This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fundamental gaps of spherical Triangles

Shoo Seto Department of Mathematics
California State University
Fullerton, CA 92831
[email protected]
Guofang Wei Department of Mathematics
University of California
Santa Barbara, CA 93106
[email protected]
 and  Xuwen Zhu Department of Mathematics
Northeastern University
Boston, MA 02115
[email protected]
Abstract.

We compute Dirichlet eigenvalues and eigenfunctions explicitly for spherical lunes and the spherical triangles which are half the lunes, and show that the fundamental gap goes to infinity when the angle of the lune goes to zero. Then we show the spherical equilateral triangle of diameter π2\frac{\pi}{2} is a strict local minimizer of the fundamental gap on the space of the spherical triangles with diameter π2\frac{\pi}{2}, which partially extends Lu-Rowlett’s result [lu-rowlett] from the plane to the sphere.

The second author is partially supported by NSF DMS-1811558
The third author is partially supported by NSF DMS-2041823

1. Introduction

Given a bounded smooth domain ΩMn\Omega\subset M^{n} of a Riemannian manifold, the eigenvalue equation of the Laplacian on Ω\Omega with Dirichlet boundary condition is

(1.1) Δϕ=λϕ,ϕ|Ω=0.\Delta\phi=-\lambda\,\phi,\ \ \phi|_{\partial\Omega}=0.

The eigenvalues consist of an infinite sequence going off to infinity. Indeed, the eigenvalues satisfy

0<λ1<λ2λ3.0<\lambda_{1}<\lambda_{2}\leq\lambda_{3}\cdots\to\infty.

In quantum physics the eigenvalues are possible allowed energy values and the eigenvectors are the quantum states which correspond to those energy levels.

The fundamental (or mass) gap refers to the difference between the first two eigenvalues

(1.2) Γ(Ω)=λ2λ1>0\Gamma(\Omega)=\lambda_{2}-\lambda_{1}>0

of the Laplacian or more generally for Schrödinger operators. It is a very interesting quantity both in mathematics and physics, and has been an active area of research recently.

In 2011, Andrews and Clutterbuck [2] proved the fundamental gap conjecture: for convex domains Ωn\Omega\subset\mathbb{R}^{n} with diameter DD,

Γ(Ω)3π2/D2.\Gamma(\Omega)\geq 3\pi^{2}/D^{2}.

The result is sharp, with the limiting case being rectangles that collapse to a segment. We refer to their paper for the history and earlier works on this important subject, see also the survey article [5].

Recently, Dai, He, Seto, Wang, and Wei (in various subsets) [9, 4, 6] generalized the estimate to convex domains in 𝕊n\mathbb{S}^{n}, showing that the same bound holds: λ2λ13π2/D2\lambda_{2}-\lambda_{1}\geq 3\pi^{2}/D^{2}. Very recently, the second author with coauthors [3] showed the surprising result that there is no lower bound on the fundamental gap of convex domain in the hyperbolic space with arbitrary fixed diameter. This is done by estimating the fundamental gap of some suitable convex thin strips.

For specific convex domains, one expects that the lower bound is larger. For triangles in 2\mathbb{R}^{2} with diameter DD, Lu-Rowlett [lu-rowlett] showed that the fundamental gap is 64π29D2\geq\frac{64\pi^{2}}{9D^{2}} and equality holds if and only if it is an equilateral triangle. Note that explicit computation of the eigenvalues in general is very hard. For triangles the eigenvalues of only three types (the equilateral triangle and the two special right triangles) can be computed explicitly.

In this paper we study some corresponding questions on the sphere. First we compute the eigenvalues and eigenfunctions of the spherical lune LβL_{\beta} with angle β\beta which is the area bounded between two geodesics, see Figure 1. The statement about the eigenvalues is given below, while the eigenfunctions are included in the proof in Section 2.

Proposition 1.1.

The eigenvalues of Dirichlet Laplacian of the spherical lunes LβL_{\beta}, without counting multiplicities, are given by the set

{(kπβ+j)(kπβ+j+1):k+,j}.\left\{\left(\frac{k\pi}{\beta}+j\right)\left(\frac{k\pi}{\beta}+j+1\right):k\in\mathbb{N}^{+},j\in\mathbb{N}\right\}.

In particular, the first eigenvalue is πβ(πβ+1)\frac{\pi}{\beta}(\frac{\pi}{\beta}+1), the fundamental gap is given by

3(πβ)2+πβ, if β>π; 2πβ+2, if βπ.3\left(\frac{\pi}{\beta}\right)^{2}+\frac{\pi}{\beta},\text{ if }\beta>\pi;\ \ \ 2\frac{\pi}{\beta}+2,\text{ if }\beta\leq\pi.

This is proven through separation of variables and analyzing the solutions to associated Legendre equations (2.3). Furthermore, we derive the eigenvalues and eigenfunctions of the isosceles triangle which is half of the lune, whose eigenvalues are a subset of the ones of the lune.

Proposition 1.2.

For a spherical triangle with angles β,π/2\beta,\pi/2 and π/2\pi/2, its eigenvalues are given by

{(kπβ+2j+1)(kπβ+2j+2):k+,j}.\left\{\left(\frac{k\pi}{\beta}+2j+1\right)\left(\frac{k\pi}{\beta}+2j+2\right):k\in\mathbb{N}^{+},j\in\mathbb{N}\right\}.

In particular, the first eigenvalue is (πβ+1)(πβ+2)(\frac{\pi}{\beta}+1)(\frac{\pi}{\beta}+2), the fundamental gap is given by

(1.3) 3(πβ)2+3πβ, if β>π2; 4πβ+10, if βπ2.3\left(\frac{\pi}{\beta}\right)^{2}+3\frac{\pi}{\beta},\text{ if }\beta>\frac{\pi}{2};\ \ \ 4\frac{\pi}{\beta}+10,\text{ if }\beta\leq\frac{\pi}{2}.

On the plane, all equilateral triangles are related by scaling. On the other hand two equilateral triangles on the sphere are not conformal to each other. We concentrate on the 9090^{\circ} equilateral triangle as for this one the eigenvalues and eigenfunctions can be computed explicitly. Analogously to [lu-rowlett], we show that a spherical equilateral triangle of diameter π2\frac{\pi}{2} is a local minimizer of the fundamental gap.

Theorem 1.1.

The equilateral spherical triangle with angle π2\frac{\pi}{2} is a strict local minimum for the gap on the space of the spherical triangles with diameter π2\frac{\pi}{2}. Moreover

λ2(T(t))λ1(T(t))18+16πt+O(t2),\lambda_{2}(T(t))-\lambda_{1}(T(t))\geq 18+\frac{16}{\pi}t+O(t^{2}),

where T(t)T(t) is the triangle with vertices (0,0)(0,0), (π2,0)(\frac{\pi}{2},0) and (π2bt,π2at)(\frac{\pi}{2}-bt,\frac{\pi}{2}-at) with a2+b2=1,a0,b0a^{2}+b^{2}=1,a\geq 0,\ b\geq 0 under geodesic polar coordinates centered at the north pole.

To get the estimate we compute and estimate the first derivative of the first two eigenvalues at t=0t=0 as in [lu-rowlett]. For this we construct a diffeomorphism FtF_{t} which maps the triangle T(0)T(0) to the triangle T(t)T(t) to pull back the metric on T(t)T(t) to the fixed triangle T(0)T(0). Unlike in the plane case, the diffeomorphism FtF_{t} here is nonlinear, which makes the computations quite involved. The proof is given in Section 3. To keep the idea clear we put a large part of the computation in the appendix.

We expect the results in this paper will be very useful for further study of the fundamental gap of convex domains of 𝕊n\mathbb{S}^{n}.

Acknowledgments: The first two authors would like to thank Zhiqin Lu and Ben Andrews for their interest in the work and helpful discussions.

2. Eigenvalues of spherical lunes and the equilateral triangle

In this section we compute Dirichlet eigenvalues and eigenfunctions for the spherical lunes and a family of spherical triangles, proving Proposition 1.1 and 1.2. The computation is done through separation of variables and looking at solutions to associated Legendre equations.

2.1. Spherical lunes

Consider a lune of angle β\beta (0<β<2π0<\beta<2\pi) on a sphere, LβL_{\beta} (see Figure  1), which is the area between two meridians each connecting the north pole and south pole and forming an angle β\beta. Take (r,θ)(r,\theta) to be the geodesic polar coordinates centered at the north pole, then the spherical metric is given by

g=dr2+sin2rdθ2, 0rπ, 0θβ.g=dr^{2}+\sin^{2}rd\theta^{2},\ 0\leq r\leq\pi,\ 0\leq\theta\leq\beta.
Refer to caption
Figure 1. A spherical lune of angle β\beta

The Laplacian associated to this metric is given by

(2.1) Δu(r,θ)=r2u+cosrsinrru+1sin2rθ2u.\Delta u(r,\theta)=\partial_{r}^{2}u+\frac{\cos r}{\sin r}\partial_{r}u+\frac{1}{\sin^{2}r}\partial_{\theta}^{2}u.

Hence the Dirichlet eigenvalue problem Δu+λu=0\Delta u+\lambda u=0 becomes

r2u+cosrsinrru+1sin2rθ2u+λu=0,u(r,0)=u(r,β)=0.\partial_{r}^{2}u+\frac{\cos r}{\sin r}\partial_{r}u+\frac{1}{\sin^{2}r}\partial_{\theta}^{2}u+\lambda u=0,\ u(r,0)=u(r,\beta)=0.

Now we use separation of variables, and write u(r,θ)=R(r)Θ(θ)u(r,\theta)=R(r)\Theta(\theta). The boundary condition requires that

Θ(θ)=sin(kπβθ),k=1,2,.\Theta(\theta)=\sin(\tfrac{k\pi}{\beta}\theta),\ k=1,2,\dots.

and correspondingly R(r)R(r) satisfies

(2.2) R′′(r)+cosrsinrR(r)k2π2β2sin2rR(r)+λR(r)=0.R^{\prime\prime}(r)+\frac{\cos r}{\sin r}R^{\prime}(r)-\frac{k^{2}\pi^{2}}{\beta^{2}\sin^{2}r}R(r)+\lambda R(r)=0.

Taking x=cos(r)x=\cos(r), this becomes an equation for R(x),1x1R(x),-1\leq x\leq 1:

(2.3) (1x2)Rxx2xRx+[λk2π2β2(1x2)]R=0.(1-x^{2})R_{xx}-2xR_{x}+[\lambda-\frac{k^{2}\pi^{2}}{\beta^{2}(1-x^{2})}]R=0.

The equation is called general Legendre equation [AbramowitzStegun, Ch.8], and there are two kinds of solutions to this equation, called the associated Legendre functions PμP_{\ell}^{\mu} (first kind) and QμQ_{\ell}^{\mu} (second kind) of degree \ell and order μ\mu, with

(2.4) λ=(+1),;μ=±kπβ.\lambda=\ell(\ell+1),\ \ell\in\mathbb{R};\ \mu=\pm\frac{k\pi}{\beta}.

With this set up, we are ready to prove Proposition 1.1. In general those functions have singularities at 1-1 and 1, so we need to find out those specific values of λ\lambda such that for given μ\mu, the boundary conditions R(1)=R(1)=0R(-1)=R(1)=0 are satisfied.

Proof of Proposition 1.1.

To check the boundary condition we look at the asymptotics of P,QP_{*},\ Q_{*} at 11^{-}, and relations between P(±x),Q(±x)P_{*}(\pm x),\ Q_{*}(\pm x) to determine what combinations of \ell and μ\mu are admissible.

The asymptotic of Qμ(x)Q_{\ell}^{\mu}(x) as x1x\rightarrow 1^{-} [8, (14.8.3)-(14,8.6)] and relations between Q±μ(±x)Q_{\ell}^{\pm\mu}(\pm x) [8, (14.9.8)] gives that the only possible case where QμQ_{\ell}^{\mu} is regular will occur when μ=2N+12,N\mu=\frac{2N+1}{2},N\in\mathbb{Z}. However in this case from [8, (14.2.6)], QμQ_{\ell}^{\mu} and PμP_{\ell}^{-\mu} are linearly dependent. Therefore we will only look at PμP_{\ell}^{\mu} with ,μ\ell,\mu given by (2.4). In particular, from [8, (14.8.1)–(14.8.2)] we have the two asymptotics

(2.5) limx1Pμ(x)=1Γ(1μ)(21x)μ/2,μ+\displaystyle\lim_{x\rightarrow 1^{-}}P_{\ell}^{\mu}(x)=\frac{1}{\Gamma(1-\mu)}\left(\frac{2}{1-x}\right)^{\mu/2},\ \mu\notin\mathbb{N}^{+}
(2.6) limx1Pμ(x)=(1)μΓ(+μ+1)Γ(μ+1)μ!(1x2)μ/2,μ+,μ,μ+1,,μ1\displaystyle\lim_{x\rightarrow 1^{-}}P_{\ell}^{\mu}(x)=(-1)^{\mu}\frac{\Gamma(\ell+\mu+1)}{\Gamma(\ell-\mu+1)\mu!}\left(\frac{1-x}{2}\right)^{\mu/2},\ \mu\in\mathbb{N}^{+},\ \ell\neq-\mu,-\mu+1,\dots,\mu-1

which restricts the possible choice to

  1. (1)

    μ<0,μ\mu<0,\mu\notin\mathbb{Z};

  2. (2)

    μ\mu\in\mathbb{Z}.

We discuss those two cases separately.

Case 1: μ<0,μ\mu<0,\mu\notin\mathbb{Z}. The relation of P(±x)P_{*}(\pm x) [8, (14.9.7)] gives

(2.7) sin(μπ)Γ(+μ+1)Pμ(x)=sin((+μ)π)Γ(μ+1)Pμ(x)+sin(π)Γ(+μ+1)Pμ(x)\frac{\sin(-\mu\pi)}{\Gamma(\ell+\mu+1)}P_{\ell}^{\mu}(-x)=-\frac{\sin\left((\ell+\mu)\pi\right)}{\Gamma(\ell-\mu+1)}P_{\ell}^{-\mu}(x)+\frac{\sin(\ell\pi)}{\Gamma(\ell+\mu+1)}P_{\ell}^{\mu}(x)

or

(2.8) sin(μπ)Pμ(x)=Γ(+μ+1)sin((+μ)π)Γ(μ+1)Pμ(x)+sin(π)Pμ(x)\sin(-\mu\pi)P_{\ell}^{\mu}(-x)=-\frac{\Gamma(\ell+\mu+1)\sin\left((\ell+\mu)\pi\right)}{\Gamma(\ell-\mu+1)}P_{\ell}^{-\mu}(x)+\sin(\ell\pi)P_{\ell}^{\mu}(x)

Take x1x\rightarrow 1^{-} hence the left hand side x(1)+-x\rightarrow(-1)^{+}, then the second term on the right side vanishes under the condition μ<0\mu<0. In order to have limx1Pμ(x)=0\lim_{x\rightarrow 1^{-}}P_{\ell}^{\mu}(-x)=0 we need the first term of the right hand side to vanish. Recall Pμ(x1)=P_{\ell}^{-\mu}(x\rightarrow 1^{-})=\infty from (2.5), so we need the coefficient of the first term to vanish. This gives two choices:

(a) +μ,Γ(+μ+1)Γ(μ+1)\ell+\mu\in\mathbb{Z},\ \frac{\Gamma(\ell+\mu+1)}{\Gamma(\ell-\mu+1)}\neq\infty,

(b) Γ(+μ+1),Γ(μ+1)=\Gamma(\ell+\mu+1)\neq\infty,\Gamma(\ell-\mu+1)=\infty.

Recall that Γ(t)=\Gamma(t)=\infty if and only if t=0,1,2,t=0,-1,-2,\dots. Case (a) and (b) above might overlap when μ=12,32,\mu=-\frac{1}{2},-\frac{3}{2},\dots and ±μ+1\ell\pm\mu+1 are integers. In this case we need Γ(+μ+1)Γ(μ+1)\frac{\Gamma(\ell+\mu+1)}{\Gamma(\ell-\mu+1)} to be bounded. Since ±μ+1\ell\pm\mu+1 are both integers and μ+1>+μ+1\ell-\mu+1>\ell+\mu+1, we need μ+10\ell-\mu+1\leq 0 or +μ+1>0\ell+\mu+1>0. This leads to

μ\displaystyle\mu =j12,j=0,1,2,,\displaystyle=-j-\frac{1}{2},\ j=0,1,2,\dots,
\displaystyle\ell =μ1,μ2, or μ,μ+1,μ+2,.\displaystyle=\mu-1,\mu-2,\dots\text{ or }-\mu,-\mu+1,-\mu+2,\dots.

Now we assume μ\mu is not a half-integer. For case (a), assuming +μ\ell+\mu\in\mathbb{Z}, we only need to require Γ(+μ+1)\Gamma(\ell+\mu+1)\neq\infty (since μ+1\ell-\mu+1 is not an integer, Γ(μ+1)\Gamma(\ell-\mu+1) is finite), hence

+μ+1=1,2,3,.\ell+\mu+1=1,2,3,\dots.

For case (b) we have

μ+1=0,1,2,,\ell-\mu+1=0,-1,-2,\dots,

and it automatically satisfies Γ(+μ+1)\Gamma(\ell+\mu+1)\neq\infty.

Combining the discussion above we get the admissible combination:

μ,μ<0\displaystyle\mu\notin\mathbb{Z},\mu<0
=μ1,μ2, or μ,μ+1,μ+2,.\displaystyle\ell=\mu-1,\mu-2,\dots\text{ or }-\mu,-\mu+1,-\mu+2,\dots.

Notice that the above two choices of \ell actually only give one eigenfunction since P1μ(x)=Pμ(x)P_{-\ell-1}^{\mu}(x)=P_{\ell}^{\mu}(x) (cf.  [8, (14.9.5)]), therefore the admissible combination of \ell and μ\mu in this case can be written as

(2.9) μ,μ<0\displaystyle\mu\notin\mathbb{Z},\mu<0
=|μ|,|μ|+1,|μ|+2,.\displaystyle\ell=|\mu|,|\mu|+1,|\mu|+2,\dots.

Putting in μ=kπβ\mu=-\frac{k\pi}{\beta}, the eigenvalues (+1)\ell(\ell+1) are given by

(2.10) λ=(kπβ+j)(kπβ+j+1),k+,j,kπβ,\lambda=(\tfrac{k\pi}{\beta}+j)(\tfrac{k\pi}{\beta}+j+1),\ k\in\mathbb{N}^{+},\ j\in\mathbb{N},\ \frac{k\pi}{\beta}\notin\mathbb{Z},

and the corresponding eigenfunction is given by

u=Pkπβ+jkπβ(cos(r))sin(kπβθ).u=P_{\frac{k\pi}{\beta}+j}^{-\frac{k\pi}{\beta}}\left(\cos(r)\right)\sin(\tfrac{k\pi}{\beta}\theta).

Case 2: μ\mu\in\mathbb{Z}. In this case we can similarly look at the asymptotic behavior of Pμ(x)P_{\ell}^{\mu}(x) as x(1)+x\rightarrow(-1)^{+} by using relation (2.7).

sin(μπ)Γ(+μ+1)Pμ(x)=sin(+μ)π)Γ(μ+1)Pμ(x)+sin(π)Γ(+μ+1)Pμ(x).\frac{\sin(-\mu\pi)}{\Gamma(\ell+\mu+1)}P_{\ell}^{\mu}(-x)=-\frac{\sin(\ell+\mu)\pi)}{\Gamma(\ell-\mu+1)}P_{\ell}^{-\mu}(x)+\frac{\sin(\ell\pi)}{\Gamma(\ell+\mu+1)}P_{\ell}^{\mu}(x).

If \ell\notin\mathbb{Z}, then either the first or the second term of the right hand side is a bounded factor times P|μ|(x)P_{\ell}^{|\mu|}(x) which goes to \infty as xx goes to 11^{-} by (2.5). Therefore Pμ(x)P_{\ell}^{\mu}(x)\rightarrow\infty as xx goes to (1)+(-1)^{+}, hence not a regular eigenfunction.

Therefore the only possibility left will be ,μ\ell\in\mathbb{Z},\mu\in\mathbb{Z}. This leads to associated Legendre polynomials which can be checked explicitly. With the given boundary conditions, we get that Pμ(x)P_{\ell}^{\mu}(x) is a solution to the eigenvalue equation, if

μ,, 0<|μ|.\mu,\ell\in\mathbb{Z},\ 0<|\mu|\leq\ell.

Note that Pμ(x)P_{\ell}^{\mu}(x) is a multiple of Pμ(x)P_{\ell}^{-\mu}(x) in this case, and to conform with the result from case 1, we get

(2.11) μ=1,2,,\displaystyle\mu=-1,-2,\dots,
=|μ|,|μ|+1,.\displaystyle\ell=|\mu|,|\mu|+1,\dots.

That is, the eigenvalues are given by

(2.12) λ=(kπβ+j)(kπβ+j+1),k+,j,kπβ.\lambda=(\tfrac{k\pi}{\beta}+j)(\tfrac{k\pi}{\beta}+j+1),\ k\in\mathbb{N}^{+},j\in\mathbb{N},\ \frac{k\pi}{\beta}\in\mathbb{Z}.

where the corresponding eigenfunction is given by

u=Pkπβ+jkπβ(cos(r))sin(kπβθ).u=P_{\frac{k\pi}{\beta}+j}^{-\frac{k\pi}{\beta}}\left(\cos(r)\right)\sin(\tfrac{k\pi}{\beta}\theta).

As mentioned above, in this case the eigenfunction can also be written as

u=Pkπβ+jkπβ(cos(r))sin(kπβθ).u=P_{\frac{k\pi}{\beta}+j}^{\frac{k\pi}{\beta}}\left(\cos(r)\right)\sin(\tfrac{k\pi}{\beta}\theta).

Combining (2.10) and (2.12) from the two cases, we get the result in the statement. ∎

2.2. Spherical triangles

Now we consider the spherical triangle which is bounded by θ=0,θ=β,r=π/2\theta=0,\theta=\beta,r=\pi/2 using the same coordinate as before, i.e. half of the spherical lunes discussed above. Note that when β=π/2\beta=\pi/2 it is the equilateral triangle. With the same set up as in the spherical lune, the only change is that we are looking for Legendre functions Pμ,QμP_{\ell}^{\mu},Q_{\ell}^{\mu} with boundary conditions

Pμ(1)=Pμ(0)=0 or Qμ(1)=Qμ(0)=0P_{\ell}^{\mu}(1)=P_{\ell}^{\mu}(0)=0\ \text{ or }\ Q_{\ell}^{\mu}(1)=Q_{\ell}^{\mu}(0)=0

instead.

Proof of Proposition 1.2.

Since the eigenvalue equation (2.3) is invariant when changing xx to x-x, an eigenfunction that satisfies R(1)=R(0)=0R(1)=R(0)=0 can be extended to an odd eigenfunction RR on the whole interval [1,1][-1,1] satisfying R(1)=R(1)=0R(1)=R(-1)=0 with the same eigenvalue. Hence we only need to look at the eigenfunctions from the previous proposition, and find these ones satisfying an additional condition R(0)=0R(0)=0.

We use the value of P(x)P_{*}(x) at 0 [8, (14.5.1)]:

Pμ(0)=2μπ1/2Γ(μ2+1)Γ(12+μ2).P_{\ell}^{\mu}(0)=\frac{2^{\mu}\pi^{1/2}}{\Gamma(\frac{\ell-\mu}{2}+1)\Gamma(\frac{1}{2}-\frac{\ell+\mu}{2})}.

From Pμ(0)=0P_{\ell}^{\mu}(0)=0 we get either

(2.13) μ2+1=0,1,2,,\frac{\ell-\mu}{2}+1=0,-1,-2,\dots,

or

(2.14) 12+μ2=0,1,2,,\frac{1}{2}-\frac{\ell+\mu}{2}=0,-1,-2,\dots,

should hold.

Combining with (LABEL:e:ellmu2) and (2.11) we get

μ<0,\displaystyle\mu<0,
=μ+1,μ+3,μ+5,.\displaystyle\ell=-\mu+1,-\mu+3,-\mu+5,\dots.

The eigenvalues are contained in the following set

{(kπβ+2j+1)(kπβ+2j+2):k+,j}\left\{\left(\frac{k\pi}{\beta}+2j+1\right)\left(\frac{k\pi}{\beta}+2j+2\right):k\in\mathbb{N}^{+},j\in\mathbb{N}\right\}

and the eigenfunctions are given by

u=Pkπβ+2jkπβ(cos(r))sin(kπβθ).u=P_{\frac{k\pi}{\beta}+2j}^{-\frac{k\pi}{\beta}}\left(\cos(r)\right)\sin(\tfrac{k\pi}{\beta}\theta).

We note here again when kπβ\frac{k\pi}{\beta}\in\mathbb{N} the eigenfunction can also be written as

u=Pkπβ+2j+1kπβ(cos(r))sin(kπβθ).u=P_{\frac{k\pi}{\beta}+2j+1}^{\frac{k\pi}{\beta}}\left(\cos(r)\right)\sin(\tfrac{k\pi}{\beta}\theta).

For the equilateral triangle, we give the explicit form of the first two eigenvalues and eigenfunctions which will be used in the next section.

Corollary 2.1.

For the equilateral triangle with β=π2\beta=\frac{\pi}{2}, the first eigenvalue is 12 and the corresponding eigenfunction with normalized L2L^{2} norm is given by

(2.15) u1=C~1P32(cos(r))sin(2θ)=1052πsin2(r)cos(r)sin(2θ).u_{1}=\tilde{C}_{1}P_{3}^{2}(\cos(r))\sin(2\theta)=\sqrt{\frac{105}{2\pi}}\sin^{2}(r)\cos(r)\sin(2\theta).

The second eigenvalue is 30, and there are two corresponding normalized eigenfunctions given by

(2.16) u2(1)=C~2P52(cos(r))sin(2θ)=11558π(3cos5(r)4cos3(r)+cos(r))sin(2θ),\displaystyle u_{2}^{(1)}=\tilde{C}_{2}P_{5}^{2}(\cos(r))\sin(2\theta)=\sqrt{\frac{1155}{8\pi}}(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))\sin(2\theta),
u2(2)=C~3P54(cos(r))sin(4θ)=346532πcos(r)sin4(r)sin(4θ).\displaystyle u_{2}^{(2)}=\tilde{C}_{3}P_{5}^{4}(\cos(r))\sin(4\theta)=\sqrt{\frac{3465}{32\pi}}\cos(r)\sin^{4}(r)\sin(4\theta).

3. Variation of Gap of Spherical triangle with diameter π2\frac{\pi}{2}

In this section we consider all spherical triangles with a fixed diameter π2\frac{\pi}{2}. It is not difficult to show that any such triangle can be moved on the sphere to have vertices (0,0)(0,0), (π2,0)(\frac{\pi}{2},0) and (A,B)(A,B) with 0<A<π2, 0<B<π20<A<\frac{\pi}{2},\ 0<B<\frac{\pi}{2}.

Denote by TT the right triangle with vertices (0,0)(0,0), (π2,0)(\frac{\pi}{2},0), (π2,π2)(\frac{\pi}{2},\frac{\pi}{2}) and T(t)T(t) the triangle with vertices (0,0)(0,0), (π2,0)(\frac{\pi}{2},0) and (π2bt,π2at)(\frac{\pi}{2}-bt,\frac{\pi}{2}-at) with a2+b2=1,a0,b0a^{2}+b^{2}=1,a\geq 0,\ b\geq 0, see Figure 2.

Refer to caption
Figure 2. The deformed triangle T(t)T(t) with three vertices at (0,0),(π2,0),(π2bt,π2at)(0,0),(\frac{\pi}{2},0),(\frac{\pi}{2}-bt,\frac{\pi}{2}-at).

We first construct a diffeomorphism FtF_{t} which maps the triangle TT to T(t)T(t). To construct such a mapping, we first compute the function l(α,θ)l(\alpha,\theta) which gives the geodesic distance from the equator to the edge of the deformed triangle, see Figure 3.

Refer to caption
Figure 3. A spherical triangle with one side of length θ\theta and two angles α,π/2\alpha,\pi/2. The function (α,θ)\ell(\alpha,\theta) computes the length of the side opposite to α\alpha.

For the spherical triangle with length θ,l,l1\theta,l,l_{1}, by the spherical cosine law,

cos(l1)=cos(l)cos(θ),\displaystyle\cos(l_{1})=\cos(l)\cos(\theta),

and spherical law of sines

sin(l1)=sin(l)sin(α)\displaystyle\sin(l_{1})=\frac{\sin(l)}{\sin(\alpha)}

we get

sin2(l)sin2(α)+cos2(θ)cos2(l)=1.\displaystyle\frac{\sin^{2}(l)}{\sin^{2}(\alpha)}+\cos^{2}(\theta)\cos^{2}(l)=1.

Namely

(1sin2(α)cos2(θ))sin2(l)=sin2(α)sin2(θ),\displaystyle(1-\sin^{2}(\alpha)\cos^{2}(\theta))\sin^{2}(l)=\sin^{2}(\alpha)\sin^{2}(\theta),

so

sin(l)=±sin(α)sin(θ)1sin2(α)cos2(θ).\displaystyle\sin(l)=\pm\frac{\sin(\alpha)\sin(\theta)}{\sqrt{1-\sin^{2}(\alpha)\cos^{2}(\theta)}}.

Since π/2\ell\leq\pi/2,

(3.1) l(α,θ)=arcsin(sin(α)sin(θ)1sin2(α)cos2(θ)).l(\alpha,\theta)=\arcsin\left(\frac{\sin(\alpha)\sin(\theta)}{\sqrt{1-\sin^{2}(\alpha)\cos^{2}(\theta)}}\right).

Now let z(a,b,t)z(a,b,t) be the distance between the vertex (π2,π2)(\frac{\pi}{2},\frac{\pi}{2}) to the intersection of the edge of the deformed triangle and the x=0x=0 plane. With the notation given in Figure 2, we have z(a,b,t)=αz(a,b,t)=\alpha.

Since we have

l(z(a,b,t),π2at)=bt,\displaystyle l\left(z(a,b,t),\tfrac{\pi}{2}-at\right)=bt,

using (3.1) this gives

sin(α)sin(θ)1sin2(α)cos2(θ)=sin(bt).\displaystyle\frac{\sin(\alpha)\sin(\theta)}{\sqrt{1-\sin^{2}(\alpha)\cos^{2}(\theta)}}=\sin(bt).

Solving for sinα\sin\alpha gives

sin(α)=sin(bt)sin2(θ)+sin2(bt)cos2(θ).\displaystyle\sin(\alpha)=\frac{\sin(bt)}{\sqrt{\sin^{2}(\theta)+\sin^{2}(bt)\cos^{2}(\theta)}}.

Hence

z(a,b,t)=α\displaystyle z(a,b,t)=\alpha =arcsin(sin(bt)sin2(π2at)+sin2(bt)cos2(π2at))\displaystyle=\arcsin\left(\frac{\sin(bt)}{\sqrt{\sin^{2}(\frac{\pi}{2}-at)+\sin^{2}(bt)\cos^{2}(\frac{\pi}{2}-at)}}\right)
=arcsin(sin(bt)cos2(at)+sin2(bt)sin2(at)).\displaystyle=\arcsin\left(\frac{\sin(bt)}{\sqrt{\cos^{2}(at)+\sin^{2}(bt)\sin^{2}(at)}}\right).

3.1. Deformation map and the Laplacian

We define the deformation map Ft:TT(t)F_{t}:T\to T(t) by

(3.2) Ft(r,θ)=(rl(z(a,b,t),θ2aπθt)2rπ,θ2aπθt)=(s,ψ).\displaystyle F_{t}(r,\theta)=\left(r-l\left(z(a,b,t),\theta-\frac{2a}{\pi}\theta t\right)\frac{2r}{\pi},\theta-\frac{2a}{\pi}\theta t\right)=(s,\psi).

With the computation above, we have

Ft(π2,π2)=(π2bt,π2at).\displaystyle F_{t}(\tfrac{\pi}{2},\tfrac{\pi}{2})=(\tfrac{\pi}{2}-bt,\frac{\pi}{2}-at).

We also have

Ft(0,0)=(0,0),Ft(π2,0)=(π2,0).F_{t}(0,0)=(0,0),\ F_{t}(\frac{\pi}{2},0)=(\frac{\pi}{2},0).

We will need the following asymptotics. Since z(a,b,0)=0,tz(a,b,0)=bz(a,b,0)=0,\ \frac{\partial}{\partial_{t}}z(a,b,0)=b, we have

z(a,b,t)=bt+O(t2).z(a,b,t)=bt+O(t^{2}).

By (3.1),

l(z,(1A)θ)=arcsin(sin(z)sin((1A)θ)1sin2(z)cos2((1A)θ))\displaystyle l(z,(1-A)\theta)=\arcsin\left(\frac{\sin(z)\sin((1-A)\theta)}{\sqrt{1-\sin^{2}(z)\cos^{2}((1-A)\theta)}}\right)

where A=2atπA=\frac{2at}{\pi}. Then l|t=0=0,lt|t=0=bsin(θ),l|_{t=0}=0,\ \frac{\partial l}{\partial t}|_{t=0}=b\sin(\theta), so

(3.3) l(z,(1A)θ)=bsin(θ)t+O(t2).l(z,(1-A)\theta)=b\sin(\theta)t+O(t^{2}).

Define

L:=θ[l(z,(1A)θ)].\displaystyle L:=\frac{\partial}{\partial\theta}[l(z,(1-A)\theta)].

Then

(3.4) L=bcos(θ)t+O(t2),θL=bsin(θ)t+O(t2).\displaystyle L=b\cos(\theta)t+O(t^{2}),\ \ \ \partial_{\theta}L=-b\sin(\theta)t+O(t^{2}).

To compute the variation of the Laplacian of the triangle T(t)T(t), we fix the domain by pullback the round metric

gS=dr2+sin2(r)dθ\displaystyle g_{S}=dr^{2}+\sin^{2}(r)d\theta

on T(t)T(t) with the diffeomorphism FtF_{t} to TT. Note that when evaluating the pullback metric at pTp\in T, we evaluate the round metric at Ft(p)T(t)F_{t}(p)\in T(t) so that

gt|p=(FtgS)|p=(dFt|p)TgS|Ft(p)dFt|p,\displaystyle g_{t}|_{p}=(F_{t}^{*}g_{S})|_{p}=(dF_{t}|_{p})^{T}g_{S}|_{F_{t}(p)}dF_{t}|_{p},

where

gS|Ft(p)=(100sin2(r(12lπ)))\displaystyle g_{S}|_{F_{t}(p)}=\begin{pmatrix}1&0\\ 0&\sin^{2}(r(1-\frac{2l}{\pi}))\end{pmatrix}

and

dFt=(12πl2rπL0(1A)).\displaystyle dF_{t}=\begin{pmatrix}1-\frac{2}{\pi}l&-\frac{2r}{\pi}L\\ 0&(1-A)\end{pmatrix}.

Then

gt=FtgS=((12πl)22rπ(12πl)L2rπ(12πl)L4r2π2L2+(1A)2sin2(r(12lπ)))\displaystyle g_{t}=F_{t}^{*}g_{S}=\begin{pmatrix}(1-\frac{2}{\pi}l)^{2}&-\frac{2r}{\pi}(1-\frac{2}{\pi}l)L\\ -\frac{2r}{\pi}(1-\frac{2}{\pi}l)L&\frac{4r^{2}}{\pi^{2}}L^{2}+(1-A)^{2}\sin^{2}(r(1-\frac{2l}{\pi}))\end{pmatrix}

and

(3.5) det(gt)=(12πl)2(1A)2sin2(r(12lπ)),\displaystyle\det(g_{t})=(1-\tfrac{2}{\pi}l)^{2}(1-A)^{2}\sin^{2}(r(1-\tfrac{2l}{\pi})),
gt1\displaystyle g_{t}^{-1} =(4r2π2L2(12πl)2(1A)2csc2(r(12lπ))+1(12πl)22rπL(12πl)(1A)2csc2(r(12lπ))2rπL(12πl)(1A)2csc2(r(12lπ))1(1A)2csc2(r(12lπ))).\displaystyle=\begin{pmatrix}\frac{\frac{4r^{2}}{\pi^{2}}L^{2}}{(1-\frac{2}{\pi}l)^{2}(1-A)^{2}}\csc^{2}(r(1-\frac{2l}{\pi}))+\frac{1}{(1-\frac{2}{\pi}l)^{2}}&\frac{\frac{2r}{\pi}L}{(1-\frac{2}{\pi}l)(1-A)^{2}}\csc^{2}(r(1-\frac{2l}{\pi}))\\ \frac{\frac{2r}{\pi}L}{(1-\frac{2}{\pi}l)(1-A)^{2}}\csc^{2}(r(1-\frac{2l}{\pi}))&\frac{1}{(1-A)^{2}}\csc^{2}(r(1-\frac{2l}{\pi}))\end{pmatrix}.

From this we can compute the Laplacian Δt\Delta_{t} of gtg_{t} using the formula

Δf=1deg(g)i[gijgjf].\displaystyle\Delta f=\frac{1}{\sqrt{\deg(g)}}\partial_{i}[g^{ij}\sqrt{g}\partial_{j}f].

We compute

r(grrgr)\displaystyle\partial_{r}(g^{rr}\sqrt{g}\partial_{r}) =r[(4r2π2L2(12πl)(1A)csc(r(12lπ))+(1A)sin(r(12lπ))(12πl))r]\displaystyle=\partial_{r}\left[\left(\frac{4r^{2}}{\pi^{2}}\frac{L^{2}}{(1-\frac{2}{\pi}l)(1-A)}\csc(r(1-\tfrac{2l}{\pi}))+\frac{(1-A)\sin(r(1-\frac{2l}{\pi}))}{(1-\frac{2}{\pi}l)}\right)\partial_{r}\right]
=(4r2π2L2(12πl)(1A)csc(r(12lπ))+(1A)sin(r(12lπ))(12πl))r2\displaystyle=\left(\frac{4r^{2}}{\pi^{2}}\frac{L^{2}}{(1-\frac{2}{\pi}l)(1-A)}\csc(r(1-\tfrac{2l}{\pi}))+\frac{(1-A)\sin(r(1-\frac{2l}{\pi}))}{(1-\frac{2}{\pi}l)}\right)\partial_{r}^{2}
+((1A)cos(r(12lπ))4r2π2L2(1A)csc(r(12lπ))cot(r(12lπ))\displaystyle\hskip 14.45377pt+\left((1-A)\cos(r(1-\tfrac{2l}{\pi}))-\frac{4r^{2}}{\pi^{2}}\frac{L^{2}}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\cot(r(1-\tfrac{2l}{\pi}))\right.
+8rπ2L2(12πl)(1A)csc(r(12lπ)))r,\displaystyle\hskip 14.45377pt\left.+\frac{8r}{\pi^{2}}\frac{L^{2}}{(1-\frac{2}{\pi}l)(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\right)\partial_{r},

and

r(grθdetgθ)\displaystyle\partial_{r}(g^{r\theta}\sqrt{\det g}\partial_{\theta}) =r[2rπL(1A)csc(r(12lπ))θ]\displaystyle=\partial_{r}\left[\frac{\frac{2r}{\pi}L}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{\theta}\right]
=2rπL1Acsc(r(12lπ))rθ+2πL(1A)csc(r(12lπ))θ\displaystyle=\frac{2r}{\pi}\frac{L}{1-A}\csc(r(1-\tfrac{2l}{\pi}))\partial_{r}\partial_{\theta}+\frac{2}{\pi}\frac{L}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{\theta}
2rπL(12lπ)1Acsc(r(12lπ))cot(r(12lπ))θ,\displaystyle\hskip 14.45377pt-\frac{2r}{\pi}\frac{L(1-\frac{2l}{\pi})}{1-A}\csc(r(1-\tfrac{2l}{\pi}))\cot(r(1-\tfrac{2l}{\pi}))\partial_{\theta},

and

θ[gθrdeggr]\displaystyle\partial_{\theta}[g^{\theta r}\sqrt{\deg g}\partial_{r}] =θ[2rπL(1A)csc(r(12lπ))r]\displaystyle=\partial_{\theta}\left[\frac{\frac{2r}{\pi}L}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{r}\right]
=2rπL(1A)csc(r(12lπ))θr+2rπθL1Acsc(r(12lπ))r\displaystyle=\frac{2r}{\pi}\frac{L}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{\theta}\partial_{r}+\frac{2r}{\pi}\frac{\partial_{\theta}L}{1-A}\csc(r(1-\tfrac{2l}{\pi}))\partial_{r}
+4r2Lπ2θL1Acsc(r(12lπ))cot(r(12lπ))r,\displaystyle\hskip 14.45377pt+\frac{4r^{2}L}{\pi^{2}}\frac{\partial_{\theta}L}{1-A}\csc(r(1-\tfrac{2l}{\pi}))\cot(r(1-\tfrac{2l}{\pi}))\partial_{r},

and

θ[gθθdetgθ]\displaystyle\partial_{\theta}[g^{\theta\theta}\sqrt{\det g}\partial_{\theta}] =θ[(12πl)(1A)csc(r(12lπ))θ]\displaystyle=\partial_{\theta}\left[\frac{(1-\frac{2}{\pi}l)}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{\theta}\right]
=2πL(1A)csc(r(12lπ))θ+(12πl)(1A)csc(r(12lπ))θ2\displaystyle=-\frac{2}{\pi}\frac{L}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{\theta}+\frac{(1-\frac{2}{\pi}l)}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\partial_{\theta}^{2}
+2rLπ(12πl)(1A)csc(r(12lπ))cot(r(12lπ))θ.\displaystyle\hskip 14.45377pt+\frac{2rL}{\pi}\frac{(1-\frac{2}{\pi}l)}{(1-A)}\csc(r(1-\tfrac{2l}{\pi}))\cot(r(1-\tfrac{2l}{\pi}))\partial_{\theta}.

Combining terms and using l,L=O(t)l,L=O(t), we have

Δt\displaystyle\Delta_{t} =1(12πl)2r2+1(12πl)cot(r(12lπ))r+2rπθL(12lπ)(1A)2csc2(r(12lπ))r\displaystyle=\frac{1}{(1-\frac{2}{\pi}l)^{2}}\partial_{r}^{2}+\frac{1}{(1-\frac{2}{\pi}l)}\cot(r(1-\tfrac{2l}{\pi}))\partial_{r}+\frac{2r}{\pi}\frac{\partial_{\theta}L}{(1-\frac{2l}{\pi})(1-A)^{2}}\csc^{2}(r(1-\tfrac{2l}{\pi}))\partial_{r}
+4rπL(12πl)(1A)2csc2(r(12lπ))rθ+1(1A)2csc2(r(12lπ))θ2+O(t2)\displaystyle\hskip 14.45377pt+\frac{4r}{\pi}\frac{L}{(1-\frac{2}{\pi}l)(1-A)^{2}}\csc^{2}(r(1-\tfrac{2l}{\pi}))\partial_{r}\partial_{\theta}+\frac{1}{(1-A)^{2}}\csc^{2}(r(1-\tfrac{2l}{\pi}))\partial_{\theta}^{2}+O(t^{2})

Using the series expansions

cot(r(12lπ))\displaystyle\cot(r(1-\tfrac{2l}{\pi})) =cot(r)+2rlπcsc2(r)+O(t2),\displaystyle=\cot(r)+\frac{2rl}{\pi}\csc^{2}(r)+O(t^{2}),
csc2(r(12lπ))\displaystyle\csc^{2}(r(1-\tfrac{2l}{\pi})) =csc2(r)+4rlπcot(r)csc2(r)+O(t2),\displaystyle=\csc^{2}(r)+\frac{4rl}{\pi}\cot(r)\csc^{2}(r)+O(t^{2}),

and

1(12πl)2=1+4πl+O(t2),1(1A)2=1+2A+O(t2),\displaystyle\frac{1}{(1-\frac{2}{\pi}l)^{2}}=1+\frac{4}{\pi}l+O(t^{2}),\ \ \ \frac{1}{(1-A)^{2}}=1+2A+O(t^{2}),

and plugging in the first order term for ll, LL and θL\partial_{\theta}L from (3.3), (3.4), and A=2atπA=\frac{2at}{\pi}, we obtain the following asymptotic formula.

Lemma 3.1.

The first order asymptotic expansion of the Laplacian of the deformed triangle T(t)T(t) is given by

(3.6) Δt\displaystyle\Delta_{t} =ΔS+tL1+O(t2),\displaystyle=\Delta_{S}+tL_{1}+O(t^{2}),

where ΔS\Delta_{S} is the standard sphere Laplacian (2.1) and

(3.7) L1\displaystyle L_{1} :=4πbsin(θ)r2+2πbsin(θ)cot(r)r+4πbrcos(θ)csc2(r)rθ\displaystyle:=\frac{4}{\pi}b\sin(\theta)\partial_{r}^{2}+\frac{2}{\pi}b\sin(\theta)\cot(r)\partial_{r}+\frac{4}{\pi}br\cos(\theta)\csc^{2}(r)\partial_{r}\partial_{\theta}
+4πbrsin(θ)cot(r)csc2(r)θ2+4πacsc2(r)θ2.\displaystyle\hskip 14.45377pt+\frac{4}{\pi}br\sin(\theta)\cot(r)\csc^{2}(r)\partial_{\theta}^{2}+\frac{4}{\pi}a\csc^{2}(r)\partial_{\theta}^{2}.

3.2. Perturbation of eigenvalues

Let u1u_{1} be the eigenfunction for λ1\lambda_{1} on the equilateral triangle with the round metric with unit norm (for explicit form see (2.15)). Let f1(t)f_{1}(t) and λ1(t)\lambda_{1}(t) be the first eigenfunction and eigenvalue for T(t)T(t). By the simplicity of λ1(t)\lambda_{1}(t), it is differentiable. Then

λ1(t)\displaystyle\lambda_{1}(t) =λ1+tλ1˙+O(t2)\displaystyle=\lambda_{1}+t\dot{\lambda_{1}}+O(t^{2})
f1(t)\displaystyle f_{1}(t) =u1+tf1˙+O(t2).\displaystyle=u_{1}+t\dot{f_{1}}+O(t^{2}).

Denote by ,T\langle,\rangle_{T} the inner product over the equilateral triangle TT with round metric, for small tt we have

λ1(t)f1(t),f1(t)T\displaystyle\lambda_{1}(t)\langle f_{1}(t),f_{1}(t)\rangle_{T} =Δtf1(t),f1(t)T\displaystyle=-\langle\Delta_{t}f_{1}(t),f_{1}(t)\rangle_{T}
=(ΔS2+tL1)[u1+tf1˙],u1+tf1˙T+O(t2)\displaystyle=-\langle(\Delta_{S^{2}}+tL_{1})[u_{1}+t\dot{f_{1}}],u_{1}+t\dot{f_{1}}\rangle_{T}+O(t^{2})
=λ1u12+2tλ1u1,f1˙TtL1u1,u1T+O(t2).\displaystyle=\lambda_{1}\|u_{1}\|^{2}+2t\lambda_{1}\langle u_{1},\dot{f_{1}}\rangle_{T}-t\langle L_{1}u_{1},u_{1}\rangle_{T}+O(t^{2}).

On the other hand

λ1(t)f1(t),f1(t)T\displaystyle\lambda_{1}(t)\langle f_{1}(t),f_{1}(t)\rangle_{T} =(λ1+tλ1˙)u1+tf1˙,u1+tf1˙T+O(t2)\displaystyle=(\lambda_{1}+t\dot{\lambda_{1}})\langle u_{1}+t\dot{f_{1}},u_{1}+t\dot{f_{1}}\rangle_{T}+O(t^{2})
=λ1u12+2tλ1u1,f1˙T+tλ1˙u12+O(t2).\displaystyle=\lambda_{1}\|u_{1}\|^{2}+2t\lambda_{1}\langle u_{1},\dot{f_{1}}\rangle_{T}+t\dot{\lambda_{1}}\|u_{1}\|^{2}+O(t^{2}).

Since u1u_{1} have unit L2L^{2} norm, we get

(3.8) λ1˙=L1u1,u1T.\dot{\lambda_{1}}=-\langle L_{1}u_{1},u_{1}\rangle_{T}.

Under the deformation, the relation between the integrals is

T(t)fsin(r)drdθ=T(t)=Ft(T)fdet(gS)=TFt[f]det(FtgS)=(1A)TFt[f](12πl)sin(r(12lπ))\displaystyle\int_{T(t)}f\sin(r)drd\theta=\int_{T(t)=F_{t}(T)}f\sqrt{\det(g_{S})}=\int_{T}F_{t}^{*}[f]\sqrt{\det(F^{*}_{t}g_{S}})=(1-A)\int_{T}F_{t}^{*}[f](1-\tfrac{2}{\pi}l)\sin(r(1-\tfrac{2l}{\pi}))

where the second equality comes from (3.5). Therefore, using (3.3) and definition of AA, we have

T(t)f1f2sin(r)𝑑r𝑑θ\displaystyle\int_{T(t)}f_{1}f_{2}\sin(r)drd\theta =(1A)TFt[f1f2](12πl)sin(r(12lπ))𝑑r𝑑θ\displaystyle=(1-A)\int_{T}F_{t}^{*}[f_{1}f_{2}](1-\tfrac{2}{\pi}l)\sin(r(1-\tfrac{2l}{\pi}))drd\theta
=(1A)TFt[f1f2](12πl)(sin(r)2rlπcos(r))𝑑r𝑑θ+O(t2)\displaystyle=(1-A)\int_{T}F_{t}^{*}[f_{1}f_{2}](1-\tfrac{2}{\pi}l)(\sin(r)-\tfrac{2rl}{\pi}\cos(r))drd\theta+O(t^{2})
=TFt[f1f2]sin(r)𝑑r𝑑θATFt[f1f2]sin(r)𝑑r𝑑θ\displaystyle=\int_{T}F_{t}^{*}[f_{1}f_{2}]\sin(r)drd\theta-A\int_{T}F_{t}^{*}[f_{1}f_{2}]\sin(r)drd\theta
2πl(TFt[f1f2]sin(r)𝑑r𝑑θ+TFt[f1f2]rcos(r)𝑑r𝑑θ)+O(t2)\displaystyle-\frac{2}{\pi}l\left(\int_{T}F_{t}^{*}[f_{1}f_{2}]\sin(r)drd\theta+\int_{T}F_{t}^{*}[f_{1}f_{2}]r\cos(r)drd\theta\right)+O(t^{2})
:=TFt[f1f2]sin(r)𝑑r𝑑θ+tZ+O(t2).\displaystyle:=\int_{T}F_{t}^{*}[f_{1}f_{2}]\sin(r)drd\theta+tZ+O(t^{2}).

If f1f_{1} and f2f_{2} are eigenfunctions for the first two Dirichlet eigenvalues on T(t)T(t) (with round metric) then by orthogonality we have that

(3.9) TFt[f1f2]sin(r)𝑑r𝑑θ=tZ+O(t2).\displaystyle\int_{T}F_{t}^{*}[f_{1}f_{2}]\sin(r)drd\theta=-tZ+O(t^{2}).
Lemma 3.2.

Let u1,u2u_{1},u_{2} be eigenfunctions for TT with unit L2L^{2} norm corresponding to the first two eigenvalues λ1,λ2\lambda_{1},\lambda_{2}. Suppose that for any a,b0a,b\geq 0, with respect to the linear order operator L1L_{1} defined in (3.7),

Tu2L1u2u1L1u1<0.\displaystyle\int_{T}u_{2}L_{1}u_{2}-u_{1}L_{1}u_{1}<0.

Then the equilateral triangle TT is a strict local minimum for the gap function among all spherical triangles with diameter π2\frac{\pi}{2}.

Proof.

Let f1f_{1} and f2f_{2} be eigenfunctions for the first two Dirichlet eigenvalues of the deformed triangle T(t)T(t). Here we will integrate over the equilateral triangle TT with the round metric. Since Δtf2=λ(t)f2\Delta_{t}f_{2}=-\lambda(t)f_{2} is pointwise, it still satisfies the eigenvalue equation after pullback. And up to first order, Ft[f2]=f2+O(t)F_{t}^{*}[f_{2}]=f_{2}+O(t). By abuse of notation, fi=Ft[fi]f_{i}=F_{t}^{*}[f_{i}]. Then define

ε(t):=Tu1f2Tu1f1.\displaystyle\varepsilon(t):=\frac{-\int_{T}u_{1}f_{2}}{\int_{T}u_{1}f_{1}}.

Since T(0)=TT(0)=T and F0=idF_{0}=\operatorname{id}, the expansion f1=u1+tddt|t=0f1+O(t2)f_{1}=u_{1}+t\frac{d}{dt}|_{t=0}f_{1}+O(t^{2}) implies Tu1f1=1+O(t){\int_{T}u_{1}f_{1}}=1+O(t). Then by (3.9),

ε(t)=Tf2(f1u1)Tu1f1+tZ+O(t2).\displaystyle\varepsilon(t)=\frac{\int_{T}f_{2}(f_{1}-u_{1})}{\int_{T}u_{1}f_{1}}+tZ+O(t^{2}).

Using the same expansion f1=u1+tddt|t=0f1+O(t2)f_{1}=u_{1}+t\frac{d}{dt}|_{t=0}f_{1}+O(t^{2}) it implies that ε(t)=O(t)\varepsilon(t)=O(t), for small tt. By definition of ε(t)\varepsilon(t), we have

T(f2+εf1)u1=0.\displaystyle\int_{T}(f_{2}+\varepsilon f_{1})u_{1}=0.

So we can use f2+εf1f_{2}+\varepsilon f_{1} as a test function for λ2\lambda_{2},

λ2T(f2+εf1)ΔS2(f2+εf1)T(f2+εf1)2.\displaystyle\lambda_{2}\leq\frac{-\int_{T}(f_{2}+\varepsilon f_{1})\Delta_{S^{2}}(f_{2}+\varepsilon f_{1})}{\int_{T}(f_{2}+\varepsilon f_{1})^{2}}.

Using the asymptotic ΔS2=ΔttL1+O(t2)\Delta_{S^{2}}=\Delta_{t}-tL_{1}+O(t^{2}),

T(f2+εf1)ΔS2(f2+εf1)T(f2+εf1)2\displaystyle\frac{-\int_{T}(f_{2}+\varepsilon f_{1})\Delta_{S^{2}}(f_{2}+\varepsilon f_{1})}{\int_{T}(f_{2}+\varepsilon f_{1})^{2}} =T(f2+εf1)(ΔttL1)(f2+εf1)+O(t2)T(f2+εf1)2\displaystyle=\frac{-\int_{T}(f_{2}+\varepsilon f_{1})(\Delta_{t}-tL_{1})(f_{2}+\varepsilon f_{1})+O(t^{2})}{\int_{T}(f_{2}+\varepsilon f_{1})^{2}}
=λ2(t)Tf22+tTf2L1f2+O(t2)T(f2+εf1)2.\displaystyle=\frac{\lambda_{2}(t)\int_{T}f_{2}^{2}+t\int_{T}f_{2}L_{1}f_{2}+O(t^{2})}{\int_{T}(f_{2}+\varepsilon f_{1})^{2}}.

Since Tf1f2=O(t)\int_{T}f_{1}f_{2}=O(t) and Tf22=1+O(t)\int_{T}f_{2}^{2}=1+O(t), we have

λ2λ2(t)+tTf2L1f2+O(t2).\displaystyle\lambda_{2}\leq\lambda_{2}(t)+t\int_{T}f_{2}L_{1}f_{2}+O(t^{2}).

Therefore, combining with (3.8) gives

λ2λ1λ2(t)λ1(t)+t(Tf2L1f2Tu1L1u1)+O(t2).\displaystyle\lambda_{2}-\lambda_{1}\leq\lambda_{2}(t)-\lambda_{1}(t)+t\left(\int_{T}f_{2}L_{1}f_{2}-\int_{T}u_{1}L_{1}u_{1}\right)+O(t^{2}).

Using the asymptotics of f2f_{2} once more, we have

λ2λ1λ2(t)λ1(t)+t(Tu2L1u2Tu1L1u1)+O(t2).\displaystyle\lambda_{2}-\lambda_{1}\leq\lambda_{2}(t)-\lambda_{1}(t)+t\left(\int_{T}u_{2}L_{1}u_{2}-\int_{T}u_{1}L_{1}u_{1}\right)+O(t^{2}).

Hence, with the assumption

Tu2L1u2u1L1u1<0,\int_{T}u_{2}L_{1}u_{2}-u_{1}L_{1}u_{1}<0,

for small tt we have λ2λ1<λ2(t)λ1(t)\lambda_{2}-\lambda_{1}<\lambda_{2}(t)-\lambda_{1}(t). ∎

3.3. Computation for Tu1L1u1\int_{T}u_{1}L_{1}u_{1}

Using the explicit expressions for u1u_{1} (2.15) and L1L_{1} (3.7), we have

Tu1L1u1detgS=\displaystyle\int_{T}u_{1}L_{1}u_{1}\sqrt{\det g_{S}}= 4πbTu1sin(θ)r2[u1]sin(r)drdθ(I)\displaystyle\frac{4}{\pi}b\int_{T}u_{1}\sin(\theta)\partial_{r}^{2}[u_{1}]\sin(r)drd\theta\hskip 97.56493pt(\text{I})
+2πbTu1sin(θ)cot(r)r[u1]sin(r)drdθ(II)\displaystyle+\frac{2}{\pi}b\int_{T}u_{1}\sin(\theta)\cot(r)\partial_{r}[u_{1}]\sin(r)drd\theta\hskip 54.2025pt(\text{II})
+4πbTu1rcos(θ)csc2(r)rθ[u1]sin(r)drdθ(III)\displaystyle+\frac{4}{\pi}b\int_{T}u_{1}r\cos(\theta)\csc^{2}(r)\partial_{r}\partial_{\theta}[u_{1}]\sin(r)drd\theta\hskip 28.90755pt(\text{III})
+4πbTu1rsin(θ)cot(r)csc2(r)θ2[u1]sin(r)drdθ(IV)\displaystyle+\frac{4}{\pi}b\int_{T}u_{1}r\sin(\theta)\cot(r)\csc^{2}(r)\partial_{\theta}^{2}[u_{1}]\sin(r)drd\theta\quad(\text{IV})
+4πaTu1csc2(r)θ2[u1]sin(r)drdθ.(V)\displaystyle+\frac{4}{\pi}a\int_{T}u_{1}\csc^{2}(r)\partial_{\theta}^{2}[u_{1}]\sin(r)drd\theta.\hskip 75.88371pt(\text{V})

Denote C1=1052πC_{1}=\frac{105}{2\pi}. Now calculating each term, we have for term I

4πbC10π2sin2(2θ)sin(θ)𝑑θ0π2sin3(r)cos(r)r2[sin2(r)cos(r)]dr\displaystyle\frac{4}{\pi}bC_{1}\int_{0}^{\frac{\pi}{2}}\sin^{2}(2\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}\sin^{3}(r)\cos(r)\partial_{r}^{2}[\sin^{2}(r)\cos(r)]dr =bC114081575π.\displaystyle=-bC_{1}\frac{1408}{1575\pi}.

For term II

2πbC10π2sin2(2θ)sin(θ)𝑑θ0π2sin2cos2(r)r[sin2(r)cos(r)]dr=bC1641575π.\displaystyle\frac{2}{\pi}bC_{1}\int_{0}^{\frac{\pi}{2}}\sin^{2}(2\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}\sin^{2}\cos^{2}(r)\partial_{r}[\sin^{2}(r)\cos(r)]dr=bC_{1}\frac{64}{1575\pi}.

For term III

4πbC10π2sin(2θ)cos(θ)θ[sin(2θ)]dθ0π2rsin(r)cos(r)r[sin2(r)cos(r)]dr=bC1(164504483375π).\displaystyle\frac{4}{\pi}bC_{1}\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\cos(\theta)\partial_{\theta}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\sin(r)\cos(r)\partial_{r}[\sin^{2}(r)\cos(r)]dr=bC_{1}\left(\frac{16}{450}-\frac{448}{3375\pi}\right).

For term IV

4bπC10π2sin(2θ)sin(θ)θ2[sin(2θ)]dθ0π2rcos3(r)sin2(r)𝑑r\displaystyle\frac{4b}{\pi}C_{1}\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\sin(\theta)\partial_{\theta}^{2}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\cos^{3}(r)\sin^{2}(r)dr =bC1(33283375π128225).\displaystyle=bC_{1}\left(\frac{3328}{3375\pi}-\frac{128}{225}\right).

For term V

4πa0π2sin(2θ)θ2[sin(2θ)]dθ0π2sin3(r)cos2(r)𝑑r=8a15C1.\displaystyle\frac{4}{\pi}a\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\partial_{\theta}^{2}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}\sin^{3}(r)\cos^{2}(r)dr=-\frac{8a}{15}C_{1}.

Combining, we obtain

Tu1L1u1𝑑AS2\displaystyle\int_{T}u_{1}L_{1}u_{1}dA_{S^{2}} =bC1(14081575π+641575π4483375π+33283375π+16450128225)815aC1\displaystyle=bC_{1}\left(-\frac{1408}{1575\pi}+\frac{64}{1575\pi}-\frac{448}{3375\pi}+\frac{3328}{3375\pi}+\frac{16}{450}-\frac{128}{225}\right)-\frac{8}{15}aC_{1}
(3.10) =b28πa28π.\displaystyle=-b\frac{28}{\pi}-a\frac{28}{\pi}.

3.4. Computation for Tu2L1u2\int_{T}u_{2}L_{1}u_{2}

By linearity, the second eigenfunction is of the form

u2:=pu2(1)+qu2(2)\displaystyle u_{2}:=pu^{(1)}_{2}+qu^{(2)}_{2}

with p2+q2=1p^{2}+q^{2}=1 and u2(1),u2(2)u_{2}^{(1)},u_{2}^{(2)} given in (2.16). Then

(3.11) Tu2L1u2\displaystyle\int_{T}u_{2}L_{1}u_{2} =p2Tu2(1)(L1u2(1))+pqTu2(2)(L1u2(1))+pqTu2(1)(L1u2(2))+q2Tu2(2)(L1u2(2))\displaystyle=p^{2}\int_{T}u^{(1)}_{2}(L_{1}u^{(1)}_{2})+pq\int_{T}u^{(2)}_{2}(L_{1}u^{(1)}_{2})+pq\int_{T}u^{(1)}_{2}(L_{1}u^{(2)}_{2})+q^{2}\int_{T}u^{(2)}_{2}(L_{1}u^{(2)}_{2})
=p2(b77π+a44π)pqb223π+q2(b55π+a88π)\displaystyle=p^{2}(b\frac{77}{\pi}+a\frac{44}{\pi})-pqb\frac{22\sqrt{3}}{\pi}+q^{2}(b\frac{55}{\pi}+a\frac{88}{\pi})

The details of the computation are shown in the appendix.

Define

I\displaystyle I :=Tu2(L1u2)+Tu1(L1u1)\displaystyle:=-\int_{T}u_{2}(L_{1}u_{2})+\int_{T}u_{1}(L_{1}u_{1})
=b(p277πpq223π+q255π28π)+a(p244π+q288π28π).\displaystyle=b\left(p^{2}\frac{77}{\pi}-pq\frac{22\sqrt{3}}{\pi}+q^{2}\frac{55}{\pi}-\frac{28}{\pi}\right)+a\left(p^{2}\frac{44}{\pi}+q^{2}\frac{88}{\pi}-\frac{28}{\pi}\right).

Using p=cos(z)p=\cos(z), q=sin(z)q=\sin(z) and a=1b2a=\sqrt{1-b^{2}},

I\displaystyle I =b(27π+cos2(z)22πcos(z)sin(z)223π)+1b2(16π+sin2(z)44π)\displaystyle=b\left(\frac{27}{\pi}+\cos^{2}(z)\frac{22}{\pi}-\cos(z)\sin(z)\frac{22\sqrt{3}}{\pi}\right)+\sqrt{1-b^{2}}\left(\frac{16}{\pi}+\sin^{2}(z)\frac{44}{\pi}\right)

To find the minimum over 0z2π0\leq z\leq 2\pi and 0b10\leq b\leq 1, notice that the function f(x)=Ax+B1x2f(x)=Ax+B\sqrt{1-x^{2}} has f′′(x)=B(1x2)32<0f^{\prime\prime}(x)=-\frac{B}{(1-x^{2})^{\frac{3}{2}}}<0 for B>0B>0. Hence for each fixed zz, any interior critical point of II will be a maximum so the minimum must occur at the boundary (b=0b=0 or b=1b=1). The minimum of 27π+cos2(z)22πcos(z)sin(z)223π\frac{27}{\pi}+\cos^{2}(z)\frac{22}{\pi}-\cos(z)\sin(z)\frac{22\sqrt{3}}{\pi} is 16π\frac{16}{\pi}, which is also the minimum of 16π+sin2(z)44π\frac{16}{\pi}+\sin^{2}(z)\frac{44}{\pi}, hence the minimum value is I=16πI=\frac{16}{\pi}.

Combine with Lemma 3.2 this finishes the proof of Theorem 1.1.

Remark 3.1.

Note that when a=1,b=0a=1,\ b=0 or a=0,b=1a=0,b=1, the variation is along one side of the equilateral spherical triangle. In both cases the minimum is 16π\frac{16}{\pi}. In this case the gap is explicitly given in (1.3). Namely Γ(T(t))=4π(π2t)+10\Gamma(T(t))=\frac{4\pi}{(\frac{\pi}{2}-t)}+10. Hence ddtΓ(T(t))|t=0=16π\frac{d}{dt}\Gamma(T(t))|_{t=0}=\frac{16}{\pi}. So the above computation matches up with this direct computation.

Appendix A Details for the computation of Tu2L1u2\int_{T}u_{2}L_{1}u_{2}

We include here the detailed computation for (3.11) which is used for the variation of λ2(t)\lambda_{2}(t). Recall the second eigenfunctions u2(1),u2(2)u_{2}^{(1)},u_{2}^{(2)} are given in (2.16). Denote C2=11558π,C3=346532πC_{2}=\frac{1155}{8\pi},\ C_{3}=\frac{3465}{32\pi}.

We first compute the p2p^{2} term in (3.11):

Tu2(1)L1u2(1)𝑑AS2=\displaystyle\int_{T}u^{(1)}_{2}L_{1}u^{(1)}_{2}dA_{S^{2}}= 4πbTu2(1)sin(θ)r2[u2(1)]sin(r)drdθ(I)\displaystyle\frac{4}{\pi}b\int_{T}u^{(1)}_{2}\sin(\theta)\partial_{r}^{2}[u^{(1)}_{2}]\sin(r)drd\theta\hskip 97.56493pt(\text{I})
+2πbTu2(1)sin(θ)cot(r)r[u2(1)]sin(r)drdθ(II)\displaystyle+\frac{2}{\pi}b\int_{T}u^{(1)}_{2}\sin(\theta)\cot(r)\partial_{r}[u^{(1)}_{2}]\sin(r)drd\theta\hskip 54.2025pt(\text{II})
+4πbTu2(1)rcos(θ)csc2(r)rθ[u2(1)]sin(r)drdθ(III)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(1)}_{2}r\cos(\theta)\csc^{2}(r)\partial_{r}\partial_{\theta}[u^{(1)}_{2}]\sin(r)drd\theta\hskip 28.90755pt(\text{III})
+4πbTu2(1)rsin(θ)cot(r)csc2(r)θ2[u2(1)]sin(r)drdθ(IV)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(1)}_{2}r\sin(\theta)\cot(r)\csc^{2}(r)\partial_{\theta}^{2}[u^{(1)}_{2}]\sin(r)drd\theta\quad(\text{IV})
+4πaTu2(1)csc2(r)θ2[u2(1)]sin(r)drdθ.(V)\displaystyle+\frac{4}{\pi}a\int_{T}u^{(1)}_{2}\csc^{2}(r)\partial_{\theta}^{2}[u^{(1)}_{2}]\sin(r)drd\theta.\hskip 75.88371pt(\text{V})

For term I,

4πbC2\displaystyle\frac{4}{\pi}bC_{2} 0π2sin2(2θ)sin(θ)𝑑θ0π2(3cos5(r)4cos3(r)+cos(r))r2[(3cos5(r)4cos3(r)+cos(r))]sin(r)dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{2}(2\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))\partial_{r}^{2}[(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))]\sin(r)dr
=bC266565775π.\displaystyle=-bC_{2}\frac{6656}{5775\pi}.

For term II,

2πbC2\displaystyle\frac{2}{\pi}bC_{2} 0π2sin2(2θ)sin(θ)𝑑θ0π2(3cos6(r)4cos4(r)+cos2(r))r[(3cos5(r)4cos3(r)+cos(r))]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{2}(2\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}(3\cos^{6}(r)-4\cos^{4}(r)+\cos^{2}(r))\partial_{r}[(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))]dr
=bC225617325π.\displaystyle=bC_{2}\frac{256}{17325\pi}.

For term III

2πbC2\displaystyle\frac{2}{\pi}bC_{2} 0π2sin(2θ)cos(θ)θ[sin(2θ)]dθ0π2rcsc(r)r[(3cos5(r)4cos3(r)+cos(r))2]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\cos(\theta)\partial_{\theta}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\csc(r)\partial_{r}[(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))^{2}]dr
=bC2(8225281623625π).\displaystyle=bC_{2}\left(\frac{8}{225}-\frac{2816}{23625\pi}\right).

For term IV

4πbC2\displaystyle\frac{4}{\pi}bC_{2} 0π2sin(2θ)sin(θ)θ2[sin(2θ)]dθ0π2r(3cos5(r)4cos3(r)+cos(r))2cot(r)csc(r)𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\sin(\theta)\partial_{\theta}^{2}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))^{2}\cot(r)\csc(r)dr
=bC2(2969623625π128225).\displaystyle=bC_{2}\left(\frac{29696}{23625\pi}-\frac{128}{225}\right).

For term V

4πaC2\displaystyle\frac{4}{\pi}aC_{2} 0π2sin(2θ)θ2[sin(2θ)]dθ0π2csc(r)(3cos5(r)4cos3(r)+cos(r))2𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\partial_{\theta}^{2}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}\csc(r)(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))^{2}dr
=aC232105\displaystyle=-aC_{2}\frac{32}{105}

Combining

(A.1) Tu2(1)L1u2(1)𝑑AS2\displaystyle\int_{T}u^{(1)}_{2}L_{1}u^{(1)}_{2}dA_{S^{2}} =bC2(66565775π+25617325π281623625π+2969623625π+8225128225)aC232105\displaystyle=bC_{2}\left(-\frac{6656}{5775\pi}+\frac{256}{17325\pi}-\frac{2816}{23625\pi}+\frac{29696}{23625\pi}+\frac{8}{225}-\frac{128}{225}\right)-aC_{2}\frac{32}{105}
=b77πa44π\displaystyle=-b\frac{77}{\pi}-a\frac{44}{\pi}

We then compute the first pqpq term in (3.11):

Tu2(2)L1u2(1)𝑑AS2=\displaystyle\int_{T}u^{(2)}_{2}L_{1}u^{(1)}_{2}dA_{S^{2}}= 4πbTu2(2)sin(θ)r2[u2(1)]sin(r)drdθ(I)\displaystyle\frac{4}{\pi}b\int_{T}u^{(2)}_{2}\sin(\theta)\partial_{r}^{2}[u^{(1)}_{2}]\sin(r)drd\theta\hskip 97.56493pt(\text{I})
+2πbTu2(2)sin(θ)cot(r)r[u2(1)]sin(r)drdθ(II)\displaystyle+\frac{2}{\pi}b\int_{T}u^{(2)}_{2}\sin(\theta)\cot(r)\partial_{r}[u^{(1)}_{2}]\sin(r)drd\theta\hskip 54.2025pt(\text{II})
+4πbTu2(2)rcos(θ)csc2(r)rθ[u2(1)]sin(r)drdθ(III)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(2)}_{2}r\cos(\theta)\csc^{2}(r)\partial_{r}\partial_{\theta}[u^{(1)}_{2}]\sin(r)drd\theta\hskip 28.90755pt(\text{III})
+4πbTu2(2)rsin(θ)cot(r)csc2(r)θ2[u2(1)]sin(r)drdθ(IV)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(2)}_{2}r\sin(\theta)\cot(r)\csc^{2}(r)\partial_{\theta}^{2}[u^{(1)}_{2}]\sin(r)drd\theta\quad(\text{IV})
+4πaTu2(2)csc2(r)θ2[u2(1)]sin(r)drdθ.(V)\displaystyle+\frac{4}{\pi}a\int_{T}u^{(2)}_{2}\csc^{2}(r)\partial_{\theta}^{2}[u^{(1)}_{2}]\sin(r)drd\theta.\hskip 75.88371pt(\text{V})

For term I,

4πbC2C3\displaystyle\frac{4}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(4θ)sin(2θ)sin(θ)𝑑θ0π2cos(r)sin5(r)r2[(3cos5(r)4cos3(r)+cos(r))]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\sin(2\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}\cos(r)\sin^{5}(r)\partial_{r}^{2}[(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))]dr
=bC2C3819240425π.\displaystyle=b\sqrt{C_{2}C_{3}}\frac{8192}{40425\pi}.

For term II,

2πbC2C3\displaystyle\frac{2}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(4θ)sin(2θ)sin(θ)𝑑θ0π2cos2(r)sin4(r)r[(3cos5(r)4cos3(r)+cos(r))]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\sin(2\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}\cos^{2}(r)\sin^{4}(r)\partial_{r}[(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))]dr
=bC2C32048121275π.\displaystyle=-b\sqrt{C_{2}C_{3}}\frac{2048}{121275\pi}.

For term III

4πbC2C3\displaystyle\frac{4}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(4θ)cos(θ)θ[sin(2θ)]dθ0π2rcos(r)sin3(r)r[(3cos5(r)4cos3(r)+cos(r))]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\cos(\theta)\partial_{\theta}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\cos(r)\sin^{3}(r)\partial_{r}[(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))]dr
=bC2C3(1936110258335363472875π)\displaystyle=b\sqrt{C_{2}C_{3}}\left(\frac{1936}{11025}-\frac{833536}{3472875\pi}\right)

For term IV,

4πbC2C3\displaystyle\frac{4}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(4θ)sin(θ)θ2[sin(2θ)]dθ0π2rsin2(r)(3cos7(r)4cos5(r)+cos3(r))𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\sin(\theta)\partial_{\theta}^{2}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\sin^{2}(r)(3\cos^{7}(r)-4\cos^{5}(r)+\cos^{3}(r))dr
=bC2C3(1884163472875π25611025).\displaystyle=b\sqrt{C_{2}C_{3}}\left(\frac{188416}{3472875\pi}-\frac{256}{11025}\right).

For Term V,

4πaC2C3\displaystyle\frac{4}{\pi}a\sqrt{C_{2}C_{3}} 0π2sin(4θ)θ2[sin(2θ)]dθ0π2sin3(r)(3cos6(r)4cos4(r)+cos2(r))𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\partial_{\theta}^{2}[\sin(2\theta)]d\theta\int_{0}^{\frac{\pi}{2}}\sin^{3}(r)(3\cos^{6}(r)-4\cos^{4}(r)+\cos^{2}(r))dr
=0\displaystyle=0

Combining to get

(A.2) Tu2(2)L1u2(1)𝑑AS2\displaystyle\int_{T}u^{(2)}_{2}L_{1}u^{(1)}_{2}dA_{S^{2}} =bC2C3(819240425π2048121275π8335363472875π+1884163472875π+19361102525611025)\displaystyle=b\sqrt{C_{2}C_{3}}\left(\frac{8192}{40425\pi}-\frac{2048}{121275\pi}-\frac{833536}{3472875\pi}+\frac{188416}{3472875\pi}+\frac{1936}{11025}-\frac{256}{11025}\right)
=b113π\displaystyle=b\frac{11\sqrt{3}}{\pi}

Next is the second pqpq term in (3.11):

Tu2(1)L1u2(2)𝑑AS2=\displaystyle\int_{T}u^{(1)}_{2}L_{1}u^{(2)}_{2}dA_{S^{2}}= 4πbTu2(1)sin(θ)r2[u2(2)]sin(r)drdθ(I)\displaystyle\frac{4}{\pi}b\int_{T}u^{(1)}_{2}\sin(\theta)\partial_{r}^{2}[u^{(2)}_{2}]\sin(r)drd\theta\hskip 97.56493pt(\text{I})
+2πbTu2(1)sin(θ)cot(r)r[u2(2)]sin(r)drdθ(II)\displaystyle+\frac{2}{\pi}b\int_{T}u^{(1)}_{2}\sin(\theta)\cot(r)\partial_{r}[u^{(2)}_{2}]\sin(r)drd\theta\hskip 54.2025pt(\text{II})
+4πbTu2(1)rcos(θ)csc2(r)rθ[u2(2)]sin(r)drdθ(III)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(1)}_{2}r\cos(\theta)\csc^{2}(r)\partial_{r}\partial_{\theta}[u^{(2)}_{2}]\sin(r)drd\theta\hskip 28.90755pt(\text{III})
+4πbTu2(1)rsin(θ)cot(r)csc2(r)θ2[u2(2)]sin(r)drdθ(IV)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(1)}_{2}r\sin(\theta)\cot(r)\csc^{2}(r)\partial_{\theta}^{2}[u^{(2)}_{2}]\sin(r)drd\theta\quad(\text{IV})
+4πaTu2(1)csc2(r)θ2[u2(2)]sin(r)drdθ.(V)\displaystyle+\frac{4}{\pi}a\int_{T}u^{(1)}_{2}\csc^{2}(r)\partial_{\theta}^{2}[u^{(2)}_{2}]\sin(r)drd\theta.\hskip 75.88371pt(\text{V})

For term I,

4πbC2C3\displaystyle\frac{4}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(2θ)sin(θ)sin(4θ)𝑑θ0π2(3cos5(r)4cos3(r)+cos(r))r2[cos(r)sin4(r)]sin(r)dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\sin(\theta)\sin(4\theta)d\theta\int_{0}^{\frac{\pi}{2}}(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))\partial_{r}^{2}[\cos(r)\sin^{4}(r)]\sin(r)dr
=bC2C3204814553π\displaystyle=b\sqrt{C_{2}C_{3}}\frac{2048}{14553\pi}

For term II,

2πbC2C3\displaystyle\frac{2}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(2θ)sin(θ)sin(4θ)𝑑θ0π2(3cos6(r)4cos4(r)+cos2(r))r[cos(r)sin4(r)]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\sin(\theta)\sin(4\theta)d\theta\int_{0}^{\frac{\pi}{2}}(3\cos^{6}(r)-4\cos^{4}(r)+\cos^{2}(r))\partial_{r}[\cos(r)\sin^{4}(r)]dr
=bC2C3102472765π\displaystyle=b\sqrt{C_{2}C_{3}}\frac{1024}{72765\pi}

For term III,

4πbC2C3\displaystyle\frac{4}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(2θ)cos(θ)θ[sin(4θ)]dθ0π2r(3cos5(r)4cos3(r)+cos(r))csc(r)r[cos(r)sin4(r)]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\cos(\theta)\partial_{\theta}[\sin(4\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r(3\cos^{5}(r)-4\cos^{3}(r)+\cos(r))\csc(r)\partial_{r}[\cos(r)\sin^{4}(r)]dr
=bC2C3(27041102512912643472875π)\displaystyle=b\sqrt{C_{2}C_{3}}\left(\frac{2704}{11025}-\frac{1291264}{3472875\pi}\right)

For term IV

4πbC2C3\displaystyle\frac{4}{\pi}b\sqrt{C_{2}C_{3}} 0π2sin(2θ)sin(θ)θ2[sin(4θ)]dθ0π2r(3cos7(r)4cos5(r)+cos3(r))sin2(r)𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\sin(\theta)\partial_{\theta}^{2}[\sin(4\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r(3\cos^{7}(r)-4\cos^{5}(r)+\cos^{3}(r))\sin^{2}(r)dr
=bC2C3(7536643472875π102411025)\displaystyle=b\sqrt{C_{2}C_{3}}\left(\frac{753664}{3472875\pi}-\frac{1024}{11025}\right)

For term V

4πaC2C3\displaystyle\frac{4}{\pi}a\sqrt{C_{2}C_{3}} 0π2sin(2θ)θ2[sin(4θ)]dθ0π2(3cos6(r)4cos4(r)+cos2(r))sin3(r)𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(2\theta)\partial_{\theta}^{2}[\sin(4\theta)]d\theta\int_{0}^{\frac{\pi}{2}}(3\cos^{6}(r)-4\cos^{4}(r)+\cos^{2}(r))\sin^{3}(r)dr
=0\displaystyle=0

Combining to get

(A.3) Tu2(1)L1u2(2)𝑑AS2\displaystyle\int_{T}u^{(1)}_{2}L_{1}u^{(2)}_{2}dA_{S^{2}} =bC2C3(204814553π+102472765π12912643472875π+7536643472875π+270411025102411025)\displaystyle=b\sqrt{C_{2}C_{3}}\left(\frac{2048}{14553\pi}+\frac{1024}{72765\pi}-\frac{1291264}{3472875\pi}+\frac{753664}{3472875\pi}+\frac{2704}{11025}-\frac{1024}{11025}\right)
=bC2C316105\displaystyle=b\sqrt{C_{2}C_{3}}\frac{16}{105}

Last is the q2q^{2} term in (3.11):

Tu2(2)L1u2(2)𝑑AS2=\displaystyle\int_{T}u^{(2)}_{2}L_{1}u^{(2)}_{2}dA_{S^{2}}= 4πbTu2(2)sin(θ)r2[u2(2)]sin(r)drdθ(I)\displaystyle\frac{4}{\pi}b\int_{T}u^{(2)}_{2}\sin(\theta)\partial_{r}^{2}[u^{(2)}_{2}]\sin(r)drd\theta\hskip 97.56493pt(\text{I})
+2πbTu2(2)sin(θ)cot(r)r[u2(2)]sin(r)drdθ(II)\displaystyle+\frac{2}{\pi}b\int_{T}u^{(2)}_{2}\sin(\theta)\cot(r)\partial_{r}[u^{(2)}_{2}]\sin(r)drd\theta\hskip 54.2025pt(\text{II})
+4πbTu2(2)rcos(θ)csc2(r)rθ[u2(2)]sin(r)drdθ(III)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(2)}_{2}r\cos(\theta)\csc^{2}(r)\partial_{r}\partial_{\theta}[u^{(2)}_{2}]\sin(r)drd\theta\hskip 28.90755pt(\text{III})
+4πbTu2(2)rsin(θ)cot(r)csc2(r)θ2[u2(2)]sin(r)drdθ(IV)\displaystyle+\frac{4}{\pi}b\int_{T}u^{(2)}_{2}r\sin(\theta)\cot(r)\csc^{2}(r)\partial_{\theta}^{2}[u^{(2)}_{2}]\sin(r)drd\theta\quad(\text{IV})
+4πaTu2(2)csc2(r)θ2[u2(2)]sin(r)drdθ.(V)\displaystyle+\frac{4}{\pi}a\int_{T}u^{(2)}_{2}\csc^{2}(r)\partial_{\theta}^{2}[u^{(2)}_{2}]\sin(r)drd\theta.\hskip 75.88371pt(\text{V})

For term I,

4πbC3\displaystyle\frac{4}{\pi}bC_{3} 0π2sin2(4θ)sin(θ)𝑑θ0π2cos(r)sin5(r)r2[cos(r)sin4(r)]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{2}(4\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}\cos(r)\sin^{5}(r)\partial_{r}^{2}[\cos(r)\sin^{4}(r)]dr
=bC3139264218295π\displaystyle=-bC_{3}\frac{139264}{218295\pi}

For term II,

2πbC3\displaystyle\frac{2}{\pi}bC_{3} 0π2sin2(4θ)sin(θ)𝑑θ0π2cos2(r)sin4(r)r[cos(r)sin4(r)]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{2}(4\theta)\sin(\theta)d\theta\int_{0}^{\frac{\pi}{2}}\cos^{2}(r)\sin^{4}(r)\partial_{r}[\cos(r)\sin^{4}(r)]dr
=bC34096218295π\displaystyle=bC_{3}\frac{4096}{218295\pi}

For term III,

4πbC3\displaystyle\frac{4}{\pi}bC_{3} 0π2sin(4θ)cos(θ)θ[sin(4θ)]dθ0π2rcos(r)sin3(r)r[cos(r)sin4(r)]dr\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\cos(\theta)\partial_{\theta}[\sin(4\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\cos(r)\sin^{3}(r)\partial_{r}[\cos(r)\sin^{4}(r)]dr
=bC3(323969450561250235π)\displaystyle=bC_{3}\left(\frac{32}{3969}-\frac{45056}{1250235\pi}\right)

For term IV,

4πbC3\displaystyle\frac{4}{\pi}bC_{3} 0π2sin(4θ)sin(θ)θ2[sin(4θ)]dθ0π2rcos3(r)sin6(r)𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\sin(\theta)\partial_{\theta}^{2}[\sin(4\theta)]d\theta\int_{0}^{\frac{\pi}{2}}r\cos^{3}(r)\sin^{6}(r)dr
=bC3(163840250047π20483969)\displaystyle=bC_{3}\left(\frac{163840}{250047\pi}-\frac{2048}{3969}\right)

For term V,

4πaC3\displaystyle\frac{4}{\pi}aC_{3} 0π2sin(4θ)θ2[sin(4θ)]dθ0π2cos2(r)sin7(r)𝑑r\displaystyle\int_{0}^{\frac{\pi}{2}}\sin(4\theta)\partial_{\theta}^{2}[\sin(4\theta)]d\theta\int_{0}^{\frac{\pi}{2}}\cos^{2}(r)\sin^{7}(r)dr
=aC3162315\displaystyle=-aC_{3}\frac{16^{2}}{315}

Combining to get

(A.4) Tu2(2)L1u2(2)𝑑AS2\displaystyle\int_{T}u^{(2)}_{2}L_{1}u^{(2)}_{2}dA_{S^{2}} =bC3(139264218295π+4096218295π450561250235π+163840250047π+32396920483969)aC3162315\displaystyle=bC_{3}\left(-\frac{139264}{218295\pi}+\frac{4096}{218295\pi}-\frac{45056}{1250235\pi}+\frac{163840}{250047\pi}+\frac{32}{3969}-\frac{2048}{3969}\right)-aC_{3}\frac{16^{2}}{315}
=b55πa88π\displaystyle=-b\frac{55}{\pi}-a\frac{88}{\pi}

Combining the results (A.1), (A.2), (A.3) and (A.4) we get (3.11).

References

    @book{AbramowitzStegun}
  • TITLE = Handbook of mathematical functions with formulas, graphs, and mathematical tables, EDITOR = Abramowitz, Milton Editor=Stegun, Irene A., NOTE = Reprint of the 1972 edition, PUBLISHER = Dover Publications, Inc., New York, YEAR = 1992, PAGES = xiv+1046, ISBN = 0-486-61272-4, MRCLASS = 00A20 (00A22 33-00), MRNUMBER = 1225604,
  • [2] Ben Andrews and Julie Clutterbuck. Proof of the fundamental gap conjecture. J. Amer. Math. Soc., 24(3):899–916, 2011.
  • [3] Theodora Bourni, Julie Clutterbuck, Xuan Hien Nguyen, Alina Stancu, Guofang Wei, and Valentina-Mira Wheeler. The vanishing of the fundamental gap of convex domains in n\mathbb{H}^{n}. arXiv:2005.11784, 2020.
  • [4] Xianzhe Dai, Shoo Seto, and Guofang Wei. Fundamental gap estimate for convex domains on sphere– the case n=2n=2. To appear in Comm. in Analysis and Geometry, arXiv:1803.01115, 2018.
  • [5] Xianzhe Dai, Shoo Seto, and Guofang Wei. Fundamental gap comparison. In Surveys in Geometric Analysis 2018, pages 1–16, 2019.
  • [6] Chenxu He and Guofang Wei. Fundamental gap of convex domains in the spheres (with appendix B by Qi S. Zhang). Amer. Journal of Math, 142, no. 4, 1161-1192, 2020.
  • LuZhiqinRowlettJulieThe fundamental gap of simplicesComm. Math. Phys.31920131111–145ISSN 0010-3616Review MathReviewsDocument@article{lu-rowlett, author = {Lu, Zhiqin}, author = {Rowlett, Julie}, title = {The fundamental gap of simplices}, journal = {Comm. Math. Phys.}, volume = {319}, date = {2013}, number = {1}, pages = {111–145}, issn = {0010-3616}, review = {\MR{3034027}}, doi = {10.1007/s00220-013-1670-9}}
  • [8] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.27 of 2020-06-15.
  • [9] Shoo Seto, Lili Wang, and Guofang Wei. Sharp fundamental gap estimate on convex domains of sphere. Journal of Differential Geometry, 112(2):347–389, 2019.