This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Functional strong law of large numbers for Betti numbers in the tail

Takashi Owada Department of Statistics
Purdue University
West Lafayette, 47907, USA
[email protected]
 and  Zifu Wei Department of Statistics
Purdue University
West Lafayette, 47907, USA
[email protected]
Abstract.

The objective of this paper is to investigate the layered structure of topological complexity in the tail of a probability distribution. We establish the functional strong law of large numbers for Betti numbers, a basic quantifier of algebraic topology, of a geometric complex outside an open ball of radius RnR_{n}, such that RnR_{n}\to\infty as the sample size nn increases. The nature of the obtained law of large numbers is determined by the decay rate of a probability density. It especially depends on whether the tail of a density decays at a regularly varying rate or an exponentially decaying rate. The nature of the limit theorem depends also on how rapidly RnR_{n} diverges. In particular, if RnR_{n} diverges sufficiently slowly, the limiting function in the law of large numbers is crucially affected by the emergence of arbitrarily large connected components supporting topological cycles in the limit.

Key words and phrases:
Functional strong law of large numbers, extreme value theory, Betti number, topological crackle.
2010 Mathematics Subject Classification:
Primary 60G70, 60F15. Secondary 55U10, 60D05, 60F17.
This research was partially supported by NSF grant DMS-1811428.

1. Introduction

The main theme of this paper is a phenomenon called topological crackle, which refers to a layered structure of homological elements of different orders. In a practical setting, topological crackle appears in a manifold learning problem as in Figure 1. Our aim in Figure 1 is to recover the topology of the circle S1S^{1} from the union of balls centered around 100100 uniformly distributed points. In Figure 1 (c), Gaussian noise is added to the uniform random sample. Then, the union is similar in shape to the circle S1S^{1} and the recovery of its topology is possible. However, if the noise has a “heavy tailed” Cauchy distribution as in Figure 1 (d), the extraneous homological elements (i.e., two distinct components and a one-dimensional cycle) away from the center of S1S^{1}, will render the recovery of its topology difficult (or even impossible). This example indicates that a small number of “topologically essential” components and cycles may drastically change topology at a global level.

Refer to caption
Figure 1. (a) Uniformly distributed points on the circle S1S^{1}. (b) A family of open balls with radius 0.20.2 around the uniform points. (c) Gaussian noise is added to the uniform points via the algorithm in [13]. (d) When heavy tailed Cauchy noise is added, several extraneous components and cycles appear. This figure is taken from [23].

The current work is partially motivated by extreme value theory (EVT), in light of the fact that topological crackle is associated with a “rare event” occurring in the tail of probability distributions. Beyond the standard literature on EVT (see, e.g., [19, 8, 7]), there have been many attempts so far to understand the geometric and topological features of extreme sample clouds [4, 21, 6, 1, 16]. This paper contributes to the existing literature by examining crackle phenomena in a higher dimensional setting. To make our implication more transparent, we consider the power-law density

(1.1) f(x)=C1+xα,xd,f(x)=\frac{C}{1+\|x\|^{\alpha}},\ \ x\in\mathbb{R}^{d},

for some α>d\alpha>d and a normalizing constant C>0C>0. Let Ann(K,L)(K,L) be an annulus with inner radius KK and outer radius LL. We then divide d\mathbb{R}^{d} into the layers of annuli at different radii,

(1.2) d=i=1d+1Ann(Ri,n,Ri1,n),\mathbb{R}^{d}=\bigcup_{i=1}^{d+1}\text{Ann}(R_{i,n},R_{{i-1},n}),

where

(1.3) Ri,n={i=0,(Cn)1αd/(i+2)i{1,,d1},(Cn)1/αi=d,0i=d+1.R_{i,n}=\begin{cases}\infty&\ i=0,\\ (Cn)^{\frac{1}{\alpha-d/(i+2)}}&\ i\in\{1,\dots,d-1\},\\ (Cn)^{1/\alpha}&\ i=d,\\ 0&\ i=d+1.\end{cases}

Figure 2 visualizes the annuli (1.2) as a layer of Betti numbers of all feasible dimensions. The Betti number is a quantifier of topological complexity in view of homological elements such as components and cycles in Figure 1 (d). For every k{1,,d1}k\in\{1,\dots,d-1\}, the kkth Betti number represents the number of kk-dimensional cycles (henceforth we call it a kk-cycle) as a boundary of a (k+1)(k+1)-dimensional body. In Section 2, we provide a more rigorous description of Betti numbers under a more precise setup. Suppose 𝒳n={X1,,Xn}d{\mathcal{X}}_{n}=\{X_{1},\dots,X_{n}\}\subset\mathbb{R}^{d} denotes independently and identically distributed (i.i.d\mathrm{i.i.d}) random points in d\mathbb{R}^{d}, d2d\geq 2, drawn from (1.1). Let B(x,r)={yd:yx<r}B(x,r)=\big{\{}y\in\mathbb{R}^{d}:\|y-x\|<r\big{\}} be an open ball of radius rr around xdx\in\mathbb{R}^{d} (\|\cdot\| is the Euclidean norm), and

U(r)=X𝒳nB(X,r),r0,U(r)=\bigcup_{X\in{\mathcal{X}}_{n}}B(X,r),\ \ \ r\geq 0,

be the union of open balls around the points in 𝒳n{\mathcal{X}}_{n}. Given a growing sequence RnR_{n}\to\infty and a positive integer k{1,,d1}k\in\{1,\dots,d-1\}, the kkth Betti number in Figure 2 is defined as

(1.4) βk,n(t):=βk(X𝒳nB(0,Rn)cB(X,t/2)),t0.\beta_{k,n}(t):=\beta_{k}\Big{(}\bigcup_{X\in{\mathcal{X}}_{n}\cap B(0,R_{n})^{c}}B(X,t/2)\Big{)},\ \ \ t\geq 0.

Then, βk,n(t)\beta_{k,n}(t) counts the number of kk-cycles in the outside of an expanding ball B(0,Rn)B(0,R_{n}). Note also that (1.4) is seen as a stochastic process of right continuous sample paths with left limits.

Refer to caption
Figure 2. Topological crackle is a layered structure of topological invariants such as Betti numbers. The kkth Betti number is denoted as βk\beta_{k}, and “Poi” stands for a Poisson distribution.

After the pioneering paper of [1], the layered structure in Figure 2 has been intensively studied via the behavior of various topological invariants [16, 14, 15, 17, 23]. In particular, from the viewpoints of (1.4), we have in an asymptotic sense,

  • Outside Ann(R1,n,)=B(0,R1,n)c(R_{1,n},\infty)=B(0,R_{1,n})^{c} there are finitely many 11-cycles (accordingly, the first order Betti number is approximated by a Poisson distribution), but none of the cycles of dimensions 2,,d12,\dots,d-1.

  • Inside Ann(R2,n,R1,n)(R_{2,n},R_{1,n}) there are infinitely many 11-cycles and finitely many 22-cycles, but none of the cycles of dimensions 3,,d13,\dots,d-1.

In general, for every k{3,,d1}k\in\{3,\dots,d-1\},

  • Inside Ann(Rk,n,Rk1,n)(R_{k,n},R_{k-1,n}) there are infinitely many cycles of dimensions 1,,k11,\dots,k-1 and finitely many kk-cycles, but none of the cycles of dimensions k+1,,d1k+1,\dots,d-1,

and finally,

  • Inside Ann(Rd,n,Rd1,n)(R_{d,n},R_{d-1,n}) there are infinitely many cycles of all dimensions 1,,d11,\dots,d-1.

In the literature (e.g., [14]), the innermost ball B(0,Rd,n)=B(0,(Cn)1/α)B(0,R_{d,n})=B\big{(}0,(Cn)^{1/\alpha}\big{)} is called a weak core. A weak core is a centered ball, in which random points are highly densely distributed and the homology of the union of balls becomes nearly trivial as nn\to\infty, i.e., almost all cycles of any dimension inside of a weak core will be asymptotically filled in. See Section 2 for a formal definition of a weak core.

As expected from Figure 2, it is not surprising that the stochastic features of (1.4) drastically vary, depending on how rapidly RnR_{n} diverges. Among many of the related studies [16, 14, 15, 17, 23], the authors of [16] explored the case Rn=Rk,n=(Cn)1αd/(k+2)R_{n}=R_{k,n}=(Cn)^{\frac{1}{\alpha-d/(k+2)}}, so that there appear at most finitely many kk-cycles outside of B(0,Rn)B(0,R_{n}) as nn\to\infty. Consequently, (1.4) converges weakly to a Poisson distribution. If RnR_{n} diverges more slowly, such that Rd,nRnRk,nR_{d,n}\ll R_{n}\ll R_{k,n} as nn\to\infty, then, infinitely many kk-cycles would appear in Ann(Rn,Rk,n)(R_{n},R_{k,n}). In this case, (1.4) obeys a functional central limit theorem (CLT) (see [15]). However, the spatial distribution of kk-cycles is still sparse. As a result, all the kk-cycles contributing to the limiting Gaussian process will be of the minimal size (i.e., they all consist of k+2k+2 points). If RnR_{n} diverges even more slowly, so that Rn=Rd,n=(Cn)1/αR_{n}=R_{d,n}=(Cn)^{1/\alpha}, then U(t)U(t) becomes highly connected in the area close to a boundary of a weak core. Although (1.4) still follows a CLT under an appropriate normalization, the components supporting the limiting kk-cycles will become arbitrarily large [15]. In other words, the limiting kk-cycles can be supported not only on k+2k+2 points, but also on ii points for all ik+2i\geq k+2.

The main objective of this paper is to establish the functional strong law of large numbers (SLLN) for (1.4) in the space D[0,1]D[0,1] of right continuous functions defined on [0,1][0,1] with left limits. This study is relevant only when the behavior of (1.4) is governed by a CLT. In this sense, the current study is viewed as a natural continuation of the work in [15]. We will see that the nature of the functional SLLN for (1.4), including the scaling constants and the properties of the limiting functions, differs according to the growth rate of RnR_{n}. In Section 3.1, we demonstrate two distinct functional SLLNs, depending on whether Rd,nRnRk,nR_{d,n}\ll R_{n}\ll R_{k,n} or Rn=Rd,nR_{n}=R_{d,n}, when the density has a regularly varying tail as in (1.1).

In the literature, the previous studies [10, 24, 22, 11] also proved the SLLNs for topological invariants such as Betti numbers and the Euler characteristic. However, all of these studies treated topology of an entire space d\mathbb{R}^{d}. Then, the topological invariants are crucially impacted by densely scattered random points closer to the origin, especially those inside of a weak core. As a consequence, the resulting SLLN is robust to the choice of the density ff, and the topological invariants grow proportionally to the sample size. In the context of topological crackle, however, the limit theorems for topological invariants heavily depend on the decay rate of a probability density. For instance, according to [1, 16, 17], the layered structure in Figure 2 appears only when the distribution for 𝒳n{\mathcal{X}}_{n} has a tail at least as heavy as that of an exponential distribution. Therefore, if 𝒳n{\mathcal{X}}_{n} is drawn from a Gaussian distribution, for each k1k\geq 1, βk,n(t)\beta_{k,n}(t) in (1.4) simply vanishes as nn\to\infty.

From this point of view, the other main thrust of this paper, which was never studied in [15], is to explore how crackle occurs when the density of 𝒳n{\mathcal{X}}_{n} has a (sub)exponential tail. One of the simplest cases of such densities is

(1.5) f(x)=Cexτ/τ,xd,f(x)=Ce^{-\|x\|^{\tau}/\tau},\ \ x\in\mathbb{R}^{d},

for some τ(0,1]\tau\in(0,1] and a normalizing constant C>0C>0. Then, instead of (1.2) we obtain the “logarithmic scale” annuli structure

d=i=1d+1Ann(Ri,n,Ri1,n),\mathbb{R}^{d}=\bigcup_{i=1}^{d+1}\text{Ann}(R_{i,n},R_{{i-1},n}),

where

Ri,n={i=0,(τlogn+(i+2)1(dτ)log(τlogn)+τlogC)1/τi{1,,d1},(τlogn+τlogC)1/τi=d,0i=d+1.R_{i,n}=\begin{cases}\infty&\ i=0,\\ \big{(}\tau\log n+(i+2)^{-1}(d-\tau)\log(\tau\log n)+\tau\log C\big{)}^{1/\tau}&\ i\in\{1,\dots,d-1\},\\ (\tau\log n+\tau\log C)^{1/\tau}&\ i=d,\\ 0&\ i=d+1.\end{cases}

In Section 3.2, we establish the functional SLLN for (1.4) in the space D[0,1]D[0,1] when the density has an exponentially decaying tail as in (1.5). The asymptotics of (1.4) once again depends on the growth rate of RnR_{n}: a phase transition occurs between the cases Rd,nRnRk,nR_{d,n}\ll R_{n}\ll R_{k,n} and Rn=Rd,nR_{n}=R_{d,n}.

From an analytic viewpoint, the main challenge of the current study is that the scaling constants for the Betti number may grow logarithmically, whereas in the previous studies [10, 24, 22, 11], the scaling constant was equal to the sample size nn up to multiplicative constants. More concretely, if the density has an (sub)exponential tail as in (1.5), the radii of annuli are all logarithmic. Accordingly, the scaler for the Betti number will be logarithmic as well; see Example 3.5 for more detailed analyses. In the case of a power-law density, the radii of annuli are polynomial as shown in (1.3). Nevertheless, the scaler for the Betti numbers can still be logarithmic, especially when (Rn)(R_{n}) and (Rk,n)(R_{k,n}) have the same regular variation exponent (i.e., (αd/(k+2))1\big{(}\alpha-d/(k+2)\big{)}^{-1}), and the difference between Rk,nR_{k,n}and RnR_{n} is at most logarithmic. Example 3.3 below provides more detailed analyses on this point. If the scaler is logarithmic, a direct application of the Borel-Cantelli lemma, together with the lower-order moment calculations, does not help to establish the required SLLNs. To overcome this difficulty, we shall utilize the concentration inequalities in [2], which themselves were developed for analyzing Poisson UU-statistics of the geometric configuration of a point cloud, such as subgraph counts of a random geometric graph. For the application of these concentration bounds, one needs to detect appropriate subsequential upper and lower bounds for various quantities that are used to approximate Betti numbers. The latter approach is a standard technique for the theory of geometric graphs; see, e.g., Chapter 3 of the monograph [18].

This paper is organized as follows. In Section 2, we provide a precise setup of the Betti number in (1.4) via the notion of a Čech complex. In Section 3, we develop the functional SLLNs in two distinct scenarios: one where the distribution has a regularly varying tail and the other where the distribution has an exponentially decaying tail. For each of the distributional contexts, the behavior of (1.4) splits into two additional distinct cases, according to how rapidly RnR_{n} diverges. All the proofs are deferred to Section 4 and the Appendix.

As a final remark, our proposed methods are applicable to other geometric complexes beyond a Čech complex. In particular, for a Vietoris-Rips complex, all the results can be carried over by a simple modification of the scaler of the SLLN.

2. Setup

We begin with introducing fundamental concepts towards proving the main functional SLLNs. Let 𝒳n={X1,,Xn}\mathcal{X}_{n}=\{X_{1},\dots,X_{n}\} be a set of nn i.i.d\mathrm{i.i.d} d\mathbb{R}^{d}-valued random variables with probability density ff. For the rigorous description of the Betti number in (1.4), we need to introduce a higher-dimensional notion of graphs, called the geometric complex. Among many varieties of geometric complexes (see [9]), we especially focus on the Čech complex.

Definition 2.1.

Given a set 𝒳={x1,,xn}{\mathcal{X}}=\{x_{1},\dots,x_{n}\} of points in d\mathbb{R}^{d} and a positive number r>0r>0, the Čech complex Cˇ(𝒳,r)\check{C}({\mathcal{X}},r) is defined as follows.

  1. (1)

    The 0-simplices are the points in 𝒳{\mathcal{X}}.

  2. (2)

    For each m1m\geq 1, [xi0,,xim]𝒳[x_{i_{0}},\dots,x_{i_{m}}]\subset{\mathcal{X}} forms an mm-simplex if j=0mB(xij,r/2)\bigcap_{j=0}^{m}B(x_{i_{j}},r/2)\neq\emptyset.

The main advantage of the Čech complex is its homotopy equivalence to the union of balls U(r/2)U(r/2). This fundamental result is known as the Nerve lemma (e.g., Theorem 10.7 in [5]).

The objective of this paper is to study the “extreme-value behavior” of the Čech complex generated by points far away from the origin. More concretely, for any sequence (Rn,n1)(R_{n},n\geq 1) of positive numbers with RnR_{n}\to\infty, and a positive number t>0t>0, we consider a Čech complex Cˇ(𝒳nB(0,Rn)c,t)\check{C}(\mathcal{X}_{n}\cap B(0,R_{n})^{c},t) built over random points in 𝒳n{\mathcal{X}}_{n} lying outside of B(0,Rn)B(0,R_{n}). Then, the collection of Čech complexes

(2.1) (Cˇ(𝒳nB(0,Rn)c,t),t0)\big{(}\check{C}(\mathcal{X}_{n}\cap B(0,R_{n})^{c},t),\,t\geq 0\big{)}

induces a filtration in parameter tt; that is, the Čech complexes under consideration are non-decreasing,

Cˇ(𝒳nB(0,Rn)c,s)Cˇ(𝒳nB(0,Rn)c,t)\check{C}({\mathcal{X}}_{n}\cap B(0,R_{n})^{c},s)\subset\check{C}(\mathcal{X}_{n}\cap B(0,R_{n})^{c},t)

for all 0<st<0<s\leq t<\infty. Given a positive integer k{1,,d1}k\in\{1,\dots,d-1\} that remains fixed henceforth, the kkth Betti number of (2.1) is denoted as

(2.2) βk,n(t):=βk(Cˇ(𝒳nB(0,Rn)c,t))=βk(X𝒳nB(0,Rn)cB(X,t/2)),t0,\beta_{k,n}(t):=\beta_{k}\Big{(}\check{C}(\mathcal{X}_{n}\cap B(0,R_{n})^{c},t)\Big{)}=\beta_{k}\bigg{(}\bigcup_{X\in{\mathcal{X}}_{n}\cap B(0,R_{n})^{c}}B(X,t/2)\bigg{)},\ \ \ t\geq 0,

where the second equality is a consequence of the Nerve lemma. Then, (2.2) can be viewed as a non-negative integer-valued stochastic process in parameter tt that has right continuous sample paths with left limits.

To derive the required functional SLLN, we need a more explicit expression of βk,n(t)\beta_{k,n}(t). For this purpose, we express βk,n(t)\beta_{k,n}(t) in the same way as the previous studies in [12, 15]. Define for 𝒴=(y1,,yi)(d)i{\mathcal{Y}}=(y_{1},\dots,y_{i})\in(\mathbb{R}^{d})^{i}, ik+2i\geq k+2, j1j\geq 1, and t0t\geq 0,

(2.3) ht(i,j)(𝒴):=𝟏{βk(Cˇ(𝒴,t))=j,Cˇ(𝒴,t) is connected},h_{t}^{(i,j)}({\mathcal{Y}}):={\bf 1}\big{\{}\beta_{k}(\check{C}({\mathcal{Y}},t))=j,\,\check{C}({\mathcal{Y}},t)\text{ is connected}\big{\}},

and

(2.4) hn,t(i,j)(𝒴):=ht(i,j)(𝒴) 1{(𝒴)Rn},h_{n,t}^{(i,j)}({\mathcal{Y}}):=h_{t}^{(i,j)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}},

with

(𝒴):=min1iy.\mathcal{M}({\mathcal{Y}}):=\min_{1\leq\ell\leq i}\lVert y_{\ell}\rVert.

For any subset 𝒵𝒴\mathcal{Z}\supset{\mathcal{Y}} consisting of finitely many dd-dimensional real vectors, we define

gt(i,j)(𝒴,𝒵):=ht(i,j)(𝒴) 1{Cˇ(𝒴,t) is a connected component of Cˇ(𝒵,t)},g_{t}^{(i,j)}({\mathcal{Y}},\mathcal{Z}):=h_{t}^{(i,j)}({\mathcal{Y}})\,{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is a connected component of }\check{C}(\mathcal{Z},t)\big{\}},

and also,

(2.5) gn,t(i,j)(𝒴,𝒵):=hn,t(i,j)(𝒴) 1{Cˇ(𝒴,t) is a connected component of Cˇ(𝒵,t)},g_{n,t}^{(i,j)}({\mathcal{Y}},\mathcal{Z}):=h_{n,t}^{(i,j)}({\mathcal{Y}})\,{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is a connected component of }\check{C}(\mathcal{Z},t)\big{\}},

and

(2.6) Jk,n(i,j)(t):=𝒴𝒳n,|𝒴|=ign,t(i,j)(𝒴,𝒳n).J_{k,n}^{(i,j)}(t):=\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\,|{\mathcal{Y}}|=i}g_{n,t}^{(i,j)}({\mathcal{Y}},{\mathcal{X}}_{n}).

Then, we can express βk,n(t)\beta_{k,n}(t) as

(2.7) βk,n(t)=i=k+2nj1jJk,n(i,j)(t).\beta_{k,n}(t)=\sum_{i=k+2}^{n}\sum_{j\geq 1}jJ_{k,n}^{(i,j)}(t).

Before concluding this section, we shall formally define the notion of a weak core.

Definition 2.2.

Let ff be a spherically symmetric probability density in d\mathbb{R}^{d}. A weak core is a centered ball B(0,Rn(w))B(0,R_{n}^{(w)}) such that nf(Rn(w)θ)1nf(R_{n}^{(w)}\theta)\to 1 as nn\to\infty, for every (equivalently, some) θSd1\theta\in S^{d-1}, where Sd1S^{d-1} is the (d1)(d-1)-dimensional unit sphere in d\mathbb{R}^{d}

As mentioned in the Introduction, if ff has a specific power-law tail as in (1.1), it is easy to see that Rn(w)=Rd,n=(Cn)1/αR_{n}^{(w)}=R_{d,n}=(Cn)^{1/\alpha}. Similarly, if ff is given by (1.5), one can take Rn(w)=Rd,n=(τlogn+τlogC)1/τR_{n}^{(w)}=R_{d,n}=(\tau\log n+\tau\log C)^{1/\tau}. See [14] for more detailed information about a weak core.

3. Functional strong law of large numbers

We develop two main theorems in this section. In the below, we denote by RVγRV_{\gamma} the collection of regularly varying functions or sequences (at infinity) of exponent γ\gamma\in\mathbb{R}.

3.1. Regularly varying tail case

First, we explore the case that the density ff is spherically symmetric and has a regularly varying tail (at infinity) of exponent α-\alpha with α>d\alpha>d. Namely, we assume that

(3.1) limrf(rtθ)f(rθ)=tα\lim_{r\to\infty}\frac{f(rt\theta)}{f(r\theta)}=t^{-\alpha}

for every t>0t>0 and θSd1\theta\in S^{d-1}. With spherical symmetry of ff, one can denote f(r):=f(rθ)f(r):=f(r\theta), r0r\geq 0 for any fixed θSd1\theta\in S^{d-1}. Then, (3.1) can be written as fRVαf\in RV_{-\alpha}.

From the literature of topological crackle [1, 16, 15], it is known that

𝔼[βk,n(t)]Cρn,as n,\mathbb{E}\big{[}\beta_{k,n}(t)\big{]}\sim C\rho_{n},\ \ \text{as }n\to\infty,

where CC is a finite and positive constant and

ρn:=nk+2Rndf(Rn)k+2.\rho_{n}:=n^{k+2}R_{n}^{d}f(R_{n})^{k+2}.

Since the main theme of this paper is a (functional) SLLN for βk,n(t)\beta_{k,n}(t), we treat only the case ρn\rho_{n}\to\infty. Under this assumption, Theorem 3.1 below splits the behavior of βk,n(t)\beta_{k,n}(t) into two distinct regimes:

(i)nf(Rn)0,n,\displaystyle(i)\ \ nf(R_{n})\to 0,\ \ \ n\to\infty,
(ii)nf(Rn)λ,n,for some λ(0,).\displaystyle(ii)\ \ nf(R_{n})\to\lambda,\ \ n\to\infty,\ \text{for some }\lambda\in(0,\infty).

Clearly, (Rn)(R_{n}) in case (i)(i) diverges more rapidly than that in case (ii)(ii). In case (i)(i), the Čech complex outside of B(0,Rn)B(0,R_{n}) is so sparse that all the kk-cycles remaining in the limit of the SLLN will be the simplest one formed by k+2k+2 vertices. In contrast, if RnR_{n} is determined by condition (ii)(ii), the ball B(0,Rn)B(0,R_{n}) agrees with the weak core (see Definition 2.2) up to a proportionality constant. Then, the random points are highly connected to one another in the area sufficiently close to the weak core, and the limiting function in the SLLN will be much more complicated, because of many connected components formed on ii vertices for any ik+2i\geq k+2. In the special case when ff is given by (1.1), condition (i)(i) together with ρn\rho_{n}\to\infty is equivalent to Rd,nRnRk,nR_{d,n}\ll R_{n}\ll R_{k,n} where Rd,nR_{d,n} and Rk,nR_{k,n} are defined in (1.3). Furthermore, condition (ii)(ii) implies that RnR_{n} is equal to Rd,nR_{d,n} up to multiplicative factors.

Before stating the main theorem, for ik+2i\geq k+2 and j1j\geq 1 we define

(3.2) μk(i,j)(t;λ):=sd11ρd1αi(d)i1ht(i,j)(0,𝐲)eλραtdvol(({0,𝐲};1))𝑑𝐲𝑑ρ,t0,λ0,\mu_{k}^{(i,j)}(t;\lambda):=s_{d-1}\int_{1}^{\infty}\rho^{d-1-\alpha i}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j)}(0,{\bf y})e^{-\lambda\rho^{-\alpha}t^{d}\text{vol}\big{(}\mathcal{B}(\{0,{\bf y}\};1)\big{)}}d{\bf y}d\rho,\ \ t\geq 0,\ \lambda\geq 0,

where sd1s_{d-1} is surface area of the (d1)(d-1)-dimensional unit sphere and 𝐲=(y1,,yi1)(d)i1{\bf y}=(y_{1},\dots,y_{i-1})\in(\mathbb{R}^{d})^{i-1}, and

({x1,,xi};r)=j=1iB(xj,r),x1,,xid,\mathcal{B}\Big{(}\big{\{}x_{1},\dots,x_{i}\big{\}};r\Big{)}=\bigcup_{j=1}^{i}B(x_{j},r),\ \ \ x_{1},\dots,x_{i}\in\mathbb{R}^{d},

is the union of open balls of radius rr around the points in {x1,,xi}\{x_{1},\dots,x_{i}\}. Moreover, vol(B)(B) is the volume of a subset BdB\subset\mathbb{R}^{d}, and ωd\omega_{d} is the volume of the unit ball in d\mathbb{R}^{d}. In the special case i=k+2i=k+2, j=1j=1 and λ=0\lambda=0, we can simplify (3.2) as

μk(k+2,1)(t;0)=sd1α(k+2)d(d)k+1ht(k+2,1)(0,𝐲)𝑑𝐲,t0.\mu_{k}^{(k+2,1)}(t;0)=\frac{s_{d-1}}{\alpha(k+2)-d}\,\int_{(\mathbb{R}^{d})^{k+1}}h_{t}^{(k+2,1)}(0,{\bf y})d{\bf y},\ \ t\geq 0.

In the below, for two sequences (an)(a_{n}) and (bn)(b_{n}), we write an=Ω(bn)a_{n}=\Omega(b_{n}) if there exists a positive constant C>0C>0 such that an/bnCa_{n}/b_{n}\geq C for all n1n\geq 1.

Theorem 3.1.

(i)(i) Suppose that RnR_{n} is a regularly varying sequence of positive exponent, such that nf(Rn)0nf(R_{n})\to 0 as nn\to\infty and

(3.3) ρn=Ω((logn)η) for some η>0.\rho_{n}=\Omega\big{(}(\log n)^{\eta}\big{)}\ \ \text{ for some }\eta>0.

Then, we have, as nn\to\infty,

βk,n(t)ρnμk(k+2,1)(t;0)(k+2)!,a.s. in D[0,1].\frac{\beta_{k,n}(t)}{\rho_{n}}\to\frac{\mu_{k}^{(k+2,1)}(t;0)}{(k+2)!},\ \ \text{a.s.~{}in }D[0,1].

(ii)(ii) Suppose that nf(Rn)λnf(R_{n})\to\lambda as nn\to\infty, for some λ(0,(eωd)1)\lambda\in\big{(}0,(e\omega_{d})^{-1}\big{)}. Then, as nn\to\infty,

(3.4) βk,n(t)Rndμk(t;λ),a.s. in D[0,1],\frac{\beta_{k,n}(t)}{R_{n}^{d}}\to\mu_{k}(t;\lambda),\ \ \text{a.s.~{}in }D[0,1],

where

μk(t;λ):=i=k+2j1jλii!μk(i,j)(t;λ)<.\mu_{k}(t;\lambda):=\sum_{i=k+2}^{\infty}\sum_{j\geq 1}j\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j)}(t;\lambda)<\infty.
Remark 3.2.

In Theorem 3.1 (ii)(ii) above, there is a technical assumption that λ<(eωd)1\lambda<(e\omega_{d})^{-1}. As shown in Section 4.2, however, the SLLN holds for every λ>0\lambda>0, in the case of the truncated Betti number

(3.5) βk,n(M)(t):=i=k+2Mj1jJk,n(i,j)(t),M=k+2,k+3,.\beta_{k,n}^{(M)}(t):=\sum_{i=k+2}^{M}\sum_{j\geq 1}jJ_{k,n}^{(i,j)}(t),\ \ \ \ M=k+2,k+3,\dots.

In fact, the upper bound condition for λ\lambda is applied only when we show that the difference between (2.7) and (3.5) vanishes a.s. when they are scaled by RndR_{n}^{d}.

Example 3.3.

We consider the power-law density

f(x)=C1+xα,xd,f(x)=\frac{C}{1+\|x\|^{\alpha}},\ \ x\in\mathbb{R}^{d},

for some α>d\alpha>d and a normalizing constant C>0C>0. In this example, we consider three distinct sequences of growing radii,

(i)Rn=(logn)ξn1αd/(k+2)for some ξ>0,\displaystyle(i)\ \ R_{n}=(\log n)^{-\xi}n^{\frac{1}{\alpha-d/(k+2)}}\ \ \text{for some }\xi>0,
(ii)Rn=n1αd/b for some k+2<b<,\displaystyle(ii)\ \ R_{n}=n^{\frac{1}{\alpha-d/b}}\ \ \text{ for some }k+2<b<\infty,\ \
(iii)Rn=(cn)1/αfor some c>Ceωd.\displaystyle(iii)\ \ R_{n}=(cn)^{1/\alpha}\ \ \text{for some }c>Ce\omega_{d}.

Note that (Rn)(R_{n}) in cases (i)(i) and (ii)(ii) satisfies Rd,nRnRk,nR_{d,n}\ll R_{n}\ll R_{k,n} as nn\to\infty, where Rd,nR_{d,n} and Rk,nR_{k,n} are defined in (1.3). In case (iii)(iii), RnR_{n} is equal to Rd,nR_{d,n} up to multiplicative factors.

Since (Rn)(R_{n}) in case (i)(i) grows fastest, the occurrence of kk-cycles outside B(0,Rn)B(0,R_{n}) is the least likely of the three regimes. In particular, (Rn)(R_{n}) and (Rk,n)(R_{k,n}) are “close” in size, in the sense that both the sequences have the same regular variation exponent. Then, βk,n(t)\beta_{k,n}(t) grows only logarithmically. In fact, one can readily check that

ρnCk+2(logn)ξ(α(k+2)d),n,\rho_{n}\sim C^{k+2}(\log n)^{\xi(\alpha(k+2)-d)},\ \ \ n\to\infty,

and Theorem 3.1 (i)(i) yields that

(3.6) βk,n(t)(logn)ξ(α(k+2)d)Ck+2μk(k+2,1)(t;0)(k+2)!,n,a.s. in D[0,1].\frac{\beta_{k,n}(t)}{(\log n)^{\xi(\alpha(k+2)-d)}}\to\frac{C^{k+2}\mu_{k}^{(k+2,1)}(t;0)}{(k+2)!},\ \ n\to\infty,\ \ \text{a.s. in }D[0,1].

If RnR_{n} diverges more slowly as in case (ii)(ii), then, far more kk-cycles would occur in Ann(Rn,Rk,n)(R_{n},R_{k,n}), and βk,n(t)\beta_{k,n}(t) begins to grow polynomially. More concretely, we have

ρnCk+2nd(1(k+2)/b)αd/b,n,\rho_{n}\sim C^{k+2}n^{\frac{d(1-(k+2)/b)}{\alpha-d/b}},\ \ n\to\infty,

and Theorem 3.1 (i)(i) gives that

(3.7) βk,n(t)nd(1(k+2)/b)αd/bCk+2μk(k+2,1)(t;0)(k+2)!,n,a.s. in D[0,1].\frac{\beta_{k,n}(t)}{n^{\frac{d(1-(k+2)/b)}{\alpha-d/b}}}\to\frac{C^{k+2}\mu_{k}^{(k+2,1)}(t;0)}{(k+2)!},\ \ n\to\infty,\ \ \text{a.s. in }D[0,1].

Finally, if RnR_{n} diverges even more slowly as in case (iii)(iii), then βk,n(t)\beta_{k,n}(t) grows even faster and Theorem 3.1 (ii)(ii) concludes that

(3.8) βk,n(t)nd/αcd/αμk(t;C/c),n,a.s. in D[0,1].\frac{\beta_{k,n}(t)}{n^{d/\alpha}}\to c^{d/\alpha}\mu_{k}(t;C/c),\ \ \ n\to\infty,\ \ \text{a.s.~{}in }D[0,1].

The limiting function above becomes more complicated than those in (3.6) and (3.7), because of the emergence of arbitrarily large connected components supporting kk-cycles in the limit.

3.2. Exponentially decaying tail case

The aim of this section is to explore the limiting behavior of (2.7) when ff has an exponentially decaying tail. As a generalization of (1.5), we consider the density

(3.9) f(x)=Cexp{ψ(x)},xd,f(x)=C\exp\big{\{}-\psi\big{(}\lVert x\rVert\big{)}\big{\}},\qquad x\in\mathbb{R}^{d},

where C>0C>0 is a normalizing constant and ψ:[0,)[0,)\psi:[0,\infty)\to[0,\infty) is a regularly varying function (at infinity) with index τ(0,1]\tau\in(0,1]. Because of the spherical symmetry of (3.9), we can define f(r):=f(rθ)f(r):=f(r\theta), r0r\geq 0 for any fixed θ\theta.

Before continuing, we need to put additional assumptions on ψ\psi. First, it is assumed to be twice differentiable such that ψ(x)>0\psi^{\prime}(x)>0 for all x>0x>0, and ψ(x)\psi^{\prime}(x) is eventually non-increasing; that is, there is a x0>0x_{0}>0 so that ψ(x)\psi^{\prime}(x) is non-increasing for all xx0x\geq x_{0}. Let a(z):=1/ψ(z)a(z):=1/\psi^{\prime}(z), z>0z>0. It then follows from Proposition 2.5 in [20] that aRV1τa\in\text{RV}_{1-\tau}. In [16] it was shown that topological crackle occurs if and only if

(3.10) c:=limza(z)(0,].c:=\lim_{z\to\infty}a(z)\in(0,\infty].

From this viewpoint, the case τ>1\tau>1 is irrelevant for the current study. Indeed, if τ>1\tau>1, it holds that a(z)0a(z)\to 0 as zz\to\infty and topological crackle does not occur. Moreover, if τ(0,1)\tau\in(0,1), then (3.10) is automatic with c=c=\infty. We thus need to assume (3.10) only when τ=1\tau=1.

Under this setup, it was shown in the literature [1, 16, 17] that

𝔼[βk,n(t)]Cηn,n,\mathbb{E}\big{[}\beta_{k,n}(t)\big{]}\sim C\eta_{n},\ \ \ n\to\infty,

where CC is a finite and positive constant and

ηn:=nk+2a(Rn)Rnd1f(Rn)k+2.\eta_{n}:=n^{k+2}a(R_{n})R_{n}^{d-1}f(R_{n})^{k+2}.

By the same reasoning as in Section 3.1, we focus only on the case ηn\eta_{n}\to\infty as nn\to\infty. As before, the asymptotics of βk,n(t)\beta_{k,n}(t) is divided into two different regimes:

(i)nf(Rn)0,n,\displaystyle(i)\ \ nf(R_{n})\to 0,\ \ \ n\to\infty,
(ii)nf(Rn)λ,n,for some λ(0,).\displaystyle(ii)\ \ nf(R_{n})\to\lambda,\ \ n\to\infty,\ \text{for some }\lambda\in(0,\infty).

For the analyses of case (i)(i), we shall restrict (Rn)(R_{n}) to a slightly narrower class,

(3.11) Rn=ψ(logn+bloglogn),for some b(0,dττ(k+2)),R_{n}=\psi^{\leftarrow}(\log n+b\log\log n),\ \ \text{for some }b\in\Big{(}0,\,\frac{d-\tau}{\tau(k+2)}\Big{)},

where ψ(x)=inf{y:ψ(y)x}\psi^{\leftarrow}(x)=\inf\big{\{}y:\psi(y)\geq x\big{\}}, x>0x>0, is the (left continuous) inverse of ψ\psi. Note that condition (i)(i) requires that a constant bb in (3.11) must be positive. Moreover, if one takes b>dττ(k+2)b>\frac{d-\tau}{\tau(k+2)}, then ηn\eta_{n} no longer diverges as nn\to\infty; hence, we need to restrict the range of bb as in (3.11).

Finally, for the description of the limiting function in the SLLN, we need the following functions: for ik+2i\geq k+2 and j1j\geq 1,

(3.12) ξk(i,j)(t;λ):=\displaystyle\xi_{k}^{(i,j)}(t;\lambda):= Sd10(d)i1ht(i,j)(0,𝐲)eρic1=1i1θ,y=1i1𝟏{ρ+c1θ,y0}\displaystyle\int_{S^{d-1}}\int_{0}^{\infty}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j)}(0,{\bf y})\,e^{-\rho i-c^{-1}\sum_{\ell=1}^{i-1}\langle\theta,y_{\ell}\rangle}\prod_{\ell=1}^{i-1}{\bf 1}\big{\{}\rho+c^{-1}\langle\theta,y_{\ell}\rangle\geq 0\big{\}}
×exp{λeρ({0,𝐲};t)ec1θ,zdz}d𝐲dρJ(θ)dθ,t0,λ0,\displaystyle\qquad\qquad\times\exp\Big{\{}-\lambda e^{-\rho}\int_{\mathcal{B}(\{0,{\bf y}\};t)}e^{-c^{-1}\langle\theta,z\rangle}\,dz\Big{\}}d{\bf y}\,d\rho\,J(\theta)\,d\theta,\ \ t\geq 0,\ \lambda\geq 0,

where 𝐲=(y1,,yi1)(d)i1{\bf y}=(y_{1},\dots,y_{i-1})\in(\mathbb{R}^{d})^{i-1} and ,\langle\cdot,\cdot\rangle is the Euclidean inner product. Further, J(θ)J(\theta) is the Jacobian

J(θ)=sind2(θ1)sind3(θ2)sin(θd2).J(\theta)=\sin^{d-2}(\theta_{1})\sin^{d-3}(\theta_{2})\dots\sin(\theta_{d-2}).
Theorem 3.4.

(i)(i) Suppose that Rn=ψ(logn+bloglogn)R_{n}=\psi^{\leftarrow}(\log n+b\log\log n) for some 0<b<dττ(k+2)0<b<\frac{d-\tau}{\tau(k+2)}. Then, as nn\to\infty,

βk,n(t)ηnξk(k+2,1)(t;0)(k+2)!,a.s. in D[0,1].\frac{\beta_{k,n}(t)}{\eta_{n}}\to\frac{\xi_{k}^{(k+2,1)}(t;0)}{(k+2)!},\ \ \ \text{a.s.~{}in }D[0,1].

(ii)(ii) Suppose that nf(Rn)λnf(R_{n})\to\lambda as nn\to\infty, for some λ(0,(eωd)1)\lambda\in\big{(}0,(e\omega_{d})^{-1}\big{)}. If d=2d=2, we restrict the range of τ\tau to (0,1)(0,1). Then, as nn\to\infty,

βk,n(t)a(Rn)Rnd1ξk(t;λ),a.s. in D[0,1],\frac{\beta_{k,n}(t)}{a(R_{n})R_{n}^{d-1}}\to\xi_{k}(t;\lambda),\ \ \text{a.s.~{}in }D[0,1],

where

ξk(t;λ):=i=k+2j1jλii!ξk(i,j)(t;λ)<.\xi_{k}(t;\lambda):=\sum_{i=k+2}^{\infty}\sum_{j\geq 1}j\,\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j)}(t;\lambda)<\infty.
Example 3.5.

We consider the density

f(x)=Cexτ/τ,xd,f(x)=Ce^{-\|x\|^{\tau}/\tau},\ \ \ x\in\mathbb{R}^{d},

for some τ(0,1]\tau\in(0,1] and a normalizing constant C>0C>0. Then, ψ(z)=zτ/τ\psi(z)=z^{\tau}/\tau and a(z)=z1τa(z)=z^{1-\tau} for z>0z>0. We first set

Rn=ψ(logn+bloglogn)=(τlogn+bτloglogn)1/τR_{n}=\psi^{\leftarrow}(\log n+b\log\log n)=(\tau\log n+b\tau\log\log n)^{1/\tau}

for some b(0,dττ(k+2))b\in\big{(}0,\frac{d-\tau}{\tau(k+2)}\big{)}. It is then straightforward to calculate that

ηnτ(dτ)/τCk+2(logn)dττb(k+2),\eta_{n}\sim\tau^{(d-\tau)/\tau}C^{k+2}(\log n)^{\frac{d-\tau}{\tau}-b(k+2)},

where dττb(k+2)>0\frac{d-\tau}{\tau}-b(k+2)>0. Thus, Theorem 3.4 (i)(i) shows that, as nn\to\infty,

(3.13) βk,n(t)(logn)dττb(k+2)τ(dτ)/τCk+2ξk(k+2,1)(t;0)(k+2)!,a.s. in D[0,1].\frac{\beta_{k,n}(t)}{(\log n)^{\frac{d-\tau}{\tau}-b(k+2)}}\to\frac{\tau^{(d-\tau)/\tau}C^{k+2}\xi_{k}^{(k+2,1)}(t;0)}{(k+2)!},\ \ \text{a.s.~{}in }D[0,1].

Next, we take Rn=(τlogn+logc1)1/τR_{n}=(\tau\log n+\log c_{1})^{1/\tau} for some c1>(Ceωd)τc_{1}>(Ce\omega_{d})^{\tau}. It then holds that nf(Rn)=c11/τC<(eωd)1nf(R_{n})=c_{1}^{-1/\tau}C<(e\omega_{d})^{-1}. Since a(Rn)Rnd1(τlogn)(dτ)/τa(R_{n})R_{n}^{d-1}\sim(\tau\log n)^{(d-\tau)/\tau} as nn\to\infty, Theorem 3.4 (ii)(ii) indicates that

βk,n(t)(logn)dτττ(dτ)/τξk(t;c11/τC),a.s. in D[0,1].\frac{\beta_{k,n}(t)}{(\log n)^{\frac{d-\tau}{\tau}}}\to\tau^{(d-\tau)/\tau}\xi_{k}(t;c_{1}^{-1/\tau}C),\ \ \text{a.s.~{}in }D[0,1].

As in (3.8) of Example 3.3, the limiting function above is affected by many kk-cycles on arbitrarily large connected components, whereas the limit in (3.13) is determined by the kk-cycles supported exactly on k+2k+2 points.

4. Proofs

4.1. Preliminaries

Before commencing the proof, we need to introduce additional functions and objects pertaining to the indicator (2.3). For ik+2i\geq k+2, j1j\geq 1, and a connected simplicial complex KK that has ii vertices,

ht(i,j,K)(𝒴):=𝟏{Cˇ(𝒴,t)K,βk(K)=j},𝒴=(y1,,yk+2)(d)k+2,h_{t}^{(i,j,K)}({\mathcal{Y}}):={\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\cong K,\,\beta_{k}(K)=j\big{\}},\ \ {\mathcal{Y}}=(y_{1},\dots,y_{k+2})\in(\mathbb{R}^{d})^{k+2},

where \cong denotes isomorphism between simplicial complexes. With this notation we can interpret ht(i,j)(𝒴)h_{t}^{(i,j)}({\mathcal{Y}}) as

(4.1) ht(i,j)(𝒴)=K:|K|=iht(i,j,K)(𝒴),h_{t}^{(i,j)}({\mathcal{Y}})=\sum_{K:|K|=i}h_{t}^{(i,j,K)}({\mathcal{Y}}),

where the sum is taken over all connected simplicial complexes on ii vertices. From (4.1), ht(i,j)(𝒴)h_{t}^{(i,j)}({\mathcal{Y}}) can be decomposed as

ht(i,j)(𝒴)=ht(i,j,+)(𝒴)ht(i,j,)(𝒴),h_{t}^{(i,j)}({\mathcal{Y}})=h_{t}^{(i,j,+)}({\mathcal{Y}})-h_{t}^{(i,j,-)}({\mathcal{Y}}),

where

(4.2) ht(i,j,+)(𝒴)\displaystyle h_{t}^{(i,j,+)}({\mathcal{Y}}) :=K:|K|=iht(i,j,K)(𝒴)+K:|K|=iL:|L|=i,LK𝟏{Cˇ(𝒴,t)L},\displaystyle:=\sum_{K:|K|=i}h_{t}^{(i,j,K)}({\mathcal{Y}})+\sum_{K:|K|=i}\sum_{\begin{subarray}{c}L:|L|=i,\\ L\supsetneq K\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\cong L\big{\}},
(4.3) ht(i,j,)(𝒴)\displaystyle h_{t}^{(i,j,-)}({\mathcal{Y}}) :=K:|K|=iL:|L|=i,LK𝟏{Cˇ(𝒴,t)L}.\displaystyle:=\sum_{K:|K|=i}\sum_{\begin{subarray}{c}L:|L|=i,\\ L\supsetneq K\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\cong L\big{\}}.

In the above expressions, the inner sums in (4.2) and (4.3) are taken over all connected complexes LL built over ii points that contain KK as its proper subcomplex. Since there are at most finitely many isomorphism classes of such complexes, these sums consist of at most a finite number of terms. Consequently, for any ik+2i\geq k+2 and j1j\geq 1, (4.2) and (4.3) are bounded functions. Notice further that (4.2) and (4.3) are non-decreasing functions in tt. Namely, for all 0<st<0<s\leq t<\infty and 𝒴(d)k+2{\mathcal{Y}}\in(\mathbb{R}^{d})^{k+2},

(4.4) hs(i,j,+)(𝒴)ht(i,j,+)(𝒴),hs(i,j,)(𝒴)ht(i,j,)(𝒴).h_{s}^{(i,j,+)}({\mathcal{Y}})\leq h_{t}^{(i,j,+)}({\mathcal{Y}}),\ \ \ \ \ h_{s}^{(i,j,-)}({\mathcal{Y}})\leq h_{t}^{(i,j,-)}({\mathcal{Y}}).

In the special case i=k+2i=k+2 and j=1j=1, it is easy to check that for all x1,,xk+2dx_{1},\dots,x_{k+2}\in\mathbb{R}^{d},

ht(k+2,1,+)(x1,,xk+2)=𝟏{j=1,jj0k+2B(xj,t) for all j0{1,,k+2}},h_{t}^{(k+2,1,+)}(x_{1},\dots,x_{k+2})={\bf 1}\Big{\{}\bigcap_{j=1,j\neq j_{0}}^{k+2}B(x_{j},t)\neq\emptyset\text{ for all }j_{0}\in\{1,\dots,k+2\}\Big{\}},

and

ht(k+2,1,)(x1,,xk+2)=𝟏{j=1k+2B(xj,t)}.h_{t}^{(k+2,1,-)}(x_{1},\dots,x_{k+2})={\bf 1}\Big{\{}\bigcap_{j=1}^{k+2}B(x_{j},t)\neq\emptyset\Big{\}}.

In addition to the monotonicity (4.4), the following properties of ht(i,j,±)h_{t}^{(i,j,\pm)} are important for our analyses.

  • ht(i,j,±)h_{t}^{(i,j,\pm)} are shift-invariant, i.e.,

    (4.5) ht(i,j,±)(𝒴)=ht(i,j,±)(𝒴+x),𝒴(d)k+2,xd.h_{t}^{(i,j,\pm)}({\mathcal{Y}})=h_{t}^{(i,j,\pm)}({\mathcal{Y}}+x),\ \ {\mathcal{Y}}\in(\mathbb{R}^{d})^{k+2},\ x\in\mathbb{R}^{d}.
  • ht(i,j,±)h_{t}^{(i,j,\pm)} are locally determined, i.e., there exists LL (depending only on ii) such that

    (4.6) ht(i,j,±)(𝒴)=0,whenever diam(𝒴)>Lt,h_{t}^{(i,j,\pm)}({\mathcal{Y}})=0,\ \ \text{whenever diam}({\mathcal{Y}})>Lt,

    where diam(𝒴)=maxx,y𝒴xy({\mathcal{Y}})=\max_{x,y\in{\mathcal{Y}}}\|x-y\|.

Finally, we define various functions analogous to those defined at (2.4), (2.5), (2.6), (3.2), (3.12), respectively.

hn,t(i,j,±)(𝒴)\displaystyle h_{n,t}^{(i,j,\pm)}({\mathcal{Y}}) :=ht(i,j,±)(𝒴) 1{(𝒴)Rn},\displaystyle:=h_{t}^{(i,j,\pm)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}},
(4.7) gn,t(i,j,±)(𝒴,𝒵)\displaystyle g_{n,t}^{(i,j,\pm)}({\mathcal{Y}},\mathcal{Z}) :=hn,t(i,j,±)(𝒴) 1{Cˇ(𝒴,t) is a connected component of Cˇ(𝒵,t)},\displaystyle:=h_{n,t}^{(i,j,\pm)}({\mathcal{Y}})\,{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is a connected component of }\check{C}(\mathcal{Z},t)\big{\}},
(4.8) Jk,n(i,j,±)(t)\displaystyle J_{k,n}^{(i,j,\pm)}(t) :=𝒴𝒳n,|𝒴|=ign,t(i,j,±)(𝒴,𝒳n),\displaystyle:=\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\,|{\mathcal{Y}}|=i}g_{n,t}^{(i,j,\pm)}({\mathcal{Y}},{\mathcal{X}}_{n}),
(4.9) μk(i,j,±)(t;λ)\displaystyle\mu_{k}^{(i,j,\pm)}(t;\lambda) :=sd11ρd1αi(d)i1ht(i,j,±)(0,𝐲)eλραtdvol(({0,𝐲};1))𝑑𝐲𝑑ρ,\displaystyle:=s_{d-1}\int_{1}^{\infty}\rho^{d-1-\alpha i}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,\pm)}(0,{\bf y})e^{-\lambda\rho^{-\alpha}t^{d}\text{vol}\big{(}\mathcal{B}(\{0,{\bf y}\};1)\big{)}}d{\bf y}d\rho,
(4.10) ξk(i,j,±)(t;λ):=\displaystyle\xi_{k}^{(i,j,\pm)}(t;\lambda):= Sd10(d)i1ht(i,j,±)(0,𝐲)eρic1=1i1θ,y=1i1𝟏{ρ+c1θ,y0}\displaystyle\int_{S^{d-1}}\int_{0}^{\infty}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,\pm)}(0,{\bf y})\,e^{-\rho i-c^{-1}\sum_{\ell=1}^{i-1}\langle\theta,y_{\ell}\rangle}\prod_{\ell=1}^{i-1}{\bf 1}\big{\{}\rho+c^{-1}\langle\theta,y_{\ell}\rangle\geq 0\big{\}}
×exp{λeρ({0,𝐲};t)ec1θ,z𝑑z}d𝐲dρJ(θ)dθ.\displaystyle\qquad\times\exp\Big{\{}-\lambda e^{-\rho}\int_{\mathcal{B}(\{0,{\bf y}\};t)}e^{-c^{-1}\langle\theta,z\rangle}\,dz\Big{\}}d{\bf y}\,d\rho\,J(\theta)\,d\theta.

One of the main ideas for proving the SLLN for (2.7) is to detect appropriate subsequential upper and lower bounds for the quantities that are used to approximate the Betti number (2.7). After detecting such bounds, we apply the Borel-Cantelli lemma to the obtained bounds. This is a standard approach for proving the SLLN for graph related statistics, such as subgraph and component counts, in random geometric graphs; see, e.g., Theorems 3.18 and 3.19 in [18].

Specifically, we take a constant γ(0,1)\gamma\in(0,1) and define

(4.11) vm=emγ,m=0,1,2,.v_{m}=\lfloor e^{m^{\gamma}}\rfloor,\ \ m=0,1,2,\dots.

Then, for each nn\in\mathbb{N}, there exists a unique m=m(n)m=m(n)\in\mathbb{N} such that vmn<vm+1v_{m}\leq n<v_{m+1}. Given a sequence (Rn,n1)(R_{n},\,n\geq 1) growing to infinity, we define

(4.12) pm:=argmax{vmvm+1:R},qm:=argmin{vmvm+1:R}.p_{m}:=\arg\max\{v_{m}\leq\ell\leq v_{m+1}:R_{\ell}\},\ \ q_{m}:=\arg\min\{v_{m}\leq\ell\leq v_{m+1}:R_{\ell}\}.

For the density ff satisfying (3.1), we set

(4.13) rm:=argmax{vmvm+1:Rdf(R)k+2},sm:=argmin{vmvm+1:Rdf(R)k+2},\displaystyle\begin{split}r_{m}&:=\arg\max\{v_{m}\leq\ell\leq v_{m+1}:R_{\ell}^{d}f(R_{\ell})^{k+2}\},\\ s_{m}&:=\arg\min\{v_{m}\leq\ell\leq v_{m+1}:R_{\ell}^{d}f(R_{\ell})^{k+2}\},\end{split}

and for the density ff in (3.9), we define

(4.14) bm:=argmax{vmvm+1:a(R)Rd1},cm:=argmin{vmvm+1:a(R)Rd1},\displaystyle\begin{split}b_{m}&:=\arg\max\big{\{}v_{m}\leq\ell\leq v_{m+1}:a(R_{\ell})R_{\ell}^{d-1}\big{\}},\\ c_{m}&:=\arg\min\big{\{}v_{m}\leq\ell\leq v_{m+1}:a(R_{\ell})R_{\ell}^{d-1}\big{\}},\end{split}

and

(4.15) em:=argmax{vmvm+1:a(R)Rd1f(R)k+2},gm:=argmin{vmvm+1:a(R)Rd1f(R)k+2}.\displaystyle\begin{split}e_{m}&:=\arg\max\big{\{}v_{m}\leq\ell\leq v_{m+1}:a(R_{\ell})R_{\ell}^{d-1}f(R_{\ell})^{k+2}\big{\}},\\ g_{m}&:=\arg\min\big{\{}v_{m}\leq\ell\leq v_{m+1}:a(R_{\ell})R_{\ell}^{d-1}f(R_{\ell})^{k+2}\big{\}}.\end{split}

In the sequel we provide the proofs of Theorems 3.1 and 3.4. Throughout the proof, CC^{*} denotes a generic positive constant, which is independent of nn and may vary between and within the lines. For two sequences (an)(a_{n}) and (bn)(b_{n}), we write anbna_{n}\sim b_{n} if an/bn1a_{n}/b_{n}\to 1 as nn\to\infty.

4.2. Proof of Theorem 3.1

For ease of the description, we first prove Part (ii)(ii) and then proceed to the proof of Part (i)(i). The discussion for Part (i)(i) is more delicate, requiring to make use of the concentration bounds in [2], which is stated in Proposition 5.3 below. All the technical results necessary for our proof are provided in Sections 5.1 and 5.2 of the Appendix.

Proof of Theorem 3.1 (ii)(ii).

Note first that (3.4) is implied by

sup0t1|βk,n(t)Rndμk(t;λ)|0,n,a.s.\sup_{0\leq t\leq 1}\Big{\lvert}\frac{\beta_{k,n}(t)}{R_{n}^{d}}-\mu_{k}(t;\lambda)\Big{\rvert}\to 0,\ \ \ n\to\infty,\ \ \text{a.s.}

We introduce the truncated version of (2.7); that is, for every MM\in\mathbb{N},

(4.16) βk,n(M)(t):=i=k+2Mj1jJk,n(i,j)(t).\beta_{k,n}^{(M)}(t):=\sum_{i=k+2}^{M}\sum_{j\geq 1}jJ_{k,n}^{(i,j)}(t).

Analogously, we also define μk(M)(t;λ)\mu_{k}^{(M)}(t;\lambda) by the same truncation as above:

μk(M)(t;λ):=i=k+2Mj1jλii!μk(i,j)(t;λ).\mu_{k}^{(M)}(t;\lambda):=\sum_{i=k+2}^{M}\sum_{j\geq 1}j\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j)}(t;\lambda).

Then, it is easy to see that, for every MM\in\mathbb{N},

sup0t1|βk,n(t)Rndμk(t;λ)|\displaystyle\sup_{0\leq t\leq 1}\Big{\lvert}\frac{\beta_{k,n}(t)}{R_{n}^{d}}-\mu_{k}(t;\lambda)\Big{\rvert} sup0t1{βk,n(t)Rndβk,n(M)(t)Rnd}+sup0t1|βk,n(M)(t)Rndμk(M)(t;λ)|\displaystyle\leq\sup_{0\leq t\leq 1}\Big{\{}\frac{\beta_{k,n}(t)}{R_{n}^{d}}-\frac{\beta^{(M)}_{k,n}(t)}{R_{n}^{d}}\Big{\}}+\sup_{0\leq t\leq 1}\Big{|}\frac{\beta_{k,n}^{(M)}(t)}{R_{n}^{d}}-\mu_{k}^{(M)}(t;\lambda)\Big{|}
+sup0t1(μk(t;λ)μk(M)(t;λ)).\displaystyle\quad+\sup_{0\leq t\leq 1}\big{(}\mu_{k}(t;\lambda)-\mu_{k}^{(M)}(t;\lambda)\big{)}.

From this it is sufficient to show that

(4.17) limnsup0t1|βk,n(M)(t)Rndμk(M)(t;λ)|=0,a.s. for all M,\displaystyle\lim_{n\to\infty}\sup_{0\leq t\leq 1}\Big{|}\frac{\beta_{k,n}^{(M)}(t)}{R_{n}^{d}}-\mu_{k}^{(M)}(t;\lambda)\Big{|}=0,\ \ \text{a.s. for all }M\in\mathbb{N},
(4.18) limMlim supnsup0t1{βk,n(t)Rndβk,n(M)(t)Rnd}=0,a.s.,\displaystyle\lim_{M\to\infty}\limsup_{n\to\infty}\sup_{0\leq t\leq 1}\Big{\{}\frac{\beta_{k,n}(t)}{R_{n}^{d}}-\frac{\beta^{(M)}_{k,n}(t)}{R_{n}^{d}}\Big{\}}=0,\ \ \text{a.s.},
(4.19) limMlim supnsup0t1(μk(t;λ)μk(M)(t;λ))=0.\displaystyle\lim_{M\to\infty}\limsup_{n\to\infty}\sup_{0\leq t\leq 1}\big{(}\mu_{k}(t;\lambda)-\mu_{k}^{(M)}(t;\lambda)\big{)}=0.

Of the three requirements above, we first deal with (4.17). Since MM is finite, it is enough to demonstrate that, for every ik+2i\geq k+2 and j1j\geq 1,

sup0t1|Jk,n(i,j)(t)Rndλii!μk(i,j)(t;λ)|0,n,a.s.\sup_{0\leq t\leq 1}\Big{|}\,\frac{J_{k,n}^{(i,j)}(t)}{R_{n}^{d}}-\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j)}(t;\lambda)\,\Big{|}\to 0,\ \ n\to\infty,\ \ \text{a.s.}

Clearly, this convergence is obtained by

(4.20) sup0t1|Jk,n(i,j,+)(t)Rndλii!μk(i,j,+)(t;λ)|0,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{J_{k,n}^{(i,j,+)}(t)}{R_{n}^{d}}-\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,+)}(t;\lambda)\,\Big{|}\to 0,\ \ \text{a.s.},
sup0t1|Jk,n(i,j,)(t)Rndλii!μk(i,j,)(t;λ)|0,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{J_{k,n}^{(i,j,-)}(t)}{R_{n}^{d}}-\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,-)}(t;\lambda)\,\Big{|}\to 0,\ \ \text{a.s.},

where Jk,n(i,j,±)(t)J_{k,n}^{(i,j,\pm)}(t) and μk(i,j,±)(t;λ)\mu_{k}^{(i,j,\pm)}(t;\lambda) are defined in (4.8) and (4.9) respectively. We prove only the former convergence. One can actually handle the latter in the same way. For this purpose, we extend (4.7), (4.8), and (4.9) by adding an extra time parameter. Namely, for 𝒴(d)i{\mathcal{Y}}\in(\mathbb{R}^{d})^{i}, a finite subset 𝒵𝒴\mathcal{Z}\supset{\mathcal{Y}} of points in d\mathbb{R}^{d}, (t,s)[0,1]2(t,s)\in[0,1]^{2}, and λ0\lambda\geq 0,

gn,t,s(i,j,+)(𝒴,𝒵)\displaystyle g^{(i,j,+)}_{n,t,s}({\mathcal{Y}},\mathcal{Z}) :=hn,t(i,j,+)(𝒴) 1{Cˇ(𝒴,s) is a connected component of Cˇ(𝒵,s)}\displaystyle:=h_{n,t}^{(i,j,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\check{C}({\mathcal{Y}},s)\text{ is a connected component of }\check{C}(\mathcal{Z},s)\big{\}}
=ht(i,j,+)(𝒴) 1{(𝒴)Rn} 1{(𝒴;s/2)(𝒵𝒴;s/2)=},\displaystyle=h_{t}^{(i,j,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}\,{\bf 1}\big{\{}\mathcal{B}({\mathcal{Y}};s/2)\cap\mathcal{B}(\mathcal{Z}\setminus{\mathcal{Y}};s/2)=\emptyset\big{\}},
(4.21) Jk,n(i,j,+)(t,s)\displaystyle J_{k,n}^{(i,j,+)}(t,s) :=𝒴𝒳n,|𝒴|=ign,t,s(i,j,+)(𝒴,𝒳n),\displaystyle:=\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\,\lvert{\mathcal{Y}}\rvert=i}g^{(i,j,+)}_{n,t,s}({\mathcal{Y}},{\mathcal{X}}_{n}),
(4.22) μk(i,j,+)(t,s;λ)\displaystyle\mu_{k}^{(i,j,+)}(t,s;\lambda) :=sd11ρd1αi(d)i1ht(i,j,+)(0,𝐲)eλραsdvol(({0,𝐲};1))𝑑𝐲𝑑ρ.\displaystyle:=s_{d-1}\int_{1}^{\infty}\rho^{d-1-\alpha i}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,+)}(0,{\bf y})e^{-\lambda\rho^{-\alpha}s^{d}\text{vol}\big{(}\mathcal{B}(\{0,{\bf y}\};1)\big{)}}d{\bf y}d\rho.

Clearly, we have that gn,t,t(i,j,+)(𝒴,𝒵)=gn,t(i,j,+)(𝒴,𝒵)g_{n,t,t}^{(i,j,+)}({\mathcal{Y}},\mathcal{Z})=g_{n,t}^{(i,j,+)}({\mathcal{Y}},\mathcal{Z}), Jk,n(i,j,+)(t,t)=Jk,n(i,j,+)(t)J_{k,n}^{(i,j,+)}(t,t)=J_{k,n}^{(i,j,+)}(t), and μk(i,j,+)(t,t;λ)=μk(i,j,+)(t;λ)\mu_{k}^{(i,j,+)}(t,t;\lambda)=\mu_{k}^{(i,j,+)}(t;\lambda). It immediately follows from (4.4) that (4.21) and (4.22) are non-decreasing in tt and non-increasing in ss. Moreover, (4.22) is a continuous function in (t,s)[0,1]2(t,s)\in[0,1]^{2}. Hence, according to Lemma 5.1 (ii)(ii) in the Appendix, (4.20) follows from the pointwise SLLN,

(4.23) Jk,n(i,j,+)(t,s)Rndλii!μk(i,j,+)(t,s;λ),n,a.s.,\frac{J_{k,n}^{(i,j,+)}(t,s)}{R_{n}^{d}}\to\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,+)}(t,s;\lambda),\ \ n\to\infty,\ \ \text{a.s.},

for every t,s[0,1]t,s\in[0,1].

To show (4.23), note that for every nn\in\mathbb{N}, there exists a unique m=m(n)m=m(n)\in\mathbb{N} such that vmn<vm+1v_{m}\leq n<v_{m+1}, where vmv_{m} is defined in (4.11). Using pmp_{m} and qmq_{m} in (4.12) as well as vmv_{m}, we define

(4.24) Tm(i,j,)(t,s):=𝒴𝒳vm+1|𝒴|=iht(i,j,+)(𝒴)𝟏{(𝒴)Rqm}𝟏{(𝒴;s/2)(𝒳vm𝒴;s/2)=},T_{m}^{(i,j,\uparrow)}(t,s):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}\rvert=i\end{subarray}}h^{(i,j,+)}_{t}({\mathcal{Y}})\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}\mathbf{1}\big{\{}\mathcal{B}({\mathcal{Y}};s/2)\cap\mathcal{B}({\mathcal{X}}_{v_{m}}\setminus{\mathcal{Y}};s/2)=\emptyset\big{\}},
(4.25) Tm(i,j,)(t,s):=𝒴𝒳vm|𝒴|=iht(i,j,+)(𝒴)𝟏{(𝒴)Rpm}𝟏{(𝒴;s/2)(𝒳vm+1𝒴;s/2)=}.T^{(i,j,\downarrow)}_{m}(t,s):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m}}\\ \lvert{\mathcal{Y}}\rvert=i\end{subarray}}h^{(i,j,+)}_{t}({\mathcal{Y}})\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{p_{m}}\big{\}}\mathbf{1}\big{\{}\mathcal{B}({\mathcal{Y}};s/2)\cap\mathcal{B}({\mathcal{X}}_{v_{m+1}}\setminus{\mathcal{Y}};s/2)=\emptyset\big{\}}.

Since 𝒳vm𝒳n𝒳vm+1{\mathcal{X}}_{v_{m}}\subset{\mathcal{X}}_{n}\subset{\mathcal{X}}_{v_{m+1}} and RqmRnRpmR_{q_{m}}\leq R_{n}\leq R_{p_{m}} for all nn\in\mathbb{N}, one can immediately derive that

Tm(i,j,)(t,s)RpmdJk,n(i,j,+)(t,s)RndTm(i,j,)(t,s)Rqmd,\frac{T^{(i,j,\downarrow)}_{m}(t,s)}{R_{p_{m}}^{d}}\leq\frac{J_{k,n}^{(i,j,+)}(t,s)}{R_{n}^{d}}\leq\frac{T^{(i,j,\uparrow)}_{m}(t,s)}{R_{q_{m}}^{d}},

for all nn\in\mathbb{N}. It follows from Lemma 5.5 (i)(i) that

lim supnJk,n(i,j,+)(t,s)Rndλii!μk(i,j,+)(t,s;λ)+lim supmTm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]Rqmd,a.s.,\limsup_{n\to\infty}\frac{J_{k,n}^{(i,j,+)}(t,s)}{R_{n}^{d}}\leq\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,+)}(t,s;\lambda)+\limsup_{m\to\infty}\frac{T_{m}^{(i,j,\uparrow)}(t,s)-\mathbb{E}[T_{m}^{(i,j,\uparrow)}(t,s)]}{R_{q_{m}}^{d}},\ \ \text{a.s.},

and

lim infnJk,n(i,j,+)(t,s)Rndλii!μk(i,j,+)(t,s;λ)+lim infmTm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]Rpmd,a.s.\liminf_{n\to\infty}\frac{J_{k,n}^{(i,j,+)}(t,s)}{R_{n}^{d}}\geq\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,+)}(t,s;\lambda)+\liminf_{m\to\infty}\frac{T_{m}^{(i,j,\downarrow)}(t,s)-\mathbb{E}[T_{m}^{(i,j,\downarrow)}(t,s)]}{R_{p_{m}}^{d}},\ \ \text{a.s.}

From these bounds, we now need to show that as mm\to\infty,

(4.26) Rqmd(Tm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)])0,a.s.,\displaystyle R_{q_{m}}^{-d}\,\Big{(}T_{m}^{(i,j,\uparrow)}(t,s)-\mathbb{E}[T_{m}^{(i,j,\uparrow)}(t,s)]\Big{)}\to 0,\ \ \text{a.s.},
(4.27) Rpmd(Tm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)])0,a.s.\displaystyle R_{p_{m}}^{-d}\,\Big{(}T_{m}^{(i,j,\downarrow)}(t,s)-\mathbb{E}[T_{m}^{(i,j,\downarrow)}(t,s)]\Big{)}\to 0,\ \ \text{a.s.}

For (4.26), Chebyshev’s inequality and Lemma 5.5 (i)(i) yield that, for every ϵ>0\epsilon>0,

m=1(|Tm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]|>ϵRqmd)1ϵ2m=1Var(Tm(i,j,)(t,s))Rqm2dCm=11Rqmd.\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\Big{(}\big{|}\,T_{m}^{(i,j,\uparrow)}(t,s)-\mathbb{E}[T_{m}^{(i,j,\uparrow)}(t,s)]\,\big{|}>\epsilon R_{q_{m}}^{d}\Big{)}\leq\frac{1}{\epsilon^{2}}\sum_{m=1}^{\infty}\frac{\text{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)}}{R_{q_{m}}^{2d}}\leq C^{*}\sum_{m=1}^{\infty}\frac{1}{R_{q_{m}}^{d}}.

From the assumption that nf(Rn)λnf(R_{n})\to\lambda as nn\to\infty, one can readily check that RnRV1/αR_{n}\in\text{RV}_{1/\alpha}; therefore,

(4.28) RqmCqm1/(2α)Cvm1/(2α)Cemγ/(3α),R_{q_{m}}\geq C^{*}q_{m}^{1/(2\alpha)}\geq C^{*}v_{m}^{1/(2\alpha)}\geq C^{*}e^{m^{\gamma}/(3\alpha)},

and we thus conclude that m1/RqmdCmedmγ/(3α)<\sum_{m}1/R_{q_{m}}^{d}\leq C^{*}\sum_{m}e^{-dm^{\gamma}/(3\alpha)}<\infty. Now, the Borel-Cantelli lemma ensures (4.26). The proof of (4.27) is analogous by virtue of Lemma 5.5 (i)(i). Now, (4.26) and (4.27) complete the proof of (4.23).

Next we turn to condition (4.18). Since the kkth Betti number of any simplicial complex on ii vertices is bounded above by the number of kk-simplices, which is further bounded by (ik+1){i\choose k+1}, we have that

(4.29) 1Rnd(βk,n(t)βk,n(M)(t))\displaystyle\frac{1}{R_{n}^{d}}\big{(}\beta_{k,n}(t)-\beta^{(M)}_{k,n}(t)\big{)} =1Rndi=M+1nj1jJk,n(i,j)(t)\displaystyle=\frac{1}{R_{n}^{d}}\sum_{i=M+1}^{n}\sum_{j\geq 1}jJ_{k,n}^{(i,j)}(t)
1Rndi=M+1n(ik+1)𝒴𝒳n,|𝒴|=ij1hn,t(i,j)(𝒴)\displaystyle\leq\frac{1}{R_{n}^{d}}\sum_{i=M+1}^{n}{i\choose k+1}\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\lvert{\mathcal{Y}}\rvert=i}\sum_{j\geq 1}h^{(i,j)}_{n,t}({\mathcal{Y}})\,
1Rndi=M+1nik+1𝒴𝒳n,|𝒴|=i𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rn}\displaystyle\leq\frac{1}{R_{n}^{d}}\sum_{i=M+1}^{n}i^{k+1}\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\lvert{\mathcal{Y}}\rvert=i}\mathbf{1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}
1Rqmdi=M+1ik+1𝒴𝒳vm+1,|𝒴|=i𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rqm}\displaystyle\leq\frac{1}{R_{q_{m}}^{d}}\sum_{i=M+1}^{\infty}i^{k+1}\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\lvert{\mathcal{Y}}\rvert=i}\mathbf{1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}
=:Vm,M(t)Rqmd.\displaystyle=:\frac{V_{m,M}(t)}{R_{q_{m}}^{d}}.

By construction, Vm,M(t)V_{m,M}(t) is a non-decreasing function in tt. Thus,

sup0t1{βk,n(t)Rndβk,n(M)(t)Rnd}Vm,M(1)Rqmd,\sup_{0\leq t\leq 1}\Big{\{}\frac{\beta_{k,n}(t)}{R_{n}^{d}}-\frac{\beta^{(M)}_{k,n}(t)}{R_{n}^{d}}\Big{\}}\leq\frac{V_{m,M}(1)}{R_{q_{m}}^{d}},

and we now need to show that

limMlim supmRqmdVm,M(1)=0,a.s.\lim_{M\to\infty}\limsup_{m\to\infty}R_{q_{m}}^{-d}\,V_{m,M}(1)=0,\ \ \ \text{a.s.}

By Lemma 5.5 (ii)(ii), it is sufficient to demonstrate that for every MM\in\mathbb{N},

(4.30) Vm,M(1)𝔼[Vm,M(1)]Rqmd0,as m,a.s.\frac{V_{m,M}(1)-\mathbb{E}\big{[}V_{m,M}(1)\big{]}}{R_{q_{m}}^{d}}\to 0,\ \ \text{as }m\to\infty,\ \ \text{a.s.}

For every ϵ>0\epsilon>0, it follows from Lemma 5.5 (ii)(ii) and (4.28) that

m=1(|Vm,M(1)𝔼[Vm,M(1)]|>ϵRqmd)\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\Big{(}\Big{|}\,V_{m,M}(1)-\mathbb{E}\big{[}V_{m,M}(1)\big{]}\,\Big{|}>\epsilon R_{q_{m}}^{d}\Big{)}
1ϵ2m=1Var(Vm,M(1))Rqm2dCm=11RqmdCm=1edmγ/(3α)<.\displaystyle\leq\frac{1}{\epsilon^{2}}\,\sum_{m=1}^{\infty}\frac{\text{Var}\big{(}V_{m,M}(1)\big{)}}{R_{q_{m}}^{2d}}\leq C^{*}\sum_{m=1}^{\infty}\frac{1}{R_{q_{m}}^{d}}\leq C^{*}\sum_{m=1}^{\infty}e^{-dm^{\gamma}/(3\alpha)}<\infty.

Thus, the Borel-Cantelli lemma ensures (4.30). Finally, we assert that the argument similar to (or even easier than) that for (4.18) can establish (4.19). Now, the entire proof has been completed. ∎

Proof of Theorem 3.1 (i)(i).

Our main idea is to justify that βk,n(t)\beta_{k,n}(t) in (2.7) can be approximated by

(4.31) Gk,n(t):=𝒴𝒳n,|𝒴|=k+2hn,t(k+2,1)(𝒴),t0.G_{k,n}(t):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{n},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{n,t}^{(k+2,1)}({\mathcal{Y}}),\ \ \ t\geq 0.

This implies that the Čech complexes are asymptotically distributed sparsely with many separate connected components, with each consisting of only k+2k+2 points. Note that “k+2k+2” is the minimum required number of points for a non-trivial kkth Betti number of a Čech complex.

As in the proof of Theorem 3.1 (ii)(ii), our goal is to show that

sup0t1|βk,n(t)ρnμk(k+2,1)(t;0)(k+2)!|0,n,a.s.\sup_{0\leq t\leq 1}\Big{|}\,\frac{\beta_{k,n}(t)}{\rho_{n}}-\frac{\mu_{k}^{(k+2,1)}(t;0)}{(k+2)!}\,\Big{|}\to 0,\ \ \ n\to\infty,\ \ \text{a.s.}

This clearly follows if one can establish that

(4.32) sup0t1|Gk,n(t)ρnμk(k+2,1)(t;0)(k+2)!|0,n,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{G_{k,n}(t)}{\rho_{n}}-\frac{\mu_{k}^{(k+2,1)}(t;0)}{(k+2)!}\,\Big{|}\to 0,\ \ \ n\to\infty,\ \ \text{a.s.},
(4.33) sup0t1|βk,n(t)ρnGk,n(t)ρn|0,n,a.s.\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{\beta_{k,n}(t)}{\rho_{n}}-\frac{G_{k,n}(t)}{\rho_{n}}\,\Big{|}\to 0,\ \ \ n\to\infty,\ \ \text{a.s.}

For (4.32), we define

(4.34) Gk,n±(t):=𝒴𝒳n,|𝒴|=k+2hn,t(k+2,1,±)(𝒴),t0,G_{k,n}^{\pm}(t):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{n},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{n,t}^{(k+2,1,\pm)}({\mathcal{Y}}),\ \ \ t\geq 0,

and demonstrate that

(4.35) sup0t1|Gk,n+(t)ρnμk(k+2,1,+)(t;0)(k+2)!|0,a.s.,sup0t1|Gk,n(t)ρnμk(k+2,1,)(t;0)(k+2)!|0,a.s.,\sup_{0\leq t\leq 1}\Big{|}\,\frac{G_{k,n}^{+}(t)}{\rho_{n}}-\frac{\mu_{k}^{(k+2,1,+)}(t;0)}{(k+2)!}\,\Big{|}\to 0,\ \ \text{a.s.,}\ \ \sup_{0\leq t\leq 1}\Big{|}\,\frac{G_{k,n}^{-}(t)}{\rho_{n}}-\frac{\mu_{k}^{(k+2,1,-)}(t;0)}{(k+2)!}\,\Big{|}\to 0,\ \ \text{a.s.},

where μk(k+2,1,±)(t;0)\mu_{k}^{(k+2,1,\pm)}(t;0) is defined at (4.9). In the below, we show the result of the “+” case only. One can immediately show that

μk(k+2,1,+)(t;0)=td(k+1)μk(k+2,1,+)(1;0),\mu_{k}^{(k+2,1,+)}(t;0)=t^{d(k+1)}\mu_{k}^{(k+2,1,+)}(1;0),

which in turn indicates that μk(k+2,1,+)(t;0)\mu_{k}^{(k+2,1,+)}(t;0) is a continuous and increasing function in tt. Moreover, Gk,n+(t)G_{k,n}^{+}(t) is also a non-decreasing function in tt; hence, by Lemma 5.1 (i)(i), the first convergence in (4.35) is obtained from the pointwise SLLN,

Gk,n+(t)ρnμk(k+2,1,+)(t;0)(k+2)!,n,a.s.,\frac{G_{k,n}^{+}(t)}{\rho_{n}}\to\frac{\mu_{k}^{(k+2,1,+)}(t;0)}{(k+2)!},\ \ \ n\to\infty,\ \ \text{a.s.},

for every t[0,1]t\in[0,1]. As before, our next task is to detect the subsequential upper and lower bounds for Gk,n+(t)/ρnG_{k,n}^{+}(t)/\rho_{n}. Let (vm)(v_{m}) be a sequence defined in (4.11). Recall that for every nn\geq\mathbb{N}, there exists a unique m=m(n)m=m(n)\in\mathbb{N} such that vmn<vm+1v_{m}\leq n<v_{m+1}. Next we define

(4.36) Sm(t)\displaystyle S_{m}^{\uparrow}(t) :=𝒴𝒫vm+1|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm},\displaystyle:=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset\mathcal{P}_{v_{m+1}}\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}},
(4.37) Sm(t)\displaystyle S_{m}^{\downarrow}(t) :=𝒴𝒫vm,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rpm},\displaystyle:=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset\mathcal{P}_{v_{m}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{p_{m}}\big{\}},

where pmp_{m} and qmq_{m} are given in (4.12). Furthermore, 𝒫vm+1\mathcal{P}_{v_{m+1}} and 𝒫vm\mathcal{P}_{v_{m}} denote Poisson processes in d\mathbb{R}^{d} with intensity measures vm+1f(z)𝑑zv_{m+1}\int_{\cdot}f(z)dz and vmf(z)𝑑zv_{m}\int_{\cdot}f(z)dz, respectively. In other words, one can denote 𝒫vm+1={X1,,XNvm+1}\mathcal{P}_{v_{m+1}}=\{X_{1},\dots,X_{N_{v_{m+1}}}\}, where X1,X2,X_{1},X_{2},\dots are i.i.d random points with density ff, and Nvm+1N_{v_{m+1}} is Poisson distributed with mean vm+1v_{m+1}, independently of (Xi,i1)(X_{i},\,i\geq 1).

Since ρnvmk+2Rsmdf(Rsm)k+2\rho_{n}\geq v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}, 𝒳n𝒳vm+1{\mathcal{X}}_{n}\subset{\mathcal{X}}_{v_{m+1}}, and RnRqmR_{n}\geq R_{q_{m}} (see (4.13) for the definition of sms_{m}), one can bound Gk,n+(t)/ρnG_{k,n}^{+}(t)/\rho_{n} in a way that

(4.38) Gk,n+(t)ρn\displaystyle\frac{G_{k,n}^{+}(t)}{\rho_{n}} (vmk+2Rsmdf(Rsm)k+2)1𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}\displaystyle\leq\big{(}v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}\big{)}^{-1}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}
=Sm(t)vmk+2Rsmdf(Rsm)k+2+(vmk+2Rsmdf(Rsm)k+2)1\displaystyle=\frac{S_{m}^{\uparrow}(t)}{v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}}+\big{(}v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}\big{)}^{-1}
×{𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)},n1.\displaystyle\qquad\qquad\qquad\qquad\qquad\times\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\bigg{\}},\ \ n\geq 1.

By Lemmas 5.4 and 5.8,

(4.39) (vmk+2Rsmdf(Rsm)k+2)1{𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)}\displaystyle\big{(}v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}\big{)}^{-1}\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\bigg{\}}
=(vm+1vm)k+2(RqmRsm)d(f(Rqm)f(Rsm))k+2(vm+1k+2Rqmdf(Rqm)k+2)1\displaystyle=\Big{(}\frac{v_{m+1}}{v_{m}}\Big{)}^{k+2}\Big{(}\frac{R_{q_{m}}}{R_{s_{m}}}\Big{)}^{d}\bigg{(}\frac{f(R_{q_{m}})}{f(R_{s_{m}})}\bigg{)}^{k+2}\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{-1}
×{𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)}0,m,a.s.\displaystyle\qquad\qquad\qquad\qquad\times\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\bigg{\}}\to 0,\ \ m\to\infty,\ \ \text{a.s.}

Now, by Lemmas 5.4 and 5.7 as well as (4.39),

(4.40) lim supnGk,n+(t)ρn\displaystyle\limsup_{n\to\infty}\frac{G_{k,n}^{+}(t)}{\rho_{n}} lim supmSm(t)vmk+2Rsmdf(Rsm)k+2\displaystyle\leq\limsup_{m\to\infty}\frac{S_{m}^{\uparrow}(t)}{v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}}
=lim supm(vm+1vm)k+2(RqmRsm)d(f(Rqm)f(Rsm))k+2Sm(t)vm+1k+2Rqmdf(Rqm)k+2\displaystyle=\limsup_{m\to\infty}\Big{(}\frac{v_{m+1}}{v_{m}}\Big{)}^{k+2}\Big{(}\frac{R_{q_{m}}}{R_{s_{m}}}\Big{)}^{d}\bigg{(}\frac{f(R_{q_{m}})}{f(R_{s_{m}})}\bigg{)}^{k+2}\frac{S_{m}^{\uparrow}(t)}{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}}
lim supmSm(t)vm+1k+2Rqmdf(Rqm)k+2\displaystyle\leq\limsup_{m\to\infty}\frac{S_{m}^{\uparrow}(t)}{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}}
μk(k+2,1,+)(t;0)(k+2)!+lim supmSm(t)𝔼[Sm(t)]vm+1k+2Rqmdf(Rqm)k+2,a.s.\displaystyle\leq\frac{\mu_{k}^{(k+2,1,+)}(t;0)}{(k+2)!}+\limsup_{m\to\infty}\frac{S_{m}^{\uparrow}(t)-\mathbb{E}[S_{m}^{\uparrow}(t)]}{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}},\ \ \text{a.s.}

As for the lower bound of Gk,n+(t)/ρnG_{k,n}^{+}(t)/\rho_{n}, noting that ρnvm+1k+2Rrmdf(Rrm)k+2\rho_{n}\leq v_{m+1}^{k+2}R_{r_{m}}^{d}f(R_{r_{m}})^{k+2}, 𝒳n𝒳vm{\mathcal{X}}_{n}\supset{\mathcal{X}}_{v_{m}}, and RnRpmR_{n}\leq R_{p_{m}} (see (4.13) for the definition of rmr_{m}), we obtain that

Gk,n+(t)ρn\displaystyle\frac{G_{k,n}^{+}(t)}{\rho_{n}} Sm(t)vm+1k+2Rrmdf(Rrm)k+2+(vm+1k+2Rrmdf(Rrm)k+2)1\displaystyle\geq\frac{S_{m}^{\downarrow}(t)}{v_{m+1}^{k+2}R_{r_{m}}^{d}f(R_{r_{m}})^{k+2}}+\big{(}v_{m+1}^{k+2}R_{r_{m}}^{d}f(R_{r_{m}})^{k+2}\big{)}^{-1}
×{𝒴𝒳vm,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rpm}Sm(t)}.\displaystyle\qquad\qquad\qquad\qquad\qquad\times\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{p_{m}}\big{\}}-S_{m}^{\downarrow}(t)\bigg{\}}.

Repeating the same argument as in (4.40) and using Lemmas 5.4, 5.7, and 5.8,

(4.41) lim infnGk,n+(t)ρnμk(k+2,1,+)(t;0)(k+2)!+lim infmSm(t)𝔼[Sm(t)]vmk+2Rpmdf(Rpm)k+2,a.s.\liminf_{n\to\infty}\frac{G_{k,n}^{+}(t)}{\rho_{n}}\geq\frac{\mu_{k}^{(k+2,1,+)}(t;0)}{(k+2)!}+\liminf_{m\to\infty}\frac{S_{m}^{\downarrow}(t)-\mathbb{E}[S_{m}^{\downarrow}(t)]}{v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}},\ \ \text{a.s.}

From (4.40) and (4.41), it now suffices to demonstrate that, for every ϵ>0\epsilon>0,

lim supmSm(t)𝔼[Sm(t)]vm+1k+2Rqmdf(Rqm)k+2\displaystyle\limsup_{m\to\infty}\frac{S_{m}^{\uparrow}(t)-\mathbb{E}[S_{m}^{\uparrow}(t)]}{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}} ϵ,a.s.,and lim infmSm(t)𝔼[Sm(t)]vmk+2Rpmdf(Rpm)k+2ϵ,a.s.\displaystyle\leq\epsilon,\ \ \text{a.s.,}\ \ \text{and }\ \ \ \liminf_{m\to\infty}\frac{S_{m}^{\downarrow}(t)-\mathbb{E}[S_{m}^{\downarrow}(t)]}{v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}}\geq-\epsilon,\ \ \text{a.s.}

According to the Borel-Cantelli lemma, we need to show that

(4.42) m=1(Sm(t)>𝔼[Sm(t)]+ϵvm+1k+2Rqmdf(Rqm)k+2)<,\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\big{(}S_{m}^{\uparrow}(t)>\mathbb{E}[S_{m}^{\uparrow}(t)]+\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}<\infty,
(4.43) m=1(Sm(t)<𝔼[Sm(t)]ϵvmk+2Rpmdf(Rpm)k+2)<.\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\big{(}S_{m}^{\downarrow}(t)<\mathbb{E}[S_{m}^{\downarrow}(t)]-\epsilon v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}<\infty.

For the proof of (4.42), note that Sm(t)S_{m}^{\uparrow}(t) is a Poisson UU-statistics of order k+2k+2, satisfying (5.5) and (5.6), for which an underlying Poisson point process has a finite intensity measure vm+1B(0,Rqm)cf(z)𝑑zv_{m+1}\int_{\cdot\,\cap B(0,R_{q_{m}})^{c}}f(z)dz. From this observation, one can appeal to Proposition 5.3 to get that

(Sm(t)>𝔼[Sm(t)]+ϵvm+1k+2Rqmdf(Rqm)k+2)\displaystyle\mathbb{P}\big{(}S_{m}^{\uparrow}(t)>\mathbb{E}[S_{m}^{\uparrow}(t)]+\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}
exp{C[(𝔼[Sm(t)]+ϵvm+1k+2Rqmdf(Rqm)k+2)1/(2k+4)(𝔼[Sm(t)])1/(2k+4)]2}.\displaystyle\leq\exp\bigg{\{}-C^{*}\Big{[}\Big{(}\mathbb{E}[S_{m}^{\uparrow}(t)]+\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\Big{)}^{1/(2k+4)}-\big{(}\mathbb{E}[S_{m}^{\uparrow}(t)]\big{)}^{1/(2k+4)}\Big{]}^{2}\bigg{\}}.

By Lemmas 5.4 and 5.7, and (3.3),

[(𝔼[Sm(t)]+ϵvm+1k+2Rqmdf(Rqm)k+2)1/(2k+4)(𝔼[Sm(t)])1/(2k+4)]2\displaystyle\Big{[}\Big{(}\mathbb{E}[S_{m}^{\uparrow}(t)]+\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\Big{)}^{1/(2k+4)}-\big{(}\mathbb{E}[S_{m}^{\uparrow}(t)]\big{)}^{1/(2k+4)}\Big{]}^{2}
C(vm+1k+2Rqmdf(Rqm)k+2)1/(k+2)C(vmk+2Rvmdf(Rvm)k+2)1/(k+2)\displaystyle\geq C^{*}\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{1/(k+2)}\geq C^{*}\big{(}v_{m}^{k+2}R_{v_{m}}^{d}f(R_{v_{m}})^{k+2}\big{)}^{1/(k+2)}
C(logvm)η/(k+2)Cmγη/(k+2).\displaystyle\geq C^{*}(\log v_{m})^{\eta/(k+2)}\geq C^{*}m^{\gamma\eta/(k+2)}.

In conclusion,

(Sm(t)>𝔼[Sm(t)]+ϵvm+1k+2Rqmdf(Rqm)k+2)exp{Cmγη/(k+2)},\mathbb{P}\big{(}S_{m}^{\uparrow}(t)>\mathbb{E}[S_{m}^{\uparrow}(t)]+\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}\leq\exp\big{\{}-C^{*}m^{\gamma\eta/(k+2)}\big{\}},

so that mexp{Cmγη/(k+2)}<\sum_{m}\exp\{-C^{*}m^{\gamma\eta/(k+2)}\}<\infty as desired.

We proceed to the proof of (4.43). Applying the second concentration inequality in Proposition 5.3, it holds that

(Sm(t)<𝔼[Sm(t)]ϵvmk+2Rpmdf(Rpm)k+2)exp{C[ϵvmk+2Rpmdf(Rpm)k+2]2Var(Sm(t))}.\displaystyle\mathbb{P}\big{(}S_{m}^{\downarrow}(t)<\mathbb{E}[S_{m}^{\downarrow}(t)]-\epsilon v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}\leq\exp\bigg{\{}-\frac{C^{*}\big{[}\epsilon v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{]}^{2}}{\text{Var}(S_{m}^{\downarrow}(t))}\bigg{\}}.

Because of Lemmas 5.4 and 5.7, as well as (3.3),

(vmk+2Rpmdf(Rpm)k+2)2(Var(Sm(t)))1\displaystyle\big{(}v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}^{2}\big{(}\text{Var}(S_{m}^{\downarrow}(t))\big{)}^{-1} Cvmk+2Rpmdf(Rpm)k+2Cvmk+2Rvmdf(Rvm)k+2\displaystyle\geq C^{*}v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\geq C^{*}v_{m}^{k+2}R_{v_{m}}^{d}f(R_{v_{m}})^{k+2}
C(logvm)ηCmγη.\displaystyle\geq C^{*}(\log v_{m})^{\eta}\geq C^{*}m^{\gamma\eta}.

We now conclude that

(Sm(t)<𝔼[Sm(t)]ϵvmk+2Rpmdf(Rpm)k+2)exp{Cmγη},\displaystyle\mathbb{P}\big{(}S_{m}^{\downarrow}(t)<\mathbb{E}[S_{m}^{\downarrow}(t)]-\epsilon v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}\leq\exp\big{\{}-C^{*}m^{\gamma\eta}\big{\}},

so that meCmγη<\sum_{m}e^{-C^{*}m^{\gamma\eta}}<\infty. This completes the proof of (4.43), and thus, (4.32) follows.

The next step is to establish (4.33). By virtue of Lemma 5.2, we obtain that

(4.44) |βk,n(t)Gk,n(t)|Gk,n(t)Jk,n(k+2,1)(t)+(k+3k+1)Lk,n(t),\big{|}\beta_{k,n}(t)-G_{k,n}(t)\big{|}\leq G_{k,n}(t)-J_{k,n}^{(k+2,1)}(t)+\binom{k+3}{k+1}L_{k,n}(t),

where

Lk,n(t):=𝒴𝒳n,|𝒴|=k+3𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rn}.L_{k,n}(t):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{n},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}.

One can further bound the right hand side in (4.44) as follows:

Gk,n(t)Jk,n(k+2,1)(t)+(k+3k+1)Lk,n(t)\displaystyle G_{k,n}(t)-J_{k,n}^{(k+2,1)}(t)+\binom{k+3}{k+1}L_{k,n}(t)
𝒴𝒳n,|𝒴|=k+2𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rn}\displaystyle\leq\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\,|{\mathcal{Y}}|=k+2}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}
×𝟏{Cˇ(𝒴,t) is not a connected component of Cˇ(𝒳n,t)}+(k+3k+1)Lk,n(t)\displaystyle\qquad\qquad\qquad\times{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is not a connected component of }\check{C}({\mathcal{X}}_{n},t)\big{\}}+\binom{k+3}{k+1}L_{k,n}(t)
(k+3+(k+3k+1))Lk,n(t)10k2Lk,n(t).\displaystyle\leq\bigg{(}k+3+\binom{k+3}{k+1}\bigg{)}L_{k,n}(t)\leq 10k^{2}L_{k,n}(t).

Observing that 𝒳n𝒳vm+1{\mathcal{X}}_{n}\subset{\mathcal{X}}_{v_{m+1}}, RnRqmR_{n}\geq R_{q_{m}} and 𝟏{Cˇ(𝒴,t) is connected}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected}\big{\}} is a non-decreasing function in tt,

Lk,n(t)\displaystyle L_{k,n}(t) 𝒴𝒳vm+1,|𝒴|=k+3𝟏{Cˇ(𝒴,1) is connected,(𝒴)Rqm}.\displaystyle\leq\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},1)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}.

Since ρnvmk+2Rsmdf(Rsm)k+2\rho_{n}\geq v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}, we have, for every n1n\geq 1,

sup0t1|βk,n(t)ρnGk,n(t)ρn|10k2vmk+2Rsmdf(Rsm)k+2𝒴𝒳vm+1,|𝒴|=k+3𝟏{Cˇ(𝒴,1) is connected,(𝒴)Rqm}.\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{\beta_{k,n}(t)}{\rho_{n}}-\frac{G_{k,n}(t)}{\rho_{n}}\,\Big{|}\leq\frac{10k^{2}}{v_{m}^{k+2}R_{s_{m}}^{d}f(R_{s_{m}})^{k+2}}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},1)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}.

We now define

(4.45) Wm(t):=𝒴𝒫vm+1,|𝒴|=k+3𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rqm},t[0,1].W_{m}(t):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset\mathcal{P}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}},\ \ t\in[0,1].

This is a Poisson UU-statistics of order k+3k+3, such that s(𝒴):=𝟏{Cˇ(𝒴,t) is connected}s({\mathcal{Y}}):={\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected}\big{\}} fulfills conditions (5.5) and (5.6). Then, Lemmas 5.4 and 5.8 guarantee that the proof of (4.33) will be complete if one can verify that

(4.46) Wm(1)vm+1k+2Rqmdf(Rqm)k+20,a.s.\frac{W_{m}(1)}{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}}\to 0,\ \ \text{a.s.}

By the Borel-Cantelli lemma, (4.46) is implied by

m=1(Wm(1)>ϵvm+1k+2Rqmdf(Rqm)k+2)<,\sum_{m=1}^{\infty}\mathbb{P}\big{(}W_{m}(1)>\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}<\infty,

for every ϵ>0\epsilon>0. Lemmas 5.4 and 5.7 yield that as mm\to\infty,

(4.47) 𝔼[Wm(1)]\displaystyle\mathbb{E}\big{[}W_{m}(1)\big{]} Cvm+1k+3Rqmdf(Rqm)k+3Cvm+1k+2Rqmdf(Rqm)k+2vmf(Rvm)\displaystyle\leq C^{*}v_{m+1}^{k+3}R_{q_{m}}^{d}f(R_{q_{m}})^{k+3}\leq C^{*}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}v_{m}f(R_{v_{m}})
=o(vm+1k+2Rqmdf(Rqm)k+2),\displaystyle=o\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)},

where the last equality comes from vmf(Rvm)0v_{m}f(R_{v_{m}})\to 0 as mm\to\infty. Now, there exists NN\in\mathbb{N}, such that for all mNm\geq N,

(Wm(1)>ϵvm+1k+2Rqmdf(Rqm)k+2)\displaystyle\mathbb{P}\big{(}W_{m}(1)>\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}
(Wm(1)𝔼[Wm(1)]>ϵ2vm+1k+2Rqmdf(Rqm)k+2)\displaystyle\leq\mathbb{P}\Big{(}W_{m}(1)-\mathbb{E}\big{[}W_{m}(1)\big{]}>\frac{\epsilon}{2}\,v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\Big{)}
exp{C[(𝔼[Wm(1)]+ϵ2vm+1k+2Rqmdf(Rqm)k+2)1/(2k+6)(𝔼[Wm(1)])1/(2k+6)]2}.\displaystyle\leq\exp\bigg{\{}-C^{*}\Big{[}\Big{(}\mathbb{E}\big{[}W_{m}(1)\big{]}+\frac{\epsilon}{2}\,v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\Big{)}^{1/(2k+6)}-\Big{(}\mathbb{E}\big{[}W_{m}(1)\big{]}\Big{)}^{1/(2k+6)}\Big{]}^{2}\bigg{\}}.

The last inequality above is a direct result of Proposition 5.3. It follows from (4.47) that

𝔼[Wm(1)]vm+1k+2Rqmdf(Rqm)k+20,m.\frac{\mathbb{E}\big{[}W_{m}(1)\big{]}}{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}}\to 0,\ \ m\to\infty.

This, together with Lemma 5.4 and (3.3), gives that

[(𝔼[Wm(1)]+ϵ2vm+1k+2Rqmdf(Rqm)k+2)1/(2k+6)(𝔼[Wm(1)])1/(2k+6)]2\displaystyle\Big{[}\Big{(}\mathbb{E}\big{[}W_{m}(1)\big{]}+\frac{\epsilon}{2}\,v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\Big{)}^{1/(2k+6)}-\Big{(}\mathbb{E}\big{[}W_{m}(1)\big{]}\Big{)}^{1/(2k+6)}\Big{]}^{2}
C(vm+1k+2Rqmdf(Rqm)k+2)1/(k+3)C(vmk+2Rvmdf(Rvm)k+2)1/(k+3)\displaystyle\geq C^{*}\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{1/(k+3)}\geq C^{*}\big{(}v_{m}^{k+2}R_{v_{m}}^{d}f(R_{v_{m}})^{k+2}\big{)}^{1/(k+3)}
C(logvm)η/(k+3)Cmγη/(k+3).\displaystyle\geq C^{*}(\log v_{m})^{\eta/(k+3)}\geq C^{*}m^{\gamma\eta/(k+3)}.

Now we get that

m=1(Wm(1)>ϵvm+1k+2Rqmdf(Rqm)k+2)Cm=1exp{Cmγη/(k+3)}<,\sum_{m=1}^{\infty}\mathbb{P}\big{(}W_{m}(1)>\epsilon v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}\leq C^{*}\sum_{m=1}^{\infty}\exp\big{\{}-C^{*}m^{\gamma\eta/(k+3)}\big{\}}<\infty,

and the Borel-Cantelli lemma concludes (4.46), as desired. ∎

4.3. Proof of Theorem 3.4

This section is divided into two parts. For ease of the description, the first part is devoted to proving Theorem 3.4 (ii)(ii), while the second part treats Theorem 3.4 (i)(i). Here we exploit the results in Sections 5.1 and 5.3. In particular, the concentration bounds in Proposition 5.3 will play a key role in the proof of Theorem 3.4 (i)(i). As our proof is similar in nature to that of Theorem 3.1, we occasionally skip detailed arguments.

Proof of Theorem 3.4 (ii)(ii).

We first truncate βk,n(t)\beta_{k,n}(t) in the same way as (4.16) and define also ξk(M)(t;λ)\xi_{k}^{(M)}(t;\lambda) by the same truncation. With the same reasoning as in the proof of Theorem 3.1 (ii)(ii), the required functional SLLN can be obtained as a result of the following statements.

(4.48) limnsup0t1|βk,n(M)(t)a(Rn)Rnd1ξk(M)(t;λ)|=0,a.s. for all M,\displaystyle\lim_{n\to\infty}\sup_{0\leq t\leq 1}\Big{|}\frac{\beta_{k,n}^{(M)}(t)}{a(R_{n})R_{n}^{d-1}}-\xi_{k}^{(M)}(t;\lambda)\Big{|}=0,\ \ \text{a.s. for all }M\in\mathbb{N},
(4.49) limMlim supnsup0t1{βk,n(t)a(Rn)Rnd1βk,n(M)(t)a(Rn)Rnd1}=0,a.s.,\displaystyle\lim_{M\to\infty}\limsup_{n\to\infty}\sup_{0\leq t\leq 1}\Big{\{}\frac{\beta_{k,n}(t)}{a(R_{n})R_{n}^{d-1}}-\frac{\beta^{(M)}_{k,n}(t)}{a(R_{n})R_{n}^{d-1}}\Big{\}}=0,\ \ \text{a.s.},
(4.50) limMlim supnsup0t1(ξk(t;λ)ξk(M)(t;λ))=0.\displaystyle\lim_{M\to\infty}\limsup_{n\to\infty}\sup_{0\leq t\leq 1}\big{(}\xi_{k}(t;\lambda)-\xi_{k}^{(M)}(t;\lambda)\big{)}=0.

For (4.48), it suffices to prove that for every ik+2i\geq k+2 and j1j\geq 1,

sup0t1|Jk,n(i,j)(t)a(Rn)Rnd1λii!ξk(i,j)(t;λ)|0,n,a.s.,\sup_{0\leq t\leq 1}\Big{|}\,\frac{J_{k,n}^{(i,j)}(t)}{a(R_{n})R_{n}^{d-1}}-\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j)}(t;\lambda)\,\Big{|}\to 0,\ \ n\to\infty,\ \ \text{a.s.},

which itself is implied by

(4.51) sup0t1|Jk,n(i,j,+)(t)a(Rn)Rnd1λii!ξk(i,j,+)(t;λ)|0,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{J_{k,n}^{(i,j,+)}(t)}{a(R_{n})R_{n}^{d-1}}-\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t;\lambda)\,\Big{|}\to 0,\ \ \text{a.s.},
sup0t1|Jk,n(i,j,)(t)a(Rn)Rnd1λii!ξk(i,j,)(t;λ)|0,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{J_{k,n}^{(i,j,-)}(t)}{a(R_{n})R_{n}^{d-1}}-\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,-)}(t;\lambda)\,\Big{|}\to 0,\ \ \text{a.s.},

where Jk,n(i,j,±)(t)J_{k,n}^{(i,j,\pm)}(t) and ξk(i,j,±)(t;λ)\xi_{k}^{(i,j,\pm)}(t;\lambda) are defined in (4.8) and (4.10) respectively. As before, we focus only on the asymptotics of the “++” part. For this purpose, we again extend Jk,n(i,j,+)(t)J_{k,n}^{(i,j,+)}(t) above to Jk,n(i,j,+)(t,s)J_{k,n}^{(i,j,+)}(t,s) in the same way as (4.21). Additionally, we also define

(4.52) ξk(i,j,+)(t,s;λ):=\displaystyle\xi_{k}^{(i,j,+)}(t,s;\lambda):= Sd10(d)i1ht(i,j,+)(0,𝐲)eρic1=1i1θ,y=1i1𝟏{ρ+c1θ,y0}\displaystyle\int_{S^{d-1}}\int_{0}^{\infty}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,+)}(0,{\bf y})\,e^{-\rho i-c^{-1}\sum_{\ell=1}^{i-1}\langle\theta,y_{\ell}\rangle}\prod_{\ell=1}^{i-1}{\bf 1}\big{\{}\rho+c^{-1}\langle\theta,y_{\ell}\rangle\geq 0\big{\}}
×exp{λeρ({0,𝐲};s)ec1θ,zdz}d𝐲dρJ(θ)dθ,t,s[0,1].\displaystyle\quad\times\exp\Big{\{}-\lambda e^{-\rho}\int_{\mathcal{B}(\{0,{\bf y}\};s)}e^{-c^{-1}\langle\theta,z\rangle}\,dz\Big{\}}d{\bf y}\,d\rho\,J(\theta)\,d\theta,\ \ \ t,s\in[0,1].

Owing to the monotonicity in (4.4), one can see that (4.52) is non-decreasing in tt and non-increasing in ss. Additionally, (4.52) is a continuous function on [0,1]2[0,1]^{2}. Thus, by Lemma 5.1 (ii)(ii), showing

(4.53) Jk,n(i,j,+)(t,s)a(Rn)Rnd1λii!ξk(i,j,+)(t,s;λ),n,a.s.\frac{J_{k,n}^{(i,j,+)}(t,s)}{a(R_{n})R_{n}^{d-1}}\to\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda),\ \ \ n\to\infty,\ \ \text{a.s.}

for every (t,s)[0,1]2(t,s)\in[0,1]^{2}, will suffice for (4.51).

To show (4.53), we take a constant γ(τ/(dτ),1)\gamma\in\big{(}\tau/(d-\tau),1\big{)} and define vm:=emγv_{m}:=\lfloor e^{m^{\gamma}}\rfloor, m=0,1,2,m=0,1,2,\dots as in (4.11). Recall that the range of τ\tau is restricted to (0,1)(0,1) when d=2d=2, so one can always take such γ\gamma. For every nn\in\mathbb{N}, there exists a unique m=m(n)m=m(n)\in\mathbb{N} such that vmn<vm+1v_{m}\leq n<v_{m+1}. Additionally, let pmp_{m}, qmq_{m}, bmb_{m}, and cmc_{m} be defined as in (4.12) and (4.14) respectively. Defining Tm(i,j,)(t,s)T_{m}^{(i,j,\uparrow)}(t,s) and Tm(i,j,)(t,s)T_{m}^{(i,j,\downarrow)}(t,s) as in (4.24) and (4.25), it is now easy to see that

Tm(i,j,)(t,s)a(Rbm)Rbmd1Jk,n(i,j,+)(t,s)a(Rn)Rnd1Tm(i,j,)(t,s)a(Rcm)Rcmd1\frac{T_{m}^{(i,j,\downarrow)}(t,s)}{a(R_{b_{m}})R_{b_{m}}^{d-1}}\leq\frac{J_{k,n}^{(i,j,+)}(t,s)}{a(R_{n})R_{n}^{d-1}}\leq\frac{T_{m}^{(i,j,\uparrow)}(t,s)}{a(R_{c_{m}})R_{c_{m}}^{d-1}}

for all nn\in\mathbb{N}. By Lemmas 5.9 and 5.10 (i)(i),

(4.54) lim supnJk,n(i,j,+)(t,s)a(Rn)Rnd1\displaystyle\limsup_{n\to\infty}\frac{J_{k,n}^{(i,j,+)}(t,s)}{a(R_{n})R_{n}^{d-1}} lim supma(Rqm)Rqmd1a(Rcm)Rcmd1Tm(i,j,)(t,s)a(Rqm)Rqmd1\displaystyle\leq\limsup_{m\to\infty}\frac{a(R_{q_{m}})R_{q_{m}}^{d-1}}{a(R_{c_{m}})R_{c_{m}}^{d-1}}\cdot\frac{T_{m}^{(i,j,\uparrow)}(t,s)}{a(R_{q_{m}})R_{q_{m}}^{d-1}}
lim supmTm(i,j,)(t,s)a(Rqm)Rqmd1\displaystyle\leq\limsup_{m\to\infty}\frac{T_{m}^{(i,j,\uparrow)}(t,s)}{a(R_{q_{m}})R_{q_{m}}^{d-1}}
λii!ξk(i,j,+)(t,s;λ)+lim supmTm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]a(Rqm)Rqmd1,a.s.,\displaystyle\leq\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda)+\limsup_{m\to\infty}\frac{T_{m}^{(i,j,\uparrow)}(t,s)-\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}}{a(R_{q_{m}})R_{q_{m}}^{d-1}},\ \ \text{a.s.},

and similarly,

(4.55) lim infnJk,n(i,j,+)(t,s)a(Rn)Rnd1λii!ξk(i,j,+)(t,s;λ)+lim infmTm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]a(Rpm)Rpmd1,a.s.\liminf_{n\to\infty}\frac{J_{k,n}^{(i,j,+)}(t,s)}{a(R_{n})R_{n}^{d-1}}\geq\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda)+\liminf_{m\to\infty}\frac{T_{m}^{(i,j,\downarrow)}(t,s)-\mathbb{E}\big{[}T_{m}^{(i,j,\downarrow)}(t,s)\big{]}}{a(R_{p_{m}})R_{p_{m}}^{d-1}},\ \ \text{a.s.}

For the application of the Borel-Cantelli lemma to the rightmost term in (4.54), we have, for every ϵ>0\epsilon>0,

m=1(|Tm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]|>ϵa(Rqm)Rqmd1)\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\Big{(}\big{|}\,T_{m}^{(i,j,\uparrow)}(t,s)-\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}\,\big{|}>\epsilon a(R_{q_{m}})R_{q_{m}}^{d-1}\Big{)}
1ϵ2m=1Var(Tm(i,j,)(t,s))(a(Rqm)Rqmd1)2Cm=11a(Rqm)Rqmd1,\displaystyle\leq\frac{1}{\epsilon^{2}}\sum_{m=1}^{\infty}\frac{\text{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)}}{\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{2}}\leq C^{*}\sum_{m=1}^{\infty}\frac{1}{a(R_{q_{m}})R_{q_{m}}^{d-1}},

where Lemma 5.10 (i)(i) is applied for the second inequality. Due to the constraint γ(τ/(dτ),1)\gamma\in\big{(}\tau/(d-\tau),1\big{)}, one can choose δi>0\delta_{i}>0, i=1,2i=1,2, so that

γ(dτδ1)(1τδ2)>1.\gamma(d-\tau-\delta_{1})\Big{(}\frac{1}{\tau}-\delta_{2}\Big{)}>1.

Observing that aRV1τa\in\text{RV}_{1-\tau}, we have a(Rqm)Rqmd1CRqmdτδ1a(R_{q_{m}})R_{q_{m}}^{d-1}\geq C^{*}R_{q_{m}}^{d-\tau-\delta_{1}} for all mm\in\mathbb{N}. Moreover, it follows from ψRV1/τ\psi^{\leftarrow}\in\text{RV}_{1/\tau} (see Proposition 2.6 in [20]) and (5.38) that

Rqmψ(logqm)ψ(logvm)C(logvm)1/τδ2/2Cmγ(1/τδ2).R_{q_{m}}\sim\psi^{\leftarrow}(\log q_{m})\geq\psi^{\leftarrow}(\log v_{m})\geq C^{*}(\log v_{m})^{1/\tau-\delta_{2}/2}\geq C^{*}m^{\gamma(1/\tau-\delta_{2})}.

Therefore,

a(Rqm)Rqmd1Cmγ(dτδ1)(1/τδ2),a(R_{q_{m}})R_{q_{m}}^{d-1}\geq C^{*}m^{\gamma(d-\tau-\delta_{1})(1/\tau-\delta_{2})},

so that

(4.56) m=11a(Rqm)Rqmd1Cm=11mγ(dτδ1)(1/τδ2)<.\sum_{m=1}^{\infty}\frac{1}{a(R_{q_{m}})R_{q_{m}}^{d-1}}\leq C^{*}\sum_{m=1}^{\infty}\frac{1}{m^{\gamma(d-\tau-\delta_{1})(1/\tau-\delta_{2})}}<\infty.

Now, the Borel-Cantelli lemma verifies that

Tm(i,j,)(t,s)𝔼[Tm(i,j,)(t,s)]a(Rqm)Rqmd10,m,a.s.,\frac{T_{m}^{(i,j,\uparrow)}(t,s)-\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}}{a(R_{q_{m}})R_{q_{m}}^{d-1}}\to 0,\ \ m\to\infty,\ \ \text{a.s.},

and hence,

lim supnJk,n(i,j,+)(t,s)a(Rn)Rnd1λii!ξk(i,j,+)(t,s;λ),a.s.\limsup_{n\to\infty}\frac{J_{k,n}^{(i,j,+)}(t,s)}{a(R_{n})R_{n}^{d-1}}\leq\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda),\ \ \text{a.s.}

Applying the similar argument to (4.55), we also get that

lim infnJk,n(i,j,+)(t,s)a(Rn)Rnd1λii!ξk(i,j,+)(t,s;λ),a.s.;\liminf_{n\to\infty}\frac{J_{k,n}^{(i,j,+)}(t,s)}{a(R_{n})R_{n}^{d-1}}\geq\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda),\ \ \text{a.s.};

hence, the proof of (4.48) has been completed.

Our next task is to verify (4.49). Repeating the same analysis as in (4.29), while using the same notation Vm,M(t)V_{m,M}(t), we obtain that

βk,n(t)βk,n(M)(t)a(Rn)Rnd1\displaystyle\frac{\beta_{k,n}(t)-\beta^{(M)}_{k,n}(t)}{a(R_{n})R_{n}^{d-1}} 1a(Rn)Rnd1i=M+1nik+1𝒴𝒳n,|𝒴|=i𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rn}\displaystyle\leq\frac{1}{a(R_{n})R_{n}^{d-1}}\sum_{i=M+1}^{n}i^{k+1}\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{n},\lvert{\mathcal{Y}}\rvert=i}\mathbf{1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}
1a(Rcm)Rcmd1i=M+1ik+1𝒴𝒳vm+1,|𝒴|=i𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rqm}\displaystyle\leq\frac{1}{a(R_{c_{m}})R_{c_{m}}^{d-1}}\sum_{i=M+1}^{\infty}i^{k+1}\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\lvert{\mathcal{Y}}\rvert=i}\mathbf{1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}
=:Vm,M(t)a(Rcm)Rcmd1.\displaystyle=:\frac{V_{m,M}(t)}{a(R_{c_{m}})R_{c_{m}}^{d-1}}.

Since Vm,M(t)V_{m,M}(t) is a non-decreasing function in tt, we now need to show that

limMlim supmVm,M(1)a(Rcm)Rcmd1=0,a.s.\lim_{M\to\infty}\limsup_{m\to\infty}\frac{V_{m,M}(1)}{a(R_{c_{m}})R_{c_{m}}^{d-1}}=0,\ \ \text{a.s.}

By Lemmas 5.9 and 5.10 (ii)(ii), it is enough to prove that for every MM\in\mathbb{N},

Vm,M(1)𝔼[Vm,M(1)]a(Rqm)Rqmd10,m,a.s.\frac{V_{m,M}(1)-\mathbb{E}\big{[}V_{m,M}(1)\big{]}}{a(R_{q_{m}})R_{q_{m}}^{d-1}}\to 0,\ \ \ m\to\infty,\ \ \text{a.s.}

To apply the Borel-Cantelli lemma, notice from Lemma 5.10 (ii)(ii) that for every ϵ>0\epsilon>0,

m=1(|Vm,M(1)𝔼[Vm,M(1)]|>ϵa(Rqm)Rqmd1)\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\Big{(}\big{|}\,V_{m,M}(1)-\mathbb{E}[V_{m,M}(1)]\,\big{|}>\epsilon a(R_{q_{m}})R_{q_{m}}^{d-1}\Big{)}
1ϵ2m=1Var(Vm,M(1))(a(Rqm)Rqmd1)2Cm=11a(Rqm)Rqmd1.\displaystyle\leq\frac{1}{\epsilon^{2}}\sum_{m=1}^{\infty}\frac{\text{Var}\big{(}V_{m,M}(1)\big{)}}{\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{2}}\leq C^{*}\sum_{m=1}^{\infty}\frac{1}{a(R_{q_{m}})R_{q_{m}}^{d-1}}.

The series above is convergent as shown in (4.56), and thus, (4.49) follows as desired. Finally, as in the proof of Theorem 3.1 (ii)(ii), we will skip the proof of (4.50). ∎


Proof of Theorem 3.4 (i)(i).

By the same reasoning as in the proof of Theorem 3.1 (i)(i), it is sufficient to demonstrate that

(4.57) sup0t1|Gk,n(t)ηnξk(k+2,1)(t;0)(k+2)!|0,n,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{G_{k,n}(t)}{\eta_{n}}-\frac{\xi_{k}^{(k+2,1)}(t;0)}{(k+2)!}\,\Big{|}\to 0,\ \ \ n\to\infty,\ \ \text{a.s.},
(4.58) sup0t1|βk,n(t)ηnGk,n(t)ηn|0,n,a.s.,\displaystyle\sup_{0\leq t\leq 1}\Big{|}\,\frac{\beta_{k,n}(t)}{\eta_{n}}-\frac{G_{k,n}(t)}{\eta_{n}}\,\Big{|}\to 0,\ \ \ n\to\infty,\ \ \text{a.s.},

where Gk,n(t)G_{k,n}(t) is defined in (4.31). For (4.57), we decompose Gk,n(t)G_{k,n}(t) and ξk(k+2,1)(t;0)\xi_{k}^{(k+2,1)}(t;0) as Gk,n(t)=Gk,n+(t)Gk,n(t)G_{k,n}(t)=G_{k,n}^{+}(t)-G_{k,n}^{-}(t) and ξk(k+2,1)(t;0)=ξk(k+2,1,+)(t;0)ξk(k+2,1,)(t;0)\xi_{k}^{(k+2,1)}(t;0)=\xi_{k}^{(k+2,1,+)}(t;0)-\xi_{k}^{(k+2,1,-)}(t;0) (see (4.34) and (4.10) respectively). We discuss only the asymptotics of the “++” part. We then recall that Gk,n+(t)G_{k,n}^{+}(t) and ξk(k+2,1,+)(t;0)\xi_{k}^{(k+2,1,+)}(t;0) are both non-decreasing in tt, and ξk(k+2,1,+)(t;0)\xi_{k}^{(k+2,1,+)}(t;0) is a continuous function in t[0,1]t\in[0,1]. Now, because of Lemma 5.1 (i)(i), what needs to be shown is

Gk,n+(t)ηnξk(k+2,1,+)(t;0)(k+2)!n,a.s.,\frac{G_{k,n}^{+}(t)}{\eta_{n}}\to\frac{\xi_{k}^{(k+2,1,+)}(t;0)}{(k+2)!}\,\ \ \ n\to\infty,\ \ \text{a.s.},

for every t[0,1]t\in[0,1]. Let (vm)(v_{m}) be a sequence at (4.11). Then, for every nn\in\mathbb{N}, there exists a unique m=m(n)m=m(n)\in\mathbb{N} such that vmn<vm+1v_{m}\leq n<v_{m+1}. Using Sm(t)S_{m}^{\uparrow}(t) and Sm(t)S_{m}^{\downarrow}(t) in (4.36) and (4.37), as well as the associated Poisson processes 𝒫vm\mathcal{P}_{v_{m}}, 𝒫vm+1\mathcal{P}_{v_{m+1}}, we shall derive the subsequential upper and lower bounds for Gk,n+(t)/ηnG_{k,n}^{+}(t)/\eta_{n}. For the upper bound, as an analogue of (4.38) we obtain that

Gk,n+(t)ηn\displaystyle\frac{G_{k,n}^{+}(t)}{\eta_{n}} (vmk+2a(Rgm)Rgmd1f(Rgm)k+2)1𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}\displaystyle\leq\big{(}v_{m}^{k+2}a(R_{g_{m}})R_{g_{m}}^{d-1}f(R_{g_{m}})^{k+2}\big{)}^{-1}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}
=Sm(t)vmk+2a(Rgm)Rgmd1f(Rgm)k+2+(vmk+2a(Rgm)Rgmd1f(Rgm)k+2)1\displaystyle=\frac{S_{m}^{\uparrow}(t)}{v_{m}^{k+2}a(R_{g_{m}})R_{g_{m}}^{d-1}f(R_{g_{m}})^{k+2}}+\big{(}v_{m}^{k+2}a(R_{g_{m}})R_{g_{m}}^{d-1}f(R_{g_{m}})^{k+2}\big{)}^{-1}
×{𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)},n1,\displaystyle\qquad\qquad\qquad\qquad\qquad\times\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\bigg{\}},\ \ n\geq 1,

where qmq_{m} and gmg_{m} are defined in (4.12) and (4.15) respectively. Repeating the calculations similar to those in (4.39) and (4.40), while appealing to Lemmas 5.9, 5.12, and 5.13, we get that

lim supnGk,n+(t)ηnξk(k+2,1,+)(t;0)(k+2)!+lim supmSm(t)𝔼[Sm(t)]vm+1k+2a(Rqm)Rqmd1f(Rqm)k+2,a.s.\limsup_{n\to\infty}\frac{G_{k,n}^{+}(t)}{\eta_{n}}\leq\frac{\xi_{k}^{(k+2,1,+)}(t;0)}{(k+2)!}+\limsup_{m\to\infty}\frac{S_{m}^{\uparrow}(t)-\mathbb{E}[S_{m}^{\uparrow}(t)]}{v_{m+1}^{k+2}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+2}},\ \ \text{a.s.}

Similarly, exploiting the same lemmas, we have that

lim infnGk,n+(t)ηnξk(k+2,1,+)(t;0)(k+2)!+lim infmSm(t)𝔼[Sm(t)]vmk+2a(Rpm)Rpmd1f(Rpm)k+2,a.s.\liminf_{n\to\infty}\frac{G_{k,n}^{+}(t)}{\eta_{n}}\geq\frac{\xi_{k}^{(k+2,1,+)}(t;0)}{(k+2)!}+\liminf_{m\to\infty}\frac{S_{m}^{\downarrow}(t)-\mathbb{E}[S_{m}^{\downarrow}(t)]}{v_{m}^{k+2}a(R_{p_{m}})R_{p_{m}}^{d-1}f(R_{p_{m}})^{k+2}},\ \ \text{a.s.}

Now, according to the Borel-Cantelli lemma, what need to be shown are the following: for every ϵ>0\epsilon>0,

(4.59) m=1(Sm(t)>𝔼[Sm(t)]+ϵvm+1k+2a(Rqm)Rqmd1f(Rqm)k+2)<,\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\big{(}S_{m}^{\uparrow}(t)>\mathbb{E}[S_{m}^{\uparrow}(t)]+\epsilon v_{m+1}^{k+2}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+2}\big{)}<\infty,
(4.60) m=1(Sm(t)<𝔼[Sm(t)]ϵvmk+2a(Rpm)Rpmd1f(Rpm)k+2)<.\displaystyle\sum_{m=1}^{\infty}\mathbb{P}\big{(}S_{m}^{\downarrow}(t)<\mathbb{E}[S_{m}^{\downarrow}(t)]-\epsilon v_{m}^{k+2}a(R_{p_{m}})R_{p_{m}}^{d-1}f(R_{p_{m}})^{k+2}\big{)}<\infty.

Here, we claim that

(4.61) nk+2a(Rn)Rnd1f(Rn)k+2=Ω((logn)ζ),n,n^{k+2}a(R_{n})R_{n}^{d-1}f(R_{n})^{k+2}=\Omega\big{(}(\log n)^{\zeta}\big{)},\ \ \ n\to\infty,

for some ζ>0\zeta>0. If this is proven, one can establish (4.59) and (4.60) by repeating the same arguments as those for the proofs of (4.42) and (4.43), with the aid of Lemma 5.9, Lemma 5.12, and Proposition 5.3. To show (4.61), choose ζ>0\zeta^{\prime}>0 such that

dττb(k+2)ζ>0.\frac{d-\tau}{\tau}-b(k+2)-\zeta^{\prime}>0.

Notice that

ηn\displaystyle\eta_{n} =Ck+2(logn)b(k+2)a(ψ(logn+bloglogn))ψ(logn+bloglogn)d1.\displaystyle=C^{k+2}(\log n)^{-b(k+2)}a\big{(}\psi^{\leftarrow}(\log n+b\log\log n)\big{)}\psi^{\leftarrow}(\log n+b\log\log n)^{d-1}.

Since aRV1τa\in\text{RV}_{1-\tau} and ψRV1/τ\psi^{\leftarrow}\in\text{RV}_{1/\tau}, we see that a(ψ(z))ψ(z)d1a\big{(}\psi^{\leftarrow}(z)\big{)}\psi^{\leftarrow}(z)^{d-1} is a regularly varying function (at infinity) of exponent (dτ)/τ(d-\tau)/\tau. Therefore, for all nn\in\mathbb{N},

a(ψ(logn+bloglogn))ψ(logn+bloglogn)d1\displaystyle a\big{(}\psi^{\leftarrow}(\log n+b\log\log n)\big{)}\psi^{\leftarrow}(\log n+b\log\log n)^{d-1}
C(logn+bloglogn)dττζC(logn)dττζ.\displaystyle\geq C^{*}(\log n+b\log\log n)^{\frac{d-\tau}{\tau}-\zeta^{\prime}}\geq C^{*}(\log n)^{\frac{d-\tau}{\tau}-\zeta^{\prime}}.

From this, we get that ηnC(logn)dττb(k+2)ζ\eta_{n}\geq C^{*}(\log n)^{\frac{d-\tau}{\tau}-b(k+2)-\zeta^{\prime}}. Now, (4.61) has been obtained by setting ζ=(dτ)/τb(k+2)ζ\zeta=(d-\tau)/\tau-b(k+2)-\zeta^{\prime}, and the proof of (4.59) and (4.60) has been completed.

Finally, by virtue of Lemma 5.2, the proof of (4.58) is very analogous to the corresponding discussions in Section 4.2, so we omit it here. ∎

5. Appendix

In the Appendix, we provide a series of lemmas and propositions that will be used for the proofs of Theorems 3.1 and 3.4. As in the last section, CC^{*} denotes a generic and positive constant independent of nn.

5.1. Technical results commonly used for the proof of Theorems 3.1 and 3.4

The result below allows us to develop a functional SLLN from its pointwise version.

Lemma 5.1.

(i)(i) Let (Xn(t),n1)\big{(}X_{n}(t),\,n\geq 1\big{)} be a sequence of random elements of D[0,1]D[0,1] with non-decreasing sample paths. Suppose a:[0,1]a:[0,1]\to\mathbb{R} is a continuous and non-decreasing function. Suppose that

Xn(t)a(t),n,a.s.,X_{n}(t)\to a(t),\ \ n\to\infty,\ \ \text{a.s.},

for every t[0,1]t\in[0,1], then

Xn(t)a(t),n,a.s. in D[0,1],X_{n}(t)\to a(t),\ \ n\to\infty,\ \ \text{a.s.~{}in }D[0,1],

where D[0,1]D[0,1] is endowed with the uniform topology.

(ii)(ii) Let (Xn(t,s),n)\big{(}X_{n}(t,s),\,n\in\mathbb{N}\big{)} be a sequence of random elements, such that for each n1n\geq 1, Xn(t,s)X_{n}(t,s) has right continuous sample paths with left limits in each of the coordinates. Assume further that for every n1n\geq 1, Xn(t,s)X_{n}(t,s) is non-decreasing in tt and non-increasing in ss. Suppose a(t,s)a(t,s) is a real-valued, continuous function on [0,1]2[0,1]^{2}, which has the same monotonicity as Xn(t,s)X_{n}(t,s) in each of the coordinates. If we have that

(5.1) Xn(t,s)a(t,s),n,a.s.X_{n}(t,s)\to a(t,s),\quad n\to\infty,\quad\text{a.s.}

for every t,s[0,1]t,s\in[0,1], then, as nn\to\infty,

Xn(t,t)a(t,t)a.s.in D[0,1],X_{n}(t,t)\to a(t,t)\quad\text{a.s.}\ \text{in }\ D[0,1],

where D[0,1]D[0,1] is equipped with the uniform topology.

Proof.

Part (i)(i) is proven in Proposition 4.2 of [22]. For Part (ii)(ii), it is clear that a(t,s)a(t,s) is uniformly continuous on [0,1]2[0,1]^{2}. Given ϵ>0\epsilon>0, we can choose N=N(ϵ)N=N(\epsilon)\in\mathbb{N} such that for all (t1,s1)(t_{1},s_{1}), (t2,s2)[0,1]2(t_{2},s_{2})\in[0,1]^{2},

(5.2) |t1t2|+|s1s2|2N implies |a(t1,s1)a(t2,s2)|<ϵ.|t_{1}-t_{2}|+|s_{1}-s_{2}|\leq\frac{2}{N}\ \ \text{ implies }\ \big{|}a(t_{1},s_{1})-a(t_{2},s_{2})\big{|}<\epsilon.

Then, we see that

sup0t1|Xn(t,t)a(t,t)|\displaystyle\sup_{0\leq t\leq 1}\big{|}X_{n}(t,t)-a(t,t)\big{|}
sup0t,s1|Xn(t,s)a(t,s)|\displaystyle\leq\sup_{0\leq t,s\leq 1}\big{|}X_{n}(t,s)-a(t,s)\big{|}
=max1iNmax1jNsupt[(i1)/N,i/N]sups[(j1)/N,j/N]{(Xn(t,s)a(t,s))(a(t,s)Xn(t,s))}\displaystyle=\max_{1\leq i\leq N}\max_{1\leq j\leq N}\sup_{t\in[(i-1)/N,i/N]}\sup_{s\in[(j-1)/N,j/N]}\Big{\{}\big{(}X_{n}(t,s)-a(t,s)\big{)}\vee\big{(}a(t,s)-X_{n}(t,s)\big{)}\Big{\}}
max1iNmax1jN{(Xn(iN,j1N)a(i1N,jN))(a(iN,j1N)Xn(i1N,jN))}\displaystyle\leq\max_{1\leq i\leq N}\max_{1\leq j\leq N}\Big{\{}\Big{(}X_{n}\Big{(}\frac{i}{N},\frac{j-1}{N}\Big{)}-a\Big{(}\frac{i-1}{N},\frac{j}{N}\Big{)}\Big{)}\vee\Big{(}a\Big{(}\frac{i}{N},\frac{j-1}{N}\Big{)}-X_{n}\Big{(}\frac{i-1}{N},\frac{j}{N}\Big{)}\Big{)}\Big{\}}
max1iNmax1jN{(Xn(iN,j1N)a(iN,j1N))(a(i1N,jN)Xn(i1N,jN))}+ϵ.\displaystyle\leq\max_{1\leq i\leq N}\max_{1\leq j\leq N}\Big{\{}\Big{(}X_{n}\Big{(}\frac{i}{N},\frac{j-1}{N}\Big{)}-a\Big{(}\frac{i}{N},\frac{j-1}{N}\Big{)}\Big{)}\vee\Big{(}a\Big{(}\frac{i-1}{N},\frac{j}{N}\Big{)}-X_{n}\Big{(}\frac{i-1}{N},\frac{j}{N}\Big{)}\Big{)}\Big{\}}+\epsilon.

In the above, the second inequality follows from the monotonicity of XnX_{n} and aa, and we have used (5.2) for the third inequality. By virtue of (5.1), the last expression converges to ϵ\epsilon almost surely as nn\to\infty. Since ϵ\epsilon is arbitrary, the proof is complete. ∎

The next lemma provides the upper and lower bounds for βk,n(t)\beta_{k,n}(t) in (2.7). We will make use of these bounds when estimating the difference between βk,n(t)\beta_{k,n}(t) and Gk,n(t)G_{k,n}(t) (see (4.31)) in the proof of Theorem 3.1 (i)(i) and Theorem 3.4 (i)(i).

Lemma 5.2.

For all t[0,1]t\in[0,1],

(5.3) Jk,n(k+2,1)(t)βk,n(t)Jk,n(k+2,1)(t)+(k+3k+1)Lk,n(t),J_{k,n}^{(k+2,1)}(t)\leq\beta_{k,n}(t)\leq J_{k,n}^{(k+2,1)}(t)+\binom{k+3}{k+1}L_{k,n}(t),

where

Lk,n(t):=𝒴𝒳n,|𝒴|=k+3𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rn}.L_{k,n}(t):=\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{n},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}.
Proof.

The inequality on the left hand side in (5.3) is obvious due to (2.7). Owing to (2.7) again, the remaining inequality is equivalent to

i=k+3nj1jJk,n(i,j)(t)(k+3k+1)Lk,n(t).\sum_{i=k+3}^{n}\sum_{j\geq 1}jJ_{k,n}^{(i,j)}(t)\leq\binom{k+3}{k+1}L_{k,n}(t).

By the definition of Jk,n(i,j)(t)J_{k,n}^{(i,j)}(t), the left hand side above is equal to

(5.4) i=k+3n𝒴𝒳n,|𝒴|=iβk(Cˇ(𝒴,t)) 1{(𝒴)Rn} 1{Cˇ(𝒴,t) is a connected component of Cˇ(𝒳n,t)}.\sum_{i=k+3}^{n}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{n},\\ |{\mathcal{Y}}|=i\end{subarray}}\beta_{k}\big{(}\check{C}({\mathcal{Y}},t)\big{)}\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}\,{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is a connected component of }\check{C}({\mathcal{X}}_{n},t)\big{\}}.

Note that βk(Cˇ(𝒴,t))\beta_{k}\big{(}\check{C}({\mathcal{Y}},t)\big{)} is bounded by the number of kk-simplices of Cˇ(𝒴,t)\check{C}({\mathcal{Y}},t). Suppose that for some ik+3i\geq k+3 and 𝒴𝒳n{\mathcal{Y}}\subset{\mathcal{X}}_{n} with |𝒴|=i|{\mathcal{Y}}|=i, Cˇ(𝒴,t)\check{C}({\mathcal{Y}},t) is a connected component of Cˇ(𝒳n,t)\check{C}({\mathcal{X}}_{n},t) with (𝒴)Rn\mathcal{M}({\mathcal{Y}})\geq R_{n}. Then, there exists 𝒵𝒴\mathcal{Z}\subset{\mathcal{Y}} with |𝒵|=k+3|\mathcal{Z}|=k+3 such that Cˇ(𝒵,t)\check{C}(\mathcal{Z},t) is a connected subcomplex of Cˇ(𝒴,t)\check{C}({\mathcal{Y}},t). Every time one finds such a connected subcomplex on k+3k+3 points, it can increase the kk-simplex counts of Cˇ(𝒴,t)\check{C}({\mathcal{Y}},t) by at most (k+3k+1)\binom{k+3}{k+1}. In conclusion,

βk(Cˇ(𝒴,t)) 1{(𝒴)Rn}(k+3k+1)𝒵𝒴,|𝒵|=k+3𝟏{Cˇ(𝒵,t) is connected,(𝒵)Rn}.\beta_{k}\big{(}\check{C}({\mathcal{Y}},t)\big{)}\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{n}\big{\}}\leq\binom{k+3}{k+1}\sum_{\begin{subarray}{c}\mathcal{Z}\subset{\mathcal{Y}},\\ |\mathcal{Z}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}(\mathcal{Z},t)\text{ is connected},\,\mathcal{M}(\mathcal{Z})\geq R_{n}\big{\}}.

Substituting this bound back into (5.4),

i=k+3nj1jJk,n(i,j)(t)\displaystyle\sum_{i=k+3}^{n}\sum_{j\geq 1}jJ_{k,n}^{(i,j)}(t) (k+3k+1)i=k+3n𝒴𝒳n,|𝒴|=i𝟏{Cˇ(𝒴,t) is a connected component of Cˇ(𝒳n,t)}\displaystyle\leq\binom{k+3}{k+1}\sum_{i=k+3}^{n}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{n},\\ |{\mathcal{Y}}|=i\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is a connected component of }\check{C}({\mathcal{X}}_{n},t)\big{\}}
×𝒵𝒴,|𝒵|=k+3𝟏{Cˇ(𝒵,t) is connected,(𝒵)Rn}\displaystyle\qquad\qquad\qquad\qquad\qquad\times\sum_{\begin{subarray}{c}\mathcal{Z}\subset{\mathcal{Y}},\\ |\mathcal{Z}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}(\mathcal{Z},t)\text{ is connected},\,\mathcal{M}(\mathcal{Z})\geq R_{n}\big{\}}
=(k+3k+1)Lk,n(t).\displaystyle=\binom{k+3}{k+1}L_{k,n}(t).

The next result we introduce here is the concentration bound derived in [2] for a Poisson UU-statistics. Let us rephrase the setup and assumptions of [2] in a way suitable for the current study. Let 𝒫\mathcal{P} denote a Poisson point process in d\mathbb{R}^{d} with finite intensity measure of no atoms. Let s:(d)i{0,1}s:(\mathbb{R}^{d})^{i}\to\{0,1\} be a symmetric indicator function of order ii with the following properties.
(i)(i) There exists c1>0c_{1}>0 such that

(5.5) s(x1,,xi)=1 whenever diam(x1,,xi)<c1.s(x_{1},\dots,x_{i})=1\text{ whenever diam}(x_{1},\dots,x_{i})<c_{1}.

(ii)(ii) There is a constant c2>c1c_{2}>c_{1} such that

(5.6) s(x1,,xi)=0 whenever diam(x1,,xi)>c2.s(x_{1},\dots,x_{i})=0\text{ whenever diam}(x_{1},\dots,x_{i})>c_{2}.

Finally, we define a Poisson UU-statistics F(𝒫)F(\mathcal{P}) of order ii by

F(𝒫)=𝒴𝒫,|𝒴|=is(𝒴).F(\mathcal{P})=\sum_{{\mathcal{Y}}\subset\mathcal{P},\,|{\mathcal{Y}}|=i}s({\mathcal{Y}}).
Proposition 5.3.

[Theorem 3.1 in [2]] Under the above conditions, there is a constant C>0C^{*}>0, depending only on i,d,c1i,d,c_{1}, and c2c_{2}, such that for all r>0r>0,

(F(𝒫)𝔼[F(𝒫)]+r)\displaystyle\mathbb{P}\big{(}F(\mathcal{P})\geq\mathbb{E}[F(\mathcal{P})]+r\big{)} exp{C((𝔼[F(𝒫)]+r)1/(2i)(𝔼[F(𝒫)])1/(2i))2},\displaystyle\leq\exp\Big{\{}-C^{*}\Big{(}\big{(}\mathbb{E}[F(\mathcal{P})]+r\big{)}^{1/(2i)}-\big{(}\mathbb{E}[F(\mathcal{P})]\big{)}^{1/(2i)}\Big{)}^{2}\Big{\}},
(F(𝒫)𝔼[F(𝒫)]r)\displaystyle\mathbb{P}\big{(}F(\mathcal{P})\leq\mathbb{E}[F(\mathcal{P})]-r\big{)} exp{Cr2Var(F(𝒫))}.\displaystyle\leq\exp\bigg{\{}-\frac{C^{*}r^{2}}{\text{Var}(F(\mathcal{P}))}\bigg{\}}.

5.2. Technical lemmas for the proof of Theorem 3.1

In this section, we offer a series of technical lemmas for the proof of Theorem 3.1. The first result below deals with asymptotic ratios of the regularly varying sequences as a function of vmv_{m}, pmp_{m}, qmq_{m}, rmr_{m}, and sms_{m} in (4.11), (4.12), and (4.13).

Lemma 5.4.

Let umu_{m} and wmw_{m} be any of the sequences in (4.11), (4.12), and (4.13). Under the setup of Theorem 3.1, as mm\to\infty,

(5.7) umwm1,RumRwm1,f(Rum)f(Rwm)1.\frac{u_{m}}{w_{m}}\to 1,\ \ \ \frac{R_{u_{m}}}{R_{w_{m}}}\to 1,\ \ \ \frac{f(R_{u_{m}})}{f(R_{w_{m}})}\to 1.
Proof.

By the definition of these five sequences, it is evident that

vmvm+1umwmvm+1vm\frac{v_{m}}{v_{m+1}}\leq\frac{u_{m}}{w_{m}}\leq\frac{v_{m+1}}{v_{m}}

for all mm\in\mathbb{N}. Note that

(5.8) 1vm+1vme(m+1)γmγ1emγ=emγ1(γ+o(1))1emγ,m.1\leq\frac{v_{m+1}}{v_{m}}\leq\frac{e^{(m+1)^{\gamma}-m^{\gamma}}}{1-e^{-m^{\gamma}}}=\frac{e^{m^{\gamma-1}(\gamma+o(1))}}{1-e^{-m^{\gamma}}},\ \ \ m\to\infty.

As 0<γ<10<\gamma<1, the rightmost term goes to 11 as mm\to\infty.

For the proof of the second statement in (5.7), let ζ>0\zeta>0 be a regular variation exponent of (Rn)(R_{n}) (In the case of Theorem 3.1 (ii)(ii), we can take ζ=1/α\zeta=1/\alpha). One can then rewrite the ratio as

RumRwm=RwmumwmRwm(umwm)ζ+(umwm)ζ.\frac{R_{u_{m}}}{R_{w_{m}}}=\frac{R_{\lfloor w_{m}\frac{u_{m}}{w_{m}}\rfloor}}{R_{w_{m}}}-\Big{(}\frac{u_{m}}{w_{m}}\Big{)}^{\zeta}+\Big{(}\frac{u_{m}}{w_{m}}\Big{)}^{\zeta}.

Since um/wm1u_{m}/w_{m}\to 1 as mm\to\infty, we have that um/wm[1/2,3/2]u_{m}/w_{m}\in[1/2,3/2] for sufficiently large mm. By the uniform convergence of regularly varying sequences (see, e.g., Proposition 2.4 in [20]),

|RwmumwmRwm(umwm)ζ|sup12a32|RawmRwmaζ|0,m.\bigg{|}\,\frac{R_{\lfloor w_{m}\frac{u_{m}}{w_{m}}\rfloor}}{R_{w_{m}}}-\Big{(}\frac{u_{m}}{w_{m}}\Big{)}^{\zeta}\bigg{|}\leq\sup_{\frac{1}{2}\leq a\leq\frac{3}{2}}\bigg{|}\,\frac{R_{\lfloor aw_{m}\rfloor}}{R_{w_{m}}}-a^{\zeta}\,\bigg{|}\to 0,\ \ \ m\to\infty.

Now, the proof is complete. Finally, since (f(Rn),n1)\big{(}f(R_{n}),\,n\geq 1\big{)} is also a regularly varying sequence, the third statement in (5.7) can be shown in the same way as above. ∎

The lemma below gives the asymptotic first and second moments for (4.24), (4.25), and (4.29).

Lemma 5.5.

(i)(i) Under the assumptions of Theorem 3.1 (ii)(ii), for every t,s[0,1]t,s\in[0,1], ik+2i\geq k+2, and j1j\geq 1, we have as mm\to\infty,

(5.9) Rqmd𝔼[Tm(i,j,)(t,s)]λii!μk(i,j,+)(t,s;λ),R_{q_{m}}^{-d}\,\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}\to\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,+)}(t,s;\lambda),
(5.10) Rpmd𝔼[Tm(i,j,)(t,s)]λii!μk(i,j,+)(t,s;λ).R_{p_{m}}^{-d}\,\mathbb{E}\big{[}T_{m}^{(i,j,\downarrow)}(t,s)\big{]}\to\frac{\lambda^{i}}{i!}\,\mu_{k}^{(i,j,+)}(t,s;\lambda).

Moreover,

(5.11) supm1RqmdVar(Tm(i,j,)(t,s))<,\sup_{m\geq 1}R_{q_{m}}^{-d}\,\emph{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)}<\infty,
(5.12) supm1RpmdVar(Tm(i,j,)(t,s))<.\sup_{m\geq 1}R_{p_{m}}^{-d}\,\emph{Var}\big{(}T_{m}^{(i,j,\downarrow)}(t,s)\big{)}<\infty.

(ii)(ii) Under the conditions of Theorem 3.1 (ii)(ii), for every t[0,1]t\in[0,1] and MM\in\mathbb{N}, we have as mm\to\infty,

(5.13) Rqmd𝔼[Vm,M(t)]i=M+1ik+1λii!ζi(t)<,R_{q_{m}}^{-d}\,\mathbb{E}\big{[}V_{m,M}(t)\big{]}\to\sum_{i=M+1}^{\infty}i^{k+1}\frac{\lambda^{i}}{i!}\,\zeta_{i}(t)<\infty,

where

(5.14) ζi(t)=sd1αid(d)i1𝟏{Cˇ({0,𝐲},t) is connected}𝑑𝐲.\zeta_{i}(t)=\frac{s_{d-1}}{\alpha i-d}\,\int_{(\mathbb{R}^{d})^{i-1}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}d{\bf y}.

Furthermore,

(5.15) supm1RqmdVar(Vm,M(t))<.\sup_{m\geq 1}R_{q_{m}}^{-d}\,\emph{Var}\big{(}V_{m,M}(t)\big{)}<\infty.
Proof.

For the proof of (5.9), by the conditioning on 𝒴{\mathcal{Y}} we have

(5.16) 𝔼[Tm(i,j,)(t,s)]\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]} =(vm+1i)𝔼[ht(i,j,+)(𝒴) 1{(𝒴)Rqm}((𝒴;s/2)(𝒳vm𝒴;s/2)=|𝒴)]\displaystyle=\binom{v_{m+1}}{i}\mathbb{E}\Big{[}h_{t}^{(i,j,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}\mathbb{P}\big{(}\mathcal{B}({\mathcal{Y}};s/2)\cap\mathcal{B}({\mathcal{X}}_{v_{m}}\setminus{\mathcal{Y}};s/2)=\emptyset\,\big{|}\,{\mathcal{Y}}\big{)}\Big{]}
=(vm+1i)(d)iht(i,j,+)(x1,,xi) 1{(x1,,xi)Rqm}\displaystyle={v_{m+1}\choose i}\int_{(\mathbb{R}^{d})^{i}}h^{(i,j,+)}_{t}(x_{1},\dots,x_{i})\,\mathbf{1}\big{\{}\mathcal{M}(x_{1},\dots,x_{i})\geq R_{q_{m}}\big{\}}
×(1Is(x1,,xi))vmi=1if(x)d𝐱,\displaystyle\qquad\qquad\qquad\qquad\qquad\times\big{(}1-I_{s}(x_{1},\dots,x_{i})\big{)}^{v_{m}-i}\prod_{\ell=1}^{i}f(x_{\ell})d{\bf x},

where

Is(x1,,xi):=({x1,,xi};s)f(z)𝑑z.I_{s}(x_{1},\dots,x_{i}):=\int_{\mathcal{B}\big{(}\{x_{1},\dots,x_{i}\};s\big{)}}f(z)dz.

Here, we consider the case in which a point set 𝒴{\mathcal{Y}} is contained in 𝒳vm{\mathcal{X}}_{v_{m}}. We treat only this case, but the other cases (i.e., 𝒴(𝒳vm+1𝒳vm){\mathcal{Y}}\cap({\mathcal{X}}_{v_{m+1}}\setminus{\mathcal{X}}_{v_{m}})\neq\emptyset) can be handled in the same way. Changing the variables x1=xx_{1}=x, x=x+y1x_{\ell}=x+y_{\ell-1}, {2,,i}\ell\in\{2,\dots,i\} and using shift invariance condition (4.5), we have that

(5.17) 𝔼[Tm(i,j,)(t,s)]=(vm+1i)d(d)i1ht(i,j,+)(0,𝐲)(1Is(x,x+y1,,x+yi1))vmi\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}={v_{m+1}\choose i}\int_{\mathbb{R}^{d}}\int_{(\mathbb{R}^{d})^{i-1}}h^{(i,j,+)}_{t}(0,{\bf y})\big{(}1-I_{s}(x,x+y_{1},\cdots,x+y_{i-1})\big{)}^{v_{m}-i}
×f(x) 1{xRqm}=1i1f(x+y)𝟏{x+yRqm}d𝐲dx,\displaystyle\qquad\qquad\qquad\qquad\qquad\times f(x)\,\mathbf{1}\big{\{}\|x\|\geq R_{q_{m}}\big{\}}\prod_{\ell=1}^{i-1}f(x+y_{\ell})\mathbf{1}\big{\{}\|x+y_{\ell}\|\geq R_{q_{m}}\big{\}}d{\bf y}dx,

where 𝐲=(y1,,yi1)(d)i1{\bf y}=(y_{1},\dots,y_{i-1})\in(\mathbb{R}^{d})^{i-1}. The polar coordinate transform x(r,θ)x\leftrightarrow(r,\theta) with r0r\geq 0, θSd1\theta\in S^{d-1}, gives that

(5.18) 𝔼[Tm(i,j,)(t,s)]\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]} =(vm+1i)Sd1J(θ)Rqmrd1(d)i1ht(i,j,+)(0,𝐲)\displaystyle=\binom{v_{m+1}}{i}\int_{S^{d-1}}J(\theta)\int_{R_{q_{m}}}^{\infty}r^{d-1}\int_{(\mathbb{R}^{d})^{i-1}}h^{(i,j,+)}_{t}(0,{\bf y})
×f(r)=1i1f(rθ+y) 1{rθ+yRqm}\displaystyle\qquad\qquad\times f(r)\prod_{\ell=1}^{i-1}f\big{(}\|r\theta+y_{\ell}\|\big{)}\,{\bf 1}\big{\{}\|r\theta+y_{\ell}\|\geq R_{q_{m}}\big{\}}
×(1Is(rθ,rθ+y1,,rθ+yi1))vmid𝐲drdθ.\displaystyle\qquad\qquad\qquad\times\big{(}1-I_{s}(r\theta,r\theta+y_{1},\dots,r\theta+y_{i-1})\big{)}^{v_{m}-i}d{\bf y}\,dr\,d\theta.

Furthermore, an additional change of variable r=Rqmρr=R_{q_{m}}\rho yields that

(5.19) 𝔼[Tm(i,j,)(t,s)]=\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}= (vm+1i)Rqmdf(Rqm)iSd1J(θ)1ρd1(d)i1ht(i,j,+)(0,𝐲)\displaystyle{v_{m+1}\choose i}R_{q_{m}}^{d}f(R_{q_{m}})^{i}\int_{S^{d-1}}J(\theta)\int_{1}^{\infty}\rho^{d-1}\int_{(\mathbb{R}^{d})^{i-1}}h^{(i,j,+)}_{t}(0,{\bf y})
×f(Rqmρ)f(Rqm)=1i1f(Rqmρθ+y/Rqm)f(Rqm) 1{ρθ+y/Rqm1}\displaystyle\qquad\times\frac{f(R_{q_{m}}\rho)}{f(R_{q_{m}})}\prod_{\ell=1}^{i-1}\frac{f\big{(}R_{q_{m}}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}\,\mathbf{1}\big{\{}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\geq 1\big{\}}
×(1Is(Rqmρθ,Rqmρθ+y1,,Rqmρθ+yi1))vmid𝐲dρdθ.\displaystyle\qquad\times\big{(}1-I_{s}(R_{q_{m}}\rho\theta,R_{q_{m}}\rho\theta+y_{1},\dots,R_{q_{m}}\rho\theta+y_{i-1})\big{)}^{v_{m}-i}d{\bf y}\,d\rho\,d\theta.

By Lemma 5.4, we have

(vm+1i)f(Rqm)i(vm+1f(Rqm))ii!(qmf(Rqm))ii!λii!,m.\binom{v_{m+1}}{i}f(R_{q_{m}})^{i}\sim\frac{\big{(}v_{m+1}f(R_{q_{m}})\big{)}^{i}}{i!}\sim\frac{\big{(}q_{m}f(R_{q_{m}})\big{)}^{i}}{i!}\to\frac{\lambda^{i}}{i!},\ \ \ m\to\infty.

By the regular variation assumption in (3.1),

f(Rqmρ)f(Rqm)=1i1f(Rqmρθ+y/Rqm)f(Rqm) 1{ρθ+y/Rqm1}ραias n\frac{f(R_{q_{m}}\rho)}{f(R_{q_{m}})}\prod_{\ell=1}^{i-1}\frac{f\big{(}R_{q_{m}}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}\,\mathbf{1}\big{\{}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\geq 1\big{\}}\to\rho^{-\alpha i}\qquad\text{as }n\to\infty

for all ρ1\rho\geq 1, θSd1\theta\in S^{d-1}, and y1,,yi1dy_{1},\dots,y_{i-1}\in\mathbb{R}^{d}. As for the remaining term of the integrand in (5.19), we get that

(5.20) limm(1Is(Rqmρθ,Rqmρθ+y1,,Rqmρθ+yi1))vmi\displaystyle\lim_{m\to\infty}\big{(}1-I_{s}(R_{q_{m}}\rho\theta,R_{q_{m}}\rho\theta+y_{1},\dots,R_{q_{m}}\rho\theta+y_{i-1})\big{)}^{v_{m}-i}
=limm(1({0,y1,,yi1};s)f(Rqmρθ+z/Rqm)𝑑z)vmi\displaystyle=\lim_{m\to\infty}\Big{(}1-\int_{\mathcal{B}\big{(}\{0,y_{1},\dots,y_{i-1}\};s\big{)}}f\big{(}R_{q_{m}}\|\rho\theta+z/R_{q_{m}}\|\big{)}dz\Big{)}^{v_{m}-i}
=limmexp{vmf(Rqm)({0,y1,,yi1};s)f(Rqmρθ+z/Rqm)f(Rqm)𝑑z}.\displaystyle=\lim_{m\to\infty}\exp\Big{\{}-v_{m}f(R_{q_{m}})\int_{\mathcal{B}\big{(}\{0,y_{1},\dots,y_{i-1}\};s\big{)}}\frac{f\big{(}R_{q_{m}}\|\rho\theta+z/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}dz\Big{\}}.

Now, (3.1) and Lemma 5.4 ensure that the last term in (5.20) converges to

exp{λραsdvol(({0,y1,,yi1};1))}.\exp\Big{\{}-\lambda\rho^{-\alpha}s^{d}\text{vol}\Big{(}\mathcal{B}\big{(}\{0,y_{1},\dots,y_{i-1}\};1\big{)}\Big{)}\Big{\}}.

Appealing to all of these convergence results and assuming temporarily that the dominated convergence theorem is applicable, we can obtain (5.9).

It now remains to find an integrable upper bound for the terms under the integral sign in (5.19). First it is evident that

(1Is(Rqmρθ,Rqmρθ+y1,,Rqmρθ+yi1))vmi1.\big{(}1-I_{s}(R_{q_{m}}\rho\theta,R_{q_{m}}\rho\theta+y_{1},\dots,R_{q_{m}}\rho\theta+y_{i-1})\big{)}^{v_{m}-i}\leq 1.

Using Potter’s bounds (see Proposition 2.6 in [20]), for every ξ(0,αd)\xi\in(0,\alpha-d), we have, for sufficiently large mm,

(5.21) f(Rqmρ)f(Rqm)(1+ξ)ρα+ξ\frac{f(R_{q_{m}}\rho)}{f(R_{q_{m}})}\leq(1+\xi)\rho^{-\alpha+\xi}

and

(5.22) =1i1f(Rqmρθ+y/Rqm)f(Rqm) 1{ρθ+y/Rqm1}(1+ξ)i1\prod_{\ell=1}^{i-1}\frac{f\big{(}R_{q_{m}}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}\,\mathbf{1}\big{\{}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\geq 1\big{\}}\leq(1+\xi)^{i-1}

for all ρ1\rho\geq 1, θSd1\theta\in S^{d-1} and 𝐲=(y1,,yi1)(d)i1{\bf y}=(y_{1},\dots,y_{i-1})\in(\mathbb{R}^{d})^{i-1} such that ht(i,j,+)(0,𝐲)=1h_{t}^{(i,j,+)}(0,{\bf y})=1. Combining all the bounds derived above, together with 1ρd1α+ξ𝑑ρ<\int_{1}^{\infty}\rho^{d-1-\alpha+\xi}d\rho<\infty, we can obtain an integrable upper bound, as desired. The proof of (5.10) is similar, so we skip it here.

For the proof of (5.11),

𝔼[Tm(i,j,)(t,s)2]\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)^{2}\big{]} ==0i𝔼[𝒴𝒳vm+1|𝒴|=i𝒴𝒳vm+1|𝒴|=i,|𝒴𝒴|=h(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}\displaystyle=\sum_{\ell=0}^{i}\mathbb{E}\bigg{[}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}\rvert=i\end{subarray}}\sum_{\begin{subarray}{c}{\mathcal{Y}}^{\prime}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}^{\prime}\rvert=i,\,|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=\ell\end{subarray}}h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}
×𝟏{(𝒴;s/2)(𝒳vm𝒴;s/2)=} 1{(𝒴;s/2)(𝒳vm𝒴;s/2)=}]\displaystyle\times{\bf 1}\big{\{}\mathcal{B}({\mathcal{Y}};s/2)\cap\mathcal{B}({\mathcal{X}}_{v_{m}}\setminus{\mathcal{Y}};s/2)=\emptyset\big{\}}\,{\bf 1}\big{\{}\mathcal{B}({\mathcal{Y}}^{\prime};s/2)\cap\mathcal{B}({\mathcal{X}}_{v_{m}}\setminus{\mathcal{Y}}^{\prime};s/2)=\emptyset\big{\}}\bigg{]}
=:=0i𝔼[I].\displaystyle=:\sum_{\ell=0}^{i}\mathbb{E}[I_{\ell}].

From this, Var(Tm(i,j,)(t,s))\text{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)} can be partitioned as Var(Tm(i,j,)(t,s))=Am+Bm\text{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)}=A_{m}+B_{m}, where

(5.23) Am==1i𝔼[I],Bm=𝔼[I0]{𝔼[Tm(i,j,)(t,s)]}2.A_{m}=\sum_{\ell=1}^{i}\mathbb{E}[I_{\ell}],\ \ \ B_{m}=\mathbb{E}[I_{0}]-\Big{\{}\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}\Big{\}}^{2}.

For {1,2,,i}\ell\in\{1,2,\dots,i\},

(5.24) 𝔼[I]\displaystyle\mathbb{E}[I_{\ell}]\leq 𝔼[𝒴𝒳vm+1|𝒴|=i𝒴𝒳vm+1|𝒴|=i,|𝒴𝒴|=h(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}]\displaystyle\mathbb{E}\bigg{[}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}\rvert=i\end{subarray}}\sum_{\begin{subarray}{c}{\mathcal{Y}}^{\prime}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}^{\prime}\rvert=i,\,|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=\ell\end{subarray}}h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}\bigg{]}
=(vm+1i)(i)(vm+1ii)\displaystyle={v_{m+1}\choose i}{i\choose\ell}{v_{m+1}-i\choose i-\ell}
×𝔼[h(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}] 1{|𝒴𝒴|=}\displaystyle\qquad\qquad\qquad\times\mathbb{E}\Big{[}h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}\Big{]}\,{\bf 1}\big{\{}\lvert{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}\rvert=\ell\big{\}}
Cvm+12i(Cˇ(𝒴𝒴,t) is connected,(𝒴𝒴)Rqm) 1{|𝒴𝒴|=}\displaystyle\leq C^{*}v_{m+1}^{2i-\ell}\mathbb{P}\big{(}\check{C}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime},t)\text{ is connected},\ \mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{)}\,{\bf 1}\big{\{}\lvert{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}\rvert=\ell\big{\}}
CRqmd,\displaystyle\leq C^{*}R_{q_{m}}^{d},

where the last inequality comes from Lemma 5.6 (ii)(ii) below. This implies that supm1RqmdAm<\sup_{m\geq 1}R_{q_{m}}^{-d}\,A_{m}<\infty. In order to treat BmB_{m} in (5.23), we derive an upper bound for 𝔼[I0]\mathbb{E}[I_{0}] by

(5.25) 𝔼[I0]𝔼[𝒴𝒳vm+1|𝒴|=i𝒴𝒳vm+1|𝒴|=ih(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}×𝟏{(𝒴𝒴;s/2)(𝒳vm(𝒴𝒴);s/2)=}] 1{|𝒴𝒴|=0}(vm+1i)2𝔼[h(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}×(1(𝒴𝒴;s)f(z)dz)vm2i] 1{|𝒴𝒴|=0},\displaystyle\begin{split}\mathbb{E}[I_{0}]\leq&\mathbb{E}\bigg{[}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}\rvert=i\end{subarray}}\sum_{\begin{subarray}{c}{\mathcal{Y}}^{\prime}\subset{\mathcal{X}}_{v_{m+1}}\\ \lvert{\mathcal{Y}}^{\prime}\rvert=i\end{subarray}}h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}\\ &\qquad\qquad\qquad\qquad\times{\bf 1}\Big{\{}\mathcal{B}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime};s/2)\cap\mathcal{B}\big{(}{\mathcal{X}}_{v_{m}}\setminus({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime});s/2\big{)}=\emptyset\Big{\}}\bigg{]}\,{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}\\ &\leq{v_{m+1}\choose i}^{2}\mathbb{E}\Big{[}h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}\\ &\qquad\qquad\qquad\qquad\qquad\times\Big{(}1-\int_{\mathcal{B}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime};s)}f(z)dz\Big{)}^{v_{m}-2i}\Big{]}\,{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}},\end{split}

where the second inequality is obtained from an obvious relation (vm+1ii)(vm+1i)\binom{v_{m+1}-i}{i}\leq\binom{v_{m+1}}{i} as well as the conditioning on 𝒴𝒴{\mathcal{Y}}\cup{\mathcal{Y}}^{\prime} as in (5.16). Although we here consider the case when all the points in 𝒴𝒴{\mathcal{Y}}\cup{\mathcal{Y}}^{\prime} belong to 𝒳vm{\mathcal{X}}_{v_{m}}, the other cases (i.e., (𝒴𝒴)(𝒳vm+1𝒳vm)({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\cap({\mathcal{X}}_{v_{m+1}}\setminus{\mathcal{X}}_{v_{m}})\neq\emptyset) can be treated in the same manner. By the calculation similar to the above, we have

(5.26) {𝔼[Tm(i,j,)(t,s)]}2\displaystyle\Big{\{}\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}\Big{\}}^{2} =(vm+1i)2𝔼[h(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}\displaystyle={v_{m+1}\choose i}^{2}\mathbb{E}\Big{[}h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}
×(1(𝒴;s)f(z)dz)vmi(1(𝒴;s)f(z)dz)vmi] 1{|𝒴𝒴|=0}.\displaystyle\qquad\quad\times\Big{(}1-\int_{\mathcal{B}({\mathcal{Y}};s)}f(z)dz\Big{)}^{v_{m}-i}\Big{(}1-\int_{\mathcal{B}({\mathcal{Y}}^{\prime};s)}f(z)dz\Big{)}^{v_{m}-i}\Big{]}\,{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}.

By (5.25) and (5.26), we get that Bmvm+12i𝔼[Ξm]𝟏{|𝒴𝒴|=0}B_{m}\leq v_{m+1}^{2i}\mathbb{E}[\Xi_{m}]{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}, where

Ξm:=\displaystyle\Xi_{m}:= h(i,j,+)t(𝒴)h(i,j,+)t(𝒴) 1{(𝒴𝒴)Rqm}\displaystyle h^{(i,j,+)}_{t}({\mathcal{Y}})h^{(i,j,+)}_{t}({\mathcal{Y}}^{\prime})\,\mathbf{1}\big{\{}\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{\}}
×{(1(𝒴𝒴;s)f(z)dz)vm2i(1(𝒴;s)f(z)dz)vmi(1(𝒴;s)f(z)dz)vmi}.\displaystyle\times\Big{\{}\Big{(}1-\int_{\mathcal{B}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime};s)}f(z)dz\Big{)}^{v_{m}-2i}-\Big{(}1-\int_{\mathcal{B}({\mathcal{Y}};s)}f(z)dz\Big{)}^{v_{m}-i}\Big{(}1-\int_{\mathcal{B}({\mathcal{Y}}^{\prime};s)}f(z)dz\Big{)}^{v_{m}-i}\Big{\}}.

Furthermore, Ξm\Xi_{m} can be decomposed as Ξm=Cm+Dm\Xi_{m}=C_{m}+D_{m}, where

Cm=Ξm𝟏{(𝒴;s)(𝒴;s)=},C_{m}=\Xi_{m}\mathbf{1}\big{\{}\mathcal{B}({\mathcal{Y}};s)\cap\mathcal{B}({\mathcal{Y}}^{\prime};s)=\emptyset\big{\}},
Dm=Ξm𝟏{(𝒴;s)(𝒴;s)}.D_{m}=\Xi_{m}\mathbf{1}\big{\{}\mathcal{B}({\mathcal{Y}};s)\cap\mathcal{B}({\mathcal{Y}}^{\prime};s)\neq\emptyset\big{\}}.

Since vol((𝒴𝒴;s))=vol((𝒴;s))+vol((𝒴;s))\text{vol}\big{(}\mathcal{B}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime};s)\big{)}=\text{vol}\big{(}\mathcal{B}({\mathcal{Y}};s)\big{)}+\text{vol}\big{(}\mathcal{B}({\mathcal{Y}}^{\prime};s)\big{)} whenever (𝒴;s)(𝒴;s)=\mathcal{B}({\mathcal{Y}};s)\cap\mathcal{B}({\mathcal{Y}}^{\prime};s)=\emptyset, it is straightforward to check that

(5.27) vm+12i𝔼[Cm]𝟏{|𝒴𝒴|=0}=o(Rqmd),m,v_{m+1}^{2i}\mathbb{E}[C_{m}]{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}=o(R_{q_{m}}^{d}),\ \ \ m\to\infty,

by the same arguments as in (5.16), (5.19), and (5.20). Moreover, by Lemma 5.6 (ii)(ii),

(5.28) vm+12i𝔼[Dm] 1{|𝒴𝒴|=0}\displaystyle v_{m+1}^{2i}\mathbb{E}[D_{m}]\,{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}
vm+12i(Cˇ(𝒴𝒴,2s) is connected,(𝒴𝒴)Rqm)𝟏{|𝒴𝒴|=0}CRqmd.\displaystyle\leq v_{m+1}^{2i}\mathbb{P}\big{(}\check{C}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime},2s)\text{ is connected},\,\mathcal{M}({\mathcal{Y}}\cup{\mathcal{Y}}^{\prime})\geq R_{q_{m}}\big{)}{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}\leq C^{*}R_{q_{m}}^{d}.

It thus follows that supm1RqmdBm<\sup_{m\geq 1}R_{q_{m}}^{-d}\,B_{m}<\infty, and hence (5.11) has been established. Since the proof of (5.12) is very similar to that of (5.11), we will omit it.

Next, turning to (5.13) we apply Fubini’s theorem to obtain that

Rqmd𝔼[Vm,M(t)]\displaystyle R_{q_{m}}^{-d}\,\mathbb{E}\big{[}V_{m,M}(t)\big{]} =i=M+1ik+1(vm+1i)Rqmd\displaystyle=\sum_{i=M+1}^{\infty}i^{k+1}\binom{v_{m+1}}{i}R_{q_{m}}^{-d}\,
×(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm).\displaystyle\qquad\qquad\times\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\text{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}.

Taking δ>0\delta>0 so small that λ(1+δ)eωd<1\lambda(1+\delta)e\omega_{d}<1, Lemma 5.6 (ii)(ii) demonstrates that

(5.29) Rqmd𝔼[Vm,M(t)]Ci=M+1ik+1λi(1+δ)iii2ωdi1i!,R_{q_{m}}^{-d}\,\mathbb{E}\big{[}V_{m,M}(t)\big{]}\leq C^{*}\sum_{i=M+1}^{\infty}i^{k+1}\cdot\frac{\lambda^{i}(1+\delta)^{i}i^{i-2}\omega_{d}^{i-1}}{i!},

where CC^{*} is a positive constant independent of ii and mm. By Stirling’s formula i!(i/e)ii!\geq(i/e)^{i} for sufficiently large ii, (5.29) is further bounded by Ci=M+1ik1(λ(1+δ)eωd)iC^{*}\sum_{i=M+1}^{\infty}i^{k-1}\big{(}\lambda(1+\delta)e\omega_{d}\big{)}^{i}, which is finite due to the constraint λ(1+δ)eωd<1\lambda(1+\delta)e\omega_{d}<1. By Lemma 5.6 (i)(i) and the dominated convergence theorem, one can obtain (5.13) as required.

Finally, (5.15) can be established by combining Lemma 5.6 and the argument similar to that for the variance asymptotics of (5.11), so we will skip the detailed discussions. ∎

The next lemma is complementary to the proof of Lemma 5.5.

Lemma 5.6.

(i)(i) Under the assumptions of Theorem 3.1 (ii)(ii), for every ik+2i\geq k+2 and t[0,1]t\in[0,1],

(5.30) vm+1iRqmd(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm)λiζi(t),m,v_{m+1}^{i}R_{q_{m}}^{-d}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\emph{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}\to\lambda^{i}\zeta_{i}(t),\ \ m\to\infty,

where ζi(t)\zeta_{i}(t) is given in (5.14).
(ii)(ii) Moreover, let δ>0\delta>0 be a constant so small that λ(1+δ)eωd<1\lambda(1+\delta)e\omega_{d}<1. Then, for each ik+2i\geq k+2 and t[0,1]t\in[0,1], there exists NN\in\mathbb{N} such that for all mNm\geq N,

(5.31) vm+1iRqmd(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm)Cλi(1+δ)iii2ωdi1,\displaystyle v_{m+1}^{i}R_{q_{m}}^{-d}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\emph{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}\leq C^{*}\lambda^{i}(1+\delta)^{i}i^{i-2}\omega_{d}^{i-1},

where C>0C^{*}>0 is a constant independent of ii and mm.

Proof.

We first prove (5.31). By the change of variables x1=xx_{1}=x, x=x+y1x_{\ell}=x+y_{\ell-1} for {2,,i}\ell\in\{2,\dots,i\}, which is followed by an additional change of variables x(Rqmρ,θ)x\leftrightarrow(R_{q_{m}}\rho,\theta) as in (5.18) and (5.19), we have that

(5.32) vm+1iRqmd(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm)\displaystyle v_{m+1}^{i}R_{q_{m}}^{-d}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\text{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}
=vm+1if(Rqm)iSd1J(θ)1ρd1(d)i1𝟏{Cˇ({0,𝐲},t) is connected}\displaystyle=v_{m+1}^{i}f(R_{q_{m}})^{i}\int_{S^{d-1}}J(\theta)\int_{1}^{\infty}\rho^{d-1}\int_{(\mathbb{R}^{d})^{i-1}}\mathbf{1}\big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\big{\}}
×f(Rqmρ)f(Rqm)=1i1f(Rqmρθ+y/Rqm)f(Rqm) 1{ρθ+y/Rqm1}d𝐲dρdθ.\displaystyle\qquad\qquad\times\frac{f(R_{q_{m}}\rho)}{f(R_{q_{m}})}\prod_{\ell=1}^{i-1}\frac{f\big{(}R_{q_{m}}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}\,\mathbf{1}\big{\{}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\geq 1\big{\}}d{\bf y}\,d\rho\,d\theta.

Employing Potter’s bound as in (5.21) and (5.22) with ξ=min{(αd)/2,δ/2}\xi=\min\{(\alpha-d)/2,\delta/2\}, there exists N1N_{1}\in\mathbb{N}, such that for all mN1m\geq N_{1},

(5.33) f(Rqmρ)f(Rqm)=1i1f(Rqmρθ+y/Rqm)f(Rqm) 1{ρθ+y/Rqm1}(1+ξ)iρα+ξ.\frac{f(R_{q_{m}}\rho)}{f(R_{q_{m}})}\prod_{\ell=1}^{i-1}\frac{f\big{(}R_{q_{m}}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}\,\mathbf{1}\big{\{}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\geq 1\big{\}}\leq(1+\xi)^{i}\rho^{-\alpha+\xi}.

By the definition of ξ\xi above and Lemma 5.4, one can find N2N_{2}\in\mathbb{N}, such that for all mN2m\geq N_{2}, (1+ξ)vm+1f(Rqm)λ(1+δ)(1+\xi)v_{m+1}f(R_{q_{m}})\leq\lambda(1+\delta). Thus, for all mN:=N1N2m\geq N:=N_{1}\vee N_{2},

vm+1iRqmd(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm)\displaystyle v_{m+1}^{i}R_{q_{m}}^{-d}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\text{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}
sd1((1+ξ)vm+1f(Rqm))iαdξ(d)i1𝟏{Cˇ({0,𝐲},t) is connected}d𝐲\displaystyle\leq\frac{s_{d-1}\big{(}(1+\xi)v_{m+1}f(R_{q_{m}})\big{)}^{i}}{\alpha-d-\xi}\int_{(\mathbb{R}^{d})^{i-1}}\mathbf{1}\big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\big{\}}d{\bf y}
2sd1λi(1+δ)iαd(d)i1𝟏{Cˇ({0,𝐲},1) is connected}d𝐲\displaystyle\leq\frac{2s_{d-1}\lambda^{i}(1+\delta)^{i}}{\alpha-d}\int_{(\mathbb{R}^{d})^{i-1}}\mathbf{1}\big{\{}\check{C}\big{(}\{0,{\bf y}\},1\big{)}\text{ is connected}\big{\}}d{\bf y}
2sd1λi(1+δ)iii2ωdi1αd.\displaystyle\leq\frac{2s_{d-1}\lambda^{i}(1+\delta)^{i}i^{i-2}\omega_{d}^{i-1}}{\alpha-d}.

The last inequality above follows from an elementary fact that there exist ii2i^{i-2} spanning trees on a set of ii points.

For the proof of (5.30), returning to (5.32) we see that vm+1if(Rqm)iλv_{m+1}^{i}f(R_{q_{m}})^{i}\to\lambda as mm\to\infty by Lemma 5.4. By the dominated convergence theorem with the regular variation assumption (3.1) and an integrable bound obtained in (5.33), we can get (5.30). ∎

All the lemmas below will apply to the proof of Theorem 3.1 (i)(i). We provide the asymptotic moments of Sm(t)S_{m}^{\uparrow}(t), Sm(t)S_{m}^{\downarrow}(t), and Wm(t)W_{m}(t); see (4.36), (4.37), and (4.45).

Lemma 5.7.

Under the assumptions of Theorem 3.1 (i)(i), for every t[0,1]t\in[0,1] we have that as mm\to\infty,

(vm+1k+2Rqmdf(Rqm)k+2)1𝔼[Sm(t)]\displaystyle\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{-1}\mathbb{E}\big{[}S_{m}^{\uparrow}(t)\big{]} μk(k+2,1,+)(t;0)(k+2)!,\displaystyle\to\frac{\mu_{k}^{(k+2,1,+)}(t;0)}{(k+2)!},
(vmk+2Rpmdf(Rpm)k+2)1𝔼[Sm(t)]\displaystyle\big{(}v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}^{-1}\mathbb{E}\big{[}S_{m}^{\downarrow}(t)\big{]} μk(k+2,1,+)(t;0)(k+2)!,\displaystyle\to\frac{\mu_{k}^{(k+2,1,+)}(t;0)}{(k+2)!},

and also,

(vm+1k+3Rqmdf(Rqm)k+3)1𝔼[Wm(t)]sd1(k+3)!(α(k+3)d)(d)k+2𝟏{Cˇ({0,𝐲},t) is connected}d𝐲,\big{(}v_{m+1}^{k+3}R_{q_{m}}^{d}f(R_{q_{m}})^{k+3}\big{)}^{-1}\mathbb{E}\big{[}W_{m}(t)\big{]}\to\frac{s_{d-1}}{(k+3)!\big{(}\alpha(k+3)-d\big{)}}\,\int_{(\mathbb{R}^{d})^{k+2}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}d{\bf y},

where 𝐲=(y1,,yk+2)(d)k+2{\bf y}=(y_{1},\dots,y_{k+2})\in(\mathbb{R}^{d})^{k+2}. Moreover,

supm1(vm+1k+2Rqmdf(Rqm)k+2)1Var(Sm(t))<,\displaystyle\sup_{m\geq 1}\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{-1}\text{Var}\big{(}S_{m}^{\uparrow}(t)\big{)}<\infty,
supm1(vmk+2Rpmdf(Rpm)k+2)1Var(Sm(t))<.\displaystyle\sup_{m\geq 1}\big{(}v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}^{-1}\text{Var}\big{(}S_{m}^{\downarrow}(t)\big{)}<\infty.
Proof.

The proof here is mostly the same as those for Lemma 5.5, so we provide only the sketch of proof for the first statement. Appealing to Palm theory for Poisson processes (see, e.g., Theorem 1.6 in [18]),

𝔼[Sm(t)]=vm+1k+2(k+2)!(d)k+2ht(k+2,1,+)(x1,,xk+2) 1{(x1,,xk+2)Rqm}=1k+2f(x)d𝐱.\mathbb{E}\big{[}S_{m}^{\uparrow}(t)\big{]}=\frac{v_{m+1}^{k+2}}{(k+2)!}\,\int_{(\mathbb{R}^{d})^{k+2}}h_{t}^{(k+2,1,+)}(x_{1},\dots,x_{k+2})\,{\bf 1}\big{\{}\mathcal{M}(x_{1},\dots,x_{k+2})\geq R_{q_{m}}\big{\}}\prod_{\ell=1}^{k+2}f(x_{\ell})d{\bf x}.

By the same change of variables as in (5.19) with i=k+2i=k+2 and j=1j=1,

𝔼[Sm(t)]=\displaystyle\mathbb{E}\big{[}S_{m}^{\uparrow}(t)\big{]}= vm+1k+2Rqmdf(Rqm)k+2(k+2)!Sd1J(θ)1ρd1(d)k+1h(k+2,1,+)t(0,𝐲)\displaystyle\frac{v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}}{(k+2)!}\,\int_{S^{d-1}}J(\theta)\int_{1}^{\infty}\rho^{d-1}\int_{(\mathbb{R}^{d})^{k+1}}h^{(k+2,1,+)}_{t}(0,{\bf y})
×f(Rqmρ)f(Rqm)=1k+1f(Rqmρθ+y/Rqm)f(Rqm) 1{ρθ+y/Rqm1}d𝐲dρdθ.\displaystyle\qquad\times\frac{f(R_{q_{m}}\rho)}{f(R_{q_{m}})}\prod_{\ell=1}^{k+1}\frac{f\big{(}R_{q_{m}}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\big{)}}{f(R_{q_{m}})}\,\mathbf{1}\big{\{}\|\rho\theta+y_{\ell}/R_{q_{m}}\|\geq 1\big{\}}d{\bf y}\,d\rho\,d\theta.

The rest of our discussion is completely the same as the argument after (5.19). ∎

The next result justifies that with a proper scaling, the asymptotic behaviors of Sm(t)S_{m}^{\uparrow}(t) and Sm(t)S_{m}^{\downarrow}(t) will remain unchanged, even if the Poisson point process is replaced with the corresponding binomial process.

Lemma 5.8.

Under the assumptions of Theorem 3.1 (i)(i), for every t[0,1]t\in[0,1] we have, as mm\to\infty,

(vm+1k+2Rqmdf(Rqm)k+2)1{𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)}0,a.s.,\displaystyle\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{-1}\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\bigg{\}}\to 0,\ \ \text{a.s.},
(vmk+2Rpmdf(Rpm)k+2)1{𝒴𝒳vm,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rpm}Sm(t)}0,a.s.,\displaystyle\big{(}v_{m}^{k+2}R_{p_{m}}^{d}f(R_{p_{m}})^{k+2}\big{)}^{-1}\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{p_{m}}\big{\}}-S_{m}^{\downarrow}(t)\bigg{\}}\to 0,\ \ \text{a.s.},

and further,

(vm+1k+3Rqmdf(Rqm)k+3)1{𝒴𝒳vm+1,|𝒴|=k+3𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rqm}Wm(t)}0,a.s.\big{(}v_{m+1}^{k+3}R_{q_{m}}^{d}f(R_{q_{m}})^{k+3}\big{)}^{-1}\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-W_{m}(t)\bigg{\}}\to 0,\ \ \text{a.s.}
Proof.

The proofs of these statements are essentially the same, so we show only the first result. By the Borel-Cantelli lemma and Markov’s inequality, it suffices to demonstrate that

(5.34) m=1(vm+1k+2Rqmdf(Rqm)k+2)1𝔼[|𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)|]<.\displaystyle\sum_{m=1}^{\infty}\big{(}v_{m+1}^{k+2}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2}\big{)}^{-1}\mathbb{E}\bigg{[}\,\bigg{|}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\,\bigg{|}\,\bigg{]}<\infty.

Recall that |𝒫vm+1||\mathcal{P}_{v_{m+1}}| (i.e., the cardinality of 𝒫vm+1\mathcal{P}_{v_{m+1}}) is Poisson distributed with parameter vm+1v_{m+1}. By the conditioning on the values of |𝒫vm+1||\mathcal{P}_{v_{m+1}}|, we get that

(5.35) 𝔼[|𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)|]\displaystyle\mathbb{E}\bigg{[}\,\bigg{|}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\,\bigg{|}\,\bigg{]}
==0𝔼[|𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}\displaystyle=\sum_{\ell=0}^{\infty}\mathbb{E}\bigg{[}\,\bigg{|}\sum_{{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\,|{\mathcal{Y}}|=k+2}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}
𝒴𝒳,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}|](|𝒫vm+1|=)\displaystyle\qquad\qquad\qquad\qquad\qquad-\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{\ell},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}\bigg{|}\,\bigg{]}\mathbb{P}\big{(}|\mathcal{P}_{v_{m+1}}|=\ell\big{)}
==0|(k+2)(vm+1k+2)|𝔼[ht(k+2,1,+)(X1,,Xk+2)\displaystyle=\sum_{\ell=0}^{\infty}\Big{|}\binom{\ell}{k+2}-\binom{v_{m+1}}{k+2}\Big{|}\,\mathbb{E}\big{[}h_{t}^{(k+2,1,+)}(X_{1},\dots,X_{k+2})\,
×𝟏{(X1,,Xk+2)Rqm}](|𝒫vm+1|=),\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times{\bf 1}\big{\{}\mathcal{M}(X_{1},\dots,X_{k+2})\geq R_{q_{m}}\big{\}}\big{]}\mathbb{P}\big{(}|\mathcal{P}_{v_{m+1}}|=\ell\big{)},

where X1,,Xk+2X_{1},\dots,X_{k+2} are i.i.d random variables with density ff. Proceeding as in the proof of Lemma 5.5, we can derive that

𝔼[ht(k+2,1,+)(X1,,Xk+2) 1{(X1,,Xk+2)Rqm}]CRqmdf(Rqm)k+2,m.\mathbb{E}\big{[}h_{t}^{(k+2,1,+)}(X_{1},\dots,X_{k+2})\,{\bf 1}\big{\{}\mathcal{M}(X_{1},\dots,X_{k+2})\geq R_{q_{m}}\big{\}}\big{]}\sim C^{*}R_{q_{m}}^{d}f(R_{q_{m}})^{k+2},\ \ \ m\to\infty.

Referring this back into (5.35), the left hand side in (5.34) is now bounded by a constant multiple of

(5.36) m=11vm+1k+2=0|(k+2)(vm+1k+2)|(|𝒫vm+1|=)\displaystyle\sum_{m=1}^{\infty}\frac{1}{v_{m+1}^{k+2}}\,\sum_{\ell=0}^{\infty}\Big{|}\binom{\ell}{k+2}-\binom{v_{m+1}}{k+2}\Big{|}\,\mathbb{P}\big{(}|\mathcal{P}_{v_{m+1}}|=\ell\big{)}
=m=11vm+1k+2𝔼[|(|𝒫vm+1|k+2)(vm+1k+2)|]\displaystyle=\sum_{m=1}^{\infty}\frac{1}{v_{m+1}^{k+2}}\,\mathbb{E}\bigg{[}\Big{|}\binom{|\mathcal{P}_{v_{m+1}}|}{k+2}-\binom{v_{m+1}}{k+2}\Big{|}\bigg{]}
m=11vm+1k+2{𝔼[(|𝒫vm+1|k+2)2]2(vm+1k+2)𝔼[(|𝒫vm+1|k+2)]+(vm+1k+2)2}1/2,\displaystyle\leq\sum_{m=1}^{\infty}\frac{1}{v_{m+1}^{k+2}}\,\bigg{\{}\mathbb{E}\bigg{[}\binom{|\mathcal{P}_{v_{m+1}}|}{k+2}^{2}\bigg{]}-2\binom{v_{m+1}}{k+2}\mathbb{E}\bigg{[}\binom{|\mathcal{P}_{v_{m+1}}|}{k+2}\bigg{]}+\binom{v_{m+1}}{k+2}^{2}\bigg{\}}^{1/2},

where the last relation is due to the Cauchy-Schwarz inequality. It is elementary to check that there are constants cjc_{j}, j=1,2,,2k+4j=1,2,\dots,2k+4, with c2k+4=1c_{2k+4}=1, such that

𝔼[(|𝒫vm+1|k+2)]=vm+1k+2(k+2)!,and 𝔼[(|𝒫vm+1|k+2)2]=1((k+2)!)2j=12k+4cjvm+1j.\displaystyle\mathbb{E}\bigg{[}\binom{|\mathcal{P}_{v_{m+1}}|}{k+2}\bigg{]}=\frac{v_{m+1}^{k+2}}{(k+2)!},\ \ \text{and }\ \mathbb{E}\bigg{[}\binom{|\mathcal{P}_{v_{m+1}}|}{k+2}^{2}\bigg{]}=\frac{1}{\big{(}(k+2)!\big{)}^{2}}\,\sum_{j=1}^{2k+4}c_{j}v_{m+1}^{j}.

Therefore, the last expression in (5.36) can be written as

(5.37) m=11vm+1k+21(k+2)!(j=12k+3cjvm+1j)1/2\sum_{m=1}^{\infty}\frac{1}{v_{m+1}^{k+2}}\cdot\frac{1}{(k+2)!}\Big{(}\sum_{j=1}^{2k+3}c_{j}^{\prime}v_{m+1}^{j}\Big{)}^{1/2}

for some constants cjc_{j}^{\prime}, j=1,,2k+3j=1,\dots,2k+3 (note that vm+12k+4v_{m+1}^{2k+4} has disappeared here). Finally, (5.37) is further bounded by

Cm=11vm+11/2Cm=1emγ/2<.C^{*}\sum_{m=1}^{\infty}\frac{1}{v_{m+1}^{1/2}}\leq C^{*}\sum_{m=1}^{\infty}e^{-m^{\gamma}/2}<\infty.

5.3. Technical lemmas for the proof of Theorem 3.4

In the below we deduce various auxiliary results for the proof of Theorem 3.4, all of which are analogous to the corresponding lemmas in Section 5.2. Among them, Lemma 5.9 below analyzes asymptotic ratios of the sequences as a function of vmv_{m}, pmp_{m}, qmq_{m}, bmb_{m}, cmc_{m}, eme_{m}, and gmg_{m} defined in (4.11), (4.12), (4.14), and (4.15). Moreover, Lemmas 5.10 and 5.12 are used for calculating the asymptotic moments of various quantities appearing in the proof. Before stating these lemmas, recall the notations Tm(i,j,)(t,s)T_{m}^{(i,j,\uparrow)}(t,s), Tm(i,j,)(t,s)T_{m}^{(i,j,\downarrow)}(t,s), Vm,M(t)V_{m,M}(t), Sm(t)S_{m}^{\uparrow}(t), Sm(t)S_{m}^{\downarrow}(t), and Wm(t)W_{m}(t), which are defined respectively at (4.24), (4.25), (4.29), (4.36), (4.37), and (4.45).

Lemma 5.9.

Under the setup of Theorem 3.4, let umu_{m}, wmw_{m} be any of the sequences in (4.11), (4.12), (4.14), and (4.15). Then, as mm\to\infty,

RumRwm1,a(Rum)a(Rwm)1,f(Rum)f(Rwm)1.\frac{R_{u_{m}}}{R_{w_{m}}}\to 1,\ \ \ \frac{a(R_{u_{m}})}{a(R_{w_{m}})}\to 1,\ \ \ \frac{f(R_{u_{m}})}{f(R_{w_{m}})}\to 1.
Proof.

Because of Proposition 2.6 in [20], we see that ψRV1/τ\psi^{\leftarrow}\in\text{RV}_{1/\tau}. Under the setup of Theorem 3.4 (i)(i), we have ψ(Rn)=logn+bloglognlogn\psi(R_{n})=\log n+b\log\log n\sim\log n as nn\to\infty. In the case of Theorem 3.4 (ii)(ii), we have nf(Rn)λ(0,)nf(R_{n})\to\lambda\in(0,\infty), nn\to\infty, which again implies ψ(Rn)logn\psi(R_{n})\sim\log n as nn\to\infty. In both cases, by the uniform convergence of regularly varying sequences (see, e.g., Proposition 2.4 in [20]),

ψ(ψ(Rn))ψ(logn)(ψ(Rn)logn)1/τ1,n.\frac{\psi^{\leftarrow}\big{(}\psi(R_{n})\big{)}}{\psi^{\leftarrow}(\log n)}\sim\bigg{(}\frac{\psi(R_{n})}{\log n}\bigg{)}^{1/\tau}\to 1,\ \ n\to\infty.

Since ψ(ψ(Rn))=Rn\psi^{\leftarrow}\big{(}\psi(R_{n})\big{)}=R_{n}, we conclude that

(5.38) Rnψ(logn),n.R_{n}\sim\psi^{\leftarrow}(\log n),\ \ n\to\infty.

We are now ready to show the first statement. By the uniform convergence of regularly varying sequences,

RumRwmψ(logum)ψ(logwm)(logumlogwm)1/τ1,m,\frac{R_{u_{m}}}{R_{w_{m}}}\sim\frac{\psi^{\leftarrow}(\log u_{m})}{\psi^{\leftarrow}(\log w_{m})}\sim\Big{(}\frac{\log u_{m}}{\log w_{m}}\Big{)}^{1/\tau}\to 1,\ \ \ m\to\infty,

where the last convergence is obtained from um/wm1u_{m}/w_{m}\to 1 as mm\to\infty (see (5.8)).

Next, aRV1τa\in\text{RV}_{1-\tau} implies that

a(Rum)a(Rwm)(RumRwm)1τ1,as m.\frac{a(R_{u_{m}})}{a(R_{w_{m}})}\sim\Big{(}\frac{R_{u_{m}}}{R_{w_{m}}}\Big{)}^{1-\tau}\to 1,\ \ \text{as }m\to\infty.

As for the last statement, the result is obvious under the setup of Theorem 3.4 (ii)(ii). In the case of Theorem 3.4 (i)(i), it is easy to calculate that

f(Rum)f(Rwm)=wmum(logwmlogum)b1,m.\frac{f(R_{u_{m}})}{f(R_{w_{m}})}=\frac{w_{m}}{u_{m}}\cdot\Big{(}\frac{\log w_{m}}{\log u_{m}}\Big{)}^{b}\to 1,\ \ \ m\to\infty.

The following two lemmas will be applied for the proof of Theorem 3.4 (ii)(ii).

Lemma 5.10.

(i)(i) Under the setup of Theorem 3.4 (ii)(ii), for every t,s[0,1]t,s\in[0,1], ik+2i\geq k+2, and j1j\geq 1, we have as mm\to\infty,

(5.39) (a(Rqm)Rqmd1)1𝔼[Tm(i,j,)(t,s)]λii!ξk(i,j,+)(t,s;λ),\displaystyle\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}\to\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda),
(a(Rpm)Rpmd1)1𝔼[Tm(i,j,)(t,s)]λii!ξk(i,j,+)(t,s;λ).\displaystyle\big{(}a(R_{p_{m}})R_{p_{m}}^{d-1}\big{)}^{-1}\mathbb{E}\big{[}T_{m}^{(i,j,\downarrow)}(t,s)\big{]}\to\frac{\lambda^{i}}{i!}\,\xi_{k}^{(i,j,+)}(t,s;\lambda).

Moreover,

(5.40) supm1(a(Rqm)Rqmd1)1Var(Tm(i,j,)(t,s))<,\displaystyle\sup_{m\geq 1}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\text{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)}<\infty,
supm1(a(Rpm)Rpmd1)1Var(Tm(i,j,)(t,s))<.\displaystyle\sup_{m\geq 1}\big{(}a(R_{p_{m}})R_{p_{m}}^{d-1}\big{)}^{-1}\text{Var}\big{(}T_{m}^{(i,j,\downarrow)}(t,s)\big{)}<\infty.

(ii)(ii) Furthermore, for every MM\in\mathbb{N} and t[0,1]t\in[0,1], we have as mm\to\infty,

(5.41) (a(Rqm)Rqmd1)1𝔼[Vm,M(t)]i=M+1ik+1λii!ζi(t)<,\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\mathbb{E}\big{[}V_{m,M}(t)\big{]}\to\sum_{i=M+1}^{\infty}i^{k+1}\frac{\lambda^{i}}{i!}\,\zeta^{\prime}_{i}(t)<\infty,

where

(5.42) ζi(t)\displaystyle\zeta^{\prime}_{i}(t) :=Sd10(d)i1𝟏{Cˇ({0,𝐲},t) is connected}eρic1=1i1θ,y\displaystyle:=\int_{S^{d-1}}\int_{0}^{\infty}\int_{(\mathbb{R}^{d})^{i-1}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}\,e^{-\rho i-c^{-1}\sum_{\ell=1}^{i-1}\langle\theta,y_{\ell}\rangle}
×=1i1𝟏{ρ+c1θ,y0}d𝐲dρJ(θ)dθ,\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\times\prod_{\ell=1}^{i-1}{\bf 1}\big{\{}\rho+c^{-1}\langle\theta,y_{\ell}\rangle\geq 0\big{\}}\,d{\bf y}\,d\rho\,J(\theta)\,d\theta,

and also,

supm1(a(Rqm)Rqmd1)1Var(Vm,M(t))<.\sup_{m\geq 1}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\text{Var}\big{(}V_{m,M}(t)\big{)}<\infty.
Proof.

Here, we show only (5.39), (5.40), and (5.41). For (5.39), by the same change of variables as in (5.17) after conditioning on 𝒴{\mathcal{Y}} as in (5.16), we get that

(5.43) 𝔼[Tm(i,j,)(t,s)]=(vm+1i)d(d)i1h(i,j,+)t(0,𝐲)(1Is(x,x+y1,,x+yi1))vmi\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]}={v_{m+1}\choose i}\int_{\mathbb{R}^{d}}\int_{(\mathbb{R}^{d})^{i-1}}h^{(i,j,+)}_{t}(0,{\bf y})\big{(}1-I_{s}(x,x+y_{1},\cdots,x+y_{i-1})\big{)}^{v_{m}-i}
×f(x) 1{xRqm}=1i1f(x+y)𝟏{x+yRqm}d𝐲dx,\displaystyle\qquad\qquad\qquad\qquad\qquad\times f(x)\,\mathbf{1}\big{\{}\|x\|\geq R_{q_{m}}\big{\}}\prod_{\ell=1}^{i-1}f(x+y_{\ell})\mathbf{1}\big{\{}\|x+y_{\ell}\|\geq R_{q_{m}}\big{\}}d{\bf y}dx,

where 𝐲=(y1,,yi1)(d)i1{\bf y}=(y_{1},\dots,y_{i-1})\in(\mathbb{R}^{d})^{i-1}. Note that (5.43) completely agrees with (5.17). Moreover, by the polar coordinate transform x(r,θ)x\leftrightarrow(r,\theta) with r0r\geq 0, θSd1\theta\in S^{d-1}, it turns out that 𝔼[Tm(i,j,)(t,s)]\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]} above becomes the right hand side of (5.18). Next, we make an additional change of variable r=Rqm+a(Rqm)ρr=R_{q_{m}}+a(R_{q_{m}})\rho to get that

(5.44) 𝔼[Tm(i,j,)(t,s)]\displaystyle\mathbb{E}\big{[}T_{m}^{(i,j,\uparrow)}(t,s)\big{]} =(vm+1i)a(Rqm)Rqmd1f(Rqm)i\displaystyle=\binom{v_{m+1}}{i}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{i}
×Sd1J(θ)0(1+a(Rqm)Rqmρ)d1(d)i1ht(i,j,+)(0,𝐲)f(Rqm+a(Rqm)ρ)f(Rqm)\displaystyle\quad\times\int_{S^{d-1}}J(\theta)\int_{0}^{\infty}\Big{(}1+\frac{a(R_{q_{m}})}{R_{q_{m}}}\,\rho\Big{)}^{d-1}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,+)}(0,{\bf y})\,\frac{f\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}}{f(R_{q_{m}})}
×=1i1f((Rqm+a(Rqm)ρ)θ+y)f(Rqm) 1{(Rqm+a(Rqm)ρ)θ+yRqm}\displaystyle\quad\times\prod_{\ell=1}^{i-1}\frac{f\big{(}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\big{)}}{f(R_{q_{m}})}\,{\bf 1}\Big{\{}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\geq R_{q_{m}}\Big{\}}
×(1Is((Rqm+a(Rqm)ρ)θ,(Rqm+a(Rqm)ρ)θ+y1,\displaystyle\quad\times\Big{(}1-I_{s}\big{(}(R_{q_{m}}+a(R_{q_{m}})\rho)\theta,(R_{q_{m}}+a(R_{q_{m}})\rho)\theta+y_{1},
,(Rqm+a(Rqm)ρ)θ+yi1))vmid𝐲dρdθ.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\dots,(R_{q_{m}}+a(R_{q_{m}})\rho)\theta+y_{i-1}\big{)}\Big{)}^{v_{m}-i}d{\bf y}\,d\rho\,d\theta.

Lemma 5.9 gives that

(vm+1i)f(Rqm)i(vmf(Rvm))ii!λii!,as m.\binom{v_{m+1}}{i}f(R_{q_{m}})^{i}\sim\frac{\big{(}v_{m}f(R_{v_{m}})\big{)}^{i}}{i!}\to\frac{\lambda^{i}}{i!},\ \ \text{as }m\to\infty.

In the following, we calculate the limit of each of the terms under the integral sign of (5.44). By Proposition 2.5 in [20], we have aRVτa^{\prime}\in\text{RV}_{-\tau}, which implies a(z)/z0a(z)/z\to 0 as zz\to\infty, and hence,

(5.45) (1+a(Rqm)Rqmρ)d11,m,\Big{(}1+\frac{a(R_{q_{m}})}{R_{q_{m}}}\,\rho\Big{)}^{d-1}\to 1,\ \ \ m\to\infty,

for every ρ>0\rho>0. Furthermore, (5.45) is bounded by 2(1ρ)d12(1\vee\rho)^{d-1} for sufficiently large mm. For the untreated term in the second line of (5.44), we have

(5.46) f(Rqm+a(Rqm)ρ)f(Rqm)\displaystyle\frac{f\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}}{f(R_{q_{m}})} =exp{ψ(Rqm+a(Rqm)ρ)+ψ(Rqm)}\displaystyle=\exp\Big{\{}-\psi\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}+\psi(R_{q_{m}})\Big{\}}
=exp{0ρa(Rqm)a(Rqm+a(Rqm)r)dr}.\displaystyle=\exp\bigg{\{}-\int_{0}^{\rho}\frac{a(R_{q_{m}})}{a\big{(}R_{q_{m}}+a(R_{q_{m}})r\big{)}}dr\bigg{\}}.

Since aRV1τa\in\text{RV}_{1-\tau}, the uniform convergence of regularly varying sequences, together with a(z)/z0a(z)/z\to 0, zz\to\infty, indicates that

(5.47) a(Rqm)a(Rqm+a(Rqm)r)1,m,\frac{a(R_{q_{m}})}{a\big{(}R_{q_{m}}+a(R_{q_{m}})r\big{)}}\to 1,\ \ \ m\to\infty,

for every r>0r>0. It thus follows that for every ρ>0\rho>0,

(5.48) f(Rqm+a(Rqm)ρ)f(Rqm)eρ,as m.\frac{f\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}}{f(R_{q_{m}})}\to e^{-\rho},\ \ \text{as }m\to\infty.

In order to find an upper bound of (5.46), we define an array (s(m),0,m0)\big{(}s_{\ell}(m),\,\ell\geq 0,\,m\geq 0\big{)} by

s(m)=ψ(ψ(Rqm)+)Rqma(Rqm),s_{\ell}(m)=\frac{\psi^{\leftarrow}\big{(}\psi(R_{q_{m}})+\ell\big{)}-R_{q_{m}}}{a(R_{q_{m}})},

which is equivalent to ψ(Rqm+a(Rqm)s(m))=ψ(Rqm)+\psi\big{(}R_{q_{m}}+a(R_{q_{m}})s_{\ell}(m)\big{)}=\psi(R_{q_{m}})+\ell. According to Lemma 5.2 in [3], for 0<ϵ<1/d0<\epsilon<1/d, there exists N=N(ϵ)N=N(\epsilon)\in\mathbb{N} such that s(m)ϵ1eϵs_{\ell}(m)\leq\epsilon^{-1}e^{\ell\epsilon} for all mNm\geq N and 0\ell\geq 0. Since ψ\psi is increasing, the upper bound of (5.46) is given by

(5.49) exp{ψ(Rqm+a(Rqm)ρ)+ψ(Rqm)} 1{ρ>0}\displaystyle\exp\Big{\{}-\psi\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}+\psi(R_{q_{m}})\Big{\}}\,{\bf 1}\{\rho>0\}
==0𝟏{s(m)<ρs+1(m)}exp{ψ(Rqm+a(Rqm)ρ)+ψ(Rqm)}\displaystyle=\sum_{\ell=0}^{\infty}{\bf 1}\big{\{}s_{\ell}(m)<\rho\leq s_{\ell+1}(m)\big{\}}\,\exp\Big{\{}-\psi\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}+\psi(R_{q_{m}})\Big{\}}
=0𝟏{0<ρϵ1e(+1)ϵ}e.\displaystyle\leq\sum_{\ell=0}^{\infty}{\bf 1}\big{\{}0<\rho\leq\epsilon^{-1}e^{(\ell+1)\epsilon}\big{\}}\,e^{-\ell}.

Subsequently, we calculate the limit of the term in the third line of (5.44). By an expansion of (Rqm+a(Rqm)ρ)θ+y\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|} for {1,,i1}\ell\in\{1,\dots,i-1\}, we can define

(5.50) γm(ρ,θ,y)\displaystyle\gamma_{m}(\rho,\theta,y_{\ell}) :=(Rqm+a(Rqm)ρ)θ+y(Rqm+a(Rqm)ρ+θ,y)\displaystyle:=\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}-\big{(}R_{q_{m}}+a(R_{q_{m}})\rho+\langle\theta,y_{\ell}\rangle\big{)}
=y2θ,y2(Rqm+a(Rqm)ρ)θ+y+Rqm+a(Rqm)ρ+θ,y.\displaystyle=\frac{\|y_{\ell}\|^{2}-\langle\theta,y_{\ell}\rangle^{2}}{\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}+R_{q_{m}}+a(R_{q_{m}})\rho+\langle\theta,y_{\ell}\rangle}.

If (Rqm+a(Rqm)ρ)θ+yRqm\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\geq R_{q_{m}}, it then holds that

(5.51) |γm(ρ,θ,y)||y2θ,y2|2Rqm+θ,y0,m,\big{|}\gamma_{m}(\rho,\theta,y_{\ell})\big{|}\leq\frac{\big{|}\|y_{\ell}\|^{2}-\langle\theta,y_{\ell}\rangle^{2}\big{|}}{2R_{q_{m}}+\langle\theta,y_{\ell}\rangle}\to 0,\ \ \ m\to\infty,

uniformly for all ρ>0\rho>0, θSd1\theta\in S^{d-1}, and ydy_{\ell}\in\mathbb{R}^{d} with yLt\|y_{\ell}\|\leq Lt (LL is given in (4.6)). Let

Am\displaystyle A_{m} ={zd:(Rqm+a(Rqm)ρ)θ+zRqm}={zd:ρ+ζm(ρ,θ,z)0},\displaystyle=\Big{\{}z\in\mathbb{R}^{d}:\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+z\big{\|}\geq R_{q_{m}}\Big{\}}=\Big{\{}z\in\mathbb{R}^{d}:\rho+\zeta_{m}(\rho,\theta,z)\geq 0\Big{\}},

where

(5.52) ζm(ρ,θ,z):=θ,z+γm(ρ,θ,z)a(Rqm).\zeta_{m}(\rho,\theta,z):=\frac{\langle\theta,z\rangle+\gamma_{m}(\rho,\theta,z)}{a(R_{q_{m}})}.

Then, from (5.50) and (5.52) we have

(5.53) =1i1f((Rqm+a(Rqm)ρ)θ+y)f(Rqm) 1{yAm}\displaystyle\prod_{\ell=1}^{i-1}\frac{f\big{(}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\big{)}}{f(R_{q_{m}})}\,{\bf 1}\{y_{\ell}\in A_{m}\}
==1i1exp{ψ(Rqm+a(Rqm)ρ+θ,y+γm(ρ,θ,y))+ψ(Rqm)} 1{yAm}\displaystyle=\prod_{\ell=1}^{i-1}\exp\Big{\{}-\psi\big{(}R_{q_{m}}+a(R_{q_{m}})\rho+\langle\theta,y_{\ell}\rangle+\gamma_{m}(\rho,\theta,y_{\ell})\big{)}+\psi(R_{q_{m}})\Big{\}}\,{\bf 1}\{y_{\ell}\in A_{m}\}
==1i1exp{0ρ+ζm(ρ,θ,y)a(Rqm)a(Rqm+a(Rqm)r)dr} 1{yAm}.\displaystyle=\prod_{\ell=1}^{i-1}\exp\bigg{\{}-\int_{0}^{\rho+\zeta_{m}(\rho,\theta,y_{\ell})}\frac{a(R_{q_{m}})}{a\big{(}R_{q_{m}}+a(R_{q_{m}})r\big{)}}\,dr\bigg{\}}\,{\bf 1}\{y_{\ell}\in A_{m}\}.

From (3.10) and (5.51) it follows that, for every {1,,i1}\ell\in\{1,\dots,i-1\},

ζm(ρ,θ,y)c1θ,y,as m,\zeta_{m}(\rho,\theta,y_{\ell})\to c^{-1}\langle\theta,y_{\ell}\rangle,\ \ \text{as }m\to\infty,

uniformly for all ρ>0\rho>0, θSd1\theta\in S^{d-1}, and ydy_{\ell}\in\mathbb{R}^{d} with yLt\|y_{\ell}\|\leq Lt. Thus, by (5.47), we have as mm\to\infty,

(5.54) =1i1f((Rqm+a(Rqm)ρ)θ+y)f(Rqm) 1{yAm}\displaystyle\prod_{\ell=1}^{i-1}\frac{f\big{(}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\big{)}}{f(R_{q_{m}})}\,{\bf 1}\{y_{\ell}\in A_{m}\}
eρ(i1)c1=1i1θ,y=1i1𝟏{ρ+c1θ,y0}.\displaystyle\to e^{-\rho(i-1)-c^{-1}\sum_{\ell=1}^{i-1}\langle\theta,y_{\ell}\rangle}\prod_{\ell=1}^{i-1}{\bf 1}\big{\{}\rho+c^{-1}\langle\theta,y_{\ell}\rangle\geq 0\big{\}}.

Notice further that (5.53) is bounded by 11. For the remaining term in (5.44), we use (5.54) and Lemma 5.9 to ensure that

limm(1Is((Rqm+a(Rqm)ρ)θ,(Rqm+a(Rqm)ρ)θ+y1,,(Rqm+a(Rqm)ρ)θ+yi1))vmi\displaystyle\lim_{m\to\infty}\Big{(}1-I_{s}\big{(}(R_{q_{m}}+a(R_{q_{m}})\rho)\theta,(R_{q_{m}}+a(R_{q_{m}})\rho)\theta+y_{1},\dots,(R_{q_{m}}+a(R_{q_{m}})\rho)\theta+y_{i-1}\big{)}\Big{)}^{v_{m}-i}
=limm(1({0,y1,,yi1};s)f((Rqm+a(Rqm)ρ)θ+z)dz)vmi\displaystyle=\lim_{m\to\infty}\bigg{(}1-\int_{\mathcal{B}\big{(}\{0,y_{1},\dots,y_{i-1}\};s\big{)}}f\Big{(}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+z\big{\|}\Big{)}\,dz\bigg{)}^{v_{m}-i}
=limmexp{vmf(Rqm)({0,y1,,yi1};s)f((Rqm+a(Rqm)ρ)θ+z)f(Rqm)dz}\displaystyle=\lim_{m\to\infty}\exp\bigg{\{}-v_{m}f(R_{q_{m}})\int_{\mathcal{B}\big{(}\{0,y_{1},\dots,y_{i-1}\};s\big{)}}\frac{f\big{(}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+z\big{\|}\big{)}}{f(R_{q_{m}})}\,dz\bigg{\}}
=exp{λeρ({0,y1,,yi1};s)ec1θ,zdz}.\displaystyle=\exp\Big{\{}-\lambda e^{-\rho}\int_{\mathcal{B}\big{(}\{0,y_{1},\dots,y_{i-1}\};s\big{)}}e^{-c^{-1}\langle\theta,z\rangle}dz\Big{\}}.

Multiplying all of the upper bounds derived thus far, one can bound the triple integral in (5.44) by

Sd1J(θ)02(1ρ)d1(d)i1ht(i,j,+)(0,𝐲)=0𝟏{0<ρϵ1e(+1)ϵ}ed𝐲dρdθ\displaystyle\int_{S^{d-1}}J(\theta)\int_{0}^{\infty}2(1\vee\rho)^{d-1}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,+)}(0,{\bf y})\sum_{\ell=0}^{\infty}{\bf 1}\big{\{}0<\rho\leq\epsilon^{-1}e^{(\ell+1)\epsilon}\big{\}}\,e^{-\ell}d{\bf y}\,d\rho\,d\theta
=2sd1(d)i1ht(i,j,+)(0,𝐲)d𝐲0=0𝟏{0<ρϵ1e(+1)ϵ}e(1ρ)d1dρ\displaystyle=2s_{d-1}\int_{(\mathbb{R}^{d})^{i-1}}h_{t}^{(i,j,+)}(0,{\bf y})d{\bf y}\int_{0}^{\infty}\sum_{\ell=0}^{\infty}{\bf 1}\big{\{}0<\rho\leq\epsilon^{-1}e^{(\ell+1)\epsilon}\big{\}}\,e^{-\ell}(1\vee\rho)^{d-1}d\rho
C(eϵϵ)d=0e(1ϵd).\displaystyle\leq C^{*}\Big{(}\frac{e^{\epsilon}}{\epsilon}\Big{)}^{d}\sum_{\ell=0}^{\infty}e^{-(1-\epsilon d)\ell}.

Since the last term is finite due to 0<ϵ<1/d0<\epsilon<1/d, one can apply the dominated convergence theorem to obtain (5.39).

For the variance asymptotics in (5.40), we write Var(Tm(i,j,)(t,s))=Am+Bm\text{Var}\big{(}T_{m}^{(i,j,\uparrow)}(t,s)\big{)}=A_{m}+B_{m}, where AmA_{m} and BmB_{m} are defined in (5.23). Our argument here is nearly the same as that for the proof of (5.11). More concretely, by virtue of Lemma 5.11 (ii)(ii) below, one can replace (5.24), (5.27), and (5.28) respectively by

𝔼[I]Ca(Rqm)Rqmd1,{1,2,,i},\mathbb{E}[I_{\ell}]\leq C^{*}a(R_{q_{m}})R_{q_{m}}^{d-1},\ \ \ell\in\{1,2,\dots,i\},

and

vm+12i𝔼[Cm] 1{|𝒴𝒴|=0}=o(a(Rqm)Rqmd1),m,v_{m+1}^{2i}\mathbb{E}[C_{m}]\,{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}=o\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)},\ \ \ m\to\infty,

and

vm+12i𝔼[Dm] 1{|𝒴𝒴|=0}Ca(Rqm)Rqmd1.v_{m+1}^{2i}\mathbb{E}[D_{m}]\,{\bf 1}\big{\{}|{\mathcal{Y}}\cap{\mathcal{Y}}^{\prime}|=0\big{\}}\leq C^{*}a(R_{q_{m}})R_{q_{m}}^{d-1}.

Since the rest of the argument is totally the same as that for (5.11), we now conclude that

supm1(a(Rqm)Rqmd1)1Am<, and supm1(a(Rqm)Rqmd1)1Bm<,\sup_{m\geq 1}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}A_{m}<\infty,\ \ \text{ and }\ \ \sup_{m\geq 1}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}B_{m}<\infty,

as desired.

Finally, for (5.41) we have

(a(Rqm)Rqmd1)1𝔼[Vm,M(t)]\displaystyle\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\,\mathbb{E}\big{[}V_{m,M}(t)\big{]} =i=M+1ik+1(vm+1i)(a(Rqm)Rqmd1)1\displaystyle=\sum_{i=M+1}^{\infty}i^{k+1}\binom{v_{m+1}}{i}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\,
×(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm).\displaystyle\quad\times\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\text{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}.

Proceeding as in (5.29) and using Lemma 5.11 (ii)(ii), it turns out that

(a(Rqm)Rqmd1)1𝔼[Vm,M(t)]Ci=M+1ik1(λ(1+δ)eωd)i<.\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\,\mathbb{E}\big{[}V_{m,M}(t)\big{]}\leq C^{*}\sum_{i=M+1}^{\infty}i^{k-1}\big{(}\lambda(1+\delta)e\omega_{d}\big{)}^{i}<\infty.

Therefore, combining Lemma 5.11 (i)(i) and the dominated convergence theorem yields (5.41). ∎

The result below is analogous to Lemma 5.6 when the density has an exponentially decaying tail.

Lemma 5.11.

(i)(i) Under the assumptions of Theorem 3.4 (ii)(ii), for every ik+2i\geq k+2 and t[0,1]t\in[0,1],

vm+1i(a(Rqm)Rqmd1)1(Cˇ({X1,,Xi},t) is connected,\displaystyle v_{m+1}^{i}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\emph{ is connected},\,
(X1,,Xi)Rqm)λiζi(t),m,\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}\to\lambda^{i}\zeta_{i}^{\prime}(t),\ \ m\to\infty,

where ζi(t)\zeta_{i}^{\prime}(t) is defined in (5.42).
(ii)(ii) Moreover, let δ>0\delta>0 be a constant so small that λ(1+δ)eωd<1\lambda(1+\delta)e\omega_{d}<1. Then, for each ik+2i\geq k+2 and t[0,1]t\in[0,1], there exists NN\in\mathbb{N} such that for all mNm\geq N,

(5.55) vm+1i(a(Rqm)Rqmd1)1(Cˇ({X1,,Xi},t) is connected,\displaystyle v_{m+1}^{i}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\emph{ is connected},\,
(X1,,Xi)Rqm)Cλi(1+δ)iii2ωdi1,\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}\leq C^{*}\lambda^{i}(1+\delta)^{i}i^{i-2}\omega_{d}^{i-1},

where C>0C^{*}>0 is a constant independent of ii and mm.

Proof.

We first show (5.55). Performing the same change of variables as in (5.43) and (5.44), we have

(5.56) vm+1i(a(Rqm)Rqmd1)1(Cˇ({X1,,Xi},t) is connected,(X1,,Xi)Rqm)\displaystyle v_{m+1}^{i}\big{(}a(R_{q_{m}})R_{q_{m}}^{d-1}\big{)}^{-1}\,\mathbb{P}\Big{(}\check{C}\big{(}\{X_{1},\dots,X_{i}\},t\big{)}\emph{ is connected},\,\mathcal{M}(X_{1},\dots,X_{i})\geq R_{q_{m}}\Big{)}
=vm+1if(Rqm)iSd1J(θ)0(1+a(Rqm)Rqmρ)d1\displaystyle=v_{m+1}^{i}f(R_{q_{m}})^{i}\int_{S^{d-1}}J(\theta)\int_{0}^{\infty}\Big{(}1+\frac{a(R_{q_{m}})}{R_{q_{m}}}\rho\Big{)}^{d-1}
×(d)i1𝟏{Cˇ({0,𝐲},t) is connected}f(Rqm+a(Rqm)ρ)f(Rqm)\displaystyle\qquad\qquad\times\int_{(\mathbb{R}^{d})^{i-1}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}\,\frac{f\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}}{f(R_{q_{m}})}
×=1i1f((Rqm+a(Rqm)ρ)θ+y)f(Rqm) 1{(Rqm+a(Rqm)ρ)θ+yRqm}d𝐲dρdθ.\displaystyle\qquad\qquad\times\prod_{\ell=1}^{i-1}\frac{f\big{(}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\big{)}}{f(R_{q_{m}})}\,{\bf 1}\Big{\{}\big{\|}\big{(}R_{q_{m}}+a(R_{q_{m}})\rho\big{)}\theta+y_{\ell}\big{\|}\geq R_{q_{m}}\Big{\}}\,d{\bf y}\,d\rho\,d\theta.

By Lemma 5.9, there exists N1N_{1}\in\mathbb{N} so that for all mN1m\geq N_{1}, we have vm+1f(Rqm)λ(1+δ)v_{m+1}f(R_{q_{m}})\leq\lambda(1+\delta). Employing the bounds derived in the proof of (5.39), there exists N2N_{2}\in\mathbb{N} such that for all mN:=N1N2m\geq N:=N_{1}\vee N_{2}, one can bound (5.56) by

(λ(1+δ))iSd1J(θ)02(1ρ)d1(d)i1𝟏{Cˇ({0,𝐲},t) is connected}\displaystyle\big{(}\lambda(1+\delta)\big{)}^{i}\int_{S^{d-1}}J(\theta)\int_{0}^{\infty}2(1\vee\rho)^{d-1}\int_{(\mathbb{R}^{d})^{i-1}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}
×=0𝟏{0<ρϵ1e(+1)ϵ}ed𝐲dρdθ\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\times\sum_{\ell=0}^{\infty}{\bf 1}\big{\{}0<\rho\leq\epsilon^{-1}e^{(\ell+1)\epsilon}\big{\}}e^{-\ell}\,d{\bf y}\,d\rho\,d\theta
=C(λ(1+δ))i(d)i1𝟏{Cˇ({0,𝐲},t) is connected}d𝐲\displaystyle=C^{*}\big{(}\lambda(1+\delta)\big{)}^{i}\int_{(\mathbb{R}^{d})^{i-1}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}d{\bf y}
C(λ(1+δ))iii2ωdi1,\displaystyle\leq C^{*}\big{(}\lambda(1+\delta)\big{)}^{i}i^{i-2}\omega_{d}^{i-1},

where ϵ(0,1/d)\epsilon\in(0,1/d) is determined in (5.49) and C>0C^{*}>0 is a constant independent of ii and mm.

Finally, combining the convergences (5.45), (5.48), and (5.54), together with the dominated convergence theorem, can show that (5.56) tends to λiζi(t)\lambda^{i}\zeta_{i}^{\prime}(t) as mm\to\infty, as required. ∎

The last two lemmas below will be used for the proof of Theorem 3.4 (i)(i). The proof of these lemmas are considerably similar to those of Lemmas 5.7 and 5.8, so we skip their proofs.

Lemma 5.12.

Under the assumptions of Theorem 3.4 (i)(i), for every t[0,1]t\in[0,1], as mm\to\infty,

(vm+1k+2a(Rqm)Rqmd1f(Rqm)k+2)1𝔼[Sm(t)]\displaystyle\big{(}v_{m+1}^{k+2}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+2}\big{)}^{-1}\mathbb{E}\big{[}S_{m}^{\uparrow}(t)\big{]} ξk(k+2,1,+)(t;0)(k+2)!,\displaystyle\to\frac{\xi_{k}^{(k+2,1,+)}(t;0)}{(k+2)!},
(vmk+2a(Rpm)Rpmd1f(Rpm)k+2)1𝔼[Sm(t)]\displaystyle\big{(}v_{m}^{k+2}a(R_{p_{m}})R_{p_{m}}^{d-1}f(R_{p_{m}})^{k+2}\big{)}^{-1}\mathbb{E}\big{[}S_{m}^{\downarrow}(t)\big{]} ξk(k+2,1,+)(t;0)(k+2)!,\displaystyle\to\frac{\xi_{k}^{(k+2,1,+)}(t;0)}{(k+2)!},

and also,

(vm+1k+3a(Rqm)Rqmd1f(Rqm)k+3)1𝔼[Wm(t)]\displaystyle\big{(}v_{m+1}^{k+3}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+3}\big{)}^{-1}\mathbb{E}\big{[}W_{m}(t)\big{]}
1(k+3)!Sd10(d)k+2𝟏{Cˇ({0,𝐲},t) is connected}\displaystyle\qquad\qquad\to\frac{1}{(k+3)!}\,\int_{S^{d-1}}\int_{0}^{\infty}\int_{(\mathbb{R}^{d})^{k+2}}{\bf 1}\Big{\{}\check{C}\big{(}\{0,{\bf y}\},t\big{)}\text{ is connected}\Big{\}}
×eρ(k+3)c1=1k+2θ,y=1k+2𝟏{ρ+c1θ,y0}d𝐲dρJ(θ)dθ,\displaystyle\qquad\qquad\qquad\qquad\qquad\times e^{-\rho(k+3)-c^{-1}\sum_{\ell=1}^{k+2}\langle\theta,y_{\ell}\rangle}\prod_{\ell=1}^{k+2}{\bf 1}\big{\{}\rho+c^{-1}\langle\theta,y_{\ell}\rangle\geq 0\big{\}}\,d{\bf y}\,d\rho\,J(\theta)\,d\theta,

where 𝐲=(y1,,yk+2)(d)k+2{\bf y}=(y_{1},\dots,y_{k+2})\in(\mathbb{R}^{d})^{k+2}. Moreover,

supm1(vm+1k+2a(Rqm)Rqmd1f(Rqm)k+2)1Var(Sm(t))<,\displaystyle\sup_{m\geq 1}\big{(}v_{m+1}^{k+2}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+2}\big{)}^{-1}\text{Var}\big{(}S_{m}^{\uparrow}(t)\big{)}<\infty,
supm1(vmk+2a(Rpm)Rpmd1f(Rpm)k+2)1Var(Sm(t))<.\displaystyle\sup_{m\geq 1}\big{(}v_{m}^{k+2}a(R_{p_{m}})R_{p_{m}}^{d-1}f(R_{p_{m}})^{k+2}\big{)}^{-1}\text{Var}\big{(}S_{m}^{\downarrow}(t)\big{)}<\infty.
Lemma 5.13.

Under the assumptions of Theorem 3.4 (i)(i), for every t[0,1]t\in[0,1] we have, as mm\to\infty,

(vm+1k+2a(Rqm)Rqmd1f(Rqm)k+2)1{𝒴𝒳vm+1,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rqm}Sm(t)}0,a.s.,\displaystyle\big{(}v_{m+1}^{k+2}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+2}\big{)}^{-1}\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-S_{m}^{\uparrow}(t)\bigg{\}}\to 0,\ \ \text{a.s.},
(vmk+2a(Rpm)Rpmd1f(Rpm)k+2)1{𝒴𝒳vm,|𝒴|=k+2ht(k+2,1,+)(𝒴) 1{(𝒴)Rpm}Sm(t)}0,a.s.,\displaystyle\big{(}v_{m}^{k+2}a(R_{p_{m}})R_{p_{m}}^{d-1}f(R_{p_{m}})^{k+2}\big{)}^{-1}\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m}},\\ |{\mathcal{Y}}|=k+2\end{subarray}}h_{t}^{(k+2,1,+)}({\mathcal{Y}})\,{\bf 1}\big{\{}\mathcal{M}({\mathcal{Y}})\geq R_{p_{m}}\big{\}}-S_{m}^{\downarrow}(t)\bigg{\}}\to 0,\ \ \text{a.s.},

and further,

(vm+1k+3a(Rqm)Rqmd1f(Rqm)k+3)1\displaystyle\big{(}v_{m+1}^{k+3}a(R_{q_{m}})R_{q_{m}}^{d-1}f(R_{q_{m}})^{k+3}\big{)}^{-1}
×{𝒴𝒳vm+1,|𝒴|=k+3𝟏{Cˇ(𝒴,t) is connected,(𝒴)Rqm}Wm(t)}0,a.s.\displaystyle\qquad\qquad\qquad\times\bigg{\{}\sum_{\begin{subarray}{c}{\mathcal{Y}}\subset{\mathcal{X}}_{v_{m+1}},\\ |{\mathcal{Y}}|=k+3\end{subarray}}{\bf 1}\big{\{}\check{C}({\mathcal{Y}},t)\text{ is connected},\,\mathcal{M}({\mathcal{Y}})\geq R_{q_{m}}\big{\}}-W_{m}(t)\bigg{\}}\to 0,\ \ \text{a.s.}

References

  • [1] R. J. Adler, O. Bobrowski, and S. Weinberger. Crackle: The homology of noise. Discrete & Computational Geometry, 52:680–704, 2014.
  • [2] S. Bachmann and M. Reitzner. Concentration for Poisson UU-statistics: subgraph counts in random geometric graphs. Stochastic Processes and their Applications, 128:3327–3352, 2018.
  • [3] G. Balkema and P. Embrechts. Multivariate excess distributions. www.math.ethz.ch/ embrecht/ftp/guuspe08Jun04.pdf, 2004.
  • [4] G. Balkema and P. Embrechts. High Risk Scenarios and Extremes: A Geometric Approach. European Mathematical Society, 2007.
  • [5] A. Björner. Topological methods. In Handbook of Combinatorics. Elsevier, Amsterdam, 1995.
  • [6] L. Decreusefond, M. Schulte, and C. Thäle. Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to UU-statistics and stochastic geometry. The Annals of Probability, 44:2147–2197, 2016.
  • [7] L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer, New York, 2006.
  • [8] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events: for Insurance and Finance. Springer, New York, 1997.
  • [9] R. Ghrist. Elementary Applied Topology. Createspace, 2014.
  • [10] A. Goel, K. T. Duy, and K. Tsunoda. Strong law of large numbers for Betti numbers in the thermodynamic regime. Journal of Statistical Physics, 174, 2019.
  • [11] Y. Hiraoka, T. Shirai, and K. D. Trinh. Limit theorems for persistence diagrams. The Annals of Applied Probability, 28:2740–2780, 2018.
  • [12] M. Kahle and E. Meckes. Limit theorems for Betti numbers of random simplicial complexes. Homology, Homotopy and Applications, 15:343–374, 2013.
  • [13] P. Niyogi, S. Smale, and S. Weinberger. A topological view of unsupervised learning from noisy data. SIAM Journal on Computing, 40:646–663, 2011.
  • [14] T. Owada. Functional central limit theorem for subgraph counting processes. Electronic Journal of Probability, 22, 2017.
  • [15] T. Owada. Limit theorems for Betti numbers of extreme sample clouds with application to persistence barcodes. The Annals of Applied Probability, 28:2814–2854, 2018.
  • [16] T. Owada and R. J. Adler. Limit theorems for point processes under geometric constraints (and topological crackle). The Annals of Probability, 45:2004–2055, 2017.
  • [17] T. Owada and O. Bobrowski. Convergence of persistence diagrams for topological crackle. Bernoulli, 26:2275–2310, 2020.
  • [18] M. Penrose. Random Geometric Graphs, Oxford Studies in Probability 5. Oxford University Press, Oxford, 2003.
  • [19] S. Resnick. Extreme Values, Regular Variation and Point Processes. Springer-Verlag, New York, 1987.
  • [20] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York, 2007.
  • [21] M. Schulte and C. Thäle. The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stochastic Processes and their Applications, 122:4096–4120, 2012.
  • [22] A. M. Thomas and T. Owada. Functional limit theorems for the Euler characteristic process in the critical regime. Advances in Applied Probability, 53:57–80, 2021.
  • [23] A. M. Thomas and T. Owada. Functional strong law of large numbers for Euler characteristic processes of extreme sample clouds. To appear in Extremes, 2021.
  • [24] D. Yogeshwaran, E. Subag, and R. J. Adler. Random geometric complexes in the thermodynamic regime. Probability Theory and Related Fields, 167:107–142, 2017.