This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fully-heavy tetraquark states and their evidences in the LHC observations

Ming-Sheng Liu1,4, Feng-Xiao Liu1,5 111Feng-Xiao Liu and Ming-Sheng Liu contributed equally to this work. Xian-Hui Zhong1,5 222E-mail: [email protected], Qiang Zhao2,3,5 333E-mail: [email protected] 1) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 3) University of Chinese Academy of Sciences, Beijing 100049, China 4) College of Science, Tianjin University of Technology, Tianjin 300384, China 5) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
Abstract

Stimulated by the exciting progress on the observations of the fully-charmed tetraquarks at LHC, we carry out a combined analysis of the mass spectra and fall-apart decays of the 1S1S-, 2S2S-, and 1P1P-wave ccc¯c¯cc\bar{c}\bar{c} states in a nonrelativistic quark model (NRQM). It is found that the X(6600)X(6600) structure observed in the di-J/ψJ/\psi invariant mass spectrum can be explained by the 1S1S-wave state T(4c)0++(6550)T_{(4c)0^{++}}(6550). This structure may also bear some feed-down effects from the higher 2S2S and/or 1P1P tetraquark states. The X(6900)X(6900) structure observed in both the di-J/ψJ/\psi and J/ψψ(2S)J/\psi\psi(2S) channels can be naturally explained by the 2S2S-wave state T(4c)0++(6957)T_{(4c)0^{++}}(6957). The small shoulder structure around 6.26.46.2-6.4 GeV observed at CMS and ATLAS may be due to the feed-down effects from some 1P1P-wave states with C=1C=-1 and/or some 2S2S-wave states with JPC=0++J^{PC}=0^{++}. Other decay channels are implied in such a scenario and they can be investigated by future experimental analyses. Considering the large discovery potential at LHC, we also present predictions for the bbb¯b¯bb\bar{b}\bar{b} states which can be searched for in the future.

I Introduction

Searching for genuine exotic hadrons beyond the conventional quark model has been one of the most important initiatives since the establishment of the nonrelativistic constituent quark model in 1964 GellMann:1964nj ; Zweig:1981pd . Benefited from great progresses in experiment, many candidates of exotic hadrons have been found since the discovery of X(3872)X(3872) by Belle in 2003 Choi:2003ue . Recent reviews of the status of experimental and theoretical studies can be found in Refs. Liu:2019zoy ; Esposito:2016noz ; Olsen:2017bmm ; Lebed:2016hpi ; Chen:2016qju ; Ali:2017jda ; Guo:2017jvc . While many observed candidates have been found located in the vicinity of SS-wave open thresholds, no signals for overall-color-singlet multiquark states have been indisputably established due to difficulties of distinguishing them from hadronic molecules Guo:2017jvc . Recently, the tetraquarks of all-heavy systems, such as ccc¯c¯cc\bar{c}\bar{c} and bbb¯b¯bb\bar{b}\bar{b}, have received considerable attention. Since the light quark degrees of freedom cannot be exchanged between two heavy mesons at leading order, the color interactions between the heavy quarks (antiquarks) should be dominant at short distance and they may favor to form genuine color-singlet tetraquark configurations rather than loosely bound hadronic molecules. Furthermore, such exotic states may have masses and decay modes significantly different from other conventional states, thus, can be established in experiment.

Early theoretical studies of the full-heavy tetraquark states can be found in the literature Ader:1981db ; Iwasaki:1975pv ; Zouzou:1986qh ; Heller:1985cb ; Lloyd:2003yc ; Barnea:2006sd . A revival of this topic driven by the experimental progresses can be found by the intensive publications recently Wang:2017jtz ; Karliner:2016zzc ; Berezhnoy:2011xn ; Bai:2016int ; Anwar:2017toa ; Esposito:2018cwh ; Chen:2016jxd ; Wu:2016vtq ; Hughes:2017xie ; Richard:2018yrm ; Debastiani:2017msn ; Wang:2018poa ; Richard:2017vry ; Vijande:2009kj ; Deng:2020iqw ; Ohlsson ; Wang:2019rdo ; Bedolla:2019zwg ; Chen:2020lgj ; Chen:2018cqz ; Liu:2019zuc . Physicists are very concerned with the stability of the tetraquark ccc¯c¯cc\bar{c}\bar{c} (T(4c)T_{(4c)}) and bbb¯b¯bb\bar{b}\bar{b} (T(4b)T_{(4b)}) states. If the T(4c)T_{(4c)} or T(4b)T_{(4b)} states have relatively smaller masses below the thresholds of heavy charmonium or bottomonium pairs Wang:2017jtz ; Karliner:2016zzc ; Berezhnoy:2011xn ; Bai:2016int ; Anwar:2017toa ; Esposito:2018cwh ; Debastiani:2017msn ; Wang:2018poa , they may become “stable” because no direct decays into heavy quarkonium pairs through quark rearrangements would be allowed. However, some studies showed that stable bound tetraquark states made of ccc¯c¯cc\bar{c}\bar{c} or bbb¯b¯bb\bar{b}\bar{b} may not exist Wu:2016vtq ; Lloyd:2003yc ; Ader:1981db ; Hughes:2017xie ; Richard:2018yrm ; Richard:2017vry ; Liu:2019zuc ; Deng:2020iqw ; Wang:2019rdo ; Chen:2016jxd ; Chen:2018cqz because the the predicted masses are large enough for them to decay into heavy quarkonium pairs. Due to these very controversial issues, experimental evidence for such exotic objects would be crucial for our understanding of the underlying dynamics.

In 2020, the LHCb Collaboration reported their results on the observations of T(4c)T_{(4c)} states LHCexp . In the di-J/ψJ/\psi invariant mass spectrum, a broad structure above J/ψJ/ψJ/\psi J/\psi threshold ranging from 6.2 to 6.8 GeV and a narrower resonance X(6900)X(6900) were observed with more than 5 σ\sigma of significance level. There are also some vague structures around 7.2 GeV to be confirmed. Later in 2022, X(6900)X(6900) was confirmed in the same final state by both the ATLAS ATLASexp and CMS CMSexp collaborations. Some signal of X(6900)X(6900) was also seen in the J/ψψ(2S)J/\psi\psi(2S) channel by the ATLAS Collaboration ATLASexp . In addition, in the lower mass region the CMS measurements show that a clear resonance X(6600)X(6600) together with a small shoulder structure around 6.26.46.2-6.4 GeV lies in the di-J/ψJ/\psi spectrum CMSexp . These clear structures may be evidences for genuine tetraquark T(4c)T_{(4c)} states, they can also set up experimental constraints on theoretical models of which the successful interpretations and most importantly the early predictions should bring a lot of insights to the underlying dynamics. Stimulated by the newly observed structures in the di-J/ψJ/\psi invariant mass spectrum, the study of full-heavy tetraquark states has been a hot topic in the last two years Dong:2022sef ; Chen:2022mcr ; Faustov:2022mvs ; Niu:2022cug ; Wang:2022yes ; An:2022qpt ; Biloshytskyi:2022dmo ; Wang:2022jmb ; Gong:2022hgd ; Wu:2022qwd ; Zhuang:2021pci ; Yan:2021glh ; Wang:2021mma ; Majarshin:2021hex ; Wang:2021kfv ; Yang:2021hrb ; Huang:2021vtb ; Goncalves:2021ytq ; Liu:2020tqy ; Wang:2020tpt ; Wan:2020fsk ; Gong:2020bmg ; Cao:2020gul ; Guo:2020pvt ; Zhu:2020xni ; Zhang:2020xtb ; Feng:2020riv ; Ma:2020kwb ; Dong:2020nwy ; Wang:2020dlo ; Karliner:2020dta ; Wang:2020wrp ; Giron:2020wpx ; Wang:2020gmd ; Chen:2020xwe ; Wang:2020ols ; Yang:2020rih ; Niu:2022vqp ; Liang:2022rew ; Liang:2021fzr ; Dong:2021lkh ; Li:2021ygk ; Ke:2021iyh ; Yang:2020wkh ; Weng:2020jao ; Zhao:2020nwy ; Zhou:2022xpd ; Kuang:2023vac ; Zhao:2020jvl ; Becchi:2020mjz ; Becchi:2020uvq ; Chen:2022sbf .

In Refs. Liu:2019zuc ; Liu:2021rtn we adopted a nonrelativistic potential quark model (NRPQM), which is based on the Hamiltonian proposed by the Cornell model Eichten:1978tg , for the study of fully-heavy tetraquark system. The masses of the 1S1S-wave fully-heavy tetraquark states were predicted there and we found that the 1S1S-wave T(4c)T_{(4c)} masses should be above the two-charmonium thresholds within a commonly accepted parameter space Liu:2019zuc . This turns out to be consistent with the structure X(6600)X(6600). The predicted masses of the 2S2S-wave T(4c)T_{(4c)} states are comparable with the narrow structure X(6900)X(6900). Later studies by Refs. Wang:2019rdo ; Wang:2021kfv ; Lu:2020cns ; Li:2021ygk ; Zhao:2020jvl turn out to agree with our predictions.

In this work we carry out a systematic study of the fall-apart decays of the 1S1S-, 2S2S- and 1P1P-wave T(4Q)T_{(4Q)} states in the NRPQM framework. The 1S1S-, 2S2S- and 1P1P-wave T(4Q)T_{(4Q)} (Q=c,bQ=c,b) states are calculated in the same framework. Thus, it allows us to obtain a self-consistent treatment for the mass spectrum and decay properties. We will show that some of these structures observed at LHC may arise from the SS- and PP-wave T(4c)T_{(4c)} states. To proceed, we first give a brief introduction to our model and method.

Figure 1: The coordinates defined for a T(4Q)T_{(4Q)} system and its fall-apart decays into a BCBC meson pair via the quark rearrangement. The BCBC final state can be formed via two quark rearrangement ways: (Q1Q¯3)(Q2Q¯4)(Q_{1}\bar{Q}_{3})(Q_{2}\bar{Q}_{4}) and (Q1Q¯4)(Q2Q¯3)(Q_{1}\bar{Q}_{4})(Q_{2}\bar{Q}_{3}) as shown in the figure.
Figure 2: Mass spectra for the ccc¯c¯cc\bar{c}\bar{c} and bbb¯b¯bb\bar{b}\bar{b} systems.

II Model and method

Apart from the linear confinement, Coulomb type potential, and spin-spin interaction potential for calculating the SS-wave tetraquark states in the Hamiltonian Liu:2019zuc , we include the spin-orbit and tensor potentials here to deal with the first orbital (1P1P) excitation,

VijLS=αij16𝝀i𝝀jrij3(1mi2+1mj2+4mimj){𝐋ij(𝐒i+𝐒j)}αij16𝝀i𝝀jrij3(1mi21mj2){𝐋ij(𝐒i𝐒j)},\begin{split}V^{LS}_{ij}=&-\frac{\alpha_{ij}}{16}\frac{{\mbox{\boldmath$\lambda$\unboldmath}}_{i}\cdot{\mbox{\boldmath$\lambda$\unboldmath}}_{j}}{r_{ij}^{3}}\bigg{(}\frac{1}{m_{i}^{2}}+\frac{1}{m_{j}^{2}}+\frac{4}{m_{i}m_{j}}\bigg{)}\bigg{\{}\mathbf{L}_{ij}\cdot(\mathbf{S}_{i}+\mathbf{S}_{j})\bigg{\}}\\ &-\frac{\alpha_{ij}}{16}\frac{{\mbox{\boldmath$\lambda$\unboldmath}}_{i}\cdot{\mbox{\boldmath$\lambda$\unboldmath}}_{j}}{r_{ij}^{3}}\bigg{(}\frac{1}{m_{i}^{2}}-\frac{1}{m_{j}^{2}}\bigg{)}\bigg{\{}\mathbf{L}_{ij}\cdot(\mathbf{S}_{i}-\mathbf{S}_{j})\bigg{\}},\end{split} (1)
VijT=αij4(𝝀i𝝀j)1mimjrij3{3(𝐒i𝐫ij)(𝐒j𝐫ij)rij2𝐒i𝐒j},V^{T}_{ij}=-\frac{\alpha_{ij}}{4}({\mbox{\boldmath$\lambda$\unboldmath}}_{i}\cdot{\mbox{\boldmath$\lambda$\unboldmath}}_{j})\frac{1}{m_{i}m_{j}r_{ij}^{3}}\Bigg{\{}\frac{3(\mathbf{S}_{i}\cdot\mathbf{r}_{ij})(\mathbf{S}_{j}\cdot\mathbf{r}_{ij})}{r_{ij}^{2}}-\mathbf{S}_{i}\cdot\mathbf{S}_{j}\Bigg{\}}, (2)

where rij|𝐫i𝐫j|r_{ij}\equiv|\mathbf{r}_{i}-\mathbf{r}_{j}| is the distance between the iith and jjth quarks, 𝐒i\mathbf{S}_{i} stands for the spin of the ii-th quark, and 𝐋ij\mathbf{L}_{ij} stands for the relative orbital angular momentum between the ii-th and jj-th quark. If the interaction occurs between two quarks or antiquarks, operator 𝝀i𝝀j\mbox{\boldmath$\lambda$\unboldmath}_{i}\cdot\mbox{\boldmath$\lambda$\unboldmath}_{j} is defined as 𝝀i𝝀ja=18λiaλja\mbox{\boldmath$\lambda$\unboldmath}_{i}\cdot\mbox{\boldmath$\lambda$\unboldmath}_{j}\equiv\sum_{a=1}^{8}\lambda_{i}^{a}\lambda_{j}^{a}, while if the interaction occurs between a quark and antiquark, we have 𝝀i𝝀ja=18λiaλja\mbox{\boldmath$\lambda$\unboldmath}_{i}\cdot\mbox{\boldmath$\lambda$\unboldmath}_{j}\equiv\sum_{a=1}^{8}-\lambda_{i}^{a}\lambda_{j}^{a*}, where λa\lambda^{a*} is the complex conjugate of the Gell-Mann matrix λa\lambda^{a}. The parameters bijb_{ij} and αij\alpha_{ij} denote the confinement potential strength and the strong coupling for the OGE potential, respectively. The same model parameters, mc/mb=1.483/4.852m_{c}/m_{b}=1.483/4.852 GeV, αcc/αbb=0.5461/0.4311{\alpha_{cc}}/{\alpha_{bb}}=0.5461/0.4311, σcc/σbb=1.1384/2.3200{\sigma_{cc}}/{\sigma_{bb}}=1.1384/2.3200 GeV, and bcc/bb=0.1425b_{cc/bb}=0.1425 GeV2, are adopted by fitting the cc¯c\bar{c} and bb¯b\bar{b} spectra as in Refs. Deng:2016stx ; Liu:2019zuc .

For T(4Q)T_{(4Q)}, there are two kinds of color structures, (66¯)c(6\bar{6})_{c} and (33¯)c(3\bar{3})_{c}. As shown in Fig. 1, the relative Jacobi coordinate between these two charm quarks (two anticharm quarks) is defined by 𝝃1=(r1r2)/2\mbox{\boldmath$\xi$\unboldmath}_{1}=(\textbf{r}_{1}-\textbf{r}_{2})/\sqrt{2} (𝝃2=(r3r4)/2\mbox{\boldmath$\xi$\unboldmath}_{2}=(\textbf{r}_{3}-\textbf{r}_{4})/\sqrt{2}), while the relative Jacobi coordinate between Q1Q2Q_{1}Q_{2} and Q¯3Q¯4\bar{Q}_{3}\bar{Q}_{4} is defined by 𝝃3=(r1+r2)/2(r3+r4)/2\mbox{\boldmath$\xi$\unboldmath}_{3}=(\textbf{r}_{1}+\textbf{r}_{2})/2-(\textbf{r}_{3}+\textbf{r}_{4})/2. Thus, there are three spatial excitation modes which are denoted as ξ1\xi_{1}, ξ2\xi_{2}, and ξ3\xi_{3}. Their wave functions are defined as ϕ(ξi)\phi(\xi_{i}) (i=1,2,3i=1,2,3). According to the requirements of symmetry, there will be four 1S1S configurations, 12 2S2S configurations, and 20 1P1P configurations in the LSL-S coupling scheme, which are listed in Table 1. Apart from the conventional quantum numbers, i.e., JPC=0+, 1, 2±, 3J^{PC}=0^{-+},\ 1^{--},\ 2^{-\pm},\ 3^{--}, the PP-wave states can access exotic quantum numbers, i.e., JPC=0, 1+J^{PC}=0^{--},\ 1^{-+}.

To solve the Schrödinger equation, we expand the radial part Rnξilξi(ξ𝐢)R_{n_{\xi_{i}}l_{\xi_{i}}}(\mathbf{\xi_{i}}) of spatial wave function ϕ(ξi)\phi(\xi_{i}) with a series of harmonic oscillator functions Liu:2019vtx :

Rnξilξi(ξi)==1n𝒞ξiϕnξilξi(dξi,ξi),R_{n_{\xi_{i}}l_{\xi_{i}}}(\xi_{i})=\sum_{\ell=1}^{n}\mathcal{C}_{\xi_{i}\ell}~{}\phi_{n_{\xi_{i}}l_{\xi_{i}}}(d_{\xi_{i}\ell},\xi_{i}), (3)

with

ϕnξilξi(dξi,𝝃i)\displaystyle\phi_{n_{\xi_{i}}l_{\xi_{i}}}(d_{\xi_{i}\ell},\mbox{\boldmath$\xi$\unboldmath}_{i}) =(1dξi)32[2lξi+2(2lξi+1)!!π]12(ξidξi)lξie12(ξidξi)2.\displaystyle=\left(\frac{1}{d_{\xi_{i}\ell}}\right)^{\frac{3}{2}}\Bigg{[}\frac{2^{l_{\xi_{i}}+2}}{(2l_{\xi_{i}}+1)!!\sqrt{\pi}}\Bigg{]}^{\frac{1}{2}}\left(\frac{\xi_{i}}{d_{\xi_{i}\ell}}\right)^{l_{\xi_{i}}}e^{-\frac{1}{2}\left(\frac{\xi_{i}}{d_{\xi_{i}\ell}}\right)^{2}}. (4)

The parameter dξd_{\xi\ell} can be related to the harmonic oscillator frequency ωξ\omega_{\xi\ell} with 1/dξ2=Mξωξ1/d^{2}_{\xi\ell}=M_{\xi}\omega_{\xi\ell}. For T(4Q)T_{(4Q)} the reduced masses Mξi=mQM_{\xi_{i}}=m_{Q}. On the other hand, the harmonic oscillator frequency ωξi\omega_{\xi_{i}\ell} can be related to the harmonic oscillator stiffness factor KK_{\ell} with ωξi=3K/Mξi\omega_{\xi_{i}\ell}=\sqrt{3K_{\ell}/M_{\xi_{i}}}. Then, one has dξi=d=(3mQK)1/4d_{\xi_{i}\ell}=d_{\ell}=(3m_{Q}K_{\ell})^{-1/4}. The oscillator length dd_{\ell} is set to be

d=d1a1(=1,,n),d_{\ell}=d_{1}a^{\ell-1}\ \ \ (\ell=1,...,n), (5)

where nn is the number of harmonic oscillator functions, and aa is the ratio coefficient. There are three parameters {d1,dn,n}\{d_{1},d_{n},n\} to be determined through the variation method. It is found that with the parameter sets {0.068 fm, 2.711 fm, 15} and {0.050 fm, 2.016 fm, 15} for the ccc¯c¯cc\bar{c}\bar{c} and bbb¯b¯bb\bar{b}\bar{b} systems, we can obtain stable solutions.

By using the spectrum obtained from NRPQM, we further evaluate the fall-apart decays of the T(4Q)T_{(4Q)} states in a quark-exchange model Barnes:2000hu . The interactions VijV_{ij} between inner quarks of final hadrons BB and CC may be the sources of the fall-apart decays of a T(4Q)T_{(4Q)} state via the quark rearrangement. The decay amplitude (ABC)\mathcal{M}(A\to BC) of T(4Q)T_{(4Q)} state is described by:

(ABC)=(2π)38MAEBECBC|i<jVij|A,\mathcal{M}(A\to BC)=-\sqrt{(2\pi)^{3}}\sqrt{8M_{A}E_{B}E_{C}}\left\langle BC|\underset{i<j}{\sum}V_{ij}|A\right\rangle, (6)

where AA stands for the initial tetraquark state, BCBC stands for the final hadron pair. MAM_{A} is the mass of the initial state, and EBE_{B} and ECE_{C} are the energies of the final states BB and CC, respectively. The decay width Γ\Gamma of ABCA\to BC can be described by:

Γ\displaystyle\Gamma =\displaystyle= 12JA+1|𝒑|8πMA2|(ABC)|2,\displaystyle\frac{1}{2J_{A}+1}\frac{|\boldsymbol{p}|}{8\pi M_{A}^{2}}\left|\mathcal{M}(A\to BC)\right|^{2}, (7)

where |𝒑||\boldsymbol{p}| is magnitude of the momentum for the final states BB and CC. The potentials VijV_{ij} (ij13,24ij\neq 13,24 or ij14,23ij\neq 14,23) between inner quarks of final hadrons BB and CC, as shown in Fig. 3, are taken the same as our mass calculations. The calculation of the decay amplitude for a T(4Q)T_{(4Q)} state is indeed a tedious task, some details are given in the appendix. This model has been developed and applied to the study of the hidden-charm decay properties for the multiquark states in the literature Wang:2019spc ; Xiao:2019spy ; Wang:2020prk ; Han:2022fup ; Liu:2022hbk , and a lot of inspiring results are obtained. For simplicity, the wave functions of the A,B,CA,B,C hadron states are parametrized out in a single harmonic oscillator form by fitting the wave functions calculated from our potential model Liu:2019vtx ; Liu:2020lpw ; Liu:2021rtn . The harmonic oscillator parameters for the final meson states and initial tetraquark states are collected in Tables 4 and  5 of the appendix, respectively.

Refer to caption
Figure 3: The fall-apart decays of a T(4Q)T_{(4Q)} state induced by the interactions VijV_{ij} (ij13,24ij\neq 13,24 or ij14,23ij\neq 14,23) between inner quarks of final hadrons BB and CC.
Table 1: Mass spectra for the 1S,1P,2S1S,1P,2S-wave ccc¯c¯cc\bar{c}\bar{c} and bbb¯b¯bb\bar{b}\bar{b} states. ξ1,ξ2,ξ3\xi_{1},\xi_{2},\xi_{3} are the Jacobi coordinates. (ξ1,ξ2)(\xi_{1},\xi_{2}) stands for a configuration containing both ξ1\xi_{1}- and ξ2\xi_{2}-mode orbital excitations, while (ξ3\xi_{3}) stands for a configuration containing ξ3\xi_{3}-mode orbital excitation. The spectra for the 1S1S and 2S2S states are taken from our previous works Liu:2019zuc ; Liu:2021rtn .
Configuration ccc¯c¯¯\underline{~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}cc\bar{c}\bar{c}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}} bbb¯b¯¯\underline{~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}bb\bar{b}\bar{b}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}}
Eigenvector Mass (MeV) Eigenvector Mass (MeV)
11S0++(66¯)c11S0++(3¯3)c\begin{array}[]{l}1^{1}S_{0^{++}\left(6\bar{6}\right)_{c}}\\ 1^{1}S_{0^{++}(\bar{3}3)_{c}}\end{array} (0.580.810.810.58)\left(\begin{array}[]{rr}0.58&0.81\\ 0.81&-0.58\end{array}\right) (64556550)\left(\begin{array}[]{c}6455\\ 6550\end{array}\right) (0.580.810.810.58)\left(\begin{array}[]{rr}0.58&0.81\\ 0.81&-0.58\end{array}\right) (1930619355)\left(\begin{array}[]{c}19306\\ 19355\end{array}\right)
13S1+(3¯3)c\begin{array}[]{l}1^{3}S_{1^{+-}(\bar{3}3)_{c}}\end{array} 1 65006500 1 1932919329
15S2++(3¯3)c\begin{array}[]{l}1^{5}S_{2^{++}(\bar{3}3)_{c}}\end{array} 1 65246524 1 1934119341
P0(66¯)c(ξ1,ξ2)3P0(3¯3)c(ξ1,ξ2)3\begin{array}[]{l}{}^{3}P_{0^{--}(6\bar{6})_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{0^{--}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\end{array} (0.800.600.600.80)\left(\begin{array}[]{rr}-0.80&0.60\\ 0.60&0.80\end{array}\right) (66516926)\left(\begin{array}[]{c}6651\\ 6926\end{array}\right) (0.810.590.590.81)\left(\begin{array}[]{rr}-0.81&0.59\\ 0.59&0.81\end{array}\right) (1948519756)\left(\begin{array}[]{c}19485\\ 19756\end{array}\right)
P0+(66¯)c(ξ1,ξ2)3P0+(3¯3)c(ξ1,ξ2)3P0+(3¯3)c(ξ3)3\begin{array}[]{l}{}^{3}P_{0^{-+}(6\bar{6})_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{0^{-+}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{0^{-+}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.820.470.320.140.380.910.550.800.25)\left(\begin{array}[]{rrr}0.82&0.47&0.32\\ 0.14&0.38&-0.91\\ -0.55&0.80&0.25\end{array}\right) (668167496891)\left(\begin{array}[]{c}6681\\ 6749\\ 6891\end{array}\right) (0.820.550.120.020.180.980.570.810.14)\left(\begin{array}[]{rrr}0.82&0.55&0.12\\ 0.02&0.18&-0.98\\ -0.57&0.81&0.14\end{array}\right) (195001959519739)\left(\begin{array}[]{c}19500\\ 19595\\ 19739\end{array}\right)
P1(66¯)c(ξ1,ξ2)3P1(3¯3)c(ξ1,ξ2)3P1(3¯3)c(ξ3)5P1(3¯3)c(ξ3)1P1(66¯)c(ξ3)1\begin{array}[]{l}{}^{3}P_{1^{--}(6\bar{6})_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{1^{--}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{5}P_{1^{--}(\bar{3}3)_{c}\left(\xi_{3}\right)}\\ {}^{1}P_{1^{--}(\bar{3}3)_{c}\left(\xi_{3}\right)}\\ {}^{1}P_{1^{--}(6\bar{6})_{c}\left(\xi_{3}\right)}\end{array} (0.820.550.120.060.030.020.240.960.160.060.010.050.170.980.100.480.690.190.020.500.310.390.020.110.86)\left(\begin{array}[]{rrrrr}-0.82&0.55&0.12&-0.06&0.03\\ 0.02&-0.24&0.96&-0.16&0.06\\ -0.01&0.05&0.17&0.98&0.10\\ 0.48&0.69&0.19&-0.02&-0.50\\ 0.31&0.39&0.02&-0.11&0.86\end{array}\right) (66366750676869046993)\left(\begin{array}[]{c}6636\\ 6750\\ 6768\\ 6904\\ 6993\end{array}\right) (0.820.570.060.030.010.000.100.980.180.020.000.030.180.980.040.530.760.080.020.360.220.280.000.050.93)\left(\begin{array}[]{rrrrr}-0.82&0.57&0.06&-0.03&0.01\\ 0.00&-0.10&0.98&-0.18&0.02\\ 0.00&0.03&0.18&0.98&0.04\\ 0.53&0.76&0.08&-0.02&-0.36\\ 0.22&0.28&0.00&-0.05&0.93\end{array}\right) (1947919597196031974919795)\left(\begin{array}[]{c}19479\\ 19597\\ 19603\\ 19749\\ 19795\end{array}\right)
P1+(66¯)c(ξ1,ξ2)3P1+(3¯3)c(ξ1,ξ2)3P1+(3¯3)c(ξ3)3\begin{array}[]{l}{}^{3}P_{1^{-+}(6\bar{6})_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{1^{-+}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{1^{-+}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.820.560.050.010.081.000.570.820.06)\left(\begin{array}[]{rrr}0.82&0.56&0.05\\ 0.01&0.08&-1.00\\ -0.57&0.82&0.06\end{array}\right) (667667696908)\left(\begin{array}[]{c}6676\\ 6769\\ 6908\end{array}\right) (0.820.570.050.000.081.000.570.820.06)\left(\begin{array}[]{rrr}0.82&0.57&0.05\\ 0.00&0.08&-1.00\\ -0.57&0.82&0.06\end{array}\right) (194961960319748)\left(\begin{array}[]{c}19496\\ 19603\\ 19748\end{array}\right)
P2(66¯)c(ξ1,ξ2)3P2(3¯3)c(ξ1,ξ2)3P2(3¯3)c(ξ3)5\begin{array}[]{l}{}^{3}P_{2^{--}(6\bar{6})_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{2^{--}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{5}P_{2^{--}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.800.590.060.010.120.990.600.800.10)\left(\begin{array}[]{rrr}0.80&-0.59&-0.06\\ 0.01&0.12&-0.99\\ 0.60&0.80&0.10\end{array}\right) (663067806955)\left(\begin{array}[]{c}6630\\ 6780\\ 6955\end{array}\right) (0.810.590.030.000.061.000.590.810.05)\left(\begin{array}[]{rrr}0.81&-0.59&-0.03\\ 0.00&0.06&-1.00\\ 0.59&0.81&0.05\end{array}\right) (194761960819767)\left(\begin{array}[]{c}19476\\ 19608\\ 19767\end{array}\right)
P2+(66¯)c(ξ1,ξ2)3P2+(3¯3)c(ξ1,ξ2)3P2+(3¯3)c(ξ3)3\begin{array}[]{l}{}^{3}P_{2^{-+}(6\bar{6})_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{2^{-+}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ {}^{3}P_{2^{-+}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.820.570.060.000.101.000.580.810.08)\left(\begin{array}[]{rrr}0.82&0.57&-0.06\\ 0.00&-0.10&-1.00\\ -0.58&0.81&-0.08\end{array}\right) (666767836928)\left(\begin{array}[]{c}6667\\ 6783\\ 6928\end{array}\right) (0.820.580.000.000.001.000.580.820.00)\left(\begin{array}[]{rrr}0.82&0.58&0.00\\ 0.00&0.00&-1.00\\ -0.58&0.82&0.00\end{array}\right) (194921960919756)\left(\begin{array}[]{c}19492\\ 19609\\ 19756\end{array}\right)
P3(3¯3)c(ξ3)5\begin{array}[]{c}{}^{5}P_{3^{--}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} 11 68016801 11 1961719617
21S0+(66¯)c(ξ1,ξ2)21S0+(3¯3)c(ξ1,ξ2)\begin{array}[]{l}2^{1}S_{0^{+-}\left(6\bar{6}\right)_{c}\left(\xi_{1},\xi_{2}\right)}\\ 2^{1}S_{0^{+-}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\end{array} (0.660.750.750.66)\left(\begin{array}[]{rr}-0.66&-0.75\\ -0.75&0.66\end{array}\right) (69937020)\left(\begin{array}[]{c}6993\\ 7020\end{array}\right) (0.101.001.000.10)\left(\begin{array}[]{rr}0.10&-1.00\\ -1.00&-0.10\end{array}\right) (1978919841)\left(\begin{array}[]{c}19789\\ 19841\end{array}\right)
21S0++(66¯)c(ξ1,ξ2)21S0++(3¯3)c(ξ1,ξ2)21S0++(66¯)c(ξ3)21S0++(3¯3)c(ξ3)\begin{array}[]{l}2^{1}S_{0^{++}\left(6\bar{6}\right)_{c}\left(\xi_{1},\xi_{2}\right)}\\ 2^{1}S_{0^{++}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ 2^{1}S_{0^{++}\left(6\bar{6}\right)_{c}\left(\xi_{3}\right)}\\ 2^{1}S_{0^{++}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.350.400.030.840.910.050.070.410.210.910.010.350.060.021.000.05)\left(\begin{array}[]{rrrr}0.35&0.40&0.03&0.84\\ -0.91&-0.05&0.07&0.41\\ 0.21&-0.91&-0.01&0.35\\ -0.06&0.02&-1.00&0.05\end{array}\right) (6908695770187185)\left(\begin{array}[]{c}6908\\ 6957\\ 7018\\ 7185\end{array}\right) (0.150.380.040.910.970.040.140.190.100.920.020.370.140.000.990.01)\left(\begin{array}[]{rrrr}0.15&0.38&0.04&0.91\\ -0.97&-0.04&-0.14&0.19\\ 0.10&-0.92&0.02&0.37\\ 0.14&0.00&-0.99&0.01\end{array}\right) (19719197671981119976)\left(\begin{array}[]{c}19719\\ 19767\\ 19811\\ 19976\end{array}\right)
23S1+(3¯3)c(ξ1,ξ2)23S1+(3¯3)c(ξ3)\begin{array}[]{l}2^{3}S_{1^{+-}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ 2^{3}S_{1^{+-}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.390.920.920.39)\left(\begin{array}[]{rr}-0.39&-0.92\\ -0.92&0.39\end{array}\right) (69197021)\left(\begin{array}[]{c}6919\\ 7021\end{array}\right) (0.380.920.920.38)\left(\begin{array}[]{rr}-0.38&-0.92\\ -0.92&0.38\end{array}\right) (1972219813)\left(\begin{array}[]{c}19722\\ 19813\end{array}\right)
23S1++(3¯3)c(ξ1,ξ2)\begin{array}[]{l}2^{3}S_{1^{++}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\end{array} 1 70097009 1 1979219792
25S2+(3¯3)c(ξ1,ξ2)\begin{array}[]{l}2^{5}S_{2^{+-}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\end{array} 1 70177017 1 1979519795
25S2++(3¯3)c(ξ1,ξ2)25S2++(3¯3)c(ξ3)\begin{array}[]{l}2^{5}S_{2^{++}(\bar{3}3)_{c}\left(\xi_{1},\xi_{2}\right)}\\ 2^{5}S_{2^{++}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array} (0.370.930.930.37)\left(\begin{array}[]{rr}-0.37&-0.93\\ -0.93&0.37\end{array}\right) (69277032)\left(\begin{array}[]{c}6927\\ 7032\end{array}\right) (0.370.930.930.37)\left(\begin{array}[]{rr}-0.37&-0.93\\ -0.93&0.37\end{array}\right) (1972619816)\left(\begin{array}[]{c}19726\\ 19816\end{array}\right)
Table 2: Fall-apart decay properties for the T(4c)T_{(4c)} states.
State       ηcηc\eta_{c}\eta_{c} J/ψJ/ψJ/\psi J/\psi ηcηc(2S)\eta_{c}\eta_{c}(2S) J/ψψ(2S)J/\psi\psi(2S) χc0χc0\chi_{c0}\chi_{c0}/χc0χc1\chi_{c0}\chi_{c1} χc0χc2\chi_{c0}\chi_{c2}/χc1χc1\chi_{c1}\chi_{c1} χc1χc2\chi_{c1}\chi_{c2}/χc2χc2\chi_{c2}\chi_{c2}/hchch_{c}h_{c}
T(4c)0++(6455)(1S)T_{(4c)0^{++}}(6455)(1S) 1.451.45 0.700.70 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0++(6550)(1S)T_{(4c)0^{++}}(6550)(1S) 0.120.12 1.781.78 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)2++(6524)(1S)T_{(4c)2^{++}}(6524)(1S) \cdot\cdot\cdot 0.000.00 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0++(6908)(2S)T_{(4c)0^{++}}(6908)(2S) 0.610.61 0.120.12 0.550.55 0.090.09 22.522.5\cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0++(6957)(2S)T_{(4c)0^{++}}(6957)(2S) 0.010.01 4.664.66 0.050.05 3.173.17 70.870.8\cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0++(7018)(2S)T_{(4c)0^{++}}(7018)(2S) 3.143.14 1.871.87 0.000.00 0.070.07 14.814.8\cdot\cdot\cdot 0.000.00\cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0++(7185)(2S)T_{(4c)0^{++}}(7185)(2S) 0.000.00 0.480.48 0.210.21 0.140.14 1.141.14\cdot\cdot\cdot 0.050.056.126.12 0.53/18.0/5.790.53/18.0/5.79
T(4c)2++(6927)(2S)T_{(4c)2^{++}}(6927)(2S) \cdot\cdot\cdot 0.360.36 \cdot\cdot\cdot 0.300.30 0.000.00/1.151.15 \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)2++(7032)(2S)T_{(4c)2^{++}}(7032)(2S) \cdot\cdot\cdot 7.127.12 \cdot\cdot\cdot 2.832.83 0.230.23/98.098.0 325325/214214 \cdot\cdot\cdot
State J/ψJ/ψJ/\psi J/\psi ηcχc0\eta_{c}\chi_{c0} ηcχc1\eta_{c}\chi_{c1} ηcχc2\eta_{c}\chi_{c2} J/ψhcJ/\psi h_{c} J/ψψ(2S)J/\psi\psi(2S)/ηcηc(2S)\eta_{c}\eta_{c}(2S) χc0χc0\chi_{c0}\chi_{c0}/χc0χc1\chi_{c0}\chi_{c1}/χc0χc2\chi_{c0}\chi_{c2}
T(4c)1++(7009)(2S)T_{(4c)1^{++}}(7009)(2S) \cdot\cdot\cdot 2.432.43 4.574.57 4.814.81 3.793.79 0.00/0.00/\cdot\cdot\cdot \cdot\cdot\cdot/0.00/0.00
T(4c)0+(6681)(1P)T_{(4c)0^{-+}}(6681)(1P) 0.040.04 1.281.28 0.000.00 0.030.03 0.400.40 \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0+(6749)(1P)T_{(4c)0^{-+}}(6749)(1P) 1.561.56 0.000.00 0.000.00 0.000.00 5.335.33 \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0+(6891)(1P)T_{(4c)0^{-+}}(6891)(1P) 0.000.00 2.382.38 0.000.00 0.790.79 0.060.06 0.00/0.00/\cdot\cdot\cdot 0.00//0.00/\cdot\cdot\cdot/\cdot\cdot\cdot
T(4c)1+(6676)(1P)T_{(4c)1^{-+}}(6676)(1P) 0.090.09 0.000.00 1.991.99 0.030.03 1.701.70 /0.00\cdot\cdot\cdot/0.00 \cdot\cdot\cdot
T(4c)1+(6769)(1P)T_{(4c)1^{-+}}(6769)(1P) 0.210.21 0.000.00 1.221.22 0.060.06 5.575.57 /0.00\cdot\cdot\cdot/0.00 \cdot\cdot\cdot
T(4c)1+(6908)(1P)T_{(4c)1^{-+}}(6908)(1P) 0.000.00 0.000.00 1.431.43 0.060.06 0.370.37 0.00/0.000.00/0.00 0.31//0.31/\cdot\cdot\cdot/\cdot\cdot\cdot
T(4c)2+(6667)(1P)T_{(4c)2^{-+}}(6667)(1P) 0.000.00 0.020.02 0.030.03 0.050.05 0.030.03 \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)2+(6783)(1P)T_{(4c)2^{-+}}(6783)(1P) 0.010.01 0.050.05 0.070.07 1.101.10 2.182.18 \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)2+(6928)(1P)T_{(4c)2^{-+}}(6928)(1P) 0.010.01 0.050.05 0.080.08 0.880.88 1.981.98 0.00/0.00/\cdot\cdot\cdot 0.00//0.00/\cdot\cdot\cdot/\cdot\cdot\cdot
state ηcJ/ψ\eta_{c}J/\psi ηchc\eta_{c}h_{c} χc0J/ψ\chi_{c0}J/\psi χc1J/ψ\chi_{c1}J/\psi χc2J/ψ\chi_{c2}J/\psi ηcψ(2S)\eta_{c}\psi(2S)/ ηc(2S)J/ψ\eta_{c}(2S)J/\psi χc0hc\chi_{c0}h_{c}
T(4c)1+(6500)(1S)T_{(4c)1^{+-}}(6500)(1S) 0.450.45 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0+(6993)(2S)T_{(4c)0^{+-}}(6993)(2S) \cdot\cdot\cdot 3.163.16 3.453.45 2.652.65 0.540.54 \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0+(7020)(2S)T_{(4c)0^{+-}}(7020)(2S) \cdot\cdot\cdot 21.121.1 0.170.17 0.350.35 0.340.34 \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)1+(6919)(2S)T_{(4c)1^{+-}}(6919)(2S) 0.050.05 \cdot\cdot\cdot 0.020.02 0.040.04 0.060.06 0.090.09/ 0.680.68 \cdot\cdot\cdot
T(4c)1+(7021)(2S)T_{(4c)1^{+-}}(7021)(2S) 1.981.98 \cdot\cdot\cdot 0.020.02 0.070.07 0.120.12 0.710.71/ 0.610.61 150150
T(4c)2+(7017)(2S)T_{(4c)2^{+-}}(7017)(2S) \cdot\cdot\cdot \cdot\cdot\cdot 4.704.70 3.753.75 0.860.86 \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0(6651)(1P)T_{(4c)0^{--}}(6651)(1P) 0.240.24 \cdot\cdot\cdot 0.000.00 6.756.75 \cdot\cdot\cdot \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)0(6926)(1P)T_{(4c)0^{--}}(6926)(1P) 0.120.12 \cdot\cdot\cdot 0.020.02 2.762.76 0.190.19 0.000.00/ 0.000.00 \cdot\cdot\cdot
T(4c)1(6636)(1P)T_{(4c)1^{--}}(6636)(1P) 0.040.04 0.020.02 3.283.28 0.970.97 \cdot\cdot\cdot \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)1(6750)(1P)T_{(4c)1^{--}}(6750)(1P) 0.170.17 0.010.01 1.921.92 3.993.99 1.051.05 0.000.00/ 0.000.00 \cdot\cdot\cdot
T(4c)1(6768)(1P)T_{(4c)1^{--}}(6768)(1P) 0.000.00 2.772.77 0.080.08 0.990.99 0.790.79 0.000.00 / 0.000.00 \cdot\cdot\cdot
T(4c)1(6904)(1P)T_{(4c)1^{--}}(6904)(1P) 0.000.00 0.170.17 2.962.96 0.260.26 0.170.17 0.000.00/ 0.000.00 \cdot\cdot\cdot
T(4c)1(6993)(1P)T_{(4c)1^{--}}(6993)(1P) 0.030.03 1.911.91 0.120.12 0.760.76 1.491.49 0.000.00/ 0.000.00 0.170.17
T(4c)2(6630)(1P)T_{(4c)2^{--}}(6630)(1P) 0.060.06 0.010.01 0.010.01 0.020.02 \cdot\cdot\cdot \cdot\cdot\cdot/ \cdot\cdot\cdot \cdot\cdot\cdot
T(4c)2(6780)(1P)T_{(4c)2^{--}}(6780)(1P) 0.010.01 0.010.01 0.010.01 3.553.55 2.002.00 0.000.00/ 0.000.00 \cdot\cdot\cdot
T(4c)2(6955)(1P)T_{(4c)2^{--}}(6955)(1P) 0.000.00 0.000.00 0.110.11 1.751.75 3.453.45 0.000.00/ 0.010.01 0.000.00
T(4c)3(6801)(1P)T_{(4c)3^{--}}(6801)(1P) 0.000.00 0.000.00 0.160.16 0.270.27 11.811.8 0.000.00/0.000.00 \cdot\cdot\cdot
Table 3: Fall-apart decay properties for the T(4b)T_{(4b)} states.
State       ηbηb\eta_{b}\eta_{b}   ΥΥ\Upsilon\Upsilon   ηbηb(2S)\eta_{b}\eta_{b}(2S)   ΥΥ(2S)\Upsilon\Upsilon(2S) χb0χb0\chi_{b0}\chi_{b0}/χb0χb1\chi_{b0}\chi_{b1}   χb0χb2\chi_{b0}\chi_{b2}/χb1χb1\chi_{b1}\chi_{b1}   χb1χb2\chi_{b1}\chi_{b2}/χb2χb2\chi_{b2}\chi_{b2}/hbhbh_{b}h_{b}
T(4b)0++(19306)(1S)T_{(4b)0^{++}}(19306)(1S) 0.33 0.16 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0++(19355)(1S)T_{(4b)0^{++}}(19355)(1S) 0.02 0.38 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)2++(19341)(1S)T_{(4b)2^{++}}(19341)(1S) \cdot\cdot\cdot 0.00 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0++(19719)(2S)T_{(4b)0^{++}}(19719)(2S) 0.110.11 0.21 1.04 1.53 0.20/\cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0++(19767)(2S)T_{(4b)0^{++}}(19767)(2S) 0.090.09 2.29 1.00 15.4 14.2/\cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0++(19811)(2S)T_{(4b)0^{++}}(19811)(2S) 3.80 1.89 24.0 8.30 5.58/\cdot\cdot\cdot 0.01/18.2 0.66/\cdot\cdot\cdot/233
T(4b)0++(19976)(2S)T_{(4b)0^{++}}(19976)(2S) 0.070.07 0.690.69 0.320.32 2.02 1.18/\cdot\cdot\cdot 0.09/4.27 0.67/10.4/5.50
T(4b)2++(19726)(2S)T_{(4b)2^{++}}(19726)(2S) \cdot\cdot\cdot 0.41 \cdot\cdot\cdot 3.23 0.00 \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)2++(19816)(2S)T_{(4b)2^{++}}(19816)(2S) \cdot\cdot\cdot 7.41 \cdot\cdot\cdot 41.8 0.03/15.2 45.3/34.5 75.8/\cdot\cdot\cdot/\cdot\cdot\cdot
State ΥΥ\Upsilon\Upsilon ηbχb0\eta_{b}\chi_{b0} ηbχb1\eta_{b}\chi_{b1} ηbχb2\eta_{b}\chi_{b2} Υhb\Upsilon h_{b} ΥΥ(2S)\Upsilon\Upsilon(2S)/ηbηb(2S)\eta_{b}\eta_{b}(2S)   χb0χb0\chi_{b0}\chi_{b0}/χb0χb1\chi_{b0}\chi_{b1}/χb0χb2\chi_{b0}\chi_{b2}
T(4b)1++(19792)(2S)T_{(4b)1^{++}}(19792)(2S) \cdot\cdot\cdot 5.41 16.3 23.9 58.0 0.00/\cdot\cdot\cdot \cdot\cdot\cdot/0.00/0.00
T(4b)0+(19500)(1P)T_{(4b)0^{-+}}(19500)(1P) 0.05 1.96 0.00 0.10 1.48 0.00/\cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0+(19595)(1P)T_{(4b)0^{-+}}(19595)(1P) 0.16 1.26 0.00 0.15 3.74 0.00/\cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0+(19739)(1P)T_{(4b)0^{-+}}(19739)(1P) 0.01 0.99 0.00 0.27 0.07 0.00/\cdot\cdot\cdot 0.00/\cdot\cdot\cdot/ \cdot\cdot\cdot
T(4b)1+(19496)(1P)T_{(4b)1^{-+}}(19496)(1P) 0.02 0.00 2.00 0.07 1.94 0.00/0.00 \cdot\cdot\cdot
T(4b)1+(19603)(1P)T_{(4b)1^{-+}}(19603)(1P) 0.03 0.00 2.14 0.16 3.75 0.00/0.00 \cdot\cdot\cdot
T(4b)1+(19748)(1P)T_{(4b)1^{-+}}(19748)(1P) 0.00 0.00 0.59 0.05 0.25 0.00/0.00 0.07/\cdot\cdot\cdot/\cdot\cdot\cdot
T(4b)2+(19492)(1P)T_{(4b)2^{-+}}(19492)(1P) 0.00 0.00 0.01 0.03 0.03 0.00/\cdot\cdot\cdot \cdot\cdot\cdot
T(4b)2+(19609)(1P)T_{(4b)2^{-+}}(19609)(1P) 0.00 0.04 0.08 1.17 1.66 0.00/\cdot\cdot\cdot \cdot\cdot\cdot
T(4b)2+(19756)(1P)T_{(4b)2^{-+}}(19756)(1P) 0.00 0.06 0.11 1.01 1.58 0.00/\cdot\cdot\cdot 0.00/\cdot\cdot\cdot/\cdot\cdot\cdot
state ηbΥ\eta_{b}\Upsilon ηbhb\eta_{b}h_{b} χb0Υ\chi_{b0}\Upsilon χb1Υ\chi_{b1}\Upsilon χb2Υ\chi_{b2}\Upsilon ηbΥ(2S)\eta_{b}\Upsilon(2S)/ ηb(2S)Υ\eta_{b}(2S)\Upsilon χb0hb\chi_{b0}h_{b}
T(4b)1+(19329)(1S)T_{(4b)1^{+-}}(19329)(1S) 0.10 \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0+(19789)(2S)T_{(4b)0^{+-}}(19789)(2S) \cdot\cdot\cdot 66.8 4.10 12.0 17.3 \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0+(19841)(2S)T_{(4b)0^{+-}}(19841)(2S) \cdot\cdot\cdot 15.9 3.42 10.5 16.0 \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)1+(19722)(2S)T_{(4b)1^{+-}}(19722)(2S) 0.20 \cdot\cdot\cdot 0.00 0.01 0.01 267/303 \cdot\cdot\cdot
T(4b)1+(19813)(2S)T_{(4b)1^{+-}}(19813)(2S) 1.82 \cdot\cdot\cdot 0.00 0.01 0.01 82.7/102 27
T(4b)2+(19795)(2S)T_{(4b)2^{+-}}(19795)(2S) \cdot\cdot\cdot \cdot\cdot\cdot 12.6 37.0 54.0 \cdot\cdot\cdot \cdot\cdot\cdot
T(4b)0(19485)(1P)T_{(4b)0^{--}}(19485)(1P) 0.04 \cdot\cdot\cdot 0.00 5.07 0.05 0.00/0.00 \cdot\cdot\cdot
T(4b)0(19756)(1P)T_{(4b)0^{--}}(19756)(1P) 0.02 \cdot\cdot\cdot 0.00 0.98 0.11 0.00/0.00 \cdot\cdot\cdot
T(4b)1(19479)(1P)T_{(4b)1^{--}}(19479)(1P) 0.01 0.00 2.01 1.09 1.90 0.00/0.00 \cdot\cdot\cdot
T(4b)1(19597)(1P)T_{(4b)1^{--}}(19597)(1P) 0.02 0.09 3.00 2.49 0.68 0.00/0.00 \cdot\cdot\cdot
T(4b)1(19603)(1P)T_{(4b)1^{--}}(19603)(1P) 0.00 3.65 0.03 0.91 0.67 0.00/0.00 \cdot\cdot\cdot
T(4b)1(19748)(1P)T_{(4b)1^{--}}(19748)(1P) 0.00 0.02 0.89 0.21 0.13 0.00/0.00 \cdot\cdot\cdot
T(4b)1(19795)(1P)T_{(4b)1^{--}}(19795)(1P) 0.00 0.99 0.14 0.55 0.54 0.00/0.00 0.04
T(4b)2(19476)(1P)T_{(4b)2^{--}}(19476)(1P) 0.01 0.00 0.00 0.01 0.06 0.00/0.00 \cdot\cdot\cdot
T(4b)2(19608)(1P)T_{(4b)2^{--}}(19608)(1P) 0.00 0.00 0.01 2.52 1.16 0.00/0.00 \cdot\cdot\cdot
T(4b)2(19767)(1P)T_{(4b)2^{--}}(19767)(1P) 0.00 0.00 0.09 1.08 2.17 0.00/0.00 0.00
T(4b)3(19617)(1P)T_{(4b)3^{--}}(19617)(1P) 0.00 0.00 0.15 0.30 6.85 0.00/0.00 \cdot\cdot\cdot

III Results and discussion

In Table 1, the mass spectra of the T(4c)T_{(4c)} and T(4b)T_{(4b)} states are listed in the third and fifth columns, respectively. For clarity, the mass spectra are also plotted in Fig. 2. From Table 1, one can see that the physical states are usually mixtures of two different color configurations |66¯c|6\bar{6}\rangle_{c} and |3¯3c|\bar{3}3\rangle_{c}. The eigenvectors for different configurations of the T(4Q)T_{(4Q)} states are also listed in Table 1. The eigenvalues for the physical states can be extracted by diagonalizing the mass matrices. The masses of the 1P1P-wave T(4c)T_{(4c)} and T(4b)T_{(4b)} states are predicted to be in the range of 6.67.0\sim 6.6-7.0 GeV and 19.519.8\sim 19.5-19.8 GeV, respectively. The masses of some 1P1P-wave T(4c)T_{(4c)} states are comparable with the newly observed structures X(6600)X(6600) and X(6900)X(6900).

It should be mentioned that except for the color configurations |66¯c|6\bar{6}\rangle_{c} and |3¯3c|\bar{3}3\rangle_{c}, one can also select the |11c|11\rangle_{c} and |88c|88\rangle_{c} representations when constructing the tetraquark wave functions. The two sets of color configurations are equivalent to each other. The |66¯c|6\bar{6}\rangle_{c} and |3¯3c|\bar{3}3\rangle_{c} configurations can be expressed by |11c|11\rangle_{c} and |88c|88\rangle_{c} through the Fierz transformation Wang:2019rdo . With which, one can extracted the |11c|11\rangle_{c} and |88c|88\rangle_{c} components in a physical states expressed with the |66¯c|6\bar{6}\rangle_{c} and |3¯3c|\bar{3}3\rangle_{c} configurations. The components of different color configurations for the physical T(4c)T_{(4c)} and T(4b)T_{(4b)} states are given in the Tables 7 and 7 of the appendix. To know the spatial size of the tetraquark states, we also calculate the root mean square radius, our results are also listed in Tables 7 and 7. Similar to ours, a systematical study of the 1S1S, 2S2S and 1P1P-wave T(4c)T_{(4c)} states was also carried out within the non-relativistic quark model in Ref. Wang:2021kfv . The obtained results are generally consistent with ours. The slight differences are mainly due to the different selections of the model parameters, spin-orbital potentials, and numerical methods. The differences of the numerical methods adopted in the present work and that in Ref. Wang:2021kfv have been discussed in Ref. Wang:2019rdo .

In addition to calculating the mass spectra, the results of the fall-apart decays via the quark rearrangement of the 1S1S-, 2S2S- and 1P1P-wave T(4Q)T_{(4Q)} states are also given in Tables 2 and 3. To our surprise, the fall-apart decay widths for most of the T(4Q)T_{(4Q)} states are only in a small range of 010\sim 0-10 MeV. Thus, there should exist some stable T(4Q)T_{(4Q)} states although their masses are above the thresholds of QQ¯Q\bar{Q} meson pairs.

In the following part, we focus on the 1S1S-, 2S2S- and 1P1P-wave T(4c)T_{(4c)} states to understand the di-J/ψJ/\psi spectrum observed at LHCb LHCexp , CMS CMSexp and ATLAS ATLASexp . The nature of the broad structure around 6.26.86.2-6.8 GeV in the di-J/ψJ/\psi invariant mass spectrum LHCexp ; CMSexp ; ATLASexp is mysterious if it is a genuine state since it is difficult to understand what decay channels would contribute to its broad width. Note that the CMS CMSexp and ATLAS ATLASexp measurements show some details where a small shoulder appears at the lower side of the broad structure X(6600)X(6600).

There are no T(4c)T_{(4c)} states lying in the mass range of <6.4<6.4 GeV in our NRPQM predictions. However, it turns out to be possible that the small shoulder structure around 6.26.46.2-6.4 GeV near the di-J/ψJ/\psi threshold may be caused by some feed-down effects from higher mass T(4c)T_{(4c)} states. It is interesting to find that in the 2S2S-wave T(4c)T_{(4c)} states, the quark rearrangement decay rates of T(4c)0++(6908,6957,7018)χc0χc0T_{(4c)0^{++}}(6908,6957,7018)\to\chi_{c0}\chi_{c0}, T(4c)0++(7185)χc1χc1,χc2χc2T_{(4c)0^{++}}(7185)\to\chi_{c1}\chi_{c1},\chi_{c2}\chi_{c2} are large, and their partial widths are predicted to be 𝒪(10)\mathcal{O}(10) MeV. These 2S2S-wave states with JPC=0++J^{PC}=0^{++} have masses around 6.97.2\sim 6.9-7.2 GeV. The χcJχcJ\chi_{cJ}\chi_{cJ^{\prime}} final states can feed down to the di-J/ψJ/\psi channel via χcJχcJJ/ψJ/ψ+γγ\chi_{cJ}\chi_{cJ^{\prime}}\to J/\psi J/\psi+\gamma\gamma and J/ψJ/ψ+ππJ/\psi J/\psi+\pi\pi where the two soft photons or soft pions will evade the detection.

We actually find that there could be multi-sources contributing to the shoulder structure around 6.26.46.2-6.4 GeV via the feed-down mechanisms from some 1P1P-wave T(4c)T_{(4c)} states. For instance, the decay rates for T(4c)0(6651)J/ψχc1T_{(4c)0^{--}}(6651)\to J/\psi\chi_{c1}, T(4c)1(6636)J/ψχc0T_{(4c)1^{--}}(6636)\to J/\psi\chi_{c0}, T(4c)1(6750)J/ψχc0,1,2T_{(4c)1^{--}}(6750)\to J/\psi\chi_{c0,1,2}, T(4c)2(6780)J/ψχc1,2T_{(4c)2^{--}}(6780)\to J/\psi\chi_{c1,2}, and T(ccc¯c¯)3(6801)J/ψχc2T_{(cc\bar{c}\bar{c})3^{--}}(6801)\to J/\psi\chi_{c2} are quite large. Their partial widths are predicted to be about several MeV. These 1P1P-wave states have masses in the range of 6.66.8\sim 6.6-6.8 GeV. Their decays into J/ψχcJJ/\psi\chi_{cJ} can also contribute to the di-J/ψJ/\psi channel through the radiative decays of J/ψχc0,1,2J/ψJ/ψγJ/\psi\chi_{c0,1,2}\to J/\psi J/\psi\gamma, where the photon momenta are about 300450300\sim 450 MeV. The feed-down mechanism seems to be a possible explanation for the broad structure around 6.26.46.2-6.4 GeV in the di-J/ψJ/\psi invariant mass spectrum.

The X(6600)X(6600) structure observed at CMS may be assigned to the 1S1S-wave state T(4c)0++(6550)T_{(4c)0^{++}}(6550) predicted in the NRPQM. This state is a mixed state between two color configurations 66¯6\bar{6} and 3¯3\bar{3}3. The predicted mass is in good agreement with the observations. Furthermore, the quark rearrangement decays of T(4c)0++(6550)T_{(4c)0^{++}}(6550) are governed by the di-J/ψJ/\psi channel, which is also consistent with the observations. Although the predicted partial width of the di-J/ψJ/\psi mode, ΓJ/ψJ/ψ1.78\Gamma_{J/\psi J/\psi}\simeq 1.78 MeV, is much smaller than the observed total width Γ=124±29±34\Gamma=124\pm 29\pm 34 MeV of X(6600)X(6600), its width may be saturated by the hadronic decays into open-charmed meson pairs via the cc¯c\bar{c} annihilations Anwar:2017toa . It was shown in Ref. Anwar:2017toa that the sum of the partial widths of these hadronic decay processes can reach up to order of 100 MeV. In the same picture the other 1S1S state T(4c)0++(6455)T_{(4c)0^{++}}(6455) may also be observed in the di-J/ψJ/\psi channel given the accumulation of more data in the future. Finally, it should be mentioned that the X(6600)X(6600) structure may also bear some feed-down effects from the 2S2S-wave states T(4c)0+(6978)T_{(4c)0^{+-}}(6978) and T(4c)2+(7031)T_{(4c)2^{+-}}(7031), and/or the 1P1P-wave states T(4c)0(6926)T_{(4c)0^{--}}(6926), T(4c)1(6904,6993)T_{(4c)1^{--}}(6904,6993) and T(4c)2(6955)T_{(4c)2^{--}}(6955), since they have sizeable partial widths into J/ψχcJJ/\psi\chi_{cJ} final states.

Concerning the nature of X(6900)X(6900) the mass location suggests that several 1P1P- and 2S2S-wave states with C=+1C=+1 can be the candidates of X(6900)X(6900). However, with the decay properties taken into account it shows that only the 2S2S-wave state T(4c)0++(6957)T_{(4c)0^{++}}(6957) can match X(6900)X(6900). The partial widths of T(4c)0++(6957)T_{(4c)0^{++}}(6957) decaying into the di-J/ψJ/\psi and J/ψψ(2S)J/\psi\psi(2S) channels are predicted to be 4.7\sim 4.7 MeV and 3.23.2 MeV, respectively. Combined with the measured width Γ=122±22±19\Gamma=122\pm 22\pm 19 MeV of X(6900)X(6900), it is predicted that the decay rates of these two channels are 𝒪\mathcal{O}(3%). As listed in Table 1, T(4c)0++(6957)T_{(4c)0^{++}}(6957) contains dominantly 21S0++(66¯)c(ξ1,ξ2)2^{1}S_{0^{++}\left(6\bar{6}\right)_{c}\left(\xi_{1},\xi_{2}\right)}. Its mass slightly higher than T(4c)0++(6908)T_{(4c)0^{++}}(6908) of which the dominant configuration is 21S0++(3¯3)c(ξ3)2^{1}S_{0^{++}(\bar{3}3)_{c}\left(\xi_{3}\right)}. This is due to the strong attraction produced by the relatively small but crucial mixing of the 21S0++(3¯3)c(ξ3)2^{1}S_{0^{++}(\bar{3}3)_{c}\left(\xi_{3}\right)} configuration. Its crucial role for the 21S0++2^{1}S_{0^{++}} multiplets can be seen clearly by the mixing matrix in Table 1 for both ccc¯c¯cc\bar{c}\bar{c} and bbb¯b¯bb\bar{b}\bar{b}.

With X(6900)X(6900) assigned as the T(4c)0++(6957)T_{(4c)0^{++}}(6957), the partial width ratio between the di-J/ψJ/\psi and J/ψψ(2S)J/\psi\psi(2S) channels is predicted to be

ΓJ/ψJ/ψΓJ/ψψ(2S)1.5,\frac{\Gamma_{J/\psi J/\psi}}{\Gamma_{J/\psi\psi(2S)}}\simeq 1.5, (8)

which can be tested in future experiments. As shown in Tab. 2, the main decay channel of T(4c)0++(6957)T_{(4c)0^{++}}(6957) should be T(4c)0++(6957)χc0χc0T_{(4c)0^{++}}(6957)\to\chi_{c0}\chi_{c0}. Therefore, a search for X(6900)X(6900) in the χc0χc0\chi_{c0}\chi_{c0} channel could be useful for understanding its nature. We notice that some other analyses also prefer X(6900)X(6900) as a compact tetraquark state with JPC=0++J^{PC}=0^{++} Karliner:2020dta ; Zhou:2022xpd ; Kuang:2023vac . Finally, it should be mentioned that the 2S2S state T(4c)0++(7018)T_{(4c)0^{++}}(7018) may also contribute to the X(6900)X(6900) structure observed in the di-J/ψJ/\psi final state, since it has a sizeable partial decay width, ΓJ/ψJ/ψ1.87\Gamma_{J/\psi J/\psi}\simeq 1.87 MeV, into the di-J/ψJ/\psi channel. Moreover, this state has large decay rates into the ηcηc\eta_{c}\eta_{c} and χc0χc0\chi_{c0}\chi_{c0} channels as well.

IV Summary

With the coherent study of the fully-heavy tetraquark spectra in the NRPQM and their rearrangement decays, we show that the recent measurements of the di-J/ψJ/\psi spectrum have provided a strong evidence for the SS- and PP-wave T(4c)T_{(4c)} states. The small shoulder structure around 6.2-6.4 GeV observed by CMS and ATLAS may be due to the feed-down effects from higher 1P1P-wave states with C=1C=-1 or some 2S2S-wave states with JPC=0++J^{PC}=0^{++}. The X(6600)X(6600) structure may arise from the 1S1S-wave state T(4c)0++(6550)T_{(4c)0^{++}}(6550), of which the peak structure may also bear some feed-down effects from the 2S2S-wave and/or 1P1P-wave states with C=1C=-1. The X(6900)X(6900) structure is most likely to be the 2S2S-wave state T(4c)0++(6957)T_{(4c)0^{++}}(6957). If X(6600)X(6600) and X(6900)X(6900) indeed correspond to the 1S1S- and 2S2S-wave T(4c)T_{(4c)} states, respectively, their decay rates into the di-J/ψJ/\psi channel are predicted to be order of 1%1\%. In addition, one 1S1S-state T(4c)0++(6455)T_{(4c)0^{++}}(6455), one 2S2S-state T(4c)0++(7016)T_{(4c)0^{++}}(7016) and one 1P1P-state T(4c)0+(6749)T_{(4c)0^{-+}}(6749) are predicted to be located at the same masses as X(6600)X(6600) and X(6900)X(6900) in the di-J/ψJ/\psi invariant mass spectrum.

Based on such a scenario, we expect that more signals for the T(4c)T_{(4c)} states should be observed in other decay channels via either SS- or PP-wave transitions, such as ηcηc\eta_{c}\eta_{c}, J/ψhcJ/\psi h_{c}, J/ψχcJJ/\psi\chi_{cJ}, ηchc\eta_{c}h_{c}. By extending the calculations to the full-bottom tetraquark systems, we have also included the mass spectra of the bbb¯b¯bb\bar{b}\bar{b} states and their fall-apart decays in Tab. 1 and Tab. 3, respectively. Several 2S2S-wave T(4b)T_{(4b)} states, such as T(4b)0++(19767)T_{(4b)0^{++}}(19767) and T(4b)0++(19811)T_{(4b)0^{++}}(19811), should have good potentials to be observed in di-Υ\Upsilon and ΥΥ(2S)\Upsilon\Upsilon(2S) decay channels. Notice that no signals of the T(4b)T_{(4b)} states are found based on the present statistics at LHCb LHCexp . This can be due to the low production rates for such heavy objects.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No.12175065, No.12235018, No.12105203, No.11775078, and No.U1832173). Q.Z. is also supported in part, by the DFG and NSFC funds to the Sino-German CRC 110 ¡°Symmetries and the Emergence of Structure in QCD¡± (NSFC Grant No. 12070131001, DFG Project-ID 196253076), National Key Basic Research Program of China under Contract No. 2020YFA0406300, and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34030302).

References

  • (1) M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett.  8, 214 (1964).
  • (2) G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 1, CERN-TH-401.
  • (3) S. K. Choi et al. [Belle Collaboration], Observation of a narrow charmonium - like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. Lett.  91, 262001 (2003).
  • (4) S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.  90, 015003 (2018).
  • (5) R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavy-Quark QCD exotica, Prog. Part. Nucl. Phys.  93, 143 (2017).
  • (6) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep.  639, 1 (2016).
  • (7) A. Ali, J. S. Lange and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys.  97, 123 (2017).
  • (8) A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark resonances, Phys. Rep.  668, 1 (2016).
  • (9) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pentaquark and Tetraquark states, Prog. Part. Nucl. Phys.  107, 237 (2019).
  • (10) F. K. Guo, C. Hanhart, U. G. Meissner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys.  90, 015004 (2018).
  • (11) J. P. Ader, J. M. Richard and P. Taxil, Do narrow heavy multi - quark states exist, Phys. Rev. D 25, 2370 (1982).
  • (12) Y. Iwasaki, A possible model for new resonances-exotics and hidden charm, Prog. Theor. Phys.  54, 492 (1975).
  • (13) S. Zouzou, B. Silvestre-Brac, C. Gignoux and J. M. Richard, Four quark bound states, Z. Phys. C 30, 457 (1986).
  • (14) L. Heller and J. A. Tjon, On bound states of heavy Q2Q¯2Q^{2}\bar{Q}^{2} systems, Phys. Rev. D 32, 755 (1985).
  • (15) R. J. Lloyd and J. P. Vary, All charm tetraquarks, Phys. Rev. D 70, 014009 (2004).
  • (16) N. Barnea, J. Vijande, and A. Valcarce, Four-quark spectroscopy within the hyperspherical formalism, Phys. Rev. D 73, 054004 (2006).
  • (17) J. Vijande, A. Valcarce, and N. Barnea, Exotic meson-meson molecules and compact four-quark states, Phys. Rev. D 79, 074010 (2009).
  • (18) M. N. Anwar, J. Ferretti, F. K. Guo, E. Santopinto, and B. S. Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018).
  • (19) M. Karliner, S. Nussinov, and J. L. Rosner, QQQ¯Q¯QQ\bar{Q}\bar{Q} states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017).
  • (20) Y. Bai, S. Lu, and J. Osborne, Beauty-full tetraquarks, Phys. Lett. B 798, 134930 (2019).
  • (21) A. V. Berezhnoy, A. V. Luchinsky and A. A. Novoselov, Tetraquarks composed of 4 heavy quarks, Phys. Rev. D 86, 034004 (2012).
  • (22) Z. G. Wang, Analysis of the QQQ¯Q¯QQ\bar{Q}\bar{Q} tetraquark states with QCD sum rules, Eur. Phys. J. C 77, 432 (2017).
  • (23) Z. G. Wang and Z. Y. Di, Analysis of the vector and axialvector QQQ¯Q¯QQ\bar{Q}\bar{Q} tetraquark states with QCD sum rules, Acta Phys. Polon. B 50, 1335 (2019).
  • (24) V. R. Debastiani and F. S. Navarra, A non-relativistic model for the [cc][c¯c¯][cc][\bar{c}\bar{c}] tetraquark, Chin.Phys.C 43,013105(2018).
  • (25) A. Esposito and A. D. Polosa, A bbb¯b¯bb\bar{b}\bar{b} di-bottomonium at the LHC, Eur Phys J.C 78.782(2018).
  • (26) P. Lundhammar and T. Ohlsson, Nonrelativistic model of tetraquarks and predictions for their masses from fits to charmed and bottom meson data, Phys. Rev. D 102, 054018 (2020).
  • (27) J. M. Richard, A. Valcarce, and J. Vijande, Few-body quark dynamics for doubly heavy baryons and tetraquarks, Phys. Rev. C 97, 035211 (2018).
  • (28) J. M. Richard, A. Valcarce, and J. Vijande, String dynamics and metastability of all-heavy tetraquarks, Phys. Rev. D 95, 054019 (2017).
  • (29) J. Wu, Y. R. Liu, K. Chen, X. Liu, and S. L. Zhu, Heavy-flavored tetraquark states with the QQQ¯Q¯QQ\bar{Q}\bar{Q} configuration, Phys. Rev. D 97, 094015 (2018).
  • (30) C. Hughes, E. Eichten, and C. T. H. Davies, Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD, Phys. Rev. D 97, 054505 (2018).
  • (31) W. Chen, H. X. Chen, X. Liu, T. G. Steele and S. L. Zhu, Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B 773, 247 (2017).
  • (32) W. Chen, H. X. Chen, X. Liu, T. G. Steele and S. L. Zhu, Doubly hidden-charm/bottom QQQ¯Q¯QQ\bar{Q}\bar{Q} tetraquark states, EPJ Web Conf.  182, 02028 (2018).
  • (33) M. S. Liu, Q. F. Lü, X. H. Zhong and Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, 016006 (2019).
  • (34) C. Deng, H. Chen and J. Ping, Towards the understanding of fully-heavy tetraquark states from various models, Phys. Rev. D 103, 014001 (2021).
  • (35) G. J. Wang, L. Meng and S. L. Zhu, Spectrum of the fully-heavy tetraquark state QQQ¯Q¯QQ\bar{Q}^{\prime}\bar{Q}^{\prime}, Phys. Rev. D 100, 096013 (2019).
  • (36) M. A. Bedolla, J. Ferretti, C. D. Roberts and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, Eur. Phys. J. C 80, 1004 (2020).
  • (37) X. Chen, Fully-charm tetraquarks: ccc¯c¯cc\bar{c}\bar{c}, arXiv:2001.06755 [hep-ph].
  • (38) R. Aaij et al. [LHCb], Observation of structure in the J/ψJ/\psi-pair mass spectrum, Sci. Bull. 65, no.23, 1983-1993 (2020).
  • (39) G. Aad et al. [ATLAS], Observation of an Excess of Dicharmonium Events in the Four-Muon Final State with the ATLAS Detector, Phys. Rev. Lett. 131, 151902 (2023).
  • (40) A. Hayrapetyan et al. [CMS], Observation of new structure in the J/ψ\psiJ/ψ\psi mass spectrum in proton-proton collisions at s\sqrt{s} = 13 TeV, [arXiv:2306.07164 [hep-ex]].
  • (41) W. C. Dong and Z. G. Wang, Going in quest of potential tetraquark interpretations for the newly observed TψψT_{\psi\psi} states in light of the diquark-antidiquark scenarios, Phys. Rev. D 107, no.7, 074010 (2023)
  • (42) W. Chen, Q. N. Wang, Z. Y. Yang, H. X. Chen, X. Liu, T. G. Steele and S. L. Zhu, Searching for fully-heavy tetraquark states in QCD moment sum rules, Nucl. Part. Phys. Proc. 318-323, 73-77 (2022).
  • (43) R. N. Faustov, V. O. Galkin and E. M. Savchenko, Fully-heavy tetraquark spectroscopy in the relativistic quark model, Symmetry 14, 2504 (2022)
  • (44) P. Y. Niu, E. Wang, Q. Wang and S. Yang, Determine the quantum numbers of X(6900)X(6900) from photon-photon fusion in ultra-peripheral heavy ion collisions, [arXiv:2209.01924 [hep-ph]].
  • (45) G. J. Wang, Q. Meng and M. Oka, S-wave fully charmed tetraquark resonant states, Phys. Rev. D 106, 096005 (2022).
  • (46) H. T. An, S. Q. Luo, Z. W. Liu and X. Liu, Systematic search of fully heavy tetraquark states, Eur. Phys. J. C 83, 740 (2023).
  • (47) V. Biloshytskyi, V. Pascalutsa, L. Harland-Lang, B. Malaescu, K. Schmieden and M. Schott, Two-photon decay of X(6900) from light-by-light scattering at the LHC, Phys. Rev. D 106, L111902 (2022).
  • (48) J. Z. Wang and X. Liu, Improved understanding of the peaking phenomenon existing in the new di-J/ψ\psi invariant mass spectrum from the CMS Collaboration, Phys. Rev. D 106, no.5, 054015 (2022).
  • (49) C. Gong, M. C. Du and Q. Zhao, Pseudoscalar charmonium pair interactions via the Pomeron exchange mechanism, Phys. Rev. D 106, no.5, 054011 (2022).
  • (50) R. H. Wu, Y. S. Zuo, C. Y. Wang, C. Meng, Y. Q. Ma and K. T. Chao, NLO results with operator mixing for fully heavy tetraquarks in QCD sum rules, JHEP 11, 023 (2022).
  • (51) Z. Zhuang, Y. Zhang, Y. Ma and Q. Wang, Lineshape of the compact fully heavy tetraquark, Phys. Rev. D 105, 054026 (2022).
  • (52) Y. Yan, Y. Wu, X. Hu, H. Huang and J. Ping, Fully heavy pentaquarks in quark models, Phys. Rev. D 105, 014027 (2022).
  • (53) Q. N. Wang, Z. Y. Yang and W. Chen, Exotic fully-heavy QQ¯QQ¯Q\bar{Q}Q\bar{Q} tetraquark states in 𝟖[QQ¯]𝟖[QQ¯]\mathbf{8}_{[Q\bar{Q}]}\otimes\mathbf{8}_{[Q\bar{Q}]} color configuration, Phys. Rev. D 104, 114037 (2021).
  • (54) A. J. Majarshin, Y. A. Luo, F. Pan and J. Segovia, Bosonic algebraic approach applied to the [QQ][Q¯Q¯][QQ][\bar{Q}\bar{Q}] tetraquarks, Phys. Rev. D 105, 054024 (2022).
  • (55) Z. Zhao, K. Xu, A. Kaewsnod, X. Liu, A. Limphirat and Y. Yan, Study of charmoniumlike and fully-charm tetraquark spectroscopy, Phys. Rev. D 103, 116027 (2021).
  • (56) Q. Li, C. H. Chang, G. L. Wang and T. Wang, Mass spectra and wave functions of TQQQ¯Q¯T_{QQ\bar{Q}\bar{Q}} tetraquarks, Phys. Rev. D 104, 014018 (2021).
  • (57) G. J. Wang, L. Meng, M. Oka and S. L. Zhu, Higher fully charmed tetraquarks: Radial excitations and P-wave states, Phys. Rev. D 104, 036016 (2021).
  • (58) G. Yang, J. Ping and J. Segovia, Exotic resonances of fully-heavy tetraquarks in a lattice-QCD insipired quark model, Phys. Rev. D 104, 014006 (2021).
  • (59) Y. Huang, F. Feng, Y. Jia, W. L. Sang, D. S. Yang and J. Y. Zhang, Inclusive production of fully-charmed 1+1^{+-} tetraquark at B factory, Chin. Phys. C 45, 093101 (2021).
  • (60) V. P. Gonçalves and B. D. Moreira, Fully - heavy tetraquark production by γγ\gamma\gamma interactions in hadronic collisions at the LHC, Phys. Lett. B 816, 136249 (2021).
  • (61) M. Z. Liu and L. S. Geng, Is X(7200)X(7200) the heavy anti-quark diquark symmetry partner of X(3872)X(3872)?, Eur. Phys. J. C 81, 179 (2021).
  • (62) J. Z. Wang, X. Liu and T. Matsuki, Fully-heavy structures in the invariant mass spectrum of J/ψψ(3686)J/\psi\psi(3686), J/ψψ(3770)J/\psi\psi(3770), ψ(3686)ψ(3686)\psi(3686)\psi(3686), and J/ψΥ(1S)J/\psi\Upsilon(1S) at hadron colliders, Phys. Lett. B 816, 136209 (2021).
  • (63) B. D. Wan and C. F. Qiao, Gluonic tetracharm configuration of X(6900)X(6900), Phys. Lett. B 817, 136339 (2021).
  • (64) C. Gong, M. C. Du, Q. Zhao, X. H. Zhong and B. Zhou, Nature of X(6900) and its production mechanism at LHCb, Phys. Lett. B 824, 136794 (2022).
  • (65) Q. F. Cao, H. Chen, H. R. Qi and H. Q. Zheng, Some remarks on X(6900), Chin. Phys. C 45, 103102 (2021).
  • (66) Z. H. Guo and J. A. Oller, Insights into the inner structures of the fully charmed tetraquark state X(6900)X(6900), Phys. Rev. D 103, 034024 (2021).
  • (67) R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966, 115393 (2021).
  • (68) J. R. Zhang, 0+0^{+} fully-charmed tetraquark states, Phys. Rev. D 103, 014018 (2021).
  • (69) F. Feng, Y. Huang, Y. Jia, W. L. Sang, X. Xiong and J. Y. Zhang, Fragmentation production of fully-charmed tetraquarks at the LHC, Phys. Rev. D 106, 114029 (2022).
  • (70) Y. Q. Ma and H. F. Zhang, Exploring the Di-J/ψJ/\psi Resonances around 6.9 GeV\mathrm{GeV} Based on abab initioinitio Perturbative QCD, [arXiv:2009.08376 [hep-ph]].
  • (71) X. K. Dong, V. Baru, F. K. Guo, C. Hanhart and A. Nefediev, Coupled-Channel Interpretation of the LHCb Double- J/ψJ/\psi Spectrum and Hints of a New State Near the  J/ψJ/ψJ/\psi J/\psi  Threshold, Phys. Rev. Lett. 126, no.13, 132001 (2021) [erratum: Phys. Rev. Lett. 127, 119901 (2021)].
  • (72) Z. G. Wang, Revisit the tetraquark candidates in the J/ψJ/ψJ/\psi J/\psi mass spectrum, Int. J. Mod. Phys. A 36, 2150014 (2021).
  • (73) M. Karliner and J. L. Rosner, Interpretation of structure in the di- J/ψJ/\psi spectrum, Phys. Rev. D 102, 114039 (2020).
  • (74) J. Z. Wang, D. Y. Chen, X. Liu and T. Matsuki, Producing fully charm structures in the J/ψJ/\psi -pair invariant mass spectrum, Phys. Rev. D 103, 071503 (2021).
  • (75) J. F. Giron and R. F. Lebed, Simple spectrum of cc¯cc¯c\bar{c}c\bar{c} states in the dynamical diquark model, Phys. Rev. D 102, 074003 (2020).
  • (76) X. Y. Wang, Q. Y. Lin, H. Xu, Y. P. Xie, Y. Huang and X. Chen, Discovery potential for the LHCb fully-charm tetraquark X(6900)X(6900) state via p¯p\bar{p}p annihilation reaction, Phys. Rev. D 102, 116014 (2020).
  • (77) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Strong decays of fully-charm tetraquarks into di-charmonia, Sci. Bull. 65, 1994-2000 (2020).
  • (78) H. X. Chen, Y. X. Yan and W. Chen, Decay behaviors of the fully bottom and fully charm tetraquark states, Phys. Rev. D 106, 094019 (2022).
  • (79) C. Becchi, J. Ferretti, A. Giachino, L. Maiani and E. Santopinto, A study of ccc¯c¯cc\bar{c}\bar{c} tetraquark decays in 4 muons and in D()D¯()D^{(*)}\bar{D}^{(*)} at LHC, Phys. Lett. B 811, 135952 (2020).
  • (80) C. Becchi, A. Giachino, L. Maiani and E. Santopinto, Search for bbb¯b¯bb\bar{b}\bar{b} tetraquark decays in 4 muons, B+BB^{+}B^{-}, B0B¯0B^{0}\bar{B}^{0} and Bs0B¯s0B_{s}^{0}\bar{B}_{s}^{0} channels at LHC, Phys. Lett. B 806, 135495 (2020).
  • (81) Z. G. Wang, Tetraquark candidates in the LHCb’s di-J/ψJ/\psi mass spectrum, Chin. Phys. C 44, 113106 (2020).
  • (82) G. Yang, J. Ping, L. He and Q. Wang, Potential model prediction of fully-heavy tetraquarks QQQ¯Q¯QQ\bar{Q}\bar{Q} (Q=c,bQ=c,b), [arXiv:2006.13756 [hep-ph]].
  • (83) P. Niu, Z. Zhang, Q. Wang and M. L. Du, The third peak structure in the double J/ψJ/\psi spectrum, Sci. Bull. 68, 800-803 (2023).
  • (84) Z. R. Liang and D. L. Yao, On the nature of X(6900)X(6900) and other structures in the LHCb di-j/ψj/\psi spectrum, Rev. Mex. Fis. Suppl. 3, no.3, 0308042 (2022).
  • (85) Z. R. Liang, X. Y. Wu and D. L. Yao, Hunting for states in the recent LHCb di-J/ψJ/\psi invariant mass spectrum, Phys. Rev. D 104, 034034 (2021).
  • (86) X. K. Dong, V. Baru, F. K. Guo, C. Hanhart, A. Nefediev and B. S. Zou, Is the existence of a J/ψ\psiJ/ψ\psi bound state plausible?, Sci. Bull. 66, 2462-2470 (2021).
  • (87) H. W. Ke, X. Han, X. H. Liu and Y. L. Shi, Tetraquark state X(6900)X(6900) and the interaction between diquark and antidiquark, Eur. Phys. J. C 81, 427 (2021).
  • (88) B. C. Yang, L. Tang and C. F. Qiao, Scalar fully-heavy tetraquark states QQQ¯Q¯QQ^{\prime}{\bar{Q}}\bar{Q^{\prime}} in QCD sum rules, Eur. Phys. J. C 81, 324 (2021).
  • (89) X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, Systematics of fully heavy tetraquarks, Phys. Rev. D 103, 034001 (2021).
  • (90) J. Zhao, S. Shi and P. Zhuang, Fully-heavy tetraquarks in a strongly interacting medium, Phys. Rev. D 102, 114001 (2020).
  • (91) S. Q. Kuang, Q. Zhou, D. Guo, Q. H. Yang and L. Y. Dai, Study of X(6900)X(6900) with unitarized coupled channel scattering amplitudes, Eur. Phys. J. C 83, 383 (2023).
  • (92) Q. Zhou, D. Guo, S. Q. Kuang, Q. H. Yang and L. Y. Dai, Nature of the X(6900) in partial wave decomposition of J/ψJ/ψJ/\psi J/\psi scattering, Phys. Rev. D 106, L111502 (2022).
  • (93) F. X. Liu, M. S. Liu, X. H. Zhong and Q. Zhao, Higher mass spectra of the fully-charmed and fully-bottom tetraquarks, Phys. Rev. D 104, 116029 (2021).
  • (94) E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Charmonium: The Model, Phys. Rev. D 17, 3090 (1978) Erratum: [Phys. Rev. D 21, 313 (1980)].
  • (95) Q. F. Lü, D. Y. Chen and Y. B. Dong, Masses of fully heavy tetraquarks QQQ¯Q¯QQ\bar{Q}\bar{Q} in an extended relativized quark model, Eur. Phys. J. C 80, 871 (2020).
  • (96) W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions, Phys. Rev. D 95, 034026 (2017).
  • (97) M. S. Liu, Q. F. Lü and X. H. Zhong, Triply charmed and bottom baryons in a constituent quark model, Phys. Rev. D 101, 074031 (2020).
  • (98) T. Barnes, N. Black and E. S. Swanson, Meson meson scattering in the quark model: Spin dependence and exotic channels, Phys. Rev. C 63, 025204 (2001).
  • (99) G. J. Wang, L. Y. Xiao, R. Chen, X. H. Liu, X. Liu and S. L. Zhu, Probing hidden-charm decay properties of PcP_{c} states in a molecular scenario, Phys. Rev. D 102, 036012 (2020).
  • (100) L. Y. Xiao, G. J. Wang and S. L. Zhu, Hidden-charm strong decays of the ZcZ_{c} states, Phys. Rev. D 101, 054001 (2020).
  • (101) G. J. Wang, L. Meng, L. Y. Xiao, M. Oka and S. L. Zhu, Mass spectrum and strong decays of tetraquark c¯s¯qq{\bar{c}}{\bar{s}}qq states, Eur. Phys. J. C 81, 188 (2021).
  • (102) S. Han and L. Y. Xiao, Aspects of Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000), Phys. Rev. D 105, 054008 (2022).
  • (103) F. X. Liu, R. H. Ni, X. H. Zhong and Q. Zhao, Charmed-strange tetraquarks and their decays in a potential quark model, Phys. Rev. D 107, 096020 (2023).
  • (104) F. X. Liu, M. S. Liu, X. H. Zhong and Q. Zhao, Fully-strange tetraquark sss¯s¯ss\bar{s}\bar{s} spectrum and possible experimental evidence, Phys. Rev. D 103, 016016 (2021).
  • (105) D. M. Brink and F. Stancu, etraquarks with heavy flavors, Phys. Rev. D 57, 6778 (1998).
  • (106) D. V. Fedorov, Analytic matrix elements with shifted correlated Gaussians, Few Body Syst. 58, 21 (2017).

Appendix A

The calculation of the decay amplitude (ABC)\mathcal{M}(A\to BC) of a T(4Q)T_{(4Q)} state is indeed a tedious task. For simplicity, the spatial wave functions for the A,B,CA,B,C hadron states are adopted a harmonic oscillator form, the harmonic oscillator parameters are determined by fitting the wave functions calculated from the potential model. These parameters have been given in Tab. 4 and Tab. 5.

Table 4: The masses (MeV) and harmonic oscillator parameters β\beta (MeV) for the meson states.

. State cc¯c\bar{c} Mass β\beta bb¯b\bar{b} Mass β\beta 11S01^{1}S_{0} ηc\eta_{c} 2984 658 ηb\eta_{b} 9378 1160 13S11^{3}S_{1} J/ψJ/\psi 3097 564 Υ\varUpsilon 9436 1096 21S02^{1}S_{0} ηc\eta_{c}(2S) 3635 506 ηb\eta_{b}(2S) 9973 858 23S12^{3}S_{1} ψ\psi(2S) 3679 470 Υ\varUpsilon(2S) 9989 822 13P01^{3}P_{0} χc0\chi_{c0} 3417 533 χb0\chi_{b0} 9845 822 11P11^{1}P_{1} hch_{c} 3522 459 hbh_{b} 9899 731 13P11^{3}P_{1} χc1\chi_{c1} 3516 459 χb1\chi_{b1} 9891 759 13P21^{3}P_{2} χc2\chi_{c2} 3552 429 χb2\chi_{b2} 9914 705

Taking T(ccc¯c¯)0++(1S)(6455)J/ψJ/ψT_{(cc\bar{c}\bar{c})0^{++}}(1S)(6455)\to J/\psi J/\psi as an example, from Tab. 1 one can obtain the wave function for the initial T(ccc¯c¯)0++(1S)(6455)T_{(cc\bar{c}\bar{c})0^{++}}(1S)(6455) state, i.e.,

|A\displaystyle\left|A\right\rangle =\displaystyle= 0.58ψ0001Sχ0000|66¯c+0.81ψ0001Sχ0011|3¯3c,\displaystyle 0.58\psi_{000}^{1S}\chi_{00}^{00}\left|6\bar{6}\right\rangle_{c}+0.81\psi_{000}^{1S}\chi_{00}^{11}\left|\bar{3}3\right\rangle_{c}, (9)

which is an admixture between several different configurations. The wave function of the final state is obtained within the JJ-JJ coupling scheme. Combining with the Clebsch-Gordan coefficients, the wave function of the di-J/ψJ/\psi system with quantum numbers JPC=0++J^{PC}=0^{++} is given by

|BC\displaystyle\left|BC\right\rangle =\displaystyle= 13[χ111χ112χ101χ102+χ111χ112]\displaystyle\frac{1}{\sqrt{3}}\left[\chi_{11}^{1}\chi_{1-1}^{2}-\chi_{10}^{1}\chi_{10}^{2}+\chi_{1-1}^{1}\chi_{11}^{2}\right] (10)
φ0001φ0002ϕ|11,\displaystyle\varphi_{000}^{1}\varphi_{000}^{2}\phi\left|11\right\rangle,

where the superscripts 1,21,2 stand for the two J/ψJ/\psi mesons in the final state, χ\chi stands for the their spin wave functions, and φ000\varphi_{000} stands for their spatial wave functions. ϕ\phi is the wave function for describing the relative motion of two final state mesons, which is adopted a plane wave form by treating the final state mesons as free particles:

ϕ\displaystyle\phi =\displaystyle= 1(2π)32ei𝒑f.(𝒓f1𝒓f2),\displaystyle\frac{1}{\left(2\pi\hbar\right)^{\frac{3}{2}}}e^{-i\boldsymbol{p}_{f}.(\boldsymbol{r}_{f_{1}}-\boldsymbol{r}_{f_{2}})}, (11)

where 𝒑f\boldsymbol{p}_{f} is the three-momentum of the hadron 11 in the final state, 𝒓f1\boldsymbol{r}_{f_{1}} and 𝒓f2\boldsymbol{r}_{f_{2}} stand for the position coordinates of the hadrons 1,21,2 in the final state.

By using the wave functions given in Eqs. 9 and 10, one can calculate the transition matrix element with

BC|Vij|A\displaystyle\left\langle BC\right|V_{ij}\left|A\right\rangle =\displaystyle= (13[χ111χ112χ101χ102+χ111χ112][11]c|\displaystyle\left(\left\langle\frac{1}{\sqrt{3}}\left[\chi_{11}^{1}\chi_{1-1}^{2}-\chi_{10}^{1}\chi_{10}^{2}+\chi_{1-1}^{1}\chi_{11}^{2}\right]\left[11\right]_{c}\right|\right. (12)
O^ijsc|c1χ0000[66¯]+c2χ0011[3¯3]c)\displaystyle\left.\hat{O}_{ij}^{sc}\left|c_{1}\chi_{00}^{00}\left[6\bar{6}\right]+c_{2}\chi_{00}^{11}\left[\bar{3}3\right]_{c}\right\rangle\right)
φ0001φ0002ϕ|O^ijo|ψ0001S,\displaystyle\left\langle\varphi_{000}^{1}\varphi_{000}^{2}\phi\right|\hat{O}_{ij}^{o}\left|\psi_{000}^{1S}\right\rangle,

where the O^ijsc\hat{O}_{ij}^{sc} and O^ijo\hat{O}_{ij}^{o} stand for the spin-color dependent and spatial dependent operator, respectively. Calculating the matrix elements in color and spin space is relatively simple. When calculating the matrix element of the spatial part, φ0001φ0002ϕ|O^ijo|ψ0001S\left\langle\varphi_{000}^{1}\varphi_{000}^{2}\phi\right|\hat{O}_{ij}^{o}\left|\psi_{000}^{1S}\right\rangle, one should face a problem. The spatial wave function, which contains three different variables, cannot be separated into the product of three functions with independent variables directly. One should solve this problem by defining new coordinate systems via coordinate transformations by using the standard linear algebra methods Brink:1998as ; Fedorov:2017bcq .

Then, the integration of the spatial part is shown. It is given by

φ0001(ωf1)φ0002(ωf2)ϕ|O^ijo|ψ0001S(ωi)\displaystyle\left\langle\varphi_{000}^{1}\left(\omega_{f_{1}}\right)\varphi_{000}^{2}\left(\omega_{f_{2}}\right)\phi\right|\hat{O}_{ij}^{o}\left|\psi_{000}^{1S}\left(\omega_{i}\right)\right\rangle (13)
=\displaystyle= INorO^ei,jAij𝝃i𝝃jei𝒑f.𝝃3(Y00)5d3𝝃1d3𝝃2d3𝝃3,\displaystyle I_{Nor}\int\hat{O}e^{-\underset{i,j}{\sum}A_{ij}\boldsymbol{\xi}_{i}\cdot\boldsymbol{\xi}_{j}}e^{-i\boldsymbol{p}_{f}.\boldsymbol{\xi}_{3}}\left(Y_{00}\right)^{5}d^{3}\boldsymbol{\xi}_{1}d^{3}\boldsymbol{\xi}_{2}d^{3}\boldsymbol{\xi}_{3},

where INorI_{Nor} is a normalization factor independent of the integration variable, and the matrix AA is given by

A=(12μωi2+14μωf214μωf2014μωf212μωi2+14μωf2000μωi2+μωf2).A=\left(\begin{array}[]{ccc}\frac{1}{2}\mu\omega_{i}^{2}+\frac{1}{4}\mu\omega_{f}^{2}&-\frac{1}{4}\mu\omega_{f}^{2}&0\\ -\frac{1}{4}\mu\omega_{f}^{2}&\frac{1}{2}\mu\omega_{i}^{2}+\frac{1}{4}\mu\omega_{f}^{2}&0\\ 0&0&\mu\omega_{i}^{2}+\mu\omega_{f}^{2}\end{array}\right). (14)

Note that A23=0A_{23}=0, the matrix AA can be transformed into a diagonal matrix

A=(A11A122A22000A22000A33),A^{\prime}=\left(\begin{array}[]{ccc}A_{11}-\frac{A_{12}^{2}}{A_{22}}&0&0\\ 0&A_{22}&0\\ 0&0&A_{33}\end{array}\right), (15)

through the coordinate transformations, 𝝃1=𝝃1\boldsymbol{\xi}_{1}^{\prime}=\boldsymbol{\xi}_{1}, 𝝃2=A12A22𝝃1+A12A22𝝃2\boldsymbol{\xi}_{2}^{\prime}=\frac{-A^{\prime}_{12}}{A^{\prime}_{22}}\boldsymbol{\xi}_{1}+\frac{-A^{\prime}_{12}}{A^{\prime}_{22}}\boldsymbol{\xi}_{2}, 𝝃3=𝝃3\boldsymbol{\xi}_{3}^{\prime}=\boldsymbol{\xi}_{3}. On the other hand, in the calculations, the plane wave should be expanded by

ei𝑷𝒓=l=04π(2l+1)iljl(Pr)Yl0(𝒓^),\begin{array}[]{ccc}e^{i\boldsymbol{P}\cdot\boldsymbol{r}}&=&\boldsymbol{\sum}_{l=0}^{\infty}\sqrt{4\pi\left(2l+1\right)}i^{l}j_{l}\left(Pr\right)Y_{l0}\left(\hat{\boldsymbol{r}}\right)\end{array}, (16)

where we let the momentum PP along the zz direction. With the above steps, one can obtain the integration of the spatial part.

Table 5: The harmonic oscillator parameters for the T(4Q)T_{(4Q)} state.

. State β\beta State β\beta State β\beta State β\beta T(ccc¯c¯)0++(1S)(6455)T_{(cc\bar{c}\bar{c})0^{++}}(1S)(6455) 481 T(ccc¯c¯)1+(1S)(6500)T_{(cc\bar{c}\bar{c})1^{+-}}(1S)(6500) 493 T(bbb¯b¯)0++(1S)(19306)T_{(bb\bar{b}\bar{b})0^{++}}(1S)(19306) 897 T(bbb¯b¯)1+(1S)(19329)T_{(bb\bar{b}\bar{b})1^{+-}}(1S)(19329) 897 T(ccc¯c¯)0++(1S)(6550)T_{(cc\bar{c}\bar{c})0^{++}}(1S)(6550) 493 T(ccc¯c¯)2++(1S)(6524)T_{(cc\bar{c}\bar{c})2^{++}}(1S)(6524) 481 T(bbb¯b¯)0++(1S)(19355)T_{(bb\bar{b}\bar{b})0^{++}}(1S)(19355) 897 T(bbb¯b¯)2++(1S)(19341)T_{(bb\bar{b}\bar{b})2^{++}}(1S)(19341) 897 T(ccc¯c¯)0+(2S)(6993)T_{(cc\bar{c}\bar{c})0^{+-}}(2S)(6993) 403 T(ccc¯c¯)1+(2S)(6919)T_{(cc\bar{c}\bar{c})1^{+-}}(2S)(6919) 420 T(bbb¯b¯)0+(2S)(19789)T_{(bb\bar{b}\bar{b})0^{+-}}(2S)(19789) 680 T(bbb¯b¯)1+(2S)(19722)T_{(bb\bar{b}\bar{b})1^{+-}}(2S)(19722) 704 T(ccc¯c¯)0+(2S)(7020)T_{(cc\bar{c}\bar{c})0^{+-}}(2S)(7020) 420 T(ccc¯c¯)1+(2S)(7021)T_{(cc\bar{c}\bar{c})1^{+-}}(2S)(7021) 411 T(bbb¯b¯)0+(2S)(19841)T_{(bb\bar{b}\bar{b})0^{+-}}(2S)(19841) 704 T(bbb¯b¯)1+(2S)(19813)T_{(bb\bar{b}\bar{b})1^{+-}}(2S)(19813) 704 T(ccc¯c¯)0++(2S)(6908)T_{(cc\bar{c}\bar{c})0^{++}}(2S)(6908) 411 T(ccc¯c¯)1++(2S)(7009)T_{(cc\bar{c}\bar{c})1^{++}}(2S)(7009) 420 T(bbb¯b¯)0++(2S)(19719)T_{(bb\bar{b}\bar{b})0^{++}}(2S)(19719) 704 T(bbb¯b¯)1++(2S)(19792)T_{(bb\bar{b}\bar{b})1^{++}}(2S)(19792) 704 T(ccc¯c¯)0++(2S)(6957)T_{(cc\bar{c}\bar{c})0^{++}}(2S)(6957) 420 T(ccc¯c¯)2+(2S)(7017)T_{(cc\bar{c}\bar{c})2^{+-}}(2S)(7017) 411 T(bbb¯b¯)0++(2S)(19767)T_{(bb\bar{b}\bar{b})0^{++}}(2S)(19767) 730 T(bbb¯b¯)2+(2S)(19795)T_{(bb\bar{b}\bar{b})2^{+-}}(2S)(19795) 704 T(ccc¯c¯)0++(2S)(7018)T_{(cc\bar{c}\bar{c})0^{++}}(2S)(7018) 420 T(ccc¯c¯)2++(2S)(6927)T_{(cc\bar{c}\bar{c})2^{++}}(2S)(6927) 411 T(bbb¯b¯)0++(2S)(19811)T_{(bb\bar{b}\bar{b})0^{++}}(2S)(19811) 704 T(bbb¯b¯)2++(2S)(19726)T_{(bb\bar{b}\bar{b})2^{++}}(2S)(19726) 704 T(ccc¯c¯)0++(2S)(7185)T_{(cc\bar{c}\bar{c})0^{++}}(2S)(7185) 411 T(ccc¯c¯)2++(2S)(7032)T_{(cc\bar{c}\bar{c})2^{++}}(2S)(7032) 411 T(bbb¯b¯)0++(2S)(19976)T_{(bb\bar{b}\bar{b})0^{++}}(2S)(19976) 704 T(bbb¯b¯)2++(2S)(19816)T_{(bb\bar{b}\bar{b})2^{++}}(2S)(19816) 704 T(ccc¯c¯)0(1P)(6651)T_{(cc\bar{c}\bar{c})0^{--}}(1P)(6651) 438 T(ccc¯c¯)1(1P)(6904)T_{(cc\bar{c}\bar{c})1^{--}}(1P)(6904) 438 T(bbb¯b¯)0(1P)(19485)T_{(bb\bar{b}\bar{b})0^{--}}(1P)(19485) 789 T(bbb¯b¯)1(1P)(19748)T_{(bb\bar{b}\bar{b})1^{--}}(1P)(19748) 789 T(ccc¯c¯)0(1P)(6926)T_{(cc\bar{c}\bar{c})0^{--}}(1P)(6926) 438 T(ccc¯c¯)1(1P)(6993)T_{(cc\bar{c}\bar{c})1^{--}}(1P)(6993) 438 T(bbb¯b¯)0(1P)(19756)T_{(bb\bar{b}\bar{b})0^{--}}(1P)(19756) 759 T(bbb¯b¯)1(1P)(19795)T_{(bb\bar{b}\bar{b})1^{--}}(1P)(19795) 759 T(ccc¯c¯)0+(1P)(6676)T_{(cc\bar{c}\bar{c})0^{-+}}(1P)(6676) 438 T(ccc¯c¯)1+(1P)(6675)T_{(cc\bar{c}\bar{c})1^{-+}}(1P)(6675) 438 T(bbb¯b¯)0+(1P)(19500)T_{(bb\bar{b}\bar{b})0^{-+}}(1P)(19500) 789 T(bbb¯b¯)1+(1P)(19496)T_{(bb\bar{b}\bar{b})1^{-+}}(1P)(19496) 789 T(ccc¯c¯)0+(1P)(6748)T_{(cc\bar{c}\bar{c})0^{-+}}(1P)(6748) 438 T(ccc¯c¯)1+(1P)(6768)T_{(cc\bar{c}\bar{c})1^{-+}}(1P)(6768) 438 T(bbb¯b¯)0+(1P)(19595)T_{(bb\bar{b}\bar{b})0^{-+}}(1P)(19595) 759 T(bbb¯b¯)1+(1P)(19603)T_{(bb\bar{b}\bar{b})1^{-+}}(1P)(19603) 759 T(ccc¯c¯)0+(1P)(6897)T_{(cc\bar{c}\bar{c})0^{-+}}(1P)(6897) 438 T(ccc¯c¯)1+(1P)(6910)T_{(cc\bar{c}\bar{c})1^{-+}}(1P)(6910) 438 T(bbb¯b¯)0+(1P)(19739)T_{(bb\bar{b}\bar{b})0^{-+}}(1P)(19739) 789 T(bbb¯b¯)1+(1P)(19748)T_{(bb\bar{b}\bar{b})1^{-+}}(1P)(19748) 789 T(ccc¯c¯)1(1P)(6636)T_{(cc\bar{c}\bar{c})1^{--}}(1P)(6636) 438 T(ccc¯c¯)2(1P)(6630)T_{(cc\bar{c}\bar{c})2^{--}}(1P)(6630) 438 T(bbb¯b¯)1(1P)(19479)T_{(bb\bar{b}\bar{b})1^{--}}(1P)(19479) 789 T(bbb¯b¯)2(1P)(19476)T_{(bb\bar{b}\bar{b})2^{--}}(1P)(19476) 789 T(ccc¯c¯)1(1P)(6750)T_{(cc\bar{c}\bar{c})1^{--}}(1P)(6750) 438 T(ccc¯c¯)2(1P)(6780)T_{(cc\bar{c}\bar{c})2^{--}}(1P)(6780) 438 T(bbb¯b¯)1(1P)(19597)T_{(bb\bar{b}\bar{b})1^{--}}(1P)(19597) 759 T(bbb¯b¯)2(1P)(19608)T_{(bb\bar{b}\bar{b})2^{--}}(1P)(19608) 759 T(ccc¯c¯)1(1P)(6768)T_{(cc\bar{c}\bar{c})1^{--}}(1P)(6768) 438 T(ccc¯c¯)2(1P)(6955)T_{(cc\bar{c}\bar{c})2^{--}}(1P)(6955) 438 T(bbb¯b¯)1(1P)(19603)T_{(bb\bar{b}\bar{b})1^{--}}(1P)(19603) 759 T(bbb¯b¯)2(1P)(19767)T_{(bb\bar{b}\bar{b})2^{--}}(1P)(19767) 759 T(ccc¯c¯)2+(1P)(6667)T_{(cc\bar{c}\bar{c})2^{-+}}(1P)(6667) 438 T(ccc¯c¯)2+(1P)(6783)T_{(cc\bar{c}\bar{c})2^{-+}}(1P)(6783) 438 T(bbb¯b¯)2+(1P)(19492)T_{(bb\bar{b}\bar{b})2^{-+}}(1P)(19492) 789 T(bbb¯b¯)2+(1P)(19609)T_{(bb\bar{b}\bar{b})2^{-+}}(1P)(19609) 759 T(ccc¯c¯)2+(1P)(6928)T_{(cc\bar{c}\bar{c})2^{-+}}(1P)(6928) 438 T(ccc¯c¯)3(1P)(6801)T_{(cc\bar{c}\bar{c})3^{--}}(1P)(6801) 438 T(bbb¯b¯)2+(1P)(19756)T_{(bb\bar{b}\bar{b})2^{-+}}(1P)(19756) 789 T(bbb¯b¯)3(1P)(19617)T_{(bb\bar{b}\bar{b})3^{--}}(1P)(19617) 759

The components of different color configurations for the physical T(4c)T_{(4c)} and T(4b)T_{(4b)} states are given in the Tables 7 and 7, respectively. To know the spatial size of the tetraquark states, we also calculate the root mean square radius, our results are listed in Tables 7 and 7 as well.

Table 6: The components of different color configurations and the root mean square radius (fm) for each physical T(4c)T_{(4c)} states, where 𝒓1234(𝐫1+𝐫2)/2(𝐫3+𝐫4)/2\boldsymbol{r}_{12-34}\equiv\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)/2-\left(\mathbf{r}_{3}+\mathbf{r}_{4}\right)/2, 𝒓1324(𝐫1+𝐫3)/2(𝐫2+𝐫4)/2\boldsymbol{r}_{13-24}\equiv\left(\mathbf{r}_{1}+\mathbf{r}_{3}\right)/2-\left(\mathbf{r}_{2}+\mathbf{r}_{4}\right)/2.
              State |66¯c\left|6\bar{6}\right\rangle_{c} |3¯3c\left|\bar{3}3\right\rangle_{c} |11c\left|11\right\rangle_{c} |88c\left|88\right\rangle_{c} r122\sqrt{\langle r_{12}^{2}\rangle} r12342\sqrt{\langle r_{12-34}^{2}\rangle} r132\sqrt{\langle r_{13}^{2}\rangle} r13242\sqrt{\langle r_{13-24}^{2}\rangle}
T(4c)0++(6455)(1S)T_{(4c)0^{++}}(6455)(1S) 33. 9%\% 66. 1%\% 44. 6%\% 55. 4%\% 0.49 0.35 0.49 0.35
T(4c)0++(6550)(1S)T_{(4c)0^{++}}(6550)(1S) 66. 1%\% 33. 9%\% 55. 4%\% 44. 6%\% 0.50 0.35 0.50 0.35
T(4c)1+(6500)(1S)T_{(4c)1^{+-}}(6500)(1S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.50 0.35 0.50 0.35
T(4c)2++(6524)(1S)T_{(4c)2^{++}}(6524)(1S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.51 0.36 0.51 0.36
T(4c)0(6651)(1P)T_{(4c)0^{--}}(6651)(1P) 64. 0%\% 36. 0%\% 54. 7%\% 45. 3%\% 0.63 0.39 0.59 0.45
T(4c)0(6926)(1P)T_{(4c)0^{--}}(6926)(1P) 36. 0%\% 64. 0%\% 45. 3%\% 54. 7%\% 0.63 0.39 0.59 0.45
T(4c)0+(6681)(1P)T_{(4c)0^{-+}}(6681)(1P) 67. 5%\% 32. 5%\% 55. 8%\% 44. 2%\% 0.61 0.39 0.59 0.43
T(4c)0+(6749)(1P)T_{(4c)0^{-+}}(6749)(1P) 2. 0%\% 98. 0%\% 34. 0%\% 66. 0%\% 0.55 0.47 0.61 0.39
T(4c)0+(6891)(1P)T_{(4c)0^{-+}}(6891)(1P) 30. 1%\% 69. 9%\% 43. 4%\% 56. 6%\% 0.62 0.39 0.59 0.44
T(4c)1(6636)(1P)T_{(4c)1^{--}}(6636)(1P) 67. 8%\% 32. 2%\% 55. 9%\% 44. 1%\% 0.63 0.39 0.59 0.44
T(4c)1(6750)(1P)T_{(4c)1^{--}}(6750)(1P) 0. 4%\% 99. 6%\% 33. 5%\% 66. 5%\% 0.54 0.48 0.61 0.38
T(4c)1(6768)(1P)T_{(4c)1^{--}}(6768)(1P) 1. 0%\% 99. 0%\% 33. 7%\% 66. 3%\% 0.55 0.50 0.63 0.39
T(4c)1(6904)(1P)T_{(4c)1^{--}}(6904)(1P) 48. 4%\% 51. 6%\% 49. 5%\% 50. 5%\% 0.60 0.42 0.60 0.43
T(4c)1(6993)(1P)T_{(4c)1^{--}}(6993)(1P) 83. 5%\% 16. 5%\% 61. 2%\% 38. 8%\% 0.57 0.47 0.62 0.4
T(4c)1+(6676)(1P)T_{(4c)1^{-+}}(6676)(1P) 68. 0%\% 32. 0%\% 56. 0%\% 44. 0%\% 0.63 0.39 0.59 0.45
T(4c)1+(6769)(1P)T_{(4c)1^{-+}}(6769)(1P) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.55 0.50 0.63 0.39
T(4c)1+(6908)(1P)T_{(4c)1^{-+}}(6908)(1P) 32. 5%\% 67. 5%\% 44. 2%\% 55. 8%\% 0.62 0.38 0.59 0.44
T(4c)2(6630)(1P)T_{(4c)2^{--}}(6630)(1P) 64. 5%\% 35. 5%\% 54. 8%\% 45. 2%\% 0.64 0.39 0.60 0.45
T(4c)2(6780)(1P)T_{(4c)2^{--}}(6780)(1P) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.55 0.50 0.63 0.39
T(4c)2(6955)(1P)T_{(4c)2^{--}}(6955)(1P) 35. 6%\% 64. 4%\% 45. 2%\% 54. 8%\% 0.63 0.39 0.59 0.45
T(4c)2+(6667)(1P)T_{(4c)2^{-+}}(6667)(1P) 67. 2%\% 32. 8%\% 55. 7%\% 44. 3%\% 0.63 0.39 0.59 0.45
T(4c)2+(6783)(1P)T_{(4c)2^{-+}}(6783)(1P) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.55 0.50 0.64 0.39
T(4c)2+(6928)(1P)T_{(4c)2^{-+}}(6928)(1P) 33. 7%\% 66. 3%\% 44. 6%\% 55. 4%\% 0.63 0.39 0.59 0.45
T(4c)3(6801)(1P)T_{(4c)3^{--}}(6801)(1P) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.56 0.51 0.64 0.39
T(4c)0+(6993)(2S)T_{(4c)0^{+-}}(6993)(2S) 43. 6%\% 56. 4%\% 47. 9%\% 52. 1%\% 0.77 0.43 0.69 0.54
T(4c)0+(7020)(2S)T_{(4c)0^{+-}}(7020)(2S) 56. 4%\% 43. 6%\% 52. 1%\% 47. 9%\% 0.78 0.42 0.69 0.55
T(4c)0++(6908)(2S)T_{(4c)0^{++}}(6908)(2S) 12. 5%\% 87. 5%\% 37. 5%\% 62. 5%\% 0.45 0.66 0.73 0.32
T(4c)0++(6957)(2S)T_{(4c)0^{++}}(6957)(2S) 83. 0%\% 17. 0%\% 61. 0%\% 39. 0%\% 0.76 0.42 0.69 0.54
T(4c)0++(7018)(2S)T_{(4c)0^{++}}(7018)(2S) 4. 4%\% 95. 6%\% 34. 8%\% 65. 2%\% 0.56 0.56 0.69 0.40
T(4c)0++(7185)(2S)T_{(4c)0^{++}}(7185)(2S) 99. 7%\% 0. 3%\% 66. 6%\% 33. 4%\% 0.74 0.33 0.62 0.52
T(4c)1+(6919)(2S)T_{(4c)1^{+-}}(6919)(2S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.52 0.72 0.82 0.37
T(4c)1+(7021)(2S)T_{(4c)1^{+-}}(7021)(2S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.69 0.36 0.61 0.49
T(4c)1++(7009)(2S)T_{(4c)1^{++}}(7009)(2S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.73 0.45 0.68 0.51
T(4c)2+(7017)(2S)T_{(4c)2^{+-}}(7017)(2S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.73 0.45 0.68 0.52
T(4c)2++(6927)(2S)T_{(4c)2^{++}}(6927)(2S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.47 0.68 0.76 0.33
T(4c)2++(7032)(2S)T_{(4c)2^{++}}(7032)(2S) 0. 0%\% 100. 0%\% 33. 3%\% 66. 7%\% 0.79 0.45 0.72 0.56
Table 7: The components of different color configurations and the root mean square radius (fm) for each physical T(4b)T_{(4b)} states, where 𝒓1234(𝐫1+𝐫2)/2(𝐫3+𝐫4)/2\boldsymbol{r}_{12-34}\equiv\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)/2-\left(\mathbf{r}_{3}+\mathbf{r}_{4}\right)/2, 𝒓1324(𝐫1+𝐫3)/2(𝐫2+𝐫4)/2\boldsymbol{r}_{13-24}\equiv\left(\mathbf{r}_{1}+\mathbf{r}_{3}\right)/2-\left(\mathbf{r}_{2}+\mathbf{r}_{4}\right)/2.
      State       |66¯c\left|6\bar{6}\right\rangle_{c}       |3¯3c\left|\bar{3}3\right\rangle_{c}       |11c\left|11\right\rangle_{c}     |88c\left|88\right\rangle_{c}     r122\sqrt{\langle r_{12}^{2}\rangle}     r12342\sqrt{\langle r_{12-34}^{2}\rangle}     r132\sqrt{\langle r_{13}^{2}\rangle}     r13242\sqrt{\langle r_{13-24}^{2}\rangle}
T(4b)0++(19306)(1S)T_{(4b)0^{++}}(19306)(1S) 33.9%\% 66.1%\% 44.6%\% 55.4%\% 0.27 0.19 0.27 0.19
T(4b)0++(19355)(1S)T_{(4b)0^{++}}(19355)(1S) 66.1%\% 33.9%\% 55.4%\% 44.6%\% 0.27 0.19 0.27 0.19
T(4b)1+(19329)(1S)T_{(4b)1^{+-}}(19329)(1S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.27 0.19 0.27 0.19
T(4b)2++(19341)(1S)T_{(4b)2^{++}}(19341)(1S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.27 0.19 0.27 0.19
T(4b)0(19485)(1P)T_{(4b)0^{--}}(19485)(1P) 65.3%\% 34.7%\% 55.1%\% 44.9%\% 0.36 0.22 0.34 0.25
T(4b)0(19756)(1P)T_{(4b)0^{--}}(19756)(1P) 34.7%\% 65.3%\% 44.9%\% 55.1%\% 0.36 0.22 0.34 0.26
T(4b)0+(19500)(1P)T_{(4b)0^{-+}}(19500)(1P) 68.0%\% 32.0%\% 56.0%\% 44.0%\% 0.35 0.22 0.33 0.25
T(4b)0+(19595)(1P)T_{(4b)0^{-+}}(19595)(1P) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.31 0.28 0.36 0.22
T(4b)0+(19739)(1P)T_{(4b)0^{-+}}(19739)(1P) 32.5%\% 67.5%\% 44.2%\% 55.8%\% 0.36 0.22 0.33 0.25
T(4b)1(19479)(1P)T_{(4b)1^{--}}(19479)(1P) 67.1%\% 32.9%\% 55.7%\% 44.3%\% 0.36 0.22 0.34 0.26
T(4b)1(19597)(1P)T_{(4b)1^{--}}(19597)(1P) 91.9%\% 8.1%\% 64.0%\% 36.0%\% 0.31 0.28 0.36 0.22
T(4b)1(19603)(1P)T_{(4b)1^{--}}(19603)(1P) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.31 0.28 0.36 0.22
T(4b)1(19748)(1P)T_{(4b)1^{--}}(19748)(1P) 0.2%\% 99.8%\% 33.4%\% 66.6%\% 0.36 0.23 0.35 0.25
T(4b)1(19795)(1P)T_{(4b)1^{--}}(19795)(1P) 41.3%\% 58.7%\% 47.1%\% 52.9%\% 0.33 0.29 0.37 0.23
T(4b)1+(19496)(1P)T_{(4b)1^{-+}}(19496)(1P) 67.3%\% 32.7%\% 55.8%\% 44.2%\% 0.36 0.22 0.34 0.25
T(4b)1+(19603)(1P)T_{(4b)1^{-+}}(19603)(1P) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.31 0.28 0.36 0.22
T(4b)1+(19748)(1P)T_{(4b)1^{-+}}(19748)(1P) 32.5%\% 67.5%\% 44.2%\% 55.8%\% 0.36 0.22 0.34 0.26
T(4b)2(19476)(1P)T_{(4b)2^{--}}(19476)(1P) 65.3%\% 34.7%\% 55.1%\% 44.9%\% 0.36 0.22 0.34 0.25
T(4b)2(19608)(1P)T_{(4b)2^{--}}(19608)(1P) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.31 0.29 0.36 0.22
T(4b)2(19767)(1P)T_{(4b)2^{--}}(19767)(1P) 34.6%\% 65.4%\% 44.9%\% 55.1%\% 0.36 0.22 0.34 0.26
T(4b)2+(19492)(1P)T_{(4b)2^{-+}}(19492)(1P) 66.7%\% 33.3%\% 55.6%\% 44.4%\% 0.36 0.22 0.34 0.25
T(4b)2+(19609)(1P)T_{(4b)2^{-+}}(19609)(1P) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.31 0.29 0.36 0.22
T(4b)2+(19756)(1P)T_{(4b)2^{-+}}(19756)(1P) 33.3%\% 66.7%\% 44.4%\% 55.6%\% 0.36 0.22 0.34 0.26
T(4b)3(19617)(1P)T_{(4b)3^{--}}(19617)(1P) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.32 0.29 0.36 0.22
T(4b)0+(19789)(2S)T_{(4b)0^{+-}}(19789)(2S) 1.0%\% 99.0%\% 33.7%\% 66.3%\% 0.43 0.28 0.42 0.31
T(4b)0+(19841)(2S)T_{(4b)0^{+-}}(19841)(2S) 99.0%\% 1.0%\% 66.3%\% 33.7%\% 0.48 0.24 0.42 0.34
T(4b)0++(19719)(2S)T_{(4b)0^{++}}(19719)(2S) 2.4%\% 97.6%\% 34.1%\% 65.9%\% 0.41 0.20 0.35 0.29
T(4b)0++(19767)(2S)T_{(4b)0^{++}}(19767)(2S) 1.0%\% 99.0%\% 33.7%\% 66.3%\% 0.28 0.43 0.48 0.20
T(4b)0++(19811)(2S)T_{(4b)0^{++}}(19811)(2S) 96.2%\% 3.8%\% 65.4%\% 34.6%\% 0.32 0.36 0.43 0.22
T(4b)0++(19976)(2S)T_{(4b)0^{++}}(19976)(2S) 100.0%\% 0.0%\% 66.7%\% 33.3%\% 0.39 0.16 0.31 0.28
T(4b)1+(19722)(2S)T_{(4b)1^{+-}}(19722)(2S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.40 0.20 0.35 0.28
T(4b)1+(19813)(2S)T_{(4b)1^{+-}}(19813)(2S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.30 0.44 0.49 0.21
T(4b)1++(19792)(2S)T_{(4b)1^{++}}(19792)(2S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.43 0.28 0.41 0.30
T(4b)2+(19795)(2S)T_{(4b)2^{+-}}(19795)(2S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.43 0.28 0.42 0.31
T(4b)2++(19726)(2S)T_{(4b)2^{++}}(19726)(2S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.38 0.20 0.34 0.27
T(4b)2++(19816)(2S)T_{(4b)2^{++}}(19816)(2S) 0.0%\% 100.0%\% 33.3%\% 66.7%\% 0.31 0.43 0.49 0.22