s2,t1+v;k,k1)\displaystyle\mathbf{F}(s_{2},t_{1}+v;k,k-1) =d1+min{σ+1s1+τ,32(σs1+1)+12τ,σs1+2}\displaystyle=d-1+\min\{\sigma+1-s_{1}+\tau^{\prime},\frac{3}{2}(\sigma-s_{1}+1)+\frac{1}{2}\tau^{\prime},\sigma-s_{1}+2\}
=d+min{σs1+τ,32(σs1)+12τ+12,σs1+1}\displaystyle=d+\min\{\sigma-s_{1}+\tau^{\prime},\frac{3}{2}(\sigma-s_{1})+\frac{1}{2}\tau^{\prime}+\frac{1}{2},\sigma-s_{1}+1\}
d+min{σs1+τ,32(σs1)+12τ,σs1+1}\displaystyle\geq d+\min\{\sigma-s_{1}+\tau^{\prime},\frac{3}{2}(\sigma-s_{1})+\frac{1}{2}\tau^{\prime},\sigma-s_{1}+1\}

The discussion is the same as Subcase (c.I), since we did not use the condition s1<σs_{1}<\sigma.

Subcase (d): t1+v>kdt_{1}+v>k-d We have

𝐅(s2,t1+v;k,k1)=s2+1.\mathbf{F}(s_{2},t_{1}+v;k,k-1)=s_{2}+1.

Therefore,

𝐅u+s2+1s1+s2+1=s+1.\mathbf{F}\geq u+s_{2}+1\geq s_{1}+s_{2}+1=s+1.

5. Furstenberg set problem: Lower bound II

Proposition 34.

Let n,kn,k\in\mathbb{N} and nk+2n\geq k+2. Suppose for any n=k+1,,n1n^{\prime}=k+1,\dots,n-1 and admissible (s,t;n,k)(s,t;n^{\prime},k), we know

(53) infE:(s,t;n,k)-set#Eεp𝐅(s,t;n,k)ε,\inf_{E:\ (s,t;n^{\prime},k)\textup{-set}}\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;n^{\prime},k)-\varepsilon},

for any ε>0\varepsilon>0. Then for admissible (s,t;n,k)(s,t;n,k), we know

(54) infE:(s,t;n,k)-set#Eεp𝐅(s,t;n,k)ε,\inf_{E:\ (s,t;n,k)\textup{-set}}\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;n,k)-\varepsilon},

for any ε>0\varepsilon>0.

We prove the following lemma.

Lemma 35.

Assume (53) holds. Suppose (s,t;n,k)(s,t;n,k) is admissible and nk+2n\geq k+2. Then for any (s,t;n,k)(s,t;n,k)-set EE, there exist numbers t1,t2,s1,s2t_{1},t_{2},s_{1},s_{2}, such that

(55) {1pt1p(k+1)(nk1),1pt2pk+1;psps1pk,1ps2p;\begin{cases}1\leq p^{t_{1}}\leq p^{(k+1)(n-k-1)},1\leq p^{t_{2}}\leq p^{k+1};\\ p^{s}\lesssim p^{s_{1}}\leq p^{k},1\leq p^{s_{2}}\leq p;\end{cases}

and

(56) {pt1+t2pt;ps1+s2εp𝐅(s,t2;n1,k)ε;\begin{cases}p^{t_{1}+t_{2}}\gtrapprox p^{t};\\ p^{s_{1}+s_{2}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};n-1,k)-\varepsilon};\end{cases}

and

(57) #Eεp𝐅(s1,t1;n1,k)+s2ε.\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{1};n-1,k)+s_{2}-\varepsilon}.
Proof.

We will do several steps of pigeonholing, which lead to the parameters t1,t2,s1,s2,u,vt_{1},t_{2},s_{1},s_{2},u,v.

By the definition of (s,t;n,k)(s,t;n,k)-set, we write

E=V𝒱Y(V),E=\bigcup_{V\in\mathcal{V}}Y(V),

where 𝒱A(k,𝔽pn)\mathcal{V}\subset A(k,\mathbb{F}_{p}^{n}) with #𝒱pt\#\mathcal{V}\sim p^{t}, and Y(V)VY(V)\subset V with #Y(V)ps\#Y(V)\sim p^{s}.

The strategy is to find a subset of 𝒱\mathcal{V}, and a subset of Y(V)Y(V) for each VV, still denoted by 𝒱\mathcal{V}, Y(V)Y(V), so that the new 𝒱,Y(V)\mathcal{V},Y(V) satisfy certain uniformity. This is done by a sequence of pigeonhole arguments.

By properly choosing the coordinate, we can assume 1\gtrsim 1 fraction of the kk-planes in 𝒱\mathcal{V} are not parallel to the nn-th axis 𝟎n1×𝔽p\mathbf{0}^{n-1}\times\mathbb{F}_{p}. Throwing away some V𝒱V\in\mathcal{V}, we can just assume all the kk-planes in 𝒱\mathcal{V} are not parallel to 𝟎n1×𝔽p\mathbf{0}^{n-1}\times\mathbb{F}_{p} with 𝒱\mathcal{V} still satisfying #𝒱pt\#\mathcal{V}\gtrsim p^{t}. Because of this, we see that for any V𝒱V\in\mathcal{V}, the projection of VV onto 𝔽pn1×𝟎\mathbb{F}_{p}^{n-1}\times\mathbf{0}, denoted by π𝔽pn1(V)\pi_{\mathbb{F}_{p}^{n-1}}(V) is a kk-plane in 𝔽pn1×𝟎\mathbb{F}_{p}^{n-1}\times\mathbf{0}.

Now, we partition 𝒱\mathcal{V} according to A(k,𝔽pn1×𝟎)A(k,\mathbb{F}_{p}^{n-1}\times\mathbf{0}). For each WA(k,𝔽pn1×𝟎)W\in A(k,\mathbb{F}_{p}^{n-1}\times\mathbf{0}), we define 𝒱W\mathcal{V}_{W} to be the set of V𝒱V\in\mathcal{V} such that π𝔽pn1(V)=W\pi_{\mathbb{F}_{p}^{n-1}}(V)=W. We obtain a partition

𝒱=WA(k,𝔽pn1×𝟎)𝒱W.\mathcal{V}=\bigsqcup_{W\in A(k,\mathbb{F}_{p}^{n-1}\times\mathbf{0})}\mathcal{V}_{W}.

First pigeonholing. We assume there exists 𝒲A(k,𝔽pn1×𝟎)\mathcal{W}\subset A(k,\mathbb{F}_{p}^{n-1}\times\mathbf{0}) with #𝒲pt1\#\mathcal{W}\sim p^{t_{1}} such that for each W𝒲W\in\mathcal{W}, #𝒱Wpt2\#\mathcal{V}_{W}\sim p^{t_{2}}. Here, 1pt1p(k+1)(nk1),1pt2pk+11\leq p^{t_{1}}\leq p^{(k+1)(n-k-1)},1\leq p^{t_{2}}\leq p^{k+1} are dyadic numbers and

(58) pt1pt2pt.p^{t_{1}}p^{t_{2}}\gtrapprox p^{t}.

The upper bound for t1,t2t_{1},t_{2} is because #A(k,𝔽pn1×𝟎)p(k+1)(nk1)\#A(k,\mathbb{F}_{p}^{n-1}\times\mathbf{0})\lesssim p^{(k+1)(n-k-1)}, and #𝒱W#A(k,W×𝔽p)pk+1\#\mathcal{V}_{W}\leq\#A(k,W\times\mathbb{F}_{p})\lesssim p^{k+1}. We still use 𝒱\mathcal{V} to denote W𝒲𝒱W\bigcup_{W\in\mathcal{W}}\mathcal{V}_{W}. And we see that

#𝒱pt.\#\mathcal{V}\gtrapprox p^{t}.

Fix a W𝒲W\in\mathcal{W}. We want to estimate V𝒱WY(V)(W×𝔽p𝔽pk+1)\bigcup_{V\in\mathcal{V}_{W}}Y(V)(\subset W\times\mathbb{F}_{p}\cong\mathbb{F}_{p}^{k+1}). This is some sort of Furstenberg set for kk-planes in (k+1)(k+1)-dimensional space. Also, an important preperty is that each V𝒱WV\in\mathcal{V}_{W} is not parallel to the last coordinate. Therefore, any line parallel to 𝟎n1×𝔽p\mathbf{0}^{n-1}\times\mathbb{F}_{p} will intersect VV at a single point. We will exploit some “quasi-product” structure of this set.

Lemma 36.

Assume (53) holds for n=k+1n^{\prime}=k+1. Suppose E=V𝒱Y(V)E=\bigcup_{V\in\mathcal{V}}Y(V) is a (s,t2;k,k+1)(s,t_{2};k,k+1)-set. Also, we assume each V𝒱V\in\mathcal{V} intersects 𝟎k×𝔽p\mathbf{0}^{k}\times\mathbb{F}_{p} at a single point. Then there exist dyadic numbers ps1,ps2p^{s_{1}},p^{s_{2}} such that

psps1pk,p^{s}\lesssim p^{s_{1}}\leq p^{k},
1ps2p,1\leq p^{s_{2}}\leq p,

and

ps1ps2εp𝐅(s,t2;k+1,k)ε,p^{s_{1}}p^{s_{2}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};k+1,k)-\varepsilon},

for any ε>0\varepsilon>0. Also, EE contains a subset of form

ξΞYξ,\bigsqcup_{\xi\in\Xi}Y_{\xi},

where Ξ𝔽pk×𝟎\Xi\subset\mathbb{F}_{p}^{k}\times\mathbf{0} with #Ξps1\#\Xi\sim p^{s_{1}}, and YξE(ξ+(𝟎k×𝔽p))Y_{\xi}\subset E\cap\bigg{(}\xi+(\mathbf{0}^{k}\times\mathbb{F}_{p})\bigg{)} with #Yξps2\#Y_{\xi}\sim p^{s_{2}}.

Proof.

For ξ𝔽pk×𝟎\xi\in\mathbb{F}_{p}^{k}\times\mathbf{0}, define E(ξ):=E(ξ+(𝟎k×𝔽p))E(\xi):=E\cap\bigg{(}\xi+(\mathbf{0}^{k}\times\mathbb{F}_{p})\bigg{)}. By pigeonholing on vertical slices of EE, we can find Ξ𝔽pk×𝟎\Xi\subset\mathbb{F}_{p}^{k}\times\mathbf{0} so that for all ξΞ\xi\in\Xi, E(ξ)E(\xi) have comparable cardinality. We may denote #Ξps1,#E(ξ)ps2\#\Xi\sim p^{s_{1}},\#E(\xi)\sim p^{s_{2}} for two dyadic numbers ps1,ps21p^{s_{1}},p^{s_{2}}\geq 1. We can also assume ps1ps2#Ep^{s_{1}}p^{s_{2}}\gtrapprox\#E. Hence, assuming (53) holds for n=k+1n^{\prime}=k+1, we have

ps1ps2εp𝐅(s,t2;k+1,k)ε.p^{s_{1}}p^{s_{2}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};k+1,k)-\varepsilon}.

However, we still need the condition ps1psp^{s_{1}}\gtrsim p^{s}. This is handled by the same trick as in the proof of Lemma 31. We will conduct an algorithm to find a sequence E=E1E2EmE=E_{1}\supset E_{2}\supset\cdots\supset E_{m}, and disjoint subsets Ξ1,Ξ2,Ξm\Xi_{1},\Xi_{2}\cdots,\Xi_{m} of 𝔽pk×𝟎\mathbb{F}_{p}^{k}\times\mathbf{0}. To start with, let E1=EE_{1}=E. By pigeonholing, we can find Ξ1𝔽pk×𝟎\Xi_{1}\subset\mathbb{F}_{p}^{k}\times\mathbf{0}, such that #Ξ1pu1\#\Xi_{1}\sim p^{u_{1}}, #E(ξ)pv1\#E(\xi)\sim p^{v_{1}} for each ξΞ\xi\in\Xi, and

pu1pv1ε#E1εp𝐅(s,t2;2,1)ε.p^{u_{1}}p^{v_{1}}\gtrsim_{\varepsilon}\#E_{1}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};2,1)-\varepsilon}.

Suppose we have defined Ei,ΞiE_{i},\Xi_{i} for 1ij11\leq i\leq j-1. If i=1j1puips\sum_{i=1}^{j-1}p^{u_{i}}\ll p^{s}, then we define

Ej:=E1ij1ξΞiE(ξ).E_{j}:=E\setminus\bigcup_{1\leq i\leq j-1}\bigsqcup_{\xi\in\Xi_{i}}E(\xi).

Since each V𝒱V\in\mathcal{V} intersect ξ+(𝟎k×𝔽p)\xi+(\mathbf{0}^{k}\times\mathbb{F}_{p}) (and hence E(ξ)E(\xi)) at a single point, we see that EjE_{j} is still a (s,t2;2,1)(s,t_{2};2,1)-set. By the same pigeonholing, we find Ξj(𝔽pk×𝟎)1ij1Ξi\Xi_{j}\subset(\mathbb{F}_{p}^{k}\times\mathbf{0})\setminus\bigcup_{1\leq i\leq j-1}\Xi_{i}, so that #Ξjpuj\#\Xi_{j}\sim p^{u_{j}}, #E(ξ)pvj\#E(\xi)\sim p^{v_{j}} for each ξΞj\xi\in\Xi_{j}, and

pujpvjεp𝐅(s,t2;2,1)ε.p^{u_{j}}p^{v_{j}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};2,1)-\varepsilon}.

If i=1j1puips\sum_{i=1}^{j-1}p^{u_{i}}\gtrsim p^{s}, then we stop and let m=j1m=j-1.

The algorithm will stop in finite steps. Denote Ξ:=1imΞi\Xi:=\bigcup_{1\leq i\leq m}\Xi_{i}. Let ps1,ps2p^{s_{1}},p^{s_{2}} be dyadic numbers so that ps2=min1impvip^{s_{2}}=\min_{1\leq i\leq m}p^{v_{i}}, ps1#Ξp^{s_{1}}\sim\#\Xi. For each ξΞ\xi\in\Xi, let YξY_{\xi} be a subset of E(ξ)E(\xi) with #Yξps2\#Y_{\xi}\sim p^{s_{2}}. This is doable, since #E(ξ)ps2\#E(\xi)\gtrsim p^{s_{2}} if ξΞ\xi\in\Xi. One can check

ps1ps2εp𝐅(s,t2;2,1)ε.p^{s_{1}}p^{s_{2}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};2,1)-\varepsilon}.

This is proved in the following way. Suppose ps2=pvip^{s_{2}}=p^{v_{i}}, then

ps1ps2=ps1pvipuipviεp𝐅(s,t1;2,1)ε.p^{s_{1}}p^{s_{2}}=p^{s_{1}}p^{v_{i}}\geq p^{u_{i}}p^{v_{i}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{1};2,1)-\varepsilon}.

Also, one can check

ps1=i=1mpuips.p^{s_{1}}=\sum_{i=1}^{m}p^{u_{i}}\gtrsim p^{s}.

Return back to EW:=V𝒱WY(V)E_{W}:=\bigcup_{V\in\mathcal{V}_{W}}Y(V) (which lie in W×𝔽p𝔽pk+1W\times\mathbb{F}_{p}\cong\mathbb{F}_{p}^{k+1}). Recall #𝒱Wpt2\#\mathcal{V}_{W}\gtrapprox p^{t_{2}} and #Y(V)ps\#Y(V)\sim p^{s}. We see that EWE_{W} is a (s,(t2ε)+;k+1,k)(s,(t_{2}-\varepsilon)_{+};k+1,k)-set.

By Lemma 36, there exist dyadic numbers ps1(W),ps2(W)p^{s_{1}(W)},p^{s_{2}(W)}, so that EWE_{W} contains a subset of form

ξΞWYW(ρξ).\bigsqcup_{\xi\in\Xi_{W}}Y_{W}(\rho_{\xi}).

Here, ΞWW(𝔽pn1×𝟎)\Xi_{W}\subset W(\subset\mathbb{F}_{p}^{n-1}\times\mathbf{0}) with #ΞWps1(W)\#\Xi_{W}\sim p^{s_{1}(W)}; ρξ:=ξ+(𝟎n1×𝔽p)\rho_{\xi}:=\xi+(\mathbf{0}^{n-1}\times\mathbb{F}_{p}) and YW(ρξ)ρξY_{W}(\rho_{\xi})\subset\rho_{\xi} with #YW(ρξ)ps2(W)\#Y_{W}(\rho_{\xi})\sim p^{s_{2}(W)}. We also have

ps1(W)ps.p^{s_{1}(W)}\gtrsim p^{s}.
ps1(W)ps2(W)εp𝐅(s,(t2ε)+;k+1,k)ε.p^{s_{1}(W)}p^{s_{2}(W)}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,(t_{2}-\varepsilon)_{+};k+1,k)-\varepsilon}.

By pigeonholing on (s1(W),s2(W))(s_{1}(W),s_{2}(W)) again, we can throw away some W𝒲W\in\mathcal{W} so that the cardinality of 𝒲\mathcal{W} is still pt1\gtrapprox p^{t_{1}}, and assume there exist s1,s2s_{1},s_{2} such that

(s1(W),s2(W))=(s1,s2), for all W𝒲,(s_{1}(W),s_{2}(W))=(s_{1},s_{2}),\ \textup{~{}for~{}all~{}}W\in\mathcal{W},

and

ps1ps.p^{s_{1}}\gtrsim p^{s}.
ps1ps2εp𝐅(s,(t2ε)+;2,1)ε.p^{s_{1}}p^{s_{2}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,(t_{2}-\varepsilon)_{+};2,1)-\varepsilon}.

By Lemma 20, we have

ps1ps2εp𝐅(s,t2;2,1)ε.p^{s_{1}}p^{s_{2}}\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t_{2};2,1)-\varepsilon}.

Finally, we are about to estimate the lower bound of the cardinality of E=W𝒲V𝒱WY(V).E=\bigcup_{W\in\mathcal{W}}\bigcup_{V\in\mathcal{V}_{W}}Y(V). This EE is not the original one, but the one after pigeonholing. We write

(59) E=W𝒲EWW𝒲ξΞWYW(ρξ).\begin{split}E=\bigcup_{W\in\mathcal{W}}E_{W}&\supset\bigcup_{W\in\mathcal{W}}\bigcup_{\xi\in\Xi_{W}}Y_{W}(\rho_{\xi}).\end{split}

Since #YW(ρξ)ps2\#Y_{W}(\rho_{\xi})\sim p^{s_{2}}, we see that

#E#(W𝒲ΞW)ps2.\#E\gtrsim\#(\bigcup_{W\in\mathcal{W}}\Xi_{W})\cdot p^{s_{2}}.

Since W𝒲ΞW\bigcup_{W\in\mathcal{W}}\Xi_{W} is a (s1,t1;n1,k)(s_{1},t_{1};n-1,k)-set, by (53), we have

#Eεp𝐅(s1,t1;n1,k)εps2.\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{1};n-1,k)-\varepsilon}p^{s_{2}}.

The next lemma is a recursive inequality of 𝐅(s,t;n,k)\mathbf{F}(s,t;n,k), which can be used to bound the right hand side of (57).

Lemma 37.

Suppose (s,t;n,k)(s,t;n,k) is admissible and nk+2n\geq k+2. Suppose there exist numbers t1,t2,s1t_{1},t_{2},s_{1}, such that

(60) {t1[0,(k+1)(nk1)];t2[0,k+1];s1[s,k];\begin{cases}t_{1}\in[0,(k+1)(n-k-1)];\\ t_{2}\in[0,k+1];\\ s_{1}\in[s,k];\end{cases}

and

(61) t1+t2=t;t_{1}+t_{2}=t;

Then,

(62) 𝐅(s1,t1;n1,k)+max{𝐅(s,t2;k+1,k)s1,0}𝐅(s,t;n,k).\mathbf{F}(s_{1},t_{1};n-1,k)+\max\{\mathbf{F}(s,t_{2};k+1,k)-s_{1},0\}\geq\mathbf{F}(s,t;n,k).

Let us quickly see how Lemma 35 and Lemma 37 combined to prove Proposition 34.

Proof of Proposition 34 assuming Lemma 35 and Lemma 37.

If s=0s=0 or t=0t=0, by Proposition 27 or 28, we are done. So, we suppose s,t>0s,t>0.

Fix 0<ε<min{σ/2,t/2,1/2}0<\varepsilon<\min\{\sigma/2,t/2,1/2\}, where s=d+σs=d+\sigma with d,σ(0,1]d\in\mathbb{N},\sigma\in(0,1]. We just need to prove

(63) #Eεp𝐅(s,t;n,k)Cε\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;n,k)-C\varepsilon}

for any (s,t;n,k)(s,t;n,k)-set EE. Here, CC is a large number.

We only need to prove for large enough pp, since for small pp we can choose the constant to be large.

Suppose (53) holds. If EE is a (s,t;n,k)(s,t;n,k)-set, by Lemma 35, there exist numbers t1,t2,s1,s2t_{1},t_{2},s_{1},s_{2}, such that

(64) {t1[0,(k+1)(nk1)],t2[0,k+1];s1[sε,k],s2[0,1];\begin{cases}t_{1}\in[0,(k+1)(n-k-1)],t_{2}\in[0,k+1];\\ s_{1}\in[s-\varepsilon,k],s_{2}\in[0,1];\end{cases}

and

(65) {t1+t2tε;s1+s2𝐅(s,t2;k+1,k)ε;\begin{cases}t_{1}+t_{2}\geq t-\varepsilon;\\ s_{1}+s_{2}\geq\mathbf{F}(s,t_{2};k+1,k)-\varepsilon;\end{cases}

and

(66) #Eεp𝐅(s1,t1;n1,k)+s2εp𝐅(s1,t1;n1,k)+max{𝐅(s,t2;k+1,k)s1,0}2ε.\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s_{1},t_{1};n-1,k)+s_{2}-\varepsilon}\geq p^{\mathbf{F}(s_{1},t_{1};n-1,k)+\max\{\mathbf{F}(s,t_{2};k+1,k)-s_{1},0\}-2\varepsilon}.

Let t=tεt^{\prime}=t-\varepsilon which is >0>0 by assumption. Choose 0titi0\leq t_{i}^{\prime}\leq t_{i} for i=1,2i=1,2, so that t1+t2=tt_{1}^{\prime}+t_{2}^{\prime}=t^{\prime}. Choose s1s1s1+εs_{1}\leq s_{1}^{\prime}\leq s_{1}+\varepsilon, so that s1[s,k]s_{1}^{\prime}\in[s,k]. Then t,t1,t2,s1t^{\prime},t_{1}^{\prime},t_{2}^{\prime},s_{1}^{\prime} satisfy the condition in Lemma 37, we obtain

𝐅(s1,t1;n1,k)+max{𝐅(s,t2;k+1,k)s1,0}𝐅(s,t;n,k).\mathbf{F}(s_{1}^{\prime},t_{1}^{\prime};n-1,k)+\max\{\mathbf{F}(s,t_{2}^{\prime};k+1,k)-s_{1},0\}\geq\mathbf{F}(s,t^{\prime};n,k).

By monotonicity of t𝐅(s,t;n,k)t\mapsto\mathbf{F}(s,t;n,k), Lemma 20 and Lemma 21, we have

#Eεp𝐅(s,t;n,k)Cε.\#E\gtrsim_{\varepsilon}p^{\mathbf{F}(s,t;n,k)-C\varepsilon}.

It remains to prove Lemma 37.

Proof of Lemma 37.

When s=0s=0, we have 𝐅(0,t;n,k)=max{0,tk(nk)}\mathbf{F}(0,t;n,k)=\max\{0,t-k(n-k)\}. By Lemma 19, we have

𝐅(s1,t1;n1,k)+𝐅(0,t2;k+1,k)s1s1+t1k(nk1)+t2ks1=tk(nk).\mathbf{F}(s_{1},t_{1};n-1,k)+\mathbf{F}(0,t_{2};k+1,k)-s_{1}\geq s_{1}+t_{1}-k(n-k-1)+t_{2}-k-s_{1}=t-k(n-k).

When s>0s>0, write s=d+σs=d+\sigma. If also t(kd1)(nk)t\leq(k-d-1)(n-k), then

𝐅(s,t;n,k)=s.\mathbf{F}(s,t;n,k)=s.

By Lemma 19,

𝐅(s1,t1;n1,k)+𝐅(s,t2;k+1,k)s1s1+ss1=s.\mathbf{F}(s_{1},t_{1};n-1,k)+\mathbf{F}(s,t_{2};k+1,k)-s_{1}\geq s_{1}+s-s_{1}=s.

So we consider s>0s>0 and t>(kd1)(nk)t>(k-d-1)(n-k). Denote

𝐅:=𝐅(s1,t1;n1,k)+max{𝐅(s,t2;k+1,k)s1,0}.\mathbf{F}:=\mathbf{F}(s_{1},t_{1};n-1,k)+\max\{\mathbf{F}(s,t_{2};k+1,k)-s_{1},0\}.

We have both

(67) 𝐅𝐅(s,t2;k+1,k)+𝐅(s1,t1;n1,k)s1.\mathbf{F}\geq\mathbf{F}(s,t_{2};k+1,k)+\mathbf{F}(s_{1},t_{1};n-1,k)-s_{1}.

and

(68) 𝐅𝐅(s1,t1;n1,k).\mathbf{F}\geq\mathbf{F}(s_{1},t_{1};n-1,k).

Write the canonical expression

(69) {s=d+σt=(kd1)(nk)+(d+2)m+τ,\begin{cases}s=d+\sigma\\ t=(k-d-1)(n-k)+(d+2)m+\tau,\end{cases}

where d{0,,k1}d\in\{0,\dots,k-1\}, σ(0,1]\sigma\in(0,1], m{0,,nk1}m\in\{0,\dots,n-k-1\}, τ(0,d+2]\tau\in(0,d+2]. We have

𝐅(s,t;n,k)=s+m+min{τ,12(σ+τ),1}.\mathbf{F}(s,t;n,k)=s+m+\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

Next, we analyze 𝐅(s,t2;k+1,k)\mathbf{F}(s,t_{2};k+1,k).

Case (1): t2kd1t_{2}\leq k-d-1 We use

𝐅𝐅(s1,t1;n1,k)𝐅(s,t1;n1,k).\mathbf{F}\geq\mathbf{F}(s_{1},t_{1};n-1,k)\geq\mathbf{F}(s,t_{1};n-1,k).

Since t2kd1t_{2}\leq k-d-1, we have

t1(kd1)(nk1)+(d+2)m+τ.t_{1}\geq(k-d-1)(n-k-1)+(d+2)m+\tau.

Therefore,

𝐅𝐅(s,(kd1)(nk1)+(d+2)m+τ;n1,k)=s+m+min{τ,12(σ+τ),1}.\mathbf{F}\geq\mathbf{F}(s,(k-d-1)(n-k-1)+(d+2)m+\tau;n-1,k)=s+m+\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

Therefore,

𝐅𝐅(s,t;n,k).\mathbf{F}\geq\mathbf{F}(s,t;n,k).

Case (2): t2>kd1t_{2}>k-d-1 We write t2=kd1+τ2t_{2}=k-d-1+\tau_{2}, where τ2(0,d+2]\tau_{2}\in(0,d+2]. We have

𝐅(s,t2;k+1,k)=s+min{τ2,12(σ+τ2),1}.\mathbf{F}(s,t_{2};k+1,k)=s+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}.

Since s1ss_{1}\geq s, write

s1=d+σ1,s_{1}=d+\sigma_{1},

with σ1σ\sigma_{1}\geq\sigma.

Subcase (2.1): σ1[σ,1]\sigma_{1}\in[\sigma,1] We have

t1=tt2=(kd1)(nk1)+(d+2)m+ττ2.t_{1}=t-t_{2}=(k-d-1)(n-k-1)+(d+2)m+\tau-\tau_{2}.

Subsubcase (2.1.1): ττ2>0\tau-\tau_{2}>0 We have the canonical expression for (s1,t1)(s_{1},t_{1}):

{s1=d+σ1,t1=tt2=(kd1)(nk1)+(d+2)m+ττ2.\begin{cases}s_{1}=d+\sigma_{1},\\ t_{1}=t-t_{2}=(k-d-1)(n-k-1)+(d+2)m+\tau-\tau_{2}.\end{cases}

Therefore,

𝐅(s1,t1;n1,k)=s1+m+min{ττ2,12(σ1+ττ2),1}.\mathbf{F}(s_{1},t_{1};n-1,k)=s_{1}+m+\min\{\tau-\tau_{2},\frac{1}{2}(\sigma_{1}+\tau-\tau_{2}),1\}.

Therefore,

𝐅s+m+min{τ2,12(σ+τ2),1}+min{ττ2,12(σ+ττ2),1}.\mathbf{F}\geq s+m+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{\tau-\tau_{2},\frac{1}{2}(\sigma+\tau-\tau_{2}),1\}.

We just need to show

min{τ2,12(σ+τ2),1}+min{ττ2,12(σ+ττ2),1}min{τ,12(σ+τ),1}.\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{\tau-\tau_{2},\frac{1}{2}(\sigma+\tau-\tau_{2}),1\}\geq\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

To show miniai+minjbjminkck\min_{i}a_{i}+\min_{j}b_{j}\geq\min_{k}c_{k}, it suffices to show i,j,k\forall i,j,\exists k, s.t. ai+bjcka_{i}+b_{j}\geq c_{k}. We can check:

\bullet τ2+ττ2τ\tau_{2}+\tau-\tau_{2}\geq\tau.

\bullet τ2+12(σ+ττ2)12(σ+τ)\tau_{2}+\frac{1}{2}(\sigma+\tau-\tau_{2})\geq\frac{1}{2}(\sigma+\tau).

\bullet 12(σ+τ2)+ττ212(σ+τ).\frac{1}{2}(\sigma+\tau_{2})+\tau-\tau_{2}\geq\frac{1}{2}(\sigma+\tau).

\bullet 12(σ+τ2)+12(σ+ττ2)12(σ+τ)\frac{1}{2}(\sigma+\tau_{2})+\frac{1}{2}(\sigma+\tau-\tau_{2})\geq\frac{1}{2}(\sigma+\tau).

Subsubcase (2.1.2): ττ20,m1\tau-\tau_{2}\leq 0,m\geq 1 We write t1=(kd1)(nk1)+(d+2)(m1)+d+2+ττ2t_{1}=(k-d-1)(n-k-1)+(d+2)(m-1)+d+2+\tau-\tau_{2}. We have

𝐅(s1,t1;n1,k)=s1+m1+min{ττ2+d+2,12(σ1+ττ2+d+2),1}.\mathbf{F}(s_{1},t_{1};n-1,k)=s_{1}+m-1+\min\{\tau-\tau_{2}+d+2,\frac{1}{2}(\sigma_{1}+\tau-\tau_{2}+d+2),1\}.

Therefore,

𝐅s+m1+min{τ2,12(σ+τ2),1}+min{ττ2+d+2,12(σ1+ττ2+d+2),1}.\mathbf{F}\geq s+m-1+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{\tau-\tau_{2}+d+2,\frac{1}{2}(\sigma_{1}+\tau-\tau_{2}+d+2),1\}.

We just need to prove

min{τ2,12(σ+τ2),1}+min{ττ2+d+1,12(σ+ττ2+d),0}min{τ,12(σ+τ),1}.\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{\tau-\tau_{2}+d+1,\frac{1}{2}(\sigma+\tau-\tau_{2}+d),0\}\geq\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

This is not hard to verify by noting ττ2d+2\tau\leq\tau_{2}\leq d+2.

\bullet τ2+ττ2+d+1τ\tau_{2}+\tau-\tau_{2}+d+1\geq\tau.

\bullet τ2+12(σ+ττ2+d)12(σ+τ)\tau_{2}+\frac{1}{2}(\sigma+\tau-\tau_{2}+d)\geq\frac{1}{2}(\sigma+\tau).

\bullet τ2+0τ\tau_{2}+0\geq\tau.

\bullet 12(σ+τ2)+ττ2+d+1τ+d+112τ2τ\frac{1}{2}(\sigma+\tau_{2})+\tau-\tau_{2}+d+1\geq\tau+d+1-\frac{1}{2}\tau_{2}\geq\tau.

\bullet 12(σ+τ2)+12(σ+ττ2+d)12(σ+τ)\frac{1}{2}(\sigma+\tau_{2})+\frac{1}{2}(\sigma+\tau-\tau_{2}+d)\geq\frac{1}{2}(\sigma+\tau).

\bullet 12(σ+τ2)+012(σ+τ)\frac{1}{2}(\sigma+\tau_{2})+0\geq\frac{1}{2}(\sigma+\tau).

\bullet 1+ττ2+d+1τ1+\tau-\tau_{2}+d+1\geq\tau.

\bullet 1+12(σ+ττ2+d)12(σ+τ)1+\frac{1}{2}(\sigma+\tau-\tau_{2}+d)\geq\frac{1}{2}(\sigma+\tau).

\bullet 1+011+0\geq 1.

Subsubcase (2.1.3): ττ20,m=0\tau-\tau_{2}\leq 0,m=0 We have t1(kd1)(nk1)t_{1}\leq(k-d-1)(n-k-1), so

𝐅(s1,t1;n1,k)=s1.\mathbf{F}(s_{1},t_{1};n-1,k)=s_{1}.

Therefore,

𝐅𝐅(s,t2;k+1,k)=s+min{τ2,12(σ+τ2),1}.\mathbf{F}\geq\mathbf{F}(s,t_{2};k+1,k)=s+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}.

Also, 𝐅(s,t;n,k)=s+min{τ,12(σ+τ),1}\mathbf{F}(s,t;n,k)=s+\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}. We see that 𝐅𝐅(s,t;n,k)\mathbf{F}\geq\mathbf{F}(s,t;n,k) since τ2τ\tau_{2}\geq\tau.

Subcase(2.2): σ1>1\sigma_{1}>1 Write s1=(d+Δ)+(σ1Δ),s_{1}=(d+\Delta)+(\sigma_{1}-\Delta), where Δ+\Delta\in\mathbb{N}^{+} so that σ1Δ(0,1]\sigma_{1}-\Delta\in(0,1]. We have

t1\displaystyle t_{1} =(kd1)(nk1)+(d+2)m+ττ2\displaystyle=(k-d-1)(n-k-1)+(d+2)m+\tau-\tau_{2}
=(kdΔ1)(nk1)+(d+2)m+ττ2+Δ(nk1)\displaystyle=(k-d-\Delta-1)(n-k-1)+(d+2)m+\tau-\tau_{2}+\Delta(n-k-1)
=(kdΔ1)(nk1)+(d+2)m1+τ1.\displaystyle=(k-d-\Delta-1)(n-k-1)+(d+2)m_{1}+\tau_{1}.

Here, the last line is the canonical expression for t1t_{1} (see (9)), in which 0m1nk20\leq m_{1}\leq n-k-2, τ1(0,d+Δ+2]\tau_{1}\in(0,d+\Delta+2].

If (d+2)m+ττ20(d+2)m+\tau-\tau_{2}\leq 0, then m=0,τ2τm=0,\tau_{2}\geq\tau. By the same reasoning as in Subsubcase (2.1.3), we have 𝐅𝐅(s,t;n,k)\mathbf{F}\geq\mathbf{F}(s,t;n,k).

Hence, we can assume (d+2)m+ττ2>0(d+2)m+\tau-\tau_{2}>0 We have

𝐅(s1,t1;n1,k)=s1+m1+min{τ1,12(σ1Δ+τ1),1}.\mathbf{F}(s_{1},t_{1};n-1,k)=s_{1}+m_{1}+\min\{\tau_{1},\frac{1}{2}(\sigma_{1}-\Delta+\tau_{1}),1\}.

Since (d+2)m+ττ2(d+2)m1+τ1(d+2)m+\tau-\tau_{2}\leq(d+2)m_{1}+\tau_{1} and τ,τ1,τ2(0,d+2]\tau,\tau_{1},\tau_{2}\in(0,d+2], we have m1m1m_{1}\geq m-1. If m1m+1m_{1}\geq m+1, then 𝐅𝐅(s1,t1;n1,k)s+m+1𝐅(s,t;n,k)\mathbf{F}\geq\mathbf{F}(s_{1},t_{1};n-1,k)\geq s+m+1\geq\mathbf{F}(s,t;n,k). We only need to consider two cases: m1=m,m1=m1m_{1}=m,m_{1}=m-1.

We have

𝐅s+min{τ2,12(σ+τ2),1}+m1+min{τ1,12(σ1Δ+τ1),1}.\mathbf{F}\geq s+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+m_{1}+\min\{\tau_{1},\frac{1}{2}(\sigma_{1}-\Delta+\tau_{1}),1\}.

Subsubcase (2.2.1): When m1=m,τ1=ττ2+Δ(nk1)m_{1}=m,\tau_{1}=\tau-\tau_{2}+\Delta(n-k-1) We have

𝐅s+m+min{τ2,12(σ+τ2),1}+min{(ττ2)0,12(σ+ττ2),1},\mathbf{F}\geq s+m+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{(\tau-\tau_{2})\vee 0,\frac{1}{2}(\sigma+\tau-\tau_{2}),1\},

where we used τ1(ττ2)0,\tau_{1}\geq(\tau-\tau_{2})\vee 0, and σ1Δ+τ1σΔ+ττ2+Δ(nk1)σ+ττ2\sigma_{1}-\Delta+\tau_{1}\geq\sigma-\Delta+\tau-\tau_{2}+\Delta(n-k-1)\geq\sigma+\tau-\tau_{2}.

We just need to check

min{τ2,12(σ+τ2),1}+min{(ττ2)0,12(σ+ττ2),1}min{τ,12(σ+τ),1}.\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{(\tau-\tau_{2})\vee 0,\frac{1}{2}(\sigma+\tau-\tau_{2}),1\}\geq\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

A less obvious case will be 12(σ+τ2)+(ττ2)012(σ+τ2)+12(ττ2)12(σ+τ)\frac{1}{2}(\sigma+\tau_{2})+(\tau-\tau_{2})\vee 0\geq\frac{1}{2}(\sigma+\tau_{2})+\frac{1}{2}(\tau-\tau_{2})\geq\frac{1}{2}(\sigma+\tau). We leave out the verification of other cases.

Subsubcase (2.2.2): When m1=m1,τ1=ττ2+d+2+Δ(nk1)m_{1}=m-1,\tau_{1}=\tau-\tau_{2}+d+2+\Delta(n-k-1) Since nk+2n\geq k+2, we have

𝐅s+m1+min{τ2,12(σ+τ2),1}+min{ττ2+d+2+Δ,12(σ+ττ2+d+2),1}.\mathbf{F}\geq s+m-1+\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{\tau-\tau_{2}+d+2+\Delta,\frac{1}{2}(\sigma+\tau-\tau_{2}+d+2),1\}.

Since τ1d+2\tau_{1}\leq d+2, we have τ2τ\tau_{2}\geq\tau. Note that

min{ττ2+d+2+Δ,12(σ+ττ2+d+2),1}1min{(ττ2+1)0,12(σ+ττ2),0}.\min\{\tau-\tau_{2}+d+2+\Delta,\frac{1}{2}(\sigma+\tau-\tau_{2}+d+2),1\}-1\geq\min\{(\tau-\tau_{2}+1)\vee 0,\frac{1}{2}(\sigma+\tau-\tau_{2}),0\}.

We just need to prove

min{τ2,12(σ+τ2),1}+min{(ττ2+1)0,12(σ+ττ2),0}min{τ,12(σ+τ),1}.\min\{\tau_{2},\frac{1}{2}(\sigma+\tau_{2}),1\}+\min\{(\tau-\tau_{2}+1)\vee 0,\frac{1}{2}(\sigma+\tau-\tau_{2}),0\}\geq\min\{\tau,\frac{1}{2}(\sigma+\tau),1\}.

This is not hard to verify by noting τ2τ\tau_{2}\geq\tau. A less obvious case is 12(σ+τ2)+(ττ2+1)012(σ+τ2)+12(ττ2+1)12(σ+τ)\frac{1}{2}(\sigma+\tau_{2})+(\tau-\tau_{2}+1)\vee 0\geq\frac{1}{2}(\sigma+\tau_{2})+\frac{1}{2}(\tau-\tau_{2}+1)\geq\frac{1}{2}(\sigma+\tau).

Proof of Theorem 7.

Finally, we see that Theorem 7 can be obtained from Proposition 29 and Proposition 34 using induction on (n,k)(n,k). ∎

6. Exceptional set estimate: lower bound

We prove Theorem 9 in this section. The result in this section has been studied by the author [4] under the Euclidean setting, the statement there is slightly different from this paper. We still provide the details for the finite field setting, though they are essentially the same.

Proof of Theorem 9.

Recall that (n,k)=(2,1)(n,k)=(2,1) and a2<smin{1,a}\frac{a}{2}<s\leq\min\{1,a\} was considered in Proposition 16. We denote 𝐀s,a𝔽p2\mathbf{A}_{s,a}\subset\mathbb{F}_{p}^{2} to be the set constructed there which satisfies #𝐀s,apa\#\mathbf{A}_{s,a}\gtrsim p^{a}, and

Es(𝐀s,a;2,1)p2sa.E_{s}(\mathbf{A}_{s,a};2,1)\gtrsim p^{2s-a}.

Next, we prove for general (n,k)(n,k). Note that Type 1 and Type 4 are easy, so we consider Type 2 and Type 3. Recall the canonical expression as in Definition 14: a=m+β,s=l+γa=m+\beta,s=l+\gamma.

Type 2 We have l+1mn+lkl+1\leq m\leq n+l-k. For γ\gamma, we only use γ>β\gamma>\beta. We first show the existence of AA with #Apa\#A\sim p^{a} such that #Es(A;n,k)pk(nk)(ml)(kl)\#E_{s}(A;n,k)\gtrsim p^{k(n-k)-(m-l)(k-l)}.

Choose A=𝔽pm×I×𝟎nm1A=\mathbb{F}_{p}^{m}\times I\times\mathbf{0}^{n-m-1}, where I𝔽pI\subset\mathbb{F}_{p} has cardinality pβp^{\beta}. For simplicity, we just write A=𝔽pm×IA=\mathbb{F}_{p}^{m}\times I. We want to find those VG(nk,𝔽pn)V\in G(n-k,\mathbb{F}_{p}^{n}) such that #(πV(A))<pl+γ\#(\pi_{V}^{*}(A))<p^{l+\gamma}. We note that if VV satisfies #πV(𝔽pm)pl\#\pi_{V}^{*}(\mathbb{F}_{p}^{m})\leq p^{l}, then #πV(𝔽pm×I)pl+β<pl+γ\#\pi_{V}^{*}(\mathbb{F}_{p}^{m}\times I)\leq p^{l+\beta}<p^{l+\gamma}, which means VEs(A;n,k)V\in E_{s}(A;n,k). This shows that

Es(A;n,k){VG(nk,n):#πV(𝔽pm)pl}.E_{s}(A;n,k)\supset\{V\in G(n-k,n):\#\pi_{V}^{*}(\mathbb{F}_{p}^{m})\leq p^{l}\}.

By Lemma 18, the right hand side has cardinality pk(nk)(kl)(ml)\sim p^{k(n-k)-(k-l)(m-l)}.

Type 3, γ(β2,β]\gamma\in(\frac{\beta}{2},\beta] We have nm1kl,γ>β2n-m-1\geq k-l,\gamma>\frac{\beta}{2}. We show the existence of AA with #Apa\#A\sim p^{a} such that #Es(A;n,k)pk(nk)(m+1l)(kl)+2γβ\#E_{s}(A;n,k)\gtrsim p^{k(n-k)-(m+1-l)(k-l)+2\gamma-\beta}.

We choose A=𝐀γ,β×𝔽pm×𝟎nm2A=\mathbf{A}_{\gamma,\beta}\times\mathbb{F}_{p}^{m}\times\mathbf{0}^{n-m-2}, where 𝐀γ,β𝔽p2\mathbf{A}_{\gamma,\beta}\subset\mathbb{F}_{p}^{2} is such that #𝐀γ,βpβ\#\mathbf{A}_{\gamma,\beta}\sim p^{\beta} and #Eγ(𝐀γ,β;2,1)p2γβ\#E_{\gamma}(\mathbf{A}_{\gamma,\beta};2,1)\gtrsim p^{2\gamma-\beta}. We will use 𝔽p2\mathbb{F}_{p}^{2} to denote 𝔽p2×𝟎n2\mathbb{F}_{p}^{2}\times\mathbf{0}^{n-2}. We use 𝔽pm\mathbb{F}_{p}^{m} to denote 𝟎2×𝔽pm×𝟎nm2\mathbf{0}^{2}\times\mathbb{F}_{p}^{m}\times\mathbf{0}^{n-m-2}. We use θ\theta to denote the lines in G(1,𝔽p2)G(1,\mathbb{F}_{p}^{2}). Define

𝒰θ={VG(nk,𝔽pn):#(πV(θ𝔽pm))pl,#(πV(𝔽pm))=pl,#(πV(𝔽p2×𝔽pm))=pl+1},\mathcal{U}_{\theta}=\{V\in G(n-k,\mathbb{F}_{p}^{n}):\#(\pi^{*}_{V}(\theta\oplus\mathbb{F}_{p}^{m}))\leq p^{l},\#(\pi_{V}^{*}(\mathbb{F}_{p}^{m}))=p^{l},\#(\pi_{V}^{*}(\mathbb{F}_{p}^{2}\times\mathbb{F}_{p}^{m}))=p^{l+1}\},
𝒱θ={VG(nk,𝔽pn):#(πV(θ𝔽pm))pl},\mathcal{V}_{\theta}=\{V\in G(n-k,\mathbb{F}_{p}^{n}):\#(\pi_{V}^{*}(\theta\oplus\mathbb{F}_{p}^{m}))\leq p^{l}\},
𝒲θ={V𝒱θ:#(πV(𝔽pm))pl1}{V𝒱θ:#(πV(𝔽p2×𝔽pm)pl}.\mathcal{W}_{\theta}=\{V\in\mathcal{V}_{\theta}:\#(\pi_{V}^{*}(\mathbb{F}_{p}^{m}))\leq p^{l-1}\}\cup\{V\in\mathcal{V}_{\theta}:\#(\pi_{V}^{*}(\mathbb{F}_{p}^{2}\times\mathbb{F}_{p}^{m})\leq p^{l}\}.

It is not hard to see 𝒰θ=𝒱θ𝒲θ\mathcal{U}_{\theta}=\mathcal{V}_{\theta}\setminus\mathcal{W}_{\theta}.

Let 𝐄γ,β:=Eγ(𝐀γ,β;2,1)={θG(1,𝔽p2):#(πθ(𝐀γ,β))<pγ}\mathbf{E}_{\gamma,\beta}:=E_{\gamma}(\mathbf{A}_{\gamma,\beta};2,1)=\{\theta\in G(1,\mathbb{F}_{p}^{2}):\#(\pi_{\theta}^{*}(\mathbf{A}_{\gamma,\beta}))<p^{\gamma}\}. We claim that if θ𝐄γ,β\theta\in\mathbf{E}_{\gamma,\beta}, then 𝒱θEl+γ(A)\mathcal{V}_{\theta}\subset E_{l+\gamma}(A). In other words, V𝒱θV\in\mathcal{V}_{\theta} satisfies #(πV(A))<pl+γ\#(\pi_{V}^{*}(A))<p^{l+\gamma}. We first note that by definition 𝐀γ,βLπθ(𝐀γ,β)L\mathbf{A}_{\gamma,\beta}\subset\bigcup_{L\in\pi_{\theta}^{*}(\mathbf{A}_{\gamma,\beta})}L, so

A=𝐀γ,β×𝔽pm(Lπθ(𝐀γ,β)L)×𝔽pm=(Lπθ(𝐀γ,β)L×𝔽pm).A=\mathbf{A}_{\gamma,\beta}\times\mathbb{F}_{p}^{m}\subset(\bigcup_{L\in\pi_{\theta}^{*}(\mathbf{A}_{\gamma,\beta})}L)\times\mathbb{F}_{p}^{m}=(\bigcup_{L\in\pi_{\theta}^{*}(\mathbf{A}_{\gamma,\beta})}L\times\mathbb{F}_{p}^{m}).

Therefore,

#(πV(A))#(πθ(𝐀γ,β))#(πV(θ𝔽pm))<pγ+l.\#(\pi_{V}^{*}(A))\leq\#(\pi_{\theta}^{*}(\mathbf{A}_{\gamma,\beta}))\cdot\#(\pi_{V}^{*}(\theta\oplus\mathbb{F}_{p}^{m}))<p^{\gamma+l}.

We see that El+γ(A;n,k)θ𝐄γ,β𝒱θ.E_{l+\gamma}(A;n,k)\supset\bigcup_{\theta\in\mathbf{E}_{\gamma,\beta}}\mathcal{V}_{\theta}. 𝒱θ\mathcal{V}_{\theta} may intersect with each other, so we delete a tiny portion 𝒲θ\mathcal{W}_{\theta} from 𝒱θ\mathcal{V}_{\theta}, so that the remaining part 𝒰θ=𝒱θ𝒲θ\mathcal{U}_{\theta}=\mathcal{V}_{\theta}\setminus\mathcal{W}_{\theta} are disjoint with each other. Then we have

El+γ(A;n,k)θ𝐄γ,β𝒰θ.E_{l+\gamma}(A;n,k)\supset\bigsqcup_{\theta\in\mathbf{E}_{\gamma,\beta}}\mathcal{U}_{\theta}.

To make the argument precise, we first apply Lemma 18 to see

#𝒱θpk(nk)(m+1l)(kl).\#\mathcal{V}_{\theta}\sim p^{k(n-k)-(m+1-l)(k-l)}.

To calculate #𝒲θ\#\mathcal{W}_{\theta}, we apply Lemma 18 again to see

#{VG(nk,n):dim(πV(𝔽pm))pl1}pk(nk)(ml+1)(kl+1),\#\{V\in G(n-k,n):\dim(\pi_{V}^{*}(\mathbb{F}_{p}^{m}))\leq p^{l-1}\}\sim p^{k(n-k)-(m-l+1)(k-l+1)},

and

#{VG(nk,n):dim(πV(𝔽p2×𝔽pm))pl}pk(nk)(m+2l)(kl).\#\{V\in G(n-k,n):\dim(\pi_{V}^{*}(\mathbb{F}_{p}^{2}\times\mathbb{F}_{p}^{m}))\leq p^{l}\}\sim p^{k(n-k)-(m+2-l)(k-l)}.

Therefore, #𝒲θ#𝒱θ\#\mathcal{W}_{\theta}\ll\#\mathcal{V}_{\theta} (when pp is large enough) and hence

#𝒰θ#𝒱θpk(nk)(m+1l)(kl).\#\mathcal{U}_{\theta}\sim\#\mathcal{V}_{\theta}\sim p^{k(n-k)-(m+1-l)(k-l)}.

Next we show 𝒰θ𝒰θ=\mathcal{U}_{\theta}\cap\mathcal{U}_{\theta^{\prime}}=\emptyset for θθ\theta\neq\theta^{\prime}. By contradiction, suppose V𝒰θ𝒰θV\in\mathcal{U}_{\theta}\cap\mathcal{U}_{\theta^{\prime}}. By definition, VV satisfies

#(πV(θ𝔽pm))pl,\displaystyle\#(\pi_{V}^{*}(\theta\oplus\mathbb{F}_{p}^{m}))\leq p^{l},
#(πV(θ𝔽pm))pl,\displaystyle\#(\pi_{V}^{*}(\theta^{\prime}\oplus\mathbb{F}_{p}^{m}))\leq p^{l},
#(πV(𝔽pm))=pl,\displaystyle\#(\pi_{V}^{*}(\mathbb{F}_{p}^{m}))=p^{l},
#(πV(𝔽p2×𝔽pm))=pl+1.\displaystyle\#(\pi_{V}^{*}(\mathbb{F}_{p}^{2}\times\mathbb{F}_{p}^{m}))=p^{l+1}.

The first and third conditions imply πV(θ)πV(𝔽pm)\pi_{V}^{*}(\theta)\subset\pi_{V}^{*}(\mathbb{F}_{p}^{m}). Similarly, the second and third conditions imply πV(θ)πV(𝔽pm)\pi_{V}^{*}(\theta^{\prime})\subset\pi_{V}^{*}(\mathbb{F}_{p}^{m}). Noting that span{θ,θ}=𝔽p2\textup{span}\{\theta,\theta^{\prime}\}=\mathbb{F}_{p}^{2}, we have

πV(𝔽p2×𝔽pm)πV(𝔽pm),\pi_{V}^{*}(\mathbb{F}_{p}^{2}\times\mathbb{F}_{p}^{m})\subset\pi_{V}^{*}(\mathbb{F}_{p}^{m}),

which has cardinality =pl=p^{l}, contradicting the fourth condition.

We have shown that El+γ(A;n,k)θ𝐄γ,β𝒰θE_{l+\gamma}(A;n,k)\supset\bigsqcup_{\theta\in\mathbf{E}_{\gamma,\beta}}\mathcal{U}_{\theta}, which has cardinality #𝐄γ,β#𝒰θ\#\mathbf{E}_{\gamma,\beta}\cdot\#\mathcal{U}_{\theta}

p2γβ+k(nk)(m+1l)(kl).\gtrsim p^{2\gamma-\beta+k(n-k)-(m+1-l)(k-l)}.

Type 2, γ(β+12,1]\gamma\in(\frac{\beta+1}{2},1] The trick is to write a=(m1)+(β+1)=:m+βa=(m-1)+(\beta+1)=:m^{\prime}+\beta^{\prime}. Note that lmn+lk1l\leq m^{\prime}\leq n+l-k-1 and γ>β2\gamma>\frac{\beta^{\prime}}{2}. We apply the construction in “Type 3, γ(β2,β]\gamma\in(\frac{\beta}{2},\beta]”, where we only used γ>β2\gamma>\frac{\beta}{2}. We obtain a AA with #Apa\#A\sim p^{a} such that

#Es(A;n,k)pk(nk)(m+1l)(kl)+2γβ=pk(nk)(ml)(kl)+2γ(β+1).\#E_{s}(A;n,k)\gtrsim p^{k(n-k)-(m^{\prime}+1-l)(k-l)+2\gamma-\beta^{\prime}}=p^{k(n-k)-(m-l)(k-l)+2\gamma-(\beta+1)}.

Type 3, γ(0,β2]\gamma\in(0,\frac{\beta}{2}] The trick is to make aa bigger. We write a=m+β(m+1)+0=:m+βa=m+\beta\leq(m+1)+0=:m^{\prime}+\beta^{\prime}. One can check l+1mn+lkl+1\leq m^{\prime}\leq n+l-k and γ>β\gamma>\beta^{\prime}. We apply the construction in Type 2 with (m,β)(m^{\prime},\beta^{\prime}). We find AA^{\prime} with #Apm+1\#A^{\prime}\sim p^{m+1} such that

#Es(A;n,k)pk(nk)(m+1l)(kl).\#E_{s}(A^{\prime};n,k)\gtrsim p^{k(n-k)-(m+1-l)(k-l)}.

Choosing any subset AAA\subset A^{\prime} with #Apa\#A\sim p^{a}, we get

#Es(A;n,k)#Es(A;n,k)pk(nk)(m+1l)(kl).\#E_{s}(A;n,k)\geq\#E_{s}(A^{\prime};n,k)\gtrsim p^{k(n-k)-(m+1-l)(k-l)}.

7. Exceptional set estimate: Upper bound I

We prove the following proposition in this section.

Proposition 38.

Assume Conjecture 4 holds. For 0<ak+10<a\leq k+1 and 0<s0<s, and A𝔽pk+1A\subset\mathbb{F}_{p}^{k+1} with #Apa\#A\gtrsim p^{a}, we have

(70) #Esε(A;k+1,k)εpε+𝐌(a,s;k+1,k),\#E_{s-\varepsilon}(A;k+1,k)\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a,s;k+1,k)},

for any ε>0\varepsilon>0.

It is proved by using the following lemma.

Lemma 39.

Assume Conjecture 4 holds. Fix 0<ε0<1/1000<\varepsilon_{0}<1/100. Let 0<ak+1,s>00<a\leq k+1,s>0 and σ0\sigma\geq 0. Suppose the parameters satisfy 𝐌(a,s;k+1,k)+ε0k\mathbf{M}(a,s;k+1,k)+\varepsilon_{0}\leq k and as+ε0σaa-s+\varepsilon_{0}\leq\sigma\leq a. Let A𝔽pk+1A\subset\mathbb{F}_{p}^{k+1} with #A=pk+1\#A=p^{k+1}. Define

𝒱:={LA(1,𝔽pk+1):pσ#(LA)}.\mathcal{V}:=\{L\in A(1,\mathbb{F}_{p}^{k+1}):p^{\sigma}\leq\#(L\cap A)\}.

Then

#𝒱ε0p𝐌(a,s;k+1,k)+aσ+ε0.\#\mathcal{V}\lesssim_{\varepsilon_{0}}p^{\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}}.
Remark 40.

The implicit constant in ε0\lesssim_{\varepsilon_{0}} can be made independent of σ\sigma, since we can apply the lemma to σε02\sigma\in\varepsilon_{0}^{2}\cdot\mathbb{N} which consists O(ε02)O(\varepsilon_{0}^{-2}) values.

Proof.

The proof of this part is by Furstenberg estimate. As in Definition 14, write

(71) {a=m+βs=l+γ.\begin{cases}a=m+\beta\\ s=l+\gamma.\end{cases}

There are four cases.

Type 1: When s>min{a,k}s>\min\{a,k\},

𝐌(a,s;k+1,k)=k.\mathbf{M}(a,s;k+1,k)=k.

Type 2: When smin{a,k}s\leq\min\{a,k\} and m=l+1,γ(β,1]m=l+1,\gamma\in(\beta,1],

𝐌(a,s;k+1,k)=l+max{2γ(β+1),0}.\displaystyle\mathbf{M}(a,s;k+1,k)=l+\max\{2\gamma-(\beta+1),0\}.

Type 3: When smin{a,k}s\leq\min\{a,k\} and m=l,γ(0,β]m=l,\gamma\in(0,\beta],

𝐌(a,s;k+1,k)=l+max{2γβ,0}.\displaystyle\mathbf{M}(a,s;k+1,k)=l+\max\{2\gamma-\beta,0\}.

Type 4: When sa1s\leq a-1,

𝐌(a,s;k+1,k)=.\mathbf{M}(a,s;k+1,k)=-\infty.

Type 1 is trivial, since #𝒱pk\#\mathcal{V}\leq p^{k} is always true. Type 4 is also easy, since in this case we have σas+ε01+ε0\sigma\geq a-s+\varepsilon_{0}\geq 1+\varepsilon_{0}, and hence 𝒱=\mathcal{V}=\emptyset. We only need to consider Type 2 and Type 3.

Suppose #𝒱=pt\#\mathcal{V}=p^{t}, we want to show

t𝐌(a,s;k+1,k)+aσ+ε0.t\leq\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}.

We write t=2w+τt=2w+\tau, where w{0,,k1}w\in\{0,\dots,k-1\}, τ(0,2]\tau\in(0,2].

For convenience, we define

(72) R(β,γ):={max{2γ(β+1),0}m=l+1,γ(β,1]max{2γβ,0}m=l,γ(0,β].R(\beta,\gamma):=\begin{cases}\max\{2\gamma-(\beta+1),0\}&m=l+1,\gamma\in(\beta,1]\\ \max\{2\gamma-\beta,0\}&m=l,\gamma\in(0,\beta].\end{cases}

Then 𝐌(a,s;k+1,k)=l+R(β,γ)\mathbf{M}(a,s;k+1,k)=l+R(\beta,\gamma) in the case of Type 2 or Type 3.

Note that AA contains a (σ,t;k+1,1)(\sigma,t;k+1,1)-Furstenberg set L𝒱(LA)\bigcup_{L\in\mathcal{V}}(L\cap A). Since Conjecture 4 holds, by Theorem 7, we have the lower bound:

(73) a+η0𝐅(σ,t;k+1,1)=w+min{σ+τ,32σ+12τ,σ+1},a+\eta_{0}\geq\mathbf{F}(\sigma,t;k+1,1)=w+\min\{\sigma+\tau,\frac{3}{2}\sigma+\frac{1}{2}\tau,\sigma+1\},

for any η0>0\eta_{0}>0 when pp is big enough depending on η0\eta_{0}. We choose η0\eta_{0} such that η0<ε0/2\eta_{0}<\varepsilon_{0}/2

From (73), there are three possible cases.

(1) a+η0w+σ+τa+\eta_{0}\geq w+\sigma+\tau.

This implies t=2w+τa+wσ+η0t=2w+\tau\leq a+w-\sigma+\eta_{0}. Our goal is to show t𝐌(a,s;k+1,k)+aσ+ε0t\leq\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}, so we just need to show

𝐌(a,s;k+1,k)w.\mathbf{M}(a,s;k+1,k)\geq w.

We also know

aw+σ+τη0w+τ+as+ε0η0w+τ+as+ε0/2,a\geq w+\sigma+\tau-\eta_{0}\geq w+\tau+a-s+\varepsilon_{0}-\eta_{0}\geq w+\tau+a-s+\varepsilon_{0}/2,

which implies

sw+τ+ε0/2.s\geq w+\tau+\varepsilon_{0}/2.

Since sl+1s\leq l+1 and ww\in\mathbb{N}, we have wlw\leq l. Therefore, with the condition that 𝐌(a,s;k+1,k)l\mathbf{M}(a,s;k+1,k)\geq l, we see that

𝐌(a,s;k+1,k)w.\mathbf{M}(a,s;k+1,k)\geq w.

(2) a+η0σ+1+wa+\eta_{0}\geq\sigma+1+w.

In this case, aσ+1+wη0as+w+1+ε0η0a\geq\sigma+1+w-\eta_{0}\geq a-s+w+1+\varepsilon_{0}-\eta_{0}, which implies

sw+1+ε0/2.s\geq w+1+\varepsilon_{0}/2.

Since sl+1s\leq l+1 and ww\in\mathbb{N}, we get wl1w\leq l-1.

Now we want to prove t𝐌(a,s;k+1,k)+aσ+ε0t\leq\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}. If this is not true, then by contradiction, we assume

2w+τ=t>𝐌(a,s;k+1,k)+aσ+ε0.2w+\tau=t>\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}.

This will imply

l1+τw+τ>𝐌(a,s;k+1,k)+aσw+ε0𝐌(a,s;k+1,k)+1+ε0η0l+1,l-1+\tau\geq w+\tau>\mathbf{M}(a,s;k+1,k)+a-\sigma-w+\varepsilon_{0}\geq\mathbf{M}(a,s;k+1,k)+1+\varepsilon_{0}-\eta_{0}\geq l+1,

which is a contradiction, as τ2\tau\leq 2.

(3) a+η0w+32σ+12τa+\eta_{0}\geq w+\frac{3}{2}\sigma+\frac{1}{2}\tau.

This is equivalent to t2a3σ+2η0t\leq 2a-3\sigma+2\eta_{0}. We hope to prove

t𝐌(a,s;k+1,k)+aσ+ε0.t\leq\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}.

We just need to prove

2a3σ𝐌(a,s;k+1,k)+aσ,2a-3\sigma\leq\mathbf{M}(a,s;k+1,k)+a-\sigma,

since 2η0<ε02\eta_{0}<\varepsilon_{0}.

This is equivalent to

a𝐌(a,s;k+1,k)+2σ.a\leq\mathbf{M}(a,s;k+1,k)+2\sigma.

We plug in a=m+β,s=l+γ,𝐌(a,s;k+1,k)=l+R(β,γ),σ(m+β)(l+γ)+ε0a=m+\beta,s=l+\gamma,\mathbf{M}(a,s;k+1,k)=l+R(\beta,\gamma),\sigma\geq(m+\beta)-(l+\gamma)+\varepsilon_{0}. Then it suffices to prove

m+βl+R(β,γ)+2(m+β)2(l+γ)+2ε0.m+\beta\leq l+R(\beta,\gamma)+2(m+\beta)-2(l+\gamma)+2\varepsilon_{0}.

This inequality is equivalent to

2γ(β+ml)R(β,γ)+2ε0,2\gamma-(\beta+m-l)\leq R(\beta,\gamma)+2\varepsilon_{0},

This is easy to verify by checking either in case m=l+1,γ(β,1]m=l+1,\gamma\in(\beta,1] or in case m=l,γ(0,β]m=l,\gamma\in(0,\beta]. ∎

Proof of Proposition 38.

We will use the lemma that we just proved. We show that, if A𝔽pk+1A\subset\mathbb{F}_{p}^{k+1} with #Apa\#A\gtrsim p^{a}, EG(1,𝔽pk+1)E\subset G(1,\mathbb{F}_{p}^{k+1}) with #E>Cεpε+𝐌(a,s;k+1,k)\#E>C_{\varepsilon}p^{\varepsilon+\mathbf{M}(a,s;k+1,k)}, and pp is big enough, then there exists VEV\in E such that

#πV(A)>psε.\#\pi_{V}^{*}(A)>p^{s-\varepsilon}.

Since #Epk\#E\leq p^{k}, we have

ε+𝐌(a,s;k+1,k)k.\varepsilon+\mathbf{M}(a,s;k+1,k)\leq k.

For each VEV\in E and dyadic number 1μp1\leq\mu\leq p, define

𝕃V,μ:={LA(1,𝔽pk+1):LV,μ#(AL)<2μ}.\mathbb{L}_{V,\mu}:=\{L\in A(1,\mathbb{F}_{p}^{k+1}):L\parallel V,\mu\leq\#(A\cap L)<2\mu\}.

We see that {𝕃V,μ}μ\{\mathbb{L}_{V,\mu}\}_{\mu} form a partition of the of lines that are parallel to VV.

We choose ε0ε\varepsilon_{0}\ll\varepsilon, for example, ε0=ε2\varepsilon_{0}=\varepsilon^{2}. We will estimate the cardinality of the set VE𝕃V,μ\bigcup_{V\in E}\mathbb{L}_{V,\mu} for μpas+ε0\mu\geq p^{a-s+\varepsilon_{0}}. We write μ=pσ\mu=p^{\sigma} with aσas+ε0a\geq\sigma\geq a-s+\varepsilon_{0}. By Lemma 39, we have

#VE𝕃V,μεp𝐌(a,s;k+1,k)+aσ+ε0.\#\bigcup_{V\in E}\mathbb{L}_{V,\mu}\lesssim_{\varepsilon}p^{\mathbf{M}(a,s;k+1,k)+a-\sigma+\varepsilon_{0}}.

If we define

Eμ:={VE:#𝕃V,μ>paσε0},E_{\mu}:=\{V\in E:\#\mathbb{L}_{V,\mu}>p^{a-\sigma-\varepsilon_{0}}\},

then

#Eμεp𝐌(a,s;k+1,k)+2ε0.\#E_{\mu}\lesssim_{\varepsilon}p^{\mathbf{M}(a,s;k+1,k)+2\varepsilon_{0}}.

Summing over dyadic μpas+ε0\mu\geq p^{a-s+\varepsilon_{0}}, we have

#μpas+ε0Eμεp𝐌(a,s;k+1,k)+3ε0.\#\bigcup_{\mu\geq p^{a-s+\varepsilon_{0}}}E_{\mu}\lesssim_{\varepsilon}p^{\mathbf{M}(a,s;k+1,k)+3\varepsilon_{0}}.

Therefore, #E>#μpas+ε0Eμ\#E>\#\bigcup_{\mu\geq p^{a-s+\varepsilon_{0}}}E_{\mu} when pp is large enough. We can find VEμpas+ε0EμV\in E\setminus\bigcup_{\mu\geq p^{a-s+\varepsilon_{0}}}E_{\mu}. In other words, there exists VEV\in E, such that for any μ=pσpas+ε0\mu=p^{\sigma}\geq p^{a-s+\varepsilon_{0}},

#𝕃V,μpaσε0.\#\mathbb{L}_{V,\mu}\leq p^{a-\sigma-\varepsilon_{0}}.

Now, we do the estimate. We have

#A=μ<pas+ε0L𝕃V,μ#(AL)+μpas+ε0L𝕃V,μ#(AL).\#A=\sum_{\mu<p^{a-s+\varepsilon_{0}}}\sum_{L\in\mathbb{L}_{V,\mu}}\#(A\cap L)+\sum_{\mu\geq p^{a-s+\varepsilon_{0}}}\sum_{L\in\mathbb{L}_{V,\mu}}\#(A\cap L).

Note that

μpas+ε0L𝕃V,μ#(AL)μpas+ε02μ#𝕃V,μ2μpas+ε0paε012#A.\sum_{\mu\geq p^{a-s+\varepsilon_{0}}}\sum_{L\in\mathbb{L}_{V,\mu}}\#(A\cap L)\leq\sum_{\mu\geq p^{a-s+\varepsilon_{0}}}2\mu\cdot\#\mathbb{L}_{V,\mu}\leq 2\sum_{\mu\geq p^{a-s+\varepsilon_{0}}}p^{a-\varepsilon_{0}}\leq\frac{1}{2}\#A.

In the last inequality, we are summing over O(logp)O(\log p) terms and we assume pp is big enough.

We have

12#Aμ<pas+ε0L𝕃V,μ#(AL)<2pas+ε0#πV(A).\frac{1}{2}\#A\leq\sum_{\mu<p^{a-s+\varepsilon_{0}}}\sum_{L\in\mathbb{L}_{V,\mu}}\#(A\cap L)<2p^{a-s+\varepsilon_{0}}\#\pi_{V}^{*}(A).

This implies #πV(A)psε0>psε\#\pi_{V}^{*}(A)\gtrsim p^{s-\varepsilon_{0}}>p^{s-\varepsilon}.

8. Exceptional set estimate: Upper bound II

The goal of this section is to prove the following proposition.

Proposition 41.

Let n,kn,k\in\mathbb{N} and nk+2n\geq k+2. Suppose for any n=k+1,,n1n^{\prime}=k+1,\dots,n-1 and a(0,n],s>0a\in(0,n^{\prime}],s>0, we have

(74) supA𝔽pn,#Apa#Esε(A;n,k)εpε+𝐌(a,s;n,k),\sup_{A\subset\mathbb{F}_{p}^{n^{\prime}},\#A\sim p^{a}}\#E_{s-\varepsilon}(A;n^{\prime},k)\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a,s;n^{\prime},k)},

for any ε>0\varepsilon>0. Then for a(0,n],s>0a\in(0,n],s>0, we have

supA𝔽pn,#Apa#Esε(A;n,k)εpε+𝐌(a,s;n,k),\sup_{A\subset\mathbb{F}_{p}^{n},\#A\sim p^{a}}\#E_{s-\varepsilon}(A;n,k)\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a,s;n,k)},

for any ε>0\varepsilon>0.

We prove the following lemma.

Lemma 42.

Assume (74) holds. Suppose n,kn,k\in\mathbb{N}, nk+2n\geq k+2, a(0,n]a\in(0,n], s>0s>0 and s(a(nk),min{a,k}]s\in(a-(n-k),\min\{a,k\}]. Then for any A𝔽pnA\subset\mathbb{F}_{p}^{n} with #Apa\#A\sim p^{a}, there exist numbers a1,s1a_{1},s_{1}, such that

(75) {pmax{0,a1}pa1pmin{n1,a};1ps1ps;\begin{cases}p^{\max\{0,a-1\}}\leq p^{a_{1}}\leq p^{\min\{n-1,a\}};\\ 1\leq p^{s_{1}}\leq p^{s};\end{cases}

and

(76) #Esε(A;n,k)εpε+𝐌(a1,s1;n1,k)+𝐌(s1+aa1,s;k+1,k).\#E_{s-\varepsilon}(A;n,k)\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a_{1},s_{1};n-1,k)+\mathbf{M}(s_{1}+a-a_{1},s;k+1,k)}.
Proof.

We will do several steps of pigeonholing, which lead to the parameters s1,a1s_{1},a_{1}. For convenience, we denote 𝒱:=Esε(A;n,k)\mathcal{V}:=E_{s-\varepsilon}(A;n,k).

By properly choosing the coordinate, we can assume 1\gtrsim 1 fraction of the (nk)(n-k)-planes in 𝒱\mathcal{V} intersect 𝔽pn1×𝟎\mathbb{F}_{p}^{n-1}\times\mathbf{0} transversely (at a (nk1)(n-k-1)-plane). Since we are going to find upper bound for #𝒱\#\mathcal{V}, we can just assume all the planes in 𝒱\mathcal{V} intersect 𝔽pn1×𝟎\mathbb{F}_{p}^{n-1}\times\mathbf{0} at a (nk1)(n-k-1)-plane.

For each WG(nk1,𝔽pn1×𝟎)W\in G(n-k-1,\mathbb{F}_{p}^{n-1}\times\mathbf{0}), we define 𝒱W:={V𝒱:V(𝔽pn1×𝟎)=W}\mathcal{V}_{W}:=\{V\in\mathcal{V}:V\cap(\mathbb{F}_{p}^{n-1}\times\mathbf{0})=W\}. By pigeonholing, there exits 𝒲G(nk1,𝔽pn1×𝟎)\mathcal{W}\subset G(n-k-1,\mathbb{F}_{p}^{n-1}\times\mathbf{0}) with #𝒲pt1\#\mathcal{W}\sim p^{t_{1}} such that for each W𝒲W\in\mathcal{W}, #𝒱Wpt2\#\mathcal{V}_{W}\sim p^{t_{2}}. Here, pt1,pt21p^{t_{1}},p^{t_{2}}\geq 1 are dyadic numbers so that

pt1+t2#𝒱.p^{t_{1}+t_{2}}\gtrapprox\#\mathcal{V}.

By pigeonholing on #A(𝔽pn1×ξ)\#A\cap(\mathbb{F}_{p}^{n-1}\times\xi) for ξ𝔽p\xi\in\mathbb{F}_{p}, we can find a dyadic number 1pa1pa1\leq p^{a_{1}}\leq p^{a} and Ξ1𝔽p\Xi_{1}\subset\mathbb{F}_{p} so that #A(𝔽pn1×ξ)pa1\#A\cap(\mathbb{F}_{p}^{n-1}\times\xi)\sim p^{a_{1}} for any ξΞ1\xi\in\Xi_{1} and

pa1#Ξ1pa.p^{a_{1}}\cdot\#\Xi_{1}\gtrapprox p^{a}.

Since #Ξ1p\#\Xi_{1}\leq p, we also have pa1pa1p^{a_{1}}\gtrapprox p^{a-1}.

For each ξΞ1\xi\in\Xi_{1}, we consider the slice 𝔽pn1×ξ\mathbb{F}_{p}^{n-1}\times\xi. We denote Aξ:=A(𝔽pn1×ξ)A_{\xi}:=A\cap(\mathbb{F}_{p}^{n-1}\times\xi). There exists a dyadic number 1ps1(ξ)psε1\leq p^{s_{1}(\xi)}\leq p^{s-\varepsilon}, such that

#πW(Aξ)ps1(ξ),\#\pi_{W}^{*}(A_{\xi})\sim p^{s_{1}(\xi)},

for #𝒲pt1\gtrapprox\#\mathcal{W}\sim p^{t_{1}} many W𝒲W\in\mathcal{W}. Here, s1(ξ)sεs_{1}(\xi)\leq s-\varepsilon is because #πW(Aξ)#πV(A)<psε\#\pi_{W}^{*}(A_{\xi})\leq\#\pi_{V}^{*}(A)<p^{s-\varepsilon} for V𝒱WV\in\mathcal{V}_{W}.

We see that Es1(ξ)+ε2/2(Aξ;n1,k)E_{s_{1}(\xi)+\varepsilon^{2}/2}(A_{\xi};n-1,k) contains a 1\gtrapprox 1 portion of 𝒲\mathcal{W} when pp is large enough depending on ε\varepsilon. We can use (74) for the quadruple (a1,s1(ξ)+ε2;n1,k)(a_{1},s_{1}(\xi)+\varepsilon^{2};n-1,k) to obtain

pt1#Es1(ξ)+ε2/2(Aξ;n1,k)εpε2/2+𝐌(a1,s1(ξ)+ε2;n1,k).p^{t_{1}}\lessapprox\#E_{s_{1}(\xi)+\varepsilon^{2}/2}(A_{\xi};n-1,k)\lesssim_{\varepsilon}p^{\varepsilon^{2}/2+\mathbf{M}(a_{1},s_{1}(\xi)+\varepsilon^{2};n-1,k)}.

By pigeonholing on s1(ξ)s_{1}(\xi), we can find ΞΞ1\Xi\subset\Xi_{1} such that

s1(ξ)=s1,s_{1}(\xi)=s_{1},

for all ξΞ\xi\in\Xi. And,

#Ξ#Ξ1paa1.\#\Xi\gtrapprox\#\Xi_{1}\gtrapprox p^{a-a_{1}}.

Next, we note that

W𝒲ξΞ#πW(Aξ)#𝒲#Ξps1.\sum_{W\in\mathcal{W}}\sum_{\xi\in\Xi}\#\pi_{W}^{*}(A_{\xi})\gtrapprox\#\mathcal{W}\cdot\#\Xi\cdot p^{s_{1}}.

By pigeonholing, there exists W𝒲W\in\mathcal{W} such that

ξΞ#πW(Aξ)#Ξps1paa1+s1.\sum_{\xi\in\Xi}\#\pi_{W}^{*}(A_{\xi})\gtrapprox\#\Xi\cdot p^{s_{1}}\gtrapprox p^{a-a_{1}+s_{1}}.

We fix this WW and study the behavior of 𝒱W\mathcal{V}_{W}. Without loss of generality, we can assume W=𝔽pn1k×𝟎k×𝟎W=\mathbb{F}_{p}^{n-1-k}\times\mathbf{0}^{k}\times\mathbf{0}. For V𝒱WV\in\mathcal{V}_{W}, then VWV\supset W. We see that VV is of form V=𝔽pn1k×VV=\mathbb{F}_{p}^{n-1-k}\times\ell_{V}, where VG(1,𝟎n1k×𝔽pk+1)\ell_{V}\in G(1,\mathbf{0}^{n-1-k}\times\mathbb{F}_{p}^{k+1}). Since V𝔽pn1×𝟎=WV\cap\mathbb{F}_{p}^{n-1}\times\mathbf{0}=W, we have that V\ell_{V} is not parallel to 𝔽pn1×𝟎\mathbb{F}_{p}^{n-1}\times\mathbf{0}.

Next, we project everything onto 𝟎n1k×𝔽pk+1\mathbf{0}^{n-1-k}\times\mathbb{F}_{p}^{k+1}. For x=(x1,,xn)𝔽pnx=(x_{1},\dots,x_{n})\in\mathbb{F}_{p}^{n}, we define

π𝔽pk+1(x):=(0,,0,xnk,xnk+1,,xn).\pi_{\mathbb{F}_{p}^{k+1}}(x):=(0,\dots,0,x_{n-k},x_{n-k+1},\dots,x_{n}).

One can also check that πW(x)=π𝔽pk+1(x)+W\pi_{W}^{*}(x)=\pi_{\mathbb{F}_{p}^{k+1}}(x)+W.

Define Bξ=π𝔽pk+1(Aξ)B_{\xi}=\pi_{\mathbb{F}_{p}^{k+1}}(A_{\xi}). We see that BξB_{\xi} is a subset of 𝟎n1k×𝔽pk+1\mathbf{0}^{n-1-k}\times\mathbb{F}_{p}^{k+1} and #Bξ=#πW(Aξ)\#B_{\xi}=\#\pi_{W}^{*}(A_{\xi}).

The next important observation is that for any A𝔽pnA\subset\mathbb{F}_{p}^{n}, V=𝔽pn1k×V𝒱WV=\mathbb{F}_{p}^{n-1-k}\times\ell_{V}\in\mathcal{V}_{W}, one has

#πV(A)=#πV(π𝔽pk+1(A)).\#\pi_{V}^{*}(A)=\#\pi_{\ell_{V}}^{*}(\pi_{\mathbb{F}_{p}^{k+1}}(A)).

This is not hard to verify once writing down the definition.

We can now do the estimate. By definition, #πV(A)<psε\#\pi_{V}^{*}(A)<p^{s-\varepsilon} for V𝒱WV\in\mathcal{V}_{W}. Therefore,

psε>#πV(π𝔽pk+1(A)).p^{s-\varepsilon}>\#\pi_{\ell_{V}}^{*}(\pi_{\mathbb{F}_{p}^{k+1}}(A)).

This means that

{V:V𝒱W}Esε(π𝔽pk+1(A);k+1,k).\{\ell_{V}:V\in\mathcal{V}_{W}\}\subset E_{s-\varepsilon}(\pi_{\mathbb{F}_{p}^{k+1}}(A);k+1,k).

Also, note that

#π𝔽pk+1(A)#π𝔽pk+1(ξΞAξ)=#πW(ξΞAξ)=ξΞ#πW(Aξ)paa1+s1.\#\pi_{\mathbb{F}_{p}^{k+1}}(A)\geq\#\pi_{\mathbb{F}_{p}^{k+1}}(\bigcup_{\xi\in\Xi}A_{\xi})=\#\pi^{*}_{W}(\bigcup_{\xi\in\Xi}A_{\xi})=\sum_{\xi\in\Xi}\#\pi_{W}^{*}(A_{\xi})\gtrapprox p^{a-a_{1}+s_{1}}.

By (74) with n=k+1n^{\prime}=k+1, we get

pt2#𝒱W#Esε(π𝔽pk+1(A);k+1,k)εpε/3+𝐌(aa1+s1ε2,sε/2;k+1,k).p^{t_{2}}\lessapprox\#\mathcal{V}_{W}\leq\#E_{s-\varepsilon}(\pi_{\mathbb{F}_{p}^{k+1}}(A);k+1,k)\lesssim_{\varepsilon}p^{\varepsilon/3+\mathbf{M}(a-a_{1}+s_{1}-\varepsilon^{2},s-\varepsilon/2;k+1,k)}.

(It is crucial that we use sε/2s-\varepsilon/2 instead of ss on the right hand side.)

Combining with the upper bound of pt1p^{t_{1}}, we get

#𝒱pt1+t2εpε/2+𝐌(a1,s1+ε2;n1,k)+𝐌(aa1+s1ε2,sε/2;k+1,k).\#\mathcal{V}\lessapprox p^{t_{1}+t_{2}}\lesssim_{\varepsilon}p^{\varepsilon/2+\mathbf{M}(a_{1},s_{1}+\varepsilon^{2};n-1,k)+\mathbf{M}(a-a_{1}+s_{1}-\varepsilon^{2},s-\varepsilon/2;k+1,k)}.

Let s1=s1+2ε2s_{1}^{\prime}=s_{1}+2\varepsilon^{2}. Since s1sεs_{1}\leq s-\varepsilon, we have s1ss_{1}^{\prime}\leq s.

Recall 3ε2<ε/23\varepsilon^{2}<\varepsilon/2 and note 𝐌(a,s;n,k)\mathbf{M}(a,s;n,k) is decreasing in aa. By Lemma 23, we have

𝐌(aa1+s13ε2,sε/2;k+1,k)𝐌(aa1+s1,s;k+1,k).\mathbf{M}(a-a_{1}+s_{1}^{\prime}-3\varepsilon^{2},s-\varepsilon/2;k+1,k)\leq\mathbf{M}(a-a_{1}+s_{1}^{\prime},s;k+1,k).

Therefore, under the new s1s_{1}^{\prime}, we have

#𝒱εpε+𝐌(a1,s1ε2;n1,k)+𝐌(aa1+s1,s;k+1,k).\#\mathcal{V}\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a_{1},s_{1}^{\prime}-\varepsilon^{2};n-1,k)+\mathbf{M}(a-a_{1}+s_{1}^{\prime},s;k+1,k)}.

Next, we want to slightly increase a1a_{1} to a1a_{1}^{\prime} so that pmin{0,a1}pa1p^{\min\{0,a-1\}}\leq p^{a_{1}^{\prime}}. By the condition pmin{0,a1}pa1p^{\min\{0,a-1\}}\lessapprox p^{a_{1}}, we have pmin{0,a1}pa1+ε2p^{\min\{0,a-1\}}\leq p^{a_{1}+\varepsilon^{2}} when pp is large enough. We just need to let a1=min{a1+ε2,min{0,a1}}a_{1}^{\prime}=\min\{a_{1}+\varepsilon^{2},\min\{0,a-1\}\}. Noting a1a1+ε2a_{1}^{\prime}\leq a_{1}+\varepsilon^{2} and by Lemma 23 again, we have

𝐌(a1,s1ε2;n1,k)𝐌(a1ε2,s1ε2;n1,k)𝐌(a1,s1;n1,k)\mathbf{M}(a_{1},s_{1}^{\prime}-\varepsilon^{2};n-1,k)\leq\mathbf{M}(a_{1}^{\prime}-\varepsilon^{2},s_{1}^{\prime}-\varepsilon^{2};n-1,k)\leq\mathbf{M}(a_{1}^{\prime},s_{1}^{\prime};n-1,k)

We still use s1,a1s_{1},a_{1} for s1,a1s_{1}^{\prime},a_{1}^{\prime}. We obtain

#𝒱εpε+𝐌(a1,s1;n1,k)+𝐌(aa1+s1,s;k+1,k).\#\mathcal{V}\lesssim_{\varepsilon}p^{\varepsilon+\mathbf{M}(a_{1},s_{1};n-1,k)+\mathbf{M}(a-a_{1}+s_{1},s;k+1,k)}.

Lemma 43.

Suppose n,kn,k\in\mathbb{N}, nk+2n\geq k+2, a(0,n]a\in(0,n], s>0s>0 and s(a(nk),min{a,k}]s\in(a-(n-k),\min\{a,k\}]. Suppose there exist numbers a1,s1a_{1},s_{1}, such that

(77) {max{0,a1}a1min{n1,a};0s1s.\begin{cases}\max\{0,a-1\}\leq a_{1}\leq\min\{n-1,a\};\\ 0\leq s_{1}\leq s.\end{cases}

Then

(78) 𝐌(a1,s1;n1,k)+𝐌(s1+aa1,s;k+1,k)𝐌(a,s;n,k).\mathbf{M}(a_{1},s_{1};n-1,k)+\mathbf{M}(s_{1}+a-a_{1},s;k+1,k)\leq\mathbf{M}(a,s;n,k).
Proof.

Write a=m+β,s=l+γa=m+\beta,s=l+\gamma; a1=m1+β1,s1=l1+γ1a_{1}=m_{1}+\beta_{1},s_{1}=l_{1}+\gamma_{1} in the canonical expressions. Since a1a1aa-1\leq a_{1}\leq a, there are only two choices for m1m_{1}: m1=mm_{1}=m or m1=m1m_{1}=m-1. Since s1ss_{1}\leq s, we have l1ll_{1}\leq l.

Case 1: m1=m,l1l1m_{1}=m,l_{1}\leq l-1

By Lemma 24,

𝐌(a1,s1;n1,k)k(n1k)(ml+1)(kl+1)+max{2γ1(β1+1),0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m-l+1)(k-l+1)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}.

Trivially,

𝐌(s1+aa1,s;k+1,k)k.\mathbf{M}(s_{1}+a-a_{1},s;k+1,k)\leq k.

Also, by Lemma 24,

𝐌(a,s;n,k)k(nk)(m+1l)(kl).\mathbf{M}(a,s;n,k)\geq k(n-k)-(m+1-l)(k-l).

It suffices to prove

max{2γ1β11,0}m+1l.\max\{2\gamma_{1}-\beta_{1}-1,0\}\leq m+1-l.

Just need to note mlm\geq l and 2γ122\gamma_{1}\leq 2.

Case 2: m1=m,l1=lm_{1}=m,l_{1}=l

Case 2.1: γ>β,γ1>β1\gamma>\beta,\gamma_{1}>\beta_{1}

Since sas\leq a and γ>β\gamma>\beta, we have ml+1m\geq l+1. Hence,

𝐌(a1,s1;n1,k)=𝐌(m+β1,l+γ1;n1,k)=k(n1k)(ml)(kl)+max{2γ1(β1+1),0}.\begin{split}\mathbf{M}(a_{1},s_{1};n-1,k)&=\mathbf{M}(m+\beta_{1},l+\gamma_{1};n-1,k)\\ &=k(n-1-k)-(m-l)(k-l)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}.\end{split}

Next we estimate 𝐌(s1+aa1,s;k+1,k)=𝐌(l+γ1+ββ1,l+γ;k+1,k)\mathbf{M}(s_{1}+a-a_{1},s;k+1,k)=\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k). We claim we have

(79) 𝐌(l+γ1+ββ1,l+γ;k+1,k){k(kl)+max{2γ(γ1+ββ1),0}γ1+ββ1γ;kγ1+ββ1<γ.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq\begin{cases}k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}&\gamma_{1}+\beta-\beta_{1}\geq\gamma;\\ k&\gamma_{1}+\beta-\beta_{1}<\gamma.\end{cases}

We just consider when γ1+ββ1γ\gamma_{1}+\beta-\beta_{1}\geq\gamma. We note γ1+ββ1(0,2)\gamma_{1}+\beta-\beta_{1}\in(0,2). If γ1+ββ1(0,1]\gamma_{1}+\beta-\beta_{1}\in(0,1], then we use Type 3 in Definition 14, which gives the desired formula. If γ1+ββ1(1,2]\gamma_{1}+\beta-\beta_{1}\in(1,2], we use Type 2, which gives 𝐌(l+1+(γ1+ββ11),l+γ;k+1,k)=k(kl)+max{2γ(γ1+ββ1),0}\mathbf{M}(l+1+(\gamma_{1}+\beta-\beta_{1}-1),l+\gamma;k+1,k)=k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}, which is the same.

We also have 𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}.

When γ1+ββ1<γ\gamma_{1}+\beta-\beta_{1}<\gamma, we just need to prove

max{2γ1(β1+1),0}max{2γ(β+1),0},\max\{2\gamma_{1}-(\beta_{1}+1),0\}\leq\max\{2\gamma-(\beta+1),0\},

which is easy to verify, since γ1γ\gamma_{1}\leq\gamma and γ1+ββ1<γ\gamma_{1}+\beta-\beta_{1}<\gamma.

When γ1+ββ1γ\gamma_{1}+\beta-\beta_{1}\geq\gamma, we just need to prove

max{2γ1(β1+1),0}+max{2γ(γ1+ββ1),0}1+max{2γ(β+1),0}.\max\{2\gamma_{1}-(\beta_{1}+1),0\}+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq 1+\max\{2\gamma-(\beta+1),0\}.

Just need to check three scenarios:

(1) 2γ1(β1+1)12\gamma_{1}-(\beta_{1}+1)\leq 1, since γ11\gamma_{1}\leq 1.

(2) 2γ(γ1+ββ1)1+2γ(β+1)2\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 1+2\gamma-(\beta+1), since γ1>β1\gamma_{1}>\beta_{1}.

(3) Their sum 2γ1(β1+1)+2γ(γ1+ββ1)=2γ+γ1(β+1)1+2γ(β+1)2\gamma_{1}-(\beta_{1}+1)+2\gamma-(\gamma_{1}+\beta-\beta_{1})=2\gamma+\gamma_{1}-(\beta+1)\leq 1+2\gamma-(\beta+1).

Case 2.2: γ>β,γ1β1\gamma>\beta,\gamma_{1}\leq\beta_{1}

In this case, by Lemma 24,

𝐌(a1,s1;n1,k)k(n1k)(m+1l)(kl)+max{2γ1β1,0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m+1-l)(k-l)+\max\{2\gamma_{1}-\beta_{1},0\}.
𝐌(l+γ1+ββ1,l+γ;k+1,k)k.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k.
𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}.

It suffices to prove

max{2γ1β1,0}1+max{2γ(β+1),0}.\max\{2\gamma_{1}-\beta_{1},0\}\leq 1+\max\{2\gamma-(\beta+1),0\}.

We just use 2γ1β112\gamma_{1}-\beta_{1}\leq 1, since γ1β1\gamma_{1}\leq\beta_{1}.

Case 2.3: γβ,γ1>β1\gamma\leq\beta,\gamma_{1}>\beta_{1}

𝐌(a1,s1;n1,k)k(n1k)(ml)(kl)+max{2γ1(β1+1),0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m-l)(k-l)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}.

(We use \leq instead of ==, since when m=lm=l, 𝐌(a1,s1;n1,k)=k(n1k)\mathbf{M}(a_{1},s_{1};n-1,k)=k(n-1-k).)

Since γ1+ββ1>γ\gamma_{1}+\beta-\beta_{1}>\gamma,

𝐌(l+γ1+ββ1,l+γ;k+1,k)k(kl)+max{2γ(γ1+ββ1),0}.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}.

Also, we have

𝐌(a,s;n,k)=k(nk)(m+1l)(kl)+max{2γβ,0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.

It suffices to prove

max{2γ1(β1+1),0}+max{2γ(γ1+ββ1),0}max{2γβ,0}.\max\{2\gamma_{1}-(\beta_{1}+1),0\}+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq\max\{2\gamma-\beta,0\}.

(1) 2γ1(β1+1)2γβ2\gamma_{1}-(\beta_{1}+1)\leq 2\gamma-\beta, since s1ss_{1}\leq s implies γ1γ\gamma_{1}\leq\gamma, and β1\beta\leq 1.

(2) 2γ(γ1+ββ1)2γβ2\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 2\gamma-\beta, since γ1>β1\gamma_{1}>\beta_{1}.

(3) 2γ1(β1+1)+2γ(γ1+ββ1)=2γ+γ1(β+1)2γβ2\gamma_{1}-(\beta_{1}+1)+2\gamma-(\gamma_{1}+\beta-\beta_{1})=2\gamma+\gamma_{1}-(\beta+1)\leq 2\gamma-\beta, since γ11\gamma_{1}\leq 1.

Case 2.4: γβ,γ1β1\gamma\leq\beta,\gamma_{1}\leq\beta_{1}

𝐌(a1,s1;n1,k)=k(n1k)(m+1l)(kl)+max{2γ1β1,0}.\mathbf{M}(a_{1},s_{1};n-1,k)=k(n-1-k)-(m+1-l)(k-l)+\max\{2\gamma_{1}-\beta_{1},0\}.
𝐌(l+γ1+ββ1,l+γ;k+1,k)={kγ>γ1+ββ1k(kl)+max{2γ(γ1+ββ1),0}γγ1+ββ1.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)=\begin{cases}k&\gamma>\gamma_{1}+\beta-\beta_{1}\\ k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}&\gamma\leq\gamma_{1}+\beta-\beta_{1}.\end{cases}
𝐌(a,s;n,k)=k(nk)(m+1l)(kl)+max{2γβ,0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.

When γ>γ1+ββ1\gamma>\gamma_{1}+\beta-\beta_{1}, it suffices to show

max{2γ1β1,0}max{2γβ,0}.\max\{2\gamma_{1}-\beta_{1},0\}\leq\max\{2\gamma-\beta,0\}.

This is true by noting γ1γ\gamma_{1}\leq\gamma and γ>γ1+ββ1\gamma>\gamma_{1}+\beta-\beta_{1}.

When γγ1+ββ1\gamma\leq\gamma_{1}+\beta-\beta_{1}, it suffices to show

max{2γ1β1,0}+max{2γ(γ1+ββ1),0}1+max{2γβ,0}.\max\{2\gamma_{1}-\beta_{1},0\}+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq 1+\max\{2\gamma-\beta,0\}.

(1) 2γ1β11+2γβ2\gamma_{1}-\beta_{1}\leq 1+2\gamma-\beta, since γ1γ\gamma_{1}\leq\gamma and β1\beta\leq 1.

(2) 2γ(γ1+ββ1)1+2γβ2\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 1+2\gamma-\beta, since β11\beta_{1}\leq 1.

(3) 2γ1β1+2γ(γ1+ββ1)=γ1β+2γ1+2γβ2\gamma_{1}-\beta_{1}+2\gamma-(\gamma_{1}+\beta-\beta_{1})=\gamma_{1}-\beta+2\gamma\leq 1+2\gamma-\beta, since γ11\gamma_{1}\leq 1.


Case 3: m1=m1,l1l2m_{1}=m-1,l_{1}\leq l-2 The proof is similar to Case 1. By Lemma 24,

𝐌(a1,s1;n1,k)k(n1k)(ml)(kl+2)+max{2γ1(β1+1),0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m-l)(k-l+2)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}.

Trivially,

𝐌(s1+aa1,s;k+1,k)k.\mathbf{M}(s_{1}+a-a_{1},s;k+1,k)\leq k.

Also, by Lemma 24,

𝐌(a,s;n,k)k(nk)(ml)(kl+1).\mathbf{M}(a,s;n,k)\geq k(n-k)-(m-l)(k-l+1).

It suffices to prove

max{2γ1β11,0}ml.\max\{2\gamma_{1}-\beta_{1}-1,0\}\leq m-l.

Just need to note ml1m-l\geq 1 and 2γ122\gamma_{1}\leq 2.

Case 4: m1=m1,l1=l1m_{1}=m-1,l_{1}=l-1

Case 4.1: γ>β,γ1>β1\gamma>\beta,\gamma_{1}>\beta_{1}

Since sas\leq a and γ>β\gamma>\beta, we have ml+1m\geq l+1. Hence,

𝐌(a1,s1;n1,k)=𝐌(m1+β1,l1+γ1;n1,k)=k(n1k)(ml)(kl+1)+max{2γ1(β1+1),0}.\begin{split}\mathbf{M}(a_{1},s_{1};n-1,k)&=\mathbf{M}(m-1+\beta_{1},l-1+\gamma_{1};n-1,k)\\ &=k(n-1-k)-(m-l)(k-l+1)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}.\end{split}

Next we estimate 𝐌(s1+aa1,s;k+1,k)=𝐌(l+γ1+ββ1,l+γ;k+1,k)\mathbf{M}(s_{1}+a-a_{1},s;k+1,k)=\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k). As is Case 2.1,

(80) 𝐌(l+γ1+ββ1,l+γ;k+1,k){k(kl)+max{2γ(γ1+ββ1),0}γ1+ββ1γ;kγ1+ββ1<γ.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq\begin{cases}k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}&\gamma_{1}+\beta-\beta_{1}\geq\gamma;\\ k&\gamma_{1}+\beta-\beta_{1}<\gamma.\end{cases}

We also have 𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}.

When γ1+ββ1<γ\gamma_{1}+\beta-\beta_{1}<\gamma, we just need to prove

max{2γ1(β1+1),0}1+max{2γ(β+1),0},\max\{2\gamma_{1}-(\beta_{1}+1),0\}\leq 1+\max\{2\gamma-(\beta+1),0\},

which is easy to verify,since γ11\gamma_{1}\leq 1 and γ1+ββ1<γ\gamma_{1}+\beta-\beta_{1}<\gamma.

When γ1+ββ1γ\gamma_{1}+\beta-\beta_{1}\geq\gamma, we just need to prove

max{2γ1(β1+1),0}+max{2γ(γ1+ββ1),0}2+max{2γ(β+1),0}.\max\{2\gamma_{1}-(\beta_{1}+1),0\}+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq 2+\max\{2\gamma-(\beta+1),0\}.

Just need to check three scenarios:

(1) 2γ1(β1+1)22\gamma_{1}-(\beta_{1}+1)\leq 2, since γ11\gamma_{1}\leq 1.

(2) 2γ(γ1+ββ1)22\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 2, since γ1+ββ1γ0\gamma_{1}+\beta-\beta_{1}\geq\gamma\geq 0.

(3) 2γ1(β1+1)+2γ(γ1+ββ1)=2γ+γ1(β+1)2+2γ(β+1)2\gamma_{1}-(\beta_{1}+1)+2\gamma-(\gamma_{1}+\beta-\beta_{1})=2\gamma+\gamma_{1}-(\beta+1)\leq 2+2\gamma-(\beta+1), since γ11\gamma_{1}\leq 1.

Case 4.2: γ>β,γ1β1\gamma>\beta,\gamma_{1}\leq\beta_{1}

In this case,

𝐌(a1,s1;n1,k)k(n1k)(m+1l)(kl+1)+max{2γ1β1,0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m+1-l)(k-l+1)+\max\{2\gamma_{1}-\beta_{1},0\}.
𝐌(l+γ1+ββ1,l+γ;k+1,k)k.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k.
𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}.

It suffices to prove

max{2γ1β1,0}1+max{2γ(β+1),0}.\max\{2\gamma_{1}-\beta_{1},0\}\leq 1+\max\{2\gamma-(\beta+1),0\}.

We just use 2γ1β112\gamma_{1}-\beta_{1}\leq 1, since γ1β1\gamma_{1}\leq\beta_{1}.

Case 4.3: γβ,γ1>β1\gamma\leq\beta,\gamma_{1}>\beta_{1}

𝐌(a1,s1;n1,k){k(n1k)(ml)(kl+1)+max{2γ1(β1+1),0}m>lk(n1k)m=l.\mathbf{M}(a_{1},s_{1};n-1,k)\leq\begin{cases}k(n-1-k)-(m-l)(k-l+1)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}&m>l\\ k(n-1-k)&m=l.\end{cases}

Since γ1+ββ1>γ\gamma_{1}+\beta-\beta_{1}>\gamma,

𝐌(l+γ1+ββ1,l+γ;k+1,k)k(kl)+max{2γ(γ1+ββ1),0}.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}.

Also, we can assume γ1+ββ1γ+1\gamma_{1}+\beta-\beta_{1}\leq\gamma+1; otherwise, it ==-\infty.

Also, we have

𝐌(a,s;n,k)=k(nk)(m+1l)(kl)+max{2γβ,0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.

When m=lm=l, we just need to prove

max{2γ(γ1+ββ1),0}max{2γβ,0}.\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq\max\{2\gamma-\beta,0\}.

It is easy to verify 2γ(γ1+ββ1)2γβ2\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 2\gamma-\beta.

When m>lm>l, it suffices to prove

max{2γ1(β1+1),0}+max{2γ(γ1+ββ1),0}1+max{2γβ,0}.\max\{2\gamma_{1}-(\beta_{1}+1),0\}+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq 1+\max\{2\gamma-\beta,0\}.

(1) 2γ1(β1+1)1+2γβ2\gamma_{1}-(\beta_{1}+1)\leq 1+2\gamma-\beta, since γ1+ββ1γ+1\gamma_{1}+\beta-\beta_{1}\leq\gamma+1 and γ11\gamma_{1}\leq 1.

(2) 2γ(γ1+ββ1)1+2γβ2\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 1+2\gamma-\beta, since γ1>β1\gamma_{1}>\beta_{1}.

(3) 2γ1(β1+1)+2γ(γ1+ββ1)=2γ+γ1(β+1)2γβ2\gamma_{1}-(\beta_{1}+1)+2\gamma-(\gamma_{1}+\beta-\beta_{1})=2\gamma+\gamma_{1}-(\beta+1)\leq 2\gamma-\beta, since γ11\gamma_{1}\leq 1.

Case 4.4: γβ,γ1β1\gamma\leq\beta,\gamma_{1}\leq\beta_{1}

𝐌(a1,s1;n1,k)=k(n1k)(m+1l)(kl+1)+max{2γ1β1,0}.\mathbf{M}(a_{1},s_{1};n-1,k)=k(n-1-k)-(m+1-l)(k-l+1)+\max\{2\gamma_{1}-\beta_{1},0\}.
𝐌(l+γ1+ββ1,l+γ;k+1,k){kγ>γ1+ββ1k(kl)+max{2γ(γ1+ββ1),0}γγ1+ββ1.\mathbf{M}(l+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq\begin{cases}k&\gamma>\gamma_{1}+\beta-\beta_{1}\\ k-(k-l)+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}&\gamma\leq\gamma_{1}+\beta-\beta_{1}.\end{cases}

We can also assume γ1+ββ1γ+1\gamma_{1}+\beta-\beta_{1}\leq\gamma+1; otherwise, it ==-\infty.

𝐌(a,s;n,k)=k(nk)(m+1l)(kl)+max{2γβ,0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.

When γ>γ1+ββ1\gamma>\gamma_{1}+\beta-\beta_{1}, it suffices to show

max{2γ1β1,0}1+max{2γβ,0}.\max\{2\gamma_{1}-\beta_{1},0\}\leq 1+\max\{2\gamma-\beta,0\}.

This is true by noting γ11\gamma_{1}\leq 1 and γ>γ1+ββ1\gamma>\gamma_{1}+\beta-\beta_{1}.

When γγ1+ββ1\gamma\leq\gamma_{1}+\beta-\beta_{1}, it suffices to show

max{2γ1β1,0}+max{2γ(γ1+ββ1),0}2+max{2γβ,0}.\max\{2\gamma_{1}-\beta_{1},0\}+\max\{2\gamma-(\gamma_{1}+\beta-\beta_{1}),0\}\leq 2+\max\{2\gamma-\beta,0\}.

(1) 2γ1β12+2γβ2\gamma_{1}-\beta_{1}\leq 2+2\gamma-\beta, since γ1+ββ1γ+1\gamma_{1}+\beta-\beta_{1}\leq\gamma+1, γ11\gamma_{1}\leq 1.

(2) 2γ(γ1+ββ1)2+2γβ2\gamma-(\gamma_{1}+\beta-\beta_{1})\leq 2+2\gamma-\beta, since β11\beta_{1}\leq 1.

(3) 2γ1β1+2γ(γ1+ββ1)=γ1β+2γ2+2γβ2\gamma_{1}-\beta_{1}+2\gamma-(\gamma_{1}+\beta-\beta_{1})=\gamma_{1}-\beta+2\gamma\leq 2+2\gamma-\beta, since γ11\gamma_{1}\leq 1.

Case 5: m1=m1,l1=lm_{1}=m-1,l_{1}=l

Case 5.1: γ>β,γ1>β1\gamma>\beta,\gamma_{1}>\beta_{1}

In this case, we have

𝐌(m1+β1,l+γ1;n1,k)k(n1k)(m1l)(kl)+max{2γ1(β1+1),0}.\mathbf{M}(m-1+\beta_{1},l+\gamma_{1};n-1,k)\leq k(n-1-k)-(m-1-l)(k-l)+\max\{2\gamma_{1}-(\beta_{1}+1),0\}.
𝐌(l+1+γ1+ββ1,l+γ;k+1,k)k(kl)+max{2γ(1+γ1+ββ1),0}.\mathbf{M}(l+1+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k-(k-l)+\max\{2\gamma-(1+\gamma_{1}+\beta-\beta_{1}),0\}.

We assume

(81) γ>γ1+ββ1,\gamma>\gamma_{1}+\beta-\beta_{1},

otherwise this is -\infty.

We also have 𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}. We just need to prove

max{2γ1(β1+1),0}+max{2γ(1+γ1+ββ1),0}max{2γ(β+1),0}.\max\{2\gamma_{1}-(\beta_{1}+1),0\}+\max\{2\gamma-(1+\gamma_{1}+\beta-\beta_{1}),0\}\leq\max\{2\gamma-(\beta+1),0\}.

Check three scenarios:

(1) 2γ1(β1+1)2γ(β+1)2\gamma_{1}-(\beta_{1}+1)\leq 2\gamma-(\beta+1), since γ>γ1+ββ1\gamma>\gamma_{1}+\beta-\beta_{1} and γ1γ\gamma_{1}\leq\gamma (since s1ss_{1}\leq s).

(2) 2γ(1+γ1+ββ1)2γ(β+1)2\gamma-(1+\gamma_{1}+\beta-\beta_{1})\leq 2\gamma-(\beta+1), since γ1>β1\gamma_{1}>\beta_{1}.

(3) 2γ1(β1+1)+2γ(1+γ1+ββ1)=2γ+γ1(β+2)2γ(β+1)2\gamma_{1}-(\beta_{1}+1)+2\gamma-(1+\gamma_{1}+\beta-\beta_{1})=2\gamma+\gamma_{1}-(\beta+2)\leq 2\gamma-(\beta+1), since γ11\gamma_{1}\leq 1.

Case 5.2: γ>β,γ1β1\gamma>\beta,\gamma_{1}\leq\beta_{1}

In this case, by discussing m=lm=l or m>lm>l, we have

𝐌(a1,s1;n1,k)k(n1k)(ml)(kl)+max{2γ1β1,0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m-l)(k-l)+\max\{2\gamma_{1}-\beta_{1},0\}.
𝐌(l+1+γ1+ββ1,l+γ;k+1,k)k(kl)+max{2γ(1+γ1+ββ1),0}.\mathbf{M}(l+1+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k-(k-l)+\max\{2\gamma-(1+\gamma_{1}+\beta-\beta_{1}),0\}.
𝐌(a,s;n,k)=k(nk)(ml)(kl)+max{2γ(β+1),0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m-l)(k-l)+\max\{2\gamma-(\beta+1),0\}.

It suffices to prove

max{2γ1β1,0}+max{2γ(1+γ1+ββ1),0}1+max{2γ(β+1),0}.\max\{2\gamma_{1}-\beta_{1},0\}+\max\{2\gamma-(1+\gamma_{1}+\beta-\beta_{1}),0\}\leq 1+\max\{2\gamma-(\beta+1),0\}.

(1) 2γ1β112\gamma_{1}-\beta_{1}\leq 1, since γ1β1\gamma_{1}\leq\beta_{1}.

(2) 2γ(1+γ1+ββ1)2γβ2\gamma-(1+\gamma_{1}+\beta-\beta_{1})\leq 2\gamma-\beta, since β11\beta_{1}\leq 1.

(3) 2γ+γ1(1+β)2γβ2\gamma+\gamma_{1}-(1+\beta)\leq 2\gamma-\beta, since γ11\gamma_{1}\leq 1.

Case 5.3: γβ,γ1>β1\gamma\leq\beta,\gamma_{1}>\beta_{1}

𝐌(l+1+γ1+ββ1,l+γ;k+1,k)=.\mathbf{M}(l+1+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)=-\infty.

There is nothing to do.

Case 5.4: γβ,γ1β1\gamma\leq\beta,\gamma_{1}\leq\beta_{1}

𝐌(a1,s1;n1,k)k(n1k)(ml)(kl)+max{2γ1β1,0}.\mathbf{M}(a_{1},s_{1};n-1,k)\leq k(n-1-k)-(m-l)(k-l)+\max\{2\gamma_{1}-\beta_{1},0\}.
𝐌(l+1+γ1+ββ1,l+γ;k+1,k)k(kl)+max{2γ(1+γ1+ββ1),0}.\mathbf{M}(l+1+\gamma_{1}+\beta-\beta_{1},l+\gamma;k+1,k)\leq k-(k-l)+\max\{2\gamma-(1+\gamma_{1}+\beta-\beta_{1}),0\}.

We assume

(82) γ>γ1+ββ1,\gamma>\gamma_{1}+\beta-\beta_{1},

otherwise this is .-\infty.

𝐌(a,s;n,k)=k(nk)(m+1l)(kl)+max{2γβ,0}.\mathbf{M}(a,s;n,k)=k(n-k)-(m+1-l)(k-l)+\max\{2\gamma-\beta,0\}.

It suffices to show

max{2γ1β1,0}+max{2γ(1+γ1+ββ1),0}max{2γβ,0}.\max\{2\gamma_{1}-\beta_{1},0\}+\max\{2\gamma-(1+\gamma_{1}+\beta-\beta_{1}),0\}\leq\max\{2\gamma-\beta,0\}.

(1) 2γ1β12γβ2\gamma_{1}-\beta_{1}\leq 2\gamma-\beta, since γ>γ1+ββ1\gamma>\gamma_{1}+\beta-\beta_{1} and γ1γ\gamma_{1}\leq\gamma.

(2) 2γ(1+γ1+ββ1)2γβ2\gamma-(1+\gamma_{1}+\beta-\beta_{1})\leq 2\gamma-\beta, since β11\beta_{1}\leq 1.

(3) 2γ+γ1β12γβ2\gamma+\gamma_{1}-\beta-1\leq 2\gamma-\beta, since γ11\gamma_{1}\leq 1. ∎

Proof of Proposition 41.

We just combine Lemma 42 and Lemma 43. ∎

Proof of Theorem 10.

Finally, we see that Theorem 10 can be obtained from Proposition 38 and Proposition 41 by induction on (n,k)(n,k). ∎

References

  • [1] D. Dabrowski, T. Orponen, and M. Villa. Integrability of orthogonal projections, and applications to Furstenberg sets. Advances in Mathematics, 407:108567, 2022.
  • [2] K. J. Falconer. Hausdorff dimension and the exceptional set of projections. Mathematika, 29(1):109–115, 1982.
  • [3] S. Gan. Hausdorff dimension of unions of kk-planes. arXiv preprint arXiv:2305.14544, 2023.
  • [4] S. Gan. Exceptional set estimate through Brascamp-Lieb inequality. International Mathematics Research Notices, 2024(9):7944–7971, 2024.
  • [5] K. Héra, T. Keleti, and A. Máthé. Hausdorff dimension of unions of affine subspaces and of Furstenberg-type sets. Journal of Fractal Geometry, 6(3):263–284, 2019.
  • [6] R. Kaufman. On Hausdorff dimension of projections. Mathematika, 15(2):153–155, 1968.
  • [7] L. Li and B. Liu. Orthogonal projection, dual furstenberg problem, and discretized sum-product. arXiv preprint arXiv:2403.15784, 2024.
  • [8] J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional dimensions. Proceedings of the London Mathematical Society, 3(1):257–302, 1954.
  • [9] P. Mattila. Hausdorff dimension, orthogonal projections and intersections with planes. Annales Fennici Mathematici, 1(2):227–244, 1975.
  • [10] D. M. Oberlin. Restricted Radon transforms and projections of planar sets. Canadian Mathematical Bulletin, 55(4):815–820, 2012.
  • [11] R. Oberlin. Unions of lines in Fn{F}^{n}. Mathematika, 62(3):738–752, 2016.
  • [12] T. Orponen and P. Shmerkin. On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane. Duke Mathematical Journal, 172(18):3559–3632, 2023.
  • [13] T. Orponen and P. Shmerkin. Projections, Furstenberg sets, and the ABC{ABC} sum-product problem. arXiv preprint arXiv:2301.10199, 2023.
  • [14] Y. Peres and W. Schlag. Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Mathematical Journal, 2000.
  • [15] K. Ren and H. Wang. Furstenberg sets estimate in the plane. arXiv preprint arXiv:2308.08819, 2023.
  • [16] T. Wolff. Recent work connected with the Kakeya problem. Prospects in mathematics (Princeton, NJ, 1996), 2(129-162):4, 1999.