This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

From topological amplitude to rescattering dynamics
in doubly charmed baryon decays

Di Wang1 [email protected] 1Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China
Abstract

The doubly charmed baryon Ξcc++\Xi^{++}_{cc} was observed by LHCb cooperation in 2017. The branching fractions of two-body doubly charmed baryon decays were predicted in the framework of rescattering mechanism, and some SU(3)FSU(3)_{F} relations were investigated in the topological amplitudes. In this work, we study the correlation between topological diagram at quark level and rescattering triangle diagram at hadron level in the doubly charmed baryon decay. The completeness of our framework is confirmed from the fact that all the twelve possible structures of meson-baryon scattering appear once each in the the intermediate form between topological diagram and triangle diagram, topological-scattering diagram. It is found the triangle diagrams derived from the topological diagrams are consistent with the ones derived directly from the chiral Lagrangian. The relative magnitudes of rescattering contributions in the CC, CC^{\prime}, EE, EE^{\prime}, PP and PP^{\prime} diagrams extracted from SU(3)FSU(3)_{F} symmetry are consistent with the numerical analysis in literature. Taking Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}, Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} and Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} modes as examples, we show the isospin relation is satisfied in terms of triangle diagrams.

I Introduction

In 2017, LHCb collaboration observed the doubly charmed baryon Ξcc++\Xi_{cc}^{++} via Ξcc++Λc+Kπ+π+\Xi_{cc}^{++}\to\Lambda^{+}_{c}K^{-}\pi^{+}\pi^{+} decay LHCb:2017iph . Subsequently, the measurement of the lifetime of Ξcc++\Xi_{cc}^{++} and the observation of Ξcc++Ξc+π+\Xi_{cc}^{++}\to\Xi^{+}_{c}\pi^{+} were performed LHCb:2018zpl ; LHCb:2018pcs . The discovery of Ξcc++\Xi_{cc}^{++} benefits from the theoretical work Yu:2017zst , in which the most favorable decay channels of Ξcc++\Xi_{cc}^{++} were pointed out. In Ref. Yu:2017zst , the branching fractions of doubly charmed baryon decays are estimated in the rescattering mechanism, since the QCD-inspired methods do not work well at the scale of charm quark decay. The rescattering mechanism has been used in heavy mason and baryon hadron decays in literature Han:2021gkl ; Locher:1993cc ; Li:1996cj ; Dai:1999cs ; Li:2002pj ; Ablikim:2002ep ; Cheng:2004ru ; Lu:2005mx ; Chen:2002jr . And a systematic study on doubly charmed baryon decays in the rescattering mechanism has been performed in Jiang:2018oak ; Han:2021azw .

In the rescattering mechanism, the doubly charmed baryon first decays into one baryon and one meson via a short-distance emitted amplitude TSDT^{SD}. Then the tt-channel meson-baryon scattering between them serves as the long-distance contributions. It forms a triangle diagram at hadron level. There are two different approaches to get the triangle diagrams contributing to one decay channel: calculating the hadron-level Feynman diagrams directly from the chiral Lagrangian Jiang:2018oak ; Han:2021azw , or extracting from the topological diagrams Ablikim:2002ep ; Cheng:2004ru . In the second method, topological-scattering diagram, the intermediate form between topological diagram and triangle diagram, is used to describe the transition from TT diagram to other diagrams such as EE, CC … etc. However, the triangle diagrams given by these two methods are not consistent in literature Han:2021azw ; Cheng:2004ru . A further study is necessary.

Inspired by the idea of topological diagram expressed in the invariant tensor He:2018php ; He:2018joe ; Wang:2020gmn , we proposed a theoretical framework to associate topological amplitude and rescattering dynamics in heavy meson decays in Ref. Wang:2021rhd . In this framework, both the triangle diagram and the topological-scattering diagram are expressed in the tensor form. The coefficients of triangle diagrams can be derived from the quark diagrams. In this way, the conflict between two approaches to obtain triangle diagrams is solved. The triangle diagrams derived from topological diagrams are the same with the ones derived from the chiral Lagrangian. In this work, we generalize the theoretical framework proposed in Wang:2021rhd to the doubly charmed baryon decays. It is found the twelve possible structures of meson-baryon scattering appear once each in the topological-scattering diagrams. And the rescattering contributions in CC, CC^{\prime}, EE, EE^{\prime}, PP and PP^{\prime} diagrams have definite proportional relation under the SU(3)FSU(3)_{F} symmetry. Taking Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}, Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} and Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} modes as examples, we show our framework in detail. One can find the isospin relation between them is held in terms of triangle diagrams.

This paper is organized as follows. In Sec. II, we construct the theoretical framework of the relation between topological amplitude and rescattering triangle diagram. In Sec. III, the reliability of our method is checked in the Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}, Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} and Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} modes. And Sec. IV is a short summary.

II From topological diagram to triangle diagram

Refer to caption
Figure 1: Topological diagrams contributing to the ccc3¯M\mathcal{B}_{cc}\to\mathcal{B}_{c\overline{3}}M decays in the Standard Model.

In this section, we write the topological-scattering diagram and triangle diagram in the tensor form and analyze the relation among topological diagram, topological-scattering diagram and triangle diagram. In the SU(3)SU(3) picture, pseudoscalar meson nonet |Mji|M^{i}_{j}\rangle is expressed as

|Mji=(12|π0+16|η8,|π+,|K+|π,12|π0+16|η8,|K0|K,|K¯0,23|η8)+13(|η1,0,00,|η1,00,0,|η1),\displaystyle|M^{i}_{j}\rangle=\left(\begin{array}[]{ccc}\frac{1}{\sqrt{2}}|\pi^{0}\rangle+\frac{1}{\sqrt{6}}|\eta_{8}\rangle,&|\pi^{+}\rangle,&|K^{+}\rangle\\ |\pi^{-}\rangle,&-\frac{1}{\sqrt{2}}|\pi^{0}\rangle+\frac{1}{\sqrt{6}}|\eta_{8}\rangle,&|K^{0}\rangle\\ |K^{-}\rangle,&|\overline{K}^{0}\rangle,&-\sqrt{\frac{2}{3}}|\eta_{8}\rangle\\ \end{array}\right)+\frac{1}{\sqrt{3}}\left(\begin{array}[]{ccc}|\eta_{1}\rangle,&0,&0\\ 0,&|\eta_{1}\rangle,&0\\ 0,&0,&|\eta_{1}\rangle\\ \end{array}\right), (7)

where ii is row index and jj is column index. The vector meson nonet is

|Vji=(12|ρ0+12|ω,|ρ+,|K+|ρ,12|ρ0+12|ω,|K0|K,|K¯0,|ϕ).\displaystyle|V\rangle^{i}_{j}=\left(\begin{array}[]{ccc}\frac{1}{\sqrt{2}}|\rho^{0}\rangle+\frac{1}{\sqrt{2}}|\omega\rangle,&|\rho^{+}\rangle,&|K^{*+}\rangle\\ |\rho^{-}\rangle,&-\frac{1}{\sqrt{2}}|\rho^{0}\rangle+\frac{1}{\sqrt{2}}|\omega\rangle,&|K^{*0}\rangle\\ |K^{*-}\rangle,&|\overline{K}^{*0}\rangle,&|\phi\rangle\\ \end{array}\right). (11)

The doubly charmed triplet baryon is expressed as

|cc=(|Ξcc++(ccu),|Ξcc+(ccd),|Ωcc+(ccs)).\displaystyle|\mathcal{B}_{cc}\rangle=(|\Xi_{cc}^{++}(ccu)\rangle,\,\,|\Xi_{cc}^{+}(ccd)\rangle,\,\,|\Omega_{cc}^{+}(ccs)\rangle). (12)

The charmed anti-triplet baryon is expressed as

|c3¯=(0|Λc+|Ξc+|Λc+0|Ξc0|Ξc+|Ξc00).\displaystyle|\mathcal{B}_{c\overline{3}}\rangle=\left(\begin{array}[]{ccc}0&|\Lambda_{c}^{+}\rangle&|\Xi_{c}^{+}\rangle\\ -|\Lambda_{c}^{+}\rangle&0&|\Xi_{c}^{0}\rangle\\ -|\Xi_{c}^{+}\rangle&-|\Xi_{c}^{0}\rangle&0\\ \end{array}\right). (16)

The amplitude of doubly charmed baryon decays into a charmed anti-triplet baryon and a light meson in the Standard Model (SM) can be expressed as sum of invariant tensors,

𝒜(ccc3¯M)=\displaystyle\mathcal{A}(\mathcal{B}_{cc}\to\mathcal{B}_{c\overline{3}}M)= T(cc)iHkjlMlk(¯c3¯)ij+C(cc)iHjklMlk(¯c3¯)ij+C(cc)iHlkjMji(¯c3¯)lk\displaystyle\,T\,(\mathcal{B}_{cc})_{i}H^{l}_{kj}M^{k}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}+C\,(\mathcal{B}_{cc})_{i}H^{l}_{jk}M^{k}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}+C^{\prime}\,(\mathcal{B}_{cc})_{i}H^{j}_{lk}M^{i}_{j}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}
+E(cc)iHjkiMlj(¯c3¯)lk+E(cc)iHkjiMlj(¯c3¯)lk+ES(cc)iHjkiMll(¯c3¯)jk\displaystyle+E\,(\mathcal{B}_{cc})_{i}H^{i}_{jk}M^{j}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}+E^{\prime}\,(\mathcal{B}_{cc})_{i}H^{i}_{kj}M^{j}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}+ES\,(\mathcal{B}_{cc})_{i}H^{i}_{jk}M^{l}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{jk}
+P(cc)iHjllMkj(¯c3¯)ik+P(cc)iHjllMki(¯c3¯)jk\displaystyle+P\,(\mathcal{B}_{cc})_{i}H^{l}_{jl}M^{j}_{k}(\overline{\mathcal{B}}_{c\overline{3}})^{ik}+P^{\prime}\,(\mathcal{B}_{cc})_{i}H^{l}_{jl}M^{i}_{k}(\overline{\mathcal{B}}_{c\overline{3}})^{jk}
+PS(cc)iHjllMkk(¯c3¯)ij.\displaystyle+PS\,(\mathcal{B}_{cc})_{i}H^{l}_{jl}M^{k}_{k}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}. (17)

If the index-contraction is understood as quark flowing, each term in Eq. (II) is a topological diagram. The topological diagrams contribute to ccc3¯M\mathcal{B}_{cc}\to\mathcal{B}_{c\overline{3}}M are listed in Fig. 1. The first five diagrams, TT, CC, CC^{\prime}, EE and EE^{\prime}, are tree-level topological diagrams have been analyzed in literatures such as Jiang:2018oak ; Han:2021azw . ESES is the singlet contribution. The last three diagrams are quark-loop contributions. There is a sign arbitrariness in the definition of topological diagram in Eq. (II). For example, if we define the TT amplitude as (cc)iHkjlMlk(¯c3¯)ji(\mathcal{B}_{cc})_{i}H^{l}_{kj}M^{k}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{ji}, an additional minus sign will appear in TT amplitude because of (¯c3¯)ij=(¯c3¯)ji(\overline{\mathcal{B}}_{c\overline{3}})^{ij}=-(\overline{\mathcal{B}}_{c\overline{3}})^{ji}.

Refer to caption
Figure 2: Topological-scattering diagram and triangle diagram in TET\,\Rightarrow\,E transition.

In the factorization approach, amplitude TT is dominated by factorizable contribution, TSDT^{SD}. Since CSDC^{SD} is the Fierz transformation of TSDT^{SD}, the factorizable part in the CC amplitude is also important. The factorizable contributions TSDT^{SD} and CSDC^{SD} can be parameterized as the decay constant of the emitted mesons and the other is expressed as the transition form factors111Please see literature such as Ref. Han:2021azw for details.. In the final state interaction (FSI) framework, the non-factorable QCD effects can be modeled as an exchange of one particle between two particles generated from the tree emitted amplitudes, TSDT^{SD} and CSDC^{SD}. There are ss-channel and tt-channel contributions in the final state interaction, or referred to as resonance and rescattering contributions respectively. In this work, we focus on the tt-channel FSI contribution. It forms a triangle diagram at hadron level, and can be derived from topological diagram via the topological-scattering diagram. In the rest of this section, we will study the relation between the topological diagram, topological-scattering diagram and triangle diagram and give physical consequences. The factorizable contribution of the CC diagram is suppressed by the color factor at charm scale with the effective Wilson coefficient a2(mc)=C1(mc)+C2(mc)/Nca_{2}(m_{c})=C_{1}(m_{c})+C_{2}(m_{c})/N_{c}. So we neglect the factorizable contribution CSDC^{SD} and only analyze the rescattering contribution arisen from TSDT^{SD} just like Ref. Han:2021azw .

Following Ref. Wang:2021rhd , we express the topological-scattering diagram and triangle diagram in the tensor form, taking EE diagram as an example. The topological-scattering diagram of TET\Rightarrow E transition forms a triangle diagram at hadron level, see Fig. 2. Here the superscript ”SD” in TT has been omitted for convenience. In the tensor form of topological diagram, TT diagram is written as (cc)qHmnpMpm(¯c3¯)qn(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}, EE diagram is written as (cc)iHjkiMlj(¯c3¯)lk(\mathcal{B}_{cc})_{i}H_{jk}^{i}M^{j}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}. The TET\Rightarrow E transition can be written as

L(E)[i,j,k,l]=(cc)qHmnpMpm(¯c3¯)qnMmpVplMlj(c3¯)qnVlq(¯c3¯)lkδipδjmδknδiq.\displaystyle L(E)[i,j,k,l]\,\,=\,\,(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{l}_{p}M^{j}_{l}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{q}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}\,\cdot\,\delta_{ip}\delta_{jm}\delta_{kn}\,\cdot\,\delta_{iq}. (18)

L(E)[i,j,k,l]L(E)[i,j,k,l] is a topological-scattering diagram. It can also be understood as a triangle diagram. The TT diagram in the left is the weak vertex of triangle diagram. The MVMMVM vertex is a meson-meson scattering vertex and (c3¯)V(¯c3¯)(\mathcal{B}_{c\overline{3}})V(\overline{\mathcal{B}}_{c\overline{3}}) vertex is a meson-baryon scattering vertex. The index contractions of MmpMpmM^{p}_{m}M^{m}_{p}, VilVliV^{l}_{i}V^{i}_{l} and (¯c3¯)qn(c3¯)qn(\overline{\mathcal{B}}_{c\overline{3}})^{qn}(\mathcal{B}_{c\overline{3}})_{qn} are three propagators. The kronecker symbols are used to set Hmnp=HjkiH_{mn}^{p}=H_{jk}^{i} and (cc)q=(cc)i(\mathcal{B}_{cc})_{q}=(\mathcal{B}_{cc})_{i}. We only consider the vector meson and charmed anti-triplet baryon exchanges here, i.e., ccMc3¯Mc3¯\mathcal{B}_{cc}\to M\mathcal{B}_{c\overline{3}}\to M\mathcal{B}_{c\overline{3}} via exchanging a vector meson or charmed anti-triplet baryon. For other processes such as ccVc3¯Mc3¯\mathcal{B}_{cc}\to V\mathcal{B}_{c\overline{3}}\to M\mathcal{B}_{c\overline{3}}, ccMc6Mc3¯\mathcal{B}_{cc}\to M\mathcal{B}_{c6}\to M\mathcal{B}_{c\overline{3}}, … are similar to the case of ccMc3¯Mc3¯\mathcal{B}_{cc}\to M\mathcal{B}_{c\overline{3}}\to M\mathcal{B}_{c\overline{3}}. We will not present details in this work. Besides, please notice the order of indies of meson-baryon vertex. Due to the antisymmetric light quarks in the charmed anti-triplet baryon, we have

(Bc3¯)ijVki(B¯c3¯)kl=(Bc3¯)ijVli(B¯c3¯)kl=(Bc3¯)ijVlj(B¯c3¯)kl=(Bc3¯)ijVkj(B¯c3¯)kl.\displaystyle(B_{c\overline{3}})_{ij}V^{i}_{k}(\overline{B}_{c\overline{3}})^{kl}=-(B_{c\overline{3}})_{ij}V^{i}_{l}(\overline{B}_{c\overline{3}})^{kl}=(B_{c\overline{3}})_{ij}V^{j}_{l}(\overline{B}_{c\overline{3}})^{kl}=-(B_{c\overline{3}})_{ij}V^{j}_{k}(\overline{B}_{c\overline{3}})^{kl}. (19)

It guarantees the sign arbitrariness of topological diagram cannot affect the sign of triangle diagram.

Refer to caption
Figure 3: Topological-scattering diagram and triangle diagram in TET\,\Rightarrow\,E^{\prime} transition.
Refer to caption
Figure 4: Topological-scattering diagram and triangle diagram in TCT\,\Rightarrow\,C transition.
Refer to caption
Figure 5: Topological-scattering diagram and triangle diagram in TCT\,\Rightarrow\,C^{\prime} transition.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Topological-scattering diagram and triangle diagram in TTT\,\Rightarrow\,T transition.
Refer to caption
Figure 7: Topological-scattering diagram and triangle diagram in TPT\,\Rightarrow\,P transition.
Refer to caption
Figure 8: Topological-scattering diagram and triangle diagram in TPT\,\Rightarrow\,P^{\prime} transition.

For the completeness of our theoretical framework, we list all the tensor structures in TE,C,C,T,P,PT\Rightarrow E^{\prime},\,C,\,C^{\prime},\,T,\,P,\,P^{\prime} transitions.
TET\Rightarrow E^{\prime}:

L(E)[i,j,k,l]=\displaystyle L(E^{\prime})[i,j,k,l]\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmp(c3¯)pl(¯c3¯)lk(c3¯)qn(¯c3¯)qlMlj\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}(\mathcal{B}_{c\overline{3}})_{pl}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}(\overline{\mathcal{B}}_{c\overline{3}})^{ql}M^{j}_{l}
δipδkmδjnδiq.\displaystyle\,\cdot\,\delta_{ip}\delta_{km}\delta_{jn}\,\cdot\,\delta_{iq}. (20)

TCT\Rightarrow C:

L(C)[i,j,k,l]1=\displaystyle L(C)[i,j,k,l]_{1}\,\ =\,\, (cc)qHmnpMpm(¯c3¯)qnMmpVkmMlk(c3¯)qnVjn(¯c3¯)ijδlpδjmδknδiq,\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{m}_{k}M^{k}_{l}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{n}_{j}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}\,\cdot\,\delta_{lp}\delta_{jm}\delta_{kn}\,\cdot\,\delta_{iq}, (21)
L(C)[i,j,k,l]2=\displaystyle L(C)[i,j,k,l]_{2}\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmp(c3¯)ip(¯c3¯)ij(c3¯)qn(¯c3¯)qlMlk\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}(\mathcal{B}_{c\overline{3}})_{ip}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}(\overline{\mathcal{B}}_{c\overline{3}})^{ql}M^{k}_{l}
δlpδjmδknδiq.\displaystyle\,\cdot\,\delta_{lp}\delta_{jm}\delta_{kn}\,\cdot\,\delta_{iq}. (22)

TCT\Rightarrow C^{\prime}:

L(C)[i,j,k,l]1=\displaystyle L(C^{\prime})[i,j,k,l]_{1}\,\ =\,\, (cc)qHmnpMpm(¯c3¯)qnMmpVimMji(c3¯)qnVlq(¯c3¯)lkδjpδlmδknδiq,\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{m}_{i}M^{i}_{j}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{q}_{l}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}\,\cdot\,\delta_{jp}\delta_{lm}\delta_{kn}\,\cdot\,\delta_{iq}, (23)
L(C)[i,j,k,l]2=\displaystyle L(C^{\prime})[i,j,k,l]_{2}\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmp(c3¯)pk(¯c3¯)lk(c3¯)qn(¯c3¯)jnMji\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}(\mathcal{B}_{c\overline{3}})_{pk}(\overline{\mathcal{B}}_{c\overline{3}})^{lk}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}(\overline{\mathcal{B}}_{c\overline{3}})^{jn}M^{i}_{j}
δjpδlmδknδiq.\displaystyle\,\cdot\,\delta_{jp}\delta_{lm}\delta_{kn}\,\cdot\,\delta_{iq}. (24)

TTT\Rightarrow T:

L(T)[i,j,k,l]1=\displaystyle L(T)[i,j,k,l]_{1}\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmpVkmMlk(c3¯)qnViq(¯c3¯)ijδlpδkmδjnδiq,\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{m}_{k}M^{k}_{l}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{q}_{i}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}\,\cdot\,\delta_{lp}\delta_{km}\delta_{jn}\,\cdot\,\delta_{iq}, (25)
L(T)[i,j,k,l]2=\displaystyle L(T)[i,j,k,l]_{2}\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmpVkmMlk(c3¯)qnVjn(¯c3¯)ijδlpδkmδjnδiq,\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{m}_{k}M^{k}_{l}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{n}_{j}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}\,\cdot\,\delta_{lp}\delta_{km}\delta_{jn}\,\cdot\,\delta_{iq}, (26)
L(T)[i,j,k,l]3=\displaystyle L(T)[i,j,k,l]_{3}\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmpVplMlk(c3¯)qnViq(¯c3¯)ijδlpδkmδjnδiq,\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{l}_{p}M^{k}_{l}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{q}_{i}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}\,\cdot\,\delta_{lp}\delta_{km}\delta_{jn}\,\cdot\,\delta_{iq}, (27)
L(T)[i,j,k,l]4=\displaystyle L(T)[i,j,k,l]_{4}\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmpVplMlk(c3¯)qnVjn(¯c3¯)ijδlpδkmδjnδiq.\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{l}_{p}M^{k}_{l}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{n}_{j}(\overline{\mathcal{B}}_{c\overline{3}})^{ij}\,\cdot\,\delta_{lp}\delta_{km}\delta_{jn}\,\cdot\,\delta_{iq}. (28)

TPT\Rightarrow P:

L(P)[i,j,k,l]=(cc)qHmnpMpm(¯c3¯)qnMmpVpkMkj(c3¯)qnVkn(¯c3¯)ikδlpδjmδlnδiq.\displaystyle L(P)[i,j,k,l]\,\,=\,\,(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}V^{k}_{p}M^{j}_{k}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}V^{n}_{k}(\overline{\mathcal{B}}_{c\overline{3}})^{ik}\,\cdot\,\delta_{lp}\delta_{jm}\delta_{ln}\,\cdot\,\delta_{iq}. (29)

TPT\Rightarrow P^{\prime}:

L(P)[i,j,k,l]=\displaystyle L(P^{\prime})[i,j,k,l]\,\,=\,\, (cc)qHmnpMpm(¯c3¯)qnMmp(c3¯)pk(¯c3¯)jk(c3¯)qn(¯c3¯)nkMki\displaystyle(\mathcal{B}_{cc})_{q}H_{mn}^{p}M^{m}_{p}(\overline{\mathcal{B}}_{c\overline{3}})^{qn}\,\cdot\,M^{p}_{m}(\mathcal{B}_{c\overline{3}})_{pk}(\overline{\mathcal{B}}_{c\overline{3}})^{jk}\,\cdot\,(\mathcal{B}_{c\overline{3}})_{qn}(\overline{\mathcal{B}}_{c\overline{3}})^{nk}M^{i}_{k}
δlpδjmδlnδiq.\displaystyle\,\cdot\,\delta_{lp}\delta_{jm}\delta_{ln}\,\cdot\,\delta_{iq}. (30)

The triangle diagrams constructed by the topological-scattering diagrams in TET\Rightarrow E^{\prime}, TCT\Rightarrow C, TCT\Rightarrow C^{\prime}, TTT\Rightarrow T, TPT\Rightarrow P and TPT\Rightarrow P^{\prime} transitions are shown in Figs. 3 \sim 8, respectively. As pointed out in Ref. Wang:2021rhd , the non-perturbative effects in the ESES and PSPS diagrams cannot be modeled into triangle diagram because they can be divided into two unconnected parts by cutting off gluon propagators.

Refer to caption
Figure 9: Sketches of meson-baryon scattering in the long-distance contributions of doubly charmed baryon decays into a charmed anti-triplet baryon and a light meson.

There are twelve different sub-structures of meson-baryon scattering in Figs. 2 \sim 8. All of them can be summarized as Fig. 9. S1S_{1} in Fig. 9 represents the meson-baryon scattering induced by a quark exchange between meson and baryon. There are four different choices of exchanging a light quark between a light meson and a heavy baryon, corresponding to the meson-baryon scattering in topological-scattering diagrams L(C)1L(C)_{1}, L(C)1L(C^{\prime})_{1}, L(E)L(E) and L(P)L(P), respectively. S2S_{2} in Fig. 9 represents the meson-baryon scattering induced by inserting two meson currents in one valence quark of baryon. There are two different choices in light meson-heavy baryon scattering, corresponding to the scattering in topological-scattering diagrams L(C)2L(C)_{2} and L(C)2L(C^{\prime})_{2}. S3S_{3} in Fig. 9 represents the meson-baryon scattering induced by inserting two meson currents in two valence quarks of baryon. There are two different choices in light meson-heavy baryon scattering, corresponding to the scattering in topological-scattering diagrams L(E)L(E^{\prime}) and L(P)L(P^{\prime}). S4S_{4} in Fig. 9 represents the meson-baryon scattering induced by exchanging a neutral meson propagator without quark exchange or meson current inserting. There are four different choices in light meson-heavy baryon scattering, corresponding to the scattering in topological-scattering diagrams L(T)1L(T)_{1}, L(T)2L(T)_{2}, L(T)3L(T)_{3}, L(T)4L(T)_{4}, respectively. In the end, the topological-scattering diagrams in TC()T\Rightarrow C^{(\prime)}, TE()T\Rightarrow E^{(\prime)}, TP()T\Rightarrow P^{(\prime)} and TTT\Rightarrow T transitions cover all the twelve possible structures of meson-baryon scattering without repetition. Thereby, the topological-scattering diagrams listed in Figs. 2 \sim 8 are complete.

III Examples and discussions

In this section, we take the Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}, Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} and Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} modes as examples to illustrate the reliability of the method proposed in last section. The topological amplitude of Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+} decay is T+CT+C^{\prime}. The rescattering contributions modeled by triangle diagram at hadron level can be written as

L(C)1[u,d,s,u]\displaystyle L(C^{\prime})_{1}[u,d,s,u]\,\, =12Δ(Ξcc++,π+,Ξc+,ρ0,π+,Ξc+)12Δ(Ξcc++,π+,Ξc+,ω,π+,Ξc+),\displaystyle=\,\,-\frac{1}{2}\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\rho^{0},\pi^{+},\Xi^{+}_{c})-\frac{1}{2}\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\omega,\pi^{+},\Xi^{+}_{c}), (31)
L(C)2[u,d,s,u]\displaystyle L(C^{\prime})_{2}[u,d,s,u]\,\, =Δ(Ξcc++,π+,Ξc+,Ξ¯c0,Ξc+,π+),\displaystyle=\,\,\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\overline{\Xi}^{0}_{c},\Xi^{+}_{c},\pi^{+}), (32)
L(T)3[u,s,u,d]\displaystyle L(T)_{3}[u,s,u,d]\,\, =12Δ(Ξcc++,π+,Ξc+,ρ0,π+,Ξc+)+12Δ(Ξcc++,π+,Ξc+,ω,π+,Ξc+).\displaystyle=\,\,-\frac{1}{2}\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\rho^{0},\pi^{+},\Xi^{+}_{c})+\frac{1}{2}\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\omega,\pi^{+},\Xi^{+}_{c}). (33)

In the topological-scattering diagram L(C)1[u,d,s,u]L(C^{\prime})_{1}[u,d,s,u], the quark constituent of vector propagator is uu¯u\overline{u}. According to Eq. (11), uu¯=|ρ0/2+|ω/2u\overline{u}=|\rho^{0}\rangle/\sqrt{2}+|\omega\rangle/\sqrt{2}. There are two strong vertexes in the triangle diagram. The coefficient 1/21/2 is induced from multiplying 1/21/\sqrt{2} two times, (1/2)×(1/2)=1/2(1/\sqrt{2})\times(1/\sqrt{2})=1/2. The minus sign before 1/21/2 arises from the cross in L(C)1[u,d,s,u]L(C^{\prime})_{1}[u,d,s,u] because of the commutator in the effective chiral lagrangian of meson-meson scattering Wang:2021rhd . In TTT\Rightarrow T transition, the topological-scattering diagram L(T)1[u,s,u,d]L(T)_{1}[u,s,u,d] vanishes due to the Pauli exclusion principle Wang:2021rhd and hence only L(T)3[u,s,u,d]L(T)_{3}[u,s,u,d] is left. In topological-scattering diagram L(T)3[u,s,u,d]L(T)_{3}[u,s,u,d], the quark constituent of vector propagator is uu¯/dd¯u\overline{u}/d\overline{d}. uu¯=|ρ0/2+|ω/2u\overline{u}=|\rho^{0}\rangle/\sqrt{2}+|\omega\rangle/\sqrt{2}, dd¯=|ρ0/2+|ω/2d\overline{d}=-|\rho^{0}\rangle/\sqrt{2}+|\omega\rangle/\sqrt{2} and hence the propagator Vil0=ρ0/2+ω/2V^{0}_{il}=-\rho^{0}/2+\omega/2. Summing the TT and CC^{\prime} amplitudes, the rescattering contributions in the Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+} decay is

𝒜L(Ξcc++Ξc+π+)\displaystyle\mathcal{A}_{L}(\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}) =L(C)1[u,d,s,u]+L(C)2[u,d,s,u]+L(T)3[u,s,u,d]\displaystyle=L(C^{\prime})_{1}[u,d,s,u]+L(C^{\prime})_{2}[u,d,s,u]+L(T)_{3}[u,s,u,d]
=Δ(Ξcc++,π+,Ξc+,ρ0,π+,Ξc+)+Δ(Ξcc++,π+,Ξc+,Ξ¯c0,Ξc+,π+).\displaystyle=-\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\rho^{0},\pi^{+},\Xi^{+}_{c})+\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\overline{\Xi}^{0}_{c},\Xi^{+}_{c},\pi^{+}). (34)

Notice that the contributions associated with ωππ\omega\pi\pi vertex cancel each other.

Similarly, the topological amplitude of Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} decay is 12(EC)\frac{1}{\sqrt{2}}(E-C^{\prime}). The rescattering contributions include

12L(C)1[d,d,s,u]\displaystyle-\frac{1}{\sqrt{2}}L(C^{\prime})_{1}[d,d,s,u]\,\, =12Δ(Ξcc+,π+,Ξc0,ρ+,π0,Ξc+),\displaystyle=\,\,\frac{1}{\sqrt{2}}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{+},\pi^{0},\Xi^{+}_{c}), (35)
12L(C)2[d,d,s,u]\displaystyle-\frac{1}{\sqrt{2}}L(C^{\prime})_{2}[d,d,s,u]\,\, =12Δ(Ξcc+,π+,Ξc0,Ξ¯c0,Ξc+,π0),\displaystyle=\,\,-\frac{1}{\sqrt{2}}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\overline{\Xi}^{0}_{c},\Xi^{+}_{c},\pi^{0}), (36)
12L(E)[d,u,s,u]\displaystyle\frac{1}{\sqrt{2}}L(E)[d,u,s,u]\,\, =12Δ(Ξcc+,π+,Ξc0,ρ+,π0,Ξc+).\displaystyle=\,\,\frac{1}{\sqrt{2}}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{+},\pi^{0},\Xi^{+}_{c}). (37)

Summing the CC^{\prime} and EE amplitudes, we have

𝒜L(Ξcc+Ξc+π0)=\displaystyle\mathcal{A}_{L}(\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0})= 12(L(C)1[d,d,s,u]+L(C)2[d,d,s,u]L(E)[d,u,s,u])\displaystyle-\frac{1}{\sqrt{2}}(L(C^{\prime})_{1}[d,d,s,u]+L(C^{\prime})_{2}[d,d,s,u]-L(E)[d,u,s,u])
=\displaystyle= 2Δ(Ξcc+,π+,Ξc0,ρ+,π0,Ξc+)12Δ(Ξcc+,π+,Ξc0,Ξ¯c0,Ξc+,π0).\displaystyle\sqrt{2}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{+},\pi^{0},\Xi^{+}_{c})-\frac{1}{\sqrt{2}}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\overline{\Xi}^{0}_{c},\Xi^{+}_{c},\pi^{0}). (38)

The topological amplitude of Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} decay is T+ET+E. The rescattering contributions include

L(E)[d,u,s,d]\displaystyle L(E)[d,u,s,d]\,\, =12Δ(Ξcc+,π+,Ξc0,ρ0,π+,Ξc0)+12Δ(Ξcc+,π+,Ξc0,ω,π+,Ξc0),\displaystyle=\,\,\frac{1}{2}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{0},\pi^{+},\Xi^{0}_{c})+\frac{1}{2}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\omega,\pi^{+},\Xi^{0}_{c}), (39)
L(T)1[d,s,u,d]\displaystyle L(T)_{1}[d,s,u,d]\,\, =12Δ(Ξcc+,π+,Ξc0,ρ0,π+,Ξc0)12Δ(Ξcc+,π+,Ξc0,ω,π+,Ξc0).\displaystyle=\,\,\frac{1}{2}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{0},\pi^{+},\Xi^{0}_{c})-\frac{1}{2}\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\omega,\pi^{+},\Xi^{0}_{c}). (40)

Summing the TT and EE amplitudes, we have

𝒜L(Ξcc+Ξc0π+)=\displaystyle\mathcal{A}_{L}(\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+})= L(E)[d,u,s,d]+L(T)1[d,s,u,d]=Δ(Ξcc+,π+,Ξc0,ρ0,π+,Ξc0).\displaystyle L(E)[d,u,s,d]+L(T)_{1}[d,s,u,d]=\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{0},\pi^{+},\Xi^{0}_{c}). (41)

Again, all the contributions associated with ωππ\omega\pi\pi vertex cancel each other.

Under the isospin symmetry, the particles in an isospin multiplet are the same. Then we have

Δ1\displaystyle\Delta_{1} =Δ(Ξcc++,π+,Ξc+,ρ0,π+,Ξc+)=Δ(Ξcc+,π+,Ξc0,ρ+,π0,Ξc+)=Δ(Ξcc+,π+,Ξc0,ρ0,π+,Ξc0),\displaystyle=\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\rho^{0},\pi^{+},\Xi^{+}_{c})=\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{+},\pi^{0},\Xi^{+}_{c})=\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\rho^{0},\pi^{+},\Xi^{0}_{c}),
Δ2\displaystyle\Delta_{2} =Δ(Ξcc++,π+,Ξc+,Ξ¯c0,Ξc+,π+)=Δ(Ξcc+,π+,Ξc0,Ξ¯c0,Ξc+,π0).\displaystyle=\Delta(\Xi^{++}_{cc},\pi^{+},\Xi^{+}_{c},\overline{\Xi}^{0}_{c},\Xi^{+}_{c},\pi^{+})=\Delta(\Xi^{+}_{cc},\pi^{+},\Xi^{0}_{c},\overline{\Xi}^{0}_{c},\Xi^{+}_{c},\pi^{0}). (42)

The decay amplitudes of Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}, Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} and Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} channels can be written as

𝒜L(Ξcc++Ξc+π+)\displaystyle\mathcal{A}_{L}(\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}) =Δ1+Δ2,𝒜L(Ξcc+Ξc+π0)=2Δ112Δ2,\displaystyle=-\Delta_{1}+\Delta_{2},\qquad\mathcal{A}_{L}(\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0})=\sqrt{2}\Delta_{1}-\frac{1}{\sqrt{2}}\Delta_{2},
𝒜L(Ξcc+Ξc0π+)\displaystyle\mathcal{A}_{L}(\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+}) =Δ1.\displaystyle=\Delta_{1}. (43)

One can check the isospin relation

𝒜(Ξcc++Ξc+π+)+2𝒜(Ξcc+Ξc+π0)𝒜(Ξcc+Ξc0π+)=0\displaystyle\mathcal{A}(\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+})+\sqrt{2}\mathcal{A}(\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0})-\mathcal{A}(\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+})=0 (44)

is satisfied in terms of triangle diagrams.

Because of the cancellation of the neutral propagators such as in Eq. (33), the rescattering contributions in the TT diagram are zero under the flavor SU(3)SU(3) symmetry Wang:2021rhd , L(T)1=L(T)2=L(T)3=L(T)4=0L(T)_{1}=L(T)_{2}=L(T)_{3}=L(T)_{4}=0. Considering that there are two different configurations of triangle diagrams, the intermediate exchange particle served by meson or baryon, and all triangle diagrams are the same with same configuration under the flavor SU(3)SU(3) symmetry, we get two proportional relations between the topological-scattering diagrams:

L(C)1=L(C)1=L(E)=L(P),L(C)2\displaystyle L(C)_{1}=L(C^{\prime})_{1}=-L(E)=-L(P),\qquad L(C)_{2} =L(C)2=L(E)=L(P).\displaystyle=L(C^{\prime})_{2}=-L(E^{\prime})=-L(P^{\prime}). (45)

Notice the sign arbitrariness of topological diagram does not affect the sign of triangle diagram because of Eq. (19). There is a sign arbitrariness of the equations in Eq. (45).

Refer to caption
Refer to caption
Figure 10: PFP_{F} (left) and PFP^{\prime}_{F} (right) diagrams, the Fierz transformations of PP and PP^{\prime} diagrams, respectively.

The rescattering contributions can also be constructed by the two particles emitted from the short-distance CC amplitude. In the topological-scattering diagram, it is equivalent to use CSDC^{SD} to replace TSDT^{SD}. The topological-scattering diagram of CXC\Rightarrow X transition L(X)L^{\prime}(X) can be obtained from the topological-scattering diagram of TYT\Rightarrow Y transition, where XX, YY are two same or different topological diagrams. Specifically, the relations between the topological-scattering diagrams arisen from CSDC^{SD} and TSDT^{SD} are summarized to be

L(C)i=CSDTSDL(T)i,L(E)=CSDTSDL(E),L(E)=CSDTSDL(E),L(T)i=CSDTSDL(C)i,\displaystyle L^{\prime}(C)_{i}=\frac{C^{SD}}{T^{SD}}L(T)_{i},\qquad L^{\prime}(E^{\prime})=\frac{C^{SD}}{T^{SD}}L(E),\qquad L^{\prime}(E)=\frac{C^{SD}}{T^{SD}}L(E^{\prime}),\qquad L^{\prime}(T)_{i}=\frac{C^{SD}}{T^{SD}}L(C)_{i},
L(C)i=CSDTSDL(C)i,L(P)=CSDTSDL(PF),L(P)=CSDTSDL(PF),\displaystyle L^{\prime}(C^{\prime})_{i}=\frac{C^{SD}}{T^{SD}}L(C^{\prime})_{i},\qquad L^{\prime}(P)=\frac{C^{SD}}{T^{SD}}L(P_{F}),\qquad L^{\prime}(P^{\prime})=\frac{C^{SD}}{T^{SD}}L(P_{F}^{\prime}), (46)

in which PF()P_{F}^{(\prime)} diagram is the Fierz transformation of P()P^{(\prime)} diagram, see Fig. 10. In the SM, PF()P_{F}^{(\prime)} diagram is zero if the tree operators O1O_{1} or Q2Q_{2} is inserted into its weak vertex. Since CSD/TSDC^{SD}/T^{SD} is expected to be suppressed at least by one order, the rescattering contributions arisen from CSDC^{SD} will not affect Eq. (45) heavily. If the ss-channel one particle exchange is considered, Eq. (45) will be broken. But Eq. (45) is still significant as a rough estimation of the long-distance contributions.

In Ref. Han:2021azw , the authors extracted the ratios of topological amplitudes based on the numerical estimation of triangle diagrams in the rescattering mechanism and concluded that |C|/|C||E|/|C||E|/|C|𝒪(1)|C^{\prime}|/|C|\sim|E|/|C|\sim|E^{\prime}|/|C|\sim\mathcal{O}(1). The same conclusion is also obtained in the soft-collinear effective theory Mantry:2003uz ; Leibovich:2003tw . In this work, this conclusion is verified without numerical analysis. In the large NcN_{c} expansion, the meson-baryon scattering S1S_{1}, S2S_{2} and S3S_{3} in Fig. 9 are at the same order, Nc0N_{c}^{0} Donoghue:1992dd . Thereby, all the triangle diagrams in rescattering mechanism have the same order according to Eq. (45). The long-distance contributions in topologies CC, CC^{\prime}, EE, EE^{\prime} are expressed as one or two triangle diagrams and hence comparable. Except for CC, CC^{\prime}, EE, EE^{\prime} diagrams, Eq. (45) also indicates that |P||P||C||P|\sim|P^{\prime}|\sim|C|. Then the relation can be extended to |C|/|C||E|/|C||E|/|C||P|/|C||P|/|C|𝒪(1)|C^{\prime}|/|C|\sim|E|/|C|\sim|E^{\prime}|/|C|\sim|P|/|C|\sim|P^{\prime}|/|C|\sim\mathcal{O}(1). The large PP and PP^{\prime} amplitudes could result in a CP violation of the order of 10310^{-3} in the charmed baryon decays.

IV Summary

In this work, we investigated the correlation between topological diagrams at quark level and rescattering dynamics at hadron level in the doubly charmed baryon decays. It is found the rescattering triangle diagrams derived from topological diagrams are consistent with the ones derived from the chiral Lagrangian. All the twelve possible structures of meson-baryon scattering appear once each in the topological-scattering diagrams. The rescattering contributions in CC, CC^{\prime}, EE, EE^{\prime}, PP and PP^{\prime} diagrams have definite proportional relation under the SU(3)FSU(3)_{F} symmetry. Our framework is checked in the Ξcc++Ξc+π+\Xi^{++}_{cc}\to\Xi^{+}_{c}\pi^{+}, Ξcc+Ξc0π+\Xi^{+}_{cc}\to\Xi^{0}_{c}\pi^{+} and Ξcc+Ξc+π0\Xi^{+}_{cc}\to\Xi^{+}_{c}\pi^{0} modes. The isospin relation is satisfied in terms of the triangle diagrams.

Acknowledgements.
This work was supported in part by the National Natural Science Foundation of China under Grants No.12105099.

References

  • (1) R. Aaij et al. [LHCb], Phys. Rev. Lett. 119, no.11, 112001 (2017) [arXiv:1707.01621 [hep-ex]].
  • (2) R. Aaij et al. [LHCb], Phys. Rev. Lett. 121, no.5, 052002 (2018) [arXiv:1806.02744 [hep-ex]].
  • (3) R. Aaij et al. [LHCb], Phys. Rev. Lett. 121, no.16, 162002 (2018) [arXiv:1807.01919 [hep-ex]].
  • (4) F. S. Yu, H. Y. Jiang, R. H. Li, C. D. Lü, W. Wang and Z. X. Zhao, Chin. Phys. C 42, no.5, 051001 (2018) [arXiv:1703.09086 [hep-ph]].
  • (5) X. Q. Li and B. S. Zou, Phys. Lett. B 399, 297-302 (1997) [arXiv:hep-ph/9611223 [hep-ph]].
  • (6) Y. S. Dai, D. S. Du, X. Q. Li, Z. T. Wei and B. S. Zou, Phys. Rev. D 60, 014014 (1999) [arXiv:hep-ph/9903204 [hep-ph]].
  • (7) J. W. Li, M. Z. Yang and D. S. Du, HEPNP 27, 665-672 (2003) [arXiv:hep-ph/0206154 [hep-ph]].
  • (8) M. Ablikim, D. S. Du and M. Z. Yang, Phys. Lett. B 536, 34-42 (2002) [arXiv:hep-ph/0201168 [hep-ph]].
  • (9) H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005) [arXiv:hep-ph/0409317 [hep-ph]].
  • (10) C. D. Lu, Y. L. Shen and W. Wang, Phys. Rev. D 73, 034005 (2006) [arXiv:hep-ph/0511255 [hep-ph]].
  • (11) M. P. Locher, Y. Lu and B. S. Zou, Z. Phys. A 347, 281-284 (1994) [arXiv:nucl-th/9311021 [nucl-th]].
  • (12) S. L. Chen, X. H. Guo, X. Q. Li and G. L. Wang, Commun. Theor. Phys. 40, 563-572 (2003) [arXiv:hep-ph/0208006 [hep-ph]].
  • (13) J. J. Han, R. X. Zhang, H. Y. Jiang, Z. J. Xiao and F. S. Yu, Eur. Phys. J. C 81, no.6, 539 (2021) [arXiv:2102.00961 [hep-ph]].
  • (14) L. J. Jiang, B. He and R. H. Li, Eur. Phys. J. C 78, no.11, 961 (2018) [arXiv:1810.00541 [hep-ph]].
  • (15) J. J. Han, H. Y. Jiang, W. Liu, Z. J. Xiao and F. S. Yu, Chin. Phys. C 45, no.5, 053105 (2021) [arXiv:2101.12019 [hep-ph]].
  • (16) X. G. He and W. Wang, Chin. Phys. C 42, 103108 (2018) [arXiv:1803.04227 [hep-ph]].
  • (17) X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 359 (2020) [arXiv:1811.03480 [hep-ph]].
  • (18) D. Wang, C. P. Jia and F. S. Yu, JHEP 09, 126 (2021) [arXiv:2001.09460 [hep-ph]].
  • (19) D. Wang, [arXiv:2111.11201 [hep-ph]].
  • (20) A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Phys. Lett. B 586, 337-344 (2004) [arXiv:hep-ph/0312319 [hep-ph]].
  • (21) S. Mantry, D. Pirjol and I. W. Stewart, Phys. Rev. D 68, 114009 (2003) [arXiv:hep-ph/0306254 [hep-ph]].
  • (22) J. F. Donoghue, E. Golowich and B. R. Holstein, “Dynamics of the standard model,” Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2, 1-540 (1992).