This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Free circle actions on certain simply connected 77-manifolds

Fupeng Xu
Abstract

In this paper, we determine for which nonnegative integers kk, ll and for which homotopy 77-sphere Σ\Sigma the manifold kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free smooth circle action.

1 Introduction

In this paper, all manifolds are closed, connected and smooth, and group actions on manifolds are smooth if no otherwise is stated. The standard unit nn-sphere in the Euclidean space n+1\mathbb{R}^{n+1} is denoted by SnS^{n}. A homotopy nn-sphere is an nn-manifold that is homotopy equivalent to SnS^{n}. Given a simply connected nn-manifold PP, a cohomology PP is a simply connected nn-manifold whose integral cohomology ring is isomorphic to that of PP. Throughout this paper we use (co)homology with integral coefficient unless explicitly stated otherwise.

In topology we ask the following basic problem:

Problem 1.

Given a manifold MM, does MM admit a free circle action?

The solution to this problem and the related topic have applications in the areas of topology and geometry. See [Gei08, Theorems 7.2.4 and 7.2.5] for application to contact geometry and [TW15, Chapeter 6] for application to differential geometry.

When MM is a homotopy sphere of small odd dimensions Problem 1 was solved by Montgomery and Yang ([MY68], dimension 77) and Brumfiel ([Bru69], dimension 99, 1111 and 1313). When MM has certain connectivity and its dimension does not exceed 77 Problem 1 was solved by Duan and Liang ([DL05], simply connected 55-manifold), Duan ([Dua22], simply connected 66-manifold) and Jiang ([Jia14], 22-connected 77-manifold). When MM is the connected sum of Sqi×SnqiS^{q_{i}}\times S^{n-q_{i}} or S2×~Sn2S^{2}\widetilde{\times}S^{n-2}, n5n\geqslant 5, 2qin22\leqslant q_{i}\leqslant n-2 and its Betti numbers satisfy some extra conditions, Galaz-García and Reiser showed that the answer to Problem 1 is affirmative ([GGR23, Theorem E]).

In this paper we answer Problem 1 for those simply connected 77-manifolds that can be written as connected sums of S2×S5S^{2}\times S^{5}, S3×S4S^{3}\times S^{4} and homotopy 77-spheres. The connected sum of two 77-manifolds M1M_{1} and M2M_{2} is denoted by M1#M2M_{1}\#M_{2}, and the connected sum of kk copies of 77-manifold MM is denoted by kMkM. Our main result is as follows.

Theorem 1.

Let k,lk,\ l\in\mathbb{N} and let Σ\Sigma be a homotopy 77-sphere. The manifold kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action if and only if one of the following holds:

  1. 1.

    k2k\geqslant 2;

  2. 2.

    k=1k=1 and ll is even;

  3. 3.

    k=1k=1, ll is odd and Σ\Sigma admits a free circle action;

  4. 4.

    k=0k=0, ll is even and Σ\Sigma admits a free circle action;

  5. 5.

    k=0k=0, ll is odd and Σ=S7\Sigma=S^{7}.

Remark 1.

[GGR23, Theorem E] shows that kS2×S5#lS3×S4kS^{2}\times S^{5}\#lS^{3}\times S^{4} admits a free circle action for any k,lk,l\in\mathbb{N}. Theorem 1 extends this result to kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma when Σ\Sigma is a homotopy 77-sphere.

Remark 2.

The cases 4 and 5 of Theorem 1 are covered by [Jia14, Theorem 1.3]. Hence in this paper we focus on the cases 1, 2 and 3 of Theorem 1.

Remark 3.

Up to orientation-preseriving diffeomorphism there are exactly 2828 homotopy 77-spheres ([KM63]). They can be distinguished by the μ\mu-invariant, which is an orientation-preserving diffeomorphism invariant for certain manifolds and takes value in /\mathbb{Q}/\mathbb{Z}. There is a homotopy 77-sphere Σ1\Sigma_{1} such that μ(Σ1)=128mod 1\mu\left(\Sigma_{1}\right)=\frac{1}{28}\ \mathrm{mod}\ 1. For rr\in\mathbb{N} we set Σr=rΣ1\Sigma_{r}=r\Sigma_{1}, then μ(Σr)=r28mod 1\mu\left(\Sigma_{r}\right)=\frac{r}{28}\ \mathrm{mod}\ 1 ([EK62, Section 6]) and Σr\Sigma_{r} gives all 2828 homotopy 77-spheres when r=0, 1,, 27r=0,\ 1,\ \cdots,\ 27.

Remark 4.

[MY68, Section 3] shows that Σr\Sigma_{r} admits a free circle action if and only if r=0r=0, 44, 66, 88, 1010, 1414, 1818, 2020 or 2424. Equivalently, a homotopy 77-sphere admits a free circle action if and only if its μ\mu-invariant is 0, ±428\pm\frac{4}{28}, ±628\pm\frac{6}{28}, ±828\pm\frac{8}{28}, ±1028\pm\frac{10}{28} or 1428mod 1\frac{14}{28}\ \mathrm{mod}\ 1.

The paper is organized as follows. First in Section 2 we study the case (k,l)=(1,0)(k,l)=(1,0). Next in Section 3 we study the case (k,l)=(1,1)(k,l)=(1,1), where the argument is parallel to the argument of Section 2. Then in Section 4 we handle the remaining cases (k,l)(k,l) and thus complete the proof of Theorem 1, where we use the suspension operation that is developed in [Dua22] and [GGR23]. Finally in Section 5 we add some other results.

2 Circle actions on S2×S5#ΣS^{2}\times S^{5}\#\Sigma

In this section we determine for which homotopy 77-sphere Σ\Sigma the manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma admits a free circle action. The organization is as follows. First in Section 2.1 we deal with a broader class of manifolds, namely the spin cohomology S2×S5S^{2}\times S^{5}. In particular when Σ\Sigma is a homotopy 77-sphere the manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma is a spin cohomology S2×S5S^{2}\times S^{5}. We will study the invariants of the orbit space NN of a free circle action on a spin cohomology S2×S5S^{2}\times S^{5}. Next in Section 2.2 we compute the diffeomorphism invariants of those spin cohomology S2×S5S^{2}\times S^{5} that admits free circle action. We express the diffeomorphism invariants of such manifold MM in terms of the invariants of the orbit space NN. Finally in Section 2.3 we compare the diffeomorphism invariants of MM and S2×S5#ΣS^{2}\times S^{5}\#\Sigma. We determine among those spin cohomology S2×S5S^{2}\times S^{5} which are diffeomorphic to S2×S5#ΣS^{2}\times S^{5}\#\Sigma. Then we deduce for which homotopy 77-sphere Σ\Sigma the manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma admits a free circle action.

2.1 The orbit space NN

In this section we study the invariants of the orbit space of a free circle action on MM, where MM is a spin cohomology S2×S5S^{2}\times S^{5}. By [Lee12, Chapter 21, Theorem 21.10] the orbit space NN is a 66-manifold and the projection M𝑝NM\xrightarrow{p}N is a circle bundle.

Before we state our results, we introduce some notations.

  1. 1.

    When PP is an oriented 66-manifold, there is a symmetric cubic form on H2(P)H^{2}(P):

    μ=μP:H2(P)H2(P)H2(P)\displaystyle\mu=\mu_{P}:H^{2}(P)\otimes H^{2}(P)\otimes H^{2}(P) ,\displaystyle\to\mathbb{Z},
    (x,y,z)\displaystyle(x,y,z) xyz,[P].\displaystyle\mapsto\left<x\cup y\cup z,[P]\right>.
  2. 2.

    Given xHq(P)x\in H^{q}(P), its reduction in Hq(P;/2)H^{q}(P;\mathbb{Z}/2) is be denoted by x¯\overline{x}.

  3. 3.

    Assume PP is an oriented nn-manifold such that its cohomology groups are torsion free. For 0<q<n0<q<n, let (e1,,er)\left(e_{1},\cdots,e_{r}\right) be an ordered basis of Hq(P)rH^{q}(P)\cong\mathbb{Z}^{r}. Then by Poincaré duality and universal coefficient theorem Hnq(P)rH^{n-q}(P)\cong\mathbb{Z}^{r} admits an ordered basis (e1,,er)\left(e^{1},\cdots,e^{r}\right) such that

    eiej,[P]={1,if i=j,0,otherwise.\left<e_{i}\cup e^{j},[P]\right>=\begin{dcases*}1,&if $i=j$,\\ 0,&otherwise.\end{dcases*}

    The ordered basis (e1,,er)\left(e^{1},\cdots,e^{r}\right) is called the dual basis with respect to (e1,,er)\left(e_{1},\cdots,e_{r}\right).

Lemma 1.

Assume the 66-manifold NN is the orbit of a free circle action on a spin cohomology S2×S5S^{2}\times S^{5}. Then NN is simply connected and satisfies the following conditions.

  1. 1.

    Its cohomology groups are torsion-free and the only nonzero Betti numbers are b0=b6=1,b2=b4=2b_{0}=b_{6}=1,\ b_{2}=b_{4}=2;

  2. 2.

    Its second cohomology group has a basis (e,f)(e,f) such that the matrix Me=(ABBC)M_{e}=\begin{pmatrix}A&B\\ B&C\end{pmatrix} is invertible, where A=μ(e,e,e)A=\mu(e,e,e), B=μ(e,e,f)B=\mu(e,e,f) and C=μ(e,f,f)C=\mu(e,f,f);

  3. 3.

    Exactly one of the following is true:

    1. (a)

      NN is spin and p1(N)=(24u+4A)e+(24v+4D)fp_{1}(N)=(24u+4A)e^{\vee}+(24v+4D)f^{\vee} for some u,vu,v\in\mathbb{Z}. Meanwhile AA is even and BB, CC are odd.

    2. (b)

      NN is nonspin with w2(N)=e¯w_{2}(N)=\overline{e} and p1(N)=(48u+A)e+(24v+3B+6C+4D)fp_{1}(N)=(48u+A)e^{\vee}+(24v+3B+6C+4D)f^{\vee} for some u,vu,v\in\mathbb{Z}. Meanwhile AA, CC are even and BB is odd.

    Here D=μ(f,f,f)D=\mu(f,f,f) and (e,f)\left(e^{\vee},f^{\vee}\right) is the dual basis of H4(N)H^{4}(N) with respect to (e,f)(e,f).

Proof.

Let MM be a spin cohomology S2×S5S^{2}\times S^{5} that admits a free circle action and let NN be the orbit manifold. We shall justify that NN is simply connected and satisfies Conditions 1, 2 and 3 of Lemma 1.

We begin with the cohomology groups of NN. The free circle action induces a circle bundle M𝑝NM\xrightarrow{p}N. Let eH2(N)e\in H^{2}(N) be its Euler class. The long exact sequence of homotopy groups associated to the circle bundle MNM\to N shows that NN is simply connected and there is a short exact sequence 0π2(N)00\to\mathbb{Z}\to\pi_{2}(N)\to\mathbb{Z}\to 0. Hence NN is orientable and π2(N)2\pi_{2}(N)\cong\mathbb{Z}^{2}. Then H2(N)π2(N)2H_{2}(N)\cong\pi_{2}(N)\cong\mathbb{Z}^{2} by Hurewicz theorem, and H2(N)H4(N)2H^{2}(N)\cong H^{4}(N)\cong\mathbb{Z}^{2} by universal coefficient theorem and Poincaré duality. From the Gysin sequence associated to the circle bundle M𝑝NM\xrightarrow{p}N we obtain an exact sequence H1(N)eH3(N)pH3(M)H^{1}(N)\xrightarrow{\cup e}H^{3}(N)\xrightarrow{p^{*}}H^{3}(M). Hence H3(N)=0H^{3}(N)=0. In summary, the orbit space NN is a simply connected 66-manifold and its cohomology groups are torsion-free with only nonzero Betti numbers b0=b6=1b_{0}=b_{6}=1, b2=b4=2b_{2}=b_{4}=2. This justifies Condition 1 in Lemma 1.

Next we consider the ring structure of H(N)H^{*}(N). From the Gysin sequence associated to the circle bundle M𝑝NM\xrightarrow{p}N we obtain another two exact sequences

0H0(N)eH2(N)pH2(M)0,\displaystyle 0\to H^{0}(N)\xrightarrow{\cup e}H^{2}(N)\xrightarrow{p^{*}}H^{2}(M)\to 0, (1)
0H2(N)eH4(N)0.\displaystyle 0\to H^{2}(N)\xrightarrow{\cup e}H^{4}(N)\to 0. (2)

From the exact sequence (1) we see eH2(N)2e\in H^{2}(N)\cong\mathbb{Z}^{2} is primitive, i.e. the subgroup e\left<e\right> of H2(N)H^{2}(N) generated by ee is isomorphic to \mathbb{Z} and H2(N)/eH^{2}(N)/\left<e\right>\cong\mathbb{Z}. Hence we can extend ee to an ordered basis (e,f)(e,f) of HH. Next we fix a fundamental class [N]H6(N)[N]\in H_{6}(N)\cong\mathbb{Z} and let (e,f)\left(e^{\vee},f^{\vee}\right) be the dual basis of H4(N)H^{4}(N) with respect to (e,f)(e,f). The cubic form μ=μN\mu=\mu_{N} is determined by the integers A=μ(e,e,e),B=μ(e,e,f),C=μ(e,f,f)A=\mu(e,e,e),\ B=\mu(e,e,f),\ C=\mu(e,f,f) and D=μ(f,f,f)D=\mu(f,f,f). From the exact sequence (2) we see H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) is an isomorphism. Its matrix representation with respect to the bases (e,f)(e,f) and (e,f)\left(e^{\vee},f^{\vee}\right) is Me=(ABBC)M_{e}=\begin{pmatrix}A&B\\ B&C\end{pmatrix}. Since this morphism is an isomorphism, we have MeGL(2,)M_{e}\in\mathrm{GL}(2,\mathbb{Z}). This justifies Condition 2 of Lemma 1. We also obtain that (e2,ef)\left(e^{2},ef\right) is also a basis of H4(N)H^{4}(N).

Now we study w2(N)w_{2}(N) and p1(N)p_{1}(N). First we determine w2(N)w_{2}(N). Let ξ\xi be the 22-plane bundle over NN associated to the circle bundle. Let De𝜋ND_{e}\xrightarrow{\pi}N be the associated D2D^{2}-bundle. Let M𝜄DeM\xrightarrow{\iota}D_{e} be the boundary inclusion. Let M𝑝NM\xrightarrow{p}N be the bundle projection as before. Then p=πιp=\pi\circ\iota. See the following commutative diagram.

(7)

The stable tangent bundle of MM is τMε1=ιτDe=ιπ(τNξ)=p(τNξ)\tau_{M}\oplus\varepsilon^{1}=\iota^{*}\tau_{D_{e}}=\iota^{*}\pi^{*}\left(\tau_{N}\oplus\xi\right)=p^{*}\left(\tau_{N}\oplus\xi\right). Hence

w2(M)=p(w2(N)+w2(ξ))=pw2(N)+p(e¯)=pw2(N).w_{2}\left(M\right)=p^{*}\left(w_{2}(N)+w_{2}(\xi)\right)=p^{*}w_{2}(N)+p^{*}\left(\overline{e}\right)=p^{*}w_{2}(N).

Here mod\mathrm{mod} 22 Gysin sequence implies p(e¯)=0p^{*}\left(\overline{e}\right)=0. While MM is spin, we have w2(M)=pw2(N)=0w_{2}\left(M\right)=p^{*}w_{2}(N)=0. Hence by mod\mathrm{mod} 22 Gysin sequence w2(N)=0w_{2}(N)=0 or e¯\overline{e}. Next we study p1(N)p_{1}(N). Set p1(N)=ke+lfp_{1}(N)=k\cdot e^{\vee}+l\cdot f^{\vee}, k,lk,l\in\mathbb{Z}. We begin with the relation

p1(N)mod 2=w2(N)2.\displaystyle p_{1}(N)\ \mathrm{mod}\ 2=w_{2}(N)^{2}. (8)

This formula implies that

  1. 1.

    if NN is spin, kl0mod 2k\equiv l\equiv 0\ \mathrm{mod}\ 2;

  2. 2.

    if NN is nonspin with w2(B)=e¯w_{2}(B)=\overline{e}, kAmod 2k\equiv A\ \mathrm{mod}\ 2 and lBmod 2l\equiv B\ \mathrm{mod}\ 2.

Now we relate the cohomology ring and characteristic classes of NN. We begin with the Wu formula ([MS74, §11, Theorem 11.14]). For our oriented 66-manifold NN we have

Sq2(x),[N]=w2(N)x,[N],xH4(N;/2).\displaystyle\left<\mathrm{Sq^{2}}(x),[N]\right>=\left<w_{2}(N)\cup x,[N]\right>,\ \forall x\in H^{4}(N;\mathbb{Z}/2). (9)

Hence by setting x=e¯2,e¯f¯x=\overline{e}^{2},\ \overline{e}\cdot\overline{f} and f¯2\overline{f}^{2}, we obtain that

  1. 1.

    if NN is spin, B+C0mod 2B+C\equiv 0\ \mathrm{mod}\ 2;

  2. 2.

    if NN is nonspin with w2(N)=e¯w_{2}(N)=\overline{e}, AC0mod 2A\equiv C\equiv 0\ \mathrm{mod}\ 2.

Further restriction is given by [Jup73, Theorem 1] as follows. Let w^H2(N)\widehat{w}\in H^{2}(N) be an integral cohomology class that restricts to w2(N)H2(N;/2)w_{2}(N)\in H^{2}(N;\mathbb{Z}/2). Then we have the formula:

μ(w^+2x,w^+2x,w^+2x)p1(N)(w^+2x),[N]mod 48,xH2(N).\displaystyle\mu\left(\widehat{w}+2x,\widehat{w}+2x,\widehat{w}+2x\right)\equiv\left<p_{1}(N)\cup\left(\widehat{w}+2x\right),[N]\right>\ \mathrm{mod}\ 48,\ \forall x\in H^{2}(N). (10)

We take w^=0\widehat{w}=0 when NN is spin. In formula (10) we set x=Xe+Yf,X,Yx=Xe+Yf,\ X,Y\in\mathbb{Z}, and we have

4X3A+12X2YB+12XY2C+4Y3DkX+lYmod 24,X,Y.\displaystyle 4X^{3}A+12X^{2}YB+12XY^{2}C+4Y^{3}D\equiv kX+lY\ \mathrm{mod}\ 24,\ \forall X,Y\in\mathbb{Z}. (11)

Combining formulae (8), (9) and (11), we obtain:

{k4Amod24,l4Dmod24,A0mod2,BC1mod2.\displaystyle\begin{dcases}k\equiv 4A&\mod 24,\\ l\equiv 4D&\mod 24,\\ A\equiv 0&\mod 2,\\ B\equiv C\equiv 1&\mod 2.\end{dcases} (12)

When NN is nonspin with w2(N)=e¯w_{2}(N)=\overline{e}, we take w^=e\widehat{w}=e. Set x=Xe+Yfx=Xe+Yf, w^+2x=(2X+1)e+2Yf=X~e+2Yf\widehat{w}+2x=(2X+1)e+2Yf=\widetilde{X}e+2Yf with X~=2X+1\widetilde{X}=2X+1, and formula (10) becomes

X~3A+6X~2YB+12X~Y2+8Y3DkX~+2lYmod 48,X~oddY.\displaystyle\widetilde{X}^{3}A+6\widetilde{X}^{2}YB+12\widetilde{X}Y^{2}+8Y^{3}D\equiv k\widetilde{X}+2lY\ \mathrm{mod}\ 48,\ \forall\widetilde{X}\in\mathbb{Z}\ \text{odd}\ \forall Y\in\mathbb{Z}. (13)

Combining formulae (8), (9) and (13), we obtain:

{kAmod48,l3B+6C+4Dmod24,AC0mod2,B1mod2.\displaystyle\begin{dcases}k\equiv A&\mod 48,\\ l\equiv 3B+6C+4D&\mod 24,\\ A\equiv C\equiv 0&\mod 2,\\ B\equiv 1&\mod 2.\end{dcases} (14)

This justifies Condition 3 of Lemma 1 and hence we complete the proof of Lemma 1. \Box

Lemma 2.

Let A,B,C,D,u,vA,\ B,\ C,\ D,\ u,\ v be 66 integers such that AA is even and B,CB,C are odd (resp. A,CA,C are even and BB is odd). Up to orientation-preserving diffeomorphism there is a unique simply connected spin (resp. nonspin) 66-manifold NN that satisfies Conditions 1, 2 and 3(a) (resp. Conditions 1, 2 and 3(b)) of Lemma 1 and is the orbit of a free circle action on a spin cohomology S2×S5S^{2}\times S^{5}.

Proof.

It follows from [Jup73, Theorem 1] that up to orientation-preserving diffeomorphism there is a unique simply connected spin (resp. nonspin) 66-manifold NN which satisfies Conditions 1, 2 and 3(a) (resp. Conditions 1, 2 and 3(b)) of Lemma 1. Let NeN_{e} be the total space of the circle bundle over NN whose Euler class is ee. We will show that NeN_{e} is a spin cohomology S2×S5S^{2}\times S^{5}.

Long exact sequence of homotopy groups associated to the circle bundle Ne𝑝NN_{e}\xrightarrow{p}N implies π1(Ne)\pi_{1}\left(N_{e}\right) is a cyclic group. Hence π1(Ne)\pi_{1}\left(N_{e}\right) is abelian and by Hurewicz theorem H1(Ne)π1(Ne)H_{1}\left(N_{e}\right)\cong\pi_{1}\left(N_{e}\right). Combining Gysin sequence and the fact that ee is primitive we have H1(Ne)=0H^{1}\left(N_{e}\right)=0 and H2(Ne)H^{2}\left(N_{e}\right)\cong\mathbb{Z}. Hence by universal coefficient theorem H1(Ne)=0H_{1}\left(N_{e}\right)=0 and NeN_{e} is simply connected. Since H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) is an isomorphism, by Gysin sequence H3(Ne)=H4(Ne)=0H^{3}\left(N_{e}\right)=H^{4}\left(N_{e}\right)=0. Now we see that NeN_{e} has torsion-free cohomology groups with only nonzero Betti numbers b0=b2=b5=b7=1b_{0}=b_{2}=b_{5}=b_{7}=1. Hence the total space NeN_{e} is a cohomology S2×S5S^{2}\times S^{5}. The formula w2(Ne)=p(w2(N)+e¯)w_{2}\left(N_{e}\right)=p^{*}\left(w_{2}(N)+\overline{e}\right) still applies. By the assumption that w2(N)=0w_{2}(N)=0 or e¯\overline{e} and the mod 22 Gysin sequence we have w2(Ne)w_{2}\left(N_{e}\right). Hence NeN_{e} is spin. \Box

2.2 Invariants of NeN_{e}

In this section we compute the homeomorphism and diffeomorphism invariants of NeN_{e}, where (N,e)(N,e) is given as in Lemma 1. The homeomorphism and diffeomorphism invariants are the ss-invariants developed by Kreck and Stolz ([KS88], [KS91] and [KS98]). We first review the definition of ss-invariants and then compute the ss-invariants of the manifold NeN_{e}.

In [KS88], [KS91] and [KS98] the authors considered the homeomorphism and diffeomorphism classification of the 77-manifolds satisfying the following condition ([KS91, Condition 2.1]):

The 77-manifold MM is simply connected. Its second cohomology group is infinite cyclic with a generator zz, and its forth cohomology group is finite cyclic with the generator z2z^{2}.

For convenience a spin manifold satisfying the condition above is called a manifold of type I. In particular any spin cohomology S2×S5S^{2}\times S^{5} is a type I manifold. By assumption NeN_{e} is a spin cohomology S2×S5S^{2}\times S^{5} and thus a type I manifold with z=pfz=p^{*}f a generator of the second cohomology.

The homeomorphism and diffeomorphism invariants of the type I manifold M are defined as follows. Let WW be a compact 88-manifold whose boundary is MM. We also say WW is a coboundary of MM. Let z^H2(W)\widehat{z}\in H^{2}(W) restrict to zz. When WW is spin the pair (W,z^)\left(W,\widehat{z}\right) is called a spin coboundary of (M,z)(M,z). By [KS91, Lemma 6.1] such a spin coboundary of (M,z)(M,z) always exists. Sometimes we cannot easily construct such a spin coboundary, but we can find a nonspin coboundary WW and its cohomology classes z^,cH2(W)\widehat{z},\ c\in H^{2}(W) such that w2(W)=c¯w_{2}(W)=\overline{c} and z^|M=z,c|M=0\widehat{z}|_{M}=z,\ c|_{M}=0. In this case we say the triple (W,z^,c)\left(W,\widehat{z},c\right) is a nonspin coboundary of (M,z)(M,z). Then we have the following characteristic numbers ([KS91, Formula 2.7]):

{S1(W,z^,c)=ec2A^(W),[W,M],S2(W,z^,c)=(ez^1)ec2A^(W),[W,M],S3(W,z^,c)=(e2z^1)ec2A^(W),[W,M],\displaystyle\left\{\begin{aligned} S_{1}\left(W,\widehat{z},c\right)&=\left<e^{\frac{c}{2}}\widehat{A}(W),[W,M]\right>\in\mathbb{Q},\\ S_{2}\left(W,\widehat{z},c\right)&=\left<\left(e^{\widehat{z}}-1\right)e^{\frac{c}{2}}\widehat{A}(W),[W,M]\right>\in\mathbb{Q},\\ S_{3}\left(W,\widehat{z},c\right)&=\left<\left(e^{2\widehat{z}}-1\right)e^{\frac{c}{2}}\widehat{A}(W),[W,M]\right>\in\mathbb{Q},\end{aligned}\right. (15)

where we take c=0c=0 if (W,z^)\left(W,\widehat{z}\right) is a spin coboundary of (M,z)(M,z). The terms on the right hand sides are understood as follows. The expression A^(W)\widehat{A}(W) is the A^\widehat{A}-polynomial of WW. The cohomology classes (ez^1)ec2A^(W)\left(e^{\widehat{z}}-1\right)e^{\frac{c}{2}}\widehat{A}(W) and (e2z^1)ec2A^(W)\left(e^{2\widehat{z}}-1\right)e^{\frac{c}{2}}\widehat{A}(W) are rational combinations of p12p_{1}^{2}, z^icjp1(i+j=2)\widehat{z}^{i}c^{j}p_{1}(i+j=2) and z^icj(i+j=4)\widehat{z}^{i}c^{j}(i+j=4). Here p1=p1(W)p_{1}=p_{1}(W). By assumption the classes p1p_{1} and z^icj(i+j=2)\widehat{z}^{i}c^{j}(i+j=2) restrict to 0H4(M;)0\in H^{4}(M;\mathbb{Q}), hence they can be viewed as classes in H4(W,M;)H^{4}(W,M;\mathbb{Q}). Then the classes p12p_{1}^{2}, z^icjp1(i+j=2)\widehat{z}^{i}c^{j}p_{1}(i+j=2) and z^icj(i+j=4)\widehat{z}^{i}c^{j}(i+j=4) can be viewed as classes in H8(W,M;)H^{8}(W,M;\mathbb{Q}) and evaluate on [W,M][W,M]. The cohomology class ec2A^(W)e^{\frac{c}{2}}\widehat{A}(W) is a rational linear combination of p12p_{1}^{2}, z^icjp1(i+j=2)\widehat{z}^{i}c^{j}p_{1}(i+j=2), z^icj(i+j=4)\widehat{z}^{i}c^{j}(i+j=4) and the LL-polynomial L(W)=145(7p2p12)L(W)=\frac{1}{45}\left(7p_{2}-p_{1}^{2}\right). The term L(W),[W,M]\left<L(W),[W,M]\right> is interpreted as the signature σ(W,M)\sigma(W,M) of the pair (W,M)(W,M), namely the signature of the intersection form on H4(W,M;)H^{4}(W,M;\mathbb{Q}).

We set si(M)=Si(W,z^,c)mod 1/s_{i}(M)=S_{i}\left(W,\widehat{z},c\right)\ \mathrm{mod}\ 1\in\mathbb{Q}/\mathbb{Z}, i=1,2,3i=1,2,3. These sis_{i}-invariants do not depend on the choices of the generators of H2(M)H^{2}(M) or the coboundaries (W,z^,c)\left(W,\widehat{z},c\right). Hence the sis_{i}-invariants are invariants of the type I manifold MM. It follows from [KS98, Theorem 1] that two manifolds MM, MM^{\prime} of type I are diffeomorphic (resp. homeomorphic) if and only if their forth cohomology groups have the same order and they share the same invariants s1s_{1}, s2s_{2} and s3s_{3} (resp. 28s128s_{1}, s2s_{2} and s3s_{3}).

With a slight abuse of notation we write p12p_{1}^{2} for p12,[W,M]\left<p_{1}^{2},[W,M]\right>, and the other monomials are similar. We have the following explicit expansion of formula (15).

{S1(W,z^,c)=1224σ(W,M)+1896p121192c2p1+1384c4,S2(W,z^,c)=148(z^2+z^c)p1+148(2z^4+4z^3c+3z^2c2+z^c3),S3(W,z^,c)=124(2z^2+zc)p1+124(16z^4+16z^3c+6z^2c2+z^c3).\displaystyle\left\{\begin{aligned} S_{1}\left(W,\widehat{z},c\right)&=-\frac{1}{224}\sigma(W,M)+\frac{1}{896}p_{1}^{2}-\frac{1}{192}c^{2}p_{1}+\frac{1}{384}c^{4},\\ S_{2}\left(W,\widehat{z},c\right)&=-\frac{1}{48}\left(\widehat{z}^{2}+\widehat{z}c\right)p_{1}+\frac{1}{48}\left(2\widehat{z}^{4}+4\widehat{z}^{3}c+3\widehat{z}^{2}c^{2}+\widehat{z}c^{3}\right),\\ S_{3}\left(W,\widehat{z},c\right)&=-\frac{1}{24}\left(2\widehat{z}^{2}+zc\right)p_{1}+\frac{1}{24}\left(16\widehat{z}^{4}+16\widehat{z}^{3}c+6\widehat{z}^{2}c^{2}+\widehat{z}c^{3}\right).\end{aligned}\right. (16)
Example 1.

Let (N,e)(N,e) be given as in Lemma 1. When NN is spin and the matrix MeM_{e} has determinant 1-1, the ss-invariants of the type I manifold NeN_{e} are given as follows:

{s1(Ne)=914(Cu22Buv+Av2)+23B(BD)14u+3A(BD)14v+A224A56(BD)2mod 1,28s1(Ne)=A8mod 1;s2(Ne)=1+D2u+2AC22ABD+AD224mod 1;s3(Ne)=13(AC2ABDAD2)+D+12mod 1.\displaystyle\left\{\begin{aligned} s_{1}\left(N_{e}\right)&=-\frac{9}{14}\left(Cu^{2}-2Buv+Av^{2}\right)+\frac{2-3B(B-D)}{14}u+\frac{3A(B-D)}{14}v+\frac{A}{224}-\frac{A}{56}(B-D)^{2}\ \mathrm{mod}\ 1,\\ 28s_{1}\left(N_{e}\right)&=\frac{A}{8}\ \mathrm{mod}\ 1;\\ s_{2}\left(N_{e}\right)&=\frac{1+D}{2}u+\frac{2AC^{2}-2ABD+AD^{2}}{24}\ \mathrm{mod}\ 1;\\ s_{3}\left(N_{e}\right)&=\frac{1}{3}\left(AC^{2}-ABD-AD^{2}\right)+\frac{D+1}{2}\ \mathrm{mod}\ 1.\end{aligned}\right. (17)

And when NN is nonspin with w2(N)=e¯w_{2}(N)=\overline{e}, the ss-invariants of the type I manifold NeN_{e} are given as follows:

{s1(Ne)=914(4Cu24Buv+Av2)+314(B2+3BC+2BD)u328(AB+3AC+2AD)v1224(A2C+6ABC+4ABD+9AC2+4AD2+12ACD)mod 1,28s1(Ne)=0mod 1;s2(Ne)=124(B2C+3BC2ABD3ACDAD2+C+C3)mod 1;s3(Ne)=16(B2CABD+2AD2+C+C3)mod 1.\displaystyle\left\{\begin{aligned} s_{1}\left(N_{e}\right)&=-\frac{9}{14}\left(4Cu^{2}-4Buv+Av^{2}\right)+\frac{3}{14}\left(B^{2}+3BC+2BD\right)u-\frac{3}{28}(AB+3AC+2AD)v\\ &\ -\frac{1}{224}\left(A^{2}C+6ABC+4ABD+9AC^{2}+4AD^{2}+12ACD\right)\ \mathrm{mod}\ 1,\\ 28s_{1}\left(N_{e}\right)&=0\ \mathrm{mod}\ 1;\\ s_{2}\left(N_{e}\right)&=-\frac{1}{24}\left(B^{2}C+3BC^{2}-ABD-3ACD-AD^{2}+C+C^{3}\right)\ \mathrm{mod}\ 1;\\ s_{3}\left(N_{e}\right)&=-\frac{1}{6}\left(B^{2}C-ABD+2AD^{2}+C+C^{3}\right)\ \mathrm{mod}\ 1.\end{aligned}\right. (18)

When NN is spin we omit the discussion of the case detMe=1\mathrm{det}\ M_{e}=1, since it turns out that the case detMe=1\mathrm{det}\ M_{e}=-1 is sufficient. It is also useful to notice that when NN is nonpsin with w2(N)=e¯w_{2}(N)=\overline{e} we have s3(Ne)=4s2(Ne)s_{3}\left(N_{e}\right)=4s_{2}\left(N_{e}\right).

The ss-invariants of the manifold NeN_{e} are computed as follows. First we need to find a coboundary of NeN_{e}. A natural choice is the associated disc bundle DeD_{e}. From the Gysin sequence and Thom isomorphism we have the following commutative diagram.

(23)

Here j:(De,)(De,Ne)j:\left(D_{e},\varnothing\right)\to\left(D_{e},N_{e}\right) is the inclusion and the Thom class of ξ\xi is u(ξ)H2(De,Ne)u(\xi)\in H^{2}\left(D_{e},N_{e}\right). In diagram (23) the rows are exact and the vertical morphisms are isomorphisms or identity. From the diagram we obtain that the boundary inclusion Ne𝜄DeN_{e}\xrightarrow{\iota}D_{e} induces an epimorphism on second cohomology groups, such that H2(De)={πe,πf}2H^{2}\left(D_{e}\right)=\mathbb{Z}\left\{\pi^{*}e,\pi^{*}f\right\}\cong\mathbb{Z}^{2}, ι(πe)=0\iota^{*}\left(\pi^{*}e\right)=0 and ι(πf)=pf\iota^{*}\left(\pi^{*}f\right)=p^{*}f generates H2(Ne)H^{2}\left(N_{e}\right)\cong\mathbb{Z}. From the formula w2(De)=π(w2(N)+w2(ξ))=π(w2(N)+e¯)w_{2}\left(D_{e}\right)=\pi^{*}\left(w_{2}\left(N\right)+w_{2}(\xi)\right)=\pi^{*}\left(w_{2}\left(N\right)+\overline{e}\right) we see that DeD_{e} is spin if NN is not and nonspin if NN is. If we keep using natural coboundary W=DeW=D_{e} of NeN_{e}, we should treat these two cases separately. When DeD_{e} is spin we use the spin coboundary (De,πf)\left(D_{e},\pi^{*}f\right), and when DeD_{e} is nonspin we use the nonspin coboundary (De,πf,πe)\left(D_{e},\pi^{*}f,\pi^{*}e\right).

Next we compute the terms on the right hand sides of formula (16). We begin with the signature term and claim that σ(De,Ne)=σ(Me)\sigma\left(D_{e},N_{e}\right)=\sigma\left(M_{e}\right). This follows from the following commutative diagram

(28)

Here the first two vertical morphisms are isomorphisms, since they are tensors of isomorphisms between finitely generated free abelian groups. Hence the bilinear forms (H4(De,Ne),)\left(H^{4}\left(D_{e},N_{e}\right),\cdot\cup\cdot\right) and (H2(N),()e)\left(H^{2}(N),\left(\cdot\cup\cdot\right)\cup e\right) are isomorphic. Therefore σ(De,Ne)=σ(Me)\sigma\left(D_{e},N_{e}\right)=\sigma\left(M_{e}\right). We denote this common value by σ\sigma. Next we compute the products of p1p_{1}, z^\widehat{z} and cc. From diagram (28) we observe the following helpful fact. Given u~\widetilde{u} and v~H4(De)\widetilde{v}\in H^{4}\left(D_{e}\right), there are unique classes uu and vH2(N)v\in H^{2}(N) such that u~=j(uu(ξ))=π(eu)\widetilde{u}=j^{*}\left(u\cup u(\xi)\right)=\pi^{*}\left(e\cup u\right) and v~=π(ev)\widetilde{v}=\pi^{*}\left(e\cup v\right). Then u~v~=μ(e,u,v)\widetilde{u}\cdot\widetilde{v}=\mu(e,u,v). Note c2=π(ee)c^{2}=\pi^{*}\left(e\cup e\right), z^c=π(ef)\widehat{z}c=\pi^{*}\left(e\cup f\right), and f2=(ef)(CD)=e(ef)Me1(CD)f^{2}=\begin{pmatrix}e^{\vee}&f^{\vee}\end{pmatrix}\begin{pmatrix}C\\ D\end{pmatrix}=e\cup\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix}. Hence z^2=π(f2)=π(e(ef)Me1(CD)).\widehat{z}^{2}=\pi^{*}\left(f^{2}\right)=\pi^{*}\left(e\cup\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix}\right). From τDeπ(τNξ)\tau_{D_{e}}\cong\pi^{*}\left(\tau_{N}\oplus\xi\right) we have

p1(De)=π(p1(N)+e2)=π(e((ef)Me1(kl)+e)).p_{1}\left(D_{e}\right)=\pi^{*}\left(p_{1}(N)+e^{2}\right)=\pi^{*}\left(e\cup\left(\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+e\right)\right).

The characteristic numbers are given as follows.

p12=p1p1\displaystyle p_{1}^{2}=p_{1}\cdot p_{1} =μ(e,(ef)Me1(kl)+e,(ef)Me1(kl)+e)=A+2k+(kl)Me1(kl);\displaystyle=\mu\left(e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+e\right)=A+2k+\begin{pmatrix}k&l\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix};
c2p1\displaystyle c^{2}\cdot p_{1} =μ(e,e,(ef)Me1(kl)+e)=k+A,\displaystyle=\mu\left(e,e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+e\right)=k+A,
zcp1\displaystyle zc\cdot p_{1} =μ(e,f,(ef)Me1(kl)+e)=l+B,\displaystyle=\mu\left(e,f,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+e\right)=l+B,
z2p1\displaystyle z^{2}\cdot p_{1} =μ(e,(ef)Me1(CD),(ef)Me1(kl)+e)=C+(CD)Me1(kl);\displaystyle=\mu\left(e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix},\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+e\right)=C+\begin{pmatrix}C&D\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix};
c2c2\displaystyle c^{2}\cdot c^{2} =A,\displaystyle=A,
z^cc2\displaystyle\widehat{z}c\cdot c^{2} =B,\displaystyle=B,
z^cz^c\displaystyle\widehat{z}c\cdot\widehat{z}c =C,\displaystyle=C,
z^2c2\displaystyle\widehat{z}^{2}\cdot c^{2} =μ(e,(ef)Me1(CD),e)=C,\displaystyle=\mu\left(e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix},e\right)=C,
z^2z^c\displaystyle\widehat{z}^{2}\cdot\widehat{z}c =μ(e,(ef)Me1(CD),f)=D,\displaystyle=\mu\left(e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix},f\right)=D,
z^2z^2\displaystyle\widehat{z}^{2}\cdot\widehat{z}^{2} =μ(e,(ef)Me1(CD),(ef)Me1(CD))=(CD)Me1(CD).\displaystyle=\mu\left(e,\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix},\begin{pmatrix}e&f\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix}\right)=\begin{pmatrix}C&D\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix}.

Here we have two ways to compute z^2c2\widehat{z}^{2}c^{2}, and they lead the same result.

Now we express the ss-invariants of NeN_{e} explicitly. When NN is spin we have w2(De)=π(e¯)=(πe)mod 2w_{2}\left(D_{e}\right)=\pi^{*}\left(\overline{e}\right)=\left(\pi^{*}e\right)\ \mathrm{mod}\ 2, (πe)|Ne=0\left.\left(\pi^{*}e\right)\right|_{N_{e}}=0 and (πf)|Ne=pf\left.\left(\pi^{*}f\right)\right|_{N_{e}}=p^{*}f. Since detMe=1\mathrm{det}M_{e}=-1, we have Me1=(CBBA)M_{e}^{-1}=\begin{pmatrix}-C&B\\ B&-A\end{pmatrix} and σ=0\sigma=0. The SS-invariants are

S1(De,z,c)\displaystyle S_{1}\left(D_{e},z,c\right) =1896(A+2k+(kl)Me1(kl))1192(k+A)+1384A\displaystyle=\frac{1}{896}\left(A+2k+\begin{pmatrix}k&l\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}\right)-\frac{1}{192}(k+A)+\frac{1}{384}A
=914(Cu22Buv+Av2)+23B(BD)14u+3A(BD)14v+A224A56(BD)2,\displaystyle=-\frac{9}{14}\left(Cu^{2}-2Buv+Av^{2}\right)+\frac{2-3B(B-D)}{14}u+\frac{3A(B-D)}{14}v+\frac{A}{224}-\frac{A}{56}(B-D)^{2},
S2(De,z,c)\displaystyle S_{2}\left(D_{e},z,c\right) =148(C+(CD)Me1(kl)+(l+B))+148(2(CD)Me1(CD)+4D+3C+B)\displaystyle=-\frac{1}{48}\left(C+\begin{pmatrix}C&D\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}+(l+B)\right)+\frac{1}{48}\left(2\begin{pmatrix}C&D\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix}+4D+3C+B\right)
=C2BD2u+ADBC12v+2AC22ABD+AD2+CC324,\displaystyle=\frac{C^{2}-BD}{2}u+\frac{AD-BC-1}{2}v+\frac{2AC^{2}-2ABD+AD^{2}+C-C^{3}}{24},
S3(De,z,c)\displaystyle S_{3}\left(D_{e},z,c\right) =124(2(C+(CD)Me1(kl))+(l+B))+124(16(CD)Me1(CD)+16D+6C+B)\displaystyle=-\frac{1}{24}\left(2\left(C+\begin{pmatrix}C&D\end{pmatrix}M_{e}^{-1}\begin{pmatrix}k\\ l\end{pmatrix}\right)+(l+B)\right)+\frac{1}{24}\left(16\begin{pmatrix}C&D\end{pmatrix}M_{e}^{-1}\begin{pmatrix}C\\ D\end{pmatrix}+16D+6C+B\right)
=2(C2BD)u+(2AD2BC1)v\displaystyle=2\left(C^{2}-BD\right)u+(2AD-2BC-1)v
+124(8AC28ABD8AD2+24BCD+12D+4C16C3).\displaystyle\quad+\frac{1}{24}\left(8AC^{2}-8ABD-8AD^{2}+24BCD+12D+4C-16C^{3}\right).

By Lemma 1, Condition 3(a), the parameter AA is even and BB and CC are odd. Hence modulo \mathbb{Z} we obtain the formula (17). When NN is nonspin with w2(N)=e¯w_{2}(N)=\overline{e} we have w2(De)=0w_{2}\left(D_{e}\right)=0. Take c=0c=0 in (15). Recall σ=0\sigma=0 and detMe=ACB2=1<0\det M_{e}=AC-B^{2}=-1<0. The SS-invariants are

S1(De,z)\displaystyle S_{1}\left(D_{e},z\right) =914(4Cu24Buv+Av2)+314(B2+3BC+2BD)u328(AB+3AC+2AD)v\displaystyle=-\frac{9}{14}\left(4Cu^{2}-4Buv+Av^{2}\right)+\frac{3}{14}\left(B^{2}+3BC+2BD\right)u-\frac{3}{28}(AB+3AC+2AD)v
1224(A2C+6ABC+4ABD+9AC2+4AD2+12ACD),\displaystyle\ -\frac{1}{224}\left(A^{2}C+6ABC+4ABD+9AC^{2}+4AD^{2}+12ACD\right),
S2(De,z)\displaystyle S_{2}\left(D_{e},z\right) =(C2BD)u+ADBC2v124(B2C+3BC2ABD3ACDAD2+C+C3),\displaystyle=\left(C^{2}-BD\right)u+\frac{AD-BC}{2}v-\frac{1}{24}\left(B^{2}C+3BC^{2}-ABD-3ACD-AD^{2}+C+C^{3}\right),
S3(De,z)\displaystyle S_{3}\left(D_{e},z\right) =4(C2BD)u+2(ADBC)v16(B2C+3BC2ABD3ACD+2AD2+C+C3).\displaystyle=4\left(C^{2}-BD\right)u+2(AD-BC)v-\frac{1}{6}\left(B^{2}C+3BC^{2}-ABD-3ACD+2AD^{2}+C+C^{3}\right).

By Lemma 1, Condition 3(b), the parameters AA and CC are even and BB is odd. Hence modulo \mathbb{Z} we obtain formula (18).

2.3 Comparing ss-invariants

In this section we first compute the ss-invariants of S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r}. Then we compare the ss-invariants of S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r} and the manifold NeN_{e}, deducing for which homotopy 77-sphere Σ\Sigma the manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma can be written as the form NeN_{e} and thus admits a free circle action.

First we compute the ss-invariants of S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r}. It follows from [EK62, Section 3] that the μ\mu-invariant is defined for S2×S5S^{2}\times S^{5} and Σr\Sigma_{r}, hence the μ\mu-invariant is also defined for their connected sum and

μ(S2×S5#Σr)=μ(S2×S5)+μ(Σr).\mu\left(S^{2}\times S^{5}\#\Sigma_{r}\right)=\mu\left(S^{2}\times S^{5}\right)+\mu\left(\Sigma_{r}\right).

We can use the coboundary S2×D6S^{2}\times D^{6} of S2×S5S^{2}\times S^{5} to compute that μ(S2×S5)=0mod 1\mu\left(S^{2}\times S^{5}\right)=0\ \mathrm{mod}\ 1. Hence

μ(S2×S5#Σr)=μ(Σr)=r28mod 1.\mu\left(S^{2}\times S^{5}\#\Sigma_{r}\right)=\mu\left(\Sigma_{r}\right)=\frac{r}{28}\ \mathrm{mod}\ 1.

According to [KS88, Section 3], if the invariants s1s_{1} and μ\mu are both defined for the type I manifold MM, then s1(M)=μ(M)s_{1}(M)=\mu(M). Hence s1(S2×S5#Σ)=μ(S2×S5#Σr)=r28mod 1s_{1}\left(S^{2}\times S^{5}\#\Sigma\right)=\mu\left(S^{2}\times S^{5}\#\Sigma_{r}\right)=\frac{r}{28}\ \mathrm{mod}\ 1 and 28s1(S2×S5#Σr)=0mod 128s_{1}\left(S^{2}\times S^{5}\#\Sigma_{r}\right)=0\ \mathrm{mod}\ 1. By [KM63, Section 4] each homotopy 77-sphere bounds a parallelizable compact 88-manifold, saying WrW_{r} is a parallelizable compact coboundary of Σr\Sigma_{r}. The boundary connected sum (S2×D6)Wr\left(S^{2}\times D^{6}\right)\natural W_{r} is a coboundary of S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r} and can be applied to compute the invariants s2s_{2} and s3s_{3} of S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r}. The result is s2(S2×S5#Σr)=s3(S2×S5#Σr)=0mod 1s_{2}\left(S^{2}\times S^{5}\#\Sigma_{r}\right)=s_{3}\left(S^{2}\times S^{5}\#\Sigma_{r}\right)=0\ \mathrm{mod}\ 1.

Proposition 1.
  1. 1.

    The manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma admits a free circle action with spin orbit for all homotopy 77-sphere Σ\Sigma.

  2. 2.

    The manifold S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r} admits a free circle action with nonspin orbit if and only if rr is even.

In the proof we will use the following lemma from elementary number theory. Its proof is postponed to the end of this section.

Lemma 3.

Fix a prime pp and integers aa, bb, cc with gcd(ab,p)=1\gcd(ab,p)=1. Let N(a,b,c;p)N(a,b,c;p) be the number of solutions to the equation ax2+by2cmodpax^{2}+by^{2}\equiv c\ \mathrm{mod}\ p. Then

N(a,b,c;p)={p+(abp)(p1),if c0modp,p(abp),otherwise,N(a,b,c;p)=\begin{dcases}p+\left(\frac{-ab}{p}\right)(p-1),&\text{if }c\equiv 0\ \mathrm{mod}\ p,\\ p-\left(\frac{-ab}{p}\right),&\text{otherwise},\end{dcases}

where (p)\left(\frac{\cdot}{p}\right) is the Legendre symbol. In particular, any element in /p\mathbb{Z}/p is represented by the quadratic form ax2+by2ax^{2}+by^{2}.

Proof (of Proposition 1).

Let (N,e)(N,e) be given as in Lemma 1. The strategy is as follows. First we solve the equation

28s1(Ne)=s2(Ne)=s3(Ne)=0mod 1.\displaystyle 28s_{1}\left(N_{e}\right)=s_{2}\left(N_{e}\right)=s_{3}\left(N_{e}\right)=0\ \mathrm{mod}\ 1. (29)

The manifold NeN_{e} is homeomorphic to S2×S5S^{2}\times S^{5} if and only if it is a solution to equation (29). Then for such a manifold NeN_{e} that is homeomorphic to S2×S5S^{2}\times S^{5}, its s1s_{1}-invariant must be of the form s1(Ne)=r28mod 1s_{1}\left(N_{e}\right)=\frac{r}{28}\ \mathrm{mod}\ 1 for some r/28r\in\mathbb{Z}/28. Set

\displaystyle\mathcal{R} ={r/28|Ne is homeomorphic to S2×S5 and s1(Ne)=r28mod 1},\displaystyle=\left\{r\in\mathbb{Z}/28\middle|N_{e}\text{ is homeomorphic to }S^{2}\times S^{5}\text{ and }s_{1}\left(N_{e}\right)=\frac{r}{28}\ \mathrm{mod}\ 1\right\},
+\displaystyle\mathcal{R}^{+} ={r/28|N is spin, Ne is homeomorphic to S2×S5 and s1(Ne)=r28mod 1},\displaystyle=\left\{r\in\mathbb{Z}/28\middle|N\text{ is spin, }N_{e}\text{ is homeomorphic to }S^{2}\times S^{5}\text{ and }s_{1}\left(N_{e}\right)=\frac{r}{28}\ \mathrm{mod}\ 1\right\},
\displaystyle\mathcal{R}^{-} ={r/28|N is nonspin, Ne is homeomorphic to S2×S5 and s1(Ne)=r28mod 1},\displaystyle=\left\{r\in\mathbb{Z}/28\middle|N\text{ is nonspin, }N_{e}\text{ is homeomorphic to }S^{2}\times S^{5}\text{ and }s_{1}\left(N_{e}\right)=\frac{r}{28}\ \mathrm{mod}\ 1\right\},

and it is clear that /28±\mathbb{Z}/28\supset\mathcal{R}\supset\mathcal{R}^{\pm}. Then the manifold S2×S5#ΣrS^{2}\times S^{5}\#\Sigma_{r} admits a free circle action (resp. with spin orbit, with nonspin orbit) if and only if rr\in\mathcal{R} (resp. +\mathcal{R}^{+}, \mathcal{R}^{-}). We will show that =2/28\mathcal{R}^{-}=2\mathbb{Z}/28 and +=/28\mathcal{R}^{+}=\mathbb{Z}/28. In particular =/28\mathcal{R}=\mathbb{Z}/28 and the manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma admits a free circle action for any homotopy 77-sphere Σ\Sigma.

We begin with the case NN is nonspin, then the case NN is spin with detMe=1\det M_{e}=-1. When NN is nonspin, we already have 28s1(Ne)=0mod 128s_{1}\left(N_{e}\right)=0\ \mathrm{mod}\ 1. As s3(Ne)=4s2(Ne)s_{3}\left(N_{e}\right)=4s_{2}\left(N_{e}\right), it suffices to solve s2(Ne)=0mod 1s_{2}\left(N_{e}\right)=0\ \mathrm{mod}\ 1. Recall that AA, CC are even and BB is odd. Set A=2A1A=2A_{1}, C=2C1C=2C_{1}, and we solve the following equation set

{4A1C1B2=1,B2C1+6BC12A1BD6A1C1D+C1+4C130mod 12.\begin{dcases}4A_{1}C_{1}-B^{2}&=-1,\\ B^{2}C_{1}+6BC_{1}^{2}-A_{1}BD-6A_{1}C_{1}D+C_{1}+4C_{1}^{3}&\equiv 0\ \mathrm{mod}\ 12.\end{dcases}

By Chinese remainder theorem, the second equation is equivalent to the congruence equation set

{B2C1+6BC12A1BD6A1C1D+C1+4C130mod 3,B2C1+6BC12A1BD6A1C1D+C1+4C130mod 4.\begin{dcases}B^{2}C_{1}+6BC_{1}^{2}-A_{1}BD-6A_{1}C_{1}D+C_{1}+4C_{1}^{3}\equiv 0&\mathrm{mod}\ 3,\\ B^{2}C_{1}+6BC_{1}^{2}-A_{1}BD-6A_{1}C_{1}D+C_{1}+4C_{1}^{3}\equiv 0&\mathrm{mod}\ 4.\end{dcases}

thus A1A_{1}, BB, C1C_{1}, DD are subject to the following equation set

{(B21)C1A1BDmod 3,A1D0mod 4.\begin{dcases}\left(B^{2}-1\right)C_{1}\equiv A_{1}BD&\mathrm{mod}\ 3,\\ A_{1}D\equiv 0&\mathrm{mod}\ 4.\end{dcases} (30)

Next we compute all possible values of s1(Ne)s_{1}\left(N_{e}\right) when NN is nonspin. In formula (18) if we set s1(Ne)=r28mod 1s_{1}\left(N_{e}\right)=\frac{r}{28}\ \mathrm{mod}\ 1, then

r\displaystyle r =(18(8C1u24Buv+2A1v2)+6(B2+6BC1+2BD)u6(A1B+6A1C1+2A1D)v)\displaystyle=\left(-18\left(8C_{1}u^{2}-4Buv+2A_{1}v^{2}\right)+6\left(B^{2}+6BC_{1}+2BD\right)u-6\left(A_{1}B+6A_{1}C_{1}+2A_{1}D\right)v\right)
A1D(B+6C1+D)A1C1(A1+3B+9C1)mod 28.\displaystyle\quad-A_{1}D\left(B+6C_{1}+D\right)-A_{1}C_{1}\left(A_{1}+3B+9C_{1}\right)\ \mathrm{mod}\ 28.

In the expression of rr, the first two brackets are even and the last one is odd if and only if A1A_{1} and C1C_{1} are both odd. Hence rr is odd if and only if A1A_{1} and C1C_{1} are both odd. Since BB is odd we must have B21mod 8B^{2}\equiv 1\ \mathrm{mod}\ 8. Hence from B2=4A1C1+1B^{2}=4A_{1}C_{1}+1 we deduce that A1C1A_{1}C_{1} is even, and rr must be even. Now we consider all possible even values of rr. From B2=4A1C1+1B^{2}=4A_{1}C_{1}+1 we simply take A1=B1=1A_{1}=B_{1}=1, C1=D=0C_{1}=D=0, and r72uv36v2+6u6vmod 28.r\equiv 72uv-36v^{2}+6u-6v\ \mathrm{mod}\ 28. Thus rmod 4=2(uv)mod 4r\ \mathrm{mod}\ 4=2(u-v)\ \mathrm{mod}\ 4 and rmod 7=u2(uv3)2+2mod 7r\ \mathrm{mod}\ 7=u^{2}-(u-v-3)^{2}+2\ \mathrm{mod}\ 7. It is straightforward to see that rmod 4r\ \mathrm{mod}\ 4 takes all even values of /4\mathbb{Z}/4. By Lemma 3 it is also true that rmod 7r\ \mathrm{mod}\ 7 takes all values of /7\mathbb{Z}/7 since ±1\pm 1 are coprime to 77. Hence by Chinese remainder theorem rmod 28r\ \mathrm{mod}\ 28 takes all even values in /28\mathbb{Z}/28, i.e. =2/28\mathcal{R}^{-}=2\mathbb{Z}/28. The first statement of Proposition 1 is proved.

When NN is spin and detMe=1\det M_{e}=-1, we have AA is even and BB and CC are both odd with ACB2=1AC-B^{2}=-1. First we apply formula (17) to equation (29). The 22-primary part gives A0mod 8A\equiv 0\ \mathrm{mod}\ 8 and D1mod 2D\equiv 1\ \mathrm{mod}\ 2. Hence we set A=8A1A=8A_{1} and B2=8A1C+1B^{2}=8A_{1}C+1. The 33-primary part gives A1(C2BDD2)0mod 3A_{1}\left(C^{2}-BD-D^{2}\right)\equiv 0\ \mathrm{mod}\ 3. Next we compute all possible values of s1(Ne)s_{1}\left(N_{e}\right). In formula (17) if we set s1(Ne)=r28mod 1s_{1}\left(N_{e}\right)=\frac{r}{28}\ \mathrm{mod}\ 1, then

r\displaystyle r =18(Cu22Buv+8A1v2)2(3B(BD)2)u+48A1(BD)v+A14A1(BD)2mod 28.\displaystyle=-18\left(Cu^{2}-2Buv+8A_{1}v^{2}\right)-2(3B(B-D)-2)u+48A_{1}(B-D)v+A_{1}-4A_{1}(B-D)^{2}\ \mathrm{mod}\ 28.

Hence rmod 4=2u2+A1mod 4r\ \mathrm{mod}\ 4=2u^{2}+A_{1}\ \mathrm{mod}\ 4. When A1A_{1} is odd rmod 4r\ \mathrm{mod}\ 4 tkes all odds modulo 44 and the same statement holds for even case. We take A1=1A_{1}=1, B=3B=3, C=D=1C=D=1 when A1A_{1} is odd, and rmod 7=(2u+v+1)2+2v2mod 7r\ \mathrm{mod}\ 7=-(2u+v+1)^{2}+2v^{2}\ \mathrm{mod}\ 7. We take A1=0A_{1}=0, B=C=D=1B=C=D=1 when A1A_{1} is even, and rmod 7=(2u+v1)2+(v1)2mod 7r\ \mathrm{mod}\ 7=-(2u+v-1)^{2}+(v-1)^{2}\ \mathrm{mod}\ 7. By Lemma 3, in either case rr can take all values in /7\mathbb{Z}/7. Hence rmod 28r\ \mathrm{mod}\ 28 takes all even values in /28\mathbb{Z}/28, i.e. +/28\mathcal{R}^{+}\supset\mathbb{Z}/28. While +/28\mathcal{R}^{+}\subset\mathbb{Z}/28, we obtain +=/28\mathcal{R}^{+}=\mathbb{Z}/28. This proves the second statement of Proposition 1 and hence we complete the proof of Proposition 1. \Box

Proof (of Lemma 3).

Note that (x,y)(x,y) is a solution to the equation ax2+by2cmodpax^{2}+by^{2}\equiv c\ \mathrm{mod}\ p if and only if (x,y)(x,y) is a solution to the equation set x2ux^{2}\equiv u, y2b1(cau)modpy^{2}\equiv b^{-1}\left(c-au\right)\ \mathrm{mod}\ p for some uu. It follows from the definition of Legendre symbol that the number of solutions to the equation x2umodpx^{2}\equiv u\ \mathrm{mod}\ p is (up)+1\left(\frac{u}{p}\right)+1. Hence

N(a,b,c;p)\displaystyle N(a,b,c;p) =u=0p1((up)+1)((b1(cau)p)+1)\displaystyle=\sum_{u=0}^{p-1}\left(\left(\frac{u}{p}\right)+1\right)\left(\left(\frac{b^{-1}(c-au)}{p}\right)+1\right)
=u=0p1(up)(b1(cau)p)+u=0p1(up)+u=0p1(b1(cau)p)+p.\displaystyle=\sum_{u=0}^{p-1}\left(\frac{u}{p}\right)\left(\frac{b^{-1}(c-au)}{p}\right)+\sum_{u=0}^{p-1}\left(\frac{u}{p}\right)+\sum_{u=0}^{p-1}\left(\frac{b^{-1}(c-au)}{p}\right)+p.

We have u=0p1(up)=u=0p1(b1(cau)p)=0\sum_{u=0}^{p-1}\left(\frac{u}{p}\right)=\sum_{u=0}^{p-1}\left(\frac{b^{-1}(c-au)}{p}\right)=0. Meanwhile when uu is coprime to pp we have

(up)(b1(cau)p)=(bp)(cu1ap).\left(\frac{u}{p}\right)\left(\frac{b^{-1}(c-au)}{p}\right)=\left(\frac{b}{p}\right)\left(\frac{cu^{-1}-a}{p}\right).

Hence if cc is divisible by pp we have N(a,b,c;p)=(p1)(bp)(ap)+p=p+(p1)(abp)N(a,b,c;p)=(p-1)\left(\frac{b}{p}\right)\left(\frac{-a}{p}\right)+p=p+(p-1)\left(\frac{-ab}{p}\right), and if cc is coprime to pp we have N(a,b,c;p)=(bp)((ap))+p=p(abp)N(a,b,c;p)=\left(\frac{b}{p}\right)\left(-\left(\frac{-a}{p}\right)\right)+p=p-\left(\frac{-ab}{p}\right). Since the Legendre symbol takes value in ±1\pm 1 and 0, the number N(a,b,c;p)N(a,b,c;p) is always positive. \Box

3 Circle actions on S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma

In this section we determine for which homotopy 77-sphere Σ\Sigma the manifold S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma admits a free circle action. The organization of this section is similar to that of Section 2.

First in Section 3.1 we deal with the broader class of manifolds, i.e. the string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. In particular when Σ\Sigma is a homotopy 77-sphere the manifold S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma is a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. We will study the invariants of the orbit space NN of some free circle action on some string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. Next in Section 3.2 we compute the diffeomorphism invariants of those string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4} that admits a free circle action. We express the diffeomorphism invariants of such a manifold MM in terms of the invariants of the orbit space NN. Finally in Section 3.3 we compare the diffeomorphism invariants of MM and S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma, and we determine for which homotopy 77-sphere Σ\Sigma the manifold S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma admits a free circle action.

Here a string manifold is defined as follows. When MM is a spin manifold, its first spin Pontryagin class p1¯(M)H4(M)\overline{p_{1}}(M)\in H^{4}(M) is defined and is related to the first Pontryagin class by 2p1¯(M)=p1(M)2\overline{p_{1}}(M)=p_{1}(M). We say MM is string if it is spin and p1¯(M)=0\overline{p_{1}}(M)=0. It is useful to notice that when MM is spin and its cohomology groups are torsion-free, the class p1¯(M)\overline{p_{1}}(M) vanishes if and only if p1(M)p_{1}(M) does and MM is string if and only if p1(M)=0p_{1}(M)=0.

3.1 The orbit space NN

In this section we study the invariants of the orbit space of a free circle action on MM, where MM is a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. Again by [Lee12, Chapter 21, Theorem 21.10] the orbit is a 66-manifold and the projection M𝑝NM\xrightarrow{p}N is a circle bundle.

Lemma 4.

Assume the 66-manifold NN is the orbit of a free circle action on a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. Then NN is simply connected and satisfies the following conditions.

  1. 1.

    Its cohomology groups are torsion-free and the only nonzero Betti numbers are b0=b6=1,b2=b4=2b_{0}=b_{6}=1,\ b_{2}=b_{4}=2;

  2. 2.

    Its second cohomology group has a basis (e,f)(e,f) such that μ(e,e,e)=ε\mu(e,e,e)=\varepsilon, μ(e,e,f)=A\mu(e,e,f)=A, μ(e,f,f)=εA2\mu(e,f,f)=\varepsilon A^{2} and μ(f,f,f)=A3\mu(f,f,f)=A^{3}, where ε=±1\varepsilon=\pm 1.

  3. 3.

    It is spin and p1(N)=(4ε+24u)(e+εAf)p_{1}(N)=(4\varepsilon+24u)\left(e^{\vee}+\varepsilon Af^{\vee}\right) for some uu\in\mathbb{Z}, where (e,f)\left(e^{\vee},f^{\vee}\right) is the dual basis of H4(N)H^{4}(N) with respect to (e,f)(e,f).

Proof.

Let MM be a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4} that admits a free circle action and let NN be the orbit manifold. Then we have a circle bundle M𝑝NM\xrightarrow{p}N. First we determine the cohomology groups of NN. The long exact sequence of homotopy groups associated to this fiber bundle shows that NN is simply connected and there is a short exact sequence 0π2(M)π2(N)π1(S1)00\to\pi_{2}(M)\to\pi_{2}(N)\to\pi_{1}\left(S^{1}\right)\to 0. Combining π2(M)H2(M)\pi_{2}(M)\cong H_{2}(M)\cong\mathbb{Z} and π1(S1)\pi_{1}\left(S^{1}\right)\cong\mathbb{Z} we have π2(N)2\pi_{2}(N)\cong\mathbb{Z}^{2} and H2(N)H2(N)2H_{2}(N)\cong H^{2}(N)\cong\mathbb{Z}^{2}. Let eH2(N)e\in H^{2}(N) denote the Euler class of the circle bundle. From Gysin sequence we deduce the following two exact sequences:

0H0(N)\displaystyle 0\to H^{0}(N) eH2(N)pH2(M)0,\displaystyle\xrightarrow{\cup e}H^{2}(N)\xrightarrow{p^{*}}H^{2}(M)\to 0, (31)
0H3(N)pH3(M)H2(N)\displaystyle 0\to H^{3}(N)\xrightarrow{p^{*}}H^{3}(M)\to H^{2}(N) eH4(N)pH4(M)H3(N)0.\displaystyle\xrightarrow{\cup e}H^{4}(N)\xrightarrow{p^{*}}H^{4}(M)\to H^{3}(N)\to 0. (32)

It follows from exact sequence (31) that ee is primitive. From exact sequence (32) we see that H3(N)H^{3}(N) injects into H3(M)H^{3}(M)\cong\mathbb{Z} and thus must be 0 or \mathbb{Z}. Now NN has torsion-free cohomology groups. The rank of H3(N)H^{3}(N) is even by [Wal66, Theorem 1], hence H3(N)=0H^{3}(N)=0. Now we obtain that the only nonzero Betti numbers are b0=b6=1b_{0}=b_{6}=1, b2=b4=2b_{2}=b_{4}=2. This justifies Condition 1 of Lemma 4.

Next we determine the cohomology ring of NN. Back to exact sequence (32), and we see the morphism H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) has kerH3(M)\ker\cong H^{3}(M)\cong\mathbb{Z} and cokerH4(M)\mathrm{coker}\cong H^{4}(M)\cong\mathbb{Z}. Hence its image in H4(N)H^{4}(N) is a direct summand and is isomorphic to \mathbb{Z}. We extend eH2(N)e\in H^{2}(N) to a basis (e,f)(e,f) and equip H4(N)H^{4}(N) with the dual basis (e,f)\left(e^{\vee},f^{\vee}\right). With respect to these bases the morphism H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) is represented by the matrix Me=(μ(e,e,e)μ(e,f,e)μ(e,e,f)μ(e,f,f))\ M_{e}=\begin{pmatrix}\mu(e,e,e)&\mu(e,f,e)\\ \mu(e,e,f)&\mu(e,f,f)\end{pmatrix}. Since the image of H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) is a direct summand isomorphic to \mathbb{Z}, the products e2e^{2} and efef are colinear. Hence detMe=μ(e,e,f)2μ(e,e,e)μ(e,f,f)=0\det M_{e}=\mu(e,e,f)^{2}-\mu(e,e,e)\mu(e,f,f)=0 and at least one column of MeM_{e} is primitive in 2\mathbb{Z}^{2}. This implies at least one of the greatest common divisors gcd(μ(e,e,e),μ(e,e,f))\mathrm{gcd}\left(\mu(e,e,e),\mu(e,e,f)\right) and gcd(μ(e,e,f),μ(e,f,f))\mathrm{gcd}\left(\mu(e,e,f),\mu(e,f,f)\right) is 11. Hence we obtain that either μ(e,e,e)=±1\mu(e,e,e)=\pm 1, μ(e,f,f)=μ(e,e,e)μ(e,e,f)2\mu(e,f,f)=\mu(e,e,e)\mu(e,e,f)^{2} or μ(e,f,f)=±1\mu(e,f,f)=\pm 1, μ(e,e,e)=μ(e,f,f)μ(e,e,f)2\mu(e,e,e)=\mu(e,f,f)\mu(e,e,f)^{2}. The product f2=μ(f,f,e)e+μ(f,f,f)ff^{2}=\mu(f,f,e)e^{\vee}+\mu(f,f,f)f^{\vee} is not contained above. Since ee is primitive, pfp^{*}f generates H2(M)H^{2}(M)\cong\mathbb{Z}. Since MM is a cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4} we have p(f2)=(pf)2=0p^{*}\left(f^{2}\right)=\left(p^{*}f\right)^{2}=0. Hence by exact sequence (32) we see f2im(H2(N)eH4(N))f^{2}\in\mathrm{im}\left(H^{2}(N)\xrightarrow{\cup e}H^{4}(N)\right), and the products e2,ef,f2e^{2},\ ef,\ f^{2} are all colinear. Write

(e2eff2)=(ef)(μ(e,e,e)μ(e,e,f)μ(e,f,f)μ(e,e,f)μ(e,f,f)μ(f,f,f)),\begin{pmatrix}e^{2}&ef&f^{2}\end{pmatrix}=\begin{pmatrix}e^{\vee}&f^{\vee}\end{pmatrix}\begin{pmatrix}\mu(e,e,e)&\mu(e,e,f)&\mu(e,f,f)\\ \mu(e,e,f)&\mu(e,f,f)&\mu(f,f,f)\end{pmatrix},

and the 2×32\times 3 matrix has rank 11. It is routine to deduce if μ(e,f,f)=±1\mu(e,f,f)=\pm 1, μ(e,e,e)\mu(e,e,e), μ(e,e,f)\mu(e,e,f) and μ(f,f,f)\mu(f,f,f) are all ±1\pm 1. Hence we set ε=μ(e,e,e)=±1\varepsilon=\mu(e,e,e)=\pm 1 and A=μ(e,e,f)A=\mu(e,e,f)\in\mathbb{Z}, then ef=Ae2ef=Ae^{2}, f2=A2e2f^{2}=A^{2}e^{2} and μ(e,f,f)=εA2\mu(e,f,f)=\varepsilon A^{2}, μ(f,f,f)=A3\mu(f,f,f)=A^{3}. This justifies Condition 2 of Lemma 4.

Now we study the characteristic classes of NN. We keep using diagram (7) and the previous notations. As before we begin with w2(N)w_{2}(N). From w2(M)=0w_{2}\left(M\right)=0 we still have w2(N)=0w_{2}(N)=0 or e¯\overline{e}. If w2(N)=e¯w_{2}(N)=\overline{e}, formula (9) would imply 0=μ(e,e,e)¯=1mod 20=\overline{\mu(e,e,e)}=1\ \mathrm{mod}\ 2. This is a contradiction. Hence NN is spin. Next we determine p1(N)p_{1}(N). Set p1(N)=ke+lfp_{1}(N)=k\cdot e^{\vee}+l\cdot f^{\vee}, k,lk,l\in\mathbb{Z}. Since MM is string, we have p1(M)=p(p1(N)+e2)=p(p1(N))=0p_{1}\left(M\right)=p^{*}\left(p_{1}(N)+e^{2}\right)=p^{*}\left(p_{1}(N)\right)=0. By exact sequence (32) we see p1(N)im(H2(N)eH4(N))p_{1}(N)\in\mathrm{im}\left(H^{2}(N)\xrightarrow{\cup e}H^{4}(N)\right). Since e2=εe+Afe^{2}=\varepsilon e^{\vee}+Af^{\vee} and ef=Ae+εA2f=εAe2ef=Ae^{\vee}+\varepsilon A^{2}f^{\vee}=\varepsilon Ae^{2}, the image of H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) is generated by e2e^{2}. Hence (k,l)(k,l) and (ε,A)(\varepsilon,A) are colinear. Now we conclude that l=εAkl=\varepsilon Ak and p1(N)=kεe2=k(e+εAf)p_{1}(N)=k\varepsilon e^{2}=k\left(e^{\vee}+\varepsilon Af^{\vee}\right). Combining formula (8) and w2(N)=0w_{2}(N)=0 we see kk is even. Now we unpack formula (10). As NN is spin, we take w^=0\widehat{w}=0. Set x=Xe+Yfx=Xe+Yf, X,YX,Y\in\mathbb{Z}, and we have

4X3ε+12X2YA+12XY2εA2+4Y3A3kX+εAkYmod 24,X,Y.4X^{3}\varepsilon+12X^{2}YA+12XY^{2}\varepsilon A^{2}+4Y^{3}A^{3}\equiv kX+\varepsilon AkY\ \mathrm{mod}\ 24,\ \forall X,Y\in\mathbb{Z}.

Solving this equation we obtain k4εmod 24k\equiv 4\varepsilon\ \mathrm{mod}\ 24. This justifies Condition 3 of Lemma 4. Now we complete the proof. \Box

Lemma 5.

Let ε=±1\varepsilon=\pm 1 and let AA be an integer. Up to orientation-preserving diffeomorphism there is a unique simply connected spin 66-manifold NN that satisfies Conditions 1, 2 and 3 of Lemma 4 and is the orbit of a free circle action on a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}.

Proof.

The proof is parallel to the proof of Lemma 2. By [Jup73, Theorem 1] up to orientation-preserving diffeomorphism there is a unique simply connected spin 66-manifold NN which satisfies Conditions 1, 2 and 3 of Lemma 4. Let NeN_{e} be the total space of the circle bundle over NN whose Euler class is ee. Imitating the proof of Lemma 2, we see that NeN_{e} is a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. \Box

3.2 Invariants of NeN_{e}

In this section we compute the diffeomorphism invariants of NeN_{e}. The diffeomorphism invariants are the ss-invariants developed by Kreck ([Kre18, Section 4]). First we review the definition of the original ss-invariants. Then we extend the definition. Finally we apply the extended definition of ss-invariants to the manifold NeN_{e}.

[Kre18, Section 4] considered the diffeomorphism invariant of spin cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. Here for convenience a string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4} is called a manifold of type II. Then given a pair (N,e)(N,e) satisfying Lemma 4, the manifold NeN_{e} is of type II. A generator of H2(Ne)H^{2}\left(N_{e}\right)\cong\mathbb{Z} is pfp^{*}f. When Σ\Sigma is a homotopy 77-sphere, the manifold S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma is also a type II manifold.

The diffeomorphism invariants of a type II manifold are defined as follows. Let MM be a type II manifold and let zz be a generator of H2(M)H^{2}(M). By [Kre18, Theorem 6] MM admits a spin coboundary WW such that there is a class z^H2(W)\widehat{z}\in H^{2}(W) with z^|M=z\widehat{z}|_{M}=z. We have the following characteristic numbers

{S1(W,z^)=p1¯2,[W,M],S2(W,z^)=z^2(z^2p1¯),[W,M],S3(W,z^)=z^2p1¯,[W,M].\displaystyle\left\{\begin{aligned} S_{1}\left(W,\widehat{z}\right)&=\left<\overline{p_{1}}^{2},[W,M]\right>\in\mathbb{Z},\\ S_{2}\left(W,\widehat{z}\right)&=\left<\widehat{z}^{2}\left(\widehat{z}^{2}-\overline{p_{1}}\right),[W,M]\right>\in\mathbb{Z},\\ S_{3}\left(W,\widehat{z}\right)&=\left<\widehat{z}^{2}\overline{p_{1}},[W,M]\right>\in\mathbb{Z}.\end{aligned}\right. (33)

Here p1¯=p1¯(W)\overline{p_{1}}=\overline{p_{1}}(W). The integral classes p1¯\overline{p_{1}} and z^2\widehat{z}^{2} vanish when they restrict to MM, hence they can be lifted to H4(W,M)H^{4}(W,M) and the products p1¯2\overline{p_{1}}^{2}, z^2p1¯\widehat{z}^{2}\overline{p_{1}} and z^4\widehat{z}^{4} are classes in H8(W,M)H^{8}(W,M) evaluating on [W,M][W,M]. For convenience we abbreviate p1¯2,[W,M]\left<\overline{p_{1}}^{2},[W,M]\right> for p1¯2\overline{p_{1}}^{2} and the other monomial terms are silimar. Then we have

{S1(W,z^)=p1¯2,S2(W,z^)=z^4z^2p1¯,S3(W,z^)=z^2p1¯.\displaystyle\left\{\begin{aligned} S_{1}\left(W,\widehat{z}\right)&=\overline{p_{1}}^{2}\in\mathbb{Z},\\ S_{2}\left(W,\widehat{z}\right)&=\widehat{z}^{4}-\widehat{z}^{2}\overline{p_{1}}\in\mathbb{Z},\\ S_{3}\left(W,\widehat{z}\right)&=\widehat{z}^{2}\overline{p_{1}}\in\mathbb{Z}.\end{aligned}\right. (34)

Set

s1(M)\displaystyle s_{1}(M) =\displaystyle= S1(W,z^)\displaystyle S_{1}\left(W,\widehat{z}\right) mod\displaystyle\ \mathrm{mod} 224\displaystyle\ 224 \displaystyle\in /224,\displaystyle\ \mathbb{Z}/224,
s2(M)\displaystyle s_{2}(M) =\displaystyle= S2(W,z^)\displaystyle S_{2}\left(W,\widehat{z}\right) mod\displaystyle\ \mathrm{mod} 24\displaystyle\ 24 \displaystyle\in /24,\displaystyle\ \mathbb{Z}/24,
s3(M)\displaystyle s_{3}(M) =\displaystyle= S2(W,z^)\displaystyle S_{2}\left(W,\widehat{z}\right) mod\displaystyle\ \mathrm{mod} 2\displaystyle\ 2 \displaystyle\in /2,\displaystyle\ \mathbb{Z}/2,

and these invariants sis_{i} do not depend on the choices of the generators of H2(M)H^{2}(M) or the spin coboundaries (W,z^)\left(W,\widehat{z}\right). They are invariants of the type II manifold MM. It follows from [Kre18, Theorem 2] that two manifolds MM, MM^{\prime} of type II are diffeomorphic if and only if they share the same invariants s1s_{1}, s2s_{2} and s3s_{3}.

Sometimes we cannot easily construct such a spin coboundary, but we can find a nonspin coboundary WW and its cohomology classes z^,cH2(W)\widehat{z},c\in H^{2}(W) such that w2(W)=c¯w_{2}(W)=\overline{c} and z^|M=z,c|M=0\left.\widehat{z}\right|_{M}=z,\ c|_{M}=0. Moreover we can still use the tripple (W,z^,c)\left(W,\widehat{z},c\right) to compute the ss-invariants of MM. Hence we first extend the previous definition ([Kre18, Section 4]) of ss-invariants for type II manifolds. We rewrite the formulae of ss-invariants of type II manifolds and add the superscript II.

s1II(M)\displaystyle s_{1}^{\mathrm{II}}(M) =\displaystyle= 1896p12\displaystyle\frac{1}{896}p_{1}^{2} \displaystyle\in 1896/\displaystyle\ \left.\frac{1}{896}\mathbb{Z}\right/\mathbb{Z} \displaystyle\subset /,\displaystyle\mathbb{Q}/\mathbb{Z},
s2II(M)\displaystyle s_{2}^{\mathrm{II}}(M) =\displaystyle= 124z^4148z^2p1\displaystyle\frac{1}{24}\widehat{z}^{4}-\frac{1}{48}\widehat{z}^{2}p_{1} \displaystyle\in 124/\displaystyle\ \left.\frac{1}{24}\mathbb{Z}\right/\mathbb{Z} \displaystyle\subset /,\displaystyle\mathbb{Q}/\mathbb{Z},
s3II(M)\displaystyle s_{3}^{\mathrm{II}}(M) =\displaystyle= 14z^2p1\displaystyle\frac{1}{4}\widehat{z}^{2}p_{1} \displaystyle\in 12/\displaystyle\left.\frac{1}{2}\mathbb{Z}\right/\mathbb{Z} \displaystyle\subset /.\displaystyle\mathbb{Q}/\mathbb{Z}.

Here we use the first Pontryagin class since the first spin Pontryagin class is not defined for nonspin coboundary. Also we recall the expression of ss-invariants for Type I manifolds. Here we add the superscript I and assume the coboundary has signature zero.

s1I(M)\displaystyle s^{\mathrm{I}}_{1}(M) =\displaystyle\ = 1896p12\displaystyle\frac{1}{896}p_{1}^{2} \displaystyle\ \in /,\displaystyle\ \mathbb{Q}/\mathbb{Z},
s2I(M)\displaystyle s^{\mathrm{I}}_{2}(M) =\displaystyle\ = 124z^4148z^2p1\displaystyle\frac{1}{24}\widehat{z}^{4}-\frac{1}{48}\widehat{z}^{2}p_{1} \displaystyle\ \in /,\displaystyle\ \mathbb{Q}/\mathbb{Z},
s3I(M)\displaystyle s^{\mathrm{I}}_{3}(M) =\displaystyle\ = 23z^4112z^2p1\displaystyle\frac{2}{3}\widehat{z}^{4}-\frac{1}{12}\widehat{z}^{2}p_{1} \displaystyle\ \in /.\displaystyle\ \mathbb{Q}/\mathbb{Z}.

The invariants sIs^{\mathrm{I}} and sIIs^{\mathrm{II}} are rational linear combinations of p12,z^2p1p_{1}^{2},\ \widehat{z}^{2}p_{1} and z^4\widehat{z}^{4} such that

(s1IIs2IIs3II)=(s1Is2Is3I)(1000100161).\begin{pmatrix}s_{1}^{\mathrm{II}}&s_{2}^{\mathrm{II}}&s_{3}^{\mathrm{II}}\end{pmatrix}=\begin{pmatrix}s_{1}^{\mathrm{I}}&s_{2}^{\mathrm{I}}&s_{3}^{\mathrm{I}}\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&-16&1\end{pmatrix}.

The transition matrix is lower triangular and its diagonal entries are all 11. Hence this matrix is invertible over \mathbb{Z}, and two type II manifolds have the same sIIs^{\mathrm{II}}-invariants if and only if they have the same sIs^{\mathrm{I}}-invariants. We conclude that if the coboundaries are spin and have signature zero, the diffeomorphism invariants for type I manifolds and type II manifolds have the same expression. Hence we drop the superscripts I,II\mathrm{I},\ \mathrm{II} and write si=siI=siIIs_{i}=s_{i}^{\mathrm{I}}=s_{i}^{\mathrm{II}} uniformly. Further by [KS91, Remark 2.6], given a type II manifold MM with zz a generator of H2(M)H^{2}(M), if WW is a nonspin coboundary of type II manifold MM and there are classes z^,cH2(W)\widehat{z},\ c\in H^{2}(W) such that w2(W)=c¯w_{2}(W)=\overline{c}, z^|M=z\widehat{z}|_{M}=z and c|M=0c|_{M}=0, then formula (16) still apply to the computation of ss-invariants of MM.

Example 2.

Let (N,e)(N,e) be given as in Lemma 4. The ss-invariants of the type II manifold NeN_{e} are given by:

{s1(Ne)=9εu2+2u14mod 1,s2(Ne)=0mod 1,s3(Ne)=0mod 1.\displaystyle\left\{\begin{aligned} s_{1}\left(N_{e}\right)&=&\frac{9\varepsilon u^{2}+2u}{14}\ \mathrm{mod}\ 1,\\ s_{2}\left(N_{e}\right)&=&0\ \mathrm{mod}\ 1,\\ s_{3}\left(N_{e}\right)&=&0\ \mathrm{mod}\ 1.\end{aligned}\right. (35)

The ss-invariants of NeN_{e} is computed as follows. A natural coboundary of NeN_{e} is the associated disc bundle DeD_{e}. Note that DeD_{e} is nonspin and w2(Ne)=πe¯w_{2}\left(N_{e}\right)=\overline{\pi^{*}e}. Set z=pfz=p^{*}f, z^=πf\widehat{z}=\pi^{*}f, c=πec=\pi^{*}e, and (De,z^,c)\left(D_{e},\widehat{z},c\right) is a nonspin coboundary of (Ne,z)(N_{e},z). By Lemma 4 we have p1(N)=(4+24εu)e2p_{1}(N)=(4+24\varepsilon u)e^{2}, where ε=±1\varepsilon=\pm 1 and uu\in\mathbb{Z}. Then p1(De)=π(p1(N)+e2)=(1+εk)π(e2)=(5+24εu)π(e2)p_{1}\left(D_{e}\right)=\pi^{*}\left(p_{1}(N)+e^{2}\right)=(1+\varepsilon k)\pi^{*}\left(e^{2}\right)=(5+24\varepsilon u)\pi^{*}\left(e^{2}\right). Just as before the signature term is σ(De,Ne)=σ(Me)=σ(εAAεA2)=ε\sigma\left(D_{e},N_{e}\right)=\sigma\left(M_{e}\right)=\sigma\begin{pmatrix}\varepsilon&A\\ A&\varepsilon A^{2}\end{pmatrix}=\varepsilon. The remaining monomials are

p1p1\displaystyle p_{1}\cdot p_{1} =\displaystyle= μ(e,(5+24εu)e,(5+24εu)e)\displaystyle\mu\left(e,(5+24\varepsilon u)e,(5+24\varepsilon u)e\right) =\displaystyle= (5+24εu)2ε;\displaystyle(5+24\varepsilon u)^{2}\varepsilon;
c2p1\displaystyle c^{2}\cdot p_{1} =\displaystyle= μ(e,e,(5+24εu)e)\displaystyle\mu(e,e,(5+24\varepsilon u)e) =\displaystyle= (5+24εu)ε,\displaystyle(5+24\varepsilon u)\varepsilon,
z^cp1\displaystyle\widehat{z}c\cdot p_{1} =\displaystyle= μ(e,f,(5+24εu)e)\displaystyle\mu(e,f,(5+24\varepsilon u)e) =\displaystyle= (5+24εu)A,\displaystyle(5+24\varepsilon u)A,
z^2p1\displaystyle\widehat{z}^{2}\cdot p_{1} =\displaystyle= μ(e,A2e,(5+24εu)e)\displaystyle\mu\left(e,A^{2}e,(5+24\varepsilon u)e\right) =\displaystyle= (5+24εu)εA2;\displaystyle(5+24\varepsilon u)\varepsilon A^{2};
c2c2\displaystyle c^{2}\cdot c^{2} =\displaystyle= μ(e,e,e)\displaystyle\mu(e,e,e) =\displaystyle= ε,\displaystyle\varepsilon,
z^cc2\displaystyle\widehat{z}c\cdot c^{2} =\displaystyle= μ(e,f,e)\displaystyle\mu(e,f,e) =\displaystyle= A,\displaystyle A,
z^2c2\displaystyle\widehat{z}^{2}\cdot c^{2} =\displaystyle= μ(e,A2e,e)\displaystyle\mu(e,A^{2}e,e) =\displaystyle= εA2,\displaystyle\varepsilon A^{2},
z^cz^c\displaystyle\widehat{z}c\cdot\widehat{z}c =\displaystyle= μ(e,f,f)\displaystyle\mu(e,f,f) =\displaystyle= εA2,\displaystyle\varepsilon A^{2},
z^2z^c\displaystyle\widehat{z}^{2}\cdot\widehat{z}c =\displaystyle= μ(e,A2e,f)\displaystyle\mu\left(e,A^{2}e,f\right) =\displaystyle= A3,\displaystyle A^{3},
z^2z^2\displaystyle\widehat{z}^{2}\cdot\widehat{z}^{2} =\displaystyle= μ(e,A2e,A2e)\displaystyle\mu\left(e,A^{2}e,A^{2}e\right) =\displaystyle= εA4.\displaystyle\varepsilon A^{4}.

Here we have two ways to compute the monomial z^2c2\widehat{z}^{2}c^{2}, and they lead the same result. Hence

S1(De,z^,c)\displaystyle S_{1}\left(D_{e},\widehat{z},c\right) =\displaystyle= 1224ε+1896(5+24εu)2ε1192(5+24εu)ε+1384ε\displaystyle-\frac{1}{224}\varepsilon+\frac{1}{896}(5+24\varepsilon u)^{2}\varepsilon-\frac{1}{192}(5+24\varepsilon u)\varepsilon+\frac{1}{384}\varepsilon
=\displaystyle= 17u+914εu2,\displaystyle\frac{1}{7}u+\frac{9}{14}\varepsilon u^{2},
S2(De,z^,c)\displaystyle S_{2}\left(D_{e},\widehat{z},c\right) =\displaystyle= 148((5+24εu)εA2+(5+24εu)A)+148(2εA4+4A3+3εA2+A)\displaystyle-\frac{1}{48}\left((5+24\varepsilon u)\varepsilon A^{2}+(5+24\varepsilon u)A\right)+\frac{1}{48}\left(2\varepsilon A^{4}+4A^{3}+3\varepsilon A^{2}+A\right)
=\displaystyle= 124εA(A+1)(A1)(A+2ε)12uA(A+ε),\displaystyle\frac{1}{24}\varepsilon A(A+1)(A-1)(A+2\varepsilon)-\frac{1}{2}uA(A+\varepsilon)\in\mathbb{Z},
S3(De,z^,c)\displaystyle S_{3}\left(D_{e},\widehat{z},c\right) =\displaystyle= 124(2(5+24εu)εA2+(5+24εu)A)+124(16εA4+16A3+6εA2+A)\displaystyle-\frac{1}{24}\left(2(5+24\varepsilon u)\varepsilon A^{2}+(5+24\varepsilon u)A\right)+\frac{1}{24}\left(16\varepsilon A^{4}+16A^{3}+6\varepsilon A^{2}+A\right)
=\displaystyle= 16εA(A+ε)(2A+1)(2A1)εuA(2εA+1).\displaystyle\frac{1}{6}\varepsilon A(A+\varepsilon)(2A+1)(2A-1)-\varepsilon uA(2\varepsilon A+1)\in\mathbb{Z}.

Modulo \mathbb{Z} and we obtain formula (35).

It follows from [MY68, Section 3] that the homotopy 77-sphere Σ\Sigma admits a free circle action if and only if μ(Σ){9εu2+2u14mod 1:ε=±1,u}.\mu(\Sigma)\in\left\{\frac{9\varepsilon u^{2}+2u}{14}\ \mathrm{mod}\ 1:\varepsilon=\pm 1,u\in\mathbb{Z}\right\}. See also Remark 4.

3.3 Comparing ss-invariants

In this section we first compute the ss-invariants of S2×S5#S3×S4#ΣrS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r}, then we compare the ss-invariants of the manifold NeN_{e} of type II and the manifold S2×S5#S3×S4#ΣrS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r}, deducing for which homotopy 77-sphere the manifold S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma admits a free circle action.

The boundary connected sum S2×D6D4×S4WrS^{2}\times D^{6}\natural D^{4}\times S^{4}\natural W_{r} is a coboundary of S2×S5#S3×S4#ΣrS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r}. By definition we can use the coboundary S2×D6D4×S4WrS^{2}\times D^{6}\natural D^{4}\times S^{4}\natural W_{r} tocompute the ss-invariants of S2×S5#S3×S4#ΣrS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r} and the result is as follows.

{s1(S2×S5#S3×S4#Σr)=r28mod 1,s2(S2×S5#S3×S4#Σr)=0mod 1,s3(S2×S5#S3×S4#Σr)=0mod 1.\displaystyle\left\{\begin{aligned} s_{1}\left(S^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r}\right)&=&\frac{r}{28}\ \mathrm{mod}\ 1,\\ s_{2}\left(S^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r}\right)&=&0\ \mathrm{mod}\ 1,\\ s_{3}\left(S^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma_{r}\right)&=&0\ \mathrm{mod}\ 1.\end{aligned}\right. (36)

Note that by the original definition for a type II manifold MM its μ\mu-invariant and s1s_{1}-invariant cannot be defined simultaneously. By [EK62, Section 3, Condition μ\mu(a)] the μ\mu-invariant is defined for MM if there is a coboundary WW such that H4(W,M;)H4(W;)H^{4}(W,M;\mathbb{Q})\to H^{4}(W;\mathbb{Q}) is an isomorphism. While the s1s_{1}-invariant is defined for MM if there is a coboundary WW^{\prime} such that H4(W)H4(M)H^{4}(W^{\prime})\to H^{4}(M) is an epimorphism.

Now we compare formulae (35) and (36). Immediately we obtain the following.

Proposition 2.

Let Σ\Sigma be a homotopy 77-sphere. The manifold S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma admits a free circle action if and only if Σ\Sigma does. In this case the orbit must be spin. Furthermore, if a simply connected string cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4} admits a free circle action, it must be diffeomorphic to S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma for some homotopy 77-sphere Σ\Sigma which admits a free circle action.

4 Circle actions on general kS2×S5#lS3×S4kS^{2}\times S^{5}\#lS^{3}\times S^{4}

In this section we consider the remaining cases. We will study when k>1k>1 or l>1l>1, for which homotopy 77-sphere Σ\Sigma the manifold kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action. We will first recall some basic constructions about suspension operation from [Dua22] and [GGR23]. Then we treat the case k>1k>1 or l>1l>1. Finally we combine all our results and complete the proof of our main theorem.

First we give some basic constructions. Given an nn-manifold NN, there are two associated (n+1)(n+1)-manifolds Σ0N\Sigma_{0}N and Σ1N\Sigma_{1}N ([Dua22, Definition 1.1]). We denote ΣN=Σ0N=Σ1N\Sigma N=\Sigma_{0}N=\Sigma_{1}N when Σ0N\Sigma_{0}N and Σ1N\Sigma_{1}N are diffeomorphic. By [Dua22, Proposition 3.2] we have Σ(S2×S4)=S2×S5#S3×S4\Sigma\left(S^{2}\times S^{4}\right)=S^{2}\times S^{5}\#S^{3}\times S^{4} and Σ(S3×S3)=2S3×S4\Sigma\left(S^{3}\times S^{3}\right)=2S^{3}\times S^{4}. If we take eH2(N)e\in H^{2}(N), there is an associated (n+1)(n+1)-manifold Σ~eN\widetilde{\Sigma}_{e}N ([GGR23, Definition 5.1]). By [GGR23, Theorem B(1)] we have Σ~hP3=S2×S5\widetilde{\Sigma}_{h}\mathbb{C}P^{3}=S^{2}\times S^{5}, where hH2(CP3)h\in H^{2}\left(\mathrm{C}P^{3}\right)\cong\mathbb{Z} is the Euler class of Hopf bundle S7P3S^{7}\to\mathbb{C}P^{3}. For the connected sum of 66-manifolds N6=N16##Nm6N^{6}=N_{1}^{6}\#\cdots\#N_{m}^{6} we have H2(N6)i=1mH2(Ni6)H^{2}\left(N^{6}\right)\cong\bigoplus_{i=1}^{m}H^{2}\left(N_{i}^{6}\right). When P3\mathbb{C}P^{3} is the ii-th summand, the collapsing map NP3N\to\mathbb{C}P^{3} pulls back hH2(P3)h\in H^{2}\left(\mathbb{C}P^{3}\right) to hiH2(N)h_{i}\in H^{2}(N).

Now we are prepared to study when k>1k>1 or l>1l>1, for which homotopy 77-sphere Σ\Sigma the manifold kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action.

Proposition 3.

Let Σ\Sigma be a homotopy 77-sphere.

  1. 1.

    If k2k\geqslant 2, for any ll\in\mathbb{N} the manifold kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma always admits a free circle action.

  2. 2.

    If l2l\geqslant 2 is even, the manifold S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma always admits a free circle action.

  3. 3.

    If l2l\geqslant 2 is odd, the manifold S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action if and only if Σ\Sigma does.

In the proof we will use the following lemma, whose proof is postponed later.

Lemma 6.

Let k2k\geqslant 2, l0l\geqslant 0, homotopy 77-sphere Σ\Sigma, NΣN_{\Sigma} and eH2(NΣ)e\in H^{2}\left(N_{\Sigma}\right) be given as above.

  1. 1.

    If ll is even, take N=NΣ#(k1)P3#l2S3×S3N=N_{\Sigma}\#(k-1)\mathbb{C}P^{3}\#\frac{l}{2}S^{3}\times S^{3}, e=e0+h1++hk1H2(N)e=e_{0}+h_{1}+\cdots+h_{k-1}\in H^{2}(N), and the total space of the circle bundle over NN with Euler class ee is Ne=kS2×S5#lS3×S4#ΣN_{e}=kS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma.

  2. 2.

    If ll is odd, take N=NΣ#(k2)P3#S2×S4#l12S3×S3N=N_{\Sigma}\#(k-2)\mathbb{C}P^{3}\#S^{2}\times S^{4}\#\frac{l-1}{2}S^{3}\times S^{3}, e=e0+h1++hk2H2(N)e=e_{0}+h_{1}+\cdots+h_{k-2}\in H^{2}(N), and the total space of the circle bundle over NN with Euler class ee is Ne=kS2×S5#lS3×S4#ΣN_{e}=kS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma.

Proof (of Proposition 3).

First we assume k2k\geqslant 2. By Proposition 1 the manifold S2×S5#ΣS^{2}\times S^{5}\#\Sigma admits a free circle action with a spin orbit. Let NΣN_{\Sigma} be such a spin orbit and let e0H2(NΣ)e_{0}\in H^{2}\left(N_{\Sigma}\right) be the Euler class of associated circle bundle. In particular (NΣ)e0=S2×S5#Σ\left(N_{\Sigma}\right)_{e_{0}}=S^{2}\times S^{5}\#\Sigma. Then the proof of Proposition 3, statement 1 follows directly from Lemma 6.

In the remaining we set k=1k=1. When ll is even we give the construction directly. Let the homotopy 77-sphere Σ\Sigma, NΣN_{\Sigma}, eH2(NΣ)e\in H^{2}\left(N_{\Sigma}\right) be as above. Set N=NΣ#l2S3×S3N=N_{\Sigma}\#\frac{l}{2}S^{3}\times S^{3}, and H2(N)H2(NΣ)H^{2}(N)\cong H^{2}\left(N_{\Sigma}\right). Identify eH2(NΣ)e\in H^{2}\left(N_{\Sigma}\right) with eH2(N)e^{\prime}\in H^{2}(N), and we have Ne=(NΣ)e#Σ(l2S3×S3)=S2×S5#Σ#lS3×S4N_{e^{\prime}}=\left(N_{\Sigma}\right)_{e}\#\Sigma\left(\frac{l}{2}S^{3}\times S^{3}\right)=S^{2}\times S^{5}\#\Sigma\#lS^{3}\times S^{4} by [Dua22, Theorem B, Proposition 3.2]. Hence for any even l>0l>0 and any homotopy 77-sphere Σ\Sigma the manfiold S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action. This proves Proposition 3, statement 2.

Now assume ll is odd. We can show as before that if the homotopy 77-sphere Σ\Sigma admits a free circle action, so does S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma. Take such homotopy 77-sphere Σ\Sigma. Let NΣN_{\Sigma} be an orbit of some free circle action on Σ\Sigma, eH2(NΣ)e\in H^{2}\left(N_{\Sigma}\right) the Euler class and (NΣ)e=Σ\left(N_{\Sigma}\right)_{e}=\Sigma. Set N=NΣ#S2×S4#l12S3×S3N=N_{\Sigma}\#S^{2}\times S^{4}\#\frac{l-1}{2}S^{3}\times S^{3} and identify ee with eH2(B)e^{\prime}\in H^{2}(B). Then Ne=(NΣ)e#Σ(S2×S4#l12S3×S3)=Σ#S2×S5#lS3×S4N_{e^{\prime}}=\left(N_{\Sigma}\right)_{e}\#\Sigma\left(S^{2}\times S^{4}\#\frac{l-1}{2}S^{3}\times S^{3}\right)=\Sigma\#S^{2}\times S^{5}\#lS^{3}\times S^{4} by [Dua22, Theorem B, Proposition 3.2]. The converse is also true. If ll is odd and S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action, so does Σ\Sigma. Suppose for a homotopy 77-sphere Σ\Sigma, the manifold M=S2×S5#lS3×S4#ΣM=S^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action. Let NN be such an orbit. Let eH2(N)e\in H^{2}\left(N\right) be the Euler class of the associated circle bundle. Then M=NeM=N_{e}. The long exact sequence of homotopy groups associated to the circle bundle M𝑝NM\xrightarrow{p}N implies that NN is simply connected. Hence H1(N)=H5(N)=0H^{1}\left(N\right)=H^{5}\left(N\right)=0. The Gysin sequence associated to the circle bundle M𝑝NM\xrightarrow{p}N implies that NN has torsion free cohomology groups and H3(N)H^{3}\left(N\right) embeds into H3(M)lH^{3}\left(M\right)\cong\mathbb{Z}^{l}. From [Wal66, Theorem 1] we see that b3(N)=2rb_{3}\left(N\right)=2r is even and N=N0#rS3×S3N=N_{0}\#rS^{3}\times S^{3}, where N0N_{0} is another simply connected 66-manifold with torsion free homology and vanishing third cohomology group. Let N𝜌N0N\xrightarrow{\rho}N_{0} be the collapsing map. Then ρ\rho induces isomorphism on the second cohomology groups, and there is a class e0H2(N0)e_{0}\in H^{2}\left(N_{0}\right) such that e=ρe0e=\rho^{*}e_{0}. Also we set M0=(N0)e0M_{0}=\left(N_{0}\right)_{e_{0}} and let M0p0N0M_{0}\xrightarrow{p_{0}}N_{0} denote the bundle projection. Then M=M0#Σ(rS3×S3)=M0#2rS3×S4M=M_{0}\#\Sigma\left(rS^{3}\times S^{3}\right)=M_{0}\#2rS^{3}\times S^{4}, b3(M)=b3(M0)+2r=lb_{3}\left(M\right)=b_{3}\left(M_{0}\right)+2r=l and b3(M0)b_{3}\left(M_{0}\right) is odd. From the Gysin sequence associated to the circle bundle M0p0N0M_{0}\xrightarrow{p_{0}}N_{0}. we obtain that b3(M0)b2(N0)=2b_{3}\left(M_{0}\right)\leq b_{2}\left(N_{0}\right)=2, hence b3(M0)=1b_{3}\left(M_{0}\right)=1 and l=2r+1l=2r+1. See the following diagram.

H3(N)\textstyle{H^{3}\left(N\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}H2(N)\textstyle{H^{2}\left(N\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}e\scriptstyle{\cup e}H4(N)\textstyle{H^{4}\left(N\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}H4(M)\textstyle{H^{4}\left(M\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H3(N)\textstyle{H^{3}\left(N\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}H3(M)\textstyle{H^{3}\left(M\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H0(N)\textstyle{H^{0}\left(N\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}e\scriptstyle{\cup e}H2(N)\textstyle{H^{2}\left(N\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}H2(M)\textstyle{H^{2}\left(M\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}   0\textstyle{0}H2(N0)\textstyle{H^{2}\left(N_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}e0\scriptstyle{\cup e_{0}}H4(N0)\textstyle{H^{4}\left(N_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(p0)\scriptstyle{\left(p_{0}\right)^{*}}H4(M0)\textstyle{H^{4}\left(M_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H3(M0)\textstyle{H^{3}\left(M_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H0(N0)\textstyle{H^{0}\left(N_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}e0\scriptstyle{\cup e_{0}}H2(N0)\textstyle{H^{2}\left(N_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(p0)\scriptstyle{\left(p_{0}\right)^{*}}H2(M0)\textstyle{H^{2}\left(M_{0}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

Examining the cohomology rings of MM and M0M_{0}, we see that M0M_{0} is a cohomology S2×S5#S3×S4S^{2}\times S^{5}\#S^{3}\times S^{4}. Now MM is the connected sum of M0M_{0} and (l1)S3×S4(l-1)S^{3}\times S^{4}. Since MM and S3×S4S^{3}\times S^{4} are both string, we deduce that M0M_{0} is also string by comparing the characteristic classes. Now M0M_{0} is a simply connected string cohomology S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma that admits a free circle action. By Propotision 2 the manifold M0M_{0} is diffeomorphic to S2×S5#S3×S4#ΣS^{2}\times S^{5}\#S^{3}\times S^{4}\#\Sigma^{\prime} for some homotopy 77-sphere Σ\Sigma^{\prime} which admits a free circle action. Now we have S2×S5#lS3×S4#Σ=S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma=S^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma^{\prime}. Comparing the μ\mu-invariants we see μ(Σ)=μ(Σ)\mu(\Sigma)=\mu(\Sigma^{\prime}). Hence Σ=Σ\Sigma=\Sigma^{\prime} admits a free circle action. Now we conclude that if S2×S5#lS3×S4#ΣS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action, so does Σ\Sigma. This completes the proof of Proposition 3, statement 3. \Box

Proof (of Lemma 6).

For uu\in\mathbb{N} we denote Nu=NΣ#uP3N_{u}=N_{\Sigma}\#u\mathbb{C}P^{3}, eu=e0+h1++huH2(Nu)e_{u}=e_{0}+h_{1}+\cdots+h_{u}\in H^{2}\left(N_{u}\right) and N0=NΣN_{0}=N_{\Sigma}. Then NuN_{u} is spin and eke_{k} is primitive. In both case eH2(N)e\in H^{2}(N) is primitive, and we identify ee with ekεH2(Nk1ε)e_{k-\varepsilon}\in H^{2}\left(N_{k-1-\varepsilon}\right) via the isomorphism H2(N)H2(Nk1ε)H^{2}(N)\cong H^{2}\left(N_{k-1-\varepsilon}\right), ε=0\varepsilon=0, 11. By [Dua22, Theorem B] if ll is even we have Ne=(Nk1)ek1#Σ(l2S3×S3)=(Nk1)ek1#lS3×S4N_{e}=\left(N_{k-1}\right)_{e_{k-1}}\#\Sigma\left(\frac{l}{2}S^{3}\times S^{3}\right)=\left(N_{k-1}\right)_{e_{k-1}}\#lS^{3}\times S^{4}, and if ll is odd NeN_{e} is diffeomorphic to (Nk2)ek2#Σ(S2×S4#l12S3×S3)=(Nk2)ek2#S2×S5#lS3×S4\left(N_{k-2}\right)_{e_{k-2}}\#\Sigma\left(S^{2}\times S^{4}\#\frac{l-1}{2}S^{3}\times S^{3}\right)=\left(N_{k-2}\right)_{e_{k-2}}\#S^{2}\times S^{5}\#lS^{3}\times S^{4}. Now we compute (Nu)eu\left(N_{u}\right)_{e_{u}}. Since NuN_{u} is spin, by [GGR23, Theorems A and B(1)] we have (Nu+1)eu+1=(Nu)eu#Σ~hP3=(Nu)eu#S2×S5\left(N_{u+1}\right)_{e_{u+1}}=\left(N_{u}\right)_{e_{u}}\#\widetilde{\Sigma}_{h}\mathbb{C}P^{3}=\left(N_{u}\right)_{e_{u}}\#S^{2}\times S^{5}. Hence by induction (Nu)eu=(u+1)S2×S5#Σ\left(N_{u}\right)_{e_{u}}=(u+1)S^{2}\times S^{5}\#\Sigma. Now we conclude that Ne=kS2×S5#lS3×S4#ΣN_{e}=kS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma. \Box

Remark 5.

From the proof we can say more about spinability of the orbit. If kS2×S5#lS3×S4#ΣkS^{2}\times S^{5}\#lS^{3}\times S^{4}\#\Sigma admits a free circle action, then it admits a free circle action with a spin orbit. While from the proof it is unclear in general whether we can have a nonspin orbit.

Proof (of Theorem 1).

The cases 4 and 5 of Theorem 1 follow from [Jia14, Theorem 1.3]. The case 1 of Theorem 1 follows from Proposition 3, statement 1. The case 2 of Theorem 1 follows from Proposition 1 and Proposition 3, statement 2. And the case 3 of Theorem 1 follows from Proposition 2 and Proposition 3, statement 3. Now we complete the proof of Theorem 1. \Box

Remark 6.

In Section 4 we use the new technique suspension operation to study the cases k>1k>1 or l>1l>1. We did not follow the approach we used in Sections 2 and 3. One reason is when the second Betti number becomes greater, the invariants for 66-manifolds and 77-manifolds become much more complicated. Another reason is that so far ss-invariant for 77-manifolds is merely an invariant of polarized diffeomorphism. This means that two such manifolds have the same invariant if and only if there is a diffeomorphism between them that preserves the prescribed ordered basis of second cohomology groups. In general this is not a diffeomorphism invariant when the second Betti number is greater than 11.

5 Miscellaneous complements

If we only apply the method we used in Sections 2 and 3, we can still deduce some results which are not contained in Theorem 1. Proposition 4 is a conclusion on the orbit of free circle action on spin cohomology kS2×S5kS^{2}\times S^{5}, and Proposition 5 concerns the self-diffeomorphisms of kS2×S5kS^{2}\times S^{5}.

Proposition 4.

Let kk be a positive even integer. A spin cohomology kS2×S5kS^{2}\times S^{5} admits NO free circle action with nonspin orbit.

Proof.

Let MM be a spin cohomology kS2×S5kS^{2}\times S^{5} that admits a free circle action. Let NN be such an orbit. Let M𝑝NM\xrightarrow{p}N be the bundle projection and let eH2(N)e\in H^{2}(N) be the Euler class of associated circle bundle. From the long exact sequence of homotopy groups and Gysin sequence, we can deduce that NN is a simply connected 66-manifold whose only nontrivial cohomology groups are H0(N)H6(N)H^{0}(N)\cong H^{6}(N)\cong\mathbb{Z}, H2(N)H4(N)k+1H^{2}(N)\cong H^{4}(N)\cong\mathbb{Z}^{k+1} and H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) is an isomorphism. Extend e0=ee_{0}=e to an ordered basis (e0,e1,,ek)\left(e_{0},e_{1},\cdots,e_{k}\right) of H2(N)H^{2}(N). Equip H4(N)H^{4}(N) with the dual basis (e0,,ek)\left(e^{0},\cdots,e^{k}\right). The matrix representation of H2(N)eH4(N)H^{2}(N)\xrightarrow{\cup e}H^{4}(N) with respect to the given bases is Me=(μ(e0,ei,ej))0i,jkM_{e}=\left(\mu\left(e_{0},e_{i},e_{j}\right)\right)_{0\leqslant i,j\leqslant k}, and MeM_{e} is symmetric and invertible. The second Stiefel-Whitney class of NN is computed as before. From the relation w2(M)=p(w2(N)+e¯)=0w_{2}(M)=p^{*}\left(w_{2}(N)+\overline{e}\right)=0 and mod\mathrm{mod} 22 Gysin sequence we deduce that w2(N)=0w_{2}(N)=0 or e¯\overline{e}.

Assume NN is nonspin, w2(N)=e¯w_{2}(N)=\overline{e}. Formula (9) implies that Sq2(ei¯2)=e0¯ei¯2\mathrm{Sq}^{2}\left(\overline{e_{i}}^{2}\right)=\overline{e_{0}}\cdot\overline{e_{i}}^{2}, 0ik0\leqslant i\leqslant k. Hence μ(e0,ei,ei)¯=0/2\overline{\mu\left(e_{0},e_{i},e_{i}\right)}=0\in\mathbb{Z}/2, Me¯GL(k+1,/2)\overline{M_{e}}\in\mathrm{GL}(k+1,\mathbb{Z}/2) has vanishing diagonal and Me¯\overline{M_{e}} admits a skew-symmetric integral lifting AGL(k+1,)A\in\mathrm{GL}(k+1,\mathbb{Z}). By assumption kk is even, thus k+1k+1 is odd. Hence detA=0\mathrm{det}A=0 and detMe¯=detMe¯=detA¯=detA¯=0/2\overline{\mathrm{det}M_{e}}=\mathrm{det}\overline{M_{e}}=\mathrm{det}\overline{A}=\overline{\mathrm{det}A}=0\in\mathbb{Z}/2. While MeM_{e} is invertible, detMe=±1\mathrm{det}M_{e}=\pm 1 and detMe¯=1¯/2\overline{\mathrm{det}M_{e}}=\overline{1}\in\mathbb{Z}/2. This is a contradiction. Hence a spin cohomology kS2×S5kS^{2}\times S^{5} cannot admit free circle action with nonspin orbit. \Box

Proposition 5.

For any gGL(k,)g\in\mathrm{GL}(k,\mathbb{Z}) there is a self-diffeomorphism φ\varphi of kS2×S5kS^{2}\times S^{5} such that g=H2(φ)g=H^{2}(\varphi).

Proof.

We note that M=kS2×S5M=kS^{2}\times S^{5} satisfies the condition of [Kre99, Theorem 6]. Let WW be the boundary connected sum of kk copies of S2×D6S^{2}\times D^{6}. Then is a spin coboundary of MM such that boundary inclusion M𝜄WM\xrightarrow{\iota}W induces an isomorphism on the second integral cohomology groups and H4(W,M;)=0H^{4}(W,M;\mathbb{Q})=0. In particular σ(W,M)=0\sigma(W,M)=0 and for any two elements z,wH4(W,M;)z,w\in H^{4}(W,M;\mathbb{Q}), zw,[W,M]=0\left<z\cup w,[W,M]\right>=0. Let x=(x1,,xk)x=\left(x_{1},\cdots,x_{k}\right), y=(y1,,yk)y=\left(y_{1},\cdots,y_{k}\right) be two ordered bases of H2(M)H^{2}(M) and let gg be the transition matrix from xx to yy. Since H2(W)ιH2(M)H^{2}(W)\xrightarrow{\iota^{*}}H^{2}(M) is an isomorphism, we can take xi~\widetilde{x_{i}}, yi~H2(W)\widetilde{y_{i}}\in H^{2}(W) such that ιxi~=xi\iota^{*}\widetilde{x_{i}}=x_{i}, ιyi~=yi\iota^{*}\widetilde{y_{i}}=y_{i}. Set x~=(x1~,,xk~)\widetilde{x}=\left(\widetilde{x_{1}},\cdots,\widetilde{x_{k}}\right), y~=(y1~,,yk~)\widetilde{y}=\left(\widetilde{y_{1}},\cdots,\widetilde{y_{k}}\right). Then (W;x~)(W;y~)\left(W;\widetilde{x}\right)\sqcup\left(-W;\widetilde{y}\right) is a spin bordism between (M;x)(M;x) and (M;y)(M;y), and its characteristic numbers that are required to vanish in [Kre99, Theorem 6] are zero. Here the oriented manifold W-W and WW have the same underlying manifold and opposite orientations. Hence (M;x)(M;x) and (M;y)(M;y) are polarized diffeomorphic, i.e. there is a self-diffeomorphism φ\varphi of MM such that φx=y\varphi^{*}x=y, so that φ=g\varphi^{*}=g. \Box

Remark 7.

[GGR23, Corollary 4.7] implies this particular spin case in dimension 77.

Acknowledgements..

The author would like to express gratitude to Yi Jiang for introducing the topic and for her insightful discussions and suggestions. Thanks are also due to Yang Su for his valuable suggestions, and to Haibao Duan for his thoughtful comments. The author’s research was partially supported by NSFC 11801298.

References

  • [Bru69] G. Brumfiel. Differentiable S1{S}^{1} actions on homotopy spheres, 1969.
  • [DL05] Haibao Duan and Chao Liang. Circle bundles over 4-manifolds. Archiv der Mathematik, 85:278–282, 2005.
  • [Dua22] Haibao Duan. Circle actions and suspension operations on smooth manifolds, eprint arXiv: 2202.06225, 2022.
  • [EK62] James Eells and Nicolaas H. Kuiper. An invariant for certain smooth manifolds. Annali di Matematica Pura ed Applicata, 60:93–110, 1962.
  • [Gei08] Hansjörg Geiges. An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2008.
  • [GGR23] Fernando Galaz-García and Philipp Reiser. Free torus actions and twisted suspensions, eprint arXiv: 2305.06068, 2023.
  • [Jia14] Yi Jiang. Regular circle actions on 2-connected 7-manifolds. Journal of the London Mathematical Society, 90(2):373–387, 07 2014.
  • [Jup73] P. E. Jupp. Classification of certain 6-manifolds. Mathematical Proceedings of the Cambridge Philosophical Society, 73(2):293–300, 1973.
  • [KM63] Michel A. Kervaire and John W. Milnor. Groups of homotopy spheres: I. Annals of Mathematics, 77(3):504 – 537, 1963.
  • [Kre99] Matthias Kreck. Surgery and duality. Annals of Mathematics, 149(3):707–754, 1999.
  • [Kre18] Matthias Kreck. On the classification of 1‐connected 7‐manifolds with torsion free second homology. Journal of Topology, 11, 2018.
  • [KS88] Matthias Kreck and Stephan Stolz. A diffeomorphism classification of 7-dimensional homogeneous einstein manifolds with SU(3)×SU(2)×U(1)-symmetry. Annals of Mathematics, 127(2):373–388, 1988.
  • [KS91] Matthias Kreck and Stephan Stolz. Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature. Journal of Differential Geometry, 33:465–486, 1991.
  • [KS98] Matthias Kreck and Stephan Stolz. A correction on: “Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature”. Journal of Differential Geometry, 49(1):203 – 204, 1998.
  • [Lee12] John M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer New York, NY, 2012.
  • [MS74] John W. Milnor and James D. Stasheff. Characteristic Classes. Princeton University Press, 1974.
  • [MY68] Deane Montgomery and C. T. Yang. Differentiable actions on homotopy seven spheres, ii. In Paul S. Mostert, editor, Proceedings of the Conference on Transformation Groups, pages 125–134, Berlin, Heidelberg, 1968. Springer Berlin Heidelberg.
  • [TW15] Wilderich Tuschmann and David J. Wraith. Moduli Spaces of Riemannian Metrics. Oberwolfach Seminars. Birkhäuser Basel, 2015.
  • [Wal66] C. T. C. Wall. Classification problems in differential topology. V: On certain 6-manifolds. Invent. Math., 1:355–374, 1966.

Department of Mathematics, Tsinghua University, Beijing, P.R.China

Email address: [email protected]