This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\preprintnumber

KYUSHU-HET-248, OU-HET-1155

Fractional topological charge in lattice Abelian gauge theory

Motokazu Abe Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan    Okuto Morikawa Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan    Hiroshi Suzuki
Abstract

We construct a non-trivial U(1)/qU(1)/\mathbb{Z}_{q} principal bundle on T4T^{4} from the compact U(1)U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains q\mathbb{Z}_{q} elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is q\mathbb{Z}_{q} one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θqθ\theta\to q\theta suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the q\mathbb{Z}_{q} one-form symmetry and the time reversal symmetry in the U(1)U(1) gauge theory with matter fields of charge q2q\in 2\mathbb{Z} when θ=π\theta=\pi, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework.

\subjectindex

B01, B02, B06, B31

1 Introduction

As shown in a seminal paper Gaiotto:2017yup , the generalized symmetries Gaiotto:2014kfa can tell us quite non-trivial information on the low-energy dynamics of 4D gauge theories through the idea of anomaly matching tHooft:1979rat ; see Refs. McGreevy:2022oyu ; Cordova:2022ruw and references cited therein. In the present paper, aiming at transparent understanding of the above study in a fully regularized framework, we construct a non-trivial U(1)/qU(1)/\mathbb{Z}_{q} principal bundle on T4T^{4} in the compact U(1)U(1) lattice gauge theory.111Throughout the present paper, we assume that qq is a positive integer. In the study of the SU(N)SU(N) gauge theory in Ref. Gaiotto:2017yup , the fractionality of the topological charge in the SU(N)/NSU(N)/\mathbb{Z}_{N} theory and the N\mathbb{Z}_{N} one-form symmetry are crucially important. The N\mathbb{Z}_{N} one-form gauge transformation can be interpreted as the action on the transition function in the SU(N)/NSU(N)/\mathbb{Z}_{N} principal bundle Kapustin:2014gua . The cocycle condition of the SU(N)/NSU(N)/\mathbb{Z}_{N} principal bundle can contain N\mathbb{Z}_{N} elements in contrast to the SU(N)SU(N) bundle, and those N\mathbb{Z}_{N} elements (the ’t Hooft flux tHooft:1979rtg ) are interpreted as (the gauge-invariant content of) the N\mathbb{Z}_{N} two-form gauge field transforming under the N\mathbb{Z}_{N} one-form gauge transformation. These materials are nicely summarized in Appendix A of Ref. Tanizaki:2022ngt . From this interpretation of the N\mathbb{Z}_{N} one-form gauge transformation, for our motivation, it is natural to consider the SU(N)/NSU(N)/\mathbb{Z}_{N} principal bundle in lattice gauge theory.

It is well-known that the transition function of the SU(N)SU(N) principal bundle on T4T^{4} can be constructed from the SU(N)SU(N) lattice gauge field by Lüscher’s method Luscher:1981zq ; see also Refs. Phillips:1986qd ; Phillips:1990kj . In the present paper, we consider a simpler U(1)U(1) gauge theory and generalize Lüscher’s method so that the cocycle condition contains q\mathbb{Z}_{q} elements; the q\mathbb{Z}_{q} elements are introduced in the transition function and as a loop in U(1)/qU(1)/\mathbb{Z}_{q} and as the loop in SU(N)/NSU(N)/\mathbb{Z}_{N} considered in Refs. tHooft:1979rtg ; vanBaal:1982ag . Our transition function with the ’t Hooft flux gives rise to the topological charge in the compact U(1)U(1) lattice gauge theory that generally takes fractional values. Also, our topological charge is odd under the lattice time reversal transformation. These properties are quite analogous to the properties of the SU(N)/NSU(N)/\mathbb{Z}_{N} topological charge that are crucial in the study of Ref. Gaiotto:2017yup . In fact, if we assume a rescaling of the vacuum angle θ\theta in the U(1)U(1) gauge theory θqθ\theta\to q\theta suggested from the Witten effect Witten:1979ey  (see Refs. Honda:2020txe ; Hidaka:2019jtv ), our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the q\mathbb{Z}_{q} one-form symmetry and the time reversal symmetry in the U(1)U(1) gauge theory with matter fields of charge q2q\in 2\mathbb{Z} when θ=π\theta=\pi. This anomaly, which was studied by Honda and Tanizaki in Ref. Honda:2020txe in the continuum framework, may be regarded as a U(1)U(1) analogue of the ’t Hooft anomaly in the SU(N)SU(N) gauge theory studied in Ref. Gaiotto:2017yup .

We make brief comments on some other related works. Realization of the generalized symmetries on the (simplicial) lattice has already been studied in detail in Ref. Kapustin:2014gua . The fractional topological charge as a function of the lattice gauge field is not considered in Ref. Kapustin:2014gua , however. In fact, in order to define a topological charge in lattice gauge theory, a certain restriction on allowed lattice gauge field configurations, such as admissibility Luscher:1981zq ; Hernandez:1998et ; Luscher:1998kn , is inevitable. Also the fractional topological charge in lattice gauge theory has been studied over the years Edwards:1998dj ; deForcrand:2002vs ; Fodor:2009nh ; Kitano:2017jng ; Itou:2018wkm . One possible method to obtain the fractional topological charge associated with the SU(N)/NSU(N)/\mathbb{Z}_{N} principal bundle is to consider the gauge field in a higher representation as blind for the N\mathbb{Z}_{N} part of the gauge transformation (such as the adjoint representation) and divide the integer topological charge in that higher representation by the corresponding Dynkin index (2N2N for the adjoint representation). In this method, however, one cannot explicitly specify the underlying bundle structure such as the ’t Hooft flux or the N\mathbb{Z}_{N} two-form gauge field.

Presumably, the most analogous works to ours are Refs. Sulejmanpasic:2019ytl ; Anosova:2022cjm . Although Refs. Sulejmanpasic:2019ytl ; Anosova:2022cjm start with non-compact U(1)U(1) link variables that are divided into disjoint topological sectors (and thus the admissibility is implicit), the expression of the lattice integer topological charge is quite similar to ours. In Refs. Sulejmanpasic:2019ytl ; Anosova:2022cjm , the Bianchi identity on the U(1)U(1) gauge field is further relaxed to introduce a static monopole and, using the expression of the lattice topological charge, the Witten effect in lattice gauge theory is observed. In the present paper, on the other hand, we construct a fractional lattice topological charge in the compact U(1)U(1) lattice gauge theory as a function of the ’t Hooft flux that is identified with the gauge-invariant content of the q\mathbb{Z}_{q} two-form gauge field. It is also natural in our construction to consider a static monopole by relaxing the Bianchi identity; this point is left for future study. Also, the generalization of our construction to the non-Abelian lattice gauge theory is an important issue that we want to return in the near future.

2 U(1)/qU(1)/\mathbb{Z}_{q} principal bundle on T4T^{4} in U(1)U(1) lattice gauge theory

2.1 Transition function

We consider a 4D periodic torus T4T^{4} of size LL; the Lorentz index is denoted by μ\mu, ν\nu, …, etc. and runs over 11, 22, 33, and 44:

T4{x40xμ<L for all μ}.T^{4}\equiv\left\{x\in\mathbb{R}^{4}\mid\text{$0\leq x_{\mu}<L$ for all $\mu$}\right\}. (2.1)

That is, any two points xx and yy whose coordinates differ by an integer multiple of LL are identified, xyx\sim y.

We then consider a 4D lattice Λ\Lambda,

Λ{n40nμ<L for all μ},\Lambda\equiv\left\{n\in\mathbb{Z}^{4}\mid\text{$0\leq n_{\mu}<L$ for all $\mu$}\right\}, (2.2)

by dividing T4T^{4} into hypercubes c(n)c(n) specified by the lattice points in Eq. (2.2):

c(n){x40(xμnμ)1 for all μ}.c(n)\equiv\left\{x\in\mathbb{R}^{4}\mid\text{$0\leq(x_{\mu}-n_{\mu})\leq 1$ for all $\mu$}\right\}. (2.3)

We assume a U(1)U(1) lattice gauge field on Λ\Lambda. The link variable

U(n,μ)U(1)U(n,\mu)\in U(1) (2.4)

is residing on the link connecting nn and n+μ^n+\hat{\mu}, where μ^\hat{\mu} denotes a unit vector in the positive μ\mu direction.

Following the idea of Ref. Luscher:1981zq , we define the transition function of the U(1)/qU(1)/\mathbb{Z}_{q} on T4T^{4} by regarding each hypercube (2.3) as the coordinate patch for T4T^{4}. Thus, the transition function is defined in the intersection between two hypercubes, called the face:

f(n,μ){xc(n)xμ=nμ}=c(nμ^)c(n).f(n,\mu)\equiv\left\{x\in c(n)\mid x_{\mu}=n_{\mu}\right\}=c(n-\hat{\mu})\cap c(n). (2.5)

This is a 3D cube. We then define the transition function at xf(n,μ)x\in f(n,\mu) by

vn,μ(x)ωμ(x)vˇn,μ(x)at xf(n,μ).v_{n,\mu}(x)\equiv\omega_{\mu}(x)\check{v}_{n,\mu}(x)\qquad\text{at $x\in f(n,\mu)$}. (2.6)

In this expression, the first factor ωμ(x)\omega_{\mu}(x) is given by

ωμ(x){exp(πiqνμzμνxνL)for xμ=0modL,1otherwise.\omega_{\mu}(x)\equiv\begin{cases}\exp\left(\frac{\pi i}{q}\sum_{\nu\neq\mu}\frac{z_{\mu\nu}x_{\nu}}{L}\right)&\text{for $x_{\mu}=0\bmod L$},\\ 1&\text{otherwise}.\end{cases} (2.7)

Note that this is non-trivial only on the hyperplane xμ=0(modL)x_{\mu}=0\pmod{L}. The “twist angles” zμνz_{\mu\nu} are integers and anti-symmetric in indices, zμν=zνμz_{\mu\nu}=-z_{\nu\mu}. Equation (2.7) is analogous to the loop in SU(N)/NSU(N)/\mathbb{Z}_{N} considered in Refs. tHooft:1979rtg ; vanBaal:1982ag . In fact, along two non-trivial intersecting one-cycles on T4T^{4}, the factor ωμ(x)\omega_{\mu}(x) defines a loop in U(1)/qU(1)/\mathbb{Z}_{q}. The winding of this loop gives rise to a fractional topological charge tHooft:1979rtg ; vanBaal:1982ag . The integers zμνz_{\mu\nu} are the ’t Hooft flux or (the gauge-invariant content of) the q\mathbb{Z}_{q} two-form gauge field; see below. zμνz_{\mu\nu} is defined only modulo qq and it labels elements of the cohomology group H2(T4,q)H^{2}(T^{4},\mathbb{Z}_{q}). In the present paper, these are fixed numbers and non-dynamical.

The other factor vˇn,μ(x)\check{v}_{n,\mu}(x) in Eq. (2.6) is given by Lüscher’s construction of the principal bundle in lattice gauge theory. When the gauge group is U(1)U(1), the construction becomes very simple Fujiwara:2000wn and it gives, for xf(n,μ)x\in f(n,\mu) with μ=1\mu=1, 22, 33, and 44, respectively,222In deriving this, we have adopted the following definition of the standard parallel transporter, which forms the basis of the construction in Ref. Luscher:1981zq (here xn+μ=14zμμ^x\equiv n+\sum_{\mu=1}^{4}z_{\mu}\hat{\mu}): wn(x)=U(n,4)z4U(n+z44^,3)z3U(n+z44^+z33^,2)z2U(n+z44^+z33^+z22^,1)z1.w^{n}(x)=U(n,4)^{z_{4}}U(n+z_{4}\hat{4},3)^{z_{3}}U(n+z_{4}\hat{4}+z_{3}\hat{3},2)^{z_{2}}U(n+z_{4}\hat{4}+z_{3}\hat{3}+z_{2}\hat{2},1)^{z_{1}}. (2.8)

vˇn,1(x)\displaystyle\check{v}_{n,1}(x) =U(n1^,1)\displaystyle=U(n-\hat{1},1)
×exp[iy4Fˇ14(n1^)+iy3y4Fˇ13(n1^+4^)+iy3(1y4)Fˇ13(n1^)\displaystyle\qquad{}\times\exp\Bigl{[}iy_{4}\check{F}_{14}(n-\hat{1})+iy_{3}y_{4}\check{F}_{13}(n-\hat{1}+\hat{4})+iy_{3}(1-y_{4})\check{F}_{13}(n-\hat{1})
+iy2y3y4Fˇ12(n1^+3^+4^)+iy2y3(1y4)Fˇ12(n1^+3^)\displaystyle\qquad\qquad\qquad{}+iy_{2}y_{3}y_{4}\check{F}_{12}(n-\hat{1}+\hat{3}+\hat{4})+iy_{2}y_{3}(1-y_{4})\check{F}_{12}(n-\hat{1}+\hat{3})
+iy2(1y3)y4Fˇ12(n1^+4^)+iy2(1y3)(1y4)Fˇ12(n1^)],\displaystyle\qquad\qquad\qquad{}+iy_{2}(1-y_{3})y_{4}\check{F}_{12}(n-\hat{1}+\hat{4})+iy_{2}(1-y_{3})(1-y_{4})\check{F}_{12}(n-\hat{1})\Bigr{]},
vˇn,2(x)\displaystyle\check{v}_{n,2}(x) =U(n2^,2)exp[iy4Fˇ24(n2^)+iy3y4Fˇ23(n2^+4^)+iy3(1y4)Fˇ23(n2^)],\displaystyle=U(n-\hat{2},2)\exp\left[iy_{4}\check{F}_{24}(n-\hat{2})+iy_{3}y_{4}\check{F}_{23}(n-\hat{2}+\hat{4})+iy_{3}(1-y_{4})\check{F}_{23}(n-\hat{2})\right],
vˇn,3(x)\displaystyle\check{v}_{n,3}(x) =U(n3^,3)exp[iy4Fˇ34(n3^)],\displaystyle=U(n-\hat{3},3)\exp\left[iy_{4}\check{F}_{34}(n-\hat{3})\right],
vˇn,4(x)\displaystyle\check{v}_{n,4}(x) =U(n4^,4),\displaystyle=U(n-\hat{4},4), (2.9)

where yμxμnμy_{\mu}\equiv x_{\mu}-n_{\mu}. The field strength in this expression is defined by

Fˇμν(n)1iqln[U(n,μ)U(n+μ^,ν)U(n+ν^,μ)1U(n,ν)1]qπ<Fˇμν(n)π.\check{F}_{\mu\nu}(n)\equiv\frac{1}{iq}\ln\left[U(n,\mu)U(n+\hat{\mu},\nu)U(n+\hat{\nu},\mu)^{-1}U(n,\nu)^{-1}\right]^{q}\qquad-\pi<\check{F}_{\mu\nu}(n)\leq\pi. (2.10)

Here, the power qq is supplemented inside the logarithm so that the field strength is invariant under the q\mathbb{Z}_{q} one-form gauge transformation defined below.333Since qq is a positive integer, Eq. (2.10) is equal to ln[U(n,μ)qU(n+μ^,ν)qU(n+ν^,μ)qU(n,ν)q]/(iq)\ln[U(n,\mu)^{q}U(n+\hat{\mu},\nu)^{q}U(n+\hat{\nu},\mu)^{-q}U(n,\nu)^{-q}]/(iq); i.e., this is the logarithm of the plaquette variable in the charge-qq representation. We then require the following admissibility condition,

supn,μ,ν|Fˇμν(n)|<ϵ0<ϵ<π3q,\sup_{n,\mu,\nu}\left|\check{F}_{\mu\nu}(n)\right|<\epsilon\qquad 0<\epsilon<\frac{\pi}{3q}, (2.11)

for allowed lattice gauge configurations. By applying the argument in Ref. Luscher:1998kn to Eq. (2.10) carefully, one finds that the condition ϵ<π/(3q)\epsilon<\pi/(3q) ensures that the Bianchi identity for the field strength, i.e., the absence of the monopole current, ν,ρ,σεμνρσΔνFˇρσ(n)=0\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}\check{F}_{\rho\sigma}(n)=0, holds.444Here and in what follows, the forward difference is defined by Δμf(n)f(n+μ^)f(n)\Delta_{\mu}f(n)\equiv f(n+\hat{\mu})-f(n).

2.2 Cocycle condition

Let us examine the cocycle condition associated with the transition function (2.6). It is given by the product of the transition functions in the intersection of four hypercubes, c(n)c(n), c(nμ^)c(n-\hat{\mu}), c(nν^)c(n-\hat{\nu}), and c(nμ^ν^)c(n-\hat{\mu}-\hat{\nu}), i.e.,

p(n,μ,ν){xc(n)xμ=nμ,xν=nν}(μν).p(n,\mu,\nu)\equiv\left\{x\in c(n)\mid x_{\mu}=n_{\mu},x_{\nu}=n_{\nu}\right\}\qquad(\mu\neq\nu). (2.12)

This is a 2D plaquette. Note that p(n,μ,ν)p(n,\mu,\nu) is extending in directions complementary to μ\mu and ν\nu in the present convention Luscher:1981zq . When the gauge group is U(1)/qU(1)/\mathbb{Z}_{q}, the cocycle can take a value in q\mathbb{Z}_{q}. Noting that the global coordinate xμx_{\mu} on T4T^{4} possesses the discontinuity at xμ=0x_{\mu}=0, for xp(n,μ,ν)x\in p(n,\mu,\nu), we find

vnν^,μ(x)vn,ν(x)vn,μ(x)1vnμ^,ν(x)1\displaystyle v_{n-\hat{\nu},\mu}(x)v_{n,\nu}(x)v_{n,\mu}(x)^{-1}v_{n-\hat{\mu},\nu}(x)^{-1}
={exp(2πiqzμν)qfor xμ=xν=0modL,1otherwise,\displaystyle=\begin{cases}\exp\left(\frac{2\pi i}{q}z_{\mu\nu}\right)\in\mathbb{Z}_{q}&\text{for $x_{\mu}=x_{\nu}=0\bmod L$},\\ 1&\text{otherwise},\end{cases} (2.13)

where we have used the fact that the transition function (2.9) satisfies the cocycle condition in the U(1)U(1) gauge theory Luscher:1981zq , vˇnν^,μ(x)vˇn,ν(x)vˇn,μ(x)1vˇnμ^,ν(x)1=1\check{v}_{n-\hat{\nu},\mu}(x)\check{v}_{n,\nu}(x)\check{v}_{n,\mu}(x)^{-1}\check{v}_{n-\hat{\mu},\nu}(x)^{-1}=1.555For the expression in terms of the field strength in Eq. (2.9) to fulfill this cocycle condition, one has to use the Bianchi identity Fujiwara:2000wn . Thus the loop factor ωμ(x)\omega_{\mu}(x) in Eq. (2.7) gives rise to the “q\mathbb{Z}_{q} breaking” of the cocycle condition.

2.3 q\mathbb{Z}_{q} one-form global and gauge transformations

Let us now consider how the transition function transforms under the q\mathbb{Z}_{q} one-form transformation. First, we identify the q\mathbb{Z}_{q} one-form global transformation with the center transformation on link variables crossing a 3D hypersurface, say nμ=0n_{\mu}=0. For instance, under

U(n,μ)exp(2πiqzμ)U(n,μ)nμ=0zμ and 0zμ<q,U(n,\mu)\to\exp\left(\frac{2\pi i}{q}z_{\mu}\right)U(n,\mu)\qquad\text{$n_{\mu}=0$, $z_{\mu}\in\mathbb{Z}$ and $0\leq z_{\mu}<q$}, (2.14)

and U(n,μ)U(n,μ)U(n,\mu)\to U(n,\mu) otherwise, the field strength (2.10) does not change, the transition functions (2.9) are transformed as

vˇn,μ(x){exp(2πiqzμ)vˇn,μ(x)for xμ=1,vˇn,μ(x)otherwise,\check{v}_{n,\mu}(x)\to\begin{cases}\exp\left(\frac{2\pi i}{q}z_{\mu}\right)\check{v}_{n,\mu}(x)&\text{for $x_{\mu}=1$},\\ \check{v}_{n,\mu}(x)&\text{otherwise},\end{cases} (2.15)

and the other transition functions vˇn,νμ(x)\check{v}_{n,\nu\neq\mu}(x) do not change. Since these are constant multiplications on the transition functions along the hypersurface xμ=1x_{\mu}=1, the one-form global transformation does not affect the cocycle condition, vˇnν^,μ(x)vˇn,ν(x)vˇn,μ1(x)vˇnμ^,ν1(x)=1\check{v}_{n-\hat{\nu},\mu}(x)\check{v}_{n,\nu}(x)\check{v}_{n,\mu}^{-1}(x)\check{v}_{n-\hat{\mu},\nu}^{-1}(x)=1. Moreover, one can confirm that the cocycle condition is not affected even under a smooth deformation of the hypersurface. We thus conclude that the q\mathbb{Z}_{q} one-form global transformation does not induce any further q\mathbb{Z}_{q} breaking of the cocycle condition.

On the other hand, if we consider the q\mathbb{Z}_{q} one-form local or gauge transformation defined by666Note that the field strength (2.10) and the admissibility (2.11) are invariant under this q\mathbb{Z}_{q} one-form gauge transformation.

U(n,μ)exp[2πiqzμ(n)]U(n,μ)zμ(n)0zμ(n)<q,U(n,\mu)\to\exp\left[\frac{2\pi i}{q}z_{\mu}(n)\right]U(n,\mu)\qquad\text{$z_{\mu}(n)\in\mathbb{Z}$, $0\leq z_{\mu}(n)<q$}, (2.16)

then the transition functions (2.6) are transformed as

vn,μ(x)exp[2πiqzμ(nμ^)]vn,μ(x)xf(n,μ).v_{n,\mu}(x)\to\exp\left[\frac{2\pi i}{q}z_{\mu}(n-\hat{\mu})\right]v_{n,\mu}(x)\qquad x\in f(n,\mu). (2.17)

The cocycle condition (2.13) is then modified accordingly to

vnν^,μ(x)vn,ν(x)vn,μ(x)1vnμ^,ν(x)1exp[2πiqzμν(nμ^ν^)],v_{n-\hat{\nu},\mu}(x)v_{n,\nu}(x)v_{n,\mu}(x)^{-1}v_{n-\hat{\mu},\nu}(x)^{-1}\equiv\exp\left[\frac{2\pi i}{q}z_{\mu\nu}(n-\hat{\mu}-\hat{\nu})\right], (2.18)

where the q\mathbb{Z}_{q} two-form gauge field on the lattice is given by

zμν(n)=zμνδnμ,L1δnν,L1+Δμzν(n)Δνzμ(n)+qNμν(n).z_{\mu\nu}(n)=z_{\mu\nu}\delta_{n_{\mu},L-1}\delta_{n_{\nu},L-1}+\Delta_{\mu}z_{\nu}(n)-\Delta_{\nu}z_{\mu}(n)+qN_{\mu\nu}(n)\in\mathbb{Z}. (2.19)

Thus the q\mathbb{Z}_{q} one-form gauge transformation (2.16) induces an extra factor of a “pure gauge” form in the cocycle condition. Here, we resolve the modulo qq ambiguity of zμν(n)z_{\mu\nu}(n) by setting

{0zμν(n)<qfor μ<ν,zμν(n)zνμ(n)for μ>ν.\begin{cases}0\leq z_{\mu\nu}(n)<q&\text{for~{}$\mu<\nu$},\\ z_{\mu\nu}(n)\equiv-z_{\nu\mu}(n)&\text{for~{}$\mu>\nu$}.\end{cases} (2.20)

The last lattice field Nμν(n)N_{\mu\nu}(n)\in\mathbb{Z} in Eq. (2.19) is required to restrict the value of zμν(n)z_{\mu\nu}(n) (μ<ν\mu<\nu) in the range (2.20); recall that we have taken 0zμ(n)<q0\leq z_{\mu}(n)<q in Eq. (2.16). Considering successive q\mathbb{Z}_{q} one-form gauge transformations starting from Eq. (2.19), for a generic zμν(n)z_{\mu\nu}(n), we have

zμν(n)zμν(n)+Δμzν(n)Δνzμ(n)+qNμν(n).z_{\mu\nu}(n)\to z_{\mu\nu}(n)+\Delta_{\mu}z_{\nu}(n)-\Delta_{\nu}z_{\mu}(n)+qN_{\mu\nu}(n). (2.21)

(The fields zμ(n)z_{\mu}(n) and Nμν(n)N_{\mu\nu}(n) differ from those in Eq. (2.19).) Our original configuration of the q\mathbb{Z}_{q} two-form gauge field in Eq. (2.13), zμν(n)=zμνδnμ,L1δnν,L1z_{\mu\nu}(n)=z_{\mu\nu}\delta_{n_{\mu},L-1}\delta_{n_{\nu},L-1}, is flat, i.e., (1/2)ν,ρ,σεμνρσΔνzρσ(n)=0modq(1/2)\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)=0\bmod q. This flatness of the q\mathbb{Z}_{q} two-form gauge field Kapustin:2014gua ; Tanizaki:2022ngt is obviously preserved under the q\mathbb{Z}_{q} one-form gauge transformation on the lattice (2.21) because Nμν(n)N_{\mu\nu}(n) are integers and contribute to the flatness condition only by an integer multiple of qq. In Appendix A, we give a note on the flatness in our present lattice formulation.

3 Fractional topological charge

Now, the topological charge in the continuum,

𝒬=132π2T4d4xεμνρσFμν(x)Fρσ(x)\mathcal{Q}=\frac{1}{32\pi^{2}}\int_{T^{4}}d^{4}x\,\varepsilon_{\mu\nu\rho\sigma}F_{\mu\nu}(x)F_{\rho\sigma}(x) (3.1)

can be entirely expressed in terms of the transition function vn,μ(x)v_{n,\mu}(x) if one divides T4T^{4} into the cells (2.3) and uses the relation between the gauge potentials in adjacent cells, c(nμ^)c(n-\hat{\mu}) and c(n)c(n). At their overlap, xf(n,μ)x\in f(n,\mu) (2.5), the relation is

Aλ(n)(x)=Aλ(nμ^)(x)ivn,μ(x)1λvn,μ(x).A_{\lambda}^{(n)}(x)=A_{\lambda}^{(n-\hat{\mu})}(x)-iv_{n,\mu}(x)^{-1}\partial_{\lambda}v_{n,\mu}(x). (3.2)

One then finds Luscher:1981zq ; vanBaal:1982ag

𝒬=18π2nΛμ,ν,ρ,σεμνρσp(n,μ,ν)d2x[vn,μ(x)ρvn,μ(x)1][vnμ^,ν(x)1σvnμ^,ν(x)].\mathcal{Q}=-\frac{1}{8\pi^{2}}\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\int_{p(n,\mu,\nu)}d^{2}x\,[v_{n,\mu}(x)\partial_{\rho}v_{n,\mu}(x)^{-1}][v_{n-\hat{\mu},\nu}(x)^{-1}\partial_{\sigma}v_{n-\hat{\mu},\nu}(x)]. (3.3)

As noted in Ref. vanBaal:1982ag , this expression holds even if the cocycle condition is relaxed by q\mathbb{Z}_{q} elements as Eq. (2.13). Note that this expression is manifestly invariant under the q\mathbb{Z}_{q} one-form gauge transformation (2.17) because the extra factor in Eq. (2.17) is independent of the continuous coordinate xx.

We thus substitute our transition function (2.6) into Eq. (3.3). After some calculation using the Bianchi identity, we have

𝒬\displaystyle\mathcal{Q} =18q2μ,ν,ρ,σεμνρσzμνzρσ+18πqμ,ν,ρ,σεμνρσzμνnΛ,nμ=0Fˇρσ(n)\displaystyle=\frac{1}{8q^{2}}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}+\frac{1}{8\pi q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}\sum_{n\in\Lambda,n_{\mu}=0}\check{F}_{\rho\sigma}(n)
+132π2nΛμ,ν,ρ,σεμνρσFˇμν(n)Fˇρσ(n+μ^+ν^).\displaystyle\qquad{}+\frac{1}{32\pi^{2}}\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\check{F}_{\mu\nu}(n)\check{F}_{\rho\sigma}(n+\hat{\mu}+\hat{\nu}). (3.4)

On the right-hand side, the last term is the well-known expression of the topological charge in the U(1)U(1) lattice gauge theory Luscher:1998kn ; Fujiwara:1999fi ; Fujiwara:2000wn . It takes integer values for admissible gauge fields and thus is topological. The first term on the right-hand side gives a fractional topological charge associated with the ’t Hooft flux (the winding of a non-trivial cycle to U(1)/qU(1)/\mathbb{Z}_{q}vanBaal:1982ag . The second term is a “cross term” and it sums the first Chern numbers on T2T^{2} in the ρσ\rho\sigma direction over nνn_{\nu}. Under the admissibility, the first Chern number is also quantized on the lattice (see Ref. Fujiwara:2000wn ) and

nΛ,nμ=0,nν=fixedρ,σεμνρσFˇρσ(n)=4π.\sum_{n\in\Lambda,n_{\mu}=0,n_{\nu}=\text{fixed}}\sum_{\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\check{F}_{\rho\sigma}(n)=4\pi\mathbb{Z}. (3.5)

By construction, the lattice topological charge (3.4) is invariant under the q\mathbb{Z}_{q} one-form gauge transformation in Eq. (2.16).

The lattice topological charge (3.4) also possesses a simple transformation property under the time reversal. We may define the time reversal transformation 𝒯\mathcal{T} on a lattice field by

U(n,μ)𝒯{U(n¯,μ)for μ4,U(n¯4^,4)1for μ=4,U(n,\mu)\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}\begin{cases}U(\bar{n},\mu)&\text{for $\mu\neq 4$},\\ U(\bar{n}-\hat{4},4)^{-1}&\text{for $\mu=4$},\\ \end{cases} (3.6)

where n¯(n1,n2,n3,n4)\bar{n}\equiv(n_{1},n_{2},n_{3},-n_{4}). Under this, the field strength (2.10) is transformed as

Fˇμν(n)𝒯{Fˇμν(n¯)for μ4ν4,Fˇ4ν(n¯4^)for μ=4,Fˇμ4(n¯4^)for ν=4.\check{F}_{\mu\nu}(n)\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}\begin{cases}\check{F}_{\mu\nu}(\bar{n})&\text{for $\mu\neq 4$, $\nu\neq 4$},\\ -\check{F}_{4\nu}(\bar{n}-\hat{4})&\text{for $\mu=4$},\\ -\check{F}_{\mu 4}(\bar{n}-\hat{4})&\text{for $\nu=4$}.\\ \end{cases} (3.7)

Note that this transformation preserves the admissibility (2.11). Using these and the Bianchi identity, it can be seen that the topological charge (3.4) changes its sign under the time reversal transformation,

𝒬𝒯𝒬,\mathcal{Q}\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}-\mathcal{Q}, (3.8)

if we do the time reversal transformation on the ’t Hooft flux at the same time:

zμν𝒯{zμνfor μ4ν4,z4νfor μ=4,zμ4for ν=4.z_{\mu\nu}\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}\begin{cases}z_{\mu\nu}&\text{for $\mu\neq 4$, $\nu\neq 4$},\\ -z_{4\nu}&\text{for $\mu=4$},\\ -z_{\mu 4}&\text{for $\nu=4$}.\\ \end{cases} (3.9)

This transformation may be generalized to the time reversal of the two-form gauge field as

zμν(n)𝒯{zμν(n¯)for μ4ν4,z4ν(n¯+4^)for μ=4,zμ4(n¯+4^)for ν=4,z_{\mu\nu}(n)\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}\begin{cases}z_{\mu\nu}(\bar{n})&\text{for $\mu\neq 4$, $\nu\neq 4$},\\ -z_{4\nu}(\bar{n}+\hat{4})&\text{for $\mu=4$},\\ -z_{\mu 4}(\bar{n}+\hat{4})&\text{for $\nu=4$},\\ \end{cases} (3.10)

so that this is consistent with Eq. (2.19).

Now the ’t Hooft flux in the topological charge (3.4) is constant. However, we may rewrite this expression by using the local q\mathbb{Z}_{q} two-form gauge field zμν(n)z_{\mu\nu}(n). Recalling Eq. (2.19), we have

𝒬=132π2nΛμ,ν,ρ,σεμνρσ[Fμν(n)+2πqzμν(n)][Fρσ(n+μ^+ν^)+2πqzρσ(n+μ^+ν^)],\mathcal{Q}=\frac{1}{32\pi^{2}}\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\left[F_{\mu\nu}(n)+\frac{2\pi}{q}z_{\mu\nu}(n)\right]\left[F_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})+\frac{2\pi}{q}z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})\right], (3.11)

where we have introduced another field strength on the lattice by

Fμν(n)Fˇμν(n)2πq[Δμzν(n)Δνzμ(n)+qNμν(n)]F_{\mu\nu}(n)\equiv\check{F}_{\mu\nu}(n)-\frac{2\pi}{q}\left[\Delta_{\mu}z_{\nu}(n)-\Delta_{\nu}z_{\mu}(n)+qN_{\mu\nu}(n)\right] (3.12)

using the functions appearing in Eq. (2.19). Under the q\mathbb{Z}_{q} one-form gauge transformation (2.21), the new field strength is not invariant and transforms as

Fμν(n)Fμν(n)2πq[Δμzν(n)Δνzμ(n)+qNμν(n)].F_{\mu\nu}(n)\to F_{\mu\nu}(n)-\frac{2\pi}{q}\left[\Delta_{\mu}z_{\nu}(n)-\Delta_{\nu}z_{\mu}(n)+qN_{\mu\nu}(n)\right]. (3.13)

Compared with Eq. (3.4), the locality of the topological charge 𝒬\mathcal{Q} is manifest with the expression (3.11).777Note that the integer field Nμν(n)N_{\mu\nu}(n) in Eq. (2.19) is determined from zμ(n)z_{\mu}(n) locally.

4 ’t Hooft anomaly

4.1 General setting

Our construction above may be employed to consider, with lattice regularization, the mixed ’t Hooft anomaly between the q\mathbb{Z}_{q} one-form symmetry and the time reversal symmetry in the U(1)U(1) gauge theory with matter fields of charge q2q\in 2\mathbb{Z}, when the vacuum angle θ\theta is π\pi Honda:2020txe . We can assume a lattice action that is invariant under the q\mathbb{Z}_{q} one-form global transformation:888To incorporate the admissibility and the smoothness of the lattice action, a more ingenious construction such as the one in Ref. Luscher:1998du would be desirable; this point is irrelevant in the present discussion concerning symmetries of the action.

S14g02nΛμ,νFˇμν(n)Fˇμν(n)+Smatteriqθ𝒬,S\equiv\frac{1}{4g_{0}^{2}}\sum_{n\in\Lambda}\sum_{\mu,\nu}\check{F}_{\mu\nu}(n)\check{F}_{\mu\nu}(n)+S_{\text{matter}}-iq\theta\mathcal{Q}, (4.1)

where g0g_{0} is the bare coupling. This original system does not contain the q\mathbb{Z}_{q} two-form gauge field. We also assume that the lattice action except the last topological term is even under the time reversal transformation; this is actually the case for the first pure gauge term in Eq. (4.1).

In the last topological term in Eq. (4.1), θ\theta is multiplied by qq as iqθ𝒬iq\theta\mathcal{Q} instead of iθ𝒬i\theta\mathcal{Q}. This is because, with the conventional normalization of θ\theta, the Witten effect Witten:1979ey suggests a 2πq2\pi q periodicity of θ\theta instead of the 2π2\pi periodicity. This rescaling of the periodicity actually occurs at least in the Cardy–Rabinovici model Cardy:1981qy ; Cardy:1981fd as studied in Ref. Honda:2020txe (see also Ref. Hidaka:2019jtv ). That is, the full spectrum of the system including the monopole and dyons is invariant only under a 2πq2\pi q shift of the original vacuum angle, instead of a 2π2\pi shift; thus the periodicity of θ\theta is 2π2\pi only with the combination in Eq. (4.1). Since we do not introduce the monopole and dyons in the present lattice setup, we cannot observe the Witten effect and the associated rescaling of the vacuum angle directly. Nevertheless, it is interesting to see a possible ’t Hooft anomaly in our lattice regularized setup, temporarily accepting the above rescaling of the vacuum angle. This is what we do here.

Now, let us set θ=π\theta=\pi in Eq. (4.1). The original partition function is then time reversal invariant because iπq𝒬𝒯iπq𝒬+iπq𝒬i\pi q\mathcal{Q}\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}-i\pi q\mathcal{Q}\sim+i\pi q\mathcal{Q} because of the postulated 2π2\pi periodicity of θ\theta (the original 𝒬\mathcal{Q} is an integer).

We then switch the q\mathbb{Z}_{q} two-form gauge field on. From Eqs. (3.4) and (3.5), we have

q𝒬=18qμ,ν,ρ,σεμνρσzμνzρσ+.q\mathcal{Q}=\frac{1}{8q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}+\mathbb{Z}. (4.2)

The factor eiπq𝒬e^{i\pi q\mathcal{Q}} in the integrand of the functional integral then acquires an extra phase factor under the time reversal, as (recall Eq. (3.8))

eiπq𝒬\displaystyle e^{i\pi q\mathcal{Q}} 𝒯eiπq𝒬=e2πiq𝒬eiπq𝒬\displaystyle\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}e^{-i\pi q\mathcal{Q}}=e^{-2\pi iq\mathcal{Q}}\cdot e^{i\pi q\mathcal{Q}}
=exp(2πi8qμ,ν,ρ,σεμνρσzμνzρσ)eiπq𝒬.\displaystyle=\exp\left(-\frac{2\pi i}{8q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}\right)e^{i\pi q\mathcal{Q}}. (4.3)

4.2 Construction of the local counterterm

One should then ask Gaiotto:2017yup whether a certain local gauge-invariant term of the q\mathbb{Z}_{q} two-form gauge field zμν(n)z_{\mu\nu}(n) can counter the above breaking of the time reversal symmetry. Using the technique reviewed in Appendix B, it can be seen that a local term that transforms “covariantly” under the lattice q\mathbb{Z}_{q} one-form gauge transformation (2.21) is given by

exp[2πik4qnΛμ,ν,ρ,σεμνρσzμν(n)zρσ(n+μ^+ν^)].\exp\left[\frac{2\pi ik}{4q}\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}(n)z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})\right]. (4.4)

It is easy to see that, under the q\mathbb{Z}_{q} one-form gauge transformation (2.21), the combination nΛμ,ν,ρ,σεμνρσzμν(n)zρσ(n+μ^+ν^)\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}(n)z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu}) shifts by 4q4q\mathbb{Z}; see Appendix B. Therefore, for the phase factor (4.4) to be gauge invariant, the constant kk must be an integer, kk\in\mathbb{Z}.

However, Eq. (4.4), which would be regarded as the wedge product of the elements of H2(T4,q)H^{2}(T^{4},\mathbb{Z}_{q}) on the hypercubic lattice, is not the counterterm with the “finest” coefficient, as known for the corresponding counterterm on the simplicial lattice Kapustin:2013qsa ; Kapustin:2014gua .999We owe the following discussion to Yuya Tanizaki. The counterterm with a “finer” coefficient on T4T^{4} can be constructed by employing the integral lift of H2(T4,q)H^{2}(T^{4},\mathbb{Z}_{q}) to H2(T4,)H^{2}(T^{4},\mathbb{Z}) Kapustin:2013qsa ; Kapustin:2014gua . On our periodic hypercubic lattice Λ\Lambda, we may construct an analogue of the integral lift, z¯μν(n)\bar{z}_{\mu\nu}(n), which satisfies the flatness, (1/2)ν,ρ,σεμνρσΔνz¯ρσ(n)=0(1/2)\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}\bar{z}_{\rho\sigma}(n)=0 (strictly zero not modulo qq), from zμν(n)z_{\mu\nu}(n) as follows.

First, we define an integer mμ(n)(1/2)ν,ρ,σεμνρσΔνzρσ(n)/qm_{\mu}(n)\equiv(1/2)\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)/q for each 3D cube, which spans from the site nn to directions complementary to μ\mu. mμ(n)m_{\mu}(n) is an integer, because of the modulo qq flatness of zμν(n)z_{\mu\nu}(n), (1/2)ν,ρ,σεμνρσΔνzρσ(n)q(1/2)\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)\in q\mathbb{Z}.

Next, we take a 3D space specified by a fixed nμn_{\mu} and consider paths connecting centers of cubes in the 3D space. The paths are defined such that |mμ(n)||m_{\mu}(n)| paths begin from the cube at nn if mμ(n)>0m_{\mu}(n)>0, while |mμ(n)||m_{\mu}(n)| paths end at the cube if mμ(n)<0m_{\mu}(n)<0. A certain consistent configuration of paths can be defined in this way, because the total sum of mμ(n)m_{\mu}(n) on the three-dimensional space identically vanishes, nΛ,nμ fixedmμ(n)=nΛ,nμ fixed(1/2)ν,ρ,σεμνρσΔνzρσ(n)/q=0\sum_{n\in\Lambda,\text{$n_{\mu}$ fixed}}m_{\mu}(n)=\sum_{n\in\Lambda,\text{$n_{\mu}$ fixed}}(1/2)\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)/q=0. Then, it is obvious that z¯μν(n)\bar{z}_{\mu\nu}(n) such that ν,ρ,σεμνρσΔνz¯ρσ(n)=0\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}\bar{z}_{\rho\sigma}(n)=0 can be obtained by subtracting qmμν(n)qm_{\mu\nu}(n) from zμν(n)z_{\mu\nu}(n). Here, mμν(n)m_{\mu\nu}(n) is the signed number of paths going through the plaquette at which zμν(n)z_{\mu\nu}(n) is residing; the sign of mμν(n)m_{\mu\nu}(n) is defined to be positive if the paths go through the plaquette in the direction of the standard orientation of the plaquette and negative if they go through in the opposite direction. This construction gives the relation z¯μν(n)=zμν(n)qmμν(n)\bar{z}_{\mu\nu}(n)=z_{\mu\nu}(n)-qm_{\mu\nu}(n), where mνμ(n)=mμν(n)m_{\nu\mu}(n)=-m_{\mu\nu}(n).

The integral lift z¯μν(n)\bar{z}_{\mu\nu}(n) can differ depending on the choice of the configuration of paths but the difference can be expressed in the difference of the field mμν(n)m_{\mu\nu}(n). Since z¯μν(n)=zμν(n)qmμν(n)\bar{z}_{\mu\nu}(n)=z_{\mu\nu}(n)-qm_{\mu\nu}(n) has the form of the gauge transformation (2.21), the choice of the configuration of paths does not matter as far as gauge-invariant quantities (such as the counterterm below) are concerned. Also, it is obvious from Eq. (2.21) that the gauge transformation of z¯μν(n)\bar{z}_{\mu\nu}(n) takes the form z¯μν(n)z¯μν(n)+Δμzν(n)Δνzμ(n)+qN¯μν(n)\bar{z}_{\mu\nu}(n)\to\bar{z}_{\mu\nu}(n)+\Delta_{\mu}z_{\nu}(n)-\Delta_{\nu}z_{\mu}(n)+q\bar{N}_{\mu\nu}(n), where N¯μν(n)\bar{N}_{\mu\nu}(n)\in\mathbb{Z}. Because of the flatness of z¯μν(n)\bar{z}_{\mu\nu}(n), we thus infer that N¯μν(n)\bar{N}_{\mu\nu}(n) is also flat, ν,ρ,σεμνρσΔνN¯ρσ(n)=0\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}\bar{N}_{\rho\sigma}(n)=0.

Finally, when ν,ρ,σεμνρσΔνz¯ρσ(n)=ν,ρ,σεμνρσΔνN¯ρσ(n)=0\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}\bar{z}_{\rho\sigma}(n)=\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}\bar{N}_{\rho\sigma}(n)=0, which can be expressed as dz¯(2)=dN¯=0d\bar{z}^{(2)}=d\bar{N}=0 in the notation of Appendix B, by employing the argument in Ref. Fujiwara:2000wn , one can see that the combination nΛμ,ν,ρ,σεμνρσz¯μν(n)z¯ρσ(n+μ^+ν^)\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\bar{z}_{\mu\nu}(n)\bar{z}_{\rho\sigma}(n+\hat{\mu}+\hat{\nu}) shifts by 8q8q\mathbb{Z} (not 4q4q\mathbb{Z}) under the gauge transformation.

Therefore, the counterterm with a finer coefficient is given by

eScounter=exp[2πik8qnΛμ,ν,ρ,σεμνρσz¯μν(n)z¯ρσ(n+μ^+ν^)]e^{-S_{\text{counter}}}=\exp\left[\frac{2\pi ik}{8q}\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\bar{z}_{\mu\nu}(n)\bar{z}_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})\right] (4.5)

and this is gauge-invariant for kk\in\mathbb{Z} (note the difference in coefficients in Eqs. (4.4) and (4.5)). We expect that this is the finest gauge invariant coefficient from the corresponding result in the continuum theory Honda:2020txe .

Since our representative configuration in Eq. (2.13), zμν(n)=zμνδnμ,L1δnν,L1z_{\mu\nu}(n)=z_{\mu\nu}\delta_{n_{\mu},L-1}\delta_{n_{\nu},L-1}, is flat, ν,ρ,σεμνρσΔνzρσ(n)=0\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)=0, the corresponding integral lift is also given by this, z¯μν(n)=zμνδnμ,L1δnν,L1\bar{z}_{\mu\nu}(n)=z_{\mu\nu}\delta_{n_{\mu},L-1}\delta_{n_{\nu},L-1}. Substituting this into Eq. (4.5) yields

eScounter=exp(2πik8qμ,ν,ρ,σεμνρσzμνzρσ).e^{-S_{\text{counter}}}=\exp\left(\frac{2\pi ik}{8q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}\right). (4.6)

Therefore, after the addition of the counterterm in Eq. (4.5), Eq. (4.3) is modified to

eiπq𝒬eScounter\displaystyle e^{i\pi q\mathcal{Q}}e^{-S_{\text{counter}}} 𝒯eiπq𝒬e+Scounter=e2iπq𝒬e2Scountereiπq𝒬eScounter\displaystyle\stackrel{{\scriptstyle\mathcal{T}}}{{\to}}e^{-i\pi q\mathcal{Q}}e^{+S_{\text{counter}}}=e^{-2i\pi q\mathcal{Q}}e^{2S_{\text{counter}}}e^{i\pi q\mathcal{Q}}e^{-S_{\text{counter}}}
=exp[2πi(2k+1)8qμ,ν,ρ,σεμνρσzμνzρσ]eiπq𝒬eScounter.\displaystyle=\exp\left[-\frac{2\pi i(2k+1)}{8q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}\right]e^{i\pi q\mathcal{Q}}e^{-S_{\text{counter}}}. (4.7)

Since the possible minimal non-zero value of |μ,ν,ρ,σεμνρσzμνzρσ||\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}| is 88 (for instance, the choice, z12=z34=1z_{12}=z_{34}=1 and other components vanish, gives this), this shows that if we can choose the integer kk such that 2k+1=0modq2k+1=0\bmod q, the anomaly is countered. This is impossible for even qq and possible for odd qq. This thus implies the mixed ’t Hooft anomaly between the q\mathbb{Z}_{q} one-form symmetry and the time reversal symmetry for q2q\in 2\mathbb{Z} when θ=π\theta=\pi Honda:2020txe .

5 Conclusion

In this paper, assuming an appropriate admissibility condition on allowed lattice field configurations, we constructed the transition function of the U(1)/qU(1)/\mathbb{Z}_{q} principal bundle on T4T^{4} from the compact U(1)U(1) lattice gauge field by combining Lüscher’s method and a loop factor in U(1)/qU(1)/\mathbb{Z}_{q}. The resulting topological charge takes fractional values and is invariant under the q\mathbb{Z}_{q} one-form gauge transformation. Also, the topological charge is odd under the lattice time reversal transformation. From these properties, assuming a rescaling of the vacuum angle θqθ\theta\to q\theta suggested by the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the q\mathbb{Z}_{q} one-form symmetry and the time reversal symmetry in the U(1)U(1) gauge theory with matter fields of charge q2q\in 2\mathbb{Z} when θ=π\theta=\pi Honda:2020txe . This may be regarded as a U(1)U(1) analogue of the mixed ’t Hooft anomaly between the N\mathbb{Z}_{N} one-form symmetry and the time reversal symmetry in the SU(N)SU(N) gauge theory with N2N\in 2\mathbb{Z} with θ=π\theta=\pi Gaiotto:2017yup . For odd q>1q>1, which requires k0k\neq 0 in Eq. (4.5) for the anomaly cancellation at θ=π\theta=\pi, we may consider a global inconsistency between different values of θ\theta, imitating the discussions in Refs. Gaiotto:2017yup ; Tanizaki:2017bam .

Although our construction of the transition function and the fractional topological charge is perfectly legitimate, our discussion on the mixed ’t Hooft anomaly is still incomplete because we have simply assumed the rescaling of the vacuum angle without introducing the monopole and dyons. To observe the Witten effect, these degrees of freedom should be incorporated into our treatment. For this, we have to relax the Bianchi identity and it appears that the works Sulejmanpasic:2019ytl ; Anosova:2022cjm are quite suggestive in this aspect.

Generalization of our construction to non-Abelian lattice gauge theory is an important issue that we want to return to in the near future.

Acknowledgements

We would like to thank Yoshimasa Hidaka, Satoshi Yamaguchi, and especially Yuya Tanizaki for helpful discussions. We also thank Yuki Miyakawa and Soma Onoda for collaboration. This work was partially supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research Grant Numbers JP21J30003 (O.M.) and JP20H01903 (H.S.).

Appendix A Flatness of the q\mathbb{Z}_{q} two-form gauge field

The flatness of the q\mathbb{Z}_{q} two-form gauge field follows from the consistency of transition functions among “quadruple” overlap Kapustin:2014gua ; Tanizaki:2022ngt and, for our square lattice, it may be seen in the following way.101010The argument in this appendix holds even in non-Abelian lattice gauge theory.

We take a point xx on the link connecting nn and n+4^n+\hat{4} and consider transitions among the following eight hypercubes, which share the above link:

c(n)c(n1^)c(n2^)c(n3^)\displaystyle c(n)\qquad c(n-\hat{1})\qquad c(n-\hat{2})\qquad c(n-\hat{3})
c(n1^2^)c(n1^3^)c(n2^3^)c(n1^2^3^).\displaystyle c(n-\hat{1}-\hat{2})\qquad c(n-\hat{1}-\hat{3})\qquad c(n-\hat{2}-\hat{3})\qquad c(n-\hat{1}-\hat{2}-\hat{3}). (A.1)

We start from the combination

vn3^,2(x)vn,3(x)vn,2(x)1vn2^,3(x)1×vn1^2^,3(x)vn1^,2(x)vn1^,3(x)1vn1^3^,2(x)1\displaystyle v_{\mathstrut\smash{n-\hat{3},2}}(x)v_{\mathstrut\smash{n,3}}(x)v_{\mathstrut\smash{n,2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2},3}}(x)^{-1}\times v_{\mathstrut\smash{n-\hat{1}-\hat{2},3}}(x)v_{\mathstrut\smash{n-\hat{1},2}}(x)v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}
=exp[2πiqΔ1z23(n1^2^3^)],\displaystyle=\exp\left[\frac{2\pi i}{q}\Delta_{1}z_{23}(n-\hat{1}-\hat{2}-\hat{3})\right], (A.2)

where we have used the relation (2.18). Since the right-hand side of Eq. (2.18) is an element of q\mathbb{Z}_{q}, the left-hand side is invariant under any similarity transformation. Using this fact, we can rewrite Eq. (A.2) as

vn1^,3(x)1vn1^3^,2(x)1\displaystyle v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}
×vn2^3^,1(x)\displaystyle\qquad{}\times v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)
×vn3^,2(x)vn,3(x)[vn,1(x)1vn,1(x)]vn,2(x)1vn2^,3(x)1\displaystyle\qquad{}\times v_{\mathstrut\smash{n-\hat{3},2}}(x)v_{\mathstrut\smash{n,3}}(x)\left[v_{\mathstrut\smash{n,1}}(x)^{-1}v_{\mathstrut\smash{n,1}}(x)\right]v_{\mathstrut\smash{n,2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2},3}}(x)^{-1}
×vn2^3^,1(x)1\displaystyle\qquad{}\times v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)^{-1}
×vn1^2^,3(x)vn1^,2(x)vn1^,3(x)1vn1^3^,2(x)1\displaystyle\qquad{}\times v_{\mathstrut\smash{n-\hat{1}-\hat{2},3}}(x)v_{\mathstrut\smash{n-\hat{1},2}}(x)v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}
×[vn1^,3(x)1vn1^3^,2(x)1]1\displaystyle\qquad{}\times\left[v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}\right]^{-1}
=vn1^,3(x)1vn1^3^,2(x)1vn2^3^,1(x)vn3^,2(x)vn,3(x)vn,1(x)1\displaystyle=v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)v_{\mathstrut\smash{n-\hat{3},2}}(x)v_{\mathstrut\smash{n,3}}(x)v_{\mathstrut\smash{n,1}}(x)^{-1}
×vn,1(x)vn,2(x)1vn2^,3(x)1vn2^3^,1(x)1vn1^2^,3(x)vn1^,2(x).\displaystyle\qquad{}\times v_{\mathstrut\smash{n,1}}(x)v_{\mathstrut\smash{n,2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{2},3}}(x)v_{\mathstrut\smash{n-\hat{1},2}}(x). (A.3)

The factor on the right-hand side can be written as

vn1^,3(x)1vn1^3^,2(x)1vn2^3^,1(x)vn3^,2(x)vn,3(x)vn,1(x)1\displaystyle v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)v_{\mathstrut\smash{n-\hat{3},2}}(x)v_{\mathstrut\smash{n,3}}(x)v_{\mathstrut\smash{n,1}}(x)^{-1}
=vn1^,3(x)1vn1^3^,2(x)1vn2^3^,1(x)vn3^,2(x)\displaystyle=v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)v_{\mathstrut\smash{n-\hat{3},2}}(x)
×vn3^,1(x)1vn1^,3(x)[vn3^,1(x)1vn1^,3(x)]1vn,3(x)vn,1(x)1\displaystyle\qquad{}\times v_{\mathstrut\smash{n-\hat{3},1}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1},3}}(x)\left[v_{\mathstrut\smash{n-\hat{3},1}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1},3}}(x)\right]^{-1}v_{\mathstrut\smash{n,3}}(x)v_{\mathstrut\smash{n,1}}(x)^{-1}
=vn1^,3(x)1×vn1^3^,2(x)1vn2^3^,1(x)vn3^,2(x)vn3^,1(x)1×vn1^,3(x)\displaystyle=v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}\times v_{\mathstrut\smash{n-\hat{1}-\hat{3},2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)v_{\mathstrut\smash{n-\hat{3},2}}(x)v_{\mathstrut\smash{n-\hat{3},1}}(x)^{-1}\times v_{\mathstrut\smash{n-\hat{1},3}}(x)
×vn1^,3(x)1vn3^,1(x)vn,3(x)vn,1(x)1\displaystyle\qquad{}\times v_{\mathstrut\smash{n-\hat{1},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{3},1}}(x)v_{\mathstrut\smash{n,3}}(x)v_{\mathstrut\smash{n,1}}(x)^{-1}
=exp{2πiq[z31(n1^3^)+z12(n1^2^3^)]}.\displaystyle=\exp\left\{\frac{2\pi i}{q}\left[-z_{31}(n-\hat{1}-\hat{3})+z_{12}(n-\hat{1}-\hat{2}-\hat{3})\right]\right\}. (A.4)

In a similar way, we find

vn,1(x)vn,2(x)1vn2^,3(x)1vn2^3^,1(x)1vn1^2^,3(x)vn1^,2(x).\displaystyle v_{\mathstrut\smash{n,1}}(x)v_{\mathstrut\smash{n,2}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2},3}}(x)^{-1}v_{\mathstrut\smash{n-\hat{2}-\hat{3},1}}(x)^{-1}v_{\mathstrut\smash{n-\hat{1}-\hat{2},3}}(x)v_{\mathstrut\smash{n-\hat{1},2}}(x).
=exp{2πiq[z31(n1^2^3^)z12(n1^2^)]}.\displaystyle=\exp\left\{\frac{2\pi i}{q}\left[z_{31}(n-\hat{1}-\hat{2}-\hat{3})-z_{12}(n-\hat{1}-\hat{2})\right]\right\}. (A.5)

Therefore, from Eqs. (A.2), (A.3), (A.4), and (A.5), we have the flatness (setting n1^2^3^nn-\hat{1}-\hat{2}-\hat{3}\to n)

Δ1z23(n)+Δ2z31(n)+Δ3z12(n)=0modq.\Delta_{1}z_{23}(n)+\Delta_{2}z_{31}(n)+\Delta_{3}z_{12}(n)=0\bmod q. (A.6)

This shows in general

12ν,ρ,σεμνρσΔνzρσ(n)=0modq.\frac{1}{2}\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)=0\bmod q. (A.7)

Appendix B Use of the non-commutative differential calculus in lattice Abelian gauge theory Fujiwara:1999fi

In this appendix, we explain that the particular shift in the lattice coordinate appearing in Eqs. (3.11) and (4.4) (and also (4.5)) is naturally understood from the non-commutative differential calculus Dimakis:1992pk in lattice Abelian gauge theory on the hypercubic lattice Fujiwara:1999fi .

We define a kk-form f(n)f(n) on the lattice Λ\Lambda by

f(n)1k!μ1,,μkfμ1μk(n)dxμ1dxμk,f(n)\equiv\frac{1}{k!}\sum_{\mu_{1},\dotsc,\mu_{k}}f_{\mu_{1}\dotsb\mu_{k}}(n)dx_{\mu_{1}}\dotsb dx_{\mu_{k}}, (B.1)

where dxμdxν=dxνdxμdx_{\mu}dx_{\nu}=-dx_{\nu}dx_{\mu}. The exterior derivative on the lattice is defined by the forward difference,

df(n)1k!μ,μ1,,μkΔμfμ1μk(n)dxμdxμ1dxμk.df(n)\equiv\frac{1}{k!}\sum_{\mu,\mu_{1},\dotsc,\mu_{k}}\Delta_{\mu}f_{\mu_{1}\dotsb\mu_{k}}(n)dx_{\mu}dx_{\mu_{1}}\dotsb dx_{\mu_{k}}. (B.2)

This is nilpotent, d2=0d^{2}=0.

The essence of the non-commutative differential calculus is the rule,

dxμfμ1μk(n)=fμ1μk(n+μ^)dxμ.dx_{\mu}f_{\mu_{1}\dotsb\mu_{k}}(n)=f_{\mu_{1}\dotsb\mu_{k}}(n+\hat{\mu})dx_{\mu}. (B.3)

That is, the differential form and a function on the lattice do not simply commute and the exchange accompanies a shift of the coordinate. If one accepts this formal rule, one finds that the Leibniz rule of the exterior derivative,

d[f(n)g(n)]=df(n)g(n)+(1)kf(n)dg(n),d[f(n)g(n)]=df(n)\cdot g(n)+(-1)^{k}f(n)dg(n), (B.4)

holds even with the lattice difference (B.2).

With the above understanding, for a two-form

f(n)=12μ,νfμν(n)dxμdxν,f(n)=\frac{1}{2}\sum_{\mu,\nu}f_{\mu\nu}(n)dx_{\mu}dx_{\nu}, (B.5)

the wedge product yields

f(n)f(n)\displaystyle f(n)f(n) =14μ,ν,ρ,σfμν(n)fρσ(n+μ^+ν^)dxμdxνdxρdxσ\displaystyle=\frac{1}{4}\sum_{\mu,\nu,\rho,\sigma}f_{\mu\nu}(n)f_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})dx_{\mu}dx_{\nu}dx_{\rho}dx_{\sigma}
=14μ,ν,ρ,σεμνρσfμν(n)fρσ(n+μ^+ν^)dx1dx2dx3dx4.\displaystyle=\frac{1}{4}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}f_{\mu\nu}(n)f_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})dx_{1}dx_{2}dx_{3}dx_{4}. (B.6)

After removing the volume form dx1dx2dx3dx4dx_{1}dx_{2}dx_{3}dx_{4} from this, we find the structure in Eqs. (3.11) and (4.4). This shows that the structure appearing in Eqs. (3.11) and (4.4) is rather natural in lattice Abelian gauge theory.

Now, in terms of the differential forms,

z(2)(n)\displaystyle z^{(2)}(n) 12μ,νzμν(n)dxμdxν,z(1)(n)μzμ(n)dxμ,\displaystyle\equiv\frac{1}{2}\sum_{\mu,\nu}z_{\mu\nu}(n)dx_{\mu}dx_{\nu},\qquad z^{(1)}(n)\equiv\sum_{\mu}z_{\mu}(n)dx_{\mu},
N(n)\displaystyle N(n) 12μ,νNμν(n)dxμdxν,\displaystyle\equiv\frac{1}{2}\sum_{\mu,\nu}N_{\mu\nu}(n)dx_{\mu}dx_{\nu}, (B.7)

the q\mathbb{Z}_{q} one-form gauge transformation (2.21) is written as

z(2)(n)z(2)(n)+dz(1)(n)+qN(n)z^{(2)}(n)\to z^{(2)}(n)+dz^{(1)}(n)+qN(n) (B.8)

and, using the Leibniz rule (B.4) and the nilpotency d2=0d^{2}=0,

nΛz(2)z(2)\displaystyle\sum_{n\in\Lambda}z^{(2)}z^{(2)}
nΛz(2)z(2)+nΛ(dz(2)z(1)+z(1)dz(2))\displaystyle\to\sum_{n\in\Lambda}z^{(2)}z^{(2)}+\sum_{n\in\Lambda}\left(-dz^{(2)}z^{(1)}+z^{(1)}dz^{(2)}\right)
+qnΛ(z(2)N+Nz(2)+qNN+dz(1)N+Ndz(1))\displaystyle\qquad{}+q\sum_{n\in\Lambda}\left(z^{(2)}N+Nz^{(2)}+qNN+dz^{(1)}N+Ndz^{(1)}\right)
+nΛd(z(2)z(1)+z(1)z(2)+z(1)dz(1)).\displaystyle\qquad{}+\sum_{n\in\Lambda}d\left(z^{(2)}z^{(1)}+z^{(1)}z^{(2)}+z^{(1)}dz^{(1)}\right). (B.9)

In this expression, we can discard the last “surface term” because the fields zμν(n)z_{\mu\nu}(n), zμ(n)z_{\mu}(n), and Nμν(n)N_{\mu\nu}(n) are single-valued on the lattice.111111Note that the conditions in Eq. (2.20) and 0zμ(n)<q0\leq z_{\mu}(n)<q uniquely determine these fields on the lattice. In terms of the components, we thus have

nΛμ,ν,ρ,σεμνρσzμν(n)zρσ(n+μ^+ν^)\displaystyle\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}(n)z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})
nΛμ,ν,ρ,σεμνρσzμν(n)zρσ(n+μ^+ν^)\displaystyle\to\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}(n)z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})
+nΛμ,ν,ρ,σεμνρσ[2Δμzνρ(n)zσ(n+μ^+ν^+ρ^)+2zμ(n)Δνzρσ(n+μ^)]\displaystyle\qquad{}+\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\left[-2\Delta_{\mu}z_{\nu\rho}(n)z_{\sigma}(n+\hat{\mu}+\hat{\nu}+\hat{\rho})+2z_{\mu}(n)\Delta_{\nu}z_{\rho\sigma}(n+\hat{\mu})\right]
+qnΛμ,ν,ρ,σεμνρσ{zμν(n)Nρσ(n+μ^+ν^)+Nμν(n)zρσ(n+μ^+ν^)\displaystyle\qquad{}+q\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\{z_{\mu\nu}(n)N_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})+N_{\mu\nu}(n)z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})
+qNμν(n)Nρσ(n+μ^+ν^)\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad{}+qN_{\mu\nu}(n)N_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})
+2Δμzν(n)Nρσ(n+μ^+ν^)+2Nμν(n)Δρzσ(n+μ^+ν^)}\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad{}+2\Delta_{\mu}z_{\nu}(n)N_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})+2N_{\mu\nu}(n)\Delta_{\rho}z_{\sigma}(n+\hat{\mu}+\hat{\nu})\} (B.10)

under the q\mathbb{Z}_{q} one-form gauge transformation. Since (1/2)ν,ρ,σεμνρσΔνzρσ(n)=0modq(1/2)\sum_{\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}\Delta_{\nu}z_{\rho\sigma}(n)=0\bmod q (the flatness), from this expression, it is obvious that the shift of nΛμ,ν,ρ,σεμνρσzμν(n)zρσ(n+μ^+ν^)\sum_{n\in\Lambda}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}(n)z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu}) under the gauge transformation is 4q4q\mathbb{Z}.121212We confirmed that the shift actually can take a value in 4q4q\mathbb{Z} by a numerical experiment. When dz(2)=dN=0dz^{(2)}=dN=0 (strictly zero not modulo qq), we can show that the shift is 8q8q\mathbb{Z} instead of 4q4q\mathbb{Z} by employing the argument in Ref. Fujiwara:2000wn .

References

  • (1) D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, JHEP 05, 091 (2017) doi:10.1007/JHEP05(2017)091 [arXiv:1703.00501 [hep-th]].
  • (2) D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, JHEP 02, 172 (2015) doi:10.1007/JHEP02(2015)172 [arXiv:1412.5148 [hep-th]].
  • (3) G. ’t Hooft, NATO Sci. Ser. B 59, 135-157 (1980) doi:10.1007/978-1-4684-7571-5_9
  • (4) J. McGreevy, [arXiv:2204.03045 [cond-mat.str-el]].
  • (5) C. Córdova, T. T. Dumitrescu, K. Intriligator and S. H. Shao, [arXiv:2205.09545 [hep-th]].
  • (6) A. Kapustin and N. Seiberg, JHEP 04, 001 (2014) doi:10.1007/JHEP04(2014)001 [arXiv:1401.0740 [hep-th]].
  • (7) G. ’t Hooft, Nucl. Phys. B 153, 141-160 (1979) doi:10.1016/0550-3213(79)90595-9
  • (8) Y. Tanizaki and M. Ünsal, PTEP 2022, no.4, 04A108 (2022) doi:10.1093/ptep/ptac042 [arXiv:2201.06166 [hep-th]].
  • (9) M. Lüscher, Commun. Math. Phys. 85, 39 (1982) doi:10.1007/BF02029132
  • (10) A. Phillips and D. Stone, Commun. Math. Phys. 103, 599-636 (1986) doi:10.1007/BF01211167
  • (11) A. V. Phillips and D. A. Stone, Commun. Math. Phys. 131, 255-282 (1990) doi:10.1007/BF02161414
  • (12) P. van Baal, Commun. Math. Phys. 85, 529 (1982) doi:10.1007/BF01403503
  • (13) E. Witten, Phys. Lett. B 86, 283-287 (1979) doi:10.1016/0370-2693(79)90838-4
  • (14) M. Honda and Y. Tanizaki, JHEP 12, 154 (2020) doi:10.1007/JHEP12(2020)154 [arXiv:2009.10183 [hep-th]].
  • (15) Y. Hidaka, Y. Hirono, M. Nitta, Y. Tanizaki and R. Yokokura, Phys. Rev. D 100, no.12, 125016 (2019) doi:10.1103/PhysRevD.100.125016 [arXiv:1903.06389 [hep-th]].
  • (16) P. Hernández, K. Jansen and M. Lüscher, Nucl. Phys. B 552, 363-378 (1999) doi:10.1016/S0550-3213(99)00213-8 [arXiv:hep-lat/9808010 [hep-lat]].
  • (17) M. Lüscher, Nucl. Phys. B 538, 515-529 (1999) doi:10.1016/S0550-3213(98)00680-4 [arXiv:hep-lat/9808021 [hep-lat]].
  • (18) R. G. Edwards, U. M. Heller and R. Narayanan, Phys. Lett. B 438, 96-98 (1998) doi:10.1016/S0370-2693(98)00951-4 [arXiv:hep-lat/9806011 [hep-lat]].
  • (19) P. de Forcrand and O. Jahn, Nucl. Phys. B 651, 125-142 (2003) doi:10.1016/S0550-3213(02)01123-9 [arXiv:hep-lat/0211004 [hep-lat]].
  • (20) Z. Fodor, K. Holland, J. Kuti, D. Nógrádi and C. Schroeder, JHEP 08, 084 (2009) doi:10.1088/1126-6708/2009/08/084 [arXiv:0905.3586 [hep-lat]].
  • (21) R. Kitano, T. Suyama and N. Yamada, JHEP 09, 137 (2017) doi:10.1007/JHEP09(2017)137 [arXiv:1709.04225 [hep-th]].
  • (22) E. Itou, JHEP 05, 093 (2019) doi:10.1007/JHEP05(2019)093 [arXiv:1811.05708 [hep-th]].
  • (23) T. Sulejmanpasic and C. Gattringer, Nucl. Phys. B 943, 114616 (2019) doi:10.1016/j.nuclphysb.2019.114616 [arXiv:1901.02637 [hep-lat]].
  • (24) M. Anosova, C. Gattringer and T. Sulejmanpasic, JHEP 04, 120 (2022) doi:10.1007/JHEP04(2022)120 [arXiv:2201.09468 [hep-lat]].
  • (25) T. Fujiwara, H. Suzuki and K. Wu, Prog. Theor. Phys. 105, 789-807 (2001) doi:10.1143/PTP.105.789 [arXiv:hep-lat/0001029 [hep-lat]].
  • (26) M. Lüscher, Nucl. Phys. B 549, 295-334 (1999) doi:10.1016/S0550-3213(99)00115-7 [arXiv:hep-lat/9811032 [hep-lat]].
  • (27) Y. Tanizaki and Y. Kikuchi, JHEP 06, 102 (2017) doi:10.1007/JHEP06(2017)102 [arXiv:1705.01949 [hep-th]].
  • (28) T. Fujiwara, H. Suzuki and K. Wu, Nucl. Phys. B 569, 643-660 (2000) doi:10.1016/S0550-3213(99)00706-3 [arXiv:hep-lat/9906015 [hep-lat]].
  • (29) J. L. Cardy and E. Rabinovici, Nucl. Phys. B 205, 1-16 (1982) doi:10.1016/0550-3213(82)90463-1
  • (30) J. L. Cardy, Nucl. Phys. B 205, 17-26 (1982) doi:10.1016/0550-3213(82)90464-3
  • (31) A. Kapustin and R. Thorngren, Adv. Theor. Math. Phys. 18, no.5, 1233-1247 (2014) doi:10.4310/ATMP.2014.v18.n5.a4 [arXiv:1308.2926 [hep-th]].
  • (32) A. Dimakis, F. Mueller-Hoissen and T. Striker, J. Phys. A 26, 1927-1949 (1993) GOET-TP-44-92.