This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fully HH(GRADCURL)-nonconforming finite element method for the singularly perturbed quad-curl problem on cubical meshes

Lixiu Wang [email protected] School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China. Mingyan Zhang [email protected]. Corresponding author. Beijing Computational Science Research Center, Beijing 100193, China.  and  Qian Zhang [email protected] Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA.
Abstract.

In this paper, we develop two fully nonconforming (both H(gradcurl)H(\operatorname{grad}\operatorname{curl})-nonconforming and H(curl)H(\operatorname{curl})-nonconforming) finite elements on cubical meshes which can fit into the Stokes complex. The newly proposed elements have 24 and 36 degrees of freedom, respectively. Different from the fully H(gradcurl)H(\operatorname{grad}\operatorname{curl})-nonconforming tetrahedral finite elements in [9], the elements in this paper lead to a robust finite element method to solve the singularly perturbed quad-curl problem. To confirm this, we prove the optimal convergence of order 𝒪(h)\mathcal{O}(h) for a fixed parameter ϵ\epsilon and the uniform convergence of order 𝒪(h1/2)\mathcal{O}(h^{1/2}) for any value of ϵ\epsilon. Some numerical examples are used to verify the correctness of the theoretical analysis.

Key words and phrases:
nonconforming finite elements, singularly perturbed quad-curl problem, cubical elements
2000 Mathematics Subject Classification:
65N30 and 35Q60 and 65N15 and 35B45
This work is supported in part by the National Natural Science Foundation of China grants NSFC 12101036 and the Fundamental Research Funds for the Central Universities FRF-TP-22-096A1.

1. Introduction

The quad-curl equation appears in various models, such as the inverse electromagnetic scattering theory [3, 13, 16], couple stress theory in linear elasticity [11, 14], and magnetohydrodynamics [24]. The corresponding quad-curl eigenvalue problem plays a fundamental role in the analysis and computation of the electromagnetic interior transmission eigenvalues [15]. In this paper, we consider the following quad-curl singular perturbation problem on a bounded polyhedral domain Ω3\Omega\subset\mathbb{R}^{3}: find 𝒖\bm{u} such that

ϵcurlΔcurl𝒖+αcurlcurl𝒖+β𝒖=𝒇inΩ,div𝒖=0inΩ,𝒖×𝒏=0onΩ,curl𝒖=0onΩ.\displaystyle\begin{split}-\epsilon\operatorname{curl}\Delta\operatorname{curl}\bm{u}+\alpha\operatorname{curl}\operatorname{curl}\bm{u}+\beta\bm{u}&=\bm{f}\quad\text{in}\ \Omega,\\ \operatorname{div}\bm{u}&=0\quad\text{in}\ \Omega,\\ \bm{u}\times\bm{n}&=0\quad\text{on}\ \partial\Omega,\\ \operatorname{curl}\bm{u}&=0\quad\text{on}\ \partial\Omega.\end{split} (1.1)

Here 𝒇H(div0;Ω):={𝒖[L2(Ω)]3:div𝒖=0}\bm{f}\in H(\text{div}^{0};\Omega):=\{\bm{u}\in[L^{2}(\Omega)]^{3}:\;\operatorname{div}\bm{u}=0\}, α>0\alpha>0 and β0\beta\geq 0 are constants of moderate size, ϵ>0\epsilon>0 is a constant that can approach 0, and 𝒏\bm{n} is the unit outward normal vector to Ω\partial\Omega.

Standard conforming finite element methods to solve problem (1.1) require function spaces to be subspaces of H(gradcurl;Ω)H(\operatorname{grad}\operatorname{curl};\Omega), see Section 2 for its precise definition. Some HH(gradcurl)-conforming finite elements have been constructed in the past years. So far, the construction in 2 dimensions(2D) is relatively complete [20, 7, 18], however, that is not the case for 3 dimensions (3D). In [22], one of the authors and Z. Zhang developed a tetrahedral gradcurl\operatorname{grad}\operatorname{curl}-conforming element, which has 315315 degrees of freedom (DOFs) on each element. To reduce the number of DOFs, they, together with their collaborators, enriched the shape function space on each tetrahedron with piecewise-polynomial bubbles [8], and the resulting element has only 18 DOFs. However, it is challenging to extend the idea of enriching bubbles to cubical element. The only grad curl-conforming element on cubical meshes constructed in [17] has 144144 DOFs on each cube.

Therefore, we resort to nonconforming elements to reduce the number of DOFs. On tetrahedral meshes, Zheng et al. constructed the first nonconforming finite element in [24], which has 2020 DOFs on each element. Recently, Huang [9] proposed a nonconforming finite element Stokes complex which includes two gradcurl\operatorname{grad}\operatorname{curl}-nonconforming finite elements: one coincides with the element in [24] and the other one has only 14 DOFs. However, the convergence rates of the two nonconforming finite elements in [9, 24] will deteriorate when ϵ0\epsilon\to 0 in problem (1.1). Hence, Huang and Zhang in [10] developed two families of H(gradcurl)H(\operatorname{grad}\operatorname{curl})-nonconforming but HH(curl)-conforming finite elements on tetrahedral meshes, which can solve problem (1.1) when ϵ\epsilon tends to zero, see also [19]. On cubical meshes, one of the authors and her collaborators proposed a family of nonconforming finite elements with at least 4848 DOFs in [21]. This family is also HH(curl)-conforming, and hence can solve problem (1.1) as ϵ\epsilon vanishes. To further reduce the number of DOFs, in this paper, we will construct both H(gradcurl)H(\operatorname{grad}\operatorname{curl})-nonconforming and H(curl)H(\operatorname{curl})-nonconforming finite elements. Different with the tetrahedral elements, the fully nonconforming elements that we will construct still work for problem (1.1) when ϵ0\epsilon\rightarrow 0.

To this end, we consider the following Stokes complex:

0{0}{\mathbb{R}}H1(Ω){H^{1}(\Omega)}H(gradcurl;Ω){H(\operatorname{grad}\operatorname{curl};\Omega)}[H1(Ω)]3{{[H^{1}(\Omega)]}^{3}}L2(Ω){L^{2}(\Omega)}0.{0.}\scriptstyle{\subset}grad\scriptstyle{\operatorname{grad}}curl\scriptstyle{\operatorname{curl}}div\scriptstyle{\operatorname{div}} (1.2)

We will develop the fully gradcurl\operatorname{grad}\operatorname{curl}-nonconforming elements by constructing a discrete nonconforming Stokes complex on cubical meshes:

0{0}{\mathbb{R}}Shr(𝒯h){S_{h}^{r}(\mathcal{T}_{h})}𝑽hr1(𝒯h){\bm{V}_{h}^{r-1}(\mathcal{T}_{h})}𝑾h(𝒯h){\bm{W}_{h}(\mathcal{T}_{h})}Qh(𝒯h){Q_{h}(\mathcal{T}_{h})}0,{0,}\scriptstyle{\subset}grad\scriptstyle{\operatorname{grad}}curlh\scriptstyle{\operatorname{curl}_{h}}divh\scriptstyle{\operatorname{div}_{h}} (1.3)

where Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h}), 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}), 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}), and Qh(𝒯h)Q_{h}(\mathcal{T}_{h}) are conforming or nonconforming finite element spaces for H1(Ω)H^{1}(\Omega), H(gradcurl;Ω)H(\operatorname{grad}\operatorname{curl};\Omega), [H1(Ω)]3{[H^{1}(\Omega)]}^{3}, and L2(Ω)L^{2}(\Omega), respectively. To make the number of DOFs as minimal as possible, we use the rr-th order serendipity finite element space with r=1,2r=1,2 for Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h}). We choose the nonconforming Stokes pair developed in [23] for 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}) and Qh(𝒯h)Q_{h}(\mathcal{T}_{h}). Then the gradcurl\operatorname{grad}\operatorname{curl}-nonconforming finite element space 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) is obtained as the gradient of Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h}) and a complementary part whose curlh\operatorname{curl}_{h} falls into 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}). To be precise, the shape function space 𝑽hr1(K)\bm{V}_{h}^{r-1}(K) of 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) is

𝑽hr1(K)=gradShr(K)𝔭𝑾h(K)\bm{V}_{h}^{r-1}(K)=\operatorname{grad}S_{h}^{r}(K)\oplus\mathfrak{p}\bm{W}_{h}(K)

where Shr(K)S_{h}^{r}(K) and 𝑾h(K)\bm{W}_{h}(K) are shape function spaces of Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h}) and 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}) and 𝔭\mathfrak{p} is the Poincaré operator with the precise definition given in Sections 3. The DOFs of 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) can be obtained from the DOFs of Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h}) and 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}). By taking r=1,2r=1,2, we will get two versions of 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}). The number of DOFs on each element is 24 for r=1r=1 and 36 for r=2r=2. By constructing 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) in this way, we can show that the complex (1.3) is exact on contractible domains.

Based on the newly proposed 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) and Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h}), we develop a robust mixed finite element method for solving the quad-curl singular perturbation problem (1.1). The wellposedness of the numerical scheme holds by proving the discrete Poincaré inequality, the discrete inf-sup condition, and the coercivity condition. Moreover, we prove a special property of functions in 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}):

K𝒒(𝒗h𝑰hr1𝒗h)×𝒏KdA=0, for all 𝒒𝑷0(K) and K𝒯h,\displaystyle\int_{\partial K}\bm{q}\cdot(\bm{v}_{h}-\bm{I}_{h}^{r-1}\bm{v}_{h})\times\bm{n}_{\partial K}\text{d}A=0,\qquad\text{ for all }\bm{q}\in\bm{P}_{0}(K)\text{ and }K\in\mathcal{T}_{h}, (1.4)

where 𝑰hr1\bm{I}_{h}^{r-1} is defined in Section 4. With the interpolation results, projection error estimates, and property (1.4), we obtain an optimal convergence order 𝒪(h)\mathcal{O}(h) for any fixed ϵ\epsilon. As ϵ\epsilon approaches 0, the right-hand side of the optimal estimate will blow up, which makes the estimate useless. Therefore, we also provide a uniform convergence order 𝒪(h1/2)\mathcal{O}(h^{1/2}) for any value of ϵ\epsilon in the sense of the energy norm. We note that the optimal estimate for a moderate ϵ\epsilon can be obtained without using property (1.4), while the uniform estimate can not. The fully nonconforming finite elements on tetrahedral meshes [9] do not possess this property, which is the reason that those elements can not work for the quad-curl singular perturbation problem.

The rest of the paper is organized as follows. In section 2 we list some notation that will be used throughout the paper. In section 3 we define the fully gradcurl\operatorname{grad}\operatorname{curl}-nonconforming finite element on a cube and estimate the interpolation errors. Nonconforming and exact finite element complexes are constructed in section 4. In section 5 we use our proposed elements to solve the quad-curl singularly perturbed problem and obtain the optimal convergence order of the energy error for any fixed ϵ\epsilon. In section 6 we provide a uniform error estimate with respect to ϵ\epsilon. In section 7, numerical examples are shown to verify the correctness and efficiency of our method. Finally, some concluding remarks are given in section 8.

2. Notation

We assume that Ω3\Omega\subset\mathbb{R}^{3} is a contractible Lipschitz domain throughout the paper. We adopt conventional notation for Sobolev spaces such as Ws,p(D)W^{s,p}(D) or W0s,p(D)W_{0}^{s,p}(D) on a sub-domain DΩD\subset\Omega furnished with the norm Ws,p(D)\left\|\cdot\right\|_{W^{s,p}(D)} and the semi-norm ||Ws,p(D)\left|\cdot\right|_{W^{s,p}(D)}. In the case of p=2p=2, we use notation Hs(D)H^{s}(D) or H0s(D)H_{0}^{s}(D) for spaces Ws,p(D)W^{s,p}(D) or W0s,p(D)W_{0}^{s,p}(D). The norm and semi-norm are s,D\|\cdot\|_{s,D} and ||s,D|\cdot|_{s,D}, respectively. In the case of s=0s=0, the space H0(D)H^{0}(D) coincides with L2(D)L^{2}(D) which is equipped with the inner product (,)D(\cdot,\cdot)_{D} and the norm D\left\|\cdot\right\|_{D}. When D=ΩD=\Omega, we drop the subscript DD.

In addition to the standard Sobolev spaces, we also define

H(curl;D):={𝒖[L2(D)]3:curl𝒖[L2(D)]3},\displaystyle H(\text{curl};D):=\{\bm{u}\in[L^{2}(D)]^{3}:\;\operatorname{curl}\bm{u}\in[L^{2}(D)]^{3}\},
H(div;D):={𝒖[L2(D)]3:div𝒖L2(D)},\displaystyle H(\text{div};D):=\{\bm{u}\in[L^{2}(D)]^{3}:\;\operatorname{div}\bm{u}\in L^{2}(D)\},
H(gradcurl;D):={𝒖[L2(D)]3:curl𝒖[H1(D)]3},\displaystyle H(\operatorname{grad}\operatorname{curl};D):=\{\bm{u}\in[L^{2}(D)]^{3}:\;\operatorname{curl}\bm{u}\in[H^{1}(D)]^{3}\},
Hs(curl;D):={𝒖[Hs(D)]3:curl𝒖[Hs(D)]3}.\displaystyle H^{s}(\operatorname{curl};D):=\{\bm{u}\in[H^{s}(D)]^{3}:\;\operatorname{curl}\bm{u}\in[H^{s}(D)]^{3}\}.

For a subdomain DD, we use Pr(D)P_{r}(D), or simply PrP_{r} when there is no possible confusion, to denote the space of polynomials with degree at most rr on DD. We denote Qi,j,kQ_{i,j,k} the space of polynomials in three variables (x,y,z)(x,y,z) whose maximum degrees are ii in xx, jj in yy, and kk in zz, respectively.

For a scalar function space SS, we use 𝑺\bm{S} or [S]3[S]^{3} to denote the S3S\otimes\mathbb{R}^{3}.

Let  𝒯h\mathcal{T}_{h}\, be a partition of the domain Ω\Omega consisting of shape-regular cuboids. For K=(x1ch1,x1c+h1)×(x2ch2,x2c+h2)×(x3ch3,x3c+h3)K=(x_{1}^{c}-h_{1},x_{1}^{c}+h_{1})\times(x_{2}^{c}-h_{2},x_{2}^{c}+h_{2})\times(x_{3}^{c}-h_{3},x_{3}^{c}+h_{3}), we denote hK=h12+h22+h32h_{K}=\sqrt{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}} as the diameter of KK and h=maxK𝒯hhKh=\max_{K\in\mathcal{T}_{h}}h_{K} as the mesh size of 𝒯h\mathcal{T}_{h}. Denote by 𝒱h\mathcal{V}_{h}, h\mathcal{E}_{h}, and h\mathcal{F}_{h} the sets of vertices, edges, and faces in the partition, and 𝒱hint\mathcal{V}_{h}^{\text{int}}, hint\mathcal{E}_{h}^{\text{int}}, and hint\mathcal{F}_{h}^{\text{int}} the sets of interior vertices, edges, and faces. We also denote by 𝒱h(K)\mathcal{V}_{h}(K), h(K)\mathcal{E}_{h}(K), and h(K)\mathcal{F}_{h}(K) the sets of vertices, edges, and faces related to the element K𝒯hK\in\mathcal{T}_{h}. We use 𝝉e\bm{\tau}_{e} and 𝒏f\bm{n}_{f} to denote the unit tangential vector and the unit normal vector to ehe\in\mathcal{E}_{h} and fhf\in\mathcal{F}_{h}, respectively. Suppose f=K1K2hf=K_{1}\cap K_{2}\in\mathcal{F}_{h}. For a function vv defined on K1K2K_{1}\cup K_{2}, we define [[v]]f=f|K1f|K2[\![v]\!]_{f}=f|_{K_{1}}-f|_{K_{2}} to be the jump across ff. When fΩf\subset\partial\Omega, [[v]]f=v[\![v]\!]_{f}=v.

We use CC to denote a generic positive constant that is independent of hh.

3. The H(gradcurl)-Nonconforming Finite Elements

In this section, we will construct H(gradcurl)H(\operatorname{grad}\operatorname{curl})-nonconforming finite elements on cubical meshes. To this end, recall the Poincaré operator 𝔭:[C]3[C]3\mathfrak{p}:[C^{\infty}]^{3}\to[C^{\infty}]^{3} [4] defined by

𝔭𝒗:=𝒙×01t𝒗(t𝒙)dt.\mathfrak{p}\bm{v}:=-\bm{x}\times\int_{0}^{1}t\bm{v}(t\bm{x})\text{d}t.

The Poincaré operator satisfies

curl𝔭𝒗+𝔭3div𝒗=𝒗,\displaystyle\operatorname{curl}\mathfrak{p}\bm{v}+\mathfrak{p}^{3}\operatorname{div}\bm{v}=\bm{v}, (3.1)
grad𝔭1𝒗+𝔭curl𝒗=𝒗,\displaystyle\operatorname{grad}\mathfrak{p}^{1}\bm{v}+\mathfrak{p}\operatorname{curl}\bm{v}=\bm{v}, (3.2)

where 𝔭3v=𝒙01t2v(t𝒙)dt\mathfrak{p}^{3}v=\bm{x}\int_{0}^{1}t^{2}v(t\bm{x})\text{d}t and 𝔭1𝒗=01𝒗(t𝒙)𝒙dt\mathfrak{p}^{1}\bm{v}=\int_{0}^{1}\bm{v}(t\bm{x})\cdot\bm{x}\text{d}t. It holds

𝔭1𝔭=𝔭𝔭3=0.\displaystyle\mathfrak{p}^{1}\mathfrak{p}=\mathfrak{p}\mathfrak{p}^{3}=0. (3.3)

For each element K𝒯hK\in\mathcal{T}_{h}, we define the following shape function space:

𝑽hr1(K):=gradShr(K)𝔭𝑾h(K)\displaystyle\bm{V}^{r-1}_{h}(K):=\operatorname{grad}S_{h}^{r}(K)\oplus\mathfrak{p}\bm{W}_{h}(K) (3.4)

where

𝑾h(K)=[P1(K)]3span{(y200),(z200),(0x20),(0z20),(00x2),(00y2)},\displaystyle\bm{W}_{h}(K)=[P_{1}(K)]^{3}\oplus\operatorname{span}\left\{\begin{pmatrix}y^{2}\\ 0\\ 0\end{pmatrix},\begin{pmatrix}z^{2}\\ 0\\ 0\end{pmatrix},\begin{pmatrix}0\\ x^{2}\\ 0\end{pmatrix},\begin{pmatrix}0\\ z^{2}\\ 0\end{pmatrix},\begin{pmatrix}0\\ 0\\ x^{2}\end{pmatrix},\begin{pmatrix}0\\ 0\\ y^{2}\end{pmatrix}\right\}, (3.5)

and for r=1,2r=1,2, the shape function space Shr(K)S_{h}^{r}(K) contains all polynomials of superlinear degree at most rr. The superlinear degree of a polynomial is the degree with ignoring variables that enter linearly. For example, x2yz3x^{2}yz^{3} is a polynomial with superlinear degree 55. To be specific, the space Sh2(K)S_{h}^{2}(K) is spanned by the monomials in P2(K)P_{2}(K) and

xy2,xz2,yx2,yz2,zx2,zy2,xyz,xyz2,x2yz,xy2z.xy^{2},xz^{2},yx^{2},yz^{2},zx^{2},zy^{2},xyz,xyz^{2},x^{2}yz,xy^{2}z.

We have dimSh1(K)=8\dim S_{h}^{1}(K)=8 and dimSh2(K)=20\dim S_{h}^{2}(K)=20. The space 𝑾h(K)\bm{W}_{h}(K) is the same as the space 𝑽T(3)\bm{V}_{T}^{(3)} defined in [23] and dim𝑾h(K)=18\dim\bm{W}_{h}(K)=18.

The right-hand side of (3.4) is a direct sum. In fact, if 𝒗gradShr(K)𝔭𝑾h(K)\bm{v}\in\operatorname{grad}S_{h}^{r}(K)\cap\mathfrak{p}\bm{W}_{h}(K), then curl𝒗=0\operatorname{curl}\bm{v}=0 and 𝔭1𝒗=0\mathfrak{p}^{1}\bm{v}=0. According to (3.2), we have 𝒗=0\bm{v}=0. From the definition of 𝑽hr1(K)\bm{V}^{r-1}_{h}(K), we have 𝑷r1(K)𝑽hr1(K)\bm{P}_{r-1}(K)\subset\bm{V}^{r-1}_{h}(K) and

dim𝑽hr1(K)=dimgradShr(K)+dim𝔭𝑾h(K)={24,r=1,36,r=2.\displaystyle\text{dim}\ \bm{V}^{r-1}_{h}(K)=\dim\operatorname{grad}S_{h}^{r}(K)+\dim\mathfrak{p}\bm{W}_{h}(K)=\left\{\begin{array}[]{l}24,\quad r=1,\\ 36,\quad r=2.\end{array}\right.

We define the following DOFs for 𝒗𝑽hr1(K)\bm{v}\in\bm{V}^{r-1}_{h}(K):

Me(𝒗)\displaystyle M_{e}(\bm{v}) =e𝒗𝝉eqds,qPr1(e) at all edges eh(K),\displaystyle=\int_{e}\bm{v}\cdot\bm{\tau}_{e}q\text{d}s,\ \forall q\in P_{r-1}(e)\ \text{ at all edges }e\in\mathcal{E}_{h}(K), (3.6)
Mf(𝒗)\displaystyle M_{f}(\bm{v}) =fcurl𝒗×𝒏fdA at all faces fh(K).\displaystyle=\int_{f}\operatorname{curl}\bm{v}\times\bm{n}_{f}\text{d}A\ \text{ at all faces }f\in\mathcal{F}_{h}(K). (3.7)
Remark 3.1.

The DOFs Mf(𝒗)M_{f}(\bm{v}) can be equivalently defined as

Mf1(𝒗)=fcurl𝒗𝝉f1dA at all faces fh(K),\displaystyle M_{f}^{1}(\bm{v})=\int_{f}\operatorname{curl}\bm{v}\cdot\bm{\tau}_{f}^{1}\text{d}A\ \text{ at all faces }f\in\mathcal{F}_{h}(K), (3.8)
Mf2(𝒗)=fcurl𝒗𝝉f2dA at all faces fh(K),\displaystyle M_{f}^{2}(\bm{v})=\int_{f}\operatorname{curl}\bm{v}\cdot\bm{\tau}_{f}^{2}\text{d}A\ \text{ at all faces }f\in\mathcal{F}_{h}(K), (3.9)

where 𝝉f1,𝝉f2\bm{\tau}_{f}^{1},\ \bm{\tau}_{f}^{2} are two unit vectors parallel to the two non-colinear edges in face ff.

Lemma 3.1.

The DOFs Me(𝒗)M_{e}(\bm{v}) and Mf(𝒗)M_{f}(\bm{v}) are well-defined for 𝒗H1(curl;K)\bm{v}\in H^{1}(\operatorname{curl};K).

Proof.

The boundedness of the DOFs Mf(𝒗)M_{f}(\bm{v}) is trivial. To prove the boundedness of DOFs Me(𝒗)M_{e}(\bm{v}), we apply a similar idea to the proof of [12, Lemma 5.38]. For an edge ee, ff is the face containing the edge on its boundary. Given a polynomial qPr1(e)q\in P_{r-1}(e), we extend it by 0 to a function on f\partial f (still denoted by qq). Such a function qq is in W11/p,p(f)W^{1-1/p^{\prime},p^{\prime}}(\partial f) with p=p/(p1)>1p^{\prime}=p/(p-1)>1 and p>2p>2. Suppose KK is an element containing the face ff on its boundary, we have

e𝒖𝝉qds=frotf𝒖fqdAf𝒖curlfqdA\displaystyle\int_{e}\bm{u}\cdot\bm{\tau}q\text{d}s=\int_{f}\text{rot}_{f}\bm{u}_{f}q\text{d}A-\int_{f}\bm{u}\cdot\operatorname{curl}_{f}q\text{d}A
curl𝒖L2(f)qL2(f)+𝒖Lp(f)curlfqLp(f)\displaystyle\leq\|\operatorname{curl}\bm{u}\|_{L^{2}(f)}\|q\|_{L^{2}(f)}+\|\bm{u}\|_{L^{p}(f)}\|\operatorname{curl}_{f}q\|_{L^{p^{\prime}}(f)}
curl𝒖L2(f)qW1,p(f)+𝒖Lp(f)qW1,p(f)(embedding theorem [5, Theorem 4.57])\displaystyle\leq\|\operatorname{curl}\bm{u}\|_{L^{2}(f)}\|q\|_{W^{1,p^{\prime}}(f)}+\|\bm{u}\|_{L^{p}(f)}\|q\|_{W^{1,p^{\prime}}(f)}\ (\text{embedding theorem \cite[cite]{[\@@bibref{}{demengel2012functional}{}{}, Theorem 4.57]}})
curl𝒖L2(f)qW11/p,p(e)+𝒖Lp(f)qW11/p,p(e)([6, Theorem 1.5.1.2])\displaystyle\leq\|\operatorname{curl}\bm{u}\|_{L^{2}(f)}\|q\|_{W^{1-1/p^{\prime},p^{\prime}}(e)}+\|\bm{u}\|_{L^{p}(f)}\|q\|_{W^{1-1/p^{\prime},p^{\prime}}(e)}\ \text{(\cite[cite]{[\@@bibref{}{grisvard2011elliptic}{}{}, Theorem 1.5.1.2]})}
C(curl𝒖L2(f)+𝒖H1/2(f))(embedding theorem [5, Theorem 4.57])\displaystyle\leq C(\|\operatorname{curl}\bm{u}\|_{L^{2}(f)}+\|\bm{u}\|_{H^{1/2}(f)})\ (\text{embedding theorem \cite[cite]{[\@@bibref{}{demengel2012functional}{}{}, Theorem 4.57]}})
C(curl𝒖1,K+𝒖1,K)(trace theorem [6, Theorem 1.5.1.2]).\displaystyle\leq C(\|\operatorname{curl}\bm{u}\|_{1,K}+\|\bm{u}\|_{1,K})\ (\text{trace theorem \cite[cite]{[\@@bibref{}{grisvard2011elliptic}{}{}, Theorem 1.5.1.2]}}).

 

Lemma 3.2.

The DOFs (3.7)-(3.6) are unisolvent for the shape function space 𝑽hr1(K)\bm{V}^{r-1}_{h}(K).

Proof.

First of all, the number of DOFs (3.7)-(3.6) is 6×2+12r6\times 2+12r which is same as the dimension of 𝑽hr1(K)\bm{V}^{r-1}_{h}(K). Then it suffices to show that if all the DOFs (3.7)-(3.6) vanish on a function 𝒗=gradq+𝔭𝒘𝑽hr1(K)\bm{v}=\operatorname{grad}q+\mathfrak{p}\bm{w}\in\bm{V}^{r-1}_{h}(K) with qShr(K)q\in S_{h}^{r}(K) and 𝒘𝑾h(K)\bm{w}\in\bm{W}_{h}(K), then 𝒗=0\bm{v}=0.

For each fh(K)f\in\mathcal{F}_{h}(K), by the integration by parts on face ff, we have

fcurl𝒗𝒏fdA=f𝒗𝝉ds=0,\displaystyle\int_{f}\operatorname{curl}\bm{v}\cdot\bm{n}_{f}\text{d}A=\int_{\partial f}\bm{v}\cdot\bm{\tau}\text{d}s=0, (3.10)

which together with vanishing DOFs in (3.7), we obtain

fcurl𝒗dA=𝟎.\displaystyle\int_{f}\operatorname{curl}\bm{v}\text{d}A=\bm{0}. (3.11)

By (3.1) and the definition of 𝑽hr1(K)\bm{V}^{r-1}_{h}(K), we have curl𝒗𝑾h(K)\operatorname{curl}\bm{v}\in\bm{W}_{h}(K). The unisolvence of the DOFs for 𝑾h(K)\bm{W}_{h}(K) [23] leads to curl 𝒗=𝟎\text{curl }\bm{v}=\bm{0}, which implies curl𝔭𝒘=𝒘𝔭3div𝒘=0\operatorname{curl}\mathfrak{p}\bm{w}=\bm{w}-{\mathfrak{p}}^{3}\operatorname{div}\bm{w}=0. Then 𝒗=gradq+𝔭𝒘=gradq+𝔭𝔭3div𝒘=gradq\bm{v}=\operatorname{grad}q+\mathfrak{p}\bm{w}=\operatorname{grad}q+\mathfrak{p}{\mathfrak{p}}^{3}\operatorname{div}\bm{w}=\operatorname{grad}q. Using the DOFs (3.6), we can obtain 𝝉eq=0\partial_{\bm{\tau}_{e}}q=0, then we can choose qShr(K)q\in S^{r}_{h}(K) satisfying q|e=0q|_{e}=0 for each e(K)e\in\mathcal{E}(K). Since the superlinear degree of qq is no more than 22, we can get 𝒗=0\bm{v}=0.  

For the reference element K^=(1,1)3\hat{K}=(-1,1)^{3}, we denote the DOFs for 𝒗^𝑽hr1(K^)\hat{\bm{v}}\in\bm{V}^{r-1}_{h}(\hat{K}) by

Mf^(𝒗^)Me^(𝒗^).M_{\hat{f}}(\hat{\bm{v}})\cup M_{\hat{e}}(\hat{\bm{v}}).

We relate the shape function 𝒗\bm{v} on KK and 𝒗^\hat{\bm{v}} on K^\hat{K} by

𝒗FK=BKT𝒗^,\displaystyle\bm{v}\circ F_{K}=B_{K}^{-T}\hat{\bm{v}}, (3.12)

where FK(𝒙):=BK𝒙^+𝒃KF_{K}(\bm{x}):=B_{K}\hat{\bm{x}}+\bm{b}_{K} is a affine mapping from reference element K^\hat{K} to an element K𝒯hK\in\mathcal{T}_{h}. For technical reasons, we assume the elements in 𝒯h\mathcal{T}_{h} have all edges parallel to the coordinates axes, then BKB_{K} is a diagonal matrix.

For any K𝒯hK\in\mathcal{T}_{h}, we define an interpolation operator 𝑹Kr1:H1(curl;K)𝑽hr1(K)\bm{R}^{r-1}_{K}:H^{1}(\operatorname{curl};K)\rightarrow\bm{V}_{h}^{r-1}(K) by

Me(𝒗𝑹Kr1𝒗)=0,Mf1(𝒗𝑹Kr1𝒗), and Mf2(𝒗𝑹Kr1𝒗)=0.\displaystyle M_{e}(\bm{v}-\bm{R}^{r-1}_{K}\bm{v})=0,M^{1}_{f}(\bm{v}-\bm{R}^{r-1}_{K}\bm{v}),\text{ and }M^{2}_{f}(\bm{v}-\bm{R}^{r-1}_{K}\bm{v})=0. (3.13)

Similarly, we can define 𝑹K^r1\bm{R}^{r-1}_{\hat{K}}. The following lemma establishes the relationship between the interpolation on KK and the interpolation on K^\hat{K}.

Lemma 3.3.

Suppose that 𝑹Kr1𝒗\bm{R}^{r-1}_{K}\bm{v} is well defined. Then under the transformation (3.12), we have

𝑹Kr1𝒗^=𝑹K^r1𝒗^.\displaystyle\widehat{\bm{R}^{r-1}_{K}\bm{v}}=\bm{R}^{r-1}_{\hat{K}}\hat{\bm{v}}.
Proof.

The interpolations 𝑹Kr1𝒗^\widehat{\bm{R}^{r-1}_{K}\bm{v}} and 𝑹K^r1𝒗^\bm{R}^{r-1}_{\hat{K}}\hat{\bm{v}} are defined by DOFs Me(𝒗)Mf1(𝒗)Mf2(𝒗)M_{e}(\bm{v})\cup M_{f}^{1}(\bm{v})\cup M_{f}^{2}(\bm{v}) and Me^(𝒗^)Mf^1(𝒗^)Mf^2(𝒗^)M_{\hat{e}}(\hat{\bm{v}})\cup M_{\hat{f}}^{1}(\hat{\bm{v}})\cup M_{\hat{f}}^{2}(\hat{\bm{v}}), respectively. Under the transformation (3.12) , each DOF in Me(𝒗)Mf1(𝒗)Mf2(𝒗)M_{e}(\bm{v})\cup M_{f}^{1}(\bm{v})\cup M_{f}^{2}(\bm{v}) is a constant multiple of the corresponding DOF in Me^(𝒗^)Mf^1(𝒗^)Mf^2(𝒗^)M_{\hat{e}}(\hat{\bm{v}})\cup M_{\hat{f}}^{1}(\hat{\bm{v}})\cup M_{\hat{f}}^{2}(\hat{\bm{v}}). For example

fcurl𝒖𝝉f1dA=f^1det(BK)BKcurl^𝒖^𝝉^f1area(f)area(f^)dA^\displaystyle\quad\int_{f}\operatorname{curl}\bm{u}\cdot\bm{\tau}_{f}^{1}\text{d}A=\int_{\hat{f}}\frac{1}{\det(B_{K})}B_{K}\widehat{\operatorname{curl}}\hat{\bm{u}}\cdot\hat{\bm{\tau}}_{f}^{1}\frac{\text{area}(f)}{\text{area}(\hat{f})}\text{d}\hat{A}
=BK𝝉^f1BK𝒏^ff^curl^𝒖^𝝉^f1dA^,\displaystyle=\frac{\|B_{K}\hat{\bm{\tau}}_{f}^{1}\|}{\|B_{K}\hat{\bm{n}}_{f}\|}\int_{\hat{f}}\widehat{\operatorname{curl}}\hat{\bm{u}}\cdot\hat{\bm{\tau}}_{f}^{1}\text{d}\hat{A},

where we have used the facts that BKB_{K} is a diagonal matrix and 𝝉^f1=𝝉f1\hat{\bm{\tau}}_{f}^{1}={\bm{\tau}}_{f}^{1}. Therefore the two interpolations are identical according to [2, Proposition 3.4.7].  
With the help of Lemma 3.3, we can show that the interpolation operator has the following approximation property.

Theorem 3.1.

Suppose that 𝒖𝑯s(K)\bm{u}\in\bm{H}^{s}(K) and curl𝒖𝑯l(K)\operatorname{curl}\bm{u}\in\bm{H}^{l}(K) with ls1l\geq s\geq 1, then the following error estimates hold.

𝒖𝑹Kr1𝒖K\displaystyle\|\bm{u}-\bm{R}^{r-1}_{K}\bm{u}\|_{K} Chmin{s,r}(|𝒖|s,K+|curl𝒖|s,K),\displaystyle\leq Ch^{\min\{s,r\}}\big{(}|\bm{u}|_{s,K}+|\operatorname{curl}\bm{u}|_{s,K}\big{)}, (3.14)
curl(𝒖𝑹Kr1𝒖)j,K\displaystyle\|\operatorname{curl}(\bm{u}-\bm{R}^{r-1}_{K}\bm{u})\|_{j,K} Chmin{l,2}j|curl𝒖|l,K,j=0,1.\displaystyle\leq Ch^{\min\{l,2\}-j}|\operatorname{curl}\bm{u}|_{l,K},\ j=0,1. (3.15)
Proof.

By following the proof of [12, Theorem 5.41], we can prove (3.14) and (3.15) by using Lemmas 3.1 and 3.3, the fact that 𝑷r1(K)𝑽hr1(K)\bm{P}_{r-1}(K)\subset\bm{V}_{h}^{r-1}(K), and the approximation property of 𝑾h(K)\bm{W}_{h}(K) [23, (3.3)].  

4. Nonconforming finite element Stokes complexes

4.1. A finite element de Rham complex on cubical meshes

In this section, we present the precise definition of each space involved in the complex (1.3).

Space Shr(𝒯h)S_{h}^{r}(\mathcal{T}_{h})

This is the H1H^{1}-conforming serendipity finite element space [1]. The shape function space is Shr(K)S_{h}^{r}(K) and the DOFs for uShr(𝒯h)u\in S_{h}^{r}(\mathcal{T}_{h}) are

  • function values u(v)u(v) at all vertices v𝒱hv\in\mathcal{V}_{h},

  • moments euqds,qPr2(e)\int_{e}uq\text{d}s,\ \forall q\in P_{r-2}(e) at all edges ehe\in\mathcal{E}_{h}.

The above DOFs lead to the canonical interpolation πhr\pi_{h}^{r}: H32+δ(Ω)Shr(𝒯h)H^{\frac{3}{2}+\delta}(\Omega)\rightarrow S^{r}_{h}(\mathcal{T}_{h}) with δ>0\delta>0.

Space Vhr1(𝒯h)\bm{V}^{r-1}_{h}(\mathcal{T}_{h})

The space is defined by

𝑽hr1(𝒯h)={𝒖𝑳2(Ω):\displaystyle\bm{V}^{r-1}_{h}(\mathcal{T}_{h})=\{\bm{u}\in\bm{L}^{2}(\Omega): 𝒖|K𝑽hr1(K) for all K𝒯h and 𝒖 is uni-valued\displaystyle\ \bm{u}|_{K}\in\bm{V}^{r-1}_{h}(K)\text{ for all }K\in\mathcal{T}_{h}\text{ and }\bm{u}\text{ is uni-valued}
across elements on the DOFs in Me(𝒖)Mf(𝒖)}.\displaystyle\text{ across elements on the DOFs in }M_{e}(\bm{u})\cup M_{f}(\bm{u})\}.

We define a global interpolation operator 𝑹hr1:𝑯1(curl;Ω)𝑽hr1(𝒯h)\bm{R}^{r-1}_{h}:\bm{H}^{1}(\operatorname{curl};\Omega)\rightarrow\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) element-wisely by

(𝑹hr1𝒖)|K=𝑹Kr1(𝒖|K)for any K𝒯h.\displaystyle(\bm{R}^{r-1}_{h}\bm{u})|_{K}=\bm{R}^{r-1}_{K}(\bm{u}|_{K})\quad\text{for any }K\in\mathcal{T}_{h}.

Space Wh(𝒯h)\bm{W}_{h}(\mathcal{T}_{h})

For 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}), we use the 𝑯1\bm{H}^{1}-nonconforming finite element space in [23], which was constructed for the Darcy-Stokes-Brinkman problem. The shape function space is 𝑾h(K)\bm{W}_{h}(K) defined by (3.5).

The DOFs for 𝒖𝑾h(𝒯h)\bm{u}\in\bm{W}_{h}(\mathcal{T}_{h}) are

  • moments f𝒖dA\int_{f}\bm{u}\text{d}A at all faces fhf\in\mathcal{F}_{h}.

Applying the above DOFs, we can define an interpolation 𝚷h:𝑯1(Ω)𝑾h(𝒯h)\bm{\Pi}_{h}:\bm{H}^{1}(\Omega)\rightarrow\bm{W}_{h}(\mathcal{T}_{h}), whose restriction on KK is denoted as 𝚷K\bm{\Pi}_{K}.

Space Qh(𝒯h)Q_{h}(\mathcal{T}_{h})

The shape function space of Qh(𝒯h)Q_{h}(\mathcal{T}_{h}) on KK is P0(K)P_{0}(K). For uQh(𝒯h)u\in Q_{h}(\mathcal{T}_{h}), the DOFs are

  • moments KudV\int_{K}u\text{d}V at all elements K𝒯hK\in\mathcal{T}_{h}.

The above DOFs lead to the canonical interpolation 𝒫h\mathcal{P}_{h}: L2(Ω)Qh(𝒯h)L^{2}(\Omega)\rightarrow Q_{h}(\mathcal{T}_{h}), whose restriction on KK is denoted as 𝒫K\mathcal{P}_{K}.

We summarize the interpolations defined by the DOFs in the following diagram.

0{0}{\mathbb{R}}H2(Ω){H^{2}(\Omega)}H1(curl;Ω){H^{1}(\operatorname{curl};\Omega)}𝑯1(Ω){\bm{H}^{1}(\Omega)}L2(Ω){L^{2}(\Omega)}0{0}0{0}{\mathbb{R}}Shr(𝒯h){S_{h}^{r}(\mathcal{T}_{h})}𝑽hr1(𝒯h){\bm{V}^{r-1}_{h}(\mathcal{T}_{h})}𝑾h(𝒯h){\bm{W}_{h}(\mathcal{T}_{h})}Qh(𝒯h){Q_{h}(\mathcal{T}_{h})}0{0}\scriptstyle{\subset}πhr\scriptstyle{\pi_{h}^{r}}grad\scriptstyle{\operatorname{grad}}𝑹hr1\scriptstyle{\bm{R}_{h}^{r-1}}curl\scriptstyle{\operatorname{curl}}𝚷h\scriptstyle{\bm{\Pi}_{h}}div\scriptstyle{\operatorname{div}}𝒫h\scriptstyle{\mathcal{P}_{h}}\scriptstyle{\subset}grad\scriptstyle{\operatorname{grad}}curlh\scriptstyle{\operatorname{curl}_{h}}divh\scriptstyle{\operatorname{div}_{h}} (4.1)
Lemma 4.1.

The interpolations in the diagram (4.1) commute with the differential operators, i.e.,

𝑹hr1grad=gradπhr,𝚷hcurl=curlh𝑹hr1,and𝒫hdiv=divh𝚷h.\displaystyle\bm{R}_{h}^{r-1}\operatorname{grad}=\operatorname{grad}\pi_{h}^{r},\ \ \bm{\Pi}_{h}\operatorname{curl}=\operatorname{curl}_{h}\bm{R}_{h}^{r-1},\ \ \text{and}\ \ \mathcal{P}_{h}\operatorname{div}=\operatorname{div}_{h}\bm{\Pi}_{h}.
Proof.

It is straightforward to prove the lemma by following the argument in the proof of [7, Lemma 4.5].  

Lemma 4.2.

The complex (1.3) is exact when Ω\Omega is contractible.

Proof.

To prove the complex is exact, we shall show that the complex is exact at each space. We start with 𝑽hr1(𝒯h)\bm{V}_{h}^{r-1}(\mathcal{T}_{h}). We suppose 𝒖h𝑽hr1(𝒯h)\bm{u}_{h}\in\bm{V}_{h}^{r-1}(\mathcal{T}_{h}) and curlh𝒖h=0\operatorname{curl}_{h}\bm{u}_{h}=0, and we show that there exists a phShr(𝒯h)p_{h}\in S_{h}^{r}(\mathcal{T}_{h}) such that 𝒖h=gradph\bm{u}_{h}=\operatorname{grad}p_{h}. Since curlh𝒖h=0\operatorname{curl}_{h}\bm{u}_{h}=0, we can write 𝒖h|K=gradpK\bm{u}_{h}|_{K}=\operatorname{grad}p_{K} with pKShr(K)p_{K}\in S_{h}^{r}(K) for any K𝒯hK\in\mathcal{T}_{h}. Suppose fhf\in\mathcal{F}_{h} is a common face of K1,K2𝒯hK_{1},K_{2}\in\mathcal{T}_{h}. Restricted on ff, the polynomials pK1p_{K_{1}} and pK2p_{K_{2}} are in Shr(f)S_{h}^{r}(f) (the counterpart of Shr(K)S_{h}^{r}(K) in 2D). The DOFs e𝒖h𝝉eqds\int_{e}\bm{u}_{h}\cdot\bm{\tau}_{e}q\text{d}s for any qPr1(e)q\in P_{r-1}(e) and eh(f)e\in\mathcal{E}_{h}(f) yield gradpK1=gradpK2\operatorname{grad}p_{K_{1}}=\operatorname{grad}p_{K_{2}} on each eh(f)e\in\mathcal{E}_{h}(f), and hence pK1pK2=cip_{K_{1}}-p_{K_{2}}=c_{i} for some cic_{i} on eie_{i}, i=1,2,3,4i=1,2,3,4. Restricting to four vertices of ff leads to c1=c2=c3=c4=cc_{1}=c_{2}=c_{3}=c_{4}=c, and hence pK1=pK2+cp_{K_{1}}=p_{K_{2}}+c on ff. We then pick a cc such that pK1=pK2p_{K_{1}}=p_{K_{2}}. Therefore, we can glue together all pKp_{K} for K𝒯hK\in\mathcal{T}_{h} to get a function phShr(𝒯h)p_{h}\in S_{h}^{r}(\mathcal{T}_{h}). The exactness at Qh(𝒯h)Q_{h}(\mathcal{T}_{h}) follows from the exactness at the same position of smooth Stokes complex and the commutativity of interpolations and divh\operatorname{div}_{h} (Lemma 4.1)[21].

Finally, we prove the exactness at 𝑾h(𝒯h)\bm{W}_{h}(\mathcal{T}_{h}) by a dimension count. Let 𝒦h\mathcal{K}_{h} be the number of elements in 𝒯h\mathcal{T}_{h}. Then

dimShr(𝒯h)=𝒱h+(r1)h,\displaystyle\dim S_{h}^{r}(\mathcal{T}_{h})=\mathcal{V}_{h}+(r-1)\mathcal{E}_{h}, dim𝑽hr1(𝒯h)=rh+2h,\displaystyle\dim\bm{V}_{h}^{r-1}(\mathcal{T}_{h})=r\mathcal{E}_{h}+2\mathcal{F}_{h},
dim𝑾h(𝒯h)=3h,\displaystyle\dim\bm{W}_{h}(\mathcal{T}_{h})=3\mathcal{F}_{h}, dimQh(𝒯h)=𝒦h,\displaystyle\dim Q_{h}(\mathcal{T}_{h})=\mathcal{K}_{h},

which together with Euler’s formula leads to

dimShr(𝒯h)dim𝑽hr1(𝒯h)+dim𝑾h(𝒯h)dimQh(𝒯h)=𝒱hh+h𝒦h=0.\displaystyle\dim S_{h}^{r}(\mathcal{T}_{h})-\dim\bm{V}^{r-1}_{h}(\mathcal{T}_{h})+\dim\bm{W}_{h}(\mathcal{T}_{h})-\dim Q_{h}(\mathcal{T}_{h})=\mathcal{V}_{h}-\mathcal{E}_{h}+\mathcal{F}_{h}-\mathcal{K}_{h}=0.

 

Define

S̊hr(𝒯h)\displaystyle\mathring{S}_{h}^{r}(\mathcal{T}_{h}) =Shr(𝒯h)H01(Ω),Q̊h(𝒯h)=Qh(𝒯h)L02(Ω),\displaystyle=S_{h}^{r}(\mathcal{T}_{h})\cap H_{0}^{1}(\Omega),\ \ \mathring{Q}_{h}(\mathcal{T}_{h})=Q_{h}(\mathcal{T}_{h})\cap L_{0}^{2}(\Omega),
𝑽̊hr1(𝒯h)\displaystyle\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}) ={𝒖𝑽hr1(𝒯h):the DOFs (3.6) and (3.7) vanish on Ω},\displaystyle=\{\bm{u}\in{\bm{V}}_{h}^{r-1}(\mathcal{T}_{h}):\text{the DOFs \eqref{Dof2} and \eqref{Dof1} vanish on }\partial\Omega\},
𝑾̊h(𝒯h)\displaystyle\mathring{\bm{W}}_{h}(\mathcal{T}_{h}) ={𝒖𝑾h(𝒯h):the DOFs f𝒖dA vanish for fΩ}.\displaystyle=\{\bm{u}\in{\bm{W}}_{h}(\mathcal{T}_{h}):\text{the DOFs $\int_{f}\bm{u}\text{d}A$ vanish for }f\subset\partial\Omega\}.

Proceeding as the proof of Lemma 4.2, we can prove the following exactness of the complex with vanishing boundary DOFs.

Lemma 4.3.

The complex

0{0}S̊hr(𝒯h)(𝒯h){\mathring{S}^{r}_{h}(\mathcal{T}_{h})(\mathcal{T}_{h})}𝑽̊hr1(𝒯h){\mathring{\bm{V}}_{h}^{r-1}(\mathcal{T}_{h})}𝑾̊h(𝒯h){\mathring{\bm{W}}_{h}(\mathcal{T}_{h})}Q̊h(𝒯h){\mathring{Q}_{h}(\mathcal{T}_{h})}0{0}\scriptstyle{\subset}grad\scriptstyle{\operatorname{grad}}curlh\scriptstyle{\operatorname{curl}_{h}}divh\scriptstyle{\operatorname{div}_{h}} (4.2)

is exact when Ω\Omega is contractible.

5. Application of the Nonconforming Elements to the Model Problem

We define H0(gradcurl;Ω)H_{0}(\operatorname{grad}\operatorname{curl};\Omega) with vanishing boundary conditions:

H0(gradcurl;Ω):=\displaystyle H_{0}(\operatorname{grad}\operatorname{curl};\Omega):= {𝒖H(gradcurl;Ω):𝒏×𝒖=0andcurl𝒖=0onΩ}.\displaystyle\left\{\bm{u}\in H(\operatorname{grad}\operatorname{curl};\Omega):{\bm{n}}\times\bm{u}=0\;\text{and}\ \operatorname{curl}\bm{u}=0\;\text{on}\ \partial\Omega\right\}.

To deal with the divergence-free condition, we introduce a Lagrange multiplier pp. The mixed variational formulation is to find (𝒖;p)H0(gradcurl;Ω)×H01(Ω)(\bm{u};p)\in H_{0}(\operatorname{grad}\operatorname{curl};\Omega)\times H^{1}_{0}(\Omega) such that

a(𝒖,𝒗)+b(𝒗,p)=(𝒇,𝒗),𝒗H0(gradcurl;Ω),b(𝒖,q)=0,qH01(Ω),\begin{split}a(\bm{u},\bm{v})+b(\bm{v},p)&=(\bm{f},\bm{v}),\quad\forall\bm{v}\in H_{0}(\operatorname{grad}\operatorname{curl};\Omega),\\ b(\bm{u},q)&=0,\quad\forall q\in H_{0}^{1}(\Omega),\end{split} (5.1)

with a(𝒖,𝒗):=ϵ(gradcurl𝒖,gradcurl𝒗)+α(curl𝒖,curl𝒗)+β(𝒖,𝒗)a(\bm{u},\bm{v}):=\epsilon(\operatorname{grad}\operatorname{curl}\bm{u},\operatorname{grad}\operatorname{curl}\bm{v})+\alpha(\operatorname{curl}\bm{u},\operatorname{curl}\bm{v})+\beta(\bm{u},\bm{v}) and b(𝒗,p)=(𝒗,p)b(\bm{v},p)=(\bm{v},\nabla p).

Taking 𝒗=gradp\bm{v}=\operatorname{grad}p in (5.1) and using the vanishing boundary condition of pp, we can obtain that p0p\equiv 0.

The nonconforming finite element method for (5.1) seeks (𝒖h;ph)𝑽̊hr1(𝒯h)×S̊hr(𝒯h)(\bm{u}_{h};p_{h})\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})\times\mathring{S}^{r}_{h}(\mathcal{T}_{h}) such that

ah(𝒖h,𝒗h)+b(𝒗h,ph)=(𝒇,𝒗h),𝒗h𝑽̊hr1(𝒯h),b(𝒖h,qh)=0,qhS̊hr(𝒯h),\begin{split}a_{h}(\bm{u}_{h},\bm{v}_{h})+b(\bm{v}_{h},p_{h})&=(\bm{f},\bm{v}_{h}),\quad\forall\bm{v}_{h}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}),\\ b(\bm{u}_{h},q_{h})&=0,\quad\forall q_{h}\in\mathring{S}^{r}_{h}(\mathcal{T}_{h}),\end{split} (5.2)

where ah(𝒖h,𝒗h):=K𝒯h(ϵ(gradcurl𝒖h,gradcurl𝒗h)K+α(curl𝒖h,curl𝒗h)K+β(𝒖h,𝒗h)K)a_{h}(\bm{u}_{h},\bm{v}_{h}):=\sum_{K\in\mathcal{T}_{h}}\big{(}\epsilon(\operatorname{grad}\operatorname{curl}\bm{u}_{h},\operatorname{grad}\operatorname{curl}\bm{v}_{h})_{K}+\alpha(\operatorname{curl}\bm{u}_{h},\operatorname{curl}\bm{v}_{h})_{K}+\beta(\bm{u}_{h},\bm{v}_{h})_{K}\big{)}. Define

Xh={𝒗𝑽̊hr1(𝒯h):b(𝒗,q)=0,qS̊hr(𝒯h)},X_{h}=\{\bm{v}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}):b(\bm{v},q)=0,\ \forall q\in\mathring{S}^{r}_{h}(\mathcal{T}_{h})\},

and

𝒗hah2=ah(𝒗h,𝒗h),𝒗hgradcurl,h2=ϵ|curlh𝒗h|1,h2+curlh𝒗h2+𝒗h2,\|\bm{v}_{h}\|_{a_{h}}^{2}=a_{h}(\bm{v}_{h},\bm{v}_{h}),\ \ \|\bm{v}_{h}\|_{\operatorname{grad}\operatorname{curl},h}^{2}=\epsilon|\operatorname{curl}_{h}\bm{v}_{h}|^{2}_{1,h}+\|\operatorname{curl}_{h}\bm{v}_{h}\|^{2}+\|\bm{v}_{h}\|^{2},

where |𝒗|1,h2:=K𝒯hgrad𝒗K2|\bm{v}|^{2}_{1,h}:=\sum_{K\in\mathcal{T}_{h}}\|\operatorname{grad}\bm{v}\|_{K}^{2} and curlh\operatorname{curl}_{h} means taking curl\operatorname{curl} element by element. To show the well-posedness of numerical scheme (5.2), we will first prove the discrete Poincaré inequality for functions in XhX_{h}. To this end, we follow the idea in [9] and define the interpolation 𝑰Kr1:𝑯2(K)gradShr(K)𝔭[Q1,0,0×Q0,1,0×Q0,0,1]\bm{I}_{K}^{r-1}:\bm{H}^{2}(K)\longrightarrow\operatorname{grad}S_{h}^{r}(K)\oplus\mathfrak{p}[Q_{1,0,0}\times Q_{0,1,0}\times Q_{0,0,1}] for K𝒯hK\in\mathcal{T}_{h} by

e𝑰Kr1𝒗𝝉eqds=e𝒗𝝉eqdsfor all qPr1(e) and eh(K).\displaystyle\int_{e}\bm{I}_{K}^{r-1}\bm{v}\cdot\bm{\tau}_{e}q\text{d}s=\int_{e}\bm{v}\cdot\bm{\tau}_{e}q\text{d}s\ \text{for all }q\in P_{r-1}(e)\text{ and }e\in\mathcal{E}_{h}(K). (5.3)

Then we have [12, Theoreoms 6.7, 6.3]

curl(𝒗𝑰Kr1𝒗)KChK|curl𝒗|1,K,𝒗𝑯2(K).\displaystyle\|\operatorname{curl}(\bm{v}-\bm{I}_{K}^{r-1}\bm{v})\|_{K}\leq Ch_{K}|\operatorname{curl}\bm{v}|_{1,K},\ \ \forall\ \bm{v}\in\bm{H}^{2}(K). (5.4)

Proceeding as in the proof of [9, Lemma 4.2], it holds that

𝒗𝑰Kr1𝒗KChKcurl𝒗K,𝒗𝑽hr1(K).\displaystyle\|\bm{v}-\bm{I}_{K}^{r-1}\bm{v}\|_{K}\leq Ch_{K}\|\operatorname{curl}\bm{v}\|_{K},\ \ \forall\ \bm{v}\in\bm{V}_{h}^{r-1}(K). (5.5)

Define

𝑯t,r12(𝒯h)={𝒖𝑳2(Ω):𝒖|K𝑯2(K)for eachK𝒯h and\displaystyle\bm{H}_{t,r-1}^{2}(\mathcal{T}_{h})=\{\bm{u}\in\bm{L}^{2}(\Omega):\bm{u}|_{K}\in\bm{H}^{2}(K)\ \text{for each}\ K\in\mathcal{T}_{h}\text{ and }
e𝒖𝝉eqds for qPr1(e) is single-valued across elements for any eh},\displaystyle\qquad\qquad\ \ \int_{e}\bm{u}\cdot\bm{\tau}_{e}q\text{d}s\text{ for $q\in P_{r-1}(e)$ is single-valued across elements for any }e\in\mathcal{E}_{h}\},
𝑽h,cr1={𝒖H(curl;Ω):𝒖|KgradShr(K)𝔭[Q1,0,0×Q0,1,0×Q0,0,1]for eachK𝒯h}.\displaystyle\bm{V}_{h,c}^{r-1}=\{\bm{u}\in H(\operatorname{curl};\Omega):\bm{u}|_{K}\in\operatorname{grad}S_{h}^{r}(K)\oplus\mathfrak{p}[Q_{1,0,0}\times Q_{0,1,0}\times Q_{0,0,1}]\ \text{for each}\ K\in\mathcal{T}_{h}\}.

Then 𝑰hr1:𝑯t,r12(𝒯h)𝑽h,cr1\bm{I}_{h}^{r-1}:\bm{H}_{t,r-1}^{2}(\mathcal{T}_{h})\longrightarrow\bm{V}_{h,c}^{r-1} is determined by

(𝑰hr1𝒗)|K:=𝑰Kr1(𝒗|K) for all K𝒯h.(\bm{I}_{h}^{r-1}\bm{v})|_{K}:=\bm{I}_{K}^{r-1}(\bm{v}|_{K})\text{ for all }K\in\mathcal{T}_{h}.

For 𝒗𝑽hr1(𝒯h)\bm{v}\in{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}), since e𝒗𝝉eqds\int_{e}\bm{v}\cdot\bm{\tau}_{e}q\text{d}s is single-valued for qPr1(e)q\in P_{r-1}(e) and ehe\in\mathcal{E}_{h}, 𝑽hr1(𝒯h)𝑯t,r12(𝒯h){\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})\subset\bm{H}_{t,r-1}^{2}(\mathcal{T}_{h}), and hence 𝑰hr1𝒗\bm{I}_{h}^{r-1}\bm{v} is well-defined.

For simplicity, we denote 𝑰hr1\bm{I}_{h}^{r-1} as 𝑰h\bm{I}_{h} when r=1r=1.

Now we are ready to prove the discrete Poincaré inequality.

Lemma 5.1.

The following discrete Poincaré inequality holds

𝒗0CPcurlh𝒗0,𝒗0Xh.\displaystyle\|\bm{v}_{0}\|\leq C_{P}\|\operatorname{curl}_{h}\bm{v}_{0}\|,\qquad\forall\bm{v}_{0}\in X_{h}. (5.6)
Proof.

According to the discrete Helmholtz decomposition [12], it follows that

𝑰h𝒗0=gradqh+𝒓h,\displaystyle\bm{I}_{h}\bm{v}_{0}=\operatorname{grad}q_{h}+\bm{r}_{h}, (5.7)

with qhS̊h1(𝒯h)q_{h}\in\mathring{S}^{1}_{h}(\mathcal{T}_{h}) and 𝒓hYh={𝒗h𝑽h,cr1H0(curl;Ω):b(𝒗h,q)=0,qS̊h1(𝒯h)}\bm{r}_{h}\in Y_{h}=\{\bm{v}_{h}\in\bm{V}_{h,c}^{r-1}\cap H_{0}(\operatorname{curl};\Omega):b(\bm{v}_{h},q)=0,\ \forall q\in\mathring{S}^{1}_{h}(\mathcal{T}_{h})\}. By (5.7) and the discrete Poincaré inequality for YhY_{h}, we can arrive at

𝑰h𝒗02\displaystyle\|\bm{I}_{h}\bm{v}_{0}\|^{2} =(𝑰h𝒗0,gradqh+𝒓h)\displaystyle=(\bm{I}_{h}\bm{v}_{0},\operatorname{grad}q_{h}+\bm{r}_{h})
=(𝑰h𝒗0𝒗0,gradqh)+(𝑰h𝒗0,𝒓h)\displaystyle=(\bm{I}_{h}\bm{v}_{0}-\bm{v}_{0},\operatorname{grad}q_{h})+(\bm{I}_{h}\bm{v}_{0},\bm{r}_{h})
𝑰h𝒗0𝒗0𝑰h𝒗0+C𝑰h𝒗0curl𝒓h\displaystyle\leq\|\bm{I}_{h}\bm{v}_{0}-\bm{v}_{0}\|\|\bm{I}_{h}\bm{v}_{0}\|+C\|\bm{I}_{h}\bm{v}_{0}\|\|\operatorname{curl}\bm{r}_{h}\|
=𝑰h𝒗0𝒗0𝑰h𝒗0+C𝑰h𝒗0curl𝑰h𝒗0,\displaystyle=\|\bm{I}_{h}\bm{v}_{0}-\bm{v}_{0}\|\|\bm{I}_{h}\bm{v}_{0}\|+C\|\bm{I}_{h}\bm{v}_{0}\|\|\operatorname{curl}\bm{I}_{h}\bm{v}_{0}\|,

which implies

𝑰h𝒗0𝑰h𝒗0𝒗0+Ccurl𝑰h𝒗0.\displaystyle\|\bm{I}_{h}\bm{v}_{0}\|\leq\|\bm{I}_{h}\bm{v}_{0}-\bm{v}_{0}\|+C\|\operatorname{curl}\bm{I}_{h}\bm{v}_{0}\|.

Therefore, we have

𝒗0\displaystyle\|\bm{v}_{0}\| 𝒗0𝑰h𝒗0+𝑰h𝒗0\displaystyle\leq\|\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0}\|+\|\bm{I}_{h}\bm{v}_{0}\|
2𝒗0𝑰h𝒗0+Ccurl𝑰h𝒗0\displaystyle\leq 2\|\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0}\|+C\|\operatorname{curl}\bm{I}_{h}\bm{v}_{0}\|
2𝒗0𝑰h𝒗0+Ccurl𝑰h𝒗0curlh𝒗0+Ccurlh𝒗0.\displaystyle\leq 2\|\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0}\|+C\|\operatorname{curl}\bm{I}_{h}\bm{v}_{0}-\operatorname{curl}_{h}\bm{v}_{0}\|+C\|\operatorname{curl}_{h}\bm{v}_{0}\|.

Then (5.6) follows immediately from (5.4), (5.5), and the inverse inequality.  

Remark 5.1.

Different with the proof of [9, lemma 4.3], our method does not require the existence of bounded commuting projection operators.

We are now in a position to state the wellposedness of the numerical scheme. The finite element spaces 𝑽̊hr1(𝒯h)\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}) and S̊hr(𝒯h)\mathring{S}^{r}_{h}(\mathcal{T}_{h}) satisfy:

  • the inf-sup condition

    sup𝒘h𝑽̊hr1(𝒯h)b(𝒘h,sh)𝒘hgradcurl,h(gradsh,gradsh)gradshgradcurl,h=gradshCsh1,shS̊hr(𝒯h),\displaystyle\sup_{\bm{w}_{h}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})}\frac{b(\bm{w}_{h},s_{h})}{\|\bm{w}_{h}\|_{\operatorname{grad}\operatorname{curl},h}}\geq\frac{(\operatorname{grad}s_{h},\operatorname{grad}s_{h})}{\|\operatorname{grad}s_{h}\|_{\operatorname{grad}\operatorname{curl},h}}=\|\operatorname{grad}s_{h}\|\geq C\|s_{h}\|_{1},\quad\forall s_{h}\in\mathring{S}^{r}_{h}(\mathcal{T}_{h}), (5.8)
  • the coercivity condition

    𝒗hahc𝒗hgradcurl,h for 𝒗hXh,\displaystyle\|\bm{v}_{h}\|_{a_{h}}\geq c\|\bm{v}_{h}\|_{\operatorname{grad}\operatorname{curl},h}\text{ for }\bm{v}_{h}\in X_{h}, (5.9)

    which is directly obtained from (5.6).

Then the finite element scheme is well-posed.

Theorem 5.1.

Problem (5.2) has a unique solution (𝒖h;ph)(\bm{u}_{h};p_{h}) such that ph=0p_{h}=0 and

𝒖𝒖hgradcurl,h\displaystyle\|\bm{u}-\bm{u}_{h}\|_{\operatorname{grad}\operatorname{curl},h} C(inf𝒗h𝑽̊hr1(𝒯h)𝒖𝒗hgradcurl,h+sup𝒗0XhEh(𝒖,𝒗0)𝒗0ah),\displaystyle\leq C\Big{(}\inf_{\bm{v}_{h}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})}\|\bm{u}-\bm{v}_{h}\|_{\operatorname{grad}\operatorname{curl},h}+\sup_{\bm{v}_{0}\in X_{h}}\frac{E_{h}(\bm{u},\bm{v}_{0})}{\|\bm{v}_{0}\|_{a_{h}}}\Big{)}, (5.10)

where the consistency error

Eh(𝒖,𝒗0)=\displaystyle E_{h}(\bm{u},\bm{v}_{0})= fhϵ𝒏f(curl𝒖),[[curlh𝒗0]]f+fhαcurl𝒖,[[𝒗0×𝒏f]]f\displaystyle-\sum_{f\in\mathcal{F}_{h}}\epsilon\langle{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{0}]\!]\rangle_{f}+\sum_{f\in\mathcal{F}_{h}}\alpha\langle\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}
+fhϵΔcurl𝒖,[[𝒗0×𝒏f]]f.\displaystyle+\sum_{f\in\mathcal{F}_{h}}\epsilon\langle\Delta\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}.
Proof.

Define

Eh(𝒖,𝒗h):=ah(𝒖,𝒗h)+b(𝒗h,p)(𝒇,𝒗h).\displaystyle E_{h}(\bm{u},\bm{v}_{h}):=a_{h}(\bm{u},\bm{v}_{h})+b(\bm{v}_{h},p)-(\bm{f},\bm{v}_{h}). (5.11)

Then estimate (5.10) follows from [21, Theorem 3.3]. From integration by parts and the fact that p=0p=0, we get

Eh(𝒖,𝒗h)=ah(𝒖,𝒗h)(𝒇,𝒗h)\displaystyle E_{h}(\bm{u},\bm{v}_{h})=a_{h}(\bm{u},\bm{v}_{h})-(\bm{f},\bm{v}_{h})
=\displaystyle= K𝒯hϵ(gradcurl𝒖,gradcurl𝒗h)K+K𝒯hα(curl𝒖,curl𝒗h)K+K𝒯hβ(𝒖,𝒗h)K(𝒇,𝒗h)\displaystyle\sum_{K\in\mathcal{T}_{h}}\epsilon(\operatorname{grad}\operatorname{curl}\bm{u},\operatorname{grad}\operatorname{curl}\bm{v}_{h})_{K}+\sum_{K\in\mathcal{T}_{h}}\alpha(\operatorname{curl}\bm{u},\operatorname{curl}\bm{v}_{h})_{K}+\sum_{K\in\mathcal{T}_{h}}\beta(\bm{u},\bm{v}_{h})_{K}-(\bm{f},\bm{v}_{h})
=\displaystyle= ϵK𝒯h(Δcurl𝒖,curl𝒗h)K+K𝒯hα(curlcurl𝒖,𝒗h)K+K𝒯hβ(𝒖,𝒗h)K(𝒇,𝒗h)\displaystyle-\epsilon\sum_{K\in\mathcal{T}_{h}}(\Delta\operatorname{curl}\bm{u},\operatorname{curl}\bm{v}_{h})_{K}+\sum_{K\in\mathcal{T}_{h}}\alpha(\operatorname{curl}\operatorname{curl}\bm{u},\bm{v}_{h})_{K}+\sum_{K\in\mathcal{T}_{h}}\beta(\bm{u},\bm{v}_{h})_{K}-(\bm{f},\bm{v}_{h})
+fhϵ𝒏f(curl𝒖),[[curlh𝒗h]]f+fhαcurl𝒖,[[𝒗h×𝒏f]]f\displaystyle+\sum_{f\in\mathcal{F}_{h}}\epsilon\langle{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{h}]\!]\rangle_{f}+\sum_{f\in\mathcal{F}_{h}}\alpha\langle\operatorname{curl}\bm{u},[\![\bm{v}_{h}\times\bm{n}_{f}]\!]\rangle_{f}
=\displaystyle= fhϵ𝒏f(curl𝒖),[[curlh𝒗h]]f+fhαcurl𝒖,[[𝒗h×𝒏f]]f\displaystyle\sum_{f\in\mathcal{F}_{h}}\epsilon\langle{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{h}]\!]\rangle_{f}+\sum_{f\in\mathcal{F}_{h}}\alpha\langle\operatorname{curl}\bm{u},[\![\bm{v}_{h}\times\bm{n}_{f}]\!]\rangle_{f}
fhϵΔcurl𝒖,[[𝒗h×𝒏f]]f.\displaystyle-\sum_{f\in\mathcal{F}_{h}}\epsilon\langle\Delta\operatorname{curl}\bm{u},[\![\bm{v}_{h}\times\bm{n}_{f}]\!]\rangle_{f}.

 

To estimate the consistency error EhE_{h}, we need the following lemma, which is the key for the element working for problem (1.1) with small ϵ\epsilon.

Lemma 5.2.

For any 𝒗h𝑽hr1(𝒯h)\bm{v}_{h}\in{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}) and K𝒯hK\in\mathcal{T}_{h}, we have

K𝒒(𝒗h𝑰hr1𝒗h)×𝒏KdA=0, for 𝒒𝑷0(K),\displaystyle\int_{\partial K}\bm{q}\cdot(\bm{v}_{h}-\bm{I}_{h}^{r-1}\bm{v}_{h})\times\bm{n}_{\partial K}\text{d}A=0,\qquad\text{ for }\bm{q}\in\bm{P}_{0}(K), (5.12)

where 𝒏K\bm{n}_{\partial K} is the unit outward normal vector to K\partial K.

Proof.
Refer to caption
Figure 5.1. the element KK

We will prove the lemma only for 𝑽h0(𝒯h){\bm{V}}^{0}_{h}(\mathcal{T}_{h}), and the lemma for 𝑽h1(𝒯h){\bm{V}}^{1}_{h}(\mathcal{T}_{h}) can be obtained similarly. For an element K𝒯hK\in\mathcal{T}_{h}, we sort the edges and faces as in Figure 5.1. Then we can rewrite 𝒗h𝑽h0(𝒯h)\bm{v}_{h}\in{\bm{V}}^{0}_{h}(\mathcal{T}_{h}) and 𝑰h𝒗h𝑽h,c0(𝒯h)\bm{I}_{h}\bm{v}_{h}\in{\bm{V}}_{h,c}^{0}(\mathcal{T}_{h}) as follows,

𝒗h|K=i=112𝑵ieei𝒗h𝝉eids+i=16𝑵i,1fficurlh𝒗h𝝉fi1dA+i=16𝑵i,2fficurlh𝒗h𝝉fi2dA,\displaystyle\begin{split}\bm{v}_{h}|_{K}=&\sum_{i=1}^{12}\bm{N}_{i}^{e}\int_{e_{i}}\bm{v}_{h}\cdot\bm{\tau}_{e_{i}}\text{d}s+\sum_{i=1}^{6}\bm{N}_{i,1}^{f}\int_{f_{i}}\operatorname{curl}_{h}\bm{v}_{h}\cdot\bm{\tau}_{f_{i}}^{1}\text{d}A\\ &+\sum_{i=1}^{6}\bm{N}_{i,2}^{f}\int_{f_{i}}\operatorname{curl}_{h}\bm{v}_{h}\cdot\bm{\tau}_{f_{i}}^{2}\text{d}A,\end{split} (5.13)
𝑰h𝒗h|K=\displaystyle\bm{I}_{h}\bm{v}_{h}|_{K}= i=112𝑵c,ieei𝒗h𝝉eids,\displaystyle\sum_{i=1}^{12}\bm{N}_{c,i}^{e}\int_{e_{i}}\bm{v}_{h}\cdot\bm{\tau}_{e_{i}}\text{d}s, (5.14)

where 𝑵ie\bm{N}_{i}^{e}, 𝑵i,1f\bm{N}_{i,1}^{f} and 𝑵i,2f\bm{N}_{i,2}^{f} are the corresponding dual basis functions of 𝑽h0(𝒯h){\bm{V}}^{0}_{h}(\mathcal{T}_{h}) on eie_{i} and fif_{i}, and 𝑵c,ie\bm{N}_{c,i}^{e} is the dual basis function of 𝑽h,c0\bm{V}_{h,c}^{0} on eie_{i}.

Plugging (5.13) and (5.14) in K𝒒(𝒗h𝑰h𝒗h)×𝒏KdA\int_{\partial K}\bm{q}\cdot(\bm{v}_{h}-\bm{I}_{h}\bm{v}_{h})\times\bm{n}_{\partial K}\text{d}A, we have

K𝒒(𝒗h𝑰h𝒗h)×𝒏KdA\displaystyle\int_{\partial K}\bm{q}\cdot(\bm{v}_{h}-\bm{I}_{h}\bm{v}_{h})\times\bm{n}_{\partial K}\text{d}A =i=112aiei𝒗h𝝉eids+i=16j=12bi,jficurlh𝒗h𝝉fijdA,\displaystyle=\sum_{i=1}^{12}a_{i}\int_{e_{i}}\bm{v}_{h}\cdot\bm{\tau}_{e_{i}}\text{d}s+\sum_{i=1}^{6}\sum_{j=1}^{2}b_{i,j}\int_{f_{i}}\operatorname{curl}_{h}\bm{v}_{h}\cdot\bm{\tau}_{f_{i}}^{j}\text{d}A,

where ai=K𝒒((𝑵ie𝑵c,ie)×𝒏K)dAa_{i}=\int_{\partial K}\bm{q}\cdot\big{(}(\bm{N}_{i}^{e}-\bm{N}_{c,i}^{e})\times\bm{n}_{\partial K}\big{)}\text{d}A and bi,j=K𝒒(𝑵i,jf×𝒏K)dAb_{i,j}=\int_{\partial K}\bm{q}\cdot\big{(}\bm{N}_{i,j}^{f}\times\bm{n}_{\partial K}\big{)}\text{d}A.

We will show that ai=0a_{i}=0 for i=1,2,,12i=1,2,\cdots,12 and bi,j=0b_{i,j}=0 for i=1,2,,6i=1,2,\cdots,6 and j=1,2j=1,2. The functions 𝑵^ie=BKT𝑵ieFK\hat{\bm{N}}_{i}^{e}=B_{K}^{T}{\bm{N}}_{i}^{e}\circ F_{K}, 𝑵^c,ie=BKT𝑵c,ieFK\hat{\bm{N}}_{c,i}^{e}=B_{K}^{T}{\bm{N}}_{c,i}^{e}\circ F_{K}, and 𝑵^i,jf=BK𝝉fijBK𝒏fiBKT𝑵i,jfFK\hat{\bm{N}}_{i,j}^{f}=\frac{\|B_{K}\bm{\tau}_{f_{i}}^{j}\|}{\|B_{K}\bm{n}_{f_{i}}\|}B_{K}^{T}{\bm{N}}_{i,j}^{f}\circ F_{K} are the corresponding basis functions on the reference element K^\hat{K}. Here we present only 𝑵^6e\hat{\bm{N}}_{6}^{e}, 𝑵^c,6e\hat{\bm{N}}_{c,6}^{e} and 𝑵^2,jf\hat{\bm{N}}_{2,j}^{f}:

𝑵^6e=(3x2y/64+3y3/64y/163x/163xy2/64xz/83x3/64+3y2z/64+3z3/643z/16+1/8)y/163yz2/64(3y3)/64),\displaystyle\hat{\bm{N}}_{6}^{e}=\left(\begin{matrix}3x^{2}y/64+3y^{3}/64-y/16\\ 3x/16-3xy^{2}/64-xz/8-3x^{3}/64+3y^{2}z/64+3z^{3}/64-3z/16+1/8)\\ y/16-3yz^{2}/64-(3y^{3})/64\end{matrix}\right),
𝑵^2,1f=(3zx2/64+zx/24z/6403x/64x2/243x3/64+1/24),𝑵^2,2f=(y/64yx/243yx2/643x3/64+x2/243x/641/240),\displaystyle\hat{\bm{N}}_{2,1}^{f}=\left(\begin{matrix}3zx^{2}/64+zx/24-z/64\\ 0\\ 3x/64-x^{2}/24-3x^{3}/64+1/24\end{matrix}\right),\hat{\bm{N}}_{2,2}^{f}=\left(\begin{matrix}y/64-yx/24-3yx^{2}/64\\ 3x^{3}/64+x^{2}/24-3x/64-1/24\\ 0\end{matrix}\right),
𝑵^c,6e=(0(1z)(1+x)/80).\displaystyle\hat{\bm{N}}_{c,6}^{e}=\left(\begin{matrix}0\\ (1-z)(1+x)/8\\ 0\end{matrix}\right).

Then

ai\displaystyle a_{i} =K𝒒((𝑵ie𝑵c,ie)×𝒏K)dA=K^𝒒^((𝑵^ie𝑵^c,ie)×𝒏^K^)dA^,\displaystyle=\int_{\partial K}\bm{q}\cdot\big{(}(\bm{N}_{i}^{e}-\bm{N}_{c,i}^{e})\times\bm{n}_{\partial K}\big{)}\text{d}A=\int_{\partial{\hat{K}}}\hat{\bm{q}}\cdot\big{(}(\hat{\bm{N}}_{i}^{e}-\hat{\bm{N}}_{c,i}^{e})\times\hat{\bm{n}}_{\partial\hat{K}}\big{)}\text{d}\hat{A},

with 𝒒FK=BKT𝒒^{\bm{q}}\circ F_{K}=B_{K}^{-T}\hat{\bm{q}}. After a direct calculation, we derive ai=0a_{i}=0. Similarly,

bi,j=K𝒒(𝑵i,jf×𝒏K)dA=K^𝒒^(𝑵^i,jf×𝒏^K^)dA^=0\displaystyle b_{i,j}=\int_{\partial K}\bm{q}\cdot(\bm{N}_{i,j}^{f}\times\bm{n}_{\partial K})\text{d}A=\int_{\partial{\hat{K}}}\hat{\bm{q}}\cdot(\hat{\bm{N}}_{i,j}^{f}\times\hat{\bm{n}}_{\partial\hat{K}})\text{d}\hat{A}=0

with 𝒒FK=BK𝝉fijBK𝒏fiBKT𝒒^{\bm{q}}\circ F_{K}=\frac{\|B_{K}\bm{\tau}_{f_{i}}^{j}\|}{\|B_{K}\bm{n}_{f_{i}}\|}B_{K}^{-T}\hat{\bm{q}}.  

Applying Theorem 5.1 and Lemma 5.2, we can prove the convergence results for (5.2).

Theorem 5.2.

Let (𝒖;p)H0(gradcurl;Ω)×H01(Ω)(\bm{u};p)\in H_{0}(\operatorname{grad}\operatorname{curl};\Omega)\times H_{0}^{1}(\Omega) be the solution of the variational problem (5.1) and (𝒖h;ph)𝑽̊hr1(𝒯h)×S̊hr(𝒯h)(\bm{u}_{h};p_{h})\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})\times\mathring{S}^{r}_{h}(\mathcal{T}_{h}) be the solution of the discrete problem (5.2). Suppose that 𝒖𝑯r(Ω)\bm{u}\in\bm{H}^{r}(\Omega) and curl𝒖𝑯2(Ω)\operatorname{curl}\bm{u}\in\bm{H}^{2}(\Omega), then there holds p=ph=0p=p_{h}=0 and

𝒖𝒖hgradcurl,hCh(hr1|𝒖|r+α1/2|curl𝒖|1+α1/2𝒇+βα1/2𝒖+(ϵ1/2+h)|curl𝒖|2).\|\bm{u}-\bm{u}_{h}\|_{\operatorname{grad}\operatorname{curl},h}\leq Ch\big{(}h^{r-1}|\bm{u}|_{r}+\alpha^{1/2}|\operatorname{curl}\bm{u}|_{1}+\alpha^{-1/2}\|\bm{f}\|+\beta\alpha^{-1/2}\|\bm{u}\|+(\epsilon^{1/2}+h)|\operatorname{curl}\bm{u}|_{2}\big{)}. (5.15)
Proof.

We use the right-hand side of (5.10) to estimate (5.15). Due to 𝑹hr1𝒖𝑽̊hr1(𝒯h)\bm{R}^{r-1}_{h}\bm{u}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h}) and the error estimates of the interpolation 𝑹hr1𝒖\bm{R}^{r-1}_{h}\bm{u} (3.14)–(3.15), we have

inf𝒗h𝑽̊hr1(𝒯h)𝒖𝒗hgradcurl,h𝒖𝑹hr1𝒖gradcurl,h\displaystyle\inf_{\bm{v}_{h}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})}\|\bm{u}-\bm{v}_{h}\|_{\operatorname{grad}\operatorname{curl},h}\leq\|\bm{u}-\bm{R}_{h}^{r-1}\bm{u}\|_{\operatorname{grad}\operatorname{curl},h}
\displaystyle\leq Ch(hr1|𝒖|r+h|curl𝒖|2+ϵ1/2|curl𝒖|2).\displaystyle Ch(h^{r-1}|\bm{u}|_{r}+h|\operatorname{curl}\bm{u}|_{2}+\epsilon^{1/2}|\operatorname{curl}\bm{u}|_{2}). (5.16)

To estimate the consistency error term Eh(𝒖,𝒗0)E_{h}(\bm{u},\bm{v}_{0}), we estimate each term in Eh(𝒖,𝒗0)E_{h}(\bm{u},\bm{v}_{0}). Firstly,

|fhϵ𝒏f(curl𝒖),[[curlh𝒗0]]f|\displaystyle\bigg{|}\sum_{f\in\mathcal{F}_{h}}\epsilon\langle{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{0}]\!]\rangle_{f}\bigg{|}
=\displaystyle= |fhϵ𝒏f(curl𝒖),[[curlh𝒗0]]ffhϵ𝒫f𝒏f(curl𝒖),[[curlh𝒗0]]f|\displaystyle\bigg{|}\sum_{f\in\mathcal{F}_{h}}\epsilon\langle{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{0}]\!]\rangle_{f}-\sum_{f\in\mathcal{F}_{h}}\epsilon\langle\mathcal{P}_{f}{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{0}]\!]\rangle_{f}\bigg{|}
=\displaystyle= ϵ|K𝒯hfKf(𝒏K(curl𝒖)𝒫f𝒏K(curl𝒖))curl𝒗0dA|\displaystyle\epsilon\bigg{|}\sum_{K\in\mathcal{T}_{h}}\sum_{f\subset\partial K}\int_{f}\left({\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u})}-\mathcal{P}_{f}{\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u})}\right)\cdot\operatorname{curl}\bm{v}_{0}\text{d}A\bigg{|}
=\displaystyle= ϵ|K𝒯hfKf(𝒏K(curl𝒖)𝒫f𝒏K(curl𝒖))(curl𝒗0𝒫fcurl𝒗0)dA|\displaystyle\epsilon\bigg{|}\sum_{K\in\mathcal{T}_{h}}\sum_{f\subset\partial K}\int_{f}\left({\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u})}-\mathcal{P}_{f}{\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u})}\right)\cdot\left(\operatorname{curl}\bm{v}_{0}-\mathcal{P}_{f}\operatorname{curl}\bm{v}_{0}\right)\text{d}A\bigg{|}
\displaystyle\leq Cϵh|curl𝒖|2|curlh𝒗0|1,hCϵ1/2h|curl𝒖|2𝒗0ah.\displaystyle C\epsilon h|\operatorname{curl}\bm{u}|_{2}|\operatorname{curl}_{h}\bm{v}_{0}|_{1,h}\leq C\epsilon^{1/2}h|\operatorname{curl}\bm{u}|_{2}\|\bm{v}_{0}\|_{a_{h}}. (5.17)

Here and hereafter 𝒏K\bm{n}_{\partial K} is unit outward normal vector to K\partial K and 𝒫f\mathcal{P}_{f} is the L2L^{2} projection to P0(f)P_{0}(f). The projection 𝒫f\mathcal{P}_{f} satisfies

w𝒫fwfw𝒫KwfCh1/2(w𝒫KwK+h|w𝒫Kw|1,K)Ch1/2|w|1,K.\displaystyle\|w-\mathcal{P}_{f}w\|_{f}\leq\|w-\mathcal{P}_{K}w\|_{f}\leq Ch^{-1/2}\Big{(}\|w-\mathcal{P}_{K}w\|_{K}+h|w-\mathcal{P}_{K}w|_{1,K}\Big{)}\leq Ch^{1/2}|w|_{1,K}. (5.18)

To estimate the second term of the consistency error, we apply Lemma 5.2 to get

|fhαcurl𝒖,[[𝒗0×𝒏f]]f|=α|fhcurl𝒖,[[(𝒗0𝑰hr1𝒗0)×𝒏f]]f|\displaystyle\bigg{|}\sum_{f\in\mathcal{F}_{h}}\langle\alpha\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}\bigg{|}=\alpha\bigg{|}\sum_{f\in\mathcal{F}_{h}}\langle\operatorname{curl}\bm{u},[\![(\bm{v}_{0}-\bm{I}_{h}^{r-1}\bm{v}_{0})\times\bm{n}_{f}]\!]\rangle_{f}\bigg{|}
=\displaystyle= α|K𝒯hK(curl𝒖𝒫Kcurl𝒖)((𝒗0𝑰hr1𝒗0)×𝒏K)dA|\displaystyle\alpha\bigg{|}\sum_{K\in\mathcal{T}_{h}}\int_{\partial K}(\operatorname{curl}\bm{u}-\mathcal{P}_{K}\operatorname{curl}\bm{u})\cdot((\bm{v}_{0}-\bm{I}_{h}^{r-1}\bm{v}_{0})\times\bm{n}_{\partial K})\text{d}A\bigg{|}
=\displaystyle= αK𝒯h|K(curl𝒖𝒫Kcurl𝒖)curl(𝒗0𝑰hr1𝒗0)dV|\displaystyle\alpha\sum_{K\in\mathcal{T}_{h}}\bigg{|}\int_{K}(\operatorname{curl}\bm{u}-\mathcal{P}_{K}\operatorname{curl}\bm{u})\cdot\operatorname{curl}(\bm{v}_{0}-\bm{I}_{h}^{r-1}\bm{v}_{0})\text{d}V\bigg{|}
+αK𝒯h|Kcurl(curl𝒖𝒫Kcurl𝒖)(𝒗0𝑰hr1𝒗0)dV|\displaystyle+\alpha\sum_{K\in\mathcal{T}_{h}}\bigg{|}\int_{K}\operatorname{curl}(\operatorname{curl}\bm{u}-\mathcal{P}_{K}\operatorname{curl}\bm{u})\cdot(\bm{v}_{0}-\bm{I}_{h}^{r-1}\bm{v}_{0})\text{d}V\bigg{|}
\displaystyle\leq Cαh|curl𝒖|1curlh𝒗0Cα1/2h|curl𝒖|1𝒗0ah,\displaystyle C\alpha h|\operatorname{curl}\bm{u}|_{1}\|\operatorname{curl}_{h}\bm{v}_{0}\|\leq C\alpha^{1/2}h|\operatorname{curl}\bm{u}|_{1}\|\bm{v}_{0}\|_{a_{h}}, (5.19)

To estimate the last term of the consistency error, we follow an analogous idea in [9] and have

|fhϵΔcurl𝒖,[[𝒗0×𝒏f]]f|=|fhϵΔcurl𝒖,[[(𝒗0𝑰h𝒗0)×𝒏f]]f|\displaystyle\bigg{|}\sum_{f\in\mathcal{F}_{h}}\langle\epsilon\Delta\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}\bigg{|}=\bigg{|}\sum_{f\in\mathcal{F}_{h}}\langle\epsilon\Delta\operatorname{curl}\bm{u},[\![(\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0})\times\bm{n}_{f}]\!]\rangle_{f}\bigg{|}
=\displaystyle= |K𝒯hϵΔcurl𝒖,(𝒗0𝑰h𝒗0)×𝒏KK|\displaystyle\bigg{|}\sum_{K\in\mathcal{T}_{h}}\langle\epsilon\Delta\operatorname{curl}\bm{u},(\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0})\times\bm{n}_{\partial K}\rangle_{\partial K}\bigg{|}
\displaystyle\leq K𝒯h|(ϵcurlΔcurl𝒖,(𝒗0𝑰h𝒗0))K(ϵΔcurl𝒖,curl(𝒗0𝑰h𝒗0))K|\displaystyle\sum_{K\in\mathcal{T}_{h}}\big{|}\left(\epsilon\operatorname{curl}\Delta\operatorname{curl}\bm{u},(\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0})\right)_{K}-\left(\epsilon\Delta\operatorname{curl}\bm{u},\operatorname{curl}(\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0})\right)_{K}\big{|}
=(1.1)\displaystyle\overset{\eqref{OriginProblem}}{=} K𝒯h|(αcurlcurl𝒖+β𝒖𝒇,𝒗0𝑰K𝒗0)K(ϵΔcurl𝒖,curl(𝒗0𝑰K𝒗0))K|\displaystyle\sum_{K\in\mathcal{T}_{h}}\big{|}\left(\alpha\operatorname{curl}\operatorname{curl}\bm{u}+\beta\bm{u}-\bm{f},\bm{v}_{0}-\bm{I}_{K}\bm{v}_{0}\right)_{K}-\left(\epsilon\Delta\operatorname{curl}\bm{u},\operatorname{curl}(\bm{v}_{0}-\bm{I}_{K}\bm{v}_{0})\right)_{K}\big{|}
\displaystyle\leq αh|curl𝒖|1curlh𝒗0+βh𝒖curlh𝒗0+Ch𝒇curlh𝒗0+Chϵ|curl𝒖|2|curlh𝒗0|1,h\displaystyle\alpha h|\operatorname{curl}\bm{u}|_{1}\|\operatorname{curl}_{h}\bm{v}_{0}\|+\beta h\|\bm{u}\|\|\operatorname{curl}_{h}\bm{v}_{0}\|+Ch\|\bm{f}\|\|\operatorname{curl}_{h}\bm{v}_{0}\|+Ch\epsilon|\operatorname{curl}\bm{u}|_{2}|\operatorname{curl}_{h}\bm{v}_{0}|_{1,h}
\displaystyle\leq Ch(α1/2𝒇+α1/2|curl𝒖|1+βα1/2𝒖+ϵ1/2|curl𝒖|2)𝒗0ah.\displaystyle Ch\left(\alpha^{-1/2}\|\bm{f}\|+\alpha^{1/2}|\operatorname{curl}\bm{u}|_{1}+{\beta}{\alpha^{-1/2}}\|\bm{u}\|+\epsilon^{1/2}|\operatorname{curl}\bm{u}|_{2}\right)\|\bm{v}_{0}\|_{a_{h}}. (5.20)

where we have used (5.4) and (5.5).

Now we can obtain (5.15) by combining (5), (5), (5), and (5).  

6. Uniform Error Estimates

In Theorem 5.2, we assume |curl𝒖|2|\operatorname{curl}\bm{u}|_{2} are bounded. However, we can not expect that the bound of |curl𝒖|2|\operatorname{curl}\bm{u}|_{2} is independent of ϵ\epsilon. To reveal this, we consider the following second-order problem:

curl2𝒖~+𝒖~=𝒇inΩ,div𝒖~=0inΩ,𝒖~×𝒏=0onΩ.\displaystyle\begin{split}\operatorname{curl}^{2}\widetilde{\bm{u}}+\widetilde{\bm{u}}&=\bm{f}\quad\text{in}\ \Omega,\\ \operatorname{div}\widetilde{\bm{u}}&=0\quad\text{in}\ \Omega,\\ \widetilde{\bm{u}}\times\bm{n}&=0\quad\text{on}\ \partial\Omega.\end{split} (6.1)

We assume 𝒖~\widetilde{\bm{u}} satisfies the following regularity estimate

𝒖~1+curl𝒖~1C𝒇.\displaystyle\|\widetilde{\bm{u}}\|_{1}+\|\operatorname{curl}\widetilde{\bm{u}}\|_{1}\leq C\|\bm{f}\|. (6.2)

Without loss of generality, we assume α=β=1\alpha=\beta=1 in this section. Let 𝒖\bm{u} be the solution of problem (1.1). According to the proof of [10, Lemma 3.1 – 3.2], we can prove

𝒖+curl𝒖+ϵ1/2|curl𝒖|1C𝒇,\displaystyle\|\bm{u}\|+\|\operatorname{curl}\bm{u}\|+\epsilon^{1/2}|\operatorname{curl}\bm{u}|_{1}\leq C\|\bm{f}\|, (6.3)
ϵ|curl𝒖|2+ϵ1/2|curl𝒖|1+𝒖𝒖~1Cϵ1/4𝒇.\displaystyle\epsilon|\operatorname{curl}\bm{u}|_{2}+\epsilon^{1/2}|\operatorname{curl}\bm{u}|_{1}+\|\bm{u}-\widetilde{\bm{u}}\|_{1}\leq C\epsilon^{1/4}\|\bm{f}\|. (6.4)

From (6.4), we can see the bound of |curl𝒖|2|\operatorname{curl}\bm{u}|_{2} will blow up as ϵ\epsilon approaches 0, in which case the estimate 5.2 would fail. In this section, we will provide a uniform error estimate with respect to ϵ\epsilon.

Subtracting (6.1) from (1.1) leads to

ϵcurlΔcurl𝒖+curlcurl(𝒖𝒖~)+𝒖𝒖~=0.-\epsilon\operatorname{curl}\Delta\operatorname{curl}\bm{u}+\operatorname{curl}\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})+\bm{u}-\widetilde{\bm{u}}=0.

For 𝒗H0(curl;Ω)\bm{v}\in H_{0}(\operatorname{curl};\Omega), by using integration by parts, we can get

(𝒖~𝒖,𝒗)=ϵ(curlΔcurl𝒖,𝒗)+(curlcurl(𝒖𝒖~),𝒗)\displaystyle(\widetilde{\bm{u}}-\bm{u},\bm{v})=-\epsilon(\operatorname{curl}\Delta\operatorname{curl}\bm{u},\bm{v})+(\operatorname{curl}\operatorname{curl}(\bm{u}-\widetilde{\bm{u}}),\bm{v})
=ϵ(Δcurl𝒖,curl𝒗)+(curl(𝒖𝒖~),curl𝒗).\displaystyle=-\epsilon(\Delta\operatorname{curl}\bm{u},\operatorname{curl}\bm{v})+(\operatorname{curl}(\bm{u}-\widetilde{\bm{u}}),\operatorname{curl}\bm{v}). (6.5)

Before we present the uniform error estimate, we first prove some new approximation properties of 𝑹hr1\bm{R}_{h}^{r-1}, which is based on the following boundedness of the interpolation operators 𝑹K^r1\bm{R}^{r-1}_{\hat{K}} and 𝚷K^\bm{\Pi}_{\hat{K}}:

𝑹K^r1𝒗^K^𝒗^1,K^+curl𝒗^K^𝒗^1,K^+curl𝒗^K^1/2curl𝒗^1,K^1/2,\displaystyle\|\bm{R}_{\hat{K}}^{r-1}\hat{\bm{v}}\|_{\hat{K}}\leq\|\hat{\bm{v}}\|_{1,\hat{K}}+\|\operatorname{curl}\hat{\bm{v}}\|_{\partial\hat{K}}\leq\|\hat{\bm{v}}\|_{1,\hat{K}}+\|\operatorname{curl}\hat{\bm{v}}\|_{\hat{K}}^{1/2}\|\operatorname{curl}\hat{\bm{v}}\|_{1,\hat{K}}^{1/2}, (6.6)
𝚷K^𝒗^K^C𝒗^K^C𝒗^K^1/2𝒗^1,K^1/2.\displaystyle\|{\bm{\Pi}}_{\hat{K}}\hat{\bm{v}}\|_{\hat{K}}\leq C\|\hat{\bm{v}}\|_{\partial\hat{K}}\leq C\|\hat{\bm{v}}\|_{\hat{K}}^{1/2}\|\hat{\bm{v}}\|_{1,\hat{K}}^{1/2}. (6.7)

Here we have used the trace inequality [2, Theorem 1.6.6]

u^K^u^K^1/2u^1,K^1/2,\displaystyle\|\hat{u}\|_{\partial\hat{K}}\leq\|\hat{u}\|^{1/2}_{\hat{K}}\|\hat{u}\|_{1,\hat{K}}^{1/2}, (6.8)

and the first inequality of (6.6) is a direct result of the proof of Lemma 3.1.

Lemma 6.1.

If 𝒖𝑯1(K)\bm{u}\in\bm{H}^{1}(K), curl𝒖𝑯2(K)\operatorname{curl}\bm{u}\in\bm{H}^{2}(K), there hold the following error estimates

𝒖𝑹Kr1𝒖K\displaystyle\|\bm{u}-\bm{R}^{r-1}_{K}\bm{u}\|_{K} Ch(𝒖1,K+curl𝒖K1/2curl𝒖1,K1/2),\displaystyle\leq Ch(\|\bm{u}\|_{1,K}+\|\operatorname{curl}\bm{u}\|^{1/2}_{K}\|\operatorname{curl}\bm{u}\|_{1,K}^{1/2}), (6.9)
curl(𝒖𝑹Kr1𝒖)j,K\displaystyle\|\operatorname{curl}(\bm{u}-\bm{R}^{r-1}_{K}\bm{u})\|_{j,K} Ch1/2curl𝒖j,K1/2|curl𝒖|j+1,K1/2,j=0,1.\displaystyle\leq Ch^{1/2}\|\operatorname{curl}\bm{u}\|_{j,K}^{1/2}|\operatorname{curl}\bm{u}|_{j+1,K}^{1/2},\ j=0,1. (6.10)
Proof.

Again, we follow the proof of [12, Theorem 5.41] and use the transformation (3.12) to have

𝒖𝑹Kr1𝒖K2\displaystyle\|\bm{u}-\bm{R}_{K}^{r-1}\bm{u}\|_{K}^{2} hinf𝒑^𝑷0(K^)K^((𝒖^+𝒑^)𝑹K^r1(𝒖^+𝒑^))2dV^.\displaystyle\leq h\inf_{\hat{\bm{p}}\in\bm{P}_{0}(\hat{K})}\int_{\hat{K}}\left((\hat{\bm{u}}+\hat{\bm{p}})-\bm{R}_{\hat{K}}^{r-1}(\hat{\bm{u}}+\hat{\bm{p}})\right)^{2}\text{d}\hat{V}.

We then apply (6.6) and [12, Theorem 5.5] to derive

𝒖𝑹Kr1𝒖K2\displaystyle\|\bm{u}-\bm{R}_{K}^{r-1}\bm{u}\|_{K}^{2} hinf𝒑^𝑷0(K^)(𝒖^+𝒑^1,K^2+curl^(𝒖^+𝒑^)K^curl^(𝒖^+𝒑^)1,K^)\displaystyle\leq h\inf_{\hat{\bm{p}}\in\bm{P}_{0}(\hat{K})}\left(\|\hat{\bm{u}}+\hat{\bm{p}}\|_{1,\hat{K}}^{2}+\|\widehat{\operatorname{curl}}(\hat{\bm{u}}+\hat{\bm{p}})\|_{\hat{K}}\|\widehat{\operatorname{curl}}(\hat{\bm{u}}+\hat{\bm{p}})\|_{1,\hat{K}}\right)
=h(inf𝒑^𝑷0(K^)𝒖^+𝒑^1,K^2+curl^𝒖^K^curl^𝒖^1,K^)\displaystyle=h\left(\inf_{\hat{\bm{p}}\in\bm{P}_{0}(\hat{K})}\|\hat{\bm{u}}+\hat{\bm{p}}\|_{1,\hat{K}}^{2}+\|\widehat{\operatorname{curl}}\hat{\bm{u}}\|_{\hat{K}}\|\widehat{\operatorname{curl}}\hat{\bm{u}}\|_{1,\hat{K}}\right)
h(|𝒖^|1,K^2+curl^𝒖^K^curl^𝒖^1,K^)\displaystyle\leq h\left(|\hat{\bm{u}}|_{1,\hat{K}}^{2}+\|\widehat{\operatorname{curl}}\hat{\bm{u}}\|_{\hat{K}}\|\widehat{\operatorname{curl}}\hat{\bm{u}}\|_{1,\hat{K}}\right)
h2(|𝒖|1,K2+curl𝒖Kcurl𝒖1,K).\displaystyle\leq h^{2}\left(|{\bm{u}}|_{1,K}^{2}+\|\operatorname{curl}{\bm{u}}\|_{K}\|\operatorname{curl}{\bm{u}}\|_{1,K}\right).

Similarly, we can prove (6.10) by (6.7) for j=0,1j=0,1.

 

Lemma 6.2.

Given K𝒯hK\in\mathcal{T}_{h}, let fh(K)f\in\mathcal{F}_{h}(K). The L2L^{2} projection 𝒫f\mathcal{P}_{f} has the following estimate:

w𝒫fwfCwK1/2w1,K1/2,wH1(K).\|w-\mathcal{P}_{f}w\|_{f}\leq C\|w\|_{K}^{1/2}\|w\|_{1,K}^{1/2},\quad w\in H^{1}(K).
Proof.

For wH1(K)w\in H_{1}(K), we define w^=wFK\hat{w}=w\circ F_{K}. By scaling argument, (6.8), and [12, Theorem 5.5], we have

w𝒫fwf2h2w^𝒫f^w^f^2Ch2w^𝒫K^w^f^2=Ch2infq^P0(K^)(I𝒫K^)(w^+q^)f^2\displaystyle\|w-\mathcal{P}_{f}w\|^{2}_{f}\leq h^{2}\|\hat{w}-\mathcal{P}_{\hat{f}}\hat{w}\|^{2}_{\hat{f}}\leq Ch^{2}\|\hat{w}-\mathcal{P}_{\hat{K}}\hat{w}\|^{2}_{\hat{f}}=Ch^{2}\inf_{\hat{q}\in P_{0}(\hat{K})}\|(I-\mathcal{P}_{\hat{K}})(\hat{w}+\hat{q})\|^{2}_{\hat{f}}
\displaystyle\leq Ch2infq^P0(K^)(w^+q^f^2+w^+q^K^2)Ch2infq^P0(K^)w^+q^K^w^+q^1,K^\displaystyle Ch^{2}\inf_{\hat{q}\in P_{0}(\hat{K})}(\|\hat{w}+\hat{q}\|_{\hat{f}}^{2}+\|\hat{w}+\hat{q}\|_{\hat{K}}^{2})\leq Ch^{2}\inf_{\hat{q}\in P_{0}(\hat{K})}\|\hat{w}+\hat{q}\|_{\hat{K}}\|\hat{w}+\hat{q}\|_{1,\hat{K}}
\displaystyle\leq Ch2infq^P0(K^)w^+q^K^infq^P0(K^)w^+q^1,K^Ch2w^K^|w^|1,K^CwK|w|1,K.\displaystyle Ch^{2}\inf_{\hat{q}\in P_{0}(\hat{K})}\|\hat{w}+\hat{q}\|_{\hat{K}}\inf_{\hat{q}\in P_{0}(\hat{K})}\|\hat{w}+\hat{q}\|_{1,\hat{K}}\leq Ch^{2}\|\hat{w}\|_{\hat{K}}|\hat{w}|_{1,\hat{K}}\leq C\|w\|_{K}|w|_{1,K}.

 

Theorem 6.1.

Let (𝒖;p)H0(gradcurl;Ω)×H01(Ω)(\bm{u};p)\in H_{0}(\operatorname{grad}\operatorname{curl};\Omega)\times H_{0}^{1}(\Omega) be the solution of the variational problem (5.1) and (𝒖h;ph)𝑽̊hr1(𝒯h)×S̊hr(𝒯h)(\bm{u}_{h};p_{h})\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})\times\mathring{S}^{r}_{h}(\mathcal{T}_{h}) be the solution of the discrete problem (5.2). Suppose 𝒇𝑳2(Ω)\bm{f}\in\bm{L}^{2}(\Omega), then under assumption (6.2), there holds p=ph=0p=p_{h}=0 and

𝒖𝒖hgradcurl,hCh1/2𝒇.\|\bm{u}-\bm{u}_{h}\|_{\operatorname{grad}\operatorname{curl},h}\leq Ch^{1/2}\|\bm{f}\|. (6.11)
Proof.

We use (5.10) to estimate (6.11). By (6.9)–(6.10), (3.15), and (6.2)–(6.4), we have

inf𝒗h𝑽̊hr1(𝒯h)𝒖𝒗hgradcurl,h𝒖𝑹hr1𝒖gradcurl,h\displaystyle\inf_{\bm{v}_{h}\in\mathring{\bm{V}}^{r-1}_{h}(\mathcal{T}_{h})}\|\bm{u}-\bm{v}_{h}\|_{\operatorname{grad}\operatorname{curl},h}\leq\|\bm{u}-\bm{R}_{h}^{r-1}\bm{u}\|_{\operatorname{grad}\operatorname{curl},h}
\displaystyle\leq ϵ1/2gradcurl(𝒖𝑹hr1𝒖)+curl((𝒖𝒖~)𝑹hr1(𝒖𝒖~))\displaystyle\epsilon^{1/2}\|\operatorname{grad}\operatorname{curl}(\bm{u}-\bm{R}_{h}^{r-1}\bm{u})\|+\big{\|}\operatorname{curl}\big{(}(\bm{u}-\widetilde{\bm{u}})-\bm{R}_{h}^{r-1}(\bm{u}-\widetilde{\bm{u}})\big{)}\big{\|}
+curl(𝒖~𝑹hr1𝒖~)+(𝒖𝒖~)𝑹hr1(𝒖𝒖~)+𝒖~𝑹hr1𝒖~\displaystyle+\|\operatorname{curl}(\widetilde{\bm{u}}-\bm{R}_{h}^{r-1}\widetilde{\bm{u}})\|+\|(\bm{u}-\widetilde{\bm{u}})-\bm{R}_{h}^{r-1}(\bm{u}-\widetilde{\bm{u}})\|+\|\widetilde{\bm{u}}-\bm{R}_{h}^{r-1}\widetilde{\bm{u}}\|
\displaystyle\leq Ch1/2(ϵ1/2|curl𝒖|21/2curl𝒖11/2+|curl(𝒖𝒖~)|11/2curl(𝒖𝒖~)1/2\displaystyle Ch^{1/2}\Big{(}\epsilon^{1/2}|\operatorname{curl}\bm{u}|_{2}^{1/2}\|\operatorname{curl}\bm{u}\|_{1}^{1/2}+|\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})|_{1}^{1/2}\|\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})\|^{1/2}
+h1/2(curl𝒖~1+𝒖𝒖~1+curl(𝒖𝒖~)1/2curl(𝒖𝒖~)11/2\displaystyle+h^{1/2}\big{(}\|\operatorname{curl}\widetilde{\bm{u}}\|_{1}+\|\bm{u}-\widetilde{\bm{u}}\|_{1}+\|\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})\|^{1/2}\|\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})\|_{1}^{1/2}
+𝒖~1+curl𝒖~1/2curl𝒖~11/2))\displaystyle+\|\widetilde{\bm{u}}\|_{1}+\|\operatorname{curl}\widetilde{\bm{u}}\|^{1/2}\|\operatorname{curl}\widetilde{\bm{u}}\|_{1}^{1/2}\big{)}\Big{)}
\displaystyle\leq Ch1/2(ϵ1/2|curl𝒖|21/2curl𝒖11/2+curl(𝒖𝒖~)11/2𝒖𝒖~11/2+𝒇)\displaystyle Ch^{1/2}\big{(}\epsilon^{1/2}|\operatorname{curl}\bm{u}|_{2}^{1/2}\|\operatorname{curl}\bm{u}\|_{1}^{1/2}+\|\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})\|_{1}^{1/2}\|\bm{u}-\widetilde{\bm{u}}\|_{1}^{1/2}+\|\bm{f}\|\big{)}
\displaystyle\leq Ch1/2(ϵ1/8|curl𝒖|11/2𝒇1/2+𝒇)Ch1/2𝒇.\displaystyle Ch^{1/2}\big{(}\epsilon^{1/8}|\operatorname{curl}\bm{u}|_{1}^{1/2}\|\bm{f}\|^{1/2}+\|\bm{f}\|\big{)}\leq Ch^{1/2}\|\bm{f}\|. (6.12)

Now we estimate the consistency error term by term. We proceed as in (5) to estimate the first term. Applying (5.18) to curlh𝒗0\operatorname{curl}_{h}\bm{v}_{0} and Lemma 6 to 𝒏K(curl𝒖)\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u}), respectively, it holds that

|fhϵ𝒏f(curl𝒖),[[curlh𝒗0]]f|\displaystyle\left|\sum_{f\in\mathcal{F}_{h}}\langle\epsilon{\partial_{\bm{n}_{f}}(\operatorname{curl}\bm{u})},[\![\operatorname{curl}_{h}\bm{v}_{0}]\!]\rangle_{f}\right|
=\displaystyle= ϵ|K𝒯hfKf(𝒏K(curl𝒖)𝒫f𝒏K(curl𝒖))(curlh𝒗0𝒫fcurl𝒗0)dA|\displaystyle\epsilon\bigg{|}\sum_{K\in\mathcal{T}_{h}}\sum_{f\subset{\partial K}}\int_{f}\left({\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u})}-\mathcal{P}_{f}{\partial_{\bm{n}_{\partial K}}(\operatorname{curl}\bm{u})}\right)\cdot\left(\operatorname{curl}_{h}\bm{v}_{0}-\mathcal{P}_{f}\operatorname{curl}\bm{v}_{0}\right)\text{d}A\bigg{|}
\displaystyle\leq Cϵh1/2|curl𝒖|11/2|curl𝒖|21/2|curlh𝒗0|1,h\displaystyle C\epsilon h^{1/2}|\operatorname{curl}\bm{u}|_{1}^{1/2}|\operatorname{curl}\bm{u}|_{2}^{1/2}|\operatorname{curl}_{h}\bm{v}_{0}|_{1,h}
\displaystyle\leq Cϵ1/2h1/2|curl𝒖|11/2|curl𝒖|21/2𝒗0ah\displaystyle C\epsilon^{1/2}h^{1/2}|\operatorname{curl}\bm{u}|_{1}^{1/2}|\operatorname{curl}\bm{u}|_{2}^{1/2}\|\bm{v}_{0}\|_{a_{h}}
\displaystyle\leq Ch1/2𝒇𝒗0ah.\displaystyle Ch^{1/2}\|\bm{f}\|\|\bm{v}_{0}\|_{a_{h}}. (6.13)

For the last two terms of the consistency error, we have

fhcurl𝒖,[[𝒗0×𝒏f]]ffhϵΔcurl𝒖,[[𝒗0×𝒏f]]f\displaystyle\sum_{f\in\mathcal{F}_{h}}\langle\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}-\sum_{f\in\mathcal{F}_{h}}\epsilon\langle\Delta\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}
=\displaystyle= fh(curl𝒖curl𝒖~,[[𝒗0×𝒏f]]f+curl𝒖~,[[𝒗0×𝒏f]]fϵΔcurl𝒖,[[𝒗0×𝒏f]]f)\displaystyle\sum_{f\in\mathcal{F}_{h}}\big{(}\langle\operatorname{curl}\bm{u}-\operatorname{curl}\widetilde{\bm{u}},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}+\langle\operatorname{curl}\widetilde{\bm{u}},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}-\epsilon\langle\Delta\operatorname{curl}\bm{u},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}\big{)}
=\displaystyle= (curlcurl(𝒖𝒖~),𝒗0)(curl(𝒖𝒖~),curlh𝒗0)+curl𝒖~,[[𝒗0×𝒏f]]f\displaystyle(\operatorname{curl}\operatorname{curl}(\bm{u}-\widetilde{\bm{u}}),\bm{v}_{0})-(\operatorname{curl}(\bm{u}-\widetilde{\bm{u}}),\operatorname{curl}_{h}\bm{v}_{0})+\langle\operatorname{curl}\widetilde{\bm{u}},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}
ϵ(curlΔcurl𝒖,𝒗0)+ϵ(Δcurl𝒖,curlh𝒗0)(integration by parts)\displaystyle-\epsilon(\operatorname{curl}\Delta\operatorname{curl}\bm{u},\bm{v}_{0})+\epsilon(\Delta\operatorname{curl}\bm{u},\operatorname{curl}_{h}\bm{v}_{0})\qquad\text{(integration by parts)}
=(6)\displaystyle\overset{\eqref{ax-1}}{=} ϵ(Δcurl𝒖,curlh(𝒗0𝑰h𝒗0))(curl(𝒖𝒖~),curlh(𝒗0𝑰h𝒗0))\displaystyle\epsilon(\Delta\operatorname{curl}\bm{u},\operatorname{curl}_{h}(\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0}))-(\operatorname{curl}(\bm{u}-\widetilde{\bm{u}}),\operatorname{curl}_{h}(\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0}))
(𝒖𝒖~,𝒗0𝑰h𝒗0)+curl𝒖~,[[𝒗0×𝒏f]]f\displaystyle-(\bm{u}-\widetilde{\bm{u}},\bm{v}_{0}-\bm{I}_{h}\bm{v}_{0})+\langle\operatorname{curl}\widetilde{\bm{u}},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}
\displaystyle\leq Ch1/2|curlh𝒗0|11/2curlh𝒗01/2(ϵ|curl𝒖|2+curl(𝒖𝒖~))\displaystyle Ch^{1/2}|\operatorname{curl}_{h}\bm{v}_{0}|_{1}^{1/2}\|\operatorname{curl}_{h}\bm{v}_{0}\|^{1/2}\big{(}\epsilon|\operatorname{curl}\bm{u}|_{2}+\|\operatorname{curl}(\bm{u}-\widetilde{\bm{u}})\|\big{)}
+Ch𝒖𝒖~curlh𝒗0+curl𝒖~,[[𝒗0×𝒏f]]f((5.4) and (5.5))\displaystyle+Ch\|\bm{u}-\widetilde{\bm{u}}\|\|\operatorname{curl}_{h}\bm{v}_{0}\|+\langle\operatorname{curl}\widetilde{\bm{u}},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}\quad\big{(}\eqref{curlestimate}\text{ and }\eqref{L2estimate}\big{)}
(6.4)\displaystyle\overset{\eqref{regularity-2}}{\leq} Ch1/2ϵ1/4𝒇|curlh𝒗0|1,h1/2curlh𝒗01/2+Chϵ1/4𝒇curlh𝒗0+curl𝒖~,[[𝒗0×𝒏f]]f\displaystyle Ch^{1/2}\epsilon^{1/4}\|\bm{f}\||\operatorname{curl}_{h}\bm{v}_{0}|_{1,h}^{1/2}\|\operatorname{curl}_{h}\bm{v}_{0}\|^{1/2}+Ch\epsilon^{1/4}\|\bm{f}\|\|\operatorname{curl}_{h}\bm{v}_{0}\|+\langle\operatorname{curl}\widetilde{\bm{u}},[\![\bm{v}_{0}\times\bm{n}_{f}]\!]\rangle_{f}
(5)\displaystyle\overset{\eqref{I2}}{\leq} Ch1/2𝒇𝒗0ah+Chϵ1/4𝒇𝒗0ah+Ch|curl𝒖~|1𝒗0ah.\displaystyle Ch^{1/2}\|\bm{f}\|\|\bm{v}_{0}\|_{a_{h}}+Ch\epsilon^{1/4}\|\bm{f}\|\|\bm{v}_{0}\|_{a_{h}}+Ch|\operatorname{curl}\widetilde{\bm{u}}|_{1}\|\bm{v}_{0}\|_{a_{h}}. (6.14)

Combining (6), (6), and (6), we can get (6.11) based on the assumption (6.2).  

7. NUMERICAL EXPERIMENTS

In this section, numerical results are provided to verify the theoretical results. In this section, we assume α=β=1\alpha=\beta=1.

Example 1.

We first consider problem (1.1) on Ω=[0,1]3\Omega=[0,1]^{3} with a smooth exact solution

𝒖=\displaystyle\bm{u}= (sin3(πx)sin2(πy)sin2(πz)cos(πy)cos(πz)sin3(πy)sin2(πz)sin2(πx)cos(πz)cos(πx)2sin3(πz)sin2(πx)sin2(πy)cos(πx)cos(πy)).\displaystyle\left(\begin{array}[]{c}\sin^{3}(\pi x)\sin^{2}(\pi y)\sin^{2}(\pi z)\cos(\pi y)\cos(\pi z)\\ \sin^{3}(\pi y)\sin^{2}(\pi z)\sin^{2}(\pi x)\cos(\pi z)\cos(\pi x)\\ -2\sin^{3}(\pi z)\sin^{2}(\pi x)\sin^{2}(\pi y)\cos(\pi x)\cos(\pi y)\end{array}\right).

The source term 𝒇=ϵcurlΔcurl𝒖+curlcurl𝒖+𝒖\bm{f}=-\epsilon\text{curl}\Delta\text{curl}\bm{u}+\text{curlcurl}\bm{u}+\bm{u} can be obtained by a simple calculation.

We first uniformly partition the domain into eight small cubes and then each small cube is partitioned into eight half-sized cubes to get a refined grid.

We first use the finite element spaces 𝑽h0(𝒯h)×Sh1(𝒯h)\bm{V}_{h}^{0}(\mathcal{T}_{h})\times S^{1}_{h}(\mathcal{T}_{h}) in discrete problem (5.2). We present 𝒖𝒖h\|\bm{u}-\bm{u}_{h}\| and 𝒖𝒖hgradcurl,h\|\bm{u}-\bm{u}_{h}\|_{\operatorname{grad}\operatorname{curl},h} for different values of ϵ\epsilon in Figure 7.1. From the result of 𝒖𝒖hgradcurl,h\|\bm{u}-\bm{u}_{h}\|_{\operatorname{grad}\operatorname{curl},h} shown in Figure 7.1(a), we can observe that the numerical results are consistent with Theorem 5.2.

We then apply 𝑽h1(𝒯h)×Sh2(𝒯h)\bm{V}_{h}^{1}(\mathcal{T}_{h})\times S^{2}_{h}(\mathcal{T}_{h}) in (5.2). See Figure 7.2 for the numerical results. Again the numerical result shown in Figure 7.2(a) validate the theoretical result in Theorem 5.2.

We also observe from Figures 7.1(a) and 7.2(a) that when ϵ=104,106\epsilon=10^{-4},10^{-6}, and 10810^{-8}, the convergence rate of 𝒖𝒖hgradcurl,h\|\bm{u}-\bm{u}_{h}\|_{\operatorname{grad}\operatorname{curl},h} is 2. This is because the part curl(𝒖𝒖h)\|\operatorname{curl}(\bm{u}-\bm{u}_{h})\| dominates in these cases, and curl(𝒖𝒖h)\|\operatorname{curl}(\bm{u}-\bm{u}_{h})\| has convergence rate 2.

From Figures 7.1(b) and 7.2(b), we can see that the difference between the two families 𝑽h0(𝒯h)\bm{V}_{h}^{0}(\mathcal{T}_{h}) and 𝑽h1(𝒯h)\bm{V}_{h}^{1}(\mathcal{T}_{h}) is the convergence order in the sense of L2L^{2} norm.

Refer to caption
(a) 𝒖𝒖hah\|\bm{u}-\bm{u}_{h}\|_{a_{h}}
Refer to caption
(b) 𝒖𝒖h\|\bm{u}-\bm{u}_{h}\|
Figure 7.1. Error between 𝒖𝒖h\bm{u}-\bm{u}_{h} with r=1r=1.
Refer to caption
(a) 𝒖𝒖hah\|\bm{u}-\bm{u}_{h}\|_{a_{h}}
Refer to caption
(b) 𝒖𝒖h\|\bm{u}-\bm{u}_{h}\|
Figure 7.2. Error between 𝒖𝒖h\bm{u}-\bm{u}_{h} with r=2r=2.
Example 2.

We now consider an exact solution with boundary layer. We take the source term 𝒇\bm{f} as

𝒇=curlcurl𝒖~+𝒖~\bm{f}=\text{curlcurl}\widetilde{\bm{u}}+\widetilde{\bm{u}}

with

𝒖~=(2πcos(πy)sin(πx)2sin(πy)sin(πz)22πcos(πx)sin(πx)sin(πy)2sin(πz)20).\widetilde{\bm{u}}=\begin{pmatrix}2\pi\cos(\pi y)\sin(\pi x)^{2}\sin(\pi y)\sin(\pi z)^{2}\\ -2\pi\cos(\pi x)\sin(\pi x)\sin(\pi y)^{2}\sin(\pi z)^{2}\\ 0\end{pmatrix}.

Then according to (6.4), 𝒖𝒖~1Cϵ1/4𝒇\|\bm{u}-\widetilde{\bm{u}}\|_{1}\leq C\epsilon^{1/4}\|\bm{f}\|, which goes to 0 when ϵ\epsilon approaches 0.

Table 7.1. Example 2: errors between exact solution and numerical solution with ϵ=108\epsilon=10^{-8}.
hh 𝒖~𝒖h\|\widetilde{\bm{u}}-\bm{u}_{h}\| order curlh(𝒖~𝒖h)\|\text{curl}_{h}(\widetilde{\bm{u}}-\bm{u}_{h})\| order 𝒖~𝒖hah\|\widetilde{\bm{u}}-\bm{u}_{h}\|_{a_{h}} order
1/4 3.231e-01 * 3.451e+00 * 3.781e+00 *
1/8 1.623e-01 0.99 1.937e+00 0.83 2.108e+00 0.84
1/16 8.261e-02 0.97 1.295e+00 0.58 1.389e+00 0.60
1/32 4.168e-02 0.99 9.049e-01 0.52 9.628ee-01 0.53
Table 7.2. Example 2: errors between exact solution and numerical solution with ϵ=0\epsilon=0.
hh 𝒖~𝒖h\|\widetilde{\bm{u}}-\bm{u}_{h}\| order curlh(𝒖~𝒖h)\|\text{curl}_{h}(\widetilde{\bm{u}}-\bm{u}_{h})\| order 𝒖~𝒖hah\|\widetilde{\bm{u}}-\bm{u}_{h}\|_{a_{h}} order
1/4 3.231e-01 * 3.451e+00 * 3.774e+00 *
1/8 1.623e-01 0.99 1.937e+00 0.83 2.100e+00 0.85
1/16 8.261e-02 0.97 1.295e+00 0.58 1.378e+00 0.61
1/32 4.168e-02 0.99 9.049e-01 0.52 9.466e-01 0.54

We use the finite element space 𝑽h0(𝒯h)×Sh1(𝒯h)\bm{V}_{h}^{0}(\mathcal{T}_{h})\times S^{1}_{h}(\mathcal{T}_{h}) again. We present the errors 𝒖𝒖h\bm{u}-\bm{u}_{h} and curl𝒖curl𝒖h\text{curl}\bm{u}-\operatorname{curl}\bm{u}_{h} in the sense of L2L^{2} norm, and also the error 𝒖𝒖h\bm{u}-\bm{u}_{h} in the energy norm ah\|\cdot\|_{a_{h}} in the table 7.17.2. The numerical results show that the errors converge to zeros with order 11, 0.50.5, and 0.50.5, which agrees with the theoretical estimates (6.11).

8. Conclusion

In this paper, we constructed two fully H(gradcurl)H(\operatorname{grad}\operatorname{curl})-nonconforming finite elements on cubical meshes, which together with the Lagrange element and the nonconforming Stokes element in [23] form a nonconforming finite element Stokes complex. Moreover, we proved a special property of the proposed elements, see Lemma 5.2. With this property, we proved the optimal convergence and uniform convergence when applying the elements to solve the singularly perturbed quad-curl problem.

References

  • [1] D. N. Arnold and G. Awanou. The serendipity family of finite elements. Foundations of computational mathematics, 11(3):337–344, 2011.
  • [2] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 3. Springer, 2008.
  • [3] F. Cakoni and H. Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 1(3):443–456, 2017.
  • [4] S. H. Christiansen and K. Hu. Generalized finite element systems for smooth differential forms and Stokes’ problem. Numerische Mathematik, 140(2):327–371, 2018.
  • [5] F. Demengel and G. Demengel. Functional spaces for the theory of elliptic partial differential equations. Springer, 2012.
  • [6] P. Grisvard. Elliptic problems in nonsmooth domains. SIAM, 2011.
  • [7] K. Hu, Q. Zhang, and Z. Zhang. Simple curl-curl-conforming finite elements in two dimensions. SIAM Journal on Scientific Computing, 42(6):A3859–A3877, 2020.
  • [8] K. Hu, Q. Zhang, and Z. Zhang. A family of finite element stokes complexes in three dimensions. SIAM Journal on Numerical Analysis, 60(1):222–243, 2022.
  • [9] X. Huang. Nonconforming finite element Stokes complexes in three dimensions. arXiv:2007.14068, pages 1–26, 2020.
  • [10] X. Huang and C. Zhang. Robust mixed finite element methods for a quad-curl singular perturbation problem. arXiv preprint arXiv:2206.10864, 2022.
  • [11] R. D. Mindlin and H. F. Tiersten. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1):415–448, 1962.
  • [12] P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University Press, 2003.
  • [13] P. Monk and J. Sun. Finite element methods for Maxwell’s transmission eigenvalues. SIAM Journal on Scientific Computing, 34(3):B247–B264, 2012.
  • [14] S. K. Park and X. Gao. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik, 59(5):904–917, 2008.
  • [15] J. Sun. Iterative methods for transmission eigenvalues. SIAM Journal on Numerical Analysis, 49(5):1860–1874, 2011.
  • [16] J. Sun. A mixed FEM for the quad-curl eigenvalue problem. Numerische Mathematik, 132(1):185–200, 2016.
  • [17] L. Wang, H. Li, and Z. Zhang. H(curl2H(\text{curl}^{2})-conforming spectral element method for quad-curl problems. Computational Methods in Applied Mathematics, 21(3):661–681, 2021.
  • [18] L. Wang, W. Shan, H. Li, and Z. Zhang. H(curl2H(\text{curl}^{2})-conforming quadrilateral spectral element method for quad-curl problems. Mathematical Models and Methods in Applied Sciences, 31(10):1951–1986, 2021.
  • [19] B. Zhang and Z. Zhang. A new family of nonconforming elements with H(curl){H}(\operatorname{curl})-continuity for the three-dimensional quad-curl problem. arXiv:2206.12056v1, 2022.
  • [20] Q. Zhang, L. Wang, and Z. Zhang. H(curl2H(\text{curl}^{2})-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM Journal on Scientific Computing, 41(3):A1527–A1547, 2019.
  • [21] Q. Zhang, M. Zhang, and Z. Zhang. Nonconforming finite elements for the brinkman and curlcurl-\operatorname{curl}\triangle\operatorname{curl} problems on cubical meshes. arXiv preprint arXiv:2206.08493v2, 2022.
  • [22] Q. Zhang and Z. Zhang. A family of curl-curl conforming finite elements on tetrahedral meshes. CSIAM Transactions on Applied Mathematics, 1(4):639–663, 2020.
  • [23] S. Zhang, X. Xie, and Y. Chen. Low order nonconforming rectangular finite element methods for darcy-stokes problems. Journal of Computational Mathematics, pages 400–424, 2009.
  • [24] B. Zheng, Q. Hu, and J. Xu. A nonconforming finite element method for fourth order curl equations in 3\mathbb{R}^{3}. Mathematics of Computation, 80(276):1871–1886, 2011.