This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Frobenius–Rieffel norms on finite-dimensional C*-algebras

Konrad Aguilar Department of Mathematics and Statistics, Pomona College, 610 N. College Ave., Claremont, CA 91711 [email protected] https://aguilar.sites.pomona.edu/ Stephan Ramon Garcia Department of Mathematics and Statistics, Pomona College, 610 N. College Ave., Claremont, CA 91711 [email protected] http://pages.pomona.edu/~sg064747  and  Elena Kim Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 [email protected]
Abstract.

In 2014, Rieffel introduced norms on certain unital C*-algebras built from conditional expectations onto unital C*-subalgebras. We begin by showing that these norms generalize the Frobenius norm, and we provide explicit formulas for certain conditional expectations onto unital C*-subalgebras of finite-dimensional C*-algebras. This allows us compare these norms to the operator norm by finding explicit equivalence constants. In particular, we find equivalence constants for the standard finite-dimensional C*-subalgebras of the Effros–Shen algebras that vary continuously with respect to their given irrational parameters.

Key words and phrases:
C*-algebras, matrix algebras, Frobenius norms, equivalence constants, conditional expectations, Effros–Shen algebras, quantum metric spaces, continued fractions
2000 Mathematics Subject Classification:
Primary: 46L89, 46L30, 58B34.
The first author gratefully acknowledges the financial support from the Independent Research Fund Denmark through the project ‘Classical and Quantum Distances’ (grant no. 9040-00107B)
The second author is partially supported by NSF grants DMS-1800123 and DMS-2054002
The third author is supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1745302

1. Introduction

A main goal of noncommutative metric geometry is to establish the convergence of spaces arising in the physics or operator-algebra literature [24, 25, 14, 11, 12, 17]. To accomplish this, one must equip operator algebras with compact quantum metrics, which were introduced by Rieffel [22, 23] and motivated by work of Connes [4, 5]. Then, convergence of compact quantum metric spaces is proven with quantum analogues of the Gromov–Hausdorff distance [24, 16, 15, 13, 18, 28].

In [2], the first author and Latrémolière recently exhibited the convergence of quantum metric spaces built from approximately finite-dimensional C*-algebras (AF algebras) and, in particular, convergence of the Effros–Shen algebras [8] with respect to their irrational parameters. Quantum metric spaces are obtained by endowing unital C*-algebras with a type of seminorm whose properties are inspired by the Lipschitz seminorm. A property, which is not needed in [2], but appears desirable in other context [26], is called the strongly Leibniz property. A seminorm ss satisfies the strongly Leibniz property on an operator algebra 𝒜{\mathcal{A}} if

s(A1)s(A)A1op2s(A^{-1})\leqslant s(A)\cdot\|A^{-1}\|_{\mathrm{op}}^{2}

for all invertible A𝒜A\in{\mathcal{A}}, in which op\|\cdot\|_{\mathrm{op}} is the operator norm. This can be seen as a noncommutative analogue of the quotient rule for derivatives. Although the authors of [2] were able to prove their results without this property, Rieffel’s work on module convergence over the sphere [26] uses the strong Leibniz property, and it can be expected to play a role in the study of module convergence in general.

Let TT be a topological space and let tTt\in T. The reason that the seminorms in [2] do not likely satisfy the strongly Leibniz rule is because the seminorms are of the form

AAPt(A)op,A\longmapsto\|A-P_{t}(A)\|_{\mathrm{op}},

where AA is an element of the C*-algebra 𝒜{\mathcal{A}}, {\mathcal{B}} is a C*-subalgebra of 𝒜{\mathcal{A}}, and Pt:𝒜P_{t}:{\mathcal{A}}\rightarrow{\mathcal{B}} is a certain surjective linear map called a faithful conditional expectation. But conditional expectations are rarely multiplicative (otherwise, the strongly Leibniz property of this seminorm would come for free). Rather than replace PtP_{t}, which provides crucial estimates, Rieffel provided another option in [27, Section 5] following his previous work in [21]: replace the operator norm with one induced by PtP_{t} and the subalgebra {\mathcal{B}}. For A𝒜A\in{\mathcal{A}}, the Frobenius–Rieffel norm is

APt=Pt(AA)op,\|A\|_{P_{t}}=\sqrt{\|P_{t}(A^{*}A)\|_{\mathrm{op}}},

where AA^{*} is the adjoint of AA. If we define

sPt:AAPt(A)Pt,s_{P_{t}}:A\longmapsto\|A-P_{t}(A)\|_{P_{t}},

then sPts_{P_{t}} is a seminorm that is strongly Leibniz [27, Theorem 5.5].

However, this replacement comes at a cost. Following [2], we want the family of maps (sPt)tT(s_{P_{t}})_{t\in T} to vary continuously (pointwise) on a particular subset of 𝒜{\mathcal{A}} with respect to op\|\cdot\|_{\mathrm{op}}. Thankfully, in the setting of [2], one need only verify this continuity when 𝒜{\mathcal{A}} is finite dimensional. In this case, Pt\|\cdot\|_{P_{t}} and op\|\cdot\|_{\mathrm{op}} are equivalent on 𝒜{\mathcal{A}}, meaning there exist constants κt+,κt>0\kappa_{t}^{+},\kappa_{t}^{-}>0 such that

κt+opPtκtop\kappa_{t}^{+}\|\cdot\|_{\mathrm{op}}\leqslant\|\cdot\|_{P_{t}}\leqslant\kappa_{t}^{-}\|\cdot\|_{\mathrm{op}}

for each tTt\in T. Therefore, we can replace sPts_{P_{t}} with

A1κt+sPt(A),A\longmapsto\frac{1}{\kappa_{t}^{+}}s_{P_{t}}(A),

which is strongly Leibniz. However, the constants κt+,κt\kappa_{t}^{+},\kappa_{t}^{-} need not change continuously with respect to tt. Therefore, our aim in this paper is to find explicit equivalence constants for the operator norm and Frobenius–Rieffel norms on finite-dimensional C*-algebras, so that we may prove the continuity of the constants κt±\kappa^{\pm}_{t} with respect to tTt\in T. In fact, one of our main results (Theorem 5.2) shows that there exist explicit equivalence constants for the finite-dimensional C*-algebras that form the Effros–Shen algebras which vary continuously with respect to the irrational parameters that determine these algebras.

After some background on C*-algebras and the construction of the Frobenius–Rieffel norms, we provide some basic facts in the next section. Then, we find equivalence constants when 𝒜{\mathcal{A}} is the space of complex n×nn\times n-matrices. This provides a framework for the general case of finite-dimensional C*-algebras, which we tackle next. Our main method is to represent the conditional expectations as means of unitary conjugates for some standard subalgebras, and then extend these results to all unital C*-subalgebras by showing that although the Frobenius–Rieffel norms are not unitarily invariant, their equivalence constants are.

2. Preliminaries

The facts we state about C*-algebras in this section can be found in standard texts such as [7, 19, 20]. A C*-algebra (𝒜,)({\mathcal{A}},\|\cdot\|) is a Banach algebra over {\mathds{C}} equipped with a conjugate-linear anti-multiplicative involution :𝒜𝒜*:{\mathcal{A}}\rightarrow{\mathcal{A}} called the adjoint satisfying the C*-identity (i.e., AA=A2\|A^{*}A\|=\|A\|^{2} for all A𝒜A\in{\mathcal{A}}). We say that 𝒜{\mathcal{A}} is unital if it has a multiplicative identity. If two C*-algebras 𝒜,{\mathcal{A}},{\mathcal{B}} are *-isomorphic, then we denote this by 𝒜{\mathcal{A}}\cong{\mathcal{B}}. Let n={1,2,3,}n\in{\mathds{N}}=\{1,2,3,\ldots\}. We denote the space of complex n×nn\times n matrices by n{\mathcal{M}}_{n} and its C*-norm by op\|\cdot\|_{\mathrm{op}}, the operator norm induced by the 2-norm on n{\mathds{C}}^{n}. We denote the n×nn\times n identity matrix by InI_{n}. For AnA\in{\mathcal{M}}_{n}, we let Ai,jA_{i,j}\in{\mathds{C}} denote the (i,j)(i,j)-entry of AA for all i,j[N]i,j\in[N], where [N]={1,2,,N}[N]=\{1,2,\ldots,N\}.

Example 2.1.

Let NN\in{\mathds{N}} and let d1,d2,,dNd_{1},d_{2},\ldots,d_{N}\in{\mathds{N}}. The space

k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}

is a unital C*-algebra with coordinate-wise operations; the norm is the maximum of the operator norms in each coordinate. If we set n=d1+d2++dNn=d_{1}+d_{2}+\cdots+d_{N}, then In=k=1NIdkI_{n}=\bigoplus_{k=1}^{N}I_{d_{k}} is the unit, which we frequently denote by II. Every finite-dimensional C*-algebra is of this form up to *-isomorphism [7, Theorem III.1.1].

We denote Ak=1NdkA\in\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} by A=(A(1),A(2),,A(N))A=(A^{(1)},A^{(2)},\ldots,A^{(N)}), so that A(k)dkA^{(k)}\in{\mathcal{M}}_{d_{k}} for each k[N]k\in[N] and Ai,j(k)A^{(k)}_{i,j}\in{\mathds{C}} is the (i,j)(i,j)-entry of A(k)A^{(k)} for all i,j[dk]i,j\in[d_{k}].

The following maps are needed for the construction of Frobenius–Rieffel norms.

Definition 2.2.

Let 𝒜{\mathcal{A}} be a unital C*-algebra and let 𝒜{\mathcal{B}}\subseteq{\mathcal{A}} be a unital C*-subalgebra. A linear function P:𝒜P:{\mathcal{A}}\rightarrow{\mathcal{B}} is a conditional expectation if

  1. (1)

    B\forall B\in{\mathcal{B}}, P(B)=BP(B)=B, and

  2. (2)

    A𝒜\forall A\in{\mathcal{A}}, P(A)A\|P(A)\|\leqslant\|A\|.

We say that PP is faithful if P(AA)=0A=0P(A^{*}A)=0\iff A=0.

We can now define norms induced by faithful conditional expectations.

Theorem 2.3 (​[21][27, Section 5]).

Let 𝒜{\mathcal{A}} be a unital C*-algebra and 𝒜{\mathcal{B}}\subseteq{\mathcal{A}} be a unital C*-subalgebra. Let P:𝒜P:{\mathcal{A}}\rightarrow{\mathcal{B}} be a faithful conditional expectation. For all A𝒜A\in{\mathcal{A}}, set

AP,=P(AA).\|A\|_{P,{\mathcal{B}}}=\sqrt{\|P(A^{*}A)\|}.

This defines a norm on 𝒜{\mathcal{A}} called the Frobenius–Rieffel norm associated to {\mathcal{B}} and PP.

The terminology for these norms is due to two facts: Rieffel introduced these norms [27, Section 5] using his work that introduced spaces called Hilbert C*-modules [21] and we show in Theorem 3.16 that one can recover the Frobenius norm using a particular C*-subalgebra.

One of the main results that makes our work in this paper possible is the fact that we can express our conditional expectations as orthogonal projections. The key property that allows this is the preservation of faithful tracial states. A state on a C*-algebra 𝒜{\mathcal{A}} is a positive linear functional φ:𝒜\varphi:{\mathcal{A}}\rightarrow{\mathds{C}} of norm 11. We say that φ\varphi is faithful if φ(AA)=0A=0\varphi(A^{*}A)=0\iff A=0 and tracial if φ(AB)=φ(BA)\varphi(AB)=\varphi(BA) for all A,B𝒜A,B\in{\mathcal{A}}. If {\mathcal{B}} is a unital C*-subalgebra and P:𝒜P:{\mathcal{A}}\rightarrow{\mathcal{B}} is a conditional expectation onto {\mathcal{B}}, then we say that PP is φ\varphi-preserving if φP=φ\varphi\circ P=\varphi.

Example 2.4.

Let NN\in{\mathds{N}} and d1,d2,dNd_{1},d_{2}\ldots,d_{N}\in{\mathds{N}}. Let 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N} such that k=1Nvk=1\sum_{k=1}^{N}v_{k}=1. For every A=(A(1),,A(N))k=1NdkA=(A^{(1)},\ldots,A^{(N)})\in\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}, define

τ𝐯(A)=k=1NvkdkTr(A(k)),\tau_{\mathbf{v}}(A)=\sum_{k=1}^{N}\frac{v_{k}}{d_{k}}\mathrm{Tr}(A^{(k)}),

where Tr\mathrm{Tr} is the trace of a matrix. Then τ𝐯\tau_{\mathbf{v}} is a faithful tracial state on k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}. In fact, all faithful tracial states on k=1Nnk\bigoplus_{k=1}^{N}{\mathcal{M}}_{n_{k}} are of this form [7, Example IV.5.4]. For n{\mathcal{M}}_{n}, we have 𝐯=(1)\mathbf{v}=(1). Thus, τ𝐯=1nTr\tau_{\mathbf{v}}=\frac{1}{n}\mathrm{Tr}, and we simply denote τ𝐯\tau_{\mathbf{v}} by τ\tau in this case.

A faithful tracial state allows us to define an inner product on 𝒜{\mathcal{A}}.

Theorem 2.5 (​[6, Proposition VIII.5.11]).

Let 𝒜{\mathcal{A}} be a unital C*-algebra and let φ:𝒜\varphi:{\mathcal{A}}\rightarrow{\mathds{C}} be a faithful state. Then

A,Bφ=φ(BA)\langle A,B\rangle_{\varphi}=\varphi(B^{*}A)

is an inner product on 𝒜{\mathcal{A}}.

The following fact is well known.

Theorem 2.6 (​[2, Expression (4.1)]).

Let 𝒜{\mathcal{A}} be a unital C*-algebra, let 𝒜{\mathcal{B}}\subseteq{\mathcal{A}} be a unital C*-subalgebra, and let φ:𝒜\varphi:{\mathcal{A}}\rightarrow{\mathds{C}} be a faithful tracial state. If {\mathcal{B}} is finite dimensional, then there exists a unique φ\varphi-preserving conditional expectation Pφ:𝒜P^{\varphi}_{\mathcal{B}}:{\mathcal{A}}\rightarrow{\mathcal{B}} onto {\mathcal{B}} such that given any basis β\beta of {\mathcal{B}} which is orthogonal with respect to ,φ\langle\cdot,\cdot\rangle_{\varphi}, we have

Pφ(A)=BβA,BφB,BφBP^{\varphi}_{\mathcal{B}}(A)=\sum_{B\in\beta}\frac{\langle A,B\rangle_{\varphi}}{\langle B,B\rangle_{\varphi}}B

for all A𝒜A\in{\mathcal{A}}.

In this case, we denote the associated Frobenius–Rieffel norm on 𝒜{\mathcal{A}} by τ,\|\cdot\|_{\tau,{\mathcal{B}}}. Now, let 𝒜=k=1Ndk{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}, let 𝒜{\mathcal{B}}\subseteq{\mathcal{A}} be a unital C*-subalgebra, and let 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N} such that k=1Nvk=1\sum_{k=1}^{N}v_{k}=1.

  1. (1)

    We denote the conditional expectation of Theorem 2.6 induced by the faithful tracial state τ𝐯\tau_{\mathbf{v}} of Example 2.4 by P𝐯P^{\mathbf{v}}_{\mathcal{B}}. We denote the associated Frobenius–Rieffel norm by 𝐯,\|\cdot\|_{\mathbf{v},{\mathcal{B}}}.

  2. (2)

    If N=1N=1, then τ=1d1Tr\tau=\frac{1}{d_{1}}\mathrm{Tr} is the unique faithful tracial state on d1{\mathcal{M}}_{d_{1}}, and we denote the conditional expectation of Theorem 2.6 induced by τ\tau by PP_{\mathcal{B}}. We denote the associated Frobenius–Rieffel norm by \|\cdot\|_{{\mathcal{B}}}.

3. Some properties of Frobenius–Rieffel norms

In this section, we detail the subalgebras of k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} that we will be working with and the conditional expectations given by Theorem 2.6. We also explain why we use “Frobenius” in the name of the norms of Theorem 2.3.

A partition λ{\lambda} of nn\in{\mathds{N}}, denoted λn,{\lambda}\vdash n, is a tuple λ=(n1,n2,,nL)L{\lambda}=(n_{1},n_{2},\ldots,n_{L})\in{\mathds{N}}^{L}, where LL\in{\mathds{N}} depends on nn and n=i=1Lnin=\sum_{i=1}^{L}n_{i}. We need the following refinement to describe certain subalgebras of n{\mathcal{M}}_{n}.

Definition 3.1.

Let n,Ln,L\in{\mathds{N}}. A formal expression λ=(n1m1,n2m2,,nLmL),{\lambda}=(n_{1}^{m_{1}},n_{2}^{m_{2}},\ldots,n_{L}^{m_{L}}), in which mi,nim_{i},n_{i}\in{\mathds{N}} for 1iL,1\leqslant i\leqslant L, and

(3.1) n=i=1Lminin=\sum_{i=1}^{L}m_{i}n_{i}

is a refined partition of nn, denoted λn\langle{\lambda}\vdash n\rangle. Write 𝐦λ=(m1,m2,,mL)\mathbf{m}_{{\lambda}}=(m_{1},m_{2},\ldots,m_{L}) and 𝐧λ=(n1,n2,,nL),\mathbf{n}_{{\lambda}}=(n_{1},n_{2},\ldots,n_{L}), so that n=𝐦λ𝐧λn=\mathbf{m}_{{\lambda}}\cdot\mathbf{n}_{{\lambda}}. The vectors 𝐦λ\mathbf{m}_{{\lambda}} and 𝐧λ\mathbf{n}_{{\lambda}} are the multiplicity vector and dimension vector of λ{\lambda}, respectively. We drop the subscript λ{\lambda} unless needed for clarity. In the formal expression for λ{\lambda}, we suppress mim_{i} if mi=1m_{i}=1. The number L=L(λ)L=L({\lambda}) of summands in (3.1) is the length of λ{\lambda}.

For example, (22,2),(23),(2,2,12),(3,3),(6)(2^{2},2),(2^{3}),(2,2,1^{2}),(3,3),(6) are refined partitions of 66 with, respectively, lengths 2,1,3,2,12,1,3,2,1; multiplicity vectors (2,1),(3),(1,1,2),(1,1),(1)(2,1),(3),(1,1,2),(1,1),(1); and dimension vectors (2,2),(2),(2,2,1),(3,3),(6)(2,2),(2),(2,2,1),(3,3),(6).

In what follows, we use Kronecker products and direct sums. For example, by (I22)(I11)5(I_{2}\otimes{\mathcal{M}}_{2})\oplus(I_{1}\otimes{\mathcal{M}}_{1})\subset{\mathcal{M}}_{5}, we mean the subalgebra

{diag(A,A,μ):A2,μ1}\left\{\mathrm{diag}(A,A,\mu):A\in{\mathcal{M}}_{2},\mu\in{\mathcal{M}}_{1}\right\}

of 5{\mathcal{M}}_{5}, where diag(A,A,μ)\mathrm{diag}(A,A,\mu) is the block-diagonal matrix

[AAμ],\begin{bmatrix}A&&\\ &A&\\ &&\mu\end{bmatrix},

with 0s in the entries not occupied by the AAs and μ\mu.

Definition 3.2.

Let nn\in{\mathds{N}} and let λ{\lambda} be a refined partition of nn. The subalgebra of n{\mathcal{M}}_{n} corresponding to λn\langle{\lambda}\vdash n\rangle is

(3.2) λn=i=1L(λ)(Imini).{\mathcal{B}}^{n}_{\lambda}=\bigoplus_{i=1}^{L({\lambda})}\left(I_{m_{i}}\otimes{\mathcal{M}}_{n_{i}}\right).

We sometimes write λ{\mathcal{B}}_{\lambda} instead of λn{\mathcal{B}}^{n}_{\lambda} when the context is clear.

Example 3.3.

For each nn\in{\mathds{N}}, we have 1nn=In11{\mathcal{B}}^{n}_{1^{n}}=I_{n}\otimes{\mathcal{M}}_{1}\cong{\mathcal{M}}_{1} and

1,1,,1n=i=1n(I11)={diag(μ1,μ2,,μn):μ1,μ2,,μn}n,{\mathcal{B}}^{n}_{1,1,\ldots,1}=\bigoplus_{i=1}^{n}(I_{1}\otimes{\mathcal{M}}_{1})=\{\mathrm{diag}(\mu_{1},\mu_{2},\ldots,\mu_{n}):\mu_{1},\mu_{2},\ldots,\mu_{n}\in{\mathds{C}}\}\cong{\mathds{C}}^{n},

where nn-copies of 11 are in the subscript of 1,1,,1n{\mathcal{B}}^{n}_{1,1,\ldots,1} and \cong denotes *-isomorphism.

Example 3.4.

Observe that

12,24\displaystyle{\mathcal{B}}^{4}_{1^{2},2} =(I21)(I12)={diag(μ,μ,A):μ,A2}12.\displaystyle=(I_{2}\otimes{\mathcal{M}}_{1})\oplus(I_{1}\otimes{\mathcal{M}}_{2})=\left\{\mathrm{diag}\left(\mu,\mu,A\right):\mu\in{\mathds{C}},A\in{\mathcal{M}}_{2}\right\}\cong{\mathcal{M}}_{1}\oplus{\mathcal{M}}_{2}.

Thus,

{diag(μ,A,μ):μ,A2}\left\{\mathrm{diag}\left(\mu,A,\mu\right):\mu\in{\mathds{C}},A\in{\mathcal{M}}_{2}\right\}

is a unital C*-subalgebra of 4{\mathcal{M}}_{4} which is not of the form (3.2), but is *-isomorphic to 12,24{\mathcal{B}}^{4}_{1^{2},2}.

The algebra of circulant matrices provides another example of a unital C*-subalgebra of n{\mathcal{M}}_{n} that is not of the form (3.2).

Example 3.5.

A matrix of the form

[a1a2a3anana1a2an1an1ana1an2a2a3ana1]\begin{bmatrix}a_{1}&a_{2}&a_{3}&\cdots&a_{n}\\ a_{n}&a_{1}&a_{2}&\cdots&a_{n-1}\\ a_{n-1}&a_{n}&a_{1}&\cdots&a_{n-2}\\ \vdots&\vdots&\ddots&\ddots&\vdots\\ a_{2}&a_{3}&\cdots&a_{n}&a_{1}\end{bmatrix}

is a circulant matrix [10, 0.9.6 and 2.2.P10]. The *-algebra of n×nn\times n circulant matrices is a unital commutative C*-subalgebra of n{\mathcal{M}}_{n} that is *-isomorphic to 1,1,,1n{\mathcal{B}}^{n}_{1,1,\ldots,1}. Indeed, they are simultaneously unitarily diagonalizable normal matrices.

The next definition serves as a vital intermediate step in finding equivalence constants associated to all unital C*-subalgebras and faithful tracial states of k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}.

Definition 3.6.

Consider 𝒜=k=1Ndk{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}. For each k[N]k\in[N], let

pk:𝒜dkp_{k}:{\mathcal{A}}\rightarrow{\mathcal{M}}_{d_{k}}

be the canonical projection onto the kkth summand. We say that 𝒜{\mathcal{B}}\subseteq{\mathcal{A}} is a standard unital C*-subalgebra if it is a unital C*-subalgebra such that for each k[N]k\in[N]

pk()=λkdk,p_{k}({\mathcal{B}})={\mathcal{B}}^{d_{k}}_{{\lambda}_{k}},

where λkdk\langle{\lambda}_{k}\vdash d_{k}\rangle. Then {\mathcal{B}} is a unital C*-subalgebra of

𝒞=k=1Nλkdk,{\mathcal{C}}_{\mathcal{B}}=\bigoplus_{k=1}^{N}{\mathcal{B}}^{d_{k}}_{{\lambda}_{k}},

which is a unital C*-subalgebra of 𝒜{\mathcal{A}}.

Example 3.7.

Observe that

={diag(μ,ν)μ21:μ,ν}2{\mathcal{B}}=\left\{\mathrm{diag}(\mu,\nu)\oplus\mu\in{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{1}:\mu,\nu\in{\mathds{C}}\right\}\cong{\mathds{C}}^{2}

is a standard unital C*-subalgebra of 21{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{1} and

𝒞={diag(μ,ν)η21:μ,ν,η}=1,12113.{\mathcal{C}}_{\mathcal{B}}=\left\{\mathrm{diag}(\mu,\nu)\oplus\eta\in{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{1}:\mu,\nu,\eta\in{\mathds{C}}\right\}={\mathcal{B}}^{2}_{1,1}\oplus{\mathcal{B}}^{1}_{1}\cong{\mathds{C}}^{3}.

We note that the unital C*-subalgebra of 3{\mathcal{M}}_{3} given by

{diag(μ,ν,μ):μ,ν}\{\mathrm{diag}(\mu,\nu,\mu):\mu,\nu\in{\mathds{C}}\}

is not standard, but it is *-isomorphic to {\mathcal{B}}. Thus, whether a subalgebra is standard or not depends upon the larger ambient algebra.

Example 3.8.

Observe that

={diag(μ,A,μ)A42:μ,A2}{\mathcal{B}}=\left\{\mathrm{diag}(\mu,A,\mu)\oplus A\in{\mathcal{M}}_{4}\oplus{\mathcal{M}}_{2}:\mu\in{\mathds{C}},A\in{\mathcal{M}}_{2}\right\}

is not a standard unital C*-subalgebra of 42{\mathcal{M}}_{4}\oplus{\mathcal{M}}_{2} since p1()={diag(μ,A,μ):μ,A2}p_{1}({\mathcal{B}})=\{\mathrm{diag}(\mu,A,\mu):\mu\in{\mathds{C}},A\in{\mathcal{M}}_{2}\} is not of the form (3.2). But it is *-isomorphic to the standard unital C*-subalgebra

={diag(A,μ,μ)A42:μ,A2}\mathcal{E}=\{\mathrm{diag}(A,\mu,\mu)\oplus A\in{\mathcal{M}}_{4}\oplus{\mathcal{M}}_{2}:\mu\in{\mathds{C}},A\in{\mathcal{M}}_{2}\}

of 42{\mathcal{M}}_{4}\oplus{\mathcal{M}}_{2}. Note p1()=2,12p_{1}(\mathcal{E})={\mathcal{B}}_{2,1^{2}} and p2()=2=2p_{2}(\mathcal{E})={\mathcal{B}}_{2}={\mathcal{M}}_{2}.

Up to unitary equivalence, standard unital C*-subalgebras comprise all unital C*-subalgebras of k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}. To be clear, let ,𝒞𝒜=k=1Ndk{\mathcal{B}},{\mathcal{C}}\subseteq{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} be two unital C*-subalgebras. We say that {\mathcal{B}} and 𝒞{\mathcal{C}} are unitarily equivalent (with respect to 𝒜{\mathcal{A}}) if there exists a unitary U𝒜U\in{\mathcal{A}} such that BUBUB\mapsto UBU^{*} is a bijection from {\mathcal{B}} onto 𝒞{\mathcal{C}}, in which case we write 𝒞=UU{\mathcal{C}}=U{\mathcal{B}}U^{*}. Sometimes the term spatially isomorphic is used for unitary equivalence, but spatially isomorphic is also sometimes used in a more general sense.

Unitary equivalence is stronger than *-isomorphism. For example, the unital C*-subalgebras

121,1 and 1,112{\mathcal{B}}_{1^{2}}\oplus{\mathcal{B}}_{1,1}\quad\text{ and }\quad{\mathcal{B}}_{1,1}\oplus{\mathcal{B}}_{1^{2}}

of 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} are *-isomorphic but not unitarily equivalent in 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} (they are unitarily equivalent in 4{\mathcal{M}}_{4}, but we are viewing them as subalgebras of 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2}). We now state the following well-known result.

Theorem 3.9 (​[7, Theorem III.1.1, Corollary III.1.2, and Lemma III.2.1]).

Every unital C*-subalgebra n{\mathcal{B}}\subseteq{\mathcal{M}}_{n} is unitarily equivalent with respect to n{\mathcal{M}}_{n} to λ{\mathcal{B}}_{\lambda} for some refined partition λ=(n1m1,n2m2,,nLmL){\lambda}=(n_{1}^{m_{1}},n_{2}^{m_{2}},\ldots,n_{L}^{m_{L}}) of nn, and

λi=1Lni.{\mathcal{B}}_{\lambda}\cong\bigoplus_{i=1}^{L}{\mathcal{M}}_{n_{i}}.

Furthermore, any unital C*-subalgebra of k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} is unitarily equivalent, with respect to k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}, to a standard unital C*-subalgebra.

For example, the *-algebra of circulant matrices of Example 3.5 is unitarily equivalent with respect to n{\mathcal{M}}_{n} to 1,1,,1n{\mathcal{B}}^{n}_{1,1,\ldots,1}, not just *-isomorphic to it [10, 2.2.P10]. Also, the subalgebras {\mathcal{B}} and \mathcal{E} of Example 3.8 are unitarily equivalent, not just *-isomorphic.

We use Theorem 3.9 to generalize our results to all unital C*-subalgebras once we verify our results for the standard subalgebras. One of the advantages of working with standard unital C*-subalgebras is that they have canonical bases which are orthogonal with respect to the inner products induced by faithful tracial states.

Definition 3.10.

Consider k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}. For each k[N]k\in[N] and i,j[dk]i,j\in[d_{k}], let Ei,j(k)k=1NdkE^{(k)}_{i,j}\in\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} have a 11 in the (i,j)(i,j)-entry of the kkth summand and zeros in all other entries and all other summands. We call Ei,j(k)E^{(k)}_{i,j} a matrix unit. If N=1N=1, then we suppress the superscript (k)(k).

Any standard unital C*-subalgebra k=1Ndk{\mathcal{B}}\subseteq\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} has a standard basis (up to ordering of terms) given by matrix units or sums of distinct matrix units, which we denote by β\beta_{\mathcal{B}}.

Example 3.11.

For the subalgebra 21{\mathcal{B}}\subseteq{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{1} of Example 3.7, we have β={E1,1(1)+E1,1(2),E2,2(1)}\beta_{\mathcal{B}}=\{E^{(1)}_{1,1}+E^{(2)}_{1,1},E^{(1)}_{2,2}\}.

Example 3.12.

For 1nnn{\mathcal{B}}^{n}_{1^{n}}\subseteq{\mathcal{M}}_{n}, we have β1n={k=1nEk,k}={In}.\beta_{{\mathcal{B}}_{1^{n}}}=\left\{\sum_{k=1}^{n}E_{k,k}\right\}=\{I_{n}\}.

For 1,1,,1nn{\mathcal{B}}^{n}_{1,1,\ldots,1}\subseteq{\mathcal{M}}_{n}, we have β1,1,,1n={E1,1,E2,2,,En,n}.\beta_{{\mathcal{B}}^{n}_{1,1,\ldots,1}}=\{E_{1,1},E_{2,2},\ldots,E_{n,n}\}.

For 2244{\mathcal{B}}^{4}_{2^{2}}\subseteq{\mathcal{M}}_{4}, we have β224={Ei,j+Ei+2,j+2:i,j[2]}\beta_{{\mathcal{B}}^{4}_{2^{2}}}=\{E_{i,j}+E_{i+2,j+2}:i,j\in[2]\}.

All cases in the example above can be recovered as follows.

Remark 3.13.

Let n{\mathcal{B}}\subseteq{\mathcal{M}}_{n} be a standard unital C*-subalgebra of Definition 3.6. Thus, there exists a refined partition λ=(n1m1,n2m2,,nLmL){\lambda}=(n_{1}^{m_{1}},n_{2}^{m_{2}},\ldots,n_{L}^{m_{L}}) of nn such that =λn{\mathcal{B}}={\mathcal{B}}^{n}_{\lambda}, and we have that

βλn=k=1L{t=0mk1Eit(p),jt(q):p,q[nk],it(p)p=jt(q)q=tnk+r=1k1mrnr},\displaystyle\beta_{{\mathcal{B}}^{n}_{\lambda}}=\bigcup_{k=1}^{L}\left\{\sum_{t=0}^{m_{k}-1}E_{i_{t}(p),j_{t}(q)}:p,q\in[n_{k}],i_{t}(p)-p=j_{t}(q)-q=tn_{k}+\sum_{r=1}^{k-1}m_{r}n_{r}\right\},

where we regard a sum over an empty set of indices as zero.

For these bases, although some of the elements are sums of distinct matrix units, we note that the summands are from distinct blocks. For example, for 224{\mathcal{B}}^{4}_{2^{2}}, no element of the form Ei,j+Ei,mE_{i,j}+E_{i,m} appears in the standard basis. This easily verified fact and more are summarized in the following.

Theorem 3.14.

Let k=1Ndk{\mathcal{B}}\subseteq\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} be a standard unital C*-subalgebra. For each BβB\in\beta_{\mathcal{B}}, let ΨB={(k;i,j):Bi,j(k)=1}\Psi_{B}=\{(k;i,j):B^{(k)}_{i,j}=1\} (i.e., B=(k;i,j)ΨBEi,j(k)B=\sum_{(k;i,j)\in\Psi_{B}}E^{(k)}_{i,j}). The following hold:

  1. (1)

    ΨBΨB=\Psi_{B}\cap\Psi_{B^{\prime}}=\emptyset for every B,BβB,B^{\prime}\in\beta_{\mathcal{B}} with BBB\neq B^{\prime}.

  2. (2)

    If (k;i,j),(k;i,j)ΨB(k;i,j),(k^{\prime};i^{\prime},j^{\prime})\in\Psi_{B}, then (k;i,j)=(k;i,j)(k;i,j)=(k^{\prime};i^{\prime},j^{\prime}) if and only if k=kk=k^{\prime} and (i=ii=i^{\prime} or j=jj=j^{\prime}).

  3. (3)

    If 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N}, then β\beta_{\mathcal{B}} is an orthogonal basis of {\mathcal{B}} with respect to ,τ𝐯\langle\cdot,\cdot\rangle_{\tau_{\mathbf{v}}}.

We now provide an explicit way of calculating the conditional expectations associated with standard unital C*-subalgebras. This is a complete generalization of [1, Proposition 2.8].

Theorem 3.15.

Let 𝒜=k=1Ndk{\mathcal{B}}\subseteq{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} be a standard unital C*-subalgebra. For each BβB\in\beta_{\mathcal{B}} and k[N]k\in[N], let ΨB(k)={(i,j):(k;i,j)ΨB}\Psi^{(k)}_{B}=\{(i,j):(k;i,j)\in\Psi_{B}\}, and let |ΨB(k)||\Psi^{(k)}_{B}| denote the cardinality of ΨB(k)\Psi^{(k)}_{B}. Let 𝐯(0,1)N\mathbf{v}\in(0,1)^{N} satisfy k=1Nvk=1\sum_{k=1}^{N}v_{k}=1. If A𝒜A\in{\mathcal{A}}, then

P𝐯(A)=Bβk=1Nvkdk(i,j)ΨB(k)Ai,j(k)k=1N|ΨB(k)|vkdkB.P^{\mathbf{v}}_{\mathcal{B}}(A)=\sum_{B\in\beta_{\mathcal{B}}}\frac{\sum_{k=1}^{N}\frac{v_{k}}{d_{k}}\sum_{(i,j)\in\Psi^{(k)}_{B}}A^{(k)}_{i,j}}{\sum_{k=1}^{N}\frac{|\Psi^{(k)}_{B}|v_{k}}{d_{k}}}B.
Proof.

Fix BβB\in\beta_{\mathcal{B}}. Since ΨB(k)\Psi^{(k)}_{B} is the set of indices for the nonzero entries of the basis element BB contained in the kkth summand, we know that

B=k=1N(i,j)ΨB(k)Ei,j(k).B=\sum_{k=1}^{N}\sum_{(i,j)\in\Psi^{(k)}_{B}}E^{(k)}_{i,j}.

If mm\in{\mathds{N}}, then Tr(Ei,jC)=Ci,j\mathrm{Tr}(E_{i,j}^{*}C)=C_{i,j} for any CmC\in{\mathcal{M}}_{m} and i,j[m]i,j\in[m]. We use this fact repeatedly in the following calculation. Let A𝒜A\in{\mathcal{A}} and observe that

τ𝐯(BA)=τ𝐯((k=1N(i,j)ΨB(k)Ei,j(k))A)=k=1Nvkdk(i,j)ΨB(k)Ai,j(k).\tau_{\mathbf{v}}(B^{*}A)=\tau_{\mathbf{v}}\left(\left(\sum_{k=1}^{N}\sum_{(i,j)\in\Psi^{(k)}_{B}}E^{(k)}_{i,j}\right)^{*}A\right)=\sum_{k=1}^{N}\frac{v_{k}}{d_{k}}\sum_{(i,j)\in\Psi^{(k)}_{B}}A^{\left(k\right)}_{i,j}.

We also have by Theorem 3.14

τ𝐯(BB)\displaystyle\tau_{\mathbf{v}}(B^{*}B) =τ𝐯((k=1N(i,j)ΨB(k)Ei,j(k))(k=1N(i,j)ΨB(k)Ei,j(k)))\displaystyle=\tau_{\mathbf{v}}\left(\left(\sum_{k=1}^{N}\sum_{(i,j)\in\Psi^{(k)}_{B}}E^{(k)}_{i,j}\right)^{*}\left(\sum_{k=1}^{N}\sum_{(i,j)\in\Psi^{(k)}_{B}}E^{(k)}_{i,j}\right)\right)
=k=1Nvkdk(i,j)ΨB(k)1=k=1N|ΨB(k)|vkdk.\displaystyle=\sum_{k=1}^{N}\frac{v_{k}}{d_{k}}\sum_{(i,j)\in\Psi^{(k)}_{B}}1=\sum_{k=1}^{N}\frac{|\Psi^{(k)}_{B}|v_{k}}{d_{k}}.

Hence, by (3) of Theorem 3.14 and Theorem 2.6, we conclude that

P𝐯(A)=Bβk=1Nvkdk(i,j)ΨB(k)Ai,j(k)k=1N|ΨB(k)|vkdkB,P^{\mathbf{v}}_{{\mathcal{B}}}(A)=\sum_{B\in\beta_{\mathcal{B}}}\frac{\sum_{k=1}^{N}\frac{v_{k}}{d_{k}}\sum_{(i,j)\in\Psi^{(k)}_{B}}A^{\left(k\right)}_{i,j}}{\sum_{k=1}^{N}\frac{|\Psi^{(k)}_{B}|v_{k}}{d_{k}}}B,

which completes the proof. ∎

We next show how the Frobenius–Rieffel norms recover the Frobenius norm.

Theorem 3.16.

For all AnA\in{\mathcal{M}}_{n},

A1n=AFn,\|A\|_{{\mathcal{B}}_{1^{n}}}=\|A\|_{F_{n}},

where AFn=1nTr(AA)\|A\|_{F_{n}}=\frac{1}{\sqrt{n}}\sqrt{\mathrm{Tr}(A^{*}A)} is the Frobenius norm normalized with respect to InI_{n}.

Proof.

By Theorem 3.15, we have that

P1n(A)=1nTr(A)In.P_{\mathcal{B}_{1^{n}}}(A)=\frac{1}{n}\mathrm{Tr}(A)I_{n}.

Therefore,

A1n2=P1n(AA)op=1nTr(AA)Inop=AFn2.\|A\|_{{\mathcal{B}}_{1^{n}}}^{2}=\left\|P_{\mathcal{B}_{1^{n}}}(A^{*}A)\right\|_{\mathrm{op}}=\left\|\frac{1}{n}\mathrm{Tr}(A^{*}A)I_{n}\right\|_{\mathrm{op}}=\|A\|_{F_{n}}^{2}.\qed

The next two examples show that Frobenius–Rieffel norms are not generally sub-multiplicative or unitarily invariant.

Example 3.17.

Consider the unital C*-subalgebra 1,12{\mathcal{B}}_{1,1}^{2} of 2{\mathcal{M}}_{2}. Let A=[1221]A=\begin{bmatrix}1&2\\ 2&1\end{bmatrix} and use Theorem 3.15 to calculate

A1,122=P1,12(AA)op=P1,12([5445])op=[5005]op=5.\displaystyle\|A\|_{{\mathcal{B}}_{1,1}^{2}}^{2}=\left\|P_{{\mathcal{B}}_{1,1}^{2}}(A^{*}A)\right\|_{\mathrm{op}}=\left\|P_{{\mathcal{B}}_{1,1}^{2}}\left(\begin{bmatrix}5&4\\ 4&5\\ \end{bmatrix}\right)\right\|_{\mathrm{op}}=\left\|\begin{bmatrix}5&0\\ 0&5\\ \end{bmatrix}\right\|_{\mathrm{op}}=5.

Thus, A1,12A1,12=5.\|A\|_{{\mathcal{B}}_{1,1}^{2}}\cdot\|A\|_{{\mathcal{B}}_{1,1}^{2}}=5. Similarly, AA1,12=41\|AA\|_{{\mathcal{B}}_{1,1}^{2}}=41, so

AA1,12>A1,12A1,12.\|AA\|_{{\mathcal{B}}_{1,1}^{2}}>\|A\|_{{\mathcal{B}}_{1,1}^{2}}\|A\|_{{\mathcal{B}}_{1,1}^{2}}.
Example 3.18.

Consider

A=[1111]A=\begin{bmatrix}1&1\\ 1&1\end{bmatrix}

and the unitary

U=12[1111].U=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\ 1&-1\end{bmatrix}.

Following similar calculations as the last example, we conclude

A1,122=24=UAU1,122.\|A\|_{{\mathcal{B}}_{1,1}^{2}}^{2}=2\neq 4=\left\|U^{*}AU\right\|_{{\mathcal{B}}_{1,1}^{2}}^{2}.

4. Equivalence constants for the operator norm

As discussed in the introduction, it is important to be able to compare the Frobenius–Rieffel norms with the operator norm. Theorem 2.3 says that

AP,=P(AA)opAAop=Aop2=Aop\|A\|_{P,{\mathcal{B}}}=\sqrt{\|P(A^{*}A)\|_{\mathrm{op}}}\leqslant\sqrt{\|A^{*}A\|_{\mathrm{op}}}=\sqrt{\|A\|^{2}_{\mathrm{op}}}=\|A\|_{\mathrm{op}}

for all Ak=1NdkA\in\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}, any unital C*-subalgebra 𝒜{\mathcal{B}}\subseteq{\mathcal{A}}, and any conditional expectation P:𝒜P:{\mathcal{A}}\rightarrow{\mathcal{B}} onto {\mathcal{B}}. This equality is achieved by the identity matrix. Thus, the nontrivial task is to find a constant κP,+>0\kappa^{+}_{P,{\mathcal{B}}}>0 such that

κP,+AopAP,\kappa^{+}_{P,{\mathcal{B}}}\|A\|_{\mathrm{op}}\leqslant\|A\|_{P,{\mathcal{B}}}

for all Ak=1Ndk.A\in\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}.

We begin with some general results and then focus on the case of n{\mathcal{M}}_{n}. Then, we move to the general case, which is more involved since the Frobenius–Rieffel norms depend on the underlying subalgebra and faithful tracial state. We begin with an inequality that allows us to avoid dealing with AAA^{*}A.

Lemma 4.1.

Let 𝒜=k=1Ndk\mathcal{B}\subseteq{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} be a unital C*-subalgebra, let τ\tau be a faithful tracial state on 𝒜{\mathcal{A}}, and let μ(0,).\mu\in(0,\infty). The following are equivalent.

  1. (1)

    CopμP𝒜τ(C)op\|C\|_{\mathrm{op}}\leqslant\mu\|P^{\tau}_{\mathcal{A}}(C)\|_{\mathrm{op}} for all positive C𝒜C\in{\mathcal{A}}.

  2. (2)

    AopμAτ,𝒜\|A\|_{\mathrm{op}}\leqslant\sqrt{\mu}\|A\|_{\tau,{\mathcal{A}}} for all A𝒜A\in{\mathcal{A}}.

Proof.

We begin with (1)(2)(1)\implies(2). Suppose CopμP𝒜τ(C)op\|C\|_{\mathrm{op}}\leqslant\mu\|P^{\tau}_{\mathcal{A}}(C)\|_{\mathrm{op}} for all positive C𝒜C\in{\mathcal{A}}. Then AAopμP𝒜τ(AA)op\|A^{*}A\|_{\mathrm{op}}\leqslant\mu\|P^{\tau}_{\mathcal{A}}(A^{*}A)\|_{\mathrm{op}} for all A𝒜A\in{\mathcal{A}}. Since AAop=Aop2\|A^{*}A\|_{\mathrm{op}}=\|A\|_{\mathrm{op}}^{2}, we see that AopμAτ,𝒜.\|A\|_{\mathrm{op}}\leqslant\sqrt{\mu}\|A\|_{\tau,{\mathcal{A}}}.

For (2)(1)(2)\implies(1), suppose that

AopμAτ,𝒜=μP𝒜τ(AA)op\|A\|_{\mathrm{op}}\leqslant\sqrt{\mu}\|A\|_{\tau,{\mathcal{A}}}=\sqrt{\mu}\sqrt{\|P^{\tau}_{\mathcal{A}}(A^{*}A)\|_{\mathrm{op}}}

for all A𝒜A\in{\mathcal{A}}. Then AAop=Aop2μP𝒜τ(AA)op\|A^{*}A\|_{\mathrm{op}}=\|A\|_{\mathrm{op}}^{2}\leqslant\mu\|P^{\tau}_{\mathcal{A}}(A^{*}A)\|_{\mathrm{op}}. Thus, CopμP𝒜τ(C)op\|C\|_{\mathrm{op}}\leqslant\mu\|P^{\tau}_{\mathcal{A}}(C)\|_{\mathrm{op}} for all positive C𝒜C\in{\mathcal{A}}. ∎

The next lemma allows us to extend our results from standard unital C*-subalgebras to all unital C*-subalgebras. The following fact is surprising since, at the end of the last section, we showed that the Frobenius–Rieffel norms are not unitarily invariant in general. Also, it can be the case that Aτ,Aτ,𝒞\|A\|_{\tau,{\mathcal{B}}}\neq\|A\|_{\tau,{\mathcal{C}}} for certain A𝒜A\in{\mathcal{A}}, but the equivalence constants are the same for uniatrily equivalent subalgebras ,𝒞𝒜{\mathcal{B}},{\mathcal{C}}\subseteq{\mathcal{A}}.

Lemma 4.2.

Let τ\tau be a faithful tracial state on 𝒜=k=1Ndk{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}, let ,𝒞𝒜{\mathcal{B}},{\mathcal{C}}\subseteq{\mathcal{A}} be unitarily equivalent (with respect to 𝒜{\mathcal{A}}) unital C*-subalgebras , and let μ(0,).\mu\in(0,\infty). The following are equivalent.

  1. (1)

    μAopAτ,\mu\|A\|_{\mathrm{op}}\leqslant\|A\|_{\tau,{\mathcal{B}}} for all A𝒜A\in{\mathcal{A}}.

  2. (2)

    μAopAτ,𝒞\mu\|A\|_{\mathrm{op}}\leqslant\|A\|_{\tau,{\mathcal{C}}} for all A𝒜A\in{\mathcal{A}}.

Proof.

The argument is symmetric, so we prove only (1)(2)(1)\implies(2). Fix an orthogonal basis β={B1,B2,,Bm}\beta=\{B_{1},B_{2},\ldots,B_{m}\} for {\mathcal{B}} with respect to τ\tau. Since U()U:𝒞U(\cdot)U^{*}:{\mathcal{B}}\rightarrow{\mathcal{C}} is a linear bijection, β={UB1U,UB2U,,UBmU}\beta^{\prime}=\{UB_{1}U^{*},UB_{2}U^{*},\ldots,UB_{m}U^{*}\} is a basis for 𝒞{\mathcal{C}}. Furthermore, if j,k[m]j,k\in[m], we have

τ((UBjU)UBkU)=τ(UBjBkU)=τ(UUBjBk)=τ(BjBk).\displaystyle\tau((UB_{j}U^{*})^{*}UB_{k}U^{*})=\tau(UB_{j}^{*}B_{k}U^{*})=\tau(U^{*}UB_{j}^{*}B_{k})=\tau(B_{j}^{*}B_{k}).

Hence, β\beta^{\prime} is an orthogonal basis for 𝒞{\mathcal{C}} with respect to τ\tau.

Now let A𝒜A\in{\mathcal{A}}. Theorem 2.6 implies that

P𝒞τ(A)\displaystyle P^{\tau}_{\mathcal{C}}(A) =i=1mτ((UBiU)A)τ((UBiU)UBiU)UBiU\displaystyle=\sum_{i=1}^{m}\frac{\tau((UB_{i}U^{*})^{*}A)}{\tau((UB_{i}U^{*})^{*}UB_{i}U^{*})}UB_{i}U^{*}
=U(i=1mτ(UBiUA)τ(BiBi)Bi)U\displaystyle=U\left(\sum_{i=1}^{m}\frac{\tau(UB_{i}^{*}U^{*}A)}{\tau(B_{i}^{*}B_{i})}B_{i}\right)U^{*}
=U(i=1mτ(UAUBi)τ(BiBi)Bi)U=UPτ(UAU)U.\displaystyle=U\left(\sum_{i=1}^{m}\frac{\tau(U^{*}AUB_{i}^{*})}{\tau(B_{i}^{*}B_{i})}B_{i}\right)U^{*}=UP^{\tau}_{\mathcal{B}}(U^{*}AU)U^{*}.

For all A𝒜A\in{\mathcal{A}},

Aτ,𝒞2\displaystyle\|A\|_{\tau,{\mathcal{C}}}^{2} =P𝒞τ(AA)op=UPτ(UAAU)Uop=Pτ(UAAU)op\displaystyle=\|P^{\tau}_{\mathcal{C}}(A^{*}A)\|_{\mathrm{op}}=\|UP^{\tau}_{\mathcal{B}}(U^{*}A^{*}AU)U^{*}\|_{\mathrm{op}}=\|P^{\tau}_{\mathcal{B}}(U^{*}A^{*}AU)\|_{\mathrm{op}}
=Pτ((AU)AU)op=AUτ,2μ2AUop2=μ2Aop2,\displaystyle=\|P^{\tau}_{\mathcal{B}}((AU)^{*}AU)\|_{\mathrm{op}}=\|AU\|^{2}_{\tau,{\mathcal{B}}}\geqslant\mu^{2}\|AU\|_{\mathrm{op}}^{2}=\mu^{2}\|A\|^{2}_{\mathrm{op}},

which completes the proof. ∎

We next present a basic lemma about positive matrices.

Lemma 4.3.

If T=ABT=A-B for some positive A,BnA,B\in{\mathcal{M}}_{n}, then Topmax{Aop,Bop}\|T\|_{\mathrm{op}}\leqslant\max\{\|A\|_{\mathrm{op}},\|B\|_{\mathrm{op}}\}.

Proof.

Since BopIBTAAopI-\|B\|_{\mathrm{op}}I\leqslant-B\leqslant T\leqslant A\leqslant\|A\|_{\mathrm{op}}I, it follows that TλInT-\lambda I_{n} is invertible if λ>Aop\lambda>\|A\|_{\mathrm{op}} or λ<Bop\lambda<-\|B\|_{\mathrm{op}}. Thus, the spectrum of the self-adjoint matrix TT is contained in the interval [Bop,Aop][-\|B\|_{\mathrm{op}},\|A\|_{\mathrm{op}}]. ∎

Lemma 4.4 is our main tool in providing equivalence constants. It is motivated by the notion of “pinching” in matrix analysis (see [3]).

Lemma 4.4.

Let XnX\in{\mathcal{M}}_{n} be positive. If P(X)P(X) is a mean of nn unitary conjugates of XX, X𝖳X^{\mathsf{T}} (the transpose of XX), or XX^{*}, one of which is XX itself, then

P(X)op1nXop.\|P(X)\|_{\mathrm{op}}\geqslant\frac{1}{n}\|X\|_{\mathrm{op}}.
Proof.

Since XX is positive, a unitary conjugate of XX, X𝖳X^{\mathsf{T}}, or XX^{*} is also positive (and has the same operator norm as XX). Suppose that

P(X)=1ni=0n1CiP(X)=\frac{1}{n}\sum_{i=0}^{n-1}C_{i}

is a mean of nn unitary conjugates CiC_{i} of XX, X𝖳X^{\mathsf{T}}, or XX^{*} and that C0=XC_{0}=X itself. Since P(X)P(X) is positive, the previous lemma ensures that

XP(X)op=n1nX1ni=1n1Ciopn1nXop.\|X-P(X)\|_{\mathrm{op}}=\left\|\frac{n-1}{n}X-\frac{1}{n}\sum_{i=1}^{n-1}C_{i}\right\|_{\mathrm{op}}\leqslant\frac{n-1}{n}\|X\|_{\mathrm{op}}.

Consequently,

P(X)op\displaystyle\|P(X)\|_{\mathrm{op}} =X+P(X)Xop\displaystyle=\|X+P(X)-X\|_{\mathrm{op}}
XopXP(X)opXopn1nXop=1nXop,\displaystyle\geqslant\|X\|_{\mathrm{op}}-\|X-P(X)\|_{\mathrm{op}}\geqslant\|X\|_{\mathrm{op}}-\frac{n-1}{n}\|X\|_{\mathrm{op}}=\frac{1}{n}\|X\|_{\mathrm{op}},

which completes the proof. ∎

We first apply this lemma to the following family of unital C*-subalgebras.

Theorem 4.5.

Let λn{\mathcal{B}}_{\lambda}\subseteq{\mathcal{M}}_{n} where λn\langle{\lambda}\vdash n\rangle and λ=(n1,n2,,nL){\lambda}=(n_{1},n_{2},\ldots,n_{L}).

If XnX\in{\mathcal{M}}_{n} is positive, then

1LXopPλ(X)op.\frac{1}{L}\|X\|_{\mathrm{op}}\leqslant\|P_{{\mathcal{B}}_{\lambda}}(X)\|_{\mathrm{op}}.

Moreover,

1LXopXλ\frac{1}{\sqrt{L}}\|X\|_{\mathrm{op}}\leqslant\|X\|_{{\mathcal{B}}_{\lambda}}

for all XnX\in{\mathcal{M}}_{n}.

Proof.

Consider the unitary U=i=1LωiIniU=\bigoplus_{i=1}^{L}\omega^{i}I_{n_{i}}, where ω\omega is a primitive LLth root of unity. Let XnX\in{\mathcal{M}}_{n}. We may write XX as blocks in the following way

X=[Xn1AXn2BXnL],X=\begin{bmatrix}X_{n_{1}}&&&A\\ &X_{n_{2}}&&\\ &&\ddots&\\ B&&&X_{n_{L}}\end{bmatrix},

where XnknkX_{n_{k}}\in{\mathcal{M}}_{n_{k}} with (Xnk)i,j=Xi+n1++nk1,j+n1++nk1(X_{n_{k}})_{i,j}=X_{i+n_{1}+\cdots+n_{k-1},\ j+n_{1}+\cdots+n_{k-1}} for each k{1,2,,L},k\in\{1,2,\ldots,L\}, and i,j{1,2,,nk}i,j\in\{1,2,\ldots,n_{k}\}, and AA and BB denote the remaining entries of XX. By Theorem 3.15, it follows that

Pλ(X)=[Xn10Xn20XnL].P_{{\mathcal{B}}_{\lambda}}(X)=\begin{bmatrix}X_{n_{1}}&&&0\\ &X_{n_{2}}&&\\ &&\ddots&\\ 0&&&X_{n_{L}}\end{bmatrix}.

On the other hand, a direct computation shows that

1Li=0L1UiXUi=[Xn10Xn20XnL].\frac{1}{L}\sum_{i=0}^{L-1}U^{i}XU^{*i}=\begin{bmatrix}X_{n_{1}}&&&0\\ &X_{n_{2}}&&\\ &&\ddots&\\ 0&&&X_{n_{L}}\end{bmatrix}.

Hence, Pλ(X)=1Li=0L1UiXUiP_{{\mathcal{B}}_{\lambda}}(X)=\frac{1}{L}\sum_{i=0}^{L-1}U^{i}XU^{*i}. By Lemma 4.4, we have that Pλ(X)op(1/L)Xop\|P_{{\mathcal{B}}_{\lambda}}(X)\|_{\mathrm{op}}\geqslant(1/L)\|X\|_{\mathrm{op}}.

By Lemma 4.1, we have

1LXopXλ\frac{1}{\sqrt{L}}\|X\|_{\mathrm{op}}\leqslant\|X\|_{{\mathcal{B}}_{\lambda}}

for all XnX\in{\mathcal{M}}_{n}. ∎

We can now use the ideas from Theorem 4.5 to calculate equivalence constants for a subalgebra of the form λ{\mathcal{B}}_{\lambda} for arbitrary λ{\lambda} (Definition 3.2). The idea of the proof is as follows. Assume we want to project a matrix of the form

X=[A1,1A1,2A1,3A2,1A2,2A2,3A3,1A3,2A3,3]X=\begin{bmatrix}A_{1,1}&A_{1,2}&A_{1,3}\\ A_{2,1}&A_{2,2}&A_{2,3}\\ A_{3,1}&A_{3,2}&A_{3,3}\end{bmatrix}

onto the subalgebra of matrices of the form

[B000B000C].\begin{bmatrix}B&0&0\\ 0&B&0\\ 0&0&C\end{bmatrix}.

We can do this in two steps. First project XX onto

Y=[A1,1000A2,2000A3,3],Y=\begin{bmatrix}A_{1,1}&0&0\\ 0&A_{2,2}&0\\ 0&0&A_{3,3}\end{bmatrix},

which is the setting of Theorem 4.5. Then project YY onto

[M000M000A3,3].\begin{bmatrix}M&0&0\\ 0&M&0\\ 0&0&A_{3,3}\end{bmatrix}.

The proof of the next theorem shows how we can represent this final projection using a mean of unitary conjugates, which allows us to utilize Lemma 4.4 as done in the proof of Theorem 4.5. The reason for this two-step approach is that it does not seem feasible to represent the projection directly onto the desired subaglebra as a mean of unitary conjugates.

Theorem 4.6.

Consider λn{\mathcal{B}}_{\lambda}\subseteq{\mathcal{M}}_{n} such that λn\langle{\lambda}\vdash n\rangle, where λ=(n1m1,n2m2,,nLmL){\lambda}=(n_{1}^{m_{1}},n_{2}^{m_{2}},\ldots,n_{L}^{m_{L}}). Set r=i=1Lmir=\sum_{i=1}^{L}m_{i} and =lcm{m1,m2,mL}\ell=\mathrm{lcm}\{m_{1},m_{2},\ldots m_{L}\}. If XnX\in{\mathcal{M}}_{n} is positive, then

Pλ(X)op1rXop.\|P_{{\mathcal{B}}_{\lambda}}(X)\|_{\mathrm{op}}\geqslant\frac{1}{r\ell}\|X\|_{\mathrm{op}}.

Moreover,

Xop1rXop\|X\|_{\mathrm{op}}\geqslant\frac{1}{\sqrt{r\ell}}\|X\|_{\mathrm{op}}

for all Xn.X\in{\mathcal{M}}_{n}.

Proof.

We write PλP_{{\mathcal{B}}_{\lambda}} as the composition of two maps. For each i[r]i\in[r], set

(4.1) ei={n1if 1im1,njif 2jL and 1+p=1j1mpip=1jmp,e_{i}=\begin{cases}n_{1}&\text{if }1\leqslant i\leqslant m_{1},\\ n_{j}&\text{if }2\leqslant j\leqslant L\text{ and }1+\sum_{p=1}^{j-1}m_{p}\leqslant i\leqslant\sum_{p=1}^{j}m_{p},\end{cases}

that is, e1=n1,e2=n1,,em1=n1e_{1}=n_{1},\ \ e_{2}=n_{1},\ \ldots,\ \ e_{m_{1}}=n_{1}, and

em1+1=n2,em1+2=n2,,em1+m2=n2,e_{m_{1}+1}=n_{2},\ \ e_{m_{1}+2}=n_{2},\ \ldots,\ \ e_{m_{1}+m_{2}}=n_{2},

etc. Now set λ=(e1,e2,er){\lambda}^{\prime}=(e_{1},e_{2}\ldots,e_{r}) and note that λn\langle{\lambda}^{\prime}\vdash n\rangle. By Theorem 4.5, we have Pλ(X)op(1/r)Xop\|P_{{\mathcal{B}}_{{\lambda}^{\prime}}}(X)\|_{\mathrm{op}}\geqslant(1/r)\|X\|_{\mathrm{op}} for all positive XnX\in{\mathcal{M}}_{n}.

For each i[L],i\in[L], let Vj,iV_{j,i} to be the nimi×nimin_{i}m_{i}\times n_{i}m_{i} circulant matrix with all zeros in the first row, except for a 11 in the (1+jni)(1+jn_{i})th position for j0,1,,mi1.j\in 0,1,\ldots,m_{i}-1. Then we define Vj=i=1kV(jmodmi),iV_{j}=\bigoplus_{i=1}^{k}V_{(j\mod m_{i}),i} for j=0,1,,1j=0,1,\ldots,\ell-1 where =lcm{m1,m2,mL}.\ell=\mathrm{lcm}\{m_{1},m_{2}\ldots,m_{L}\}. For any positive XnX\in{\mathcal{M}}_{n}, define

Q(X)=1lj=1l1VjXVj.Q(X)=\frac{1}{l}\sum_{j=1}^{l-1}V_{j}XV_{j}^{*}.

By Lemma 4.4 Q(X)op(1/)Xop\|Q(X)\|_{\mathrm{op}}\geqslant(1/\ell)\|X\|_{\mathrm{op}} for all positive XnX\in{\mathcal{M}}_{n}. Then, a direct computation along with Theorem 3.15 provides that Pλ(X)=Q(Pλ(X))P_{{\mathcal{B}}_{\lambda}}(X)=Q(P_{{\mathcal{B}}_{{\lambda}^{\prime}}}(X)), which gives us

Pλ(X)op1rXop,\|P_{{\mathcal{B}}_{\lambda}}(X)\|_{\mathrm{op}}\geqslant\frac{1}{r\ell}\|X\|_{\mathrm{op}},

for any positive Xn.X\in{\mathcal{M}}_{n}. The rest follows from Lemma 4.1. ∎

Example 4.7.

We calculate the values of r,r,\ell for the following subalgebras of 5.{\mathcal{M}}_{5}.

For 3,25{\mathcal{B}}^{5}_{3,2}, we have r=1+1=2r=1+1=2 and =lcm{1,1}=1\ell=\mathrm{lcm}\{1,1\}=1. Thus r=2r\ell=2.

For 22,15{\mathcal{B}}^{5}_{2^{2},1}, we have r=2+1=3r=2+1=3 and =lcm{2,1}=2\ell=\mathrm{lcm}\{2,1\}=2. Thus r=6r\ell=6.

For 2,12,15{\mathcal{B}}^{5}_{2,1^{2},1}, we have r=1+2+1=4r=1+2+1=4 and =lcm{1,2,1}=2\ell=\mathrm{lcm}\{1,2,1\}=2. Thus r=8r\ell=8.

For 2,135{\mathcal{B}}^{5}_{2,1^{3}}, we have r=1+3=4r=1+3=4 and =lcm{1,3}=3\ell=\mathrm{lcm}\{1,3\}=3. Thus r=12r\ell=12.

We also note that for the subalgebra 13,144{\mathcal{B}}^{4}_{1^{3},1}\subseteq{\mathcal{M}}_{4}, we have r=3+1=4r=3+1=4, =lcm{3,1}=3\ell=\mathrm{lcm}\{3,1\}=3, and r=12.r\ell=12.

Thus, combining Theorem 4.6 with Lemma 4.2 and Theorem 3.9, we have found equivalence constants for Frobenius–Rieffel norms constructed from any unital C*-subalgebra of n{\mathcal{M}}_{n} built from natural structure (the dimensions of the terms of the block diagonals of the given subalgebra).

Table 1 outlines the equivalence constants for all unital *-subalgebras of n{\mathcal{M}}_{n} for 1n51\leqslant n\leqslant 5. The second column contains equivalence constants suggested by brute force using software (this was done by making software calculate the operator and Frobenius–Rieffel norms of many matrices, and then making a guess), which we think might be the sharp equivalence constants. The third column contains the theoretical equivalence constant found in Theorems 4.5, 4.6. Our goal in this paper is not to find the sharp equivalence constants, but just explicit ones that afford us some continuity results as mentioned in the first section. It remains an open question to find the sharp constants, and this table suggests that we may have found the sharpest constants in some cases.

Algebra Guess of Sharp Equiv. Const. Theorem 4.6 Equiv. Const.
2,13{\mathcal{B}}^{3}_{2,1} 1/21/\sqrt{2} 1/21/\sqrt{2}
12,13{\mathcal{B}}^{3}_{1^{2},1} 1/31/\sqrt{3} 1/61/\sqrt{6}
2,24{\mathcal{B}}^{4}_{2,2} 1/21/\sqrt{2} 1/21/\sqrt{2}
224{\mathcal{B}}^{4}_{2^{2}} 1/41/\sqrt{4} 1/41/\sqrt{4}
2,1,14{\mathcal{B}}^{4}_{2,1,1} 1/31/\sqrt{3} 1/31/\sqrt{3}
2,124{\mathcal{B}}^{4}_{2,1^{2}} 1/31/\sqrt{3} 1/61/\sqrt{6}
13,14{\mathcal{B}}^{4}_{1^{3},1} 1/41/\sqrt{4} 1/121/\sqrt{12}
12,1,14{\mathcal{B}}^{4}_{1^{2},1,1} 1/41/\sqrt{4} 1/81/\sqrt{8}
3,25{\mathcal{B}}^{5}_{3,2} 1/21/\sqrt{2} 1/21/\sqrt{2}
2,2,15{\mathcal{B}}^{5}_{2,2,1} 1/31/\sqrt{3} 1/31/\sqrt{3}
22,15{\mathcal{B}}^{5}_{2^{2},1} 1/41/\sqrt{4} 1/61/\sqrt{6}
3,1,15{\mathcal{B}}^{5}_{3,1,1} 1/31/\sqrt{3} 1/31/\sqrt{3}
3,125{\mathcal{B}}^{5}_{3,1^{2}} 1/31/\sqrt{3} 1/61/\sqrt{6}
2,1,1,15{\mathcal{B}}^{5}_{2,1,1,1} 1/41/\sqrt{4} 1/31/\sqrt{3}
2,135{\mathcal{B}}^{5}_{2,1^{3}} 1/41/\sqrt{4} 1/121/\sqrt{12}
2,12,15{\mathcal{B}}^{5}_{2,1^{2},1} 1/41/\sqrt{4} 1/81/\sqrt{8}
Table 1. Theorem 4.6 equivalence constants and guesses of sharp equivalence constants

4.1. The general case

We now study the case of k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}, which is much more involved for two main reasons. First, as seen in Example 3.11, the canonical basis elements for standard unital C*-subalgebras of k=1Ndk\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} can have non-zero terms in multiple summands, which requires more bookkeeping than the previous section. Second, the Frobenius–Rieffel norms now vary on an extra parameter: the faithful tracial state. In the n{\mathcal{M}}_{n} case, the only faithful tracial state is 1nTr\frac{1}{n}\mathrm{Tr}, so this was not an issue. For instance, consider 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} and the subalgebra

={diag(μ,ν)diag(μ,μ):μ,ν}.{\mathcal{B}}=\{\mathrm{diag}(\mu,\nu)\oplus\mathrm{diag}(\mu,\mu):\mu,\nu\in{\mathds{C}}\}.

To build a Frobenius–Rieffel norm on 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} with respect to {\mathcal{B}}, we also need a faithful tracial state on 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2}. We could take τ(1/4,3/4)\tau_{(1/4,3/4)} on 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} (see Example 2.4). Hence, taking into account the expression for the associated conditional expectation of Theorem 3.15, we need to keep track of how the coefficients 1/41/4 and 3/43/4 impact the construction of the Frobenius–Rieffel norm since μ\mu appears in both summands. Thus, we cannot simply view {\mathcal{B}} as a subalgebra of 4{\mathcal{M}}_{4} and proceed to use the previous section since we would lose track of the weights since 4{\mathcal{M}}_{4} has a unique faithful tracial state. The following definition environment allows us to collect all the terms that we use to find our equivalence constants in this much more involved setting. We note that we generalize the constants r,r,\ell from Theorem 4.6.

Definition 4.8.

Let 𝒜=k=1Ndk{\mathcal{B}}\subseteq{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} be a standard unital C*-subalgebra, where for each k[N]k\in[N], we have pk()=λkdkp_{k}({\mathcal{B}})={\mathcal{B}}^{d_{k}}_{{\lambda}_{k}} with λkdk\langle{\lambda}_{k}\vdash d_{k}\rangle. We denote 𝐦λk=(mk,1,mk,2,,mk,Lk)\mathbf{m}_{{\lambda}_{k}}=(m_{k,1},m_{k,2},\ldots,m_{k,L_{k}}) and 𝐧λk=(nk,1,nk,2,,nk,Lk)\mathbf{n}_{{\lambda}_{k}}=(n_{k,1},n_{k,2},\ldots,n_{k,L_{k}}).

Next, we collect the data we need associated to a given faithful tracial state. Let 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N} such that k=1Nvk=1\sum_{k=1}^{N}v_{k}=1, and let {b1,b2,,bM}\{b_{1},b_{2},\ldots,b_{M}\} be the canonical orthogonal basis for {\mathcal{B}} given by matrix units.

Define:

  1. (1)

    =lcm{mk,i:k[N],i[Lk]}\ell=\mathrm{lcm}\left\{m_{k,i}:k\in[N],i\in[L_{k}]\right\},

  2. (2)

    r=lcm{r1,r2,rN}r=\mathrm{lcm}\{r_{1},r_{2}\ldots,r_{N}\}, where rkr_{k} is the number of blocks of {\mathcal{B}} in the kkth summand of 𝒜{\mathcal{A}} for each k[N]k\in[N],

  3. (3)

    m=lcm{mb1,,mbM}m=\mathrm{lcm}\{m_{b_{1}},\ldots,m_{b_{M}}\}, where mbim_{b_{i}} is the number of nonzero entries of the basis element bib_{i} for each i[M]i\in[M],

  4. (4)

    α=min{vkdk:k[N]},\alpha=\min\left\{\frac{v_{k}}{d_{k}}:k\in[N]\right\}, and

  5. (5)

    γ=max{k=1Nρk,ivkdk:i[M]}\gamma=\max\left\{\sum_{k=1}^{N}\frac{\rho_{k,i}v_{k}}{d_{k}}:i\in[M]\right\}, where ρk,i\rho_{k,i} is the number of times there is a nonzero entry of bib_{i} in the kkth summand of 𝒜{\mathcal{A}} for each i[M]i\in[M] and k[N].k\in[N].

First, we tackle the subalgebras of the form 𝒞{\mathcal{C}}_{\mathcal{B}} in Definition 3.6, which recovers Theorem 4.6 when N=1N=1.

Theorem 4.9.

Consider 𝒜=k=1Ndk{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}. For each k[N]k\in[N], consider λkdk{\mathcal{B}}_{{\lambda}_{k}}\subseteq{\mathcal{M}}_{d_{k}} such that λkdk\langle{\lambda}_{k}\vdash d_{k}\rangle. Set

=k=1Nλk.{\mathcal{B}}=\bigoplus_{k=1}^{N}{\mathcal{B}}_{{\lambda}_{k}}.

Let 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N} such that k=1Nvk=1\sum_{k=1}^{N}v_{k}=1. If X𝒜X\in{\mathcal{A}} is positive, then

P𝐯(X)op1rXop,\|P^{\mathbf{v}}_{\mathcal{B}}(X)\|_{\mathrm{op}}\geqslant\frac{1}{r\ell}\|X\|_{\mathrm{op}},

and, moreover,

1rXopX𝐯,\frac{1}{\sqrt{r\ell}}\|X\|_{\mathrm{op}}\leqslant\|X\|_{\mathbf{v},{\mathcal{B}}}

for all X𝒜X\in{\mathcal{A}}.

Proof.

For each BβB\in\beta_{\mathcal{B}}, let kB[N]k_{B}\in[N] be the summand where BB has a non-zero entry. Theorem 3.15 implies that

P𝐯(A)=Bβ(i,j)ΨB,kBAi,j(kB)|ΨB,kB|BP^{\mathbf{v}}_{{\mathcal{B}}}(A)=\sum_{B\in\beta_{\mathcal{B}}}\frac{\sum_{(i,j)\in\Psi_{B,k_{B}}}A_{i,j}^{\left({k_{B}}\right)}}{|\Psi_{B,k_{B}}|}B

for all A𝒜.A\in{\mathcal{A}}.

We recover P𝐯P^{\mathbf{v}}_{{\mathcal{B}}} using a mean of unitary conjugates in two steps. Let k[N]k\in[N]. Suppose the iith block of λk{\mathcal{B}}_{{\lambda}_{k}} has dimension (ei(k))2(e^{(k)}_{i})^{2} (see Expression (4.1)). Set λk=(e1(k),e2(k),,erk(k)){\lambda}_{k}^{\prime}=(e^{(k)}_{1},e^{(k)}_{2},\ldots,e^{(k)}_{r_{k}}) and note that λkdk\langle{\lambda}_{k}^{\prime}\vdash d_{k}\rangle. Then, let

U(k)=i=1rkωiIei(k),U^{(k)}=\bigoplus_{i=1}^{r_{k}}\omega^{i}I_{e^{(k)}_{{i}}},

where ω\omega is a primitive rkr_{k}th root of unity.

Note that U=(U(1),,U(N))U=(U^{(1)},\ldots,U^{(N)}) is unitary as each U(k)U^{(k)} is unitary. We then define P1:k=1N𝒜k=1NλkP_{1}:\bigoplus_{k=1}^{N}{\mathcal{A}}\rightarrow\bigoplus_{k=1}^{N}{\mathcal{B}}_{{\lambda}_{k}^{\prime}} by

P1(X)=k=1N1ri=0r1(U(k))i mod rkX(k)((U(k)))i mod rk,P_{1}\left(X\right)=\bigoplus_{k=1}^{N}\frac{1}{r}\sum_{i=0}^{r-1}\left(U^{(k)}\right)^{i\text{ mod }r_{k}}X^{(k)}\left(\left(U^{(k)}\right)^{*}\right)^{i\text{ mod }r_{k}},

where i mod rk{0,1,,rk1}.i\text{ mod }r_{k}\in\{0,1,\ldots,r_{k}-1\}. By Lemma 4.4, we have P1(X)op(1/r)Xop\|P_{1}(X)\|_{\mathrm{op}}\geqslant(1/r)\|X\|_{\mathrm{op}}.

Using the convention for 𝐦λk,𝐧λk\mathbf{m}_{{\lambda}_{k}},\mathbf{n}_{{\lambda}_{k}} in Notation 4.8, we then define, for k[N],i[Lk]k\in[N],i\in[L_{k}], the matrix Vk,j,iV_{k,j,i} to be the nk,imk,i×nk,imk,in_{k,i}m_{k,i}\times n_{k,i}m_{k,i} circulant matrix with all zeros in the first row, except for a 11 in the (1+jnk,i)(1+jn_{k,i})th position for 0jmk,i10\leqslant j\leqslant m_{k,i}-1. Set Vj(k)=i=1LkVk,(j mod mk,i),iV_{j}^{(k)}=\bigoplus_{i=1}^{L_{k}}V_{k,(j\text{ mod }m_{k,i}),i} for j=0,,1j=0,\ldots,\ell-1, and let

Vj=(Vj(1),,Vj(N)).V_{j}=\left(V_{j}^{(1)},\ldots,V_{j}^{(N)}\right).

Then define P2:k=1NλkP_{2}:\bigoplus_{k=1}^{N}{\mathcal{B}}_{{\lambda}_{k}^{\prime}}\rightarrow{\mathcal{B}} by

P2(X)=1j=01VjXVj.P_{2}(X)=\frac{1}{\ell}\sum_{j=0}^{\ell-1}V_{j}XV_{j}^{*}.

Since V0=IV_{0}=I, we know P2(X)op(1/)Xop\|P_{2}(X)\|_{\mathrm{op}}\geqslant(1/\ell)\|X\|_{\mathrm{op}} by Lemma 4.4. We also have that P𝐯=P2P1P^{\mathbf{v}}_{\mathcal{B}}=P_{2}\circ P_{1} by construction. Hence

P𝐯(X)op1rXop,\|P^{\mathbf{v}}_{\mathcal{B}}(X)\|_{\mathrm{op}}\geqslant\frac{1}{r\ell}\|X\|_{\mathrm{op}},

which completes the proof by Lemma 4.1. ∎

The values of 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N} do not appear in the calculations above. This makes sense because the case of Theorem 4.9 is essentially the case when N=1N=1 since the non-zero entries of a basis element do not appear in multiple summands, and so the different coordinates of vv do not appear and we simply work with k=1Nvk=1\sum_{k=1}^{N}v_{k}=1. Thus, we now move towards the case when the non-zero entries of our basis elements can appear in multiple summands, such as in Example 3.7 and as in the subalgebras defined before Theorem 5.2. To provide intuition for the following proof, we revisit the example at the beginning of the section. Consider 22{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} and the C*-subalgebra

={diag(μ,ν)diag(μ,μ):μ,ν}.{\mathcal{B}}=\{\mathrm{diag}(\mu,\nu)\oplus\mathrm{diag}(\mu,\mu):\mu,\nu\in{\mathds{C}}\}.

The first step of the following proof is to project an AB22A\oplus B\in{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2} onto an element of the form diag(a,b)diag(c,d)22\mathrm{diag}(a,b)\oplus\mathrm{diag}(c,d)\in{\mathcal{M}}_{2}\oplus{\mathcal{M}}_{2}. Next, in order to project diag(a,b)diag(c,d)\mathrm{diag}(a,b)\oplus\mathrm{diag}(c,d) into {\mathcal{B}}, we view diag(a,b)diag(c,d)\mathrm{diag}(a,b)\oplus\mathrm{diag}(c,d) as diag(a,b,c,d)4\mathrm{diag}(a,b,c,d)\in{\mathcal{M}}_{4} and we view elements of {\mathcal{B}} as diag(μ,ν,μ,μ)\mathrm{diag}(\mu,\nu,\mu,\mu). Then we use a mean of unitary conjugates in 4{\mathcal{M}}_{4} to project diag(a,b,c,d)\mathrm{diag}(a,b,c,d) to an element of the form diag(μ,ν,μ,μ)\mathrm{diag}(\mu,\nu,\mu,\mu), which is an element in {\mathcal{B}}. To form the unitaries, begin with W1=I4W_{1}=I_{4}. Next, since the (1,1)(1,1)-entry in diag(μ,ν,μ,μ)\mathrm{diag}(\mu,\nu,\mu,\mu) repeats in the (3,3)(3,3)-entry and (4,4)(4,4)-entry, we permute the first, third, and fourth column of W1=I4W_{1}=I_{4} two times to get two more unitaries

W2=[0010010000011000] and W3=[0001010010000010].W_{2}=\begin{bmatrix}0&0&1&0\\ 0&1&0&0\\ 0&0&0&1\\ 1&0&0&0\end{bmatrix}\quad\quad\text{ and }\quad\quad W_{3}=\begin{bmatrix}0&0&0&1\\ 0&1&0&0\\ 1&0&0&0\\ 0&0&1&0\end{bmatrix}.

If we permute these columns one more time, then we obtain I4I_{4}. Note that

i=13Widiag(a,b,c,d)Wi.\sum_{i=1}^{3}W_{i}\mathrm{diag}(a,b,c,d)W_{i}^{*}\in{\mathcal{B}}.

Using Definition 4.8, note that m=lcm{3,1}=3m=\mathrm{lcm}\{3,1\}=3 since the standard basis elements of {\mathcal{B}} are diag(1,0,1,1)\mathrm{diag}(1,0,1,1) and diag(0,1,0,0)\mathrm{diag}(0,1,0,0).

Theorem 4.10.

Let 𝐯=(v1,v2,,vN)(0,1)N\mathbf{v}=(v_{1},v_{2},\ldots,v_{N})\in(0,1)^{N} such that k=1Nvk=1\sum_{k=1}^{N}v_{k}=1. Let {\mathcal{B}} be a standard unital C*-subalgebra of 𝒜=k=1Ndk{\mathcal{A}}=\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}. If X𝒜X\in{\mathcal{A}} is positive, then

αrmγXopP𝐯(X)op,\frac{\alpha}{r\ell m\gamma}\|X\|_{\mathrm{op}}\leqslant\|P_{\mathcal{B}}^{\mathbf{v}}(X)\|_{\mathrm{op}},

and, moreover,

αrmγXopX𝐯,\frac{\sqrt{\alpha}}{\sqrt{r\ell m\gamma}}\|X\|_{\mathrm{op}}\leqslant\|X\|_{\mathbf{v},{\mathcal{B}}}

for all X𝒜X\in{\mathcal{A}}.

Proof.

For 𝒞\mathcal{C}_{\mathcal{B}} as defined in Definition 3.6, we have P𝒞𝐯(X)op(1/(r))Xop\|P^{\mathbf{v}}_{\mathcal{C}_{\mathcal{B}}}(X)\|_{\mathrm{op}}\geqslant(1/(r\ell))\|X\|_{\mathrm{op}} for positive X𝒜X\in{\mathcal{A}} by Theorem 4.9.

We then define

P(X)=k=1NvkakP𝒞𝐯(X)(k),P^{\prime}(X)=\bigoplus_{k=1}^{N}\frac{v_{k}}{a_{k}}P_{\mathcal{C}_{\mathcal{B}}}^{\mathbf{v}}(X)^{(k)},

which gives us P(X)opαrXop\|P^{\prime}(X)\|_{\mathrm{op}}\geqslant\frac{\alpha}{r\ell}\|X\|_{\mathrm{op}} for all positive Xk=1NdkX\in\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}}.

Suppose ek2e_{k}^{2} is the dimension of the kkth block of {\mathcal{B}} and bb is the total number of blocks of {\mathcal{B}}. For the following, we view {\mathcal{B}} and 𝒜{\mathcal{A}} as subalgebras of d{\mathcal{M}}_{d}, where d=k=1Ndkd=\sum_{k=1}^{N}d_{k}. Let

W1=k=1bIek=Id.W_{1}=\bigoplus_{k=1}^{b}I_{e_{k}}=I_{d}.

We construct W2W_{2} by permuting the blocks of W1W_{1} in the following way. If the kkth block of {\mathcal{B}} is not repeated, then fix IekI_{e_{k}}. Next, assume that the kkth block of {\mathcal{B}} is repeated and that the kkth block is the first position this repeated block appears. Assume that the jjth block is the next block to the right that the the kkth block is repeated. Then IekI_{e_{k}} stays in the same rows it occupied in W1W_{1}, but its columns permute to the columns (in d{\mathcal{M}}_{d}) of the jjth block in {\mathcal{B}}. If the jjth block is repeated, then repeat this process with IejI_{e_{j}}. However, if the jjth block is not repeated, then permute the columns IejI_{e_{j}} to the columns of the kkth block. Continue in this way until all blocks are either permuted or fixed depending on repetition or lack thereof, which gives us W2W_{2}. Repeat this process to make W3,W4,,WmW_{3},W_{4},\ldots,W_{m}, where mm is defined in (3) of Definition 4.8 (see the example before the statement of the theorem). Note that Wm+1=IdW_{m+1}=I_{d}. Define f:𝒞f:\mathcal{C}_{\mathcal{B}}\rightarrow{\mathcal{B}} by

f(X)=1mi=1mWiXWi,f(X)=\frac{1}{m}\sum_{i=1}^{m}W_{i}XW_{i}^{*},

which satisfies

f(P(X))opαrmXop\|f(P^{\prime}(X))\|_{\mathrm{op}}\geqslant\frac{\alpha}{r\ell m}\|X\|_{\mathrm{op}}

for all positive X𝒞X\in{\mathcal{C}}_{\mathcal{B}} by Lemma 4.4.

Finally, by Theorem 3.15 and a direct computation, we have that

P𝐯(X)op=1γf(P(X))op.\|P^{\mathbf{v}}_{\mathcal{B}}(X)\|_{\mathrm{op}}=\frac{1}{\gamma}\|f(P^{\prime}(X))\|_{\mathrm{op}}.

We conclude that

P𝐯(X)opαrmγXop\|P^{\mathbf{v}}_{\mathcal{B}}(X)\|_{\mathrm{op}}\geqslant\frac{\alpha}{r\ell m\gamma}\|X\|_{\mathrm{op}}

for all positive X𝒜X\in{\mathcal{A}}. Lemma 4.1 completes the proof. ∎

We can use the previous theorem to find equivalence constants for all unital *-subalgebras k=1Ndk{\mathcal{B}}\subseteq\bigoplus_{k=1}^{N}{\mathcal{M}}_{d_{k}} by Lemma 4.2.

5. An application to Effros–Shen algebras

To finish, we now apply our main result to the finite-dimensional C*-algebras in the inductive sequence used by Effros and Shen in the construction of their AF algebras from the continued fraction expansion of irrational numbers [7, Section VI.3], [8]. These algebras provide a suitable example to test our results. Indeed, in [2], it was shown that the Effros–Shen algebras vary continuously with respect to their irrational parameters in a noncommutative analogue to the Gromov–Hausdorff distance, called the dual Gromov–Hausdorff propinquity [15]. A crucial part of this result is the fact that each Effros–Shen algebra comes equipped with a unique faithful tracial state and that the faithful tracial states themselves vary continuously with respect to the irrational parameters. Therefore, to test our results in the previous section, we will see that for the Frobenius–Rieffel norms that are built from these faithful tracial states, this continuity passes through to the equivalence constants. This further displays how far-reaching the information of the irrational parameters appears in structures related to the Effros–Shen algebras.

First, given an irrational θ(0,1)\theta\in(0,1), the Effros–Shen algebras are built using the continued fraction expansion of θ\theta. The continuity results in [2] were established using the Baire space, a metric space that is homeomorphic to (0,1)(0,1)\setminus{\mathds{Q}} with its usual topology. The Baire space is the set of positive integer sequences, which is in one-to-one correspondence with (0,1)(0,1)\setminus{\mathds{Q}} via the continued fraction expansion, equipped with the Baire metric. We begin reviewing continued fractions and the Baire space. Background on continued fractions can be found in many introductory number theory texts, such as [9].

Let θ\theta\in{\mathds{R}} be irrational. There exists a unique sequence of integers (rnθ)n0(r^{\theta}_{n})_{n\in{\mathds{N}}_{0}} (where 0={0}{\mathds{N}}_{0}=\{0\}\cup{\mathds{N}}) with rnθ>0r^{\theta}_{n}>0 for all nn\in{\mathds{N}} such that

θ=limnr0θ+1r1θ+1r2θ+1r3θ+1+1rnθ.\theta=\lim_{n\to\infty}r_{0}^{\theta}+\cfrac{1}{r^{\theta}_{1}+\cfrac{1}{r^{\theta}_{2}+\cfrac{1}{r^{\theta}_{3}+\cfrac{1}{\ddots+\cfrac{1}{r^{\theta}_{n}}}}}}.

When θ(0,1)\theta\in(0,1), we have that r0θ=0r^{\theta}_{0}=0. The sequence (rnθ)n0(r^{\theta}_{n})_{n\in{\mathds{N}}_{0}} is called the continued fraction expansion of θ\theta.

To define the Baire space, first let 𝒩\mathcal{N} denote the set of positive integer sequences. The Baire metric dBd_{B} on 𝒩\mathcal{N} is defined by

dB(x,y)={0 if x=y,2min{n:xnyn} if xy.d_{B}(x,y)=\begin{cases}0&\text{ if }x=y,\\ 2^{-\min\{n\in{\mathds{N}}:x_{n}\neq y_{n}\}}&\text{ if }x\neq y.\end{cases}

The metric space (𝒩,dB)(\mathcal{N},d_{B}) is the Baire space. In particular, the distance in the Baire metric between two positive integer sequences is less than 2n2^{-n} if and only if their terms agree up to nn. We now state the following well-known result in the descriptive set theory literature.

Proposition 5.1 (​[2, Proposition 5.10]).

The map

θ(0,1)(rnθ)n𝒩\theta\in(0,1)\setminus{\mathds{Q}}\mapsto(r^{\theta}_{n})_{n\in{\mathds{N}}}\in\mathcal{N}

is a homeomorphism with respect to the usual topology on {\mathds{R}} and the Baire metric.

Thus, convergence of a sequence of irrationals to an irrational in the usual topology on {\mathds{R}} can be expressed in terms of their continued fraction expansions using the topology induced by the Baire metric.

Next, we define the finite-dimensional C*-subalgebras of the Effros–Shen algebras. For each nn\in{\mathds{N}}, define

p0θ=r0θ,p1θ=1 and q0θ=1,q1θ=r1θp_{0}^{\theta}=r_{0}^{\theta},\quad p_{1}^{\theta}=1\quad\text{ and }\quad q_{0}^{\theta}=1,\quad q_{1}^{\theta}=r^{\theta}_{1}

and set

pn+1θ=rn+1θpnθ+pn1θp_{n+1}^{\theta}=r^{\theta}_{n+1}p_{n}^{\theta}+p_{n-1}^{\theta}

and

qn+1θ=rn+1θqnθ+qn1θ.q_{n+1}^{\theta}=r^{\theta}_{n+1}q_{n}^{\theta}+q_{n-1}^{\theta}.

The sequence (pnθ/qnθ)n0\left(p_{n}^{\theta}/q_{n}^{\theta}\right)_{n\in\mathbb{N}_{0}} of convergents pnθ/qnθp^{\theta}_{n}/q^{\theta}_{n} converges to θ\theta. In fact, for each nn\in{\mathds{N}},

pnθqnθ=r0θ+1r1θ+1r2θ+1r3θ+1+1rnθ.\frac{p_{n}^{\theta}}{q_{n}^{\theta}}=r_{0}^{\theta}+\cfrac{1}{r^{\theta}_{1}+\cfrac{1}{r^{\theta}_{2}+\cfrac{1}{r^{\theta}_{3}+\cfrac{1}{\ddots+\cfrac{1}{r^{\theta}_{n}}}}}}.

We now define the C*-algebras with which we endow Frobenius–Rieffel norms. We set 𝒜θ,0=\mathcal{A}_{\theta,0}=\mathbb{C} and, for each n0n\in\mathbb{N}_{0}, we set

𝒜θ,n=qnθqn1θ.\mathcal{A}_{\theta,n}={\mathcal{M}}_{q_{n}^{\theta}}\oplus{\mathcal{M}}_{q_{n-1}^{\theta}}.

For the subalgebras, define

(5.1) αθ,n:AB𝒜θ,ndiag(A,,A,B)A𝒜θ,n+1,\alpha_{\theta,n}:A\oplus B\in\mathcal{A}_{\theta,n}\mapsto\mathrm{diag}\left(A,\ldots,A,B\right)\oplus A\in\mathcal{A}_{\theta,n+1},

where there are rn+1θr^{\theta}_{n+1} copies of AA on the diagonal in the first summand of 𝒜θ,n+1\mathcal{A}_{\theta,n+1}. This is a unital *-monomorphism by construction. For n=0n=0,

αθ,0:λ𝒜θ,0diag(λ,,λ)λ𝒜θ,1.\alpha_{\theta,0}:\lambda\in\mathcal{A}_{\theta,0}\mapsto\mathrm{diag}(\lambda,\ldots,\lambda)\oplus\lambda\ \in\mathcal{A}_{\theta,1}.

For each n0n\in\mathbb{N}_{0}, set

θ,n+1=αθ,n(𝒜θ,n),\mathcal{B}_{\theta,n+1}=\alpha_{\theta,n}(\mathcal{A}_{\theta,n}),

which is a standard unital C*-subalgebra of 𝒜θ,n+1\mathcal{A}_{\theta,n+1}.

To complete the construction of the Frobenius–Rieffel norm, we need to define a faithful tracial state. We begin with

t(θ,n)=(1)n1qnθ(θqn1θpn1θ)(0,1).t(\theta,n)=(-1)^{n-1}q_{n}^{\theta}(\theta q_{n-1}^{\theta}-p_{n-1}^{\theta})\in(0,1).

Then set

𝐯θ,n=(t(θ,n),1t(θ,n)),\mathbf{v}_{\theta,n}=(t(\theta,n),1-t(\theta,n)),

so for all (A,B)𝒜θ,n(A,B)\in\mathcal{A}_{\theta,n}, we have

τvθ,n(A,B)=t(θ,n)1qnθTr(A)+(1t(θ,n))1qn1θTr(B).\tau_{v_{\theta,n}}(A,B)=t(\theta,n)\frac{1}{q_{n}^{\theta}}\mathrm{Tr}(A)+(1-t(\theta,n))\frac{1}{q_{n-1}^{\theta}}\mathrm{Tr}(B).

For each nn\in\mathbb{N}, the Frobenius–Rieffel norm on 𝒜θ,n{\mathcal{A}}_{\theta,n} associated to 𝐯θ,n\mathbf{v}_{\theta,n} and to the unital C*-subalgebra θ,n{\mathcal{B}}_{\theta,n} is denoted by

𝐯θ,n,θ,n.\|\cdot\|_{\mathbf{v}_{\theta,n},\mathcal{B}_{\theta,n}}.

We conclude the paper with the following theorem, which shows that the equivalence constants we found in this paper are natural in the sense that they reflect the established continuity of the Effros-Shen algebras with respect to their irrational parameters.

Theorem 5.2.

Let θ(0,1)\theta\in(0,1)\setminus{\mathds{Q}} and NN\in{\mathds{N}}. Then

θqNθpNθ(θqN2θpN2θ)rNθ(rNθ+1)2aopa𝐯θ,N,θ,Naop\sqrt{\frac{\theta q^{\theta}_{N}-p^{\theta}_{N}}{\left(\theta q^{\theta}_{N-2}-p^{\theta}_{N-2}\right)r^{\theta}_{N}(r^{\theta}_{N}+1)^{2}}}\cdot\|a\|_{\mathrm{op}}\leqslant\|a\|_{\mathbf{v}_{\theta,N},\mathcal{B}_{\theta,N}}\leqslant\|a\|_{\mathrm{op}}

for all a𝒜θ,Na\in{\mathcal{A}}_{\theta,N}. If (θn)n(\theta_{n})_{n\in{\mathds{N}}} is a sequence in (0,1)(0,1)\setminus{\mathds{Q}} converging to some θ(0,1)\theta\in(0,1)\setminus{\mathds{Q}}, then

limnθnqNθnpNθn(θqN2θnpN2θn)rNθn(rNθn+1)2=θqNθpNθ(θqN2θpN2θ)rNθ(rNθ+1)2.\lim_{n\to\infty}\frac{\theta_{n}q^{\theta_{n}}_{N}-p^{\theta_{n}}_{N}}{\left(\theta q^{\theta_{n}}_{N-2}-p^{\theta_{n}}_{N-2}\right)r^{\theta_{n}}_{N}(r^{\theta_{n}}_{N}+1)^{2}}=\frac{\theta q^{\theta}_{N}-p^{\theta}_{N}}{\left(\theta q^{\theta}_{N-2}-p^{\theta}_{N-2}\right)r^{\theta}_{N}(r^{\theta}_{N}+1)^{2}}.
Proof.

First, we gather the necessary information from the canonical basis of θ,n{\mathcal{B}}_{\theta,n} given by matrix units. Let

βθ,n={b1,,b(qn1θ)2}\beta_{\theta,n}=\left\{b_{1},\ldots,b_{(q_{n-1}^{\theta})^{2}}\right\}

be the set of basis elements that span elements of the form αθ,n1(A,0)θ,n\alpha_{\theta,n-1}(A,0)\in{\mathcal{B}}_{\theta,n}. Let

βθ,n={b(qn1θ)2+1,,b(qn1θ)2+(qn2θ)2}\beta^{\prime}_{\theta,n}=\left\{b_{(q_{n-1}^{\theta})^{2}+1},\ldots,b_{(q_{n-1}^{\theta})^{2}+(q_{n-2}^{\theta})^{2}}\right\}

be the set of basis elements that span elements of the form αθ,n1(0,B)θ,n\alpha_{\theta,n-1}(0,B)\in{\mathcal{B}}_{\theta,n}. Note for n=1n=1, we have βθ,n=\beta^{\prime}_{\theta,n}=\emptyset. Thus, the canonical basis for θ,n{\mathcal{B}}_{\theta,n} is

βθ,n=βθ,nβθ,n.\beta_{{\mathcal{B}}_{\theta,n}}=\beta_{\theta,n}\cup\beta^{\prime}_{\theta,n}.

Using Definition 4.8, we have

(θ,n)=lcm{rnθ,1,1}=rnθ\ell(\theta,n)=\mathrm{lcm}\{r^{\theta}_{n},1,1\}=r^{\theta}_{n}

and

r(θ,n)=lcm{rnθ+1,1}=rnθ+1.r(\theta,n)=\mathrm{lcm}\{r^{\theta}_{n}+1,1\}=r^{\theta}_{n}+1.

Next

m(θ,n)=lcm{rnθ+1,1}=rnθ+1m(\theta,n)=\mathrm{lcm}\{r^{\theta}_{n}+1,1\}=r^{\theta}_{n}+1

and

α(θ,n)\displaystyle\alpha(\theta,n) =min{(1)n1(θqn1θpn1θ),(1)n(θqnθpnθ)}\displaystyle=\min\left\{(-1)^{n-1}\left(\theta q^{\theta}_{n-1}-p^{\theta}_{n-1}\right),(-1)^{n}\left(\theta q^{\theta}_{n}-p^{\theta}_{n}\right)\right\}
=(1)n(θqnθpnθ),\displaystyle=(-1)^{n}\left(\theta q^{\theta}_{n}-p^{\theta}_{n}\right),

where the second term is given at the end of the proof of [2, Lemma 5.5], and finally

γ(θ,n)\displaystyle\gamma(\theta,n) =max{rnθ(1)n1(θqn1θpn1θ)+(1)n(θqnθpnθ),\displaystyle=\max\Big{\{}r^{\theta}_{n}\cdot(-1)^{n-1}\left(\theta q^{\theta}_{n-1}-p^{\theta}_{n-1}\right)+(-1)^{n}\left(\theta q^{\theta}_{n}-p^{\theta}_{n}\right),
(1)n1(θqn1θpn1θ)}\displaystyle\quad\quad\quad\quad\quad(-1)^{n-1}\left(\theta q^{\theta}_{n-1}-p^{\theta}_{n-1}\right)\Big{\}}
=rnθ(1)n1(θqn1θpn1θ)+(1)n(θqnθpnθ)\displaystyle=r^{\theta}_{n}\cdot(-1)^{n-1}\left(\theta q^{\theta}_{n-1}-p^{\theta}_{n-1}\right)+(-1)^{n}\left(\theta q^{\theta}_{n}-p^{\theta}_{n}\right)
=(1)n2(θqn2θpn2θ).\displaystyle=(-1)^{n-2}(\theta q^{\theta}_{n-2}-p^{\theta}_{n-2}).

Thus, we conclude that the equivalence constant of Theorem 4.10 is

(5.2) θqnθpnθ(θqn2θpn2θ)rnθ(rnθ+1)2.\sqrt{\frac{\theta q^{\theta}_{n}-p^{\theta}_{n}}{\left(\theta q^{\theta}_{n-2}-p^{\theta}_{n-2}\right)r^{\theta}_{n}(r^{\theta}_{n}+1)^{2}}}.

Next, by Proposition 5.1, for fixed nn\in{\mathds{N}}, there exists δ>0\delta>0 such that if η(0,1)\eta\in(0,1)\setminus{\mathds{Q}} and |θη|<δ|\theta-\eta|<\delta, then rmθ=rmηr_{m}^{\theta}=r_{m}^{\eta} for all m{0,,n+1}m\in\{0,\ldots,n+1\}, and thus the same holds for pmθ=pmηp_{m}^{\theta}=p_{m}^{\eta} and qmθ=qmηq_{m}^{\theta}=q_{m}^{\eta}. In particular, for irrational θ\theta, (5.2) is continuous in θ\theta. ∎

References

  • [1] Konrad Aguilar and Samantha Brooker, Quantum metrics from traces on full matrix algebras, Involve 12 (2019), no. 2, 329–342, arXiv: 1906.09728. MR 3864221
  • [2] Konrad Aguilar and Frédéric Latrémolière, Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity, Studia Math. 231 (2015), no. 2, 149–193, arXiv: 1511.07114. MR 3465284
  • [3] Rajendra Bhatia, Pinching, trimming, truncating, and averaging of matrices, Amer. Math. Monthly 107 (2000), no. 7, 602–608. MR 1786234
  • [4] A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 207–220. MR 1007407
  • [5] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
  • [6] J B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, 1990.
  • [7] Kenneth R. Davidson, CC^{*}-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012
  • [8] E. G. Effros and C. L. Shen, Approximately finite CC^{\ast}-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), no. 2, 191–204.
  • [9] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., Oxford University Press, Oxford, 2008.
  • [10] Roger A. Horn and Charles R. Johnson, Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013. MR 2978290
  • [11] Marius Junge, Sepideh Rezvani, and Qiang Zeng, Harmonic analysis approach to Gromov-Hausdorff convergence for noncommutative tori, Comm. Math. Phys. 358 (2018), no. 3, 919–994. MR 3778347
  • [12] Jens Kaad and David Kyed, Dynamics of compact quantum metric spaces, Ergodic Theory Dynam. Systems 41 (2021), no. 7, 2069–2109, arXiv:1904.13278. MR 4266364
  • [13] David Kerr and Hanfeng Li, On Gromov-Hausdorff convergence for operator metric spaces, J. Operator Theory 62 (2009), no. 1, 83–109. MR 2520541
  • [14] Frédéric Latrémolière, Convergence of fuzzy tori and quantum tori for the quantum Gromov-Hausdorff propinquity: an explicit approach, Münster J. Math. 8 (2015), no. 1, 57–98. MR 3549521
  • [15] by same author, The dual Gromov-Hausdorff propinquity, J. Math. Pures Appl. (9) 103 (2015), no. 2, 303–351. MR 3298361
  • [16] by same author, The quantum Gromov-Hausdorff propinquity, Trans. Amer. Math. Soc. 368 (2016), no. 1, 365–411. MR 3413867
  • [17] by same author, The covariant Gromov-Hausdorff propinquity, Studia Math. 251 (2020), no. 2, 135–169, arXiv: 1805.11229. MR 4045657
  • [18] H. Li, Order-unit quantum Gromov-Hausdorff distance, J. Funct. Anal. 233 (2006), no. 2, 312–360.
  • [19] Gerard J. Murphy, CC^{*}-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
  • [20] G. K. Pedersen, C*-Algebras and their automorphism groups, Academic Press, 1979.
  • [21] M. A. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), 176–257.
  • [22] by same author, Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215–229. MR 1647515
  • [23] by same author, Metrics on state spaces, Documenta Math. 4 (1999), 559–600, math.OA/9906151.
  • [24] by same author, Gromov-Hausdorff distance for quantum metric spaces, vol. 168, 2004, Appendix 1 by Hanfeng Li, Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, pp. 1–65. MR 2055927
  • [25] by same author, Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance, Mem. Amer. Math. Soc. 168 (2004), no. 796, 67–91, math.OA/0108005.
  • [26] by same author, Vector bundles and Gromov-Hausdorff distance, Journal of K-theory 5 (2010), 39–103, ArXiv: math/0608266.
  • [27] by same author, Standard deviation is a strongly Leibniz seminorm, New York J. Math. 20 (2014), 35–56, arXix: 1208.4072. MR 3159395
  • [28] Wei Wu, Quantized Gromov-Hausdorff distance, J. Funct. Anal. 238 (2006), no. 1, 58–98. MR 2234123