This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

From the Boltzmann equation for gas mixture to the two-fluid incompressible hydrodynamic system

Zhendong Fang
School of Mathematics, South China University of Technology, Guangzhou, 510641, P. R. China
[email protected]
 and  Kunlun Qi
School of Mathematics, University of Minnesota - Twin Cities, Minneapolis, MN, 55455, USA
[email protected]
Abstract.

In this paper, we study the hydrodynamic limit transition from the Boltzmann equation for gas mixtures to the two-fluid macroscopic system. Employing a meticulous dimensionless analysis, we derive several novel hydrodynamic models via the moments’ method. For a certain class of scaled Boltzmann equations governing gas mixtures of two species, we rigorously establish the two-fluid incompressible Navier-Stokes-Fourier system as the hydrodynamic limit. This validation is achieved through the Hilbert expansion around the global Maxwellian and refined energy estimates based on the Macro-Micro decomposition.

Key words and phrases:
Hydrodynamic limit; Boltzmann equation; Gas mixture; Incompressible Navier-Stokes-Fourier equation; Dimensionless analysis
2020 Mathematics Subject Classification:
Primary 35B25; 35Q30; 35Q20.

1. Introduction

1.1. The Boltzmann equation for gas mixture

The Boltzmann equation for the gas mixture (BEGM) describes the time evolution of the density distribution of the gas mixture of two different species [13], which reads:

{tf1+vxf1=Q11(f1,f1)+Q12(f1,f2),tf2+vxf2=Q22(f2,f2)+Q21(f2,f1),\begin{cases}\partial_{t}f_{1}+v\cdot\nabla_{x}f_{1}=Q_{11}(f_{1},f_{1})+Q_{12}(f_{1},f_{2}),\\ \partial_{t}f_{2}+v\cdot\nabla_{x}f_{2}=Q_{22}(f_{2},f_{2})+Q_{21}(f_{2},f_{1}),\\ \end{cases} (1.1)

where fl(t,x,v),l{1,2}f_{l}(t,x,v),\,l\in\{1,2\} denotes the density distribution functions of the gas molecules at time t0t\geq 0, with position x3x\in\mathbb{R}^{3} and velocity v3v\in\mathbb{R}^{3}. The collision operator Qln(fl,gn)Q_{ln}(f_{l},g_{n}) is given by, for l,n{1,2}l,n\in\{1,2\},

Qln(fl,gn)=123𝕊2Bln(vv,σ)(flgn+flgnflgnflgn)𝑑σ𝑑v,Q_{ln}(f_{l},g_{n})=\frac{1}{2}\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}B_{ln}(v-v_{*},\sigma)\left(f^{\prime}_{l}g^{\prime}_{n*}+f^{\prime}_{l*}g^{\prime}_{n}-f_{l}g_{n*}-f_{l*}g_{n}\right)\,d\sigma\,dv_{*}, (1.2)

where fl=fl(t,x,v),gn=gn(t,x,v),fl=fl(t,x,v),f_{l}=f_{l}(t,x,v),\,g_{n*}=g_{n}(t,x,v_{*}),\,f^{\prime}_{l}=f_{l}(t,x,v^{\prime}), gn=gn(t,x,v)g^{\prime}_{n*}=g_{n}(t,x,v^{\prime}_{*}) with (v,v)(v^{\prime},v^{\prime}_{*}) and (v,v)(v,v_{*}) representing the velocity pairs before and after the collisions, respectively. For simplicity, we assume that particles of different species have the same mass mm, but different radii (see [13, Chapter II, Section 4]) such that the conservation of momentum and energy hold in the sense that

v+v=v+v,|v|2+|v|2=|v|2+|v|2.v^{\prime}+v_{*}^{\prime}=v+v_{*},\quad|v^{\prime}|^{2}+|v_{*}^{\prime}|^{2}=|v|^{2}+|v_{*}|^{2}.

This allows us to express (v,v)(v^{\prime},v_{*}^{\prime}) in terms of (v,v)(v,v_{*}) and unit vector σ𝕊2\sigma\in\mathbb{S}^{2} using the following relations:

v=\displaystyle v^{\prime}= v[(vv)σ]σ,\displaystyle v-[(v-v_{*})\cdot\sigma]\sigma,
v=\displaystyle v^{\prime}_{*}= v+[(vv)σ]σ.\displaystyle v_{*}+[(v-v_{*})\cdot\sigma]\sigma.

The collision kernel Bln(vv,σ)B_{ln}(v-v_{*},\sigma) describes the intensity of collisions, which will be assumed to satisfy the following properties: for l,n{1,2}l,n\in\{1,2\},

  • The collisions are symmetric between species:

    Bln(vv,σ)=Bnl(vv,σ).B_{ln}(v-v_{*},\sigma)=B_{nl}(v-v_{*},\sigma).
  • BlnB_{ln} can be separated into the kinetic part Φ\Phi and angular part bb in the case of the inverse power law:

    Bln(vv,σ)=bln(cosθ)Φln(|vv|),withcosθ=σvv|vv|,B_{ln}(v-v_{*},\sigma)=b_{ln}(\cos\theta)\,\Phi_{ln}(|v-v_{*}|),\quad\text{with}\ \cos\theta=\sigma\cdot\frac{v-v_{*}}{|v-v_{*}|},

    where kinetic collision part Φ(|vv|)=|vv|γ\Phi(|v-v_{*}|)=|v-v_{*}|^{\gamma} includes hard potential (γ>0)(\gamma>0), Maxwellian molecule (γ=0)(\gamma=0) and soft potential (γ<0)(\gamma<0). Note that, for the rigorous justification throughout this paper, we consider the well-known hard sphere model, i.e., γ=1\gamma=1, and blnb_{ln} to satisfy the Grad’s cutoff assumption.

We refer the readers for more details about the collision kernel BlnB_{ln} in [55].

1.2. Dimensionless form of the BEGM equation

To figure out the scaling that will be applied in the hydrodynamic limit process, we present the complete derivation of the dimensionless form of the BEGM equation.

Suppose the reference temperature T0T_{0} and reference average macroscopic density R0R_{0} are identical with the mixture particles, we can first define the macroscopic velocity U0U_{0} and microscopic velocity c0c_{0} as follows: for given macroscopic time t0t_{0}, length L0L_{0}, and Boltzmann contact kk,

  • The macroscopic velocity U0:=L0t0U_{0}:=\frac{L_{0}}{t_{0}};

  • The microscopic velocity c0:=5kT03mc_{0}:=\sqrt{\frac{5kT_{0}}{3m}}.

Then, we can introduce the dimensionless variables of time t~\tilde{t}, space x~\tilde{x} and velocity v~\tilde{v}:

t~=tt0,x~=xL0,v~=vc0,\tilde{t}=\frac{t}{t_{0}},\quad\tilde{x}=\frac{x}{L_{0}},\quad\tilde{v}=\frac{v}{c_{0}},

and the dimensionless density distribution function f~l(t~,x~,v~)\tilde{f}_{l}(\tilde{t},\tilde{x},\tilde{v}) follows that

f~l(t~,x~,v~)=R0c03fl(t,x,v),forl{1,2}.\tilde{f}_{l}(\tilde{t},\tilde{x},\tilde{v})=\frac{R_{0}}{c_{0}^{3}}f_{l}(t,x,v),\quad\text{for}\,\,l\in\{1,2\}.

To complete the derivation of the dimensionless BEGM equation, the following parameters will be introduced

  • Mean free time τl\tau_{l}. Since the Boltzmann kernel has units of the reciprocal product of density, then we define a mean free time τl\tau_{l} of one single type of particle

    33𝕊2[R0,0,T0](v)[R0,0,T0](v)Bll(|vv|,ω)𝑑ω𝑑v𝑑v=R0τl,\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\mathcal{M}_{[R_{0},0,T_{0}]}(v)\mathcal{M}_{[R_{0},0,T_{0}]}(v_{*})B_{ll}(|v-v_{*}|,\omega)\,d\omega\,dv_{*}\,dv=\frac{R_{0}}{\tau_{l}},

    where [R0,0,T0](v)\mathcal{M}_{[R_{0},0,T_{0}]}(v) the Maxwellian distribution:

    [R0,0,T0](v):=R0(2πT0)32e|v|22T0.\mathcal{M}_{[R_{0},0,T_{0}]}(v):=\frac{R_{0}}{(2\pi T_{0})^{\frac{3}{2}}}\textup{e}^{-\frac{|v|^{2}}{2T_{0}}}.
  • Strength of interactions between species δ(l,n)\delta(l,n). Note that the particles of different species will also collide with each other in the gas mixture, we need to introduce the following dimensionless parameter δ(l,n)\delta(l,n) to describe the strength of interactions between the particles of different species [4]: for l,n{1,2}l,n\in\{1,2\},

    δ(l,n)={1,ifl=n,δ¯,ifln,\delta(l,n)=\left\{\begin{array}[]{cc}1,&\qquad\textup{if}\,\,l=n,\\[4.0pt] \bar{\delta},&\qquad\textup{if}\,\,l\neq n,\\[4.0pt] \end{array}\right. (1.3)

    with the constant δ¯>0\bar{\delta}>0. Hence, we can define the mean free time for the gas mixture as

    τln=τlτnδ2(l,n).\tau_{ln}=\frac{\sqrt{\tau_{l}\tau_{n}}}{\delta^{2}(l,n)}.
  • Mean free path λln\lambda_{ln}. The scale of the average time that particles in the equilibrium density [R0,0,T0]\mathcal{M}_{[R_{0},0,T_{0}]} spend traveling freely between two collisions, which is related to the length scale of the mean free path λln\lambda_{ln}

    λln=c0τln.\lambda_{ln}=c_{0}\tau_{ln}.

    From the definition of τln\tau_{ln}, we have λln=λnl\lambda_{ln}=\lambda_{nl} for each l,n{1,2}l,n\in\{1,2\} and denote λl:=λll\lambda_{l}:=\lambda_{ll} for convenience.

Finally, the corresponding dimensionless collision operator is derived as follows:

Q~ln(f~l,g~n)=123𝕊2B~ln(|v~v~|,ω)(f~lg~n+f~lg~nf~lg~nf~lg~n)𝑑ω𝑑v~,\tilde{Q}_{ln}(\tilde{f}_{l},\tilde{g}_{n})=\frac{1}{2}\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\tilde{B}_{ln}(|\tilde{v}-\tilde{v}_{*}|,\omega)(\tilde{f}^{\prime}_{l}\tilde{g}^{\prime}_{n*}+\tilde{f}^{\prime}_{l*}\tilde{g}^{\prime}_{n}-\tilde{f}_{l}\tilde{g}_{n*}-\tilde{f}_{l*}\tilde{g}_{n})\,d\omega\,d\tilde{v}_{*}\,,

where the dimensionless Boltzmann collision kernel B~ln\tilde{B}_{ln} is

B~ln(v~v~,σ)=R0τlnBln(vv,σ).\tilde{B}_{ln}(\tilde{v}-\tilde{v}_{*},\sigma)=R_{0}\tau_{ln}B_{ln}(v-v_{*},\sigma).

Dropping all tildes, we deduce the BEGM equation in the dimensionless form:

{Sttf1+vxf1=1Kn1Q11(f1,f1)+δ¯2Kn1Kn2Q12(f1,f2),Sttf2+vxf2=1Kn2Q22(f2,f2)+δ¯2Kn1Kn2Q21(f2,f1),\begin{cases}\textup{St}\,\partial_{t}f_{1}+v\cdot\nabla_{x}f_{1}=\frac{1}{\textup{Kn}_{1}}Q_{11}(f_{1},f_{1})+\frac{\bar{\delta}^{2}}{\sqrt{\textup{Kn}_{1}\textup{Kn}_{2}}}Q_{12}(f_{1},f_{2}),\\[6.0pt] \textup{St}\,\partial_{t}f_{2}+v\cdot\nabla_{x}f_{2}=\frac{1}{\textup{Kn}_{2}}Q_{22}(f_{2},f_{2})+\frac{\bar{\delta}^{2}}{\sqrt{\textup{Kn}_{1}\textup{Kn}_{2}}}Q_{21}(f_{2},f_{1}),\\[4.0pt] \end{cases} (1.4)

where the Strouhal number St and Knudsen number Knl\textup{Kn}_{l} [52] are give by

St=L0c0t0,Knl=λlL0.\textup{St}=\frac{L_{0}}{c_{0}t_{0}},\quad\textup{Kn}_{l}=\frac{\lambda_{l}}{L_{0}}.

Based on [4], we will distinguish the following three cases:

  • Strong inter-species interactions: δ¯=O(1)\bar{\delta}=O(1);

  • Weak inter-species interactions: δ¯=o(1)\bar{\delta}=o(1) and δ¯(Kn1Kn2St2)14\frac{\bar{\delta}}{(\textup{Kn}_{1}\textup{Kn}_{2}\textup{St}^{2})^{\frac{1}{4}}} is unbounded;

  • Very weak inter-species interactions: δ¯=O((Kn1Kn2St2)14)\bar{\delta}=O\big{(}(\textup{Kn}_{1}\textup{Kn}_{2}\textup{St}^{2})^{\frac{1}{4}}\big{)}.

In this paper, we only consider the third case with the same collision kernel, i.e.,

B(|vv|,σ):=Bln(|vv|,σ),Q(fl,gn):=Qln(fl,gn),B(|v-v_{*}|,\sigma):=B_{ln}(|v-v_{*}|,\sigma),\quad Q(f_{l},g_{n}):=Q_{ln}(f_{l},g_{n}),

for l,n{1,2}l,n\in\{1,2\}.

Furthermore, for l{1,2}l\in\{1,2\}, we choose St=ε\textup{St}=\varepsilon, Knl=εcl\textup{Kn}_{l}=\varepsilon^{c_{l}}, and δ¯=εq\bar{\delta}=\varepsilon^{q} with cl,q>0c_{l},\,q>0 and consider

δ¯(Kn1Kn2St2)14=1,\frac{\bar{\delta}}{(\textup{Kn}_{1}\textup{Kn}_{2}\textup{St}^{2})^{\frac{1}{4}}}=1,

which implies that

4q=2+c1+c2.4q=2+c_{1}+c_{2}.

Therefore, the scaled BEGM equation (1.4) can be rewritten as

{εtf1ε+vxf1ε=εc1Q(f1ε,f1ε)+εQ(f1ε,f2ε),εtf2ε+vxf2ε=εc2Q(f2ε,f2ε)+εQ(f2ε,f1ε).\begin{cases}\varepsilon\partial_{t}f^{\varepsilon}_{1}+v\cdot\nabla_{x}f^{\varepsilon}_{1}=\varepsilon^{-c_{1}}Q(f^{\varepsilon}_{1},f^{\varepsilon}_{1})+\varepsilon Q(f^{\varepsilon}_{1},f^{\varepsilon}_{2}),\\[4.0pt] \varepsilon\partial_{t}f^{\varepsilon}_{2}+v\cdot\nabla_{x}f^{\varepsilon}_{2}=\varepsilon^{-c_{2}}Q(f^{\varepsilon}_{2},f^{\varepsilon}_{2})+\varepsilon Q(f^{\varepsilon}_{2},f^{\varepsilon}_{1}).\end{cases} (1.5)

or, that is to say,

{Q(f1ε,f1ε)=ε1+c1tf1ε+εc1vxf1εε1+c1Q(f1ε,f2ε),Q(f2ε,f2ε)=ε1+c2tf2ε+εc2vxf2εε1+c2Q(f2ε,f1ε).\begin{cases}Q(f^{\varepsilon}_{1},f^{\varepsilon}_{1})=\varepsilon^{1+c_{1}}\partial_{t}f^{\varepsilon}_{1}+\varepsilon^{c_{1}}v\cdot\nabla_{x}f^{\varepsilon}_{1}-\varepsilon^{1+c_{1}}Q(f^{\varepsilon}_{1},f^{\varepsilon}_{2}),\\[4.0pt] Q(f^{\varepsilon}_{2},f^{\varepsilon}_{2})=\varepsilon^{1+c_{2}}\partial_{t}f^{\varepsilon}_{2}+\varepsilon^{c_{2}}v\cdot\nabla_{x}f^{\varepsilon}_{2}-\varepsilon^{1+c_{2}}Q(f^{\varepsilon}_{2},f^{\varepsilon}_{1}).\end{cases} (1.6)

Then, suppose flεflf^{\varepsilon}_{l}\to f_{l} as ε0\varepsilon\to 0, the right-hand side of (1.6) vanishes, which formally implies that

Q(flε,flε)=ε1+cltflε+εclvxflεε1+c2Q(flε,fnε)0,Q(f^{\varepsilon}_{l},f^{\varepsilon}_{l})=\varepsilon^{1+c_{l}}\partial_{t}f^{\varepsilon}_{l}+\varepsilon^{c_{l}}v\cdot\nabla_{x}f^{\varepsilon}_{l}-\varepsilon^{1+c_{2}}Q(f^{\varepsilon}_{l},f^{\varepsilon}_{n})\to 0, (1.7)

for l,n{1,2}l,n\in\{1,2\} and lnl\neq n; on the other hand, we have

Q(flε,flε)Q(fl,fl),asε0.Q(f^{\varepsilon}_{l},f^{\varepsilon}_{l})\to Q(f_{l},f_{l}),\quad\textup{as}\quad\varepsilon\to 0. (1.8)

Thus, combining with (1.7) and (1.8), we obtain

Q(fl,fl)=0.Q(f_{l},f_{l})=0. (1.9)
Remark 1.1.

Note that, according to the H-theorem of the Boltzmann equation [20, Theorem 3.1], the following conditions are equivalent:

  • Q(fl,fl)=0Q(f_{l},f_{l})=0 a.e.;

  • 3Q(fl,fl)lnfldv=0\int_{\mathbb{R}^{3}}Q(f_{l},f_{l})\ln f_{l}\,dv=0;

  • flf_{l} is the Maxwellian distribution function, i.e.

    fl=[ρl,ul,θl](v):=ρl(2πθl)32e|vul|22θl,f_{l}=\mathcal{M}_{[\rho_{l},u_{l},\theta_{l}]}(v):=\frac{\rho_{l}}{(2\pi\theta_{l})^{\frac{3}{2}}}\textup{e}^{-\frac{|v-u_{l}|^{2}}{2\theta_{l}}},

    for some ρl,θl>0\rho_{l},\,\theta_{l}>0 and ul3u_{l}\in\mathbb{R}^{3}.

1.3. Previous results and our contributions

In this subsection, we undertake a comprehensive review of prior research pertaining to the well-posedness and hydrodynamic limit of the classical Boltzmann equation, alongside relevant results regarding its application to gas mixtures, which serve as a significant impetus for our work. Furthermore, our contribution and novelty of this paper will be introduced as well.

Previous results of “well-posedness” Standing as a cornerstone in kinetic theory, the Boltzmann equation has been attracting enduring attention for a long history, particularly the studies regarding its well-posedness. In the realm of weak solutions, in [16], DiPerna-Lions laid the foundational groundwork by establishing renormalized solutions for the Boltzmann equation, accommodating general initial data under Grad’s cutoff assumption. Furthermore, Alexandre-Villani extended this understanding to the case that encompasses long-range interaction kernels [1]. In terms of the initial boundary problem, Mischler proved the well-posedness of the Boltzmann equation with Maxwell reflection boundary condition for the cutoff case in [47]. Within the realm of classical solutions, Ukai in [54] achieved a breakthrough with the first attainment of global well-posedness in the close-to-equilibrium sense, specifically for collision kernels featuring cut-off hard potentials. By using the nonlinear energy method, the same type of result for the soft potential case for both a periodic domain and for whole space was proved by Guo [25, 27]. In the absence of the Grad’s cutoff assumption, the existence and regularity of global classical solution near the equilibrium for the whole space were obtained by Gressman-Strain [24] and Alexandre-Morimoto-Ukai-Xu-Yang [51]. Recent years have seen significant strides in understanding strong and mild solutions of Boltzmann equations within bounded domains under various boundary conditions [18, 19, 29, 43]. For further exploration, we refer readers to additional pertinent progress concerning the regularity and other types of Boltzmann models [34, 35, 49, 50].

Previous results of “hydrodynamic limit” The hydrodynamic limit is the limiting process that connects the kinetic equation (scaled Boltzmann equation) with the fluid equation (Euler or Navier-Stokes equation). This concept can be traced back to Maxwell and Boltzmann, who initially founded the kinetic theory. The project of studying the hydrodynamic limit was then specifically formulated and addressed by Hilbert [33]. It aims to derive the fluid models as particles undergo an increasing number of collisions, causing the Knudsen number approaches to vanish.

Based on the existence of renormalized solutions [1, 16], one type of framework for studying the hydrodynamic limit pertains to weak solutions, particularly proving that the renormalized solution of the Boltzmann equation converges to the weak solution of the Euler or Navier-Stokes equations. In [6], Bardos-Golse-Levermore started with the formal derivation of the fluid equations, including compressible Euler equations, and incompressible Euler and Navier-Stokes equations. They also initialed the so-called BGL program to justify Leray’s solutions of the incompressible Navier-Stokes equations from renormalized solutions [5], which was somewhat completed by Golse-Saint Raymond under the cutoff assumption [22, 23]. A similar result was obtained by Arsenio [3] for the non-cutoff case as well. More results following this methodology can be found in [38, 40, 44, 46].

Another aspect of studying the hydrodynamic limit is from the perspective of classical solutions. The classical compressible Euler and Navier-Stokes equations can be formally derived from the scaled Boltzmann equation through the Hilbert and Chapman-Enskog expansions. The rigorous justification behind the asymptotic convergence was initially established by Caflish for the compressible Euler equations [12] and by De Masi-Esposito-Lebowitz for the incompressible Navier-Stokes equations [14]. By taking advantage of the energy method, Guo-Jang-Jiang also attained significant progress in understanding the acoustic limit [31, 32, 36]. Additionally, research on strong solutions near equilibrium is another avenue of exploration in the hydrodynamic limit. Nishida [48] established local-in-time convergence to the compressible Euler equations, while Bardos-Ukai in [7], as well as Gallagher-Tristani in their recent work [21], derived solutions for the incompressible Navier-Stokes equations. For comprehensive previous results, we refer to [28, 10, 41, 42, 30, 37] and the references cited therein.

Previous results for “Boltzmann equation for gas mixture” In recent years, the study of the Boltzmann equation for the gas mixture has achieved tremendous progress due to its more physical significance in describing the real world. When the different species of gas particles possess the same mass, the linearized Boltzmann operator can be completely decoupled such that the usual tools in studying the Boltzmann equation of a single species can still be applied, for instance, in [26], Guo first studied the well-posedness of the Vlasov-Maxwell-Boltzmann system of two types of gases around the Maxwellian, the decay rate of which was obtained by Wang in [56]. Aoki-Bardos-Takata studied the existence of the Knudsen layer of the Boltzmann equation for a gas mixture with the zero bulk velocity in [2], which was further extended by Bardos-Yang in [8] for the case of general drifting velocity. On the other hand, when the mass of the gas particles of different species are not identical, we refer to the work by Sotirov-Yu in [53], where they studied the Boltzmann equation for gas mixture in one space dimension via the Green’s function, as well as the work by Briant-Daus in [11] showing the existence of the solution to Boltzmann equation for the gas mixture around the bi-Mawellian.

In contrast with the Boltzmann equation of one single species, there are few results concerning the hydrodynamic limit of the Boltzmann equation of gas mixture. It is worth mentioning the recent work by Wu-Yang [57], where, for the scaling case St=O(1)\textup{St}=O(1) and Knl=o(ε)\textup{Kn}_{l}=o(\varepsilon) in (1.4), the two-fluid compressible Euler equations was rigorously justified from the Boltzmann equation of gas mixture via the Hilbert expansion method. For more hydrodynamic limits from the Boltzmann equation for gas mixture, especially the formal derivation, we refer the readers to [17, 9] and the references therein.

Mathematical challenges and our contributions Motivated by the previous results above, this paper aims to study the hydrodynamic limit of the Boltzmann equation for gas mixture, mainly focusing on the following two aspects:
(i) In terms of formal derivation, this paper presents several novel hydrodynamic models, which, to the best of our knowledge, are derived for the first time from the Boltzmann equation for gas mixtures (BEGM equation) (1.5), employing various scalings and expansion forms. Notably, these include the Euler-Fourier equations coupled with the Navier-Stokes equations, among others (see Theorem 2.1 for additional models). To achieve this, the delicate dimensionless analysis in Section 1.2 has been applied, particularly focusing on describing the degree of collision between different species of particles. Inspired by [4], we introduce a dimensionless parameter δ(l,n)\delta(l,n) in (1.3) to accurately quantify the strength of interactions between two species.
(ii) In terms of the rigorous justification, we prove the two-fluid incompressible Navier-Stokes-Fourier system (2.21) as the hydrodynamic model stemming from the BEGM equation (2.15) under specific scaling and expansion forms (refer to Theorem 2.3). Here, we apply the methodology following the framework of the BGL program mentioned above as well as leverage the known hydrodynamic limit result of the single-species Boltzmann equation [42]. More precisely, by selecting the particular expansion form (2.1) of the solution to the BEGM equation (2.15), we can derive the reminder system (2.16) through prescribed scaling, the solution to which is shown to converge to the function constructed by the solutions to the incompressible Navier-Stokes-Fourier system (2.21), as ε0\varepsilon\to 0. To this end, the key difficulty lies in establishing the uniform energy estimates of the solution to the reminder system (2.16); to address this, we apply the well-known Macro-Micro decomposition [45] and take full advantage of the dissipative structure of the linearized Boltzmann operator to close the refined energy estimates, thereby facilitating the proof of the limiting process through compact arguments.

2. Main Results

2.1. Notations

(i) ABA\lesssim B denotes ACBA\leq CB for some generic constants C>0C>0 and ABA\thicksim B denotes that there exist two generic constants C1,C2>0C_{1},C_{2}>0 such that C1ABC2AC_{1}A\leq B\leq C_{2}A.

(ii) α=(α1,α2,α3)\alpha=(\alpha_{1},\alpha_{2},\alpha_{3}) is the multi-index in 3\mathbb{N}^{3} with |α|=α1+α2+α3|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}. The αth\alpha^{th} partial derivative denoted by

xα=x1α1x2α2x3α3.\partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}}\partial_{x_{2}}^{\alpha_{2}}\partial_{x_{3}}^{\alpha_{3}}.

αα~\alpha\leq\tilde{\alpha} means each component of α3\alpha\in\mathbb{N}^{3} is not greater than that of α~\tilde{\alpha}. α<α~\alpha<\tilde{\alpha} means αα~\alpha\leq\tilde{\alpha} and |α|<|α~||\alpha|<|\tilde{\alpha}|.

(iii) LpL^{p} denotes the usual Lebesgue space, namely,

Lxp=Lp(dx),Lvp(ω)=Lp(ωdv)L_{x}^{p}=L^{p}(dx),\quad L_{v}^{p}(\omega)=L^{p}(\omega dv)

endowed with the norms:

fLxp=(3|f(x)|p𝑑x)1p<,p[1,),fLvp(ω)=(3|f|pω𝑑v)1p<,p[1,),fLx=esssupx3|f(x)|<,\begin{split}\|f\|_{L^{p}_{x}}=&\left(\int_{\mathbb{R}^{3}}|f(x)|^{p}\,dx\right)^{\frac{1}{p}}<\infty,\quad p\in[1,\infty),\\[5.0pt] \|f\|_{L^{p}_{v}(\omega)}=&\left(\int_{\mathbb{R}^{3}}|f|^{p}\omega\,dv\right)^{\frac{1}{p}}<\infty,\quad p\in[1,\infty),\\[5.0pt] \|f\|_{L^{\infty}_{x}}=&\text{ess}\sup\limits_{x\in\mathbb{R}^{3}}|f(x)|<\infty,\end{split}

where the weight function ω\omega is either 11 or the collisional frequency ν(v)\nu(v) given by

ν(v)=3|vv|M(v)𝑑v1+|v|.\nu(v)=\int_{\mathbb{R}^{3}}|v-v_{*}|M(v_{*})\,dv_{*}\sim 1+|v|.

LxpLvq(ω)L^{p}_{x}L^{q}_{v}(\omega) denotes Lebesgue space for p,q[1,+]p,q\in[1,+\infty] (if p=qp=q, Lx,vp(w)=LxpLvp(w)L^{p}_{x,v}(w)=L^{p}_{x}L^{p}_{v}(w)) endowed with the norms:

fLxpLvq(w)={(3f(x,)Lvq(w)p𝑑x)1p,p,q[1,),esssupx3f(x,)Lvq(w),p=,q[1,),(3esssupv3|f(x,v)|pdx)1p,p[1,),q=,esssup(x,v)3×3|f(x,v)w(v)|,p=q=.\displaystyle\|f\|_{L^{p}_{x}L^{q}_{v}(w)}=\left\{\begin{array}[]{l}\left(\int_{\mathbb{R}^{3}}\|f(x,\cdot)\|^{p}_{L^{q}_{v}(w)}\,dx\right)^{\frac{1}{p}},\qquad\quad\quad p,\,q\in[1,\infty)\,,\\[10.0pt] \textrm{ess}\sup\limits_{x\in\mathbb{R}^{3}}\|f(x,\cdot)\|_{L^{q}_{v}(w)},\qquad\qquad\quad\ \ p=\infty,\,q\in[1,\infty)\,,\\[10.0pt] \left(\int_{\mathbb{R}^{3}}\textrm{ess}\sup\limits_{v\in\mathbb{R}^{3}}|f(x,v)|^{p}\,dx\right)^{\frac{1}{p}},\quad\quad p\in[1,\infty),\,q=\infty\,,\\[10.0pt] \textrm{ess}\sup\limits_{(x,v)\in\mathbb{R}^{3}\times\mathbb{R}^{3}}|f(x,v)w(v)|,\qquad\quad\ p=q=\infty\,.\end{array}\right.

HxsLv2H^{s}_{x}L^{2}_{v} and HxsLv2(ν)H^{s}_{x}L^{2}_{v}(\nu) denote the Sobolev spaces endowed with the norms:

fHxsLv2=(|α|sxαfLx,v22)12,fHxsLv2(ν)=(|α|sxαfLx,v2(ν)2)12.\displaystyle\|f\|_{H^{s}_{x}L^{2}_{v}}=\left(\sum_{|\alpha|\leq s}\|\partial^{\alpha}_{x}f\|^{2}_{L^{2}_{x,v}}\right)^{\frac{1}{2}},\quad\|f\|_{H^{s}_{x}L^{2}_{v}(\nu)}=\left(\sum_{|\alpha|\leq s}\|\partial^{\alpha}_{x}f\|^{2}_{L^{2}_{x,v}(\nu)}\right)^{\frac{1}{2}}.

(iv) ,x,v\langle\cdot,\cdot\rangle_{x,v}, ,v\langle\cdot,\cdot\rangle_{v} and ,x\langle\cdot,\cdot\rangle_{x} denote the inner product in Lx,v2L^{2}_{x,v}, Lv2L^{2}_{v} and Lx2L^{2}_{x}.

2.2. Statement of main results

Our main results will be stated first of all.

Inspired by the Galilean transformation, we seek a special form of the solution to (1.5) around the global Maxwellian M:=[1,0,1](v)M:=\mathcal{M}_{[1,0,1]}(v),

flε=M+εrglεM,forl{1,2},f^{\varepsilon}_{l}=M+\varepsilon^{r}g^{\varepsilon}_{l}\sqrt{M},\quad\textup{for}\quad l\in\{1,2\}, (2.1)

and by substituting (2.1) into (1.5), we obtain the remainder systems satisfied by (g1ε,g2ε)(g^{\varepsilon}_{1},g^{\varepsilon}_{2}),

{εtg1ε+vxg1ε+εc1L^g1ε+εL^(g1ε,g2ε)=εrc1Γ^(g1ε,g1ε)+ε2r+1c1Γ^(g1ε,g2ε),εtg2ε+vxg2ε+εc2L^g2ε+εL^(g2ε,g1ε)=εrc2Γ^(g2ε,g2ε)+ε2r+1c2Γ^(g2ε,g1ε),\begin{cases}\varepsilon\partial_{t}g^{\varepsilon}_{1}+v\cdot\nabla_{x}g^{\varepsilon}_{1}+\varepsilon^{-c_{1}}\hat{L}g^{\varepsilon}_{1}+\varepsilon\hat{L}(g^{\varepsilon}_{1},g^{\varepsilon}_{2})=\varepsilon^{r-c_{1}}\hat{\Gamma}(g^{\varepsilon}_{1},g^{\varepsilon}_{1})+\varepsilon^{2r+1-c_{1}}\hat{\Gamma}(g^{\varepsilon}_{1},g^{\varepsilon}_{2}),\\[4.0pt] \varepsilon\partial_{t}g^{\varepsilon}_{2}+v\cdot\nabla_{x}g^{\varepsilon}_{2}+\varepsilon^{-c_{2}}\hat{L}g^{\varepsilon}_{2}+\varepsilon\hat{L}(g^{\varepsilon}_{2},g^{\varepsilon}_{1})=\varepsilon^{r-c_{2}}\hat{\Gamma}(g^{\varepsilon}_{2},g^{\varepsilon}_{2})+\varepsilon^{2r+1-c_{2}}\hat{\Gamma}(g^{\varepsilon}_{2},g^{\varepsilon}_{1}),\\[4.0pt] \end{cases} (2.2)

where the linearized Boltzmann operator L^\hat{L} and the bilinear symmetric operator Γ^\hat{\Gamma} are given by

L^(gl,gn):=\displaystyle\hat{L}(g_{l},g_{n}):= 1M[Q(glM,M)+Q(M,gnM)],L^gl:=L^(gl,gl),\displaystyle-\frac{1}{\sqrt{M}}\big{[}Q(g_{l}\sqrt{M},M)+Q(M,g_{n}\sqrt{M})\big{]},\quad\hat{L}g_{l}:=\hat{L}(g_{l},g_{l}), (2.3)
Γ^(gl,gn):=\displaystyle\hat{\Gamma}(g_{l},g_{n}):= 1MQ(glM,gnM),\displaystyle\frac{1}{\sqrt{M}}Q(g_{l}\sqrt{M},g_{n}\sqrt{M}),

for l,n{1,2}l,n\in\{1,2\}. Note that [20], for i=1,2,3i=1,2,3,

KerL^=Span{M,viM,|v|2M},\text{Ker}\hat{L}=\text{Span}\{\sqrt{M},\,v_{i}\sqrt{M},\,|v|^{2}\sqrt{M}\}, (2.4)

therefore, denote the vectors A=(Ai)A=(A_{i}) and tensors B=(Bij)B=(B_{ij}) with i,j=1,2,3i,j=1,2,3 as follows:

Ai(v)=12(|v|25)viM,Bij(v)=(vivj13|v|2δij)M,A_{i}(v)=\frac{1}{2}\left(|v|^{2}-5\right)v_{i}\sqrt{M},\quad B_{ij}(v)=\left(v_{i}v_{j}-\frac{1}{3}|v|^{2}\delta_{ij}\right)\sqrt{M}, (2.5)

then Ai,BijKerL^A_{i},B_{ij}\in\text{Ker}^{\perp}\hat{L}. Also, A^=(A^i)\hat{A}=(\hat{A}_{i}) and B^=(B^ij)\hat{B}=(\hat{B}_{ij}) are the unique L^1\hat{L}^{-1} of A,BA,B in KerL^\text{Ker}^{\perp}\hat{L}, i.e.,

L^(A^i)=Ai,L^(B^ij)=Bij.\hat{L}(\hat{A}_{i})=A_{i},\quad\hat{L}(\hat{B}_{ij})=B_{ij}. (2.6)

Our first main theorem is about the hydrodynamic systems that can be derived from the BEGM equation (2.2) with various scalings.

Theorem 2.1.

For l,n{1,2}l,n\in\{1,2\}, let flεf^{\varepsilon}_{l} be a sequence of nonnegative solutions to the scaled BEGM equation (1.5) in the form of (2.1). Assume the sequence glεg^{\varepsilon}_{l} converges to glg_{l} and the following moments

glε,Mv,glε,vMv,glε,vMvv,glε,v|v|2Mv,\displaystyle\langle g^{\varepsilon}_{l},\sqrt{M}\rangle_{v},\quad\langle g^{\varepsilon}_{l},v\sqrt{M}\rangle_{v},\quad\langle g^{\varepsilon}_{l},v\sqrt{M}\otimes v\rangle_{v},\quad\langle g^{\varepsilon}_{l},v|v|^{2}\sqrt{M}\rangle_{v},
glε,A^(v)vMv,Γ^(glε,gnε),A^(v)Mv,\displaystyle\langle g^{\varepsilon}_{l},\hat{A}(v)\otimes v\sqrt{M}\rangle_{v},\quad\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\hat{A}(v)\sqrt{M}\rangle_{v},
glε,B^(v)vMv,Γ^(glε,gnε),B^(v)Mv\displaystyle\langle g^{\varepsilon}_{l},\hat{B}(v)\otimes v\sqrt{M}\rangle_{v},\quad\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\hat{B}(v)\sqrt{M}\rangle_{v}

converge to

gl,Mv,gl,vMv,gl,vvMv,gl,v|v|2Mv,\displaystyle\langle g_{l},\sqrt{M}\rangle_{v},\quad\langle g_{l},v\sqrt{M}\rangle_{v},\quad\langle g_{l},v\otimes v\sqrt{M}\rangle_{v},\quad\langle g_{l},v|v|^{2}\sqrt{M}\rangle_{v},
gl,A^(v)vMv,Γ^(gl,gn),A^(v)Mv,\displaystyle\langle g_{l},\hat{A}(v)\otimes v\sqrt{M}\rangle_{v},\quad\langle\hat{\Gamma}(g_{l},g_{n}),\hat{A}(v)\sqrt{M}\rangle_{v},
gl,B^(v)vMv,Γ^(gl,gn),B^(v)Mv\displaystyle\langle g_{l},\hat{B}(v)\otimes v\sqrt{M}\rangle_{v},\quad\langle\hat{\Gamma}(g_{l},g_{n}),\hat{B}(v)\sqrt{M}\rangle_{v}

in the sense of distribution as ε0\varepsilon\to 0.
Then, glg_{l} has the form

gl(t,x,v)=[ρl(t,x)+ul(t,x)v+12(|v|23)θl(t,x)]M,g_{l}(t,x,v)=\left[\rho_{l}(t,x)+u_{l}(t,x)\cdot v+\frac{1}{2}\left(|v|^{2}-3\right)\theta_{l}(t,x)\right]\sqrt{M}, (2.7)

where ulu_{l}, ρl\rho_{l} and θl\theta_{l} satisfy the divergence-free and Boussinesq relation

divxul=0,x(ρl+θl)=0,\textup{div}_{x}u_{l}=0,\quad\nabla_{x}(\rho_{l}+\theta_{l})=0, (2.8)

and are solutions to the following equations: for l,n{1,2}l,n\in\{1,2\} and lnl\neq n,

  • For r=1,cl=cn=1r=1,\,c_{l}=c_{n}=1,

    {tul+ulxul+1σ(ulun)+xpl=μΔxul,tun+unxun+1σ(unul)+xpn=μΔxun,tθl+ulxθl+1λ(θlθn)=κΔxθl,tθn+unxθn+1λ(θnθl)=κΔxθn.\begin{cases}\partial_{t}u_{l}+u_{l}\cdot\nabla_{x}u_{l}+\frac{1}{\sigma}(u_{l}-u_{n})+\nabla_{x}p_{l}=\mu\Delta_{x}u_{l},\\[4.0pt] \partial_{t}u_{n}+u_{n}\cdot\nabla_{x}u_{n}+\frac{1}{\sigma}(u_{n}-u_{l})+\nabla_{x}p_{n}=\mu\Delta_{x}u_{n},\\[4.0pt] \partial_{t}\theta_{l}+u_{l}\cdot\nabla_{x}\theta_{l}+\frac{1}{\lambda}(\theta_{l}-\theta_{n})=\kappa\Delta_{x}\theta_{l},\\[4.0pt] \partial_{t}\theta_{n}+u_{n}\cdot\nabla_{x}\theta_{n}+\frac{1}{\lambda}(\theta_{n}-\theta_{l})=\kappa\Delta_{x}\theta_{n}.\\[4.0pt] \end{cases} (2.9)
  • For r=1, 1<cl<2,cn=1r=1,\,1<c_{l}<2,\,c_{n}=1

    {tul+ulxul+1σ(ulun)+xpl=0,tun+unxun+1σ(unul)+xpn=μΔxun,tθl+ulxθl+1λ(θlθn)=0,tθn+unxθn+1λ(θnθl)=κΔxθn.\begin{cases}\partial_{t}u_{l}+u_{l}\cdot\nabla_{x}u_{l}+\frac{1}{\sigma}(u_{l}-u_{n})+\nabla_{x}p_{l}=0,\\[4.0pt] \partial_{t}u_{n}+u_{n}\cdot\nabla_{x}u_{n}+\frac{1}{\sigma}(u_{n}-u_{l})+\nabla_{x}p_{n}=\mu\Delta_{x}u_{n},\\ \partial_{t}\theta_{l}+u_{l}\cdot\nabla_{x}\theta_{l}+\frac{1}{\lambda}(\theta_{l}-\theta_{n})=0,\\[4.0pt] \partial_{t}\theta_{n}+u_{n}\cdot\nabla_{x}\theta_{n}+\frac{1}{\lambda}(\theta_{n}-\theta_{l})=\kappa\Delta_{x}\theta_{n}.\\[4.0pt] \end{cases} (2.10)
  • For r=1, 1<cl=cn<2r=1,\,1<c_{l}=c_{n}<2,

    {tul+ulxul+1σ(ulun)+xpl=0,tun+unxun+1σ(unul)+xpn=0,tθl+ulxθl+1λ(θlθn)=0,tθn+unxθn+1λ(θnθl)=0.\begin{cases}\partial_{t}u_{l}+u_{l}\cdot\nabla_{x}u_{l}+\frac{1}{\sigma}(u_{l}-u_{n})+\nabla_{x}p_{l}=0,\\[4.0pt] \partial_{t}u_{n}+u_{n}\cdot\nabla_{x}u_{n}+\frac{1}{\sigma}(u_{n}-u_{l})+\nabla_{x}p_{n}=0,\\ \partial_{t}\theta_{l}+u_{l}\cdot\nabla_{x}\theta_{l}+\frac{1}{\lambda}(\theta_{l}-\theta_{n})=0,\\[4.0pt] \partial_{t}\theta_{n}+u_{n}\cdot\nabla_{x}\theta_{n}+\frac{1}{\lambda}(\theta_{n}-\theta_{l})=0.\\[4.0pt] \end{cases} (2.11)
  • For r>1,cl=cn=1r>1,\,c_{l}=c_{n}=1,

    {tul+1σ(ulun)+xpl=μΔxul,tun+1σ(unul)+xpn=μΔxun,tθl+1λ(θlθn)=κΔxθl,tθn+1λ(θnθl)=κΔxθn.\begin{cases}\partial_{t}u_{l}+\frac{1}{\sigma}(u_{l}-u_{n})+\nabla_{x}p_{l}=\mu\Delta_{x}u_{l},\\[4.0pt] \partial_{t}u_{n}+\frac{1}{\sigma}(u_{n}-u_{l})+\nabla_{x}p_{n}=\mu\Delta_{x}u_{n},\\ \partial_{t}\theta_{l}+\frac{1}{\lambda}(\theta_{l}-\theta_{n})=\kappa\Delta_{x}\theta_{l},\\[4.0pt] \partial_{t}\theta_{n}+\frac{1}{\lambda}(\theta_{n}-\theta_{l})=\kappa\Delta_{x}\theta_{n}.\\[4.0pt] \end{cases} (2.12)
  • For r>1, 1<cl<2r,cn=1r>1,\,1<c_{l}<2r,\,c_{n}=1,

    {tul+1σ(ulun)+xpl=0,tun+1σ(unul)+xpn=μΔxun,tθl+1λ(θlθn)=0,tθn+1λ(θnθl)=κΔxθn.\begin{cases}\partial_{t}u_{l}+\frac{1}{\sigma}(u_{l}-u_{n})+\nabla_{x}p_{l}=0,\\[4.0pt] \partial_{t}u_{n}+\frac{1}{\sigma}(u_{n}-u_{l})+\nabla_{x}p_{n}=\mu\Delta_{x}u_{n},\\ \partial_{t}\theta_{l}+\frac{1}{\lambda}(\theta_{l}-\theta_{n})=0,\\[4.0pt] \partial_{t}\theta_{n}+\frac{1}{\lambda}(\theta_{n}-\theta_{l})=\kappa\Delta_{x}\theta_{n}.\\[4.0pt] \end{cases} (2.13)
  • For r>1, 1<cl=cn<2rr>1,\,1<c_{l}=c_{n}<2r,

    {tul+1σ(ulun)+xpl=0,tun+1σ(unul)+xpn=0,tθl+1λ(θlθn)=0,tθn+1λ(θnθl)=0,\begin{cases}\partial_{t}u_{l}+\frac{1}{\sigma}(u_{l}-u_{n})+\nabla_{x}p_{l}=0,\\[4.0pt] \partial_{t}u_{n}+\frac{1}{\sigma}(u_{n}-u_{l})+\nabla_{x}p_{n}=0,\\ \partial_{t}\theta_{l}+\frac{1}{\lambda}(\theta_{l}-\theta_{n})=0,\\[4.0pt] \partial_{t}\theta_{n}+\frac{1}{\lambda}(\theta_{n}-\theta_{l})=0,\end{cases} (2.14)

where ul,pl,θlu_{l},\,p_{l},\,\theta_{l} are the velocity, pressure and temperature of the different fluids, the constants μ,κ,σ,λ\mu,\,\kappa,\,\sigma,\,\lambda are given in (3.2) and (3.10).

Remark 2.1.

To the best of our knowledge, except the two-fluid incompressible Navier-Stokes-Fourier system (2.9) that has been derived in [4, Chapter 2], the other systems above are derived from the scaled BEGM equation (2.2) for the first time.

Then, in terms of a particular case derived in Theorem 2.1 above, namely (2.9), we will provide the rigorous justification of the well-posedness and the hydrodynamic limit process.

More precisely, selecting c1=c2=1c_{1}=c_{2}=1 in the scaled BEGM equation (1.5) leads to

{εtf1ε+vxf1ε=1εQ(f1ε,f1ε)+εQ(f1ε,f2ε),εtf2ε+vxf2ε=1εQ(f2ε,f2ε)+εQ(f2ε,f1ε),\begin{cases}\varepsilon\partial_{t}f^{\varepsilon}_{1}+v\cdot\nabla_{x}f^{\varepsilon}_{1}=\frac{1}{\varepsilon}Q(f^{\varepsilon}_{1},f^{\varepsilon}_{1})+\varepsilon Q(f^{\varepsilon}_{1},f^{\varepsilon}_{2}),\\[4.0pt] \varepsilon\partial_{t}f^{\varepsilon}_{2}+v\cdot\nabla_{x}f^{\varepsilon}_{2}=\frac{1}{\varepsilon}Q(f^{\varepsilon}_{2},f^{\varepsilon}_{2})+\varepsilon Q(f^{\varepsilon}_{2},f^{\varepsilon}_{1}),\\[4.0pt] \end{cases} (2.15)

if we choose r=1r=1 in the expansion form (2.1), the reminder system satisfied by (g1ε,g2ε)(g^{\varepsilon}_{1},g^{\varepsilon}_{2}) becomes

{εtg1ε+vxg1ε+ε1L^g1ε+εL^(g1ε,g2ε)=εr1Γ^(g1ε,g1ε)+ε2rΓ^(g1ε,g2ε),εtg2ε+vxg2ε+ε1L^g2ε+εL^(g2ε,g1ε)=εr1Γ^(g2ε,g2ε)+ε2rΓ^(g2ε,g1ε),\begin{cases}\varepsilon\partial_{t}g^{\varepsilon}_{1}+v\cdot\nabla_{x}g^{\varepsilon}_{1}+\varepsilon^{-1}\hat{L}g^{\varepsilon}_{1}+\varepsilon\hat{L}(g^{\varepsilon}_{1},g^{\varepsilon}_{2})=\varepsilon^{r-1}\hat{\Gamma}(g^{\varepsilon}_{1},g^{\varepsilon}_{1})+\varepsilon^{2r}\hat{\Gamma}(g^{\varepsilon}_{1},g^{\varepsilon}_{2}),\\[4.0pt] \varepsilon\partial_{t}g^{\varepsilon}_{2}+v\cdot\nabla_{x}g^{\varepsilon}_{2}+\varepsilon^{-1}\hat{L}g^{\varepsilon}_{2}+\varepsilon\hat{L}(g^{\varepsilon}_{2},g^{\varepsilon}_{1})=\varepsilon^{r-1}\hat{\Gamma}(g^{\varepsilon}_{2},g^{\varepsilon}_{2})+\varepsilon^{2r}\hat{\Gamma}(g^{\varepsilon}_{2},g^{\varepsilon}_{1}),\end{cases} (2.16)

with initial data

(g1ε,in(x,v),g2ε,in(x,v))\left(g^{\varepsilon,in}_{1}(x,v),g^{\varepsilon,in}_{2}(x,v)\right)^{\top} (2.17)

such that

flε,in(x,v)=M+εglε,inM0,forl{1,2},f^{\varepsilon,in}_{l}(x,v)=M+\varepsilon g^{\varepsilon,in}_{l}\sqrt{M}\geq 0,\quad\text{for}\quad l\in\{1,2\}, (2.18)

For brevity, we denote distribution functions 𝐟ε,𝐠ε\mathbf{f}^{\varepsilon},\,\mathbf{g}^{\varepsilon} as the vector form

𝐟ε:=(f1ε(t,x,v),f2ε(t,x,v))and𝐠ε:=(g1ε(t,x,v),g2ε(t,x,v)),\mathbf{f}^{\varepsilon}:=(f^{\varepsilon}_{1}(t,x,v),f^{\varepsilon}_{2}(t,x,v))^{\top}\quad\textup{and}\quad\mathbf{g}^{\varepsilon}:=(g^{\varepsilon}_{1}(t,x,v),g^{\varepsilon}_{2}(t,x,v))^{\top},

and also denote the macroscopic functions 𝐮,𝜽,𝝆\mathbf{u},\,\bm{\theta},\,\bm{\rho} as

𝐮=(u1(t,x),u2(t,x))and𝜽=(θ1(t,x),θ2(t,x))and𝝆=(ρ1(t,x),ρ2(t,x)).\mathbf{u}=(u_{1}(t,x),u_{2}(t,x))^{\top}\quad\textup{and}\quad\bm{\theta}=(\theta_{1}(t,x),\theta_{2}(t,x))^{\top}\quad\textup{and}\quad\bm{\rho}=(\rho_{1}(t,x),\rho_{2}(t,x))^{\top}.

The initial data 𝐟ε,in,𝐠ε,in\mathbf{f}^{\varepsilon,in},\,\mathbf{g}^{\varepsilon,in} and 𝐮in,𝜽in,𝝆in\mathbf{u}^{in},\,\bm{\theta}^{in},\,\bm{\rho}^{in} are defined following the similar manner.

The following theorem presents the well-posedness of 𝐟ε\mathbf{f}^{\varepsilon} to the scaled BEGM equation (2.15) around the global Maxwellian MM. By considering the expansion form (2.1), this is equivalent to prove the global well-posedness of 𝐠ε\mathbf{g}^{\varepsilon} in (2.16).

Theorem 2.2.

For any integer s3s\geq 3, there exists small ε0,l0>0\varepsilon_{0},l_{0}>0 such that for any 0<εε00<\varepsilon\leq\varepsilon_{0}, if 𝔼s(0)l0\mathbb{E}_{s}(0)\leq l_{0}, the Cauchy problem (2.16)-(2.17) admits a unique solution 𝐠ε=(g1ε,g2ε)\mathbf{g}^{\varepsilon}=(g^{\varepsilon}_{1},\,g^{\varepsilon}_{2}) satisfying

𝐠εL([0,+);HxsLv2),𝐠ε,𝐏𝐠εL2([0,+);HxsLv2(ν))\mathbf{g}^{\varepsilon}\in L^{\infty}([0,+\infty);H^{s}_{x}L^{2}_{v}),\quad\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\in L^{2}([0,+\infty);H^{s}_{x}L^{2}_{v}(\nu)) (2.19)

with uniform energy estimate

supt0𝔼s(t)+C~0+𝔻s(τ)𝑑τ𝔼s(0),\sup_{t\geq 0}\mathbb{E}_{s}(t)+\tilde{C}\int_{0}^{+\infty}\mathbb{D}_{s}(\tau)\,d\tau\lesssim\mathbb{E}_{s}(0), (2.20)

where the projection operators ,𝐏\mathbb{P}^{\perp},\,\mathbf{P}^{\perp} are defined in (4.6)-(4.8), the energy and dissipation functionals are defined in (4.10)-(4.11), and the constants l0l_{0}, C~\tilde{C} are independent of ε\varepsilon.

Thanks to the well-posedness and uniform energy estimate obtained in Theorem 2.2 above, we can rigorously justify the first type of hydrodynamical limit derived in Theorem 2.1, i.e., from the scaled BEGM equation (2.16) to the two-fluid incompressible Navier-Stokes-Fourier system (2.9).

Generally speaking, as ε0\varepsilon\to 0, the solution (g1ε,g2ε)(g^{\varepsilon}_{1},g^{\varepsilon}_{2}) to (2.16) can be proved to converge to the function constructed by the solutions to the following incompressible Navier-Stokes-Fourier system:

{tu1+u1xu1+1σ(u1u2)+xp1=μΔxu1,tu2+u2xu2+1σ(u2u1)+xp2=μΔxu2,tθ1+u1xθ1+1λ(θ1θ2)=κΔxθ1,tθ2+u2xθ2+1λ(θ2θ1)=κΔxθ2,divxu1=divxu2=0,x(ρ1+θ1)=x(ρ2+θ2)=0.\begin{cases}\partial_{t}u_{1}+u_{1}\cdot\nabla_{x}u_{1}+\frac{1}{\sigma}(u_{1}-u_{2})+\nabla_{x}p_{1}=\mu\Delta_{x}u_{1},\\[4.0pt] \partial_{t}u_{2}+u_{2}\cdot\nabla_{x}u_{2}+\frac{1}{\sigma}(u_{2}-u_{1})+\nabla_{x}p_{2}=\mu\Delta_{x}u_{2},\\[4.0pt] \partial_{t}\theta_{1}+u_{1}\cdot\nabla_{x}\theta_{1}+\frac{1}{\lambda}(\theta_{1}-\theta_{2})=\kappa\Delta_{x}\theta_{1},\\[4.0pt] \partial_{t}\theta_{2}+u_{2}\cdot\nabla_{x}\theta_{2}+\frac{1}{\lambda}(\theta_{2}-\theta_{1})=\kappa\Delta_{x}\theta_{2},\\[4.0pt] \textup{div}_{x}u_{1}=\textup{div}_{x}u_{2}=0,\\[4.0pt] \nabla_{x}(\rho_{1}+\theta_{1})=\nabla_{x}(\rho_{2}+\theta_{2})=0.\end{cases} (2.21)

Now, we are in a position to specifically state the theorem concerning the hydrodynamic limit.

Theorem 2.3.

Under the same assumptions and parameters s,ε0,l0s,\,\varepsilon_{0},\,l_{0} in Theorem 2.2, and let 𝛒0(x),𝐮0(x)\bm{\rho}_{0}(x),\,\mathbf{u}_{0}(x) and 𝛉0(x)\bm{\theta}_{0}(x) be given such that

𝐠ε,in(x,v)[𝝆0(x)+𝐮0(x)v+𝜽0(x)(|v|2232)]M\mathbf{g}^{\varepsilon,in}(x,v)\to\left[\bm{\rho}_{0}(x)+\mathbf{u}_{0}(x)\cdot v+\bm{\theta}_{0}(x)\left(\frac{|v|^{2}}{2}-\frac{3}{2}\right)\right]\sqrt{M} (2.22)

strongly in HxsLv2H^{s}_{x}L^{2}_{v} as ε0\varepsilon\to 0. Let 𝐠ε\mathbf{g}^{\varepsilon} be a sequence of solutions to the scaled BEGM equation (4.2) constructed in Theorem 2.2. Then,

𝐠ε(t,x,v)[𝐮(t,x)v+𝜽(t,x)(|v|2252)]M,\mathbf{g}^{\varepsilon}(t,x,v)\to\left[\mathbf{u}(t,x)\cdot v+\bm{\theta}(t,x)\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)\right]\sqrt{M}, (2.23)

in the sense of weak-\star in t0t\geq 0, strong in HxsηH^{s-\eta}_{x}, and weak in Lv2L^{2}_{v}, where 𝐮\mathbf{u} and 𝛉\bm{\theta} are the solution to the incompressible Navier-Stokes-Fourier system (2.21) with initial data

𝐮in(x)=𝐮0(x),𝜽in(x)=35𝜽0(x)25𝝆0(x),\mathbf{u}^{in}(x)=\mathbf{u}_{0}(x),\quad\bm{\theta}^{in}(x)=\frac{3}{5}\bm{\theta}_{0}(x)-\frac{2}{5}\bm{\rho}_{0}(x), (2.24)

Furthermore, the convergence of the moments holds: for any η>0\eta>0,

𝒫𝐠ε,vMv𝐮,inC([0,+);Hxs1η)L([0,+);Hxs1),\displaystyle\mathcal{P}\langle\mathbf{g}^{\varepsilon},v\sqrt{M}\rangle_{v}\to\mathbf{u},\quad\text{in}\quad C([0,+\infty);H^{s-1-\eta}_{x})\cap L^{\infty}([0,+\infty);H^{s-1}_{x}), (2.25)
𝐠ε,(|v|251)Mv𝜽,inC([0,+);Hxs1η)L([0,+);Hxs1),\displaystyle\langle\mathbf{g}^{\varepsilon},\left(\frac{|v|^{2}}{5}-1\right)\sqrt{M}\rangle_{v}\to\bm{\theta},\quad\text{in}\quad C([0,+\infty);H^{s-1-\eta}_{x})\cap L^{\infty}([0,+\infty);H^{s-1}_{x}),

with the Leray projection 𝒫\mathcal{P}.

The rest of the paper is organized as follows: in Section 3, we present the derivation of various hydrodynamic systems via formal analysis (Theorem 2.1). The global well-posedness (Theorem 2.2) of 𝐠ε\mathbf{g}^{\varepsilon} is proved with the help of the uniform energy estimate in Section 4. Finally, the hydrodynamic limiting process (Theorem 2.3) will be rigorously justified in Section 5.

3. Formal derivation (Theorem 2.1)

In this section, we present the specific formal derivation of the systems in Theorem 2.1.

3.1. Preliminary properties

For A,BA,B and A^,B^\hat{A},\hat{B} in (2.5)-(2.6), we have the following property:

Lemma 3.1.

[5, 15] There exist two scalar positive functions α\alpha and β\beta such that

A^(v)=α(|v|)A(v),B^(v)=β(|v|)B(v).\hat{A}(v)=\alpha(|v|)A(v),\quad\hat{B}(v)=\beta(|v|)B(v). (3.1)

Furthermore, we have

A^i,Ajv\displaystyle\langle\hat{A}_{i},A_{j}\rangle_{v} =52κδij,\displaystyle=\frac{5}{2}\kappa\delta_{ij},
B^ij,Bklv\displaystyle\langle\hat{B}_{ij},B_{kl}\rangle_{v} =μ(δikδjl+δilδjk23δijδkl),\displaystyle=\mu(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}-\frac{2}{3}\delta_{ij}\delta_{kl}),

where δij\delta_{ij} is the Kronecker delta function, and the constants μ,κ>0\mu,\,\kappa>0 are given by

κ=\displaystyle\kappa= α(|v|),A(v)A(v)v=2152π0α(r)r6er22𝑑r,\displaystyle\langle\alpha(|v|),A(v)\otimes A(v)\rangle_{v}=\frac{2}{15\sqrt{2\pi}}\int_{0}^{\infty}\alpha(r)r^{6}\textup{e}^{-\frac{r^{2}}{2}}\,dr, (3.2)
μ=\displaystyle\mu= β(|v|),B(v)B(v)v=162π0β(r)(r25)2r4er22𝑑r.\displaystyle\langle\beta(|v|),B(v)\otimes B(v)\rangle_{v}=\frac{1}{6\sqrt{2\pi}}\int_{0}^{\infty}\beta(r)(r^{2}-5)^{2}r^{4}\textup{e}^{-\frac{r^{2}}{2}}\,dr.

For operators L^\hat{L} and Γ^\hat{\Gamma} in (2.3), we have

Lemma 3.2.

[6] The following properties hold for the linearized Boltzmann operator L^\hat{L} and the bilinear symmetric operator Γ\Gamma:

(i) The linearized Boltzmann operator L^\hat{L} is self-adjointness in Lv2L^{2}_{v}, i.e. for any f,gLv2f,g\in L^{2}_{v},

L^f,gv=f,L^gv.\langle\hat{L}f,g\rangle_{v}=\langle f,\hat{L}g\rangle_{v}. (3.3)

(ii) For any gKerL^g\in\text{Ker}\hat{L},

12L^(g2)=Γ^(g,g).\frac{1}{2}\hat{L}(g^{2})=\hat{\Gamma}(g,g). (3.4)

3.2. Formal derivation of the hydrodynamic systems

Now, we are in a position to demonstrate the derivation of the hydrodynamic systems listed in the Theorem 2.1. To make it clear, this derivation is divided into two steps: the first step focuses on deriving the common conditions, i.e., (2.7)-(2.8), whereas the second step involves deriving the unique equations that result from different selections of rr and clc_{l}, corresponding to equations (2.9) to (2.14).

Step I: derivation of common conditions (2.7)-(2.8). We rewrite the scaled BEGM equation (2.2) as follows: for l,n{1,2}l,n\in\{1,2\} and lnl\neq n,

L^glε=ε1+cltglεεclvxglεεcl+1L^(glε,gnε)+εrΓ^(glε,glε)+ε2r+1Γ^(glε,gnε).\hat{L}g^{\varepsilon}_{l}=-\varepsilon^{1+c_{l}}\partial_{t}g^{\varepsilon}_{l}-\varepsilon^{c_{l}}v\cdot\nabla_{x}g^{\varepsilon}_{l}-\varepsilon^{c_{l}+1}\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n})+\varepsilon^{r}\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l})+\varepsilon^{2r+1}\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}). (3.5)

As only the cases of r1r\geq 1 and 1cl<2r1\leq c_{l}<2r are considered in Theorem 2.1, by letting ε0\varepsilon\to 0 in (3.5) above and combining the assumption of moment convergence, we have, for l{1,2}l\in\{1,2\},

L^gl=0,\hat{L}g_{l}=0,

which implies that glg_{l} belongs to KerL^\textup{Ker}\hat{L} as in (2.4) and can be written in the form of (2.7).

Furthermore, the Boussinesq relation (2.8) directly follows from the conservation of mass and momentum: for l,n{1,2}l,n\in\{1,2\} and lnl\neq n,

{εtglε,Mv+divxglε,vMv+εL^(glε,gnε),Mv=ε2r+1clΓ^(glε,gnε),Mv,εtglε,vMv+divxglε,vvMv+εL^(gnε,glε),vMv=ε2r+1clΓ^(glε,gnε),vMv,\begin{cases}\varepsilon\partial_{t}\langle g^{\varepsilon}_{l},\sqrt{M}\rangle_{v}+\textup{div}_{x}\langle g^{\varepsilon}_{l},v\sqrt{M}\rangle_{v}+\varepsilon\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\sqrt{M}\rangle_{v}=\varepsilon^{2r+1-c_{l}}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\sqrt{M}\rangle_{v},\\[8.0pt] \varepsilon\partial_{t}\langle g^{\varepsilon}_{l},v\sqrt{M}\rangle_{v}+\textup{div}_{x}\langle g^{\varepsilon}_{l},v\otimes v\sqrt{M}\rangle_{v}+\varepsilon\langle\hat{L}(g^{\varepsilon}_{n},g^{\varepsilon}_{l}),v\sqrt{M}\rangle_{v}=\varepsilon^{2r+1-c_{l}}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),v\sqrt{M}\rangle_{v},\\[4.0pt] \end{cases} (3.6)

then, since 2r>cl2r>c_{l}, letting ε0\varepsilon\to 0 above, we obtain

divxgl,vMv=0,divxgl,vvMv=0.\textup{div}_{x}\langle g_{l},v\sqrt{M}\rangle_{v}=0,\quad\textup{div}_{x}\langle g_{l},v\otimes v\sqrt{M}\rangle_{v}=0. (3.7)

By substituting glg_{l} in (2.7) into the left-hand side above, we can obtain the Boussinesq condition in (2.8). Similarly, performing the same operation on energy conservation yields the divergence-free condition in (2.8).

Step II: derivation of the distinct equations (2.9)-(2.14). We rewrite (3.5) to

tglε+1εvxglε+1εcl+1L^glε+εL^(glε,gnε)=εrcl1Γ^(glε,glε)+ε2rclΓ^(glε,gnε),\partial_{t}g^{\varepsilon}_{l}+\frac{1}{\varepsilon}v\cdot\nabla_{x}g^{\varepsilon}_{l}+\frac{1}{\varepsilon^{c_{l}+1}}\hat{L}g^{\varepsilon}_{l}+\varepsilon\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n})=\varepsilon^{r-c_{l}-1}\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l})+\varepsilon^{2r-c_{l}}\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}), (3.8)

and further deduce that

{tglε,vMv+1εdivxglε,vvMv+L^(glε,gnε),vMv=ε2rclΓ^(glε,gnε),vMv,tglε,(|v|2252)Mv+1εdivxglε,(|v|2252)vMv+L^(glε,gnε),(|v|2252)Mv=ε2rclΓ^(glε,gnε),(|v|2252)Mv.\begin{cases}&\partial_{t}\langle g^{\varepsilon}_{l},v\sqrt{M}\rangle_{v}+\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},v\otimes v\sqrt{M}\rangle_{v}+\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),v\sqrt{M}\rangle_{v}\\[6.0pt] =&\varepsilon^{2r-c_{l}}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),v\sqrt{M}\rangle_{v},\\[8.0pt] &\partial_{t}\langle g^{\varepsilon}_{l},\,\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)\sqrt{M}\rangle_{v}+\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},\,\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)v\sqrt{M}\rangle_{v}+\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)\sqrt{M}\rangle_{v}\\[6.0pt] =&\varepsilon^{2r-c_{l}}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\,\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)\sqrt{M}\rangle_{v}.\end{cases} (3.9)

By a direct calculation involving (2.7), we have

limε0tglε,vMv\displaystyle\lim_{\varepsilon\to 0}\partial_{t}\langle g^{\varepsilon}_{l},v\sqrt{M}\rangle_{v} =tul,\displaystyle=\partial_{t}u_{l},
limε0tglε,(|v|2252)Mv\displaystyle\lim_{\varepsilon\to 0}\partial_{t}\langle g^{\varepsilon}_{l},\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)\sqrt{M}\rangle_{v} =52tθl.\displaystyle=\frac{5}{2}\partial_{t}\theta_{l}.

According to [4, Chapter 2], we obtain

limε0L^(glε,gnε),vMv\displaystyle\lim_{\varepsilon\to 0}\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),v\sqrt{M}\rangle_{v} =1σ(ulun),\displaystyle=\frac{1}{\sigma}(u_{l}-u_{n}),
limε0L^(glε,gnε),(|v|2252)Mv\displaystyle\lim_{\varepsilon\to 0}\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)\sqrt{M}\rangle_{v} =52λ(θlθn),\displaystyle=\frac{5}{2\lambda}(\theta_{l}-\theta_{n}),

where the electrical conductivity σ\sigma and the energy conductivity λ\lambda are given by

1σ=\displaystyle\frac{1}{\sigma}= 123vL^(vM,vM)M𝑑v,\displaystyle\frac{1}{2}\int_{\mathbb{R}^{3}}v\hat{L}(v\sqrt{M},v\sqrt{M})\sqrt{M}\,dv, (3.10)
1λ=\displaystyle\frac{1}{\lambda}= 1203|v|2L^(|v|2M,|v|2M)M𝑑v.\displaystyle\frac{1}{20}\int_{\mathbb{R}^{3}}|v|^{2}\hat{L}(|v|^{2}\sqrt{M},|v|^{2}\sqrt{M})\sqrt{M}\,dv.

Since 2r>cl2r>c_{l}, the terms ε2rclΓ^(glε,gnε),vMv\varepsilon^{2r-c_{l}}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),v\sqrt{M}\rangle_{v} and ε2rclΓ^(glε,gnε),(|v|2252)Mv\varepsilon^{2r-c_{l}}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),(\frac{|v|^{2}}{2}-\frac{5}{2})\sqrt{M}\rangle_{v} on the right-hand side of (3.9) vanish. Hence, to complete the derivation of all equations in Theorem 2.1, it needs to estimate 1εdivxglε,vvMv\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},v\otimes v\sqrt{M}\rangle_{v} and 1εdivxglε,(|v|2252)vMv\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},(\frac{|v|^{2}}{2}-\frac{5}{2})v\sqrt{M}\rangle_{v} in (3.9).

Applying the self-adjointness of L^\hat{L} in lemma 3.1, we have

limε0𝒫(1εdivxglε,vvMv)=limε01εdivxglε,Bv=\displaystyle\lim_{\varepsilon\to 0}\mathcal{P}\left(\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},v\otimes v\sqrt{M}\rangle_{v}\right)=\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},B\rangle_{v}= limε01εdivxglε,L^B^v\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},\hat{L}\hat{B}\rangle_{v}
=\displaystyle= limε01εdivxL^glε,B^v,\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle\hat{L}g^{\varepsilon}_{l},\hat{B}\rangle_{v},
limε01εdivxglε,(|v|2252)vMv=limε01εdivxglε,Av\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},\,\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)v\sqrt{M}\rangle_{v}=\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},A\rangle_{v} =limε01εdivxglε,L^A^v\displaystyle=\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},\hat{L}\hat{A}\rangle_{v}
=\displaystyle= limε01εdivxL^glε,A^,\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle\hat{L}g^{\varepsilon}_{l},\hat{A}\rangle,

where 𝒫\mathcal{P} is the Leray projection.

Recalling the scaled BEGM equation (3.8)

1εL^glε=εr1Γ^(glε,glε)+ε2rΓ^(glε,gnε)εcltglεεcl1vxglεεcl+1L^(glε,gnε),\frac{1}{\varepsilon}\hat{L}g^{\varepsilon}_{l}=\varepsilon^{r-1}\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l})+\varepsilon^{2r}\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n})-\varepsilon^{c_{l}}\partial_{t}g^{\varepsilon}_{l}-\varepsilon^{c_{l}-1}v\cdot\nabla_{x}g^{\varepsilon}_{l}-\varepsilon^{c_{l}+1}\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}), (3.11)

we have

limε0𝒫1εdivxglε,vvMv\displaystyle\lim_{\varepsilon\to 0}\mathcal{P}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},v\otimes v\sqrt{M}\rangle_{v}
=\displaystyle= limε0εr1divxΓ^(glε,glε),B^v+limε0ε2rdivxΓ^(glε,gnε),B^v\displaystyle\lim_{\varepsilon\to 0}\varepsilon^{r-1}\textup{div}_{x}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l}),\hat{B}\rangle_{v}+\lim_{\varepsilon\to 0}\varepsilon^{2r}\textup{div}_{x}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\hat{B}\rangle_{v}
limε0εcldivxtglε,B^vlimε0εcl1divxvxglε,B^v\displaystyle-\lim_{\varepsilon\to 0}\varepsilon^{c_{l}}\textup{div}_{x}\langle\partial_{t}g^{\varepsilon}_{l},\hat{B}\rangle_{v}-\lim_{\varepsilon\to 0}\varepsilon^{c_{l}-1}\textup{div}_{x}\langle v\cdot\nabla_{x}g^{\varepsilon}_{l},\hat{B}\rangle_{v}
limε0εcl+1divxL^(glε,gnε),B^v\displaystyle-\lim_{\varepsilon\to 0}\varepsilon^{c_{l}+1}\textup{div}_{x}\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\hat{B}\rangle_{v}
=\displaystyle= limε0εr1divxΓ^(glε,glε),B^vlimε0εcl1divxvxglε,B^v.\displaystyle\lim_{\varepsilon\to 0}\varepsilon^{r-1}\textup{div}_{x}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l}),\hat{B}\rangle_{v}-\lim_{\varepsilon\to 0}\varepsilon^{c_{l}-1}\textup{div}_{x}\langle v\cdot\nabla_{x}g^{\varepsilon}_{l},\hat{B}\rangle_{v}\,.

Therefore, the different choices of rr and clc_{l} will lead to the different terms:

  • If r=1r=1, noting 12L^(gl2)=Γ^(gl,gl)\frac{1}{2}\hat{L}(g_{l}^{2})=\hat{\Gamma}(g_{l},g_{l}) for glKerL^g_{l}\in\textup{Ker}\hat{L} as in Lemma 3.2,

    limε0divxΓ^(glε,glε),B^v=12g^l2,B^v=12gl2,L^B^v=12gl2,Bv=ulxul.\displaystyle\lim_{\varepsilon\to 0}\textup{div}_{x}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l}),\hat{B}\rangle_{v}=\frac{1}{2}\langle\hat{g}_{l}^{2},\hat{B}\rangle_{v}=\frac{1}{2}\langle g_{l}^{2},\hat{L}\hat{B}\rangle_{v}=\frac{1}{2}\langle g_{l}^{2},B\rangle_{v}=u_{l}\cdot\nabla_{x}u_{l}.
  • If r>1r>1,

    limε0εr1divxΓ^(glε,glε),B^v=0.\lim_{\varepsilon\to 0}\varepsilon^{r-1}\textup{div}_{x}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l}),\hat{B}\rangle_{v}=0.
  • If cl=1c_{l}=1, applying Lemma 3.2,

    limε0divxvxglε,B^v=divxvxgl,β(|v|)Bv=μΔxul,\lim_{\varepsilon\to 0}\textup{div}_{x}\langle v\cdot\nabla_{x}g^{\varepsilon}_{l},\hat{B}\rangle_{v}=\textup{div}_{x}\langle v\cdot\nabla_{x}g_{l},\beta(|v|)B\rangle_{v}=\mu\Delta_{x}u_{l},

    where the constant μ\mu is given by (3.2).

  • If cl>1c_{l}>1,

    limε0εcl1divxvxglε,B^v=0.\lim_{\varepsilon\to 0}\varepsilon^{c_{l}-1}\textup{div}_{x}\langle v\cdot\nabla_{x}g^{\varepsilon}_{l},\hat{B}\rangle_{v}=0.

    Applying a similar approach, we can obtain

    limε01εdivxglε,(|v|2252)vMv=limε0εr1divxΓ^(glε,glε),A^vlimε0εcl1divxvxglε,A^v.\begin{split}&\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},\,\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)v\sqrt{M}\rangle_{v}\\[4.0pt] =&\lim_{\varepsilon\to 0}\varepsilon^{r-1}\textup{div}_{x}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{l}),\hat{A}\rangle_{v}-\lim_{\varepsilon\to 0}\varepsilon^{c_{l}-1}\textup{div}_{x}\langle v\cdot\nabla_{x}g^{\varepsilon}_{l},\hat{A}\rangle_{v}.\end{split}

Thus, the equations in Theorem 2.1 are derived by involving the following relations:

limε01εdivxglε,(|v|2252)vMv={52ulxθl52κΔxθlifr=1andcl=1,52ulxθlifr=1andcl>1,52κΔxθlifr>1andcl=1,0ifr>1andcl>1.\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\textup{div}_{x}\langle g^{\varepsilon}_{l},\left(\frac{|v|^{2}}{2}-\frac{5}{2}\right)v\sqrt{M}\rangle_{v}=\left\{\begin{array}[]{ccc}\displaystyle\frac{5}{2}u_{l}\cdot\nabla_{x}\theta_{l}-\frac{5}{2}\kappa\Delta_{x}\theta_{l}&\qquad\textup{if}\,\,r=1\quad\textup{and}\quad c_{l}=1,\\[4.0pt] \displaystyle\frac{5}{2}u_{l}\cdot\nabla_{x}\theta_{l}&\qquad\textup{if}\,\,r=1\quad\textup{and}\quad c_{l}>1,\\[4.0pt] \displaystyle-\frac{5}{2}\kappa\Delta_{x}\theta_{l}&\qquad\textup{if}\,\,r>1\quad\textup{and}\quad c_{l}=1,\\[4.0pt] \displaystyle 0&\qquad\textup{if}\,\,r>1\quad\textup{and}\quad c_{l}>1.\\[4.0pt] \end{array}\right.

4. Global well-posedness of the scaled BEGM equation (Theorem 2.2)

4.1. Basic Setup

In this section, we will prove the scaled BEGM equation (4.2) admits a unique global-in-time solution for all ε(0,ε0]\varepsilon\in(0,\varepsilon_{0}] with small ε0>0\varepsilon_{0}>0. To this end, we first make some preparations.

Then, by letting

flε=M+εglεM,forl{1,2},f^{\varepsilon}_{l}=M+\varepsilon g^{\varepsilon}_{l}\sqrt{M},\quad\text{for}\quad l\in\{1,2\}, (4.1)

the reminder system satisfied by 𝐠ε=(g1ε,g2ε)\mathbf{g}^{\varepsilon}=(g^{\varepsilon}_{1},g^{\varepsilon}_{2}) of scaled BEGM equation (2.16) can be rewritten in the vector form:

εt𝐠ε+vx𝐠ε+(1εε)L𝐠ε+ε𝐠ε=Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)\varepsilon\partial_{t}\mathbf{g}^{\varepsilon}+v\cdot\nabla_{x}\mathbf{g}^{\varepsilon}+\left(\frac{1}{\varepsilon}-\varepsilon\right)L\mathbf{g}^{\varepsilon}+\varepsilon\mathcal{L}\mathbf{g}^{\varepsilon}=\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}) (4.2)

with initial data

𝐠ε,in(x,v)=(g1ε,in(x,v),g2ε,in(x,v))\mathbf{g}^{\varepsilon,in}(x,v)=\left(g^{\varepsilon,in}_{1}(x,v),g^{\varepsilon,in}_{2}(x,v)\right)^{\top} (4.3)

satisfying (2.18), where the linearized collision operators L,L,\,\mathcal{L} and the nonlinear collision operators Γ,Γ~\Gamma,\,\tilde{\Gamma} are given in the vector form: for any 𝐠=(g1,g2)\mathbf{g}=(g_{1},g_{2})^{\top} and 𝐡=(h1,h2)\mathbf{h}=(h_{1},h_{2})^{\top},

L𝐠=\displaystyle L\mathbf{g}= (L^g1,L^g2),\displaystyle(\hat{L}g_{1},\hat{L}g_{2})^{\top}, (4.4)
=\displaystyle= 1M(Q(M,g1M)+Q(g1M,M),Q(M,g2M)+Q(g2M,M)),\displaystyle-\frac{1}{\sqrt{M}}\Big{(}Q(M,g_{1}\sqrt{M})+Q(g_{1}\sqrt{M},M),Q(M,g_{2}\sqrt{M})+Q(g_{2}\sqrt{M},M)\Big{)}^{\top},
𝐠=\displaystyle\mathcal{L}\mathbf{g}= (L^(g1,g2)+L^g1,L^(g2,g1)+L^g2),\displaystyle(\hat{L}(g_{1},g_{2})+\hat{L}g_{1},\hat{L}(g_{2},g_{1})+\hat{L}g_{2})^{\top},
=\displaystyle= 1M(2Q(g1M,M)+Q(M,{g1+g2}M),2Q(g2M,M)+Q(M,{g1+g2}M)),\displaystyle-\frac{1}{\sqrt{M}}\Big{(}2Q(g_{1}\sqrt{M},M)+Q(M,\{g_{1}+g_{2}\}\sqrt{M}),2Q(g_{2}\sqrt{M},M)+Q(M,\{g_{1}+g_{2}\}\sqrt{M})\Big{)}^{\top},
Γ(𝐠,𝐡)=\displaystyle\Gamma(\mathbf{g},\mathbf{h})= (Γ^(g1,h1),Γ^(g2,h2)),\displaystyle(\hat{\Gamma}(g_{1},h_{1}),\hat{\Gamma}(g_{2},h_{2}))^{\top},
=\displaystyle= 1M(Q(g1M,h1M),Q(g2M,h2M)),\displaystyle\frac{1}{\sqrt{M}}\Big{(}Q(g_{1}\sqrt{M},h_{1}\sqrt{M}),Q(g_{2}\sqrt{M},h_{2}\sqrt{M})\Big{)}^{\top},
Γ~(𝐠,𝐡)=\displaystyle\tilde{\Gamma}(\mathbf{g},\mathbf{h})= (Γ^(g1,h2),Γ^(g2,h1)),\displaystyle(\hat{\Gamma}(g_{1},h_{2}),\hat{\Gamma}(g_{2},h_{1}))^{\top},
=\displaystyle= 1M(Q(g1M,h2M),Q(g2M,h1M)),\displaystyle\frac{1}{\sqrt{M}}\Big{(}Q(g_{1}\sqrt{M},h_{2}\sqrt{M}),Q(g_{2}\sqrt{M},h_{1}\sqrt{M})\Big{)}^{\top},

with L^\hat{L} and Γ^\hat{\Gamma} being defined in (2.3).

According to [26, 28], the kernel of LL and \mathcal{L} are given by, for i=1,2,3i=1,2,3,

KerL:=\displaystyle\textup{Ker}L:= Span{ψ1(v),ψ2(v),ψi+2(v),ψi+5(v),ψ9(v),ψ10(v)},\displaystyle\textup{Span}\left\{\psi_{1}(v),\,\psi_{2}(v),\,\psi_{i+2}(v),\,\psi_{i+5}(v),\,\psi_{9}(v),\,\psi_{10}(v)\right\}, (4.5)
Ker:=\displaystyle\textup{Ker}\mathcal{L}:= Span{ϕ1(v),ϕ2(v),ϕi+2(v),ϕ6(v)},\displaystyle\textup{Span}\left\{\phi_{1}(v),\,\phi_{2}(v),\,\phi_{i+2}(v),\,\phi_{6}(v)\right\},

where

ψ1(v)=[1,0]M,ψ2(v)=[0,1]M,ψi+2(v)=[vi,0]M,ψi+5(v)=[0,vi]M,ψ9(v)=[|v|231,0]M,ψ10(v)=[0,|v|231]M,ϕ1(v)=ψ1(v),ϕ2(v)=ψ2(v),ϕi+2(v)=ψi+2(v)+ψi+5(v),ϕ6(v)=12[|v|23,|v|23]M.\begin{split}\psi_{1}(v)=&[1,0]^{\top}\sqrt{M},\quad\psi_{2}(v)=[0,1]^{\top}\sqrt{M},\quad\psi_{i+2}(v)=[v_{i},0]^{\top}\sqrt{M},\quad\psi_{i+5}(v)=[0,v_{i}]^{\top}\sqrt{M},\\[4.0pt] \psi_{9}(v)=&\left[\frac{|v|^{2}}{3}-1,0\right]^{\top}\sqrt{M},\quad\psi_{10}(v)=\left[0,\frac{|v|^{2}}{3}-1\right]^{\top}\sqrt{M},\\[4.0pt] \phi_{1}(v)=&\psi_{1}(v),\quad\phi_{2}(v)=\psi_{2}(v),\quad\phi_{i+2}(v)=\psi_{i+2}(v)+\psi_{i+5}(v),\\[4.0pt] \phi_{6}(v)=&\frac{1}{2}\left[|v|^{2}-3,|v|^{2}-3\right]^{\top}\sqrt{M}.\end{split}

We define the projection :Lv2Ker\mathbb{P}:L^{2}_{v}\mapsto\textup{Ker}\mathcal{L} in the sense that, for any 𝐠Lv2\mathbf{g}\in L^{2}_{v},

𝐠=\displaystyle\mathbb{P}\mathbf{g}= 𝐠,ϕ1vϕ1+𝐠,ϕ2vϕ2+i=1312𝐠,ϕi+2vϕi+2+13𝐠,ϕ6vϕ6\displaystyle\langle\mathbf{g},\phi_{1}\rangle_{v}\,\phi_{1}+\langle\mathbf{g},\phi_{2}\rangle_{v}\,\phi_{2}+\sum_{i=1}^{3}\frac{1}{2}\langle\mathbf{g},\phi_{i+2}\rangle_{v}\,\phi_{i+2}+\frac{1}{3}\langle\mathbf{g},\phi_{6}\rangle_{v}\,\phi_{6} (4.6)
=\displaystyle= ρ1ϕ1+ρ2ϕ2+i=13uiϕi+2+θϕ6\displaystyle\rho^{1}\phi_{1}+\rho^{2}\phi_{2}+\sum_{i=1}^{3}u_{i}\phi_{i+2}+\theta\phi_{6}

with the coefficients ρ1=𝐠,ϕ1v,ρ2=𝐠,ϕ2v\rho^{1}=\langle\mathbf{g},\phi_{1}\rangle_{v},\,\rho^{2}=\langle\mathbf{g},\phi_{2}\rangle_{v}, ui=12𝐠,ϕi+2vu_{i}=\frac{1}{2}\langle\mathbf{g},\phi_{i+2}\rangle_{v} for i=1,2,3i=1,2,3, and θ=13𝐠,ϕ6v\theta=\frac{1}{3}\langle\mathbf{g},\phi_{6}\rangle_{v}. Hence, 𝐠\mathbf{g} can be decomposed into

𝐠=𝐠+(𝕀)𝐠=𝐠+𝐠.\mathbf{g}=\mathbb{P}\mathbf{g}+(\mathbb{I}-\mathbb{P})\mathbf{g}=\mathbb{P}\mathbf{g}+\mathbb{P}^{\perp}\mathbf{g}. (4.7)

In addition, we can define another projection 𝐏:Lv2KerL\mathbf{P}:L^{2}_{v}\mapsto\textup{Ker}L that

𝐏𝐠=\displaystyle\mathbf{P}\mathbf{g}= (a~1(t,x)M+j=13b~1j(t,x)vjM+c~1(t,x)|v|2M,\displaystyle\Big{(}\tilde{a}_{1}(t,x)\sqrt{M}+\sum_{j=1}^{3}\tilde{b}_{1j}(t,x)v_{j}\sqrt{M}+\tilde{c}_{1}(t,x)|v|^{2}\sqrt{M}, (4.8)
a~2(t,x)M+j=13b~2j(t,x)vjM+c~2(t,x)|v|2M),\displaystyle\tilde{a}_{2}(t,x)\sqrt{M}+\sum_{j=1}^{3}\tilde{b}_{2j}(t,x)v_{j}\sqrt{M}+\tilde{c}_{2}(t,x)|v|^{2}\sqrt{M}\Big{)}^{\top},

where the coefficients a~l(t,x)\tilde{a}_{l}(t,x), b~lk(t,x)\tilde{b}_{lk}(t,x) and c~l(t,x)\tilde{c}_{l}(t,x) are given as in [26]:

a~l(t,x)=\displaystyle\tilde{a}_{l}(t,x)= 3(52|v|22)glM𝑑v,b~lk(t,x)=3vkglM𝑑v,\displaystyle\int_{\mathbb{R}^{3}}\left(\frac{5}{2}-\frac{|v|^{2}}{2}\right)g_{l}\sqrt{M}\,dv,\quad\tilde{b}_{lk}(t,x)=\int_{\mathbb{R}^{3}}v_{k}g_{l}\sqrt{M}\,dv,
c~l(t,x)=\displaystyle\tilde{c}_{l}(t,x)= 3(|v|2612)glM𝑑v\displaystyle\int_{\mathbb{R}^{3}}\left(\frac{|v|^{2}}{6}-\frac{1}{2}\right)g_{l}\sqrt{M}\,dv

with l=1,2l=1,2 and k=1,2,3k=1,2,3. Therefore, 𝐠\mathbf{g} can be alternatively decomposed into

𝐠=𝐏𝐠+(𝐈𝐏)𝐠=𝐏𝐠+𝐏𝐠.\mathbf{g}=\mathbf{P}\mathbf{g}+(\mathbf{I}-\mathbf{P})\mathbf{g}=\mathbf{P}\mathbf{g}+\mathbf{P}^{\perp}\mathbf{g}. (4.9)

Now, we introduce the energy functional

𝔼s(t)=𝐠εHxsLv22:=l=12glεHxsLv22,\displaystyle\mathbb{E}_{s}(t)=\|\mathbf{g}^{\varepsilon}\|^{2}_{H^{s}_{x}L^{2}_{v}}:=\sum_{l=1}^{2}\|g^{\varepsilon}_{l}\|_{H^{s}_{x}L^{2}_{v}}^{2}, (4.10)

and the dissipation functional

𝔻s(t)=1ε2𝐏𝐠εHxsLv2(ν)2+ε𝐠εHxsLv2(ν)2+x𝐠εHxs12.\displaystyle\mathbb{D}_{s}(t)=\frac{1}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\varepsilon\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|^{2}_{H^{s}_{x}L^{2}_{v}(\nu)}+\|\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s-1}_{x}}^{2}. (4.11)

And the initial energy and dissipation functionals follow that

𝔼s(0)=\displaystyle\mathbb{E}_{s}(0)= 𝐠ε,inHxsLv22=l=12glε,inHxsLv22,\displaystyle\|\mathbf{g}^{\varepsilon,in}\|^{2}_{H^{s}_{x}L^{2}_{v}}=\sum_{l=1}^{2}\|g_{l}^{\varepsilon,in}\|_{H^{s}_{x}L^{2}_{v}}^{2}, (4.12)
𝔻s(0)=\displaystyle\mathbb{D}_{s}(0)= 1ε2𝐏𝐠ε,inHxsLv2(ν)2+ε𝐠ε,inHxsLv2(ν)2+x𝐠ε,inHxs12.\displaystyle\frac{1}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon,in}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\varepsilon\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon,in}\|^{2}_{H^{s}_{x}L^{2}_{v}(\nu)}+\|\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon,in}\|_{H^{s-1}_{x}}^{2}.

4.2. Uniform energy estimates

In this section, we will prove the uniform energy estimates for 𝐠ε\mathbf{g}^{\varepsilon} to the system (4.2)-(4.3).

4.2.1. Preliminary results

The essential building block in obtaining uniform estimates is the dissipative structure provided by the linearized operators L,L,\,\mathcal{L} defined in (4.4).

According to [4, Proposition 5.7] and [28, Lemma 3.2, Lemma 3.3], we have the following coercivity of the linearized collision operators L,L,\,\mathcal{L}:

Lemma 4.1.

For any 𝐠=(g1,g2)\mathbf{g}=(g_{1},g_{2}), there exists δ>0\delta>0 such that

L𝐠,𝐠vδ𝐏𝐠Lv2(ν)2,\langle L\mathbf{g},\mathbf{g}\rangle_{v}\geq\delta\|\mathbf{P}^{\perp}\mathbf{g}\|_{L^{2}_{v}(\nu)}^{2}, (4.13)

and

𝐠,𝐠vδ𝐠Lv2(ν)2.\langle\mathcal{L}\mathbf{g},\mathbf{g}\rangle_{v}\geq\delta\|\mathbb{P}^{\perp}\mathbf{g}\|_{L^{2}_{v}(\nu)}^{2}. (4.14)

In addition, thanks to [28, Lemma 3.3], the following lemma is satisfied by the nonlinear operators Γ,Γ~\Gamma,\,\tilde{\Gamma}:

Lemma 4.2.

For any 𝐠=(g1,g2),𝐡=(h1,h2),𝐟=(f1,f2)\mathbf{g}=(g_{1},g_{2}),\mathbf{h}=(h_{1},h_{2}),\mathbf{f}=(f_{1},f_{2}), then

|xαΓ(𝐠,𝐡),xα𝐟v||α1|+|α2||α|[xα1𝐠Lv2xα2𝐡Lv2(ν)+xα1𝐠Lv2xα2𝐡Lv2(ν)]xα𝐟Lv2(ν),\Big{|}\langle\partial_{x}^{\alpha}\Gamma(\mathbf{g},\mathbf{h}),\partial_{x}^{\alpha}\mathbf{f}\rangle_{v}\Big{|}\lesssim\sum_{|\alpha_{1}|+|\alpha_{2}|\leq|\alpha|}\Big{[}\|\partial_{x}^{\alpha_{1}}\mathbf{g}\|_{L^{2}_{v}}\|\partial_{x}^{\alpha_{2}}\mathbf{h}\|_{L^{2}_{v}(\nu)}+\|\partial_{x}^{\alpha_{1}}\mathbf{g}\|_{L^{2}_{v}}\|\partial_{x}^{\alpha_{2}}\mathbf{h}\|_{L^{2}_{v}(\nu)}\Big{]}\|\partial_{x}^{\alpha}\mathbf{f}\|_{L^{2}_{v}(\nu)}, (4.15)

and

|xαΓ~(𝐠,𝐡),xα𝐟v||α1|+|α2||α|[xα1𝐠Lv2xα2𝐡Lv2(ν)+xα1𝐠Lv2xα2𝐡Lv2(ν)]xα𝐟Lv2(ν).\Big{|}\langle\partial_{x}^{\alpha}\tilde{\Gamma}(\mathbf{g},\mathbf{h}),\partial_{x}^{\alpha}\mathbf{f}\rangle_{v}\Big{|}\lesssim\sum_{|\alpha_{1}|+|\alpha_{2}|\leq|\alpha|}\Big{[}\|\partial_{x}^{\alpha_{1}}\mathbf{g}\|_{L^{2}_{v}}\|\partial_{x}^{\alpha_{2}}\mathbf{h}\|_{L^{2}_{v}(\nu)}+\|\partial_{x}^{\alpha_{1}}\mathbf{g}\|_{L^{2}_{v}}\|\partial_{x}^{\alpha_{2}}\mathbf{h}\|_{L^{2}_{v}(\nu)}\Big{]}\|\partial_{x}^{\alpha}\mathbf{f}\|_{L^{2}_{v}(\nu)}. (4.16)

The local well-posedness of the scaled BEGM equation (4.2) has been shown in [39].

Proposition 4.1.

[39, Proposition 3.1] For s3s\geq 3, there exists T>0,ε0>0T^{*}>0,\varepsilon_{0}>0 and l0>0l_{0}>0 independent of ε\varepsilon, such that for any 0<εε00<\varepsilon\leq\varepsilon_{0}, 𝔼(0)l0\mathbb{E}(0)\leq l_{0} and Tl0T^{*}\leq\sqrt{l_{0}}, the Cauchy problem (4.2)-(4.3) admits a unique solution 𝐠ε\mathbf{g}^{\varepsilon} satisfying

𝐠εL(0,T;HxsLv2),𝐠ε,𝐏𝐠εL2(0,T;HxsLv2(ν))\mathbf{g}^{\varepsilon}\in L^{\infty}(0,T^{*};H^{s}_{x}L^{2}_{v}),\quad\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\mathbf{P}\mathbf{g}^{\varepsilon}\in L^{2}(0,T^{*};H^{s}_{x}L^{2}_{v}(\nu))

with the energy estimate:

sup0tT𝔼s(t)+0T(1ε2𝐠εHxsLv2(ν)2+𝐏𝐠εHxsLv2(ν)2)𝑑tl0.\sup_{0\leq t\leq T^{*}}\mathbb{E}_{s}(t)+\int_{0}^{T^{*}}\left(\frac{1}{\varepsilon^{2}}\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}\right)\,dt\lesssim l_{0}. (4.17)

4.2.2. Energy estimates on microscopic parts: kinetic dissipation

In this part, we first establish the energy estimates on the microscopic parts 𝐠ε\mathbf{g}^{\varepsilon} by taking advantage of the kinetic dissipation.

Lemma 4.3.

Under the assumptions of Theorem 2.2, let 𝐠ε\mathbf{g}^{\varepsilon} be the solution to the system (4.2)-(4.3), then, for 0<ε10<\varepsilon\leq 1, there exists constant C1>0C_{1}>0 independent of ε\varepsilon such that

12ddt𝐠εHxsLv22+δε2𝐏𝐠εHxsLv2(ν)2+δ𝐠εHxsLv2(ν)2C1s12(t)𝔻s(t),\frac{1}{2}\frac{d}{dt}\|\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}}^{2}+\frac{\delta}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\delta\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}\leq C_{1}\mathcal{E}^{\frac{1}{2}}_{s}(t)\mathbb{D}_{s}(t), (4.18)

where δ\delta is given in Lemma 4.1.

Proof.

Firstly, we rewrite the scaled BEGM equation (4.2) as follows:

t𝐠ε+1εvx𝐠ε+(1ε21)L𝐠ε+𝐠ε=1εΓ(𝐠ε,𝐠ε)+εΓ~(𝐠ε,𝐠ε).\partial_{t}\mathbf{g}^{\varepsilon}+\frac{1}{\varepsilon}v\cdot\nabla_{x}\mathbf{g}^{\varepsilon}+\left(\frac{1}{\varepsilon^{2}}-1\right)L\mathbf{g}^{\varepsilon}+\mathcal{L}\mathbf{g}^{\varepsilon}=\frac{1}{\varepsilon}\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}). (4.19)

Applying xα\partial_{x}^{\alpha} to (4.19) with 0|α|s0\leq|\alpha|\leq s, multiplying it by xα𝐠ε\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}, and taking the integration with respect to xx and vv, we have

12ddtxα𝐠εLx2Lv22+δ(1ε21)xα𝐏𝐠εLx2Lv2(ν)2+δxα𝐠εLx2Lv2(ν)2(1εε)xαΓ(𝐠ε,𝐠ε),xα𝐠εx,vA11+εxαΓ~(𝐠ε,𝐠ε),xα𝐠εx,vA12,\frac{1}{2}\frac{d}{dt}\|\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}^{2}+\delta\left(\frac{1}{\varepsilon^{2}}-1\right)\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}^{2}+\delta\|\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}^{2}\\[4.0pt] \leq\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{11}}+\underbrace{\varepsilon\langle\partial_{x}^{\alpha}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{12}}, (4.20)

where Lemma 4.1 is utilized.

Recalling the definition of Γ(𝐠ε,𝐠ε)\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}) in (4.4) and using the decomposition (4.7), we can split A11A_{11} into the following four terms:

A11=(1εε)xαΓ(𝐏𝐠ε,𝐏𝐠ε),xα𝐠εx,vA111+(1εε)xαΓ(𝐏𝐠ε,𝐏𝐠ε),xα𝐠εx,vA112(1εε)xαΓ(𝐏𝐠ε,𝐏𝐠ε),xα𝐠εx,vA113+(1εε)xαΓ(𝐏𝐠ε,𝐏𝐠ε),xα𝐠εx,vA114.A_{11}=\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\Gamma(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{111}}+\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\Gamma(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\mathbf{P}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{112}}\\ \underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\Gamma(\mathbf{P}\mathbf{g}^{\varepsilon},\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{113}}+\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\Gamma(\mathbf{P}\mathbf{g}^{\varepsilon},\mathbf{P}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{114}}.

For A111A_{111}, by applying the Leibniz rule, we have, for s3s\geq 3,

|A111|\displaystyle|A_{111}|\lesssim 1ε|Γ(xα𝐏𝐠ε,𝐏𝐠ε)+Γ(𝐏𝐠ε,xα𝐏𝐠ε),xα(𝐈𝐏)𝐠ε+xα𝐏𝐠εx,v|\displaystyle\frac{1}{\varepsilon}\big{|}\langle\Gamma(\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon})+\Gamma(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\partial_{x}^{\alpha}(\mathbf{I}-\mathbf{P})\mathbf{g}^{\varepsilon}+\partial_{x}^{\alpha}\mathbf{P}\mathbf{g}^{\varepsilon}\rangle_{x,v}\big{|}
+1ε1|α~||α|1|Γ(xα~𝐏𝐠ε,xαα~𝐏𝐠ε)+Γ(xα~𝐏𝐠ε,xαα~𝐏𝐠ε),xα𝐏𝐠ε+xα𝐏𝐠εx,v|\displaystyle+\frac{1}{\varepsilon}\sum_{1\leq|\tilde{\alpha}|\leq|\alpha|-1}\big{|}\langle\Gamma(\partial_{x}^{\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha-\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon})+\Gamma(\partial_{x}^{\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha-\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}+\partial_{x}^{\alpha}\mathbf{P}\mathbf{g}^{\varepsilon}\rangle_{x,v}\big{|}
\displaystyle\lesssim 1ε[𝐏𝐠εLxLv2xα𝐏𝐠εLx2Lv2(ν)+𝐏𝐠εLxLv2(ν)xα𝐏𝐠εLx2Lv2]\displaystyle\frac{1}{\varepsilon}\Big{[}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{\infty}_{x}L^{2}_{v}}\|\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}+\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{\infty}_{x}L^{2}_{v}(\nu)}\|\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}\Big{]}\cdot
[xα𝐏𝐠εLx2Lv2(ν)+xα𝐏𝐠εLx2Lv2(ν)]\displaystyle\qquad\qquad\Big{[}\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}+\|\partial_{x}^{\alpha}\mathbf{P}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}\Big{]}
+1ε1|α~||α|1[xα~𝐏𝐠εLx4Lv2xαα~𝐏𝐠εLx4Lv2(ν)+xα~𝐏𝐠εLx4Lv2(ν)xαα~𝐏𝐠εLx4Lv2]\displaystyle+\frac{1}{\varepsilon}\sum_{1\leq|\tilde{\alpha}|\leq|\alpha|-1}\Big{[}\|\partial_{x}^{\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{4}_{x}L^{2}_{v}}\|\|\partial_{x}^{\alpha-\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{4}_{x}L^{2}_{v}(\nu)}+\|\partial_{x}^{\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{4}_{x}L^{2}_{v}(\nu)}\|\partial_{x}^{\alpha-\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{4}_{x}L^{2}_{v}}\Big{]}\cdot
[xα𝐏𝐠εLx2Lv2(ν)+xα𝐏𝐠εLx2Lv2(ν)]\displaystyle\qquad\qquad\Big{[}\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}+\|\partial_{x}^{\alpha}\mathbf{P}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}\Big{]}
\displaystyle\lesssim 1ε[𝐏𝐠εHx2Lv2xα𝐏𝐠εLx2Lv2(ν)+𝐏𝐠εHx2Lv2(ν)xα𝐏𝐠εLx2Lv2]\displaystyle\ \frac{1}{\varepsilon}\Big{[}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{2}_{x}L^{2}_{v}}\|\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}+\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{2}_{x}L^{2}_{v}(\nu)}\|\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}\Big{]}\cdot
[xα𝐏𝐠εLx2Lv2(ν)+xα𝐏𝐠εLx2Lv2(ν)]\displaystyle\qquad\qquad\Big{[}\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}+\|\partial_{x}^{\alpha}\mathbf{P}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}\Big{]}
+1ε1|α~||α|1[xα~𝐏𝐠εHx1Lv2xαα~𝐏𝐠εHx1Lv2(ν)+xα~𝐏𝐠εHx1Lv2(ν)xαα~𝐏𝐠εLx4Lv2]\displaystyle+\frac{1}{\varepsilon}\sum_{1\leq|\tilde{\alpha}|\leq|\alpha|-1}\Big{[}\|\partial_{x}^{\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{1}_{x}L^{2}_{v}}\|\|\partial_{x}^{\alpha-\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{1}_{x}L^{2}_{v}(\nu)}+\|\partial_{x}^{\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{1}_{x}L^{2}_{v}(\nu)}\|\partial_{x}^{\alpha-\tilde{\alpha}}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{4}_{x}L^{2}_{v}}\Big{]}\cdot
[xα𝐏𝐠εLx2Lv2(ν)+xα𝐏𝐠εLx2Lv2(ν)]\displaystyle\qquad\qquad\Big{[}\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}+\|\partial_{x}^{\alpha}\mathbf{P}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}(\nu)}\Big{]}
\displaystyle\lesssim 1ε𝐠εHxsLv2𝐏𝐠εHxsLv2(ν)2\displaystyle\ \frac{1}{\varepsilon}\|\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}
\displaystyle\lesssim s12(t)𝔻s(t),\displaystyle\ \mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t),

where we apply the Ho¨\ddot{\text{o}}lder inequality and Lemma 4.2 in the second inequality, and the Sobolev inequality is utilized in the third inequality above.

By applying the similar argument as A111A_{111}, we also obtain that

|A112|+|A113|+|A113|+|A114|s12(t)𝔻s(t).\displaystyle|A_{112}|+|A_{113}|+|A_{113}|+|A_{114}|\lesssim\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t).

Therefore, we have

|A11|s12(t)𝔻s(t).\displaystyle|A_{11}|\lesssim\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t). (4.21)

For A12A_{12}, by applying 𝐠ε=𝐠ε+𝐠ε\mathbf{g}^{\varepsilon}=\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}+\mathbb{P}\mathbf{g}^{\varepsilon}, we can decompose it as follows:

A12=\displaystyle A_{12}= (1εε)xαΓ~(𝐠ε,𝐠ε),xα𝐠εx,vA121+(1εε)xαΓ~(𝐠ε,𝐠ε),xα𝐠εx,vA122\displaystyle\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\tilde{\Gamma}(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{121}}+\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\tilde{\Gamma}(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\mathbb{P}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{122}}
(1εε)xαΓ~(𝐠ε,𝐠ε),xα𝐠εx,vA123+(1εε)xαΓ~(gε,𝐠ε),xα𝐠εx,vA124,\displaystyle\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\tilde{\Gamma}(\mathbb{P}\mathbf{g}^{\varepsilon},\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{123}}+\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\langle\partial_{x}^{\alpha}\tilde{\Gamma}(\mathbb{P}g^{\varepsilon},\mathbb{P}\mathbf{g}^{\varepsilon}),\partial_{x}^{\alpha}\mathbf{g}^{\varepsilon}\rangle_{x,v}}_{A_{124}},

and by further following the similar estimate as A111A_{111}, we find

|A12|s12(t)𝔻s(t).|A_{12}|\lesssim\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t). (4.22)

Finally, the proof can be completed by combining (4.20), (4.21) and (4.22) as well as summing up for all 0|α|s0\leq|\alpha|\leq s. ∎

4.2.3. Energy estimates on macroscopic parts: fluid dissipation

In this part, we will estimate the macroscopic part 𝐠ε\mathbb{P}\mathbf{g}^{\varepsilon} in (4.2) by using the well-known Macro-Micro decomposition method.

To achieve this, we first introduce the following linearly independent basis in Lv2L^{2}_{v}, i.e., the so-called seventeen moments basis in [39]:

𝔅={βl(v),βil(v),βi(v),β~i(v),βjk(v);  1i3, 1j<k3}\mathfrak{B}=\big{\{}\beta^{l}(v),\,\beta^{l}_{i}(v),\,\beta_{i}(v),\,\tilde{\beta}_{i}(v),\,\beta_{jk}(v);\,\,1\leq i\leq 3,\,1\leq j<k\leq 3\big{\}} (4.23)

with l{1,2}l\in\{1,2\}, where

β1(v)=\displaystyle\beta^{1}(v)= [1,0]M,β2(v)=[0,1]M,\displaystyle[1,0]^{\top}\sqrt{M},\quad\beta^{2}(v)=[0,1]^{\top}\sqrt{M},
βi1(v)=\displaystyle\beta_{i}^{1}(v)= [vi,0]M,βi2(v)=[0,vi]M,βi(v)=[vi2,vi2]M,\displaystyle[v_{i},0]^{\top}\sqrt{M},\quad\beta_{i}^{2}(v)=[0,v_{i}]^{\top}\sqrt{M},\quad\beta_{i}(v)=\left[v_{i}^{2},\,v_{i}^{2}\right]^{\top}\sqrt{M},
β~i(v)=\displaystyle\tilde{\beta}_{i}(v)= [vi|v|2,vi|v|2]M,βjk(v)=[vjvk,vjvk]M.\displaystyle[v_{i}|v|^{2},v_{i}|v|^{2}]^{\top}\sqrt{M},\quad\beta_{jk}(v)=[v_{j}v_{k},v_{j}v_{k}]^{\top}\sqrt{M}.

Then, we can define a projection 𝒫𝔅:Lv2Span{𝔅}\mathcal{P}_{\mathfrak{B}}:\,L^{2}_{v}\mapsto\text{Span}\{\mathfrak{B}\}: for any 𝐟Lv2\mathbf{f}\in L^{2}_{v},

𝒫𝔅𝐟=\displaystyle\mathcal{P}_{\mathfrak{B}}\mathbf{f}= l=12flβl(v)+l=12i=13filβil(v)+i=13fiβi(v)\displaystyle\sum_{l=1}^{2}f^{l}\beta^{l}(v)+\sum_{l=1}^{2}\sum_{i=1}^{3}f^{l}_{i}\beta^{l}_{i}(v)+\sum_{i=1}^{3}f_{i}\beta_{i}(v) (4.24)
+i=13f~iβ~i(v)+1i<j3fijβij(v),\displaystyle+\sum_{i=1}^{3}\tilde{f}_{i}\tilde{\beta}_{i}(v)+\sum_{1\leq i<j\leq 3}f_{ij}\beta_{ij}(v),

where the coefficients fl,fil,fi,f~if^{l},\,f_{i}^{l},\,f_{i},\,\tilde{f}_{i} and fijf_{ij} only depend on 𝐟\mathbf{f}.

Now, to manifest the dissipative structure of the fluid part of the 𝐠ε\mathbb{P}\mathbf{g}^{\varepsilon}, we are in a position to apply the Macro-Micro decomposition to the scaled BEGM equation (4.2).

Step I: By substituting 𝐠ε=𝐠ε+𝐠ε\mathbf{g}^{\varepsilon}=\mathbb{P}\mathbf{g}^{\varepsilon}+\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon} into (4.2), we obtain

εt𝐠ε+vx𝐠ε=Θ(𝐠ε)+H(𝐠ε),\varepsilon\partial_{t}\mathbb{P}\mathbf{g}^{\varepsilon}+v\cdot\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}=\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon})+H(\mathbf{g}^{\varepsilon}), (4.25)

where

Θ(𝐠ε):=\displaystyle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}):= {εt𝐠ε+vx𝐠ε+(1εε)L𝐠ε+ε𝐠ε},\displaystyle-\Big{\{}\varepsilon\partial_{t}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}+v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}+\left(\frac{1}{\varepsilon}-\varepsilon\right)L\mathbf{g}^{\varepsilon}+\varepsilon\mathcal{L}\mathbf{g}^{\varepsilon}\Big{\}}, (4.26)
H(𝐠ε):=\displaystyle H(\mathbf{g}^{\varepsilon}):= Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε).\displaystyle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}).

On the other hand, if inserting the definition of 𝐠ε\mathbb{P}\mathbf{g}^{\varepsilon} in (4.6), we have

εt𝐠ε\displaystyle\varepsilon\partial_{t}\mathbb{P}\mathbf{g}^{\varepsilon} +vx𝐠ε=l=12εt(ρεl32θε)βl+l=12i=13[εtuεi+xi(ρεl32θε)]βil\displaystyle+v\cdot\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}=\sum_{l=1}^{2}\varepsilon\partial_{t}\left(\rho^{l}_{\varepsilon}-\frac{3}{2}\theta_{\varepsilon}\right)\beta^{l}+\sum_{l=1}^{2}\sum_{i=1}^{3}\left[\varepsilon\partial_{t}u_{\varepsilon i}+\partial_{x_{i}}\left(\rho_{\varepsilon}^{l}-\frac{3}{2}\theta_{\varepsilon}\right)\right]\beta^{l}_{i} (4.27)
+i=13(12εtθε+xiuεi)βi+i=1312xiθεβ~i+1i<j3(xiuεj+xjuεi)βij,\displaystyle+\sum_{i=1}^{3}\left(\frac{1}{2}\varepsilon\partial_{t}\theta_{\varepsilon}+\partial_{x_{i}}u_{\varepsilon i}\right)\beta_{i}+\sum_{i=1}^{3}\frac{1}{2}\partial_{x_{i}}\theta_{\varepsilon}\tilde{\beta}_{i}+\sum_{1\leq i<j\leq 3}(\partial_{x_{i}}u_{\varepsilon j}+\partial_{x_{j}}u_{\varepsilon i})\beta_{ij},

which belongs to the space Span{𝔅}\text{Span}\{\mathfrak{B}\}.

Then, by projecting the equation (4.25) into Span{𝔅}\text{Span}\{\mathfrak{B}\} and utilizing (4.27), we find

βl(v):εt(ρεl32θε)=Θl+Hl,1l2,\displaystyle\beta^{l}(v):\,\varepsilon\partial_{t}(\rho^{l}_{\varepsilon}-\frac{3}{2}\theta_{\varepsilon})=\Theta^{l}+H^{l},\quad 1\leq l\leq 2, (4.28)
βil(v):εtuεi+xi(ρεl32θε)=Θil+Hil,1i3, 1l2,\displaystyle\beta^{l}_{i}(v):\,\varepsilon\partial_{t}u_{\varepsilon i}+\partial_{x_{i}}(\rho_{\varepsilon}^{l}-\frac{3}{2}\theta_{\varepsilon})=\Theta_{i}^{l}+H^{l}_{i},\quad 1\leq i\leq 3,\,1\leq l\leq 2,
βi(v):12εtθε+xiuεi=Θi+Hi,1i3,\displaystyle\beta_{i}(v):\,\frac{1}{2}\varepsilon\partial_{t}\theta_{\varepsilon}+\partial_{x_{i}}u_{\varepsilon i}=\Theta_{i}+H_{i},\quad 1\leq i\leq 3,
β~i(v):12xiθε=Θ~i+H~i,1i3,\displaystyle\tilde{\beta}_{i}(v):\,\frac{1}{2}\partial_{x_{i}}\theta_{\varepsilon}=\tilde{\Theta}_{i}+\tilde{H}_{i},\quad 1\leq i\leq 3,
βij(v):xiuεj+xjuεi=Θij+Hij,1i<j3,\displaystyle\beta_{ij}(v):\,\partial_{x_{i}}u_{\varepsilon j}+\partial_{x_{j}}u_{\varepsilon i}=\Theta_{ij}+H_{ij},\quad 1\leq i<j\leq 3,

where all the symbols Θ\Theta and HH with various indexes are the coefficients of 𝒫𝔅Θ(𝐏𝐠ε)\mathcal{P}_{\mathfrak{B}}\Theta(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}) and 𝒫𝔅H(𝐠ε)\mathcal{P}_{\mathfrak{B}}H(\mathbf{g}^{\varepsilon}), respectively.

Step II: Since ϕi(v)Ker\phi_{i}(v)\in\textup{Ker}\mathcal{L} for 1i61\leq i\leq 6, we can project 𝐠ε\mathbf{g}^{\varepsilon} in (4.2) into Ker\text{Ker}\mathcal{L} by multiplying both sides of (4.2) with ϕ1(v),ϕ2(v),12ϕ3(v),12ϕ4(v),12ϕ5(v),23ϕ6(v)\phi_{1}(v),\,\phi_{2}(v),\,\frac{1}{2}\phi_{3}(v),\,\frac{1}{2}\phi_{4}(v),\,\frac{1}{2}\phi_{5}(v),\,\frac{2}{3}\phi_{6}(v) and integrating over v3v\in\mathbb{R}^{3}, then a direct calculation shows that

{εtρε1+divxuε=Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕ1(v)v,εtρε2+divxuε=Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕ2(v)v,εtuεi+xi(ρε1+ρε22+θε)=12Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕi+2(v)v,for 1i3,εtθε+13divxuε=23Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕ6(v)v.\left\{\begin{aligned} &\varepsilon\partial_{t}\rho_{\varepsilon}^{1}+\textup{div}_{x}u_{\varepsilon}=\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\phi_{1}(v)\rangle_{v},\\[4.0pt] &\varepsilon\partial_{t}\rho_{\varepsilon}^{2}+\textup{div}_{x}u_{\varepsilon}=\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\phi_{2}(v)\rangle_{v},\\[4.0pt] &\varepsilon\partial_{t}u_{\varepsilon i}+\partial_{x_{i}}\left(\frac{\rho_{\varepsilon}^{1}+\rho_{\varepsilon}^{2}}{2}+\theta_{\varepsilon}\right)=\frac{1}{2}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\phi_{i+2}(v)\rangle_{v},\,\text{for}\,1\leq i\leq 3,\\[4.0pt] &\varepsilon\partial_{t}\theta_{\varepsilon}+\frac{1}{3}\textup{div}_{x}u_{\varepsilon}=\frac{2}{3}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\phi_{6}(v)\rangle_{v}.\end{aligned}\right. (4.29)

Based on (4.28) and (4.29), we can find the uniform energy estimate concerning the fluid part 𝐠ε\mathbb{P}\mathbf{g}^{\varepsilon}.

Lemma 4.4.

Under the assumptions of Theorem 2.2, let 𝐠ε\mathbf{g}^{\varepsilon} be the solution to the system (4.2)-(4.3), then, for 0<ε<10<\varepsilon<1, there exist c,C2>0c,\,C_{2}>0 independent of ε\varepsilon such that

x𝐠εHxs1Lv22+εcddtEsint(t)C2(1ε2𝐏𝐠εHxsLv2(ν)2+𝐠εHxsLv2(ν)2+s12(t)𝔻s(t)),\displaystyle\|\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s-1}_{x}L^{2}_{v}}^{2}+\varepsilon c\frac{d}{dt}E^{int}_{s}(t)\leq C_{2}\left(\frac{1}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\|\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t)\right), (4.30)

where the quantity Esint(t)E^{int}_{s}(t) is defined as

Esint(t)=\displaystyle E^{int}_{s}(t)= 0|α|s1{i,j=1372xjxα𝐠ε,xαuεiζijx,v+i=1312xixα𝐠ε,xαθεζix,v\displaystyle\sum_{0\leq|\alpha|\leq s-1}\Big{\{}\sum_{i,j=1}^{3}72\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}u_{\varepsilon i}\zeta_{ij}\rangle_{x,v}+\sum_{i=1}^{3}12\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\theta_{\varepsilon}\zeta_{i}\rangle_{x,v} (4.31)
+i=13xαuεi,xixαρε1+xixαρε2x+xα𝐠ε,xixαρε1ζi1+xixαρε2ζi2x,v}.\displaystyle+\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}u_{\varepsilon i},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x}+\langle\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v}\Big{\}}.

and ζi1,ζi2,ζi,ζ~i\zeta^{1}_{i},\,\zeta^{2}_{i},\,\zeta_{i},\,\tilde{\zeta}_{i} and ζij\zeta_{ij} are some fixed linear combinations of the basis functions of Span{𝔅}\text{Span}\{\mathfrak{B}\}.

Proof.

The proof will be divided into the following four steps.

Step 1: Estimate of xuεHxs12\|\nabla_{x}u_{\varepsilon}\|_{H^{s-1}_{x}}^{2} for s3s\geq 3.

For any 0|α|s10\leq|\alpha|\leq s-1, by using the last uu-equation and the third θ\theta-equation in (4.28), we have

Δxxαuεi=\displaystyle-\Delta_{x}\partial_{x}^{\alpha}u_{\varepsilon i}= j=13xjxjxαuεi\displaystyle-\sum_{j=1}^{3}\partial_{x_{j}}\partial_{x_{j}}\partial_{x}^{\alpha}u_{\varepsilon i}
=\displaystyle= jixjxjxαuεixixixαuεi\displaystyle-\sum_{j\neq i}\partial_{x_{j}}\partial_{x_{j}}\partial_{x}^{\alpha}u_{\varepsilon i}-\partial_{x_{i}}\partial_{x_{i}}\partial_{x}^{\alpha}u_{\varepsilon i}
=\displaystyle= jixαxj(xiuεj+Θij+Hij)xixα(12εtθε+Θi+Hi)\displaystyle-\sum_{j\neq i}\partial_{x}^{\alpha}\partial_{x_{j}}(-\partial_{x_{i}}u_{\varepsilon j}+\Theta_{ij}+H_{ij})-\partial_{x_{i}}\partial_{x}^{\alpha}\left(-\frac{1}{2}\varepsilon\partial_{t}\theta_{\varepsilon}+\Theta_{i}+H_{i}\right)
=\displaystyle= jixαxi(12εtθε+Θj+Hj)jixjxα(Θij+Hij)\displaystyle-\sum_{j\neq i}\partial_{x}^{\alpha}\partial_{x_{i}}\left(-\frac{1}{2}\varepsilon\partial_{t}\theta_{\varepsilon}+\Theta_{j}+H_{j}\right)-\sum_{j\neq i}\partial_{x_{j}}\partial_{x}^{\alpha}(\Theta_{ij}+H_{ij})
xixα(12εtθε+Θi+Hi)\displaystyle-\partial_{x_{i}}\partial_{x}^{\alpha}\left(-\frac{1}{2}\varepsilon\partial_{t}\theta_{\varepsilon}+\Theta_{i}+H_{i}\right)
=\displaystyle= 12εtxixαθε+Λ{Θ,H}[ji(xixαΛjxjxαΛij)xixαΛi].\displaystyle-\frac{1}{2}\varepsilon\partial_{t}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}+\sum_{\Lambda\in\{\Theta,H\}}\Big{[}\sum_{j\neq i}(\partial_{x_{i}}\partial_{x}^{\alpha}\Lambda_{j}-\partial_{x_{j}}\partial_{x}^{\alpha}\Lambda_{ij})-\partial_{x_{i}}\partial_{x}^{\alpha}\Lambda_{i}\Big{]}.

It follows 𝒫𝔅\mathcal{P}_{\mathfrak{B}} in (4.24) that there is a certain linear combinations ζijSpan{𝔅}\zeta_{ij}\in\text{Span}\{\mathfrak{B}\} such that

Λ{Θ,H}[ji(xixαΛjxjxαΛij)xixαΛi]=j=13xjxαΘ(𝐠ε)+H(gε),ζij(v)v.\displaystyle\sum_{\Lambda\in\{\Theta,H\}}\Big{[}\sum_{j\neq i}(\partial_{x_{i}}\partial_{x}^{\alpha}\Lambda_{j}-\partial_{x_{j}}\partial_{x}^{\alpha}\Lambda_{ij})-\partial_{x_{i}}\partial_{x}^{\alpha}\Lambda_{i}\Big{]}=\sum_{j=1}^{3}\partial_{x_{j}}\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon})+H(g^{\varepsilon}),\zeta_{ij}(v)\rangle_{v}.

Then, we deduce that

Δxxαuεi=12εtxixαθε+j=13xjxαΘ(𝐠ε)+H(𝐠ε),ζij(v)v.-\Delta_{x}\partial_{x}^{\alpha}u_{\varepsilon i}=-\frac{1}{2}\varepsilon\partial_{t}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}+\sum_{j=1}^{3}\partial_{x_{j}}\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon})+H(\mathbf{g}^{\varepsilon}),\zeta_{ij}(v)\rangle_{v}. (4.32)

Therefore, combining with (4.29)4\eqref{Seond method of micro-macro decomposition}_{4} and (4.32), we obtain

Δxxαuεi16xixαdivxuε=\displaystyle-\Delta_{x}\partial_{x}^{\alpha}u_{\varepsilon i}-\frac{1}{6}\partial_{x_{i}}\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}= 13xixαΓ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕ6v\displaystyle-\frac{1}{3}\partial_{x_{i}}\partial_{x}^{\alpha}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\phi_{6}\rangle_{v} (4.33)
+j=13xjxαΘ(𝐠ε)+H(𝐠ε),ζijv.\displaystyle+\sum_{j=1}^{3}\partial_{x_{j}}\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon})+H(\mathbf{g}^{\varepsilon}),\,\zeta_{ij}\rangle_{v}.

Furthermore, multiplying by xαuεi\partial_{x}^{\alpha}u_{\varepsilon i} to both-hand-sides of (4.33) with 0|α|s10\leq|\alpha|\leq s-1, integrating over x3x\in\mathbb{R}^{3} and summing up 1i31\leq i\leq 3, we have

xxαuεLx22+16xαdivxuεLx22\displaystyle\|\nabla_{x}\partial_{x}^{\alpha}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{1}{6}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2} (4.34)
=\displaystyle= 13i=13xαΓ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕ6v,xixαuεixB1\displaystyle\underbrace{\frac{1}{3}\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\phi_{6}\rangle_{v},\,\partial_{x_{i}}\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{1}}
+i=13j=13xjxαΘ(gε)+H(gε),ζijv,xαuεixB2.\displaystyle+\underbrace{\sum_{i=1}^{3}\sum_{j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}g^{\varepsilon})+H(g^{\varepsilon}),\,\zeta_{ij}\rangle_{v},\,\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{2}}.

For B1B_{1}, by substituting decomposition (4.7) into Γ(𝐠ε,𝐠ε)\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}) and (4.9) into Γ~(𝐠ε,𝐠ε)\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}), and also using the similar argument as A111A_{111} in (4.21), we have

|B1|\displaystyle|B_{1}|\leq C𝐠εHxsLv2(ν)xαdivxuεLx2+C12(t)𝔻(t)\displaystyle C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}+C\mathcal{E}^{\frac{1}{2}}(t)\mathbb{D}(t) (4.35)
\displaystyle\leq 124xαdivxuεLx22+C𝐠εHxsLv2(ν)2+C12(t)𝔻(t).\displaystyle\frac{1}{24}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\mathcal{E}^{\frac{1}{2}}(t)\mathbb{D}(t).

For B2B_{2}, it can be divided into five parts as follows:

B2=\displaystyle B_{2}= i,j=13xjxαεt𝐠ε,ζijv,xαuεixB21i,j=13xjxαvx𝐠ε,ζijv,xαuεixB22\displaystyle\underbrace{-\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\langle\varepsilon\partial_{t}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\zeta_{ij}\rangle_{v},\,\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{21}}\underbrace{-\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\langle v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\zeta_{ij}\rangle_{v},\,\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{22}} (4.36)
(1εε)i,j=13xjxαL(𝐏𝐠ε),ζijv,xαuεixB23εi,j=13xjxα(𝐠ε),ζijv,xαuεixB24\displaystyle\underbrace{-\left(\frac{1}{\varepsilon}-\varepsilon\right)\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\langle L(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\zeta_{ij}\rangle_{v},\,\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{23}}\underbrace{-\varepsilon\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\langle\mathcal{L}(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\zeta_{ij}\rangle_{v},\,\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{24}}
i,j=13xjxαΓ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε),ζijv,xαuεixB25.\displaystyle\underbrace{\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\,\zeta_{ij}\rangle_{v},\,\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}}_{B_{25}}.

For B21B_{21}, recalling the uεu_{\varepsilon}-equation in (4.29)3\eqref{Seond method of micro-macro decomposition}_{3}, we have

B21=\displaystyle B_{21}= εddti,j=13xjxα𝐠ε,xαuεiζijx,vi,j=13xjxα𝐠ε,xα(ρε1+ρε22+θε)x,v\displaystyle-\varepsilon\frac{d}{dt}\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}u_{\varepsilon i}\zeta_{ij}\rangle_{x,v}-\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}\left(\frac{\rho_{\varepsilon}^{1}+\rho_{\varepsilon}^{2}}{2}+\theta_{\varepsilon}\right)\rangle_{x,v} (4.37)
+12i,j=13xjxα𝐠ε,xαΓ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕi+2vζijx,v\displaystyle+\frac{1}{2}\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\phi_{i+2}\rangle_{v}\,\zeta_{ij}\rangle_{x,v}
\displaystyle\leq εddti,j=13xjxα𝐠ε,xαuεiζijx,v+δ1(xxαρε1Lx22+xxαρε2Lx22+xxαθεLx22)\displaystyle-\varepsilon\frac{d}{dt}\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}u_{\varepsilon i}\zeta_{ij}\rangle_{x,v}+\delta_{1}\left(\|\nabla_{x}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)
+Cs12(t)𝔻(t),\displaystyle+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t),

where the constant δ1>0\delta_{1}>0 is to be determined.
For B22B_{22}, we have

|B22|\displaystyle|B_{22}|\leq i,j=13xα𝐠εLx2Lv2xjxαuεiLx2148xxαuεLx22+C𝐠εHxsLv2(ν)2.\displaystyle\sum_{i,j=1}^{3}\|\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}\|\partial_{x_{j}}\partial_{x}^{\alpha}u_{\varepsilon i}\|_{L^{2}_{x}}\leq\frac{1}{48}\|\nabla_{x}\partial_{x}^{\alpha}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}. (4.38)

where the Ho¨\ddot{\text{o}}lder inequality and Young inequality are used.
For B23B_{23} and B24B_{24}, by applying the self-adjointness of linearized operators LL and \mathcal{L}, we find, for 0<ε10<\varepsilon\leq 1,

|B23|+|B24|=\displaystyle|B_{23}|+|B_{24}|= 1εi,j=13|xα𝐏𝐠ε,L(ζij(v))v,xjxαuεix|\displaystyle\frac{1}{\varepsilon}\sum_{i,j=1}^{3}\Big{|}\langle\partial_{x}^{\alpha}\langle\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},L(\zeta_{ij}(v))\rangle_{v},\partial_{x_{j}}\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}\Big{|} (4.39)
+εi,j=13|xα𝐠ε,(ζij(v))v,xjxαuεix|\displaystyle+\varepsilon\sum_{i,j=1}^{3}\Big{|}\langle\partial_{x}^{\alpha}\langle\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\mathcal{L}(\zeta_{ij}(v))\rangle_{v},\partial_{x_{j}}\partial_{x}^{\alpha}u_{\varepsilon i}\rangle_{x}\Big{|}
\displaystyle\leq 148xxαuεLx22+Cε2𝐏𝐠εHxsLv2(ν)2+C𝐠εHxsLv2(ν)2.\displaystyle\frac{1}{48}\|\nabla_{x}\partial_{x}^{\alpha}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}.

For B25B_{25}, by applying the similar argument as A111A_{111} in (4.21), it can be bounded by

|B25|s12(t)𝔻(t).\displaystyle|B_{25}|\lesssim\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t). (4.40)

Therefore, combining with (4.36), (4.37), (4.38), (4.39), and (4.40), we have

B2+εddti,j=13xjxα𝐠ε,xαuεiζij(v)x,v\displaystyle B_{2}+\varepsilon\frac{d}{dt}\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}u_{\varepsilon i}\zeta_{ij}(v)\rangle_{x,v} (4.41)
\displaystyle\leq 124(xxαuεLx22+xαdivxuεLx22)+Cs12(t)𝔻(t)\displaystyle\frac{1}{24}\big{(}\|\nabla_{x}\partial_{x}^{\alpha}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}\big{)}+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t)
+δ1(xxαρε1Lx22+xxαρε2Lx22+xxαθεLx22)+Cε2𝐏𝐠εHxsLv2(ν)2\displaystyle+\delta_{1}\Big{(}\|\nabla_{x}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}\Big{)}+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}
+C𝐠εHxsLv2(ν)2.\displaystyle+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}.

Finally, by substituting the estimates (4.35) and (4.41) into (4.34), we obtain

1112xxαuεLx22+112xαdivxuεLx22+εddti,j=13xjxα𝐠ε,xαuεiζijx,v\displaystyle\frac{11}{12}\|\nabla_{x}\partial_{x}^{\alpha}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{1}{12}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon\frac{d}{dt}\sum_{i,j=1}^{3}\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}u_{\varepsilon i}\zeta_{ij}\rangle_{x,v} (4.42)
\displaystyle\leq Cs12(t)𝔻(t)+δ1(xxαρε1Lx22+xxαρε2Lx22+xxαθεLx22)\displaystyle C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t)+\delta_{1}\Big{(}\|\nabla_{x}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}\Big{)}
+Cε2𝐏𝐠εHxsLv2(ν)2+C𝐠εHxsLv2(ν)2.\displaystyle+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}.

Step 2: Estimate of xθεHxs12\|\nabla_{x}\theta_{\varepsilon}\|_{H^{s-1}_{x}}^{2} for s3s\geq 3.

For 0|α|s10\leq|\alpha|\leq s-1, by applying the fourth θ\theta-equation in (4.28) that

Δxxαθε=i=13xixixαθε=\displaystyle-\Delta_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}=-\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}= 2i=13xixα(Θ~i+H~i)\displaystyle-2\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x}^{\alpha}(\tilde{\Theta}_{i}+\tilde{H}_{i}) (4.43)
=\displaystyle= i=13xixαΘ(𝐠ε)+H(𝐠ε),ζ~iv,\displaystyle\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon})+H(\mathbf{g}^{\varepsilon}),\,\tilde{\zeta}_{i}\rangle_{v},

where ζ~iSpan{𝔅}\tilde{\zeta}_{i}\in\text{Span}\{\mathfrak{B}\}.

Multiplying both sides of (4.43) by xαθε\partial_{x}^{\alpha}\theta_{\varepsilon} with 0|α|s10\leq|\alpha|\leq s-1 and integrating over x3x\in\mathbb{R}^{3}, we have

xxαθεLx22=\displaystyle\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}= i=13xαΘ(𝐠ε),ζ~iv,xixαθεxi=13xixαH(𝐠ε),ζ~iv,xixαθεx\displaystyle-\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}),\tilde{\zeta}_{i}\rangle_{v},\,\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x}-\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\langle H(\mathbf{g}^{\varepsilon}),\tilde{\zeta}_{i}\rangle_{v},\,\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x} (4.44)
=\displaystyle= i=13xαt𝐠ε,ζ~ixixαθεx,vB3+i=13xαvx𝐠ε,ζ~ixixαθεx,vB4\displaystyle\underbrace{\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\partial_{t}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\tilde{\zeta}_{i}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x,v}}_{B_{3}}+\underbrace{\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\tilde{\zeta}_{i}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x,v}}_{B_{4}}
+(1εε)i=13xαL(𝐏𝐠ε),ζ~ixixαθεx,vB5+εi=13xα(𝐠ε),ζ~ixixαθεx,vB6\displaystyle+\underbrace{\left(\frac{1}{\varepsilon}-\varepsilon\right)\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}L(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\tilde{\zeta}_{i}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x,v}}_{B_{5}}+\underbrace{\varepsilon\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\mathcal{L}(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\tilde{\zeta}_{i}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x,v}}_{B_{6}}
i=13xixαΓ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε),ζ~iv,xixαθεxB7.\displaystyle\underbrace{-\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\tilde{\zeta}_{i}\rangle_{v},\,\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\rangle_{x}}_{B_{7}}.

For B3B_{3}, recalling the θε\theta_{\varepsilon}-equation in (4.29)4\eqref{Seond method of micro-macro decomposition}_{4},

B3=\displaystyle B_{3}= εddti=13xixα𝐠ε,xαθεζ~ix,v13i=13xixα𝐠ε,xαdivxuεζ~ix,v\displaystyle-\varepsilon\frac{d}{dt}\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}\theta_{\varepsilon}\tilde{\zeta}_{i}\rangle_{x,v}-\frac{1}{3}\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\tilde{\zeta}_{i}\rangle_{x,v} (4.45)
+23i=13xixα𝐠ε,xαΓ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε,ϕ6vζ~ix,v\displaystyle+\frac{2}{3}\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\langle\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\phi_{6}\rangle_{v}\,\tilde{\zeta}_{i}\rangle_{x,v}
\displaystyle\leq εddti=13xixα𝐠ε,xαθεζ~ix,v+δ1xαdivxuεLx22+C𝐠εHxsLv2(ν)2\displaystyle-\varepsilon\frac{d}{dt}\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\theta_{\varepsilon}\tilde{\zeta}_{i}\rangle_{x,v}+\delta_{1}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}
+Cs12(t)𝔻(t).\displaystyle+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t).

For B4B_{4},

|B4|\displaystyle|B_{4}|\leq i=13xxα𝐠εLx2Lv2ϕ~i(v)Lv2xixαθεLx2\displaystyle\sum_{i=1}^{3}\|\nabla_{x}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}\|\tilde{\phi}_{i}(v)\|_{L^{2}_{v}}\|\nabla_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}} (4.46)
\displaystyle\leq 124xxαθεLx22+C𝐠εHxsLv2(ν)2.\displaystyle\frac{1}{24}\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|^{2}_{L^{2}_{x}}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}.

For B5B_{5} and B6B_{6}, by using the similar argument as B23,B24B_{23},\,B_{24},

|B5|+|B6|\displaystyle|B_{5}|+|B_{6}|\leq 1εi=13xα𝐏𝐠εLx2Lv2Lζ~iLv2xixαθεLx2\displaystyle\frac{1}{\varepsilon}\sum_{i=1}^{3}\|\partial_{x}^{\alpha}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}\|L\tilde{\zeta}_{i}\|_{L^{2}_{v}}\|\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}} (4.47)
+εi=13xα𝐠εLx2Lv2ζ~iLv2xixαθεLx2\displaystyle+\varepsilon\sum_{i=1}^{3}\|\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{L^{2}_{x}L^{2}_{v}}\|\mathcal{L}\tilde{\zeta}_{i}\|_{L^{2}_{v}}\|\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}
\displaystyle\leq 124xxαθεLx22+Cε2𝐏𝐠εHxsLv2(ν)2+Cε2𝐠εHxsLv2(ν)2.\displaystyle\frac{1}{24}\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|^{2}_{L^{2}_{x}}+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\varepsilon^{2}\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}.

For B7B_{7}, by using the similar argument as B25B_{25},

|B7|\displaystyle|B_{7}|\lesssim s12(t)𝔻(t).\displaystyle\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t). (4.48)

Hence, by inserting the estimates (4.45), (4.46),(4.47) and (4.48) into (4.44), we have

1112xxαθεLx22+εddti=13xixα𝐠ε,xαθεζ~ix,v\displaystyle\frac{11}{12}\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}+\varepsilon\frac{d}{dt}\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}\theta_{\varepsilon}\tilde{\zeta}_{i}\rangle_{x,v} (4.49)
\displaystyle\leq δ1xαdivxuεLx22+Cε2𝐏𝐠εHxsLv2(ν)2+C𝐠εHxsLv2(ν)2+Cs12(t)𝔻(t),\displaystyle\delta_{1}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t),

where the constant δ1>0\delta_{1}>0 is to be determined.

Step 3: Estimate of xρε1Hxs12\|\nabla_{x}\rho^{1}_{\varepsilon}\|_{H^{s-1}_{x}}^{2} and xρε2Hxs12\|\nabla_{x}\rho^{2}_{\varepsilon}\|_{H^{s-1}_{x}}^{2} for s3s\geq 3.

For 0|α|s10\leq|\alpha|\leq s-1, by using the second ρl\rho^{l}-equation in (4.28)2\eqref{First method of micro-macro decomposition}_{2} for l{1,2}l\in\{1,2\}, we have

Δxxαρεl=\displaystyle-\Delta_{x}\partial_{x}^{\alpha}\rho^{l}_{\varepsilon}= i=13xixixαρεl\displaystyle-\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x_{i}}\partial_{x}^{\alpha}\rho^{l}_{\varepsilon} (4.50)
=\displaystyle= i=13xixα(εtuεi32xiθεΘilHil)\displaystyle\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x}^{\alpha}\left(\varepsilon\partial_{t}u_{\varepsilon i}-\frac{3}{2}\partial_{x_{i}}\theta_{\varepsilon}-\Theta_{i}^{l}-H_{i}^{l}\right)
=\displaystyle= i=13xixαεtuεi32i=13xixixαθε+i=13xixαΘ(𝐠ε)+H(𝐠ε),ζilv\displaystyle\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x}^{\alpha}\varepsilon\partial_{t}u_{\varepsilon i}-\frac{3}{2}\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}+\sum_{i=1}^{3}\partial_{x_{i}}\partial_{x}^{\alpha}\langle\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon})+H(\mathbf{g}^{\varepsilon}),\,\zeta_{i}^{l}\rangle_{v}

where ζilSpan{𝔅}\zeta_{i}^{l}\in\text{Span}\{\mathfrak{B}\}. Then, by multiplying both sides of (4.50) by xαρεl\partial_{x}^{\alpha}\rho^{l}_{\varepsilon} with 0|α|s10\leq|\alpha|\leq s-1, integrating over x3x\in\mathbb{R}^{3} and summing up i=1,2i=1,2, we find

xxαρε1Lx22+xxαρε1Lx22=εddti=13xαuεi,xixαρε1+xixαρε2x\displaystyle\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}=-\varepsilon\frac{d}{dt}\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}u_{\varepsilon i},\,\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x} (4.51)
+i=13xαuεi,εtxixαρε1+εtxixαρε2xB81+32i=13xixαθε,xixαρε1+xixαρε2xB82\displaystyle+\underbrace{\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}u_{\varepsilon i},\,\varepsilon\partial_{t}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\varepsilon\partial_{t}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x}}_{B_{81}}+\underbrace{\frac{3}{2}\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon},\,\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x}}_{B_{82}}
+i=13xαΘ(𝐠ε),ζi1xixαρε1+ζi2xixαρε2x,vB83\displaystyle+\underbrace{\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\Theta(\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\zeta_{i}^{1}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\zeta_{i}^{2}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x,v}}_{B_{83}}
+i=13xαH(𝐠ε),ζi1xixαρε1+ζi2xixαρε2x,vB84.\displaystyle+\underbrace{\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}H(\mathbf{g}^{\varepsilon}),\,\zeta_{i}^{1}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\zeta_{i}^{2}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x,v}}_{B_{84}}.

For B81B_{81}, recalling the ρεl\rho_{\varepsilon}^{l}-equation in (4.29),

B81=\displaystyle B_{81}= i=13xixαuεi,xα{Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε}(ϕ1+ϕ2)x,v\displaystyle-\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}u_{\varepsilon i},\,\partial_{x}^{\alpha}\big{\{}\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\big{\}}(\phi_{1}+\phi_{2})\rangle_{x,v} (4.52)
+2i=1xixαuεi,xαdivuεx\displaystyle+2\sum_{i=1}\langle\partial_{x_{i}}\partial_{x}^{\alpha}u_{\varepsilon i},\,\partial_{x}^{\alpha}\textup{div}u_{\varepsilon}\rangle_{x}
\displaystyle\leq 52xαdivxuεLx22+C𝐠εHxsLv2(ν)2+Cs12(t)𝔻s(t).\displaystyle\frac{5}{2}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t).

For B82B_{82}, by applying Young inequality,

|B82|=\displaystyle|B_{82}|= 32i=13xixαθεLx2(xixαρε1Lx2+xixαρε2Lx2)\displaystyle\frac{3}{2}\sum_{i=1}^{3}\|\partial_{x_{i}}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}\left(\|\partial_{x_{i}}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}+\|\partial_{x_{i}}\partial_{x}^{\alpha}\rho^{2}_{\varepsilon}\|_{L^{2}_{x}}\right) (4.53)
\displaystyle\leq 18(xxαρε1Lx22+xxαρε2Lx22)+92xxαθεLx22.\displaystyle\frac{1}{8}\left(\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|^{2}_{L^{2}_{x}}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{2}_{\varepsilon}\|^{2}_{L^{2}_{x}}\right)+\frac{9}{2}\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}.

For B83B_{83}, recalling (4.26), we have

B83=\displaystyle B_{83}= i=13xα{εt𝐠ε+vx𝐠ε+(1εε)L𝐠ε+ε𝐠ε},xixαρε1ζi1+xixαρε2ζi2x,v\displaystyle-\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\big{\{}\varepsilon\partial_{t}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}+v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}+\left(\frac{1}{\varepsilon}-\varepsilon\right)L\mathbf{g}^{\varepsilon}+\varepsilon\mathcal{L}\mathbf{g}^{\varepsilon}\big{\}},\,\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v} (4.54)
\displaystyle\leq εddti=13xαt𝐠ε,xixαρε1ζi1+xixαρε2ζi2x,v+116(xxαρε1Lx22+xxαρε2Lx22)\displaystyle-\varepsilon\frac{d}{dt}\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\partial_{t}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v}+\frac{1}{16}\left(\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|^{2}_{L^{2}_{x}}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{2}_{\varepsilon}\|^{2}_{L^{2}_{x}}\right)
+Cε2𝐏𝐠εHxsLv2(ν)2+C𝐠εHxsLv2(ν)2+xα𝐠ε,εtxixαρε1ζi1+εtxixαρε2ζi2x,vB831.\displaystyle+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\underbrace{\langle\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\varepsilon\partial_{t}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\varepsilon\partial_{t}\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v}}_{B_{831}}.

where, by recalling the ρεl\rho_{\varepsilon}^{l}-equation in (4.29) and applying the similar argument as B81B_{81}, B831B_{831} is bounded by

B831=\displaystyle B_{831}= i=13xixα𝐠ε,xα{Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε}(ϕ1+ϕ2)x,v\displaystyle-\sum_{i=1}^{3}\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\big{\{}\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\big{\}}(\phi_{1}+\phi_{2})\rangle_{x,v} (4.55)
+2i=1xixixα𝐠ε,xαdivuεx\displaystyle+2\sum_{i=1}\langle\partial_{x_{i}}\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\textup{div}u_{\varepsilon}\rangle_{x}
\displaystyle\leq 52xαdivxuεLx22+C𝐠εHxsLv2(ν)2+Cs12(t)𝔻s(t).\displaystyle\frac{5}{2}\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t).

For B84B_{84},

B84=\displaystyle B_{84}= i=13xα{Γ(𝐠ε,𝐠ε)+ε2Γ~(𝐠ε,𝐠ε)vx𝐠ε},xixαρε1ζi1+xixαρε2ζi2x,v\displaystyle\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}\big{\{}\Gamma(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})+\varepsilon^{2}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon})-v\cdot\nabla_{x}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\big{\}},\,\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v} (4.56)
\displaystyle\leq 116(xxαρε1Lx22+xxαρε2Lx22)+C𝐠εHxsLv2(ν)2+Cs12(t)𝔻(t).\displaystyle\frac{1}{16}\left(\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|^{2}_{L^{2}_{x}}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{2}_{\varepsilon}\|^{2}_{L^{2}_{x}}\right)+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t).

Hence, by substituting (4.52), (4.53), (4.54), (4.55) and (4.56) into (4.51), we obtain

34[xxαρε1Lx22+xxαρε1Lx22]+εddti=13[xαuεi,xixαρε1+xixαρε2x\displaystyle\frac{3}{4}\left[\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}\right]+\varepsilon\frac{d}{dt}\sum_{i=1}^{3}\Big{[}\langle\partial_{x}^{\alpha}u_{\varepsilon i},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x} (4.57)
+xα𝐠ε,xixαρε1ζi1+xixαρε2ζi2x,v]\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\langle\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v}\Big{]}
\displaystyle\leq 5(xαdivxuεLx22+xxαθεLx22)+Cε2𝐏𝐠εHxsLv2(ν)2+C𝐠εHxsLv2(ν)2\displaystyle 5\left(\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}\right)+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}
+Cs12(t)𝔻s(t).\displaystyle+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t).

Step 4: Combine all estimates above.

By taking 72×(4.42)+12×(4.49)+(4.57)72\times\eqref{Estimate of u}+12\times\eqref{Estimate of theta}+\eqref{Estimate of rho}, we have

66xxαuεLx22+xαdivxuεLx22+11xxαθεLx22+34[xxαρε1Lx22+xxαρε1Lx22]\displaystyle 66\|\nabla_{x}\partial_{x}^{\alpha}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+11\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}+\frac{3}{4}\left[\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}\right] (4.58)
+εddt[i,j=1372xjxα𝐠ε,xαuεiζijx,v+i=1312xixα𝐠ε,xαθεζix,v\displaystyle+\varepsilon\frac{d}{dt}\Big{[}\sum_{i,j=1}^{3}72\langle\partial_{x_{j}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}u_{\varepsilon i}\zeta_{ij}\rangle_{x,v}+\sum_{i=1}^{3}12\langle\partial_{x_{i}}\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x}^{\alpha}\theta_{\varepsilon}\zeta_{i}\rangle_{x,v}
+i=13xαuεi,xixαρε1+xixαρε2x+xα𝐠ε,xixαρε1ζi1+xixαρε2ζi2x,v]\displaystyle+\sum_{i=1}^{3}\langle\partial_{x}^{\alpha}u_{\varepsilon i},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\rangle_{x}+\langle\partial_{x}^{\alpha}\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon},\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{1}\zeta_{i}^{1}+\partial_{x_{i}}\partial_{x}^{\alpha}\rho_{\varepsilon}^{2}\zeta_{i}^{2}\rangle_{x,v}\Big{]}
\displaystyle\leq 84δ1[xαdivxuεLx22+xxαθεLx22+xxαρε1Lx22+xxαρε2Lx22]\displaystyle 84\delta_{1}\left[\|\partial_{x}^{\alpha}\textup{div}_{x}u_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\theta_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{1}_{\varepsilon}\|_{L^{2}_{x}}^{2}+\|\nabla_{x}\partial_{x}^{\alpha}\rho^{2}_{\varepsilon}\|_{L^{2}_{x}}^{2}\right]
+Cε2𝐏𝐠εHxsLv2(ν)2+C𝐠εHxsLv2(ν)2+Cs12(t)𝔻s(t).\displaystyle+\frac{C}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+C\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t).

Notice that

xgεHxs1Lv2xuεHxs12+divxuεHxs12+xθεHxs12+xρε1Hxs12+xρε2Hxs12.\|\nabla_{x}\mathbb{P}g^{\varepsilon}\|_{H^{s-1}_{x}L^{2}_{v}}\sim\|\nabla_{x}u_{\varepsilon}\|_{H^{s-1}_{x}}^{2}+\|\textup{div}_{x}u_{\varepsilon}\|_{H^{s-1}_{x}}^{2}+\|\nabla_{x}\theta_{\varepsilon}\|_{H^{s-1}_{x}}^{2}+\|\nabla_{x}\rho^{1}_{\varepsilon}\|_{H^{s-1}_{x}}^{2}+\|\nabla_{x}\rho^{2}_{\varepsilon}\|_{H^{s-1}_{x}}^{2}.

if we choose δ1\delta_{1} small enough such that 0<84δ1<140<84\delta_{1}<\frac{1}{4} and sum up for 0|α|s10\leq|\alpha|\leq s-1, then there exist c,C2>0c,\,C_{2}>0 such that

x𝐠εHxs1Lv22+cεddtEsint(gε)(t)C2(1ε2𝐏𝐠εHxsLv2(ν)2+𝐠εHxsLv2(ν)2+s12(t)𝔻s(t)),\displaystyle\|\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s-1}_{x}L^{2}_{v}}^{2}+c\varepsilon\frac{d}{dt}E^{int}_{s}(g^{\varepsilon})(t)\leq C_{2}\left(\frac{1}{\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\|\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t)\right), (4.59)

where Esint(t)E^{int}_{s}(t) is given in (4.31). ∎

4.2.4. Total energy estimate

Now, we can prove the total energy estimate by combining the microscopic part and macroscopic part, i.e., Lemma 4.3 and Lemma 4.4.

Proposition 4.2.

Under the assumptions of Theorem 2.2, for any 0<ε10<\varepsilon\leq 1 and 0tT0\leq t\leq T, there exist constants C0,C~0>0C_{0},\,\tilde{C}_{0}>0 independent of ε\varepsilon and TT such that

12ddts(t)+C0𝔻s(t)C~0s12(t)𝔻s(t),\frac{1}{2}\frac{d}{dt}\mathcal{E}_{s}(t)+C_{0}\mathbb{D}_{s}(t)\leq\tilde{C}_{0}\mathcal{E}^{\frac{1}{2}}_{s}(t)\mathbb{D}_{s}(t), (4.60)

where the temporal energy functional s(t)\mathcal{E}_{s}(t) is given in (4.62) and dissipation functional 𝔻s(t)\mathbb{D}_{s}(t) is defined in (4.11).

Proof.

Choosing a larger enough C3C_{3} such that C3δ2C2\frac{C_{3}\delta}{2}\geq C_{2} with δ,C2\delta,\,C_{2} being given in (4.18) and (4.30), and applying C3×(4.18)+(4.30)C_{3}\times\eqref{Pure spatial esti}+\eqref{The dissipation of the fluid part}, we find that for any 0<ε10<\varepsilon\leq 1,

12ddt𝐠εHxsLv22+δ2ε2𝐏𝐠εHxsLv2(ν)2\displaystyle\frac{1}{2}\frac{d}{dt}\|\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}}^{2}+\frac{\delta}{2\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2} +δ2𝐠εHxsLv2(ν)2+1C3x𝐠εHxs1Lv22\displaystyle+\frac{\delta}{2}\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\frac{1}{C_{3}}\|\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s-1}_{x}L^{2}_{v}}^{2} (4.61)
+cεC3ddtEsint(t)s12(t)𝔻(t)\displaystyle+\frac{c\varepsilon}{C_{3}}\frac{d}{dt}E^{int}_{s}(t)\lesssim\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t)

where Esint(t)E^{int}_{s}(t) is defined in (4.31).

By further defining

s(t):=𝐠εHxsLv22+2cεC3Esint(t),\mathcal{E}_{s}(t):=\|\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}}^{2}+\frac{2c\varepsilon}{C_{3}}E^{int}_{s}(t), (4.62)

and noticing that

𝔻s(t)δ2ε2𝐏𝐠εHxsLv2(ν)2+δ2𝐠εHxsLv2(ν)2+1C3x𝐠εHxs1Lv22,\mathbb{D}_{s}(t)\sim\frac{\delta}{2\varepsilon^{2}}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\frac{\delta}{2}\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\frac{1}{C_{3}}\|\nabla_{x}\mathbb{P}\mathbf{g}^{\varepsilon}\|_{H^{s-1}_{x}L^{2}_{v}}^{2}, (4.63)

then we can find constants C0,C~0>0C_{0},\,\tilde{C}_{0}>0 independent of ε\varepsilon such that

12ddts(t)+C0𝔻s(t)C~0s12(t)𝔻(t).\frac{1}{2}\frac{d}{dt}\mathcal{E}_{s}(t)+C_{0}\mathbb{D}_{s}(t)\leq\tilde{C}_{0}\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}(t). (4.64)

4.3. Proof of the global well-posedness

The global well-posedness of 𝐠ε\mathbf{g}^{\varepsilon} to (4.2)-(4.3) in Theorem 2.2 can be obtained immediately by the local well-posedness, i.e., Proposition 4.1, plus the standard continuity argument with the help of the uniform energy estimate, i.e., Proposition 4.2 (see [39] for more details).

Here, we only illustrate the energy functional s(t)\mathcal{E}_{s}(t) is continuous in [0,T][0,T^{*}], where TT^{*} is given in Proposition 4.1. First, there exists a 0<ε010<\varepsilon_{0}\leq 1 such that for any 0<εε00<\varepsilon\leq\varepsilon_{0},

1C4𝔼s(t)s(t)C4𝔼s(t)\frac{1}{C_{4}}\mathbb{E}_{s}(t)\leq\mathcal{E}_{s}(t)\leq C_{4}\mathbb{E}_{s}(t) (4.65)

holds for any t[0,T]t\in[0,T^{*}], where the constant C4>0C_{4}>0 independent of ε\varepsilon and TT^{*}.

Furthermore, by considering (4.60) in Proposition 4.2 and (4.17) in Proposition 4.1, we find, for any [t1,t2][0,T][t_{1},t_{2}]\subset[0,T^{*}] and 0<εε010<\varepsilon\leq\varepsilon_{0}\leq 1,

|s(t2)s(t1)|\displaystyle\Big{|}\mathcal{E}_{s}(t_{2})-\mathcal{E}_{s}(t_{1})\Big{|}\leq 2C~0t1t2s12(t)𝔻s(t)𝑑t\displaystyle 2\tilde{C}_{0}\int_{t_{1}}^{t_{2}}\mathcal{E}_{s}^{\frac{1}{2}}(t)\mathbb{D}_{s}(t)\,dt
\displaystyle\leq 2C~1sup0tTs12(t)t1t2𝔻s(t)𝑑t\displaystyle 2\tilde{C}_{1}\sup_{0\leq t\leq T^{*}}\mathcal{E}_{s}^{\frac{1}{2}}(t)\int_{t_{1}}^{t_{2}}\mathbb{D}_{s}(t)\,dt
\displaystyle\leq 2C~0sup0tTs12(t)t1t2(1ε2𝐠εHxsLv2(ν)2+𝐏𝐠εHxsLv2(ν)2)𝑑t\displaystyle 2\tilde{C}_{0}\sup_{0\leq t\leq T^{*}}\mathcal{E}_{s}^{\frac{1}{2}}(t)\int_{t_{1}}^{t_{2}}\left(\frac{1}{\varepsilon^{2}}\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}\right)\,dt
\displaystyle\leq 2C~0Cl0C4t1t2(1ε2𝐠εHxsLv2(ν)2+𝐏𝐠εHxsLv2(ν)2)𝑑t0,ast2t1,\displaystyle 2\tilde{C}_{0}C\sqrt{l_{0}C_{4}}\int_{t_{1}}^{t_{2}}\left(\frac{1}{\varepsilon^{2}}\|\mathbb{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}\right)\,dt\to 0,\,\,\textup{as}\,\,t_{2}\to t_{1},

which implies the continuity of s(t)\mathcal{E}_{s}(t) in t[0,T]t\in[0,T^{*}].

5. Rigorous justification of the hydrodynamic limit (Theorem 2.3)

In this section, following [42], we will provide a rigorous justification of the limiting process from the scaled BEGM equation (2.15) to the two-fluid incompressible Navier-Stokes-Fourier system (2.21) as ε0\varepsilon\to 0, i.e., the proof of Theorem 2.3.

5.1. Compactness from the uniform energy estimates

By the uniform energy estimate (2.20) in Theorem 2.2, there exists a constant C>0C>0, independent of ε\varepsilon, such that for any 0<εε00<\varepsilon\leq\varepsilon_{0} and s3s\geq 3,

supt0𝐠εHxsLv22C,\displaystyle\sup_{t\geq 0}\|\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}}^{2}\leq C, (5.1)

and

0T𝐏𝐠εHxsLv2(ν)2𝑑tCε2,\displaystyle\int_{0}^{T}\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}\,dt\leq C\varepsilon^{2}, (5.2)

for any given T>0T>0.

From (5.1), we can find that there exists 𝐠0L([0,+);HxsLv2)\mathbf{g}_{0}\in L^{\infty}([0,+\infty);H^{s}_{x}L^{2}_{v}) such that

𝐠ε𝐠0,asε0\mathbf{g}^{\varepsilon}\to\mathbf{g}_{0},\quad\textup{as}\quad\varepsilon\to 0 (5.3)

weak-\star for t0t\geq 0, strong in HxsηH^{s-\eta}_{x} for any η>0\eta>0, and weak in Lv2L^{2}_{v}. From (5.2), we have

𝐏𝐠ε0,inL2([0,+);HxsLv2),asε0.\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\to 0,\quad\textup{in}\quad L^{2}([0,+\infty);H^{s}_{x}L^{2}_{v}),\quad\textup{as}\quad\varepsilon\to 0. (5.4)

Combining the convergence of (5.3) and (5.4), it holds that

𝐏𝐠0=0,\mathbf{P}^{\perp}\mathbf{g}_{0}=0, (5.5)

which implies that existence of (𝝆,𝐮,𝜽)L([0,);Hxs)(\bm{\rho},\mathbf{u},\bm{\theta})\in L^{\infty}([0,\infty);H^{s}_{x}) such that

𝐠0(t,x,v)=𝝆(t,x)M+𝐮(t,x)vM+𝜽(t,x)(|v|2232)M.\mathbf{g}_{0}(t,x,v)=\bm{\rho}(t,x)\sqrt{M}+\mathbf{u}(t,x)\cdot v\sqrt{M}+\bm{\theta}(t,x)\left(\frac{|v|^{2}}{2}-\frac{3}{2}\right)\sqrt{M}. (5.6)

5.2. Justification of the limiting process

Recall that

𝝆ε=𝐠ε,Mv,𝐮εi=𝐠ε,viMv,𝜽ε=𝐠ε,(|v|231)Mv.\bm{\rho}_{\varepsilon}=\langle\mathbf{g}^{\varepsilon},\sqrt{M}\rangle_{v},\quad\mathbf{u}_{\varepsilon i}=\langle\mathbf{g}^{\varepsilon},v_{i}\sqrt{M}\rangle_{v},\quad\bm{\theta}_{\varepsilon}=\langle\mathbf{g}^{\varepsilon},\left(\frac{|v|^{2}}{3}-1\right)\sqrt{M}\rangle_{v}.

By applying the convergence of 𝐠ε𝐠0\mathbf{g}^{\varepsilon}\to\mathbf{g}_{0} in (5.3), we have

(𝝆ε,𝐮ε,𝜽ε)(𝝆,𝐮,𝜽),asε0,(\bm{\rho}_{\varepsilon},\mathbf{u}_{\varepsilon},\bm{\theta}_{\varepsilon})\to(\bm{\rho},\mathbf{u},\bm{\theta}),\quad\textup{as}\quad\varepsilon\to 0, (5.7)

weakly-\star for t0t\geq 0, strongly in HxsηH^{s-\eta}_{x} for any η>0\eta>0.

Next, multiplying (4.2) by ψ1\psi_{1}, ψ2\psi_{2}, ψi+5\psi_{i+5}, ψ9\psi_{9} and ψ10\psi_{10} in (4.5), and integrating over v3v\in\mathbb{R}^{3}, it leads to

{𝝆ε+1εdivx𝐮ε=0,t𝐮ε+1εx(𝝆ε+𝜽ε)+1εdivxA^M,L𝐠εv+(𝐠ε,𝐠ε),vMv=εΓ~(𝐠ε,𝐠ε),vMv,t𝜽ε+23εdiv𝐮ε+23εdivxB^M,L𝐠εv+(𝐠ε,𝐠ε),(|v|231)Mv=εΓ~(𝐠ε,𝐠ε),(|v|231)Mv.\left\{\begin{aligned} &\bm{\rho}_{\varepsilon}+\frac{1}{\varepsilon}\textup{div}_{x}\mathbf{u}_{\varepsilon}=0,\\ &\partial_{t}\mathbf{u}_{\varepsilon}+\frac{1}{\varepsilon}\nabla_{x}(\bm{\rho}_{\varepsilon}+\bm{\theta}_{\varepsilon})+\frac{1}{\varepsilon}\textup{div}_{x}\langle\hat{A}\sqrt{M},L\mathbf{g}^{\varepsilon}\rangle_{v}+\langle\mathcal{L}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),v\sqrt{M}\rangle_{v}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=\varepsilon\langle\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),v\sqrt{M}\rangle_{v},\\ &\partial_{t}\bm{\theta}_{\varepsilon}+\frac{2}{3\varepsilon}\textup{div}\mathbf{u}_{\varepsilon}+\frac{2}{3\varepsilon}\textup{div}_{x}\langle\hat{B}\sqrt{M},L\mathbf{g}^{\varepsilon}\rangle_{v}+\langle\mathcal{L}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),(\frac{|v|^{2}}{3}-1)\sqrt{M}\rangle_{v}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=\varepsilon\langle\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\left(\frac{|v|^{2}}{3}-1\right)\sqrt{M}\rangle_{v}.\\ \end{aligned}\right. (5.8)

The incompressibility and Boussinesq relation.

From the energy bound (5.1), we deduce that

εt𝝆ε0,asε0,\varepsilon\partial_{t}\bm{\rho}_{\varepsilon}\to 0,\quad\textup{as}\quad\varepsilon\to 0, (5.9)

in the sense of distribution.

Combining with (5.8)1\eqref{The local conservation laws}_{1}, (5.8)2\eqref{The local conservation laws}_{2} and (5.9), we have

divx𝐮ε0,asε0,\textup{div}_{x}\mathbf{u}_{\varepsilon}\to 0,\quad\textup{as}\quad\varepsilon\to 0, (5.10)

in the sense of distribution, which further yields

divx𝐮=0,\textup{div}_{x}\mathbf{u}=0, (5.11)

in the sense of distribution.

By applying the equation (5.8)3\eqref{The local conservation laws}_{3}, (5.8)4\eqref{The local conservation laws}_{4}, the energy bound (5.1), and the energy dissipation bound (5.2), it shows that

x(𝝆ε+𝜽ε)\displaystyle\nabla_{x}(\bm{\rho}_{\varepsilon}+\bm{\theta}_{\varepsilon})
=\displaystyle= εt𝐠εdivxA^M,L(𝐏𝐠ε)vε(𝐠ε,𝐠ε),vMv+ε2Γ~(𝐠ε,𝐠ε),vMv\displaystyle-\varepsilon\partial_{t}\mathbf{g}^{\varepsilon}-\textup{div}_{x}\langle\hat{A}\sqrt{M},L(\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon})\rangle_{v}-\varepsilon\langle\mathcal{L}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),v\sqrt{M}\rangle_{v}+\varepsilon^{2}\langle\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),v\sqrt{M}\rangle_{v}
\displaystyle\to 0,asε0,\displaystyle\ 0,\quad\textup{as}\quad\varepsilon\to 0,

in the sense of distribution, which implies that

x(𝝆+𝜽)=0,\displaystyle\nabla_{x}(\bm{\rho}+\bm{\theta})=0, (5.12)

in the sense of distribution.

The convergence of 35θε25ρε\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}.

By applying 35(5.8)525(5.8)1\frac{3}{5}\eqref{The local conservation laws}_{5}-\frac{2}{5}\eqref{The local conservation laws}_{1} and 35(5.8)625(5.8)2\frac{3}{5}\eqref{The local conservation laws}_{6}-\frac{2}{5}\eqref{The local conservation laws}_{2}, we have

t(35𝜽ε25𝝆ε)=\displaystyle\partial_{t}\left(\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}\right)= 25εdivB^M,L𝐠εv35(𝐠ε,𝐠ε),(|v|231)Mv\displaystyle-\frac{2}{5\varepsilon}\textup{div}\langle\hat{B}\sqrt{M},L\mathbf{g}^{\varepsilon}\rangle_{v}-\frac{3}{5}\langle\mathcal{L}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\,\left(\frac{|v|^{2}}{3}-1\right)\sqrt{M}\rangle_{v} (5.13)
+εΓ~(𝐠ε,𝐠ε),(|v|231)Mv.\displaystyle+\varepsilon\langle\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\,\left(\frac{|v|^{2}}{3}-1\right)\sqrt{M}\rangle_{v}.

For t[0,+)t\in[0,+\infty) a.e., it follows the energy bound (5.1) that

35𝜽ε25𝝆εHxs21,\|\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}\|^{2}_{H^{s}_{x}}\lesssim 1, (5.14)

which further implies there exist 𝜽~L([0,+);Hxs)\tilde{\bm{\theta}}\in L^{\infty}([0,+\infty);H^{s}_{x}) such that

35𝜽ε25𝝆ε𝜽~\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}\to\tilde{\bm{\theta}}

weakly-\star for t0t\geq 0, strongly in HxsηH^{s-\eta}_{x} for any η>0\eta>0.

For any [t1,t2][0,+)[t_{1},t_{2}]\in[0,+\infty), 0|α|s10\leq|\alpha|\leq s-1 and test function ξ(x)C0(3)\xi(x)\in C^{\infty}_{0}(\mathbb{R}^{3}), it follows the uniform energy estimate (5.1) that

|3[xα(35𝜽ε25𝝆ε)(t2,x)xα(35𝜽ε25𝝆ε)(t1,x)]ξ(x)𝑑x|\displaystyle\left|\int_{\mathbb{R}^{3}}\left[\partial_{x}^{\alpha}\left(\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}\right)(t_{2},x)-\partial_{x}^{\alpha}\left(\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}\right)(t_{1},x)\right]\xi(x)\,dx\right| (5.15)
\displaystyle\leq |25εt1t23B^M,L(xαx𝐏𝐠ε)vξ𝑑x𝑑t|\displaystyle\left|\frac{2}{5\varepsilon}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle\hat{B}\sqrt{M},L(\partial_{x}^{\alpha}\nabla_{x}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon})\rangle_{v}\,\xi\,dx\,dt\right|
+|35t1t23L(xαx𝐏𝐠ε,xαx𝐏𝐠ε),(|v|231)Mvξ𝑑x𝑑t|\displaystyle\quad+\left|\frac{3}{5}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle L(\partial_{x}^{\alpha}\nabla_{x}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon},\,\partial_{x}^{\alpha}\nabla_{x}\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}),\,\left(\frac{|v|^{2}}{3}-1\right)\sqrt{M}\rangle_{v}\,\xi\,dx\,dt\right|
+|εt1t23xαΓ~(𝐠ε,𝐠ε),(|v|231)Mvξ𝑑x𝑑t|\displaystyle\quad+\left|\varepsilon\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle\nabla_{x}^{\alpha}\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),\left(\frac{|v|^{2}}{3}-1\right)\sqrt{M}\rangle_{v}\,\xi\,dx\,dt\right|
\displaystyle\lesssim 1ε2t1t2(𝐏𝐠εHxsLv2(ν)2+𝐏𝐠εHxsLv2(ν)2)𝑑t,\displaystyle\frac{1}{\varepsilon^{2}}\int_{t_{1}}^{t_{2}}\left(\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}+\|\mathbf{P}^{\perp}\mathbf{g}^{\varepsilon}\|_{H^{s}_{x}L^{2}_{v}(\nu)}^{2}\right)\,dt,

where we substitute (5.13) in the first inequality above.

Therefore, the energy dissipation bound (5.2) plus (5.15) implies the equip-continuity of (5.13) in tt. Then, combining with (5.14) and from Arzela`\grave{\text{a}}-Ascoli theorem, we obtain, for any η>0\eta>0,

𝜽~C([0,+);Hs1η)L([0,+);Hsη),\tilde{\bm{\theta}}\in C([0,+\infty);H^{s-1-\eta})\cap L^{\infty}([0,+\infty);H^{s-\eta}),

and

35𝜽ε25𝝆ε𝜽~inC([0,+);Hs1η)L([0,+);Hsη),\displaystyle\frac{3}{5}\bm{\theta}_{\varepsilon}-\frac{2}{5}\bm{\rho}_{\varepsilon}\to\tilde{\bm{\theta}}\quad\textup{in}\quad C([0,+\infty);H^{s-1-\eta})\cap L^{\infty}([0,+\infty);H^{s-\eta}), (5.16)

as ε0\varepsilon\to 0.

Thus, by using (𝜽ε,𝝆ε)(𝜽,𝝆)(\bm{\theta}_{\varepsilon},\bm{\rho}_{\varepsilon})\to(\bm{\theta},\bm{\rho}) in (5.7) and (5.16), we have

𝜽~=35𝜽25𝝆.\tilde{\bm{\theta}}=\frac{3}{5}\bm{\theta}-\frac{2}{5}\bm{\rho}.

Since 𝜽=(35𝜽25𝝆)\bm{\theta}=(\frac{3}{5}\bm{\theta}-\frac{2}{5}\bm{\rho}) and (5.12), it is direct to show that 𝜽~=𝜽\tilde{\bm{\theta}}=\bm{\theta} and 𝝆+𝜽=𝟎\bm{\rho}+\bm{\theta}=\mathbf{0} in whole space.

Convergence of 𝒫𝐮ε\mathcal{P}\mathbf{u}_{\varepsilon}.

Applying the Leray projection operator 𝒫\mathcal{P} to (5.8)3\eqref{The local conservation laws}_{3} and (5.8)4\eqref{The local conservation laws}_{4}, we have

t𝒫𝐮ε+1ε𝒫divxA^M,L𝐠εv+𝒫(𝐠ε,𝐠ε),vMv=ε𝒫Γ~(𝐠ε,𝐠ε),vMv\displaystyle\partial_{t}\mathcal{P}\mathbf{u}_{\varepsilon}+\frac{1}{\varepsilon}\mathcal{P}\textup{div}_{x}\langle\hat{A}\sqrt{M},L\mathbf{g}^{\varepsilon}\rangle_{v}+\mathcal{P}\langle\mathcal{L}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),v\sqrt{M}\rangle_{v}=\varepsilon\mathcal{P}\langle\tilde{\Gamma}(\mathbf{g}^{\varepsilon},\mathbf{g}^{\varepsilon}),v\sqrt{M}\rangle_{v}

By using the similar argument as in showing the convergence in (5.16), we can find the divergence-free 𝐮~L([0,+);Hxs)\tilde{\mathbf{u}}\in L^{\infty}([0,+\infty);H^{s}_{x}) such that, for any η>0\eta>0,

𝒫𝐮ε𝐮~inC([0,+);Hxs1η)L([0,+);Hxsη),\displaystyle\mathcal{P}\mathbf{u}_{\varepsilon}\to\tilde{\mathbf{u}}\qquad\textup{in}\quad C([0,+\infty);H^{s-1-\eta}_{x})\cap L^{\infty}([0,+\infty);H^{s-\eta}_{x}), (5.17)

as ε0\varepsilon\to 0.
Furthermore, (5.7) and (5.17) leads to 𝐮~=𝒫𝐮\tilde{\mathbf{u}}=\mathcal{P}\mathbf{u}, whereas 𝐮~=𝐮\tilde{\mathbf{u}}=\mathbf{u} can be shown by considering (5.11).

According to [6, 4], the system (5.8) can be rewritten as, for l,n{1,2}l,n\in\{1,2\} and lnl\neq n,

{𝝆ε+1εdivx𝐮ε=0,tuεl+1εx(ρεl+θεl)+divx(uεluεl|uεl|23I)+1σ(uεluεn)=μdivxΣ(uεl)+divxRuε,tθεl+23εdivuεl+divx(uεlθεl)+1λ(θεlθεn)=κΔxθεl+divxRθε,\left\{\begin{aligned} &\bm{\rho}_{\varepsilon}+\frac{1}{\varepsilon}\textup{div}_{x}\mathbf{u}_{\varepsilon}=0,\\[4.0pt] &\partial_{t}u_{\varepsilon l}+\frac{1}{\varepsilon}\nabla_{x}(\rho_{\varepsilon l}+\theta_{\varepsilon l})+\textup{div}_{x}\left(u_{\varepsilon l}\otimes u_{\varepsilon l}-\frac{|u_{\varepsilon l}|^{2}}{3}I\right)+\frac{1}{\sigma}(u_{\varepsilon l}-u_{\varepsilon n})\\[4.0pt] &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad=\mu\textup{div}_{x}\Sigma(u_{\varepsilon l})+\textup{div}_{x}R_{u_{\varepsilon}},\\[4.0pt] &\partial_{t}\theta_{\varepsilon l}+\frac{2}{3\varepsilon}\textup{div}u_{\varepsilon l}+\textup{div}_{x}(u_{\varepsilon l}\theta_{\varepsilon l})+\frac{1}{\lambda}\left(\theta_{\varepsilon l}-\theta_{\varepsilon n}\right)\\[4.0pt] &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad=\kappa\Delta_{x}\theta_{\varepsilon l}+\textup{div}_{x}R_{\theta_{\varepsilon}},\end{aligned}\right. (5.18)

where the constants μ,κ,σ,λ\mu,\,\kappa,\,\sigma,\,\lambda are given by (3.2) and (3.10), and Σ(uεl)=xuεl+(xuεl)23divxuεlI\Sigma(u_{\varepsilon l})=\nabla_{x}u_{\varepsilon l}+(\nabla_{x}u_{\varepsilon l})^{\top}-\frac{2}{3}\textup{div}_{x}u_{\varepsilon l}I, and Ruε,RθεR_{u_{\varepsilon}},\,R_{\theta_{\varepsilon}} have the following form

Ruε,Rθε=\displaystyle R_{u_{\varepsilon}},\,R_{\theta_{\varepsilon}}= εtglε,φvvxPglε,φv+εL^glε,φvεL^(glε,gnε),φv\displaystyle-\varepsilon\langle\partial_{t}g^{\varepsilon}_{l},\,\varphi\rangle_{v}-\langle v\cdot\nabla_{x}P^{\perp}g^{\varepsilon}_{l},\,\varphi\rangle_{v}+\varepsilon\langle\hat{L}g^{\varepsilon}_{l},\,\varphi\rangle_{v}-\varepsilon\langle\hat{L}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\,\varphi\rangle_{v} (5.19)
+Γ^(Pglε,Pglε),φv+Γ^(Pglε,Pglε),φv+Γ^(Pglε,Pglε),φv\displaystyle+\langle\hat{\Gamma}(P^{\perp}g^{\varepsilon}_{l},P^{\perp}g^{\varepsilon}_{l}),\,\varphi\rangle_{v}+\langle\hat{\Gamma}(P^{\perp}g^{\varepsilon}_{l},Pg^{\varepsilon}_{l}),\,\varphi\rangle_{v}+\langle\hat{\Gamma}(Pg^{\varepsilon}_{l},P^{\perp}g^{\varepsilon}_{l}),\,\varphi\rangle_{v}
+ε2Γ^(glε,gnε),φv+εΓ^(glε,gnε),vMv,\displaystyle+\varepsilon^{2}\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\,\varphi\rangle_{v}+\varepsilon\langle\hat{\Gamma}(g^{\varepsilon}_{l},g^{\varepsilon}_{n}),\,v\sqrt{M}\rangle_{v},

with φ=A^M\varphi=\hat{A}\sqrt{M} for RuεR_{u_{\varepsilon}} and φ=B^M\varphi=\hat{B}\sqrt{M} for RθεR_{\theta_{\varepsilon}}.

The equations of θ\bm{\theta} and 𝐮\mathbf{u}.

Decomposing 𝐮ε\mathbf{u}_{\varepsilon} into 𝐮ε=𝒫𝐮ε+𝒬𝐮ε\mathbf{u}_{\varepsilon}=\mathcal{P}\mathbf{u}_{\varepsilon}+\mathcal{Q}\mathbf{u}_{\varepsilon} with 𝒬=xΔx1divx\mathcal{Q}=\nabla_{x}\Delta_{x}^{-1}\textup{div}_{x}, and taking the Leray projection 𝒫\mathcal{P} to (5.18)2\eqref{The local conservation laws-2}_{2} yield that

t𝒫uεl+𝒫divx(𝒫uεl𝒫uεl)+1σ(𝒫uεl𝒫uεn)μΔx𝒫uεl=𝒫divxR~uε,\displaystyle\partial_{t}\mathcal{P}u_{\varepsilon l}+\mathcal{P}\textup{div}_{x}(\mathcal{P}u_{\varepsilon l}\otimes\mathcal{P}u_{\varepsilon l})+\frac{1}{\sigma}(\mathcal{P}u_{\varepsilon l}-\mathcal{P}u_{\varepsilon n})-\mu\Delta_{x}\mathcal{P}u_{\varepsilon l}=\mathcal{P}\textup{div}_{x}\tilde{R}_{u_{\varepsilon}},

where

R~uε=Ruε𝒫divx(𝒫uεl𝒬uεl+𝒬uεl𝒫uεl+𝒬uεl𝒬uεl).\tilde{R}_{u_{\varepsilon}}=R_{u_{\varepsilon}}-\mathcal{P}\textup{div}_{x}(\mathcal{P}u_{\varepsilon l}\otimes\mathcal{Q}u_{\varepsilon l}+\mathcal{Q}u_{\varepsilon l}\otimes\mathcal{P}u_{\varepsilon l}+\mathcal{Q}u_{\varepsilon l}\otimes\mathcal{Q}u_{\varepsilon l}). (5.20)

For any T>0T>0, let the vector-valued test function 𝝃(t,x)=(ξ1(t,x),ξ2(t,x),ξ3(t,x))\bm{\xi}(t,x)=(\xi_{1}(t,x),\xi_{2}(t,x),\xi_{3}(t,x)) satisfying

ξi(t,x)C1([0,T],C0(3))withξi(0,x)=1\xi_{i}(t,x)\in C^{1}([0,T],C_{0}^{\infty}(\mathbb{R}^{3}))\quad\textup{with}\quad\xi_{i}(0,x)=1

and

ξi(t,x)=0fortT,withT<T\xi_{i}(t,x)=0\quad\textup{for}\quad t\geq T^{\prime},\quad\textup{with}\quad T^{\prime}<T

for i=1,2,3i=1,2,3 and divx𝝃(t,x)=0\textup{div}_{x}\bm{\xi}(t,x)=0 for any tt.

Combining the uniform energy estimates (5.1)-(5.2), the definition of RuεR_{u_{\varepsilon}} in (5.19) and R~uε\tilde{R}_{u\varepsilon} in (5.20), we have

0T(𝒫divxR~uε)𝝃𝑑x𝑑t0asε0,\int_{0}^{T}(\mathcal{P}\textup{div}_{x}\tilde{R}_{u_{\varepsilon}})\cdot\bm{\xi}\,dx\,dt\to 0\quad\textup{as}\quad\varepsilon\to 0,

and, for l,n{1,2}l,n\in\{1,2\} and lnl\neq n,

0T3[t𝒫uεl+𝒫divx(𝒫uεl𝒫uεl)+1σ(𝒫uεl𝒫uεn)μΔx𝒫uεl]𝝃𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}\Big{[}\partial_{t}\mathcal{P}u_{\varepsilon l}+\mathcal{P}\textup{div}_{x}(\mathcal{P}u_{\varepsilon l}\otimes\mathcal{P}u_{\varepsilon l})+\frac{1}{\sigma}(\mathcal{P}u_{\varepsilon l}-\mathcal{P}u_{\varepsilon n})-\mu\Delta_{x}\mathcal{P}u_{\varepsilon l}\Big{]}\cdot\bm{\xi}\,dx\,dt
\displaystyle\to 3u0l𝝃(0,x)𝑑x0T3ult𝝃+ulul:x𝝃1σ(ulun)𝝃μulΔx𝝃dxdt,\displaystyle-\int_{\mathbb{R}^{3}}u_{0l}\cdot\bm{\xi}(0,x)\,dx-\int_{0}^{T}\int_{\mathbb{R}^{3}}u_{l}\cdot\partial_{t}\bm{\xi}+u_{l}\otimes u_{l}:\nabla_{x}\bm{\xi}-\frac{1}{\sigma}(u_{l}-u_{n})\cdot\bm{\xi}-\mu u_{l}\cdot\Delta_{x}\bm{\xi}\,dx\,dt,

as ε0\varepsilon\to 0.

Notice that θ~εl=35θεl25ρεl\tilde{\theta}_{\varepsilon l}=\frac{3}{5}\theta_{\varepsilon l}-\frac{2}{5}\rho_{\varepsilon l}, then it follows from (5.18)1\eqref{The local conservation laws-2}_{1} and (5.18)3\eqref{The local conservation laws-2}_{3} that

tθ~εl+35div(𝒫uεlθεl)+35λ(θεlθεn)35κΔxθ~εl=divxR~θε,\partial_{t}\tilde{\theta}_{\varepsilon l}+\frac{3}{5}\textup{div}(\mathcal{P}u_{\varepsilon l}\theta_{\varepsilon l})+\frac{3}{5\lambda}(\theta_{\varepsilon l}-\theta_{\varepsilon n})-\frac{3}{5}\kappa\Delta_{x}\tilde{\theta}_{\varepsilon l}=\textup{div}_{x}\tilde{R}_{\theta_{\varepsilon}},

where

R~θε=35Rθε35divx(𝒬uεlθεl).\tilde{R}_{\theta_{\varepsilon}}=\frac{3}{5}R_{\theta_{\varepsilon}}-\frac{3}{5}\textup{div}_{x}(\mathcal{Q}u_{\varepsilon l}\theta_{\varepsilon l}).

For any T>0T>0, let the test function ξ(t,x)\xi(t,x) satisfy

ξ(t,x)C1([0,T],C0(3))withξ(0,x)=1\xi(t,x)\in C^{1}([0,T],C_{0}^{\infty}(\mathbb{R}^{3}))\quad\textup{with}\quad\xi(0,x)=1

and

ξ(t,x)=0fortT,forT<T.\xi(t,x)=0\quad\textup{for}\quad t\geq T^{\prime},\quad\textup{for}\quad T^{\prime}<T.

Considering the uniform estimates (5.1)-(5.2) as well as the convergence (5.16)-(5.17), we have

0TdivxR~θεξ(t,x)𝑑x𝑑t0,asε0,\int_{0}^{T}\textup{div}_{x}\tilde{R}_{\theta_{\varepsilon}}\xi(t,x)\,dx\,dt\to 0,\quad\textup{as}\quad\varepsilon\to 0,

and, for l,n{1,2}l,n\in\{1,2\} and lnl\neq n,

0T3[tθ~εl+35div(𝒫uεlθεl)+35λ(θεlθεn)35κΔxθ~εl]ξ𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}\left[\partial_{t}\tilde{\theta}_{\varepsilon l}+\frac{3}{5}\textup{div}(\mathcal{P}u_{\varepsilon l}\theta_{\varepsilon l})+\frac{3}{5\lambda}(\theta_{\varepsilon l}-\theta_{\varepsilon n})-\frac{3}{5}\kappa\Delta_{x}\tilde{\theta}_{\varepsilon l}\right]\xi\,dx\,dt
\displaystyle\to 3(35θ0l25ρ0l)ξ(0,x)𝑑x0T3ultξ+ulθlxξ+1σ(θlθn)ξκθlΔxξdxdt,\displaystyle-\int_{\mathbb{R}^{3}}\left(\frac{3}{5}\theta_{0l}-\frac{2}{5}\rho_{0l}\right)\xi(0,x)\,dx-\int_{0}^{T}\int_{\mathbb{R}^{3}}u_{l}\cdot\partial_{t}\xi+u_{l}\theta_{l}\cdot\nabla_{x}\xi+\frac{1}{\sigma}(\theta_{l}-\theta_{n})\xi-\kappa\theta_{l}\cdot\Delta_{x}\xi\,dx\,dt,

as ε0\varepsilon\to 0.

Finally, combining all the convergence results above, we obtain that

(θl,ul)C([0,+);Hxs1)L([0,+);Hxs)(\theta_{l},u_{l})\in C([0,+\infty);H^{s-1}_{x})\cap L^{\infty}([0,+\infty);H^{s}_{x})

which satisfy the two-fluids incompressible Navier-Stokes equations

{tuεl+ulxul+1σ(uεluεn)+xpl=μΔxul,tθεl+uεxθl+1λ(θεlθεn)=κΔxθl,divxul=0,\left\{\begin{aligned} &\partial_{t}u_{\varepsilon l}+u_{l}\cdot\nabla_{x}u_{l}+\frac{1}{\sigma}(u_{\varepsilon l}-u_{\varepsilon n})+\nabla_{x}p_{l}=\mu\Delta_{x}u_{l},\\ &\partial_{t}\theta_{\varepsilon l}+u_{\varepsilon}\cdot\nabla_{x}\theta_{l}+\frac{1}{\lambda}(\theta_{\varepsilon l}-\theta_{\varepsilon n})=\kappa\Delta_{x}\theta_{l},\\ &\textup{div}_{x}u_{l}=0,\end{aligned}\right.

with initial data

ul(0,x)=𝒫u0l(x),θl(0,x)=35θ0l(x)25ρ0l(x)u_{l}(0,x)=\mathcal{P}u_{0l}(x),\quad\theta_{l}(0,x)=\frac{3}{5}\theta_{0l}(x)-\frac{2}{5}\rho_{0l}(x)

for l,n{1,2}l,n\in\{1,2\} and lnl\neq n.

Acknowledgment

K. Qi is supported by grants from the School of Mathematics at the University of Minnesota.

References

  • [1] R. Alexandre and C. Villani, On the Boltzmann equation for long-range interactions, Communications on Pure and Applied Mathematics, 55 (2002), pp. 30–70.
  • [2] K. Aoki, C. Bardos, and S. Takata, Knudsen layer for gas mixtures, Journal of Statistical Physics, 112 (2003), pp. 629–655.
  • [3] D. Arsénio, From Boltzmann’s equation to the incompressible Navier-Stokes-Fourier system with long-range interactions, Archive for Rational Mechanics and Analysis, 206 (2012), pp. 367–488.
  • [4] D. Arsénio and L. Saint-Raymond, From the Vlasov-Maxwell-Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. Vol. 1, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2019, pp. xii+406.
  • [5] C. Bardos, F. Golse, and C. D. Levermore, Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), pp. 667–753.
  • [6] C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, Journal of Statistical Physics, 63 (1991), pp. 323–344.
  • [7] C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Mathematical Models and Methods in Applied Sciences, 1 (1991), pp. 235–257.
  • [8] C. Bardos and X. Yang, The classification of well-posed kinetic boundary layer for hard sphere gas mixtures, Communications in Partial Differential Equations, 37 (2012), pp. 1286–1314.
  • [9] C. Bianca and C. Dogbe, On the Boltzmann gas mixture equation: linking the kinetic and fluid regimes, Communications in Nonlinear Science and Numerical Simulation, 29 (2015), pp. 240–256.
  • [10] M. Briant, From the Boltzmann equation to the incompressible Navier–Stokes equations on the torus: a quantitative error estimate, Journal of Differential Equations, 259 (2015), pp. 6072–6141.
  • [11] M. Briant and E. S. Daus, The Boltzmann equation for a multi-species mixture close to global equilibrium, Archive for Rational Mechanics and Analysis, 222 (2016), pp. 1367–1443.
  • [12] R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Communications on Pure and Applied Mathematics, 33 (1980), pp. 651–666.
  • [13] C. Cercignani, The Boltzmann equation and its applications, vol. 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988.
  • [14] A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Communications on Pure and Applied Mathematics, 42 (1989), pp. 1189–1214.
  • [15] L. Desvillettes and F. Glose, A remark concerning the Chapman-Enskog asymptotics, in Advances in kinetic theory and computing, vol. 22 of Ser. Adv. Math. Appl. Sci., World Sci. Publ., River Edge, NJ, 1994, pp. 191–203.
  • [16] R. J. DiPerna and P.-L. Lions, On the cauchy problem for Boltzmann equations: Global existence and weak stability, Annals of Mathematics, 130 (1989), p. 321–366.
  • [17] C. Dogbe, Fluid dynamic limits for gas mixture. I. Formal derivations, Mathematical Models and Methods in Applied Sciences, 18 (2008), pp. 1633–1672.
  • [18] R. Duan, W.-X. Li, and L. Liu, Gevrey regularity of mild solutions to the non-cutoff Boltzmann equation, Advances in Mathematics, 395 (2022), p. 108159.
  • [19] R. Duan, S. Liu, S. Sakamoto, and R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Communications on Pure and Applied Mathematics, 74 (2021), pp. 932–1020.
  • [20] G. Francois and L. Saint-Raymond, Hydrodynamic limits for the Boltzmann equation, Rivista di Matematica della Universita di Parma, 4** (2005), pp. 1–144.
  • [21] I. Gallagher and I. Tristani, On the convergence of smooth solutions from Boltzmann to Navier-Stokes, Annales Henri Lebesgue, 3 (2020), pp. 561–614.
  • [22] F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Inventiones mathematicae, 155 (2004), pp. 81–161.
  • [23]  , The incompressible Navier–Stokes limit of the Boltzmann equation for hard cutoff potentials, Journal de Mathématiques Pures et Appliquées, 91 (2009), pp. 508–552.
  • [24] P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, Journal of the American Mathematical Society, 24 (2011), pp. 771–847.
  • [25] Y. Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Archive for Rational Mechanics and Analysis, 169 (2003).
  • [26]  , The vlasov-maxwell-boltzmann system near maxwellians, Inventiones mathematicae, 153 (2003), pp. 593–630–468.
  • [27]  , The Boltzmann equation in the whole space, Indiana University Mathematics Journal, 53 (2004).
  • [28]  , Boltzmann diffusive limit beyond the Navier-Stokes approximation, Communications on Pure and Applied Mathematics, 59 (2006), pp. 626–687.
  • [29]  , Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), pp. 713–809.
  • [30] Y. Guo, F. Huang, and Y. Wang, Hilbert expansion of the Boltzmann equation with specular boundary condition in half-space, Archive for Rational Mechanics and Analysis, 241 (2021), pp. 231–309.
  • [31] Y. Guo, J. Jang, and N. Jiang, Local Hilbert expansion for the Boltzmann equation, Kinetic and Related Models, 2 (2009), pp. 205–214.
  • [32]  , Acoustic limit for the Boltzmann equation in optimal scaling, Communications on Pure and Applied Mathematics, 63 (2010), pp. 337–361.
  • [33] D. Hilbert, Begründung der kinetischen gastheorie (german), Mathematische Annalen, 72 (1912), pp. 562–577.
  • [34] C. Imbert and L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, Journal of the European Mathematical Society (JEMS), 22 (2020), pp. 507–592.
  • [35] C. Imbert and L. E. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off, Journal of the American Mathematical Society, 35 (2022), pp. 625–703.
  • [36] J. Jang and N. Jiang, Acoustic limit of the Boltzmann equation: classical solutions, Discrete and Continuous Dynamical Systems. Series A, 25 (2009), pp. 869–882.
  • [37] J. Jang and C. Kim, Incompressible Euler limit from Boltzmann equation with diffuse boundary condition for analytic data, Annals of PDE, 7 (2021).
  • [38] N. Jiang, C. D. Levermore, and N. Masmoudi, Remarks on the acoustic limit for the Boltzmann equation, Communications in Partial Differential Equations, 35 (2010), pp. 1590–1609.
  • [39] N. Jiang and Y.-L. Luo, From Vlasov-Maxwell-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Maxwell system with Ohm’s law: convergence for classical solutions, Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences, 8 (2022).
  • [40] N. Jiang and N. Masmoudi, Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I, Communications on Pure and Applied Mathematics, 70 (2017), pp. 90–171.
  • [41] N. Jiang and L. Xiong, Diffusive limit of the Boltzmann equation with fluid initial layer in the periodic domain, SIAM Journal on Mathematical Analysis, 47 (2015), pp. 1747–1777.
  • [42] N. Jiang, C.-J. Xu, and H. Zhao, Incompressible Navier-Stokes-Fourier limit from the Boltzmann equation: classical solutions, Indiana University Mathematics Journal, 67 (2018), pp. 1817–1855.
  • [43] C. Kim and D. Lee, The Boltzmann equation with specular boundary condition in convex domains, Communications on Pure and Applied Mathematics, 71 (2018), pp. 411–504.
  • [44] H. Lingbing and J. Jin-Cheng, On the Cauchy problem for the cutoff Boltzmann equation with small initial data, Journal of Statistical Physics, 190 (2023), p. 52.
  • [45] T.-P. Liu, T. Yang, and S.-H. Yu, Energy method for Boltzmann equation, Physica D. Nonlinear Phenomena, 188 (2004), pp. 178–192.
  • [46] N. Masmoudi and L. Saint-Raymond, From the Boltzmann equation to the Stokes-Fourier system in a bounded domain, Communications on Pure and Applied Mathematics, 56 (2003), pp. 1263–1293.
  • [47] S. Mischler, Kinetic equations with Maxwell boundary conditions, Annales scientifiques de l’École Normale SupÉrieure, 43 (2010), pp. 719–760.
  • [48] T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Communications in Mathematical Physics, 61 (1978), pp. 119–148.
  • [49] K. Qi, On the measure valued solution to the inelastic Boltzmann equation with soft potentials, Journal of Statistical Physics, 183 (2021).
  • [50]  , Measure valued solution to the spatially homogeneous Boltzmann equation with inelastic long-range interactions, Journal of Mathematical Physics, 63 (2022), pp. 021503, 22.
  • [51] A. Radjesvarane, M. Yoshinori, U. Seiji, C. J. Xu, and Y. Tong, The Boltzmann equation without angular cutoff in the whole space:I, global existence for soft potential, Journal of Functional Analysis, 262 (2012), pp. 915–1010.
  • [52] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Springer-Verlag, Berlin, 1 ed., 2009.
  • [53] A. Sotirov and S.-H. Yu, On the solution of a Boltzmann system for gas mixtures, Archive for Rational Mechanics and Analysis, 195 (2010), pp. 675–700.
  • [54] S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proceedings of the Japan Academy, 50 (1974), pp. 179–184.
  • [55] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305.
  • [56] Y. Wang, Decay of the two-species Vlasov-Poisson-Boltzmann system, Journal of Differential Equations, 254 (2013), pp. 2304–2340.
  • [57] T. Wu and X. Yang, Hydrodynamic limit of Boltzmann equations for gas mixture, Journal of Differential Equations, 377 (2023), pp. 418–468.