This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\WarningFilter

remresetThe remreset package \newaliascntPropositionequation\aliascntresettheProposition \newaliascntTheoremequation\aliascntresettheTheorem \newaliascntMain Theoremequation\aliascntresettheMain Theorem \newaliascntCorollaryequation\aliascntresettheCorollary \AtEndEnvironmentCorollary \square\newaliascntLemmaequation\aliascntresettheLemma \newaliascntDefinitionequation\aliascntresettheDefinition \newaliascntNotationequation\aliascntresettheNotation \newaliascntQuestionequation\aliascntresettheQuestion \newaliascntExampleequation\aliascntresettheExample \AtEndEnvironmentExample \Diamond\newaliascntExamplesequation\aliascntresettheExamples \AtEndEnvironmentExamples \Diamond \newaliascntRemarkequation\aliascntresettheRemark \AtEndEnvironmentRemark \Diamond\newaliascntAssumptionequation\aliascntresettheAssumption

Fractal behavior of tensor powers of the two dimensional space in prime characteristic

Kevin Coulembier, Pavel Etingof, Victor Ostrik and Daniel Tubbenhauer K.C.: The University of Sydney, School of Mathematics and Statistics F07, Office Carslaw 717, NSW 2006, Australia, www.maths.usyd.edu.au/u/kevinc, ORCID 0000-0003-0996-3965 [email protected] P.E.: Department of Mathematics, Room 2-282, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA, math.mit.edu/ etingof/, ORCID 0000-0002-0710-1416 [email protected] V.O.: University of Oregon, Department of Mathematics, Eugene, OR 97403, USA,
pages.uoregon.edu/vostrik, ORCID 0009-0002-2264-669X
[email protected] D.T.: The University of Sydney, School of Mathematics and Statistics F07, Office Carslaw 827, NSW 2006, Australia, www.dtubbenhauer.com, ORCID 0000-0001-7265-5047 [email protected]
Abstract.

We study the number of indecomposable summands in tensor powers of the vector representation of SL2. Our main focus is on positive characteristic where this sequence of numbers and its generating function show fractal behavior akin to Mahler functions.

Key words and phrases:
Tensor products, asymptotic behavior, fractals, Mahler functions, subcategories of finite tensor categories.
2020 Mathematics Subject Classification:
Primary: 11N45, 18M05; Secondary: 11B85, 26A12, 30B30.

1. Introduction

Let 𝐤\mathbf{k} be a field and let Γ\Gamma be a group, possibly an algebraic group or affine group scheme over 𝐤\mathbf{k}. For any finite dimensional Γ\Gamma-representation WW over 𝐤\mathbf{k} let ν(W)0\nu(W)\in\mathbb{Z}_{\geq 0} be an integer such that

Wi=1ν(W)Wi,\displaystyle W\cong{\textstyle\bigoplus_{i=1}^{\nu(W)}}W_{i},

where WiW_{i} are indecomposable Γ\Gamma-representations. This number is well-defined by the Krull–Schmidt theorem. Now let VV be a finite dimensional Γ\Gamma-representation and define the integer sequence

bn=bn(V):=ν(Vn),n0.\displaystyle b_{n}=b_{n}(V):=\nu(V^{\otimes n}),\;n\in\mathbb{Z}_{\geq 0}.

The study of the growth of bnb_{n} is the main motivation of this paper.

The related question to study the growth of (Vn)\ell(V^{\otimes n}), where (W)\ell(W) is the length of WW, is usually much easier and we discuss this along the way, e.g. in Section 2A and Section 2BV below.

We write \sim for ‘asymptotically equal’. One could hope that

(1.1) bnh(n)nτβn,h:0>0 is a function bounded away from 0,,nτ is the subexponential factorτ,βn is the exponential factorβ1.\displaystyle b_{n}\sim h(n)\cdot n^{\tau}\cdot\beta^{n},\quad\begin{aligned} &h\colon\mathbb{Z}_{\geq 0}\to\mathbb{R}_{>0}\text{ is a function \emph{bounded away from $0,\infty$}},\\[-2.84544pt] &n^{\tau}\text{ is the \emph{subexponential factor}, $\tau\in\mathbb{R}$},\\[-2.84544pt] &\beta^{n}\text{ is the \emph{exponential factor}, $\beta\in\mathbb{R}_{\geq 1}$}.\end{aligned}

In practice, h(n)h(n) is often a constant or alternates between finitely many constants, but sometimes h(n)h(n) is more complicated.

We do not know in what generality Equation 1.1 holds, but expressions of this form are very common in the theory of asymptotics of generating functions, see for example [FS09] or [Mis20] for the relation between counting problems and the analysis of generating functions.

1A. The exponential factor

Even without assuming (1.1) one can define the value β:=limnbn(V)n\beta:=\lim_{n\to\infty}\sqrt[n]{b_{n}(V)}, and it is proven in [COT24, Theorem 1.4] that

(1A.1) β=dim𝐤V.\displaystyle\beta=\dim_{\mathbf{k}}V.

Thus, Equation 1A.1 gives (dim𝐤V)n(\dim_{\mathbf{k}}V)^{n} as the exponential factor of the growth rate of bnb_{n}.

The goal of this paper is to provide a more precise asymptotics, that is, one of the form Equation 1.1, for the sequence bnb_{n} in the case dim𝐤V=2\dim_{\mathbf{k}}V=2 and Γ=GL(V)\Gamma=GL(V) or, equivalently, Γ=SL(V)\Gamma=SL(V). This is a nontrivial case where one can hope to understand the asymptotics explicitly. In this setting the subexponential factor is determined by Section 1B, as well as Section 2A and Section 2A.

We do not calculate h(n)h(n), but it appears to be oscillating, cf. Section 1B. See also Section 8 where we determine h(n)h(n) for p=2p=2.

1B. The main theorem – the subexponential factor

If 𝐤\mathbf{k} is finite, then Γ=SL2(𝐤)\Gamma=SL_{2}(\mathbf{k}) is a finite group and the asymptotic behavior of bn=bn(𝐤2)b_{n}=b_{n}(\mathbf{k}^{2}) can be easily obtained, see for example Section 2A below or [LTV23, Example 8] which settle the case of a finite field. We give an example which is prototypical in this situation:

Example \theExample.

For 𝐤=𝔽3\mathbf{k}=\mathbb{F}_{3} we get

(bn)n0=(1,1,2,2,6,6,22,22,86,)andbn(16+(1)n12)n02n.\displaystyle(b_{n})_{n\in\mathbb{Z}_{\geq 0}}=(1,1,2,2,6,6,22,22,86,\dots)\quad\text{and}\quad b_{n}\sim\left(\frac{1}{6}+\frac{(-1)^{n}}{12}\right)\cdot n^{0}\cdot 2^{n}.

(We highlight that the subexponential factor is n0=1n^{0}=1.) Note that limnbn2n\lim_{n\to\infty}\frac{b_{n}}{2^{n}} does not exist, but the ratio bn2n\frac{b_{n}}{2^{n}} is rather governed by the periodic function h(n)=16+(1)n12h(n)=\frac{1}{6}+\frac{(-1)^{n}}{12}.

From now on let VV be a two dimensional vector space over an infinite field. Let Γ\Gamma be the algebraic group SL(V)SL2(𝐤)SL(V)\simeq SL_{2}(\mathbf{k}). Let bn=bn(V)b_{n}=b_{n}(V) be the sequence as above. As a matter of fact, the sequence bnb_{n} depends only on the characteristic of 𝐤\mathbf{k} (which is only implicit in our notation), so we only need to study it for one infinite field for each p0p\geq 0. That is, we have

(1B.1) bn=number of indecomposable SL2(𝐤)-representations in (𝐤2)n,\displaystyle b_{n}=\text{number of indecomposable $SL_{2}(\mathbf{k})$-representations in $(\mathbf{k}^{2})^{\otimes n}$},

where 𝐤\mathbf{k} is either \mathbb{C} for p=0p=0 or 𝔽¯p\bar{\mathbb{F}}_{p} otherwise.

The following example is classical, and settles the case p=0p=0:

Example \theExample.

Assume p=0p=0. Then bnb_{n} is the sequence of middle binomial coefficients

(bn)n0=((nn/2))n0=(1,1,2,3,6,10,20,35,70,)\displaystyle(b_{n})_{n\in\mathbb{Z}_{\geq 0}}=\left(\binom{n}{\lfloor n/2\rfloor}\right)_{n\in\mathbb{Z}_{\geq 0}}=(1,1,2,3,6,10,20,35,70,\dots)

Then Stirling’s formula implies

bn2/πn1/22n,\displaystyle b_{n}\sim\sqrt{2/\pi}\cdot n^{-1/2}\cdot 2^{n},

as one easily checks. In this case the periodic function is constant, i.e. h(n)=2/π=limnbnn1/22nh(n)=\sqrt{2/\pi}=\lim_{n\to\infty}\frac{b_{n}}{n^{-1/2}\cdot 2^{n}}. Since this situation is semisimple, the same formula works for the length instead of the number of indecomposable summands.

For the remainder of the paper let p>0p>0. Then the asymptotic behavior of the sequence bnb_{n} turns out to be more complicated. Namely let us define

(1B.2) tp:=12logp2p2p+1=12ln(p+1)ln(2p2)lnp=12(logpp+12)1.\displaystyle t_{p}:=-\frac{1}{2}\log_{p}\frac{2p^{2}}{p+1}=\frac{1}{2}\frac{\ln(p+1)-\ln(2p^{2})}{\ln p}=\frac{1}{2}\left(\log_{p}\frac{p+1}{2}\right)-1.

As we will see, tpt_{p} plays the role of τ\tau in Equation 1.1. To give some numerical expressions, we have for example:

t2=0.7075187496,t3=0.6845351232,t5=0.6586969028,\displaystyle t_{2}=-0.7075187496\ldots\,,\quad t_{3}=-0.6845351232\ldots\,,\quad t_{5}=-0.6586969028\ldots\,,
t7=0.6437928129,t101=0.5740278484.\displaystyle t_{7}=-0.6437928129\ldots\,,\quad t_{101}=-0.5740278484\ldots\,.

It is easy to see that all tpt_{p} are irrational. Moreover, all these numbers are transcendental, as follows from the (logarithm form of the) Gelfond–Schneider theorem which implies that logpr\log_{p}r, for pp a prime number and rr\in\mathbb{Q}, is transcendental unless rr is a power of pp.

Remark \theRemark.

By very similar arguments, all τ\tau that we will see below that are not manifestly rational will be irrational and even transcendental.

Notation \theNotation.

Throughout, we will use big O notation (or rather its generalization often called Bachmann–Landau notation). Most important for us from this family of notations are \sim as above, small oo, big OO, big Θ\Theta and \asymp. That is, given two real-valued functions ff, gg which are both defined on 0\mathbb{Z}_{\geq 0} or on DD\subset\mathbb{R} for the final point, we will write

(1B.3) fgε>0,n0 such that |f(n)g(n)1|<ε,n>n0,fo(g)C>0,n0 such that |f(n)|Cg(n),n>n0,fO(g)C>0,n0 such that |f(n)|Cg(n),n>n0,fΘ(g)C1,C2>0,n0 such that C1g(n)f(n)C2g(n),n>n0,fDgC>1 such that C1g(x)f(x)Cg(x),xD.\displaystyle\begin{aligned} f\sim g&\;\Leftrightarrow\;\forall\varepsilon>0,\,\exists n_{0}\;\text{ such that }\;\framebox{$|\tfrac{f(n)}{g(n)}-1|<\varepsilon$},\;\forall n>n_{0},\\ f\in o(g)&\;\Leftrightarrow\;\forall C>0,\,\exists n_{0}\;\text{ such that }\;\framebox{$|f(n)|\leq C\cdot g(n)$},\;\forall n>n_{0},\\ f\in O(g)&\;\Leftrightarrow\;\exists C>0,\,\exists n_{0}\;\text{ such that }\;\framebox{$|f(n)|\leq C\cdot g(n)$},\;\forall n>n_{0},\\ f\in\Theta(g)&\;\Leftrightarrow\;\exists C_{1},C_{2}>0,\,\exists n_{0}\;\text{ such that }\;\framebox{$C_{1}\cdot g(n)\leq f(n)\leq C_{2}\cdot g(n)$},\;\forall n>n_{0},\\ f\asymp_{D}g&\;\Leftrightarrow\;\exists C>1\;\text{ such that }\;\framebox{$C^{-1}\cdot g(x)\leq f(x)\leq C\cdot g(x)$},\;\forall x\in D.\end{aligned}

We sometimes omit the subscript DD if no confusion can arise.

Our main result is:

Main Theorem \theMain.Theorem.

For any p>0p>0 there exist C1=C1(p),C2=C2(p)>0C_{1}=C_{1}(p),C_{2}=C_{2}(p)\in\mathbb{R}_{>0} such that we have

C1ntp2nbnC2ntp2n,n1.\displaystyle C_{1}\cdot n^{t_{p}}\cdot 2^{n}\leq b_{n}\leq C_{2}\cdot n^{t_{p}}\cdot 2^{n},\qquad n\geq 1.

Thus, (nbn)Θ(ntp2n)(n\mapsto b_{n})\in\Theta(n^{t_{p}}\cdot 2^{n}).

Moreover, for p=2p=2 we have a quite complete picture and we prove stronger results: we show that Equation 1.1 holds and we determine h(n)h(n), see Section 7 and Section 8. We expect that similar methods can be used to handle the case p>2p>2.

Remark \theRemark.

As usual in modular representation theory, the case p=0p=0 behaves like p=p=\infty. Indeed, we have

t:=limptp=12,\displaystyle t_{\infty}:=\lim_{p\to\infty}t_{p}=-\frac{1}{2},

so we can compare Section 1B with Section 1B.

Remark \theRemark.

In contrast to characteristic zero as in Section 1B, the limit

limnbnntp2n\displaystyle\lim_{n\to\infty}\frac{b_{n}}{n^{t_{p}}\cdot 2^{n}}

does not exist, i.e. for p>0p>0 there is no constant cc such that bncntp2nb_{n}\sim c\cdot n^{t_{p}}\cdot 2^{n}.

Example \theExample.

For p=2p=2 we have b2n1=b2nb_{2n-1}=b_{2n} and the logplot of the even values of bn/(n0.7082n)b_{n}/(n^{-0.708}\cdot 2^{n}) (splitting the sequence bn/(n0.7082n)b_{n}/(n^{-0.708}\cdot 2^{n}) into even and odd makes it more regular, see for example Section 5) gives

[Uncaptioned image]even n,[Uncaptioned image]even n zoom.\displaystyle\leavevmode\hbox to229.98pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 114.99016pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-111.65715pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/plottt2-2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-71.2956pt}{46.21683pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{even $n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to232.87pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 116.43555pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-113.10254pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/plottt2-3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-84.49007pt}{46.21683pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{even $n$ zoom}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

These illustrations show the graph of bn/(n0.7082n)b_{n}/(n^{-0.708}\cdot 2^{n}) for n{0,2,,198,200}n\in\{0,2,\dots,198,200\} and n{0,2,,1998,2000}n\in\{0,2,\dots,1998,2000\} (the fluctuations in the beginning vanish quickly) and we see the tiny oscillation, which is proven to be true in Section 8.

Remark \theRemark.

For p=2p=2 Section 1B, or rather the stronger version in Section 7B, was independently proven in [La24] using quite different methods. Moreover, and similar but different to Section 8, the paper [La24] also identifies h(n)h(n) from Equation 1.1. For p=2p=2 [La24] even implies some results for other representations as well.

Remark \theRemark.

Let us comment on the quantum case; the analog of Section 1B for quantum SL2SL_{2}. If the quantum parameter is not a root of unity, then the same discussion as in Section 1B works. The next case, where the quantum parameter is a root of unity and the underlying field is of characteristic zero can be deduced from [LPRS24]. For the final possibility, the so-called mixed case as e.g. in [STWZ23], we expect a result very similar to Section 1B.

1C. Proof outline of Section 1B

It is a classical fact that all direct summands of VnV^{\otimes n} are tilting representations over Γ=SL(V)\Gamma=SL(V). In the special case of Γ=SL2(𝐤)\Gamma=SL_{2}(\mathbf{k}) the characters of indecomposable tilting representations are explicitly known; using this we derive a recursion for the sequence bnb_{n}, see Section 3B.

Then we translate this recursion into a functional equation for the generating function F(z)F(z) of the sequence bnb_{n}, see Section 3A. Then we analyze the behavior of the function F(z)F(z) in the vicinity of its radius of convergence and deduce Section 1B by employing suitable Tauberian theorems in Section 6.

One of the steps is the following elementary looking inequality from Section 5A:

bn+24bn,n0.\displaystyle b_{n+2}\leq 4b_{n},\;n\geq 0.

1D. Odds and ends

Here are a few open questions that might be interesting to explore. (i) is proven for p=2p=2, see Section 7 and Section 8, and similar methods apply in general.

  1. (i)

    In Section 5A we prove that bn+24bnb_{n+2}\leq 4b_{n}. A natural question is whether we have limnbn+2/bn=4\lim_{n\to\infty}b_{n+2}/b_{n}=4. Moreover, recall from Section 1B that there is no constant such that bncntp2nb_{n}\sim c\cdot n^{t_{p}}\cdot 2^{n}. However, one could conjecture that there exists a continuous real function h~(x)\tilde{h}(x) of period one such that

    (1D.1) bnh~(log2p(n))ntp2n.\displaystyle b_{n}\sim\tilde{h}\big{(}\log_{2p}(n)\big{)}\cdot n^{t_{p}}\cdot 2^{n}.

    For p=2p=2 this is proven in Section 7B.

  2. (ii)

    Recall from Section 1B that bnntp2n\frac{b_{n}}{n^{t_{p}}\cdot 2^{n}} is bounded by two constants, and it would be interesting to have good explicit values for these constants, see Section 9D for some possible values. For a more precise asymptotic formula one would need to analyze the oscillation as in Section 1B.

  3. (iii)

    One could try to compute other asymptotic formulas. An example that comes to mind is to verify an analog of Section 1B (with the same subexponential factor) for the three dimensional tilting SL2SL_{2}-representation Sym2V\mathrm{Sym}^{2}V (in case p2p\neq 2). When p=2p=2 this three dimensional SL2SL_{2}-representation is not tilting and getting asymptotic formulas might be very hard.

Acknowledgments. We thank Michael Larsen for sharing a draft of [La24], which uses very interesting methods that are quite different from the ones in this work. The methods are exciting and important, so we all agreed that it makes sense to write two separate papers. We also thank Henning Haahr Andersen, David He, Abel Lacabanne and Pedro Vaz for useful discussions and comments, and are very grateful to Kenichi Shimizu for pointing out a gap in the proof of Appendix A in the first version.

We express our appreciation to ChatGPT for their assistance with proofreading. In addition, D.T. extends heartfelt thanks to the tree constant for inspiration.

P.E.’s work was partially supported by the NSF grant DMS-2001318, D.T. was supported by the ARC Future Fellowship FT230100489.

2. Fractal behavior of growth problems

Before coming to the main parts of this paper, let us briefly indicate the main difficulty (and maybe the most exciting part) of growth problems in the above sense: a certain type of fractal behavior of these sequences and of their generating functions. For the sake of this paper, and partially justified by the discussion in this section, we use fractal behavior to mean that the exponent τ\tau of the subexponential factor is transcendental (note that e.g. tpt_{p} from Equation 1B.2 is transcendental), or at least irrational. For instance, tpt_{p} could be the fractal dimension of some fractal.

2A. No fractal behavior

For 𝐤\mathbf{k} of characteristic zero, let Γ\Gamma be a connected reductive algebraic group over 𝐤\mathbf{k}. [Bia93, Theorem 2.2] and [CEO24, Theorem 2.5] give the asymptotic for the numbers bnb_{n} for an arbitrary finite dimensional Γ\Gamma-representation. The example of Γ=SL2(𝐤)\Gamma=SL_{2}(\mathbf{k}) and its vector representation is given in Section 1B where bn2/πn1/22nb_{n}\sim\sqrt{2/\pi}\cdot n^{-1/2}\cdot 2^{n}.

In general, [Bia93, Theorem 2.2] and [CEO24, Theorem 2.5] prove (since this case is semisimple the same holds true for the length instead of the number of indecomposable summands):

Proposition \theProposition.

In the above setting, the asymptotic takes the form

bnCnτ(dim𝐤V)n with τ12,C>0.\displaystyle b_{n}\sim C\cdot n^{\tau}\cdot(\dim_{\mathbf{k}}V)^{n}\text{ with }\tau\in\tfrac{1}{2}\mathbb{Z},C\in\mathbb{R}_{>0}.

Thus, the subexponential factor nτn^{\tau} always has some half integer exponent.∎

It is not a coincidence that τ12\tau\in\tfrac{1}{2}\mathbb{Z} since:

“The nature of the generating function’s singularities determines the associated subexponential factor.”

The above strategy is well-known in symbolic dynamics, and under certain assumptions on the singularities of the generating function one always gets half integer powers for the subexponential growth term. For example, this works if the generating function is algebraic.

In fact, there are well developed algorithms to compute the asymptotics if the generating function is sufficiently nice (e.g. meromorphic), see for example [Mis20, Section 7.7]. The algorithm presented therein always produces an exponent s12s\in\tfrac{1}{2}\mathbb{Z} and is enough to treat the case of a connected reductive algebraic group in characteristic zero.

Here is another example where one always gets a half integer coefficient, namely zero, regardless of the characteristic. As we will argue below, this means that these cases do not show fractal behavior with respect to the growth problems we consider.

Let Γ\Gamma be a finite group and let VV be a representation of Γ\Gamma over 𝐤\mathbf{k}, with 𝐤\mathbf{k} of arbitrary characteristic. We assume for simplicity that VV is a faithful Γ\Gamma-representation; if VV is not faithful we replace Γ\Gamma by a quotient and continue as below. Let MΓM\subset\Gamma be the central cyclic subgroup of Γ\Gamma containing all scalar matrices. Let m=|M|m=|M|. The category Rep(Γ)\mathrm{Rep}(\Gamma) of finite dimensional Γ\Gamma-representations splits into a direct sum

Rep(Γ)=i/mRep(Γ)i,\displaystyle\mathrm{Rep}(\Gamma)=\bigoplus_{i\in\mathbb{Z}/m\mathbb{Z}}\mathrm{Rep}(\Gamma)_{i},

where MM acts on objects of Rep(Γ)i\mathrm{Rep}(\Gamma)_{i} in the same way as in ViV^{\otimes i}.

Let Si(Γ)\mathrm{S}^{i}(\Gamma) be the set of isomorphism classes of simple objects of Rep(Γ)i\mathrm{Rep}(\Gamma)_{i}; for any LSi(Γ)L\in\mathrm{S}^{i}(\Gamma) let P(L)Rep(Γ)iP(L)\in\mathrm{Rep}(\Gamma)_{i} be its projective cover. For any i/mi\in\mathbb{Z}/m\mathbb{Z} we define

i=m|Γ|(LSi(Γ)dim𝐤P(L)),νi=m|Γ|(LSi(Γ)dim𝐤L).\displaystyle\ell_{i}=\frac{m}{|\Gamma|}\bigg{(}\sum_{L\in\mathrm{S}^{i}(\Gamma)}\dim_{\mathbf{k}}P(L)\bigg{)},\quad\nu_{i}=\frac{m}{|\Gamma|}\bigg{(}\sum_{L\in\mathrm{S}^{i}(\Gamma)}\dim_{\mathbf{k}}L\bigg{)}.

Let AA be the regular representation of Γ\Gamma and let A=i/mAiA=\oplus_{i\in\mathbb{Z}/m\mathbb{Z}}A_{i} be its decomposition into summands AiRep(Γ)iA_{i}\in\mathrm{Rep}(\Gamma)_{i}. A result of Bryant–Kovács [BK72, Theorem 2] says that for sufficiently large nn with nimodmn\equiv i\bmod{m} we have that AiA_{i} is a direct summand of VnV^{\otimes n}. Similarly to bnb_{n}, let ln=ln(V):=(Vn)l_{n}=l_{n}(V):=\ell(V^{\otimes n}), where ()\ell({}_{-}) denotes the length of representations. Assuming 𝐤=𝐤¯\mathbf{k}=\overline{\mathbf{k}}, it follows easily that for nimodmn\equiv i\bmod{m} we have

lni(dim𝐤V)n,bnνi(dim𝐤V)n.\displaystyle l_{n}\sim\ell_{i}\cdot(\dim_{\mathbf{k}}V)^{n},\quad b_{n}\sim\nu_{i}\cdot(\dim_{\mathbf{k}}V)^{n}.

In particular, each of the sequences ln/(dim𝐤V)nl_{n}/(\dim_{\mathbf{k}}V)^{n} and bn/(dim𝐤V)nb_{n}/(\dim_{\mathbf{k}}V)^{n} has at most mm limit points. In particular, [Mis20, Section 7.7] applies and the subexponential factor has half integer exponent. A similar analysis works without the assumption 𝐤=𝐤¯\mathbf{k}=\overline{\mathbf{k}}.

This immediately proves that h(n)h(n), in this case, is periodic with period mm, the subexponential factor is trivial and the exponential factor is given by the dimension. Precisely:

Proposition \theProposition.

For a finite group Γ\Gamma and a Γ\Gamma-representation VV we always have

lnm+rs(r)n0(dim𝐤V)nm,bnm+rt(r)n0(dim𝐤V)nm,with s(r),t(r)(0,1],t(r)s(r),\displaystyle\begin{aligned} l_{nm+r}&\sim s(r)\cdot n^{0}\cdot(\dim_{\mathbf{k}}V)^{nm},\\ b_{nm+r}&\sim t(r)\cdot n^{0}\cdot(\dim_{\mathbf{k}}V)^{nm},\end{aligned}\quad\text{with }s(r),t(r)\in(0,1],t(r)\leq s(r),

for some m0m\in\mathbb{Z}_{\geq 0} and all r{0,,m1}r\in\{0,\dots,m-1\}.∎

The scalars s(r),t(r)s(r),t(r) in Section 2A are easy to compute. For t(r)t(r) see for example [CEO24, Proposition 2.1] and [LTV23, (2A.1)] for characteristic zero, and [LTV24, Section 5] for arbitrary characteristic.

Example \theExample.

For instance if p=2p=2, and Γ\Gamma is the symmetric group S3S_{3} or S4S_{4} and VV is a faithful representation of Γ\Gamma we have ln23dim𝐤Vnl_{n}\sim\frac{2}{3}\cdot\dim_{\mathbf{k}}V^{n} and bn12dim𝐤Vnb_{n}\sim\frac{1}{2}\cdot\dim_{\mathbf{k}}V^{n}.

Remark \theRemark.

Let 𝐂\mathbf{C} be a finite tensor category, see e.g. [EGNO15, Chapter 6] for details. Let XX be a tensor generator of 𝐂\mathbf{C}. We have a decomposition of 𝐂\mathbf{C} over the universal grading group UU of 𝐂\mathbf{C}. Write XiIXiX\cong\oplus_{i\in I}X_{i} for XiX_{i} indecomposables with XiX_{i} of degree diUd_{i}\in U. Let UXU_{X} be the subgroup of UU generated by didjd_{i}-d_{j}. Then U/UXU/U_{X} is a cyclic group /m\mathbb{Z}/m\mathbb{Z}, and statements similar to Section 2A hold. Details are omitted, but the key statement hereby is proven in Appendix A in the appendix.

To summarize, in the two above settings the subexponential exponent τ\tau is a half-integer, in particular not transcendental, and the function h(n)h(n) is constant up to some period m0m\in\mathbb{Z}_{\geq 0}.

2B. Fractal behavior

For Γ=SL2(𝐤2)\Gamma=SL_{2}(\mathbf{k}^{2}) our problem, where 𝐤\mathbf{k} is of prime characteristic, is difficult also because the generating function that we compute in Section 3A does not have nice enough properties to run the classical strategies. For example, we will see that we have to face a dense set of singularities, see e.g. Section 4B. And in fact, the exponent we get is not a half integer but rather the transcendental number tpt_{p} from Equation 1B.2.

In a bit more details, see Section 3C for the precise statement, we get a functional equation for the generating function FF of the numbers bnb_{n} that takes the form

(2B.1) F(w)=r1(w)+r2(w)F(wp).\displaystyle F(w)=r_{1}(w)+r_{2}(w)\cdot F(w^{p}).

Functions of this type are called 2-Mahler functions of degree pp.

Remark \theRemark.

The name originates in Mahler’s approach to transcendence and algebraic independence results for the values at algebraic points in the study of power series satisfying functional equations of a certain type. Mahler’s original functional equation is of the form F(w)=w+F(w2)F(w)=w+F(w^{2}), which is an example of what we call a 2-Mahler function of degree 2.

Let ri(w)r_{i}(w) denote rational functions. The Mahler functions above have been generalized under the umbrella of ss-Mahler functions of degree pp satisfying

(2B.2) r0(w)F(w)=r1(w)+r2(w)F(wp)+r3(w)F(wp2)++rs(w)F(wps1),\displaystyle r_{0}(w)\cdot F(w)=r_{1}(w)+r_{2}(w)\cdot F(w^{p})+r_{3}(w)\cdot F(w^{p^{2}})+\dots+r_{s}(w)\cdot F(w^{p^{s-1}}),

but we will not need this generalization. We refer to [Nis96] for a nice discussion of Mahler functions and a list of historical references. Mahler functions occur in combinatorics as generating functions of partitions and related structures.

A crucial fact is that such a Mahler function often grows with exponent τ+1\tau+1 for a transcendental τ\tau when approaching its relevant singularity. We will use this in Section 4.

Moreover, connections from Mahler functions that grow with transcendental τ\tau to fractals are well-studied. To the best of our knowledge, general theorems relating them are not known, and connections are only example-based. In the rest of this section, we give several examples that are easier to deal with than our main result.

The common source for these examples is the well-known principle that projecting pp-adic objects onto the real world leads to fractals. At the same time, modular representations of algebraic groups are known to exhibit pp-adic patterns, stemming from Steinberg-type tensor product theorems. Therefore, one can expect that combinatorial invariants of modular representations of algebraic groups (such as dimensions, weight multiplicities, etc.) tend to exhibit fractal behavior. In fact, fractal behavior in the study of reductive groups in prime characteristic has been observed several times, and is part of folk knowledge.

Most relevant for this paper are fractal patterns within the study of tilting representations. For example, for an algebraically closed field 𝐤\mathbf{k} of prime characteristic pp, let Γ=SL2(𝐤)\Gamma=SL_{2}(\mathbf{k}). The multiplicities of Weyl in tilting Γ\Gamma-representations have fractal patterns of step size pp and so do their characters, by Donkin’s tensor product formula [Don93, Proposition 2.1] (this is a bit easier to see in the reformulation given in [STWZ23, Section 3]). The same is reflected in the Temperley–Lieb combinatorics, see e.g. [BLS19, Theorem 2.8] or [Spe23, Figure 3], which is exploited in [KST24].

For higher rank there are also several known instances of fractal behavior of tilting characters, see for example the picture of cells in [And04, Figure 1] or billiards of tilting characters as in [LW18, Section 4].

2BI. Modular representations and the Cantor set

One of the simplest examples of a fractal is the (bounded) Cantor set 𝙲\mathtt{C}, which can be realized as the set of real numbers in [0,1][0,1] which admit a ternary expansion without digit 11 with the probably familiar picture

[Uncaptioned image].\displaystyle\leavevmode\hbox to199.63pt{\vbox to63.76pt{\pgfpicture\makeatletter\hbox{\hskip 99.81346pt\lower-31.87965pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-96.48045pt}{-28.54665pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=56.9055pt]{figs/cantor-example1}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

This example is related to representation theory of Γ=SL2(𝐤)\Gamma=SL_{2}(\mathbf{k}) for 𝐤\mathbf{k} being algebraically closed of characteristic pp (the standard choice is 𝐤=𝔽¯p\mathbf{k}=\bar{\mathbb{F}}_{p}) as follows.

The finite dimensional simple Γ\Gamma-representations LnL_{n} are indexed by n0n\in\mathbb{Z}_{\geq 0}, their highest weight. Expressing the number pp-adically, say n=[nr,,n1,n0]=nrpr++n1p+n0n=[n_{r},\dots,n_{1},n_{0}]=n_{r}p^{r}+\dots+n_{1}p+n_{0} with ni{0,,p1}n_{i}\in\{0,\dots,p-1\}, one gets

LnLnr(r)Ln1(1)Ln0,\displaystyle L_{n}\cong L_{n_{r}}^{(r)}\otimes\dots\otimes L_{n_{1}}^{(1)}\otimes L_{n_{0}},

where the exponent (i) denotes Frobenius twists which acts on characters by xxpix\mapsto x^{p^{i}}. This is a special case of Steinberg’s tensor product theorem. Since the character of LnL_{n} for n=[n0]n=[n_{0}] is xnxnxx1\frac{x^{n}-x^{-n}}{x-x^{-1}}, this gives a description of the weights of LnL_{n} for n0n\in\mathbb{Z}_{\geq 0}.

This also shows that we may consider, often infinite dimensional, representations LnL_{n} where npn\in\mathbb{Z}_{p} is a pp-adic integer, which is made explicit in Haboush’s generalized Steinberg tensor product theorem for distribution algebras [Hab80, Theorem 4.9]. Concretely, given npn\in\mathbb{Z}_{p}, we may define LnL_{n} to be the infinite tensor product

Ln:=j=0Lnj(j),withn=[,nr,,n1,n0]=j=0njpj,\displaystyle L_{n}:=\bigotimes_{j=0}^{\infty}L_{n_{j}}^{(j)},\quad\mbox{with}\quad n=[\dots,n_{r},\dots,n_{1},n_{0}]=\sum_{j=0}^{\infty}n_{j}p^{j},

which, by definition, is the span of tensor products of vectors in Lnj(j)L_{n_{j}}^{(j)} such that almost all of them are (fixed) highest weight vectors.

The group Γ\Gamma does not act in this space, but LnL_{n} admits an action of the distribution algebra Dist=Dist(Γ)\mathrm{Dist}=\mathrm{Dist}(\Gamma), for which this representation is generated by the highest weight vector vnv_{n}. This gives LnL_{n} a 0\mathbb{Z}_{\geq 0}-grading with even degrees, placing vectors of weight μ\mu in degree nμn-\mu. The Hilbert series for this grading is thus

hLn(w)=j=0(1+w2pj++w2njpj).\displaystyle h_{L_{n}}(w)=\prod_{j=0}^{\infty}(1+w^{2\cdot p^{j}}+\dots+w^{2n_{j}\cdot p^{j}}).

This is a holomorphic function for |w|<1|w|<1, and we will mostly consider it on the interval (0,1)(0,1), i.e. as hLn:(0,1)h_{L_{n}}\colon(0,1)\to\mathbb{R}.

Consider now the special case p=3p=3, n=12n=-\frac{1}{2}. Hence, nj=1n_{j}=1 for all jj and we get

h(w):=hL1/2(w)=j=0(1+w23j).\displaystyle h(w):=h_{L_{-1/2}}(w)=\prod_{j=0}^{\infty}(1+w^{2\cdot 3^{j}}).

This function satisfies the functional equation

h(w)=(1+w2)h(w3).\displaystyle h(w)=(1+w^{2})\cdot h(w^{3}).

This is a 2-Mahler function of degree 33, and the relevant singularity is at w=1w=1.

The Taylor coefficients of h(w)h(w) form the Cantor set sequence (can)n0(\mathrm{ca}_{n})_{n\in\mathbb{Z}_{\geq 0}} defined by

can={1if the ternary expansion of n contains no 1,0otherwise.\displaystyle\mathrm{ca}_{n}=\begin{cases}1&\text{if the ternary expansion of $n$ contains no $1$},\\ 0&\text{otherwise}.\end{cases}

This sequence is well-studied, see e.g. [CE21, Section 1] and [OEI23, A292686], and h(w)h(w) is its generating function.

The corresponding fractal is constructed as follows. Let D(L)D(L) denote the set of degrees of LL, so that D(L1/2)D(L_{-1/2}) is the set of nonnegative integers with ternary representations where all digits of mm take values 0,20,2 only. For N0N\in\mathbb{Z}_{\geq 0}, define ΔN:=13ND(L1/2)\Delta_{N}:=\frac{1}{3^{N}}D(L_{-1/2}). We then have ΔNΔN+1\Delta_{N}\subset\Delta_{N+1}. Let Δ:=N0ΔN\Delta_{\infty}:=\cup_{N\in\mathbb{Z}_{\geq 0}}\Delta_{N}. Then the closure of Δ\Delta_{\infty} in \mathbb{R} is the unbounded Cantor set 𝙲\mathtt{C}_{\infty}, which is invariant under multiplication by 33. The set 𝙲\mathtt{C} is the intersection 𝙲[0,1]\mathtt{C}_{\infty}\cap[0,1], and 𝙲=N03N𝙲\mathtt{C}_{\infty}=\cup_{N\in\mathbb{Z}_{\geq 0}}3^{N}\mathtt{C} (nested union). Note that the set 𝙲\mathtt{C}_{\infty} comes with a natural measure μ\mu, the Hausdorff measure of 𝙲\mathtt{C}_{\infty}: the weak limit of the counting measures of ΔN\Delta_{N} rescaled by dividing by |ΔN[0,1]|=2N|\Delta_{N}\cap[0,1]|=2^{N}.

Now, by the standard theory of Mahler functions, see e.g. [BC17, Theorem 1], we get

C1(1w)τ(1+o(1))h(w)C2(1w)τ(1+o(1)),x1,\displaystyle C_{1}(1-w)^{-\tau}\big{(}1+o(1)\big{)}\leq h(w)\leq C_{2}(1-w)^{-\tau}\big{(}1+o(1)\big{)},\ x\uparrow 1,

for some 0<C1<C20<C_{1}<C_{2} with C1,C2C_{1},C_{2}\in\mathbb{R}. Moreover, τ\tau is found by substituting (1w)τ(1-w)^{-\tau} into the Mahler equation, i.e. from the condition (1w)τ(1+w2)(1w3)τ(1-w)^{-\tau}\sim(1+w^{2})(1-w^{3})^{-\tau} as w1w\uparrow 1. This yields 1=23τ1=2\cdot 3^{-\tau}, hence

τ=log320.631.\displaystyle\tau=\log_{3}2\approx 0.631.

The number τ\tau is transcendental, and the Hausdorff (and Minkowski) dimension of the Cantor sets 𝙲\mathtt{C} and 𝙲\mathtt{C}_{\infty}.

Rewriting the above using \asymp, see Equation 1B.3 for the notation, we get

h(w)=n0canwnw1(1w)τ(1+o(1)).\displaystyle h(w)=\sum_{n\in\mathbb{Z}_{\geq 0}}\mathrm{ca}_{n}w^{n}\asymp_{w\uparrow 1}(1-w)^{-\tau}\big{(}1+o(1)\big{)}.

Then Tauberian theory (as for example in Section 6A) implies

k=0ncaknτ(1+o(1)).\displaystyle\sum_{k=0}^{n}\mathrm{ca}_{k}\asymp n^{\tau}\big{(}1+o(1)\big{)}.

This describes the asymptotics of Cesáro sums of the Cantor set sequence, which counts the dimension of the subspace L1/2[n]L_{-1/2}[\leq n] spanned by vectors in L1/2L_{-1/2} of degree n\leq n.

One may further ask how the sequence Cn=nτk=0ncakC_{n}=n^{-\tau}\sum_{k=0}^{n}\mathrm{ca}_{k} behaves when nn\to\infty or, related, how the function (1x)τh(w)(1-x)^{\tau}h(w) (equivalently, ln(w1)τh(w)\ln(w^{-1})^{\tau}h(w)) behaves when w1w\uparrow 1. This behavior can be analyzed as follows. Let θ(m)=1\theta(m)=1 for m<0m<0 and θ(m)=0\theta(m)=0 for m0m\geq 0. We have

limkln(w3k)τh(w3k)=ln(w1)τlimk2km=k(1+w23m)=h0(w),\displaystyle\lim_{k\to\infty}\ln(w^{-3^{-k}})^{\tau}h(w^{3^{-k}})=\ln(w^{-1})^{\tau}\lim_{k\to\infty}2^{-k}\prod_{m=-k}^{\infty}(1+w^{2\cdot 3^{m}})=h_{0}(w),

for the function

h0(w):=ln(w1)τm=1+w23m2θ(m).\displaystyle h_{0}(w):=\ln(w^{-1})^{\tau}\prod_{m=-\infty}^{\infty}\frac{1+w^{2\cdot 3^{m}}}{2^{\theta(m)}}.

This is a periodic function in the sense that h0(w)=h0(w3)h_{0}(w)=h_{0}(w^{3}) (note that the product is absolutely convergent). This implies that the function ln(w1)τh(w)\ln(w^{-1})^{\tau}h(w) has no limit as w1w\uparrow 1 and asymptotically has oscillatory behavior: it approaches the periodic function h0(w)h_{0}(w).

Plotting this illustrates the overall growth rate and the oscillation:

(2B.3) [Uncaptioned image]p=3,[Uncaptioned image]p=3.\displaystyle\leavevmode\hbox to203.24pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 101.62021pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-98.2872pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to229.98pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 114.99016pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-111.65715pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor3b}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

To analyze this a bit further, it is easy to see that the analytic function 𝚑0(v):=vτh0(ev)\mathtt{h}_{0}(v):=v^{-\tau}h_{0}(e^{-v}) in the region Rev>0\mathrm{Re}\,v>0, which satisfies the equation 2𝚑0(3v)=𝚑0(v)2\mathtt{h}_{0}(3v)=\mathtt{h}_{0}(v), is nothing but the Laplace transform of the Hausdorff measure μ\mu of the set 𝙲\mathtt{C}_{\infty}:

𝚑0(v)=0etv𝑑μ(t).\displaystyle\mathtt{h}_{0}(v)=\int_{0}^{\infty}e^{-tv}d\mu(t).

This implies that

h0(w)=ln(w1)τ0wtdμ(t).\displaystyle h_{0}(w)=\ln(w^{-1})^{\tau}\int_{0}^{\infty}w^{t}d\mu(t).

Similarly, the sequence CnC_{n} for large nn behaves as the devil’s staircase function:

limmC3mw=wτμ([0,w]),\displaystyle\lim_{m\to\infty}C_{\lfloor 3^{m}w\rfloor}=w^{-\tau}\mu([0,w]),

which is periodic under the map w3ww\mapsto 3w. This is visualized in Equation 2B.3. Hence, this sequence does not have a limit as nn\to\infty and exhibits oscillatory behavior, approaching the periodic function log3(n)τμ([0,log3(n)])\log_{3}(n)^{-\tau}\mu\big{(}[0,\log_{3}(n)]\big{)}. Note that this function is continuous but not differentiable, nor absolutely continuous, since it is the integral of a singular measure (the Hausdorff measure of 𝙲\mathtt{C}_{\infty}). It is, however, Hölder continuous with exponent τ\tau. We can also find the range of oscillation of CnC_{n}. Indeed, it is easy to see that lim supnCn=1\limsup_{n\to\infty}C_{n}=1 (attained for n=3kn=3^{k}) while lim infnCn=2τ0.646\liminf_{n\to\infty}C_{n}=2^{-\tau}\approx 0.646 (approached for n=23k1n=2\cdot 3^{k}-1).

Remark \theRemark.

The function h0(e3u)h_{0}(e^{-3{{}^{u}}}) is holomorphic in the strip |Imu|<π2ln3|\mathrm{Im}\,u|<\frac{\pi}{2\ln 3} and periodic under uu+1u\mapsto u+1, so we may consider its Fourier coefficients AnA_{n}. They are related to the Fourier coefficients ana_{n} of the measure dμ(e3u)d\mu(e^{-3^{u}}) by the formula

An=Γ(τ+2πinln3)an.\displaystyle A_{n}=\Gamma(\tau+\tfrac{2\pi in}{\ln 3})a_{n}.

Here and throughout Γ(c)\Gamma(c) denotes the gamma function evaluated at cc\in\mathbb{C} (not to be confused with the group Γ\Gamma). Since μ\mu has unit volume on the period, we have |an|O(1)|a_{n}|\in O(1), nn\to\infty. Hence:

|An|O(|Γ(τ+2πinln3)|)=O(nτ12eπ2nln3),n.\displaystyle|A_{n}|\in O\big{(}|\Gamma(\tau+\tfrac{2\pi in}{\ln 3})|\big{)}=O(n^{\tau-\frac{1}{2}}e^{-\frac{\pi^{2}n}{\ln 3}}),\ n\to\infty.
[Uncaptioned image]p=3.\displaystyle\leavevmode\hbox to193.85pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 96.92265pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-93.58965pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor3c}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{17.66684pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

The numbers |An||A_{n}| are tiny for large nn, see the above loglogplot.

2BII. Generalization to general primes and highest weights

A similar analysis applies for any prime pp and rational highest weights λp\lambda\in\mathbb{Z}_{p}\cap\mathbb{Q} (excluding positive integers, for which LλL_{\lambda} is finite dimensional). Namely, in this case λ\lambda has an infinite periodic expansion, which can be computed in the standard way: write λ\lambda as qmnq-\frac{m}{n} where 0<mn10<\frac{m}{n}\leq 1 and qq\in\mathbb{Z}, and pick the minimal N>0N\in\mathbb{Z}_{>0} such that nn divides pN1p^{N}-1. Then the repeating string of the expansion of λ\lambda is the base pp expression of the number r(λ):=m(pN1)nr(\lambda):=\frac{m(p^{N}-1)}{n} (a string of length NN, with zeros at the beginning if needed). If r(λ)=[rN1,,r0]r(\lambda)=[r_{N-1},\dots,r_{0}], where rjr_{j} are its base pp digits, then

τ(λ)=1Nj=0N1logp(rj+1).\displaystyle\tau(\lambda)=\frac{1}{N}\sum_{j=0}^{N-1}\log_{p}(r_{j}+1).

The corresponding fractal 𝙲(λ)\mathtt{C}(\lambda) is the set of real numbers which have a base pp expansion with jjth digit in {0,,rj mod N}\{0,\dots,r_{j\text{ mod }N}\}, which has Hausdorff (and Minkowski) dimension τ(λ)\tau(\lambda). Note that for λ<0\lambda\in\mathbb{Z}_{<0}, 𝙲(λ)=0\mathtt{C}(\lambda)=\mathbb{R}_{\geq 0} (so τ(λ)=1\tau(\lambda)=1), while for λ\lambda\notin\mathbb{Z} we get an actual fractal, i.e. τ(λ)<1\tau(\lambda)<1 is transcendental. For example, for p=3p=3 we have 𝙲(1/2)=𝙲\mathtt{C}(-1/2)=\mathtt{C}_{\infty} and τ(1/2)=log32\tau(-1/2)=\log_{3}2 as explained above.

The deeper analysis of the oscillating behavior of the character of LλL_{\lambda} and the sequence of Cesáro sums of its coefficients (i.e., the sequence dim𝐤Lλ[n]\dim_{\mathbf{k}}L_{\lambda}[\leq n] of dimensions of weight spaces n\leq n) also extends mutatis mutandis to general pp and λ\lambda. In fact, the power behavior of the sequence dim𝐤Lλ[n]\dim_{\mathbf{k}}L_{\lambda}[\leq n] is observed for sufficiently generic λp\lambda\in\mathbb{Z}_{p}. Namely, if λ=j=0rjpj\lambda=\sum_{j=0}^{\infty}r_{j}p^{j} and there exists a limit

τ(λ):=limN1Nj=0N1logp(rj+1),\displaystyle\tau(\lambda):=\lim_{N\to\infty}\frac{1}{N}\sum_{j=0}^{N-1}\log_{p}(r_{j}+1),

then we have

limnlogdim𝐤Lλ[n]lnn=τ(λ).\displaystyle\lim_{n\to\infty}\frac{\log\dim_{\mathbf{k}}L_{\lambda}[\leq n]}{\ln n}=\tau(\lambda).

This includes rational λ\lambda, and also if λ\lambda is chosen randomly (all digits are independent and uniformly distributed) then

τ(λ)=1plogp(p!).\displaystyle\tau(\lambda)=\frac{1}{p}\log_{p}(p!).

For example, for p2p\neq 2, let τ=logp(p1)\tau=\log_{p}(p-1). Consider the base pp Cantor set sequence:

canp={1if the base p expansion of n contains no 1,0otherwise.\displaystyle\mathrm{ca}_{n}^{p}=\begin{cases}1&\text{if the base $p$ expansion of $n$ contains no $1$},\\ 0&\text{otherwise}.\end{cases}

Thus, we have:

p=5:τ0.861,p=7:τ0.921,p=11:τ0.960.\displaystyle p=5\colon\tau\approx 0.861,\quad p=7\colon\tau\approx 0.921,\quad p=11\colon\tau\approx 0.960.

All of these values are transcendental.

Then the analog of Equation 2B.3 for p=5p=5 and p=7p=7 is:

[Uncaptioned image]p=5,[Uncaptioned image]p=5,\displaystyle\leavevmode\hbox to201.8pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 100.8975pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-97.5645pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor5}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to225.64pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 112.82205pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-109.48904pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor5b}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},
[Uncaptioned image]p=7,[Uncaptioned image]p=7.\displaystyle\leavevmode\hbox to208.3pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 104.14966pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-100.81665pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor7}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=7$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to223.48pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 111.738pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-108.405pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/cantor7b}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=7$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

2BIII. Generalization to higher rank

The above analysis can also be extended to simply connected simple algebraic groups GG of arbitrary rank rr. In this case, a weight λ\lambda is an rr-tuple (λ1,,λr)(\lambda_{1},\dots,\lambda_{r}), λjp\lambda_{j}\in\mathbb{Z}_{p} (the coefficients of λ\lambda with respect to fundamental weights), and a fractal attached to the simple highest weight module LλL_{\lambda} over the distribution algebra Dist(Γ)\mathrm{Dist}(\Gamma) can be built in a Euclidean space Fun(R+,)\mathrm{Fun}(R_{+},\mathbb{R}), where R+R_{+} is the set of positive roots of Γ\Gamma, for which we choose an ordering. For example, suppose λ=μ1p\lambda=\frac{\mu}{1-p}, where μ=(μ1,,μr)\mu=(\mu_{1},\dots,\mu_{r}) is an integral weight with 0μip10\leq\mu_{i}\leq p-1. Then the fractal 𝙲(λ,B)\mathtt{C}(\lambda,B) attached to LλL_{\lambda} depends on a choice of a PBW basis BB of LμL_{\mu}.

Namely, pick a collection BFun(R+,[0,p1])B\subset\mathrm{Fun}(R_{+},[0,p-1]) such that the set of vectors τR+eτb(τ)vμ\prod_{\tau\in R_{+}}e_{\tau}^{b(\tau)}v_{\mu}, bBb\in B (product in the chosen order) forms a basis of LμL_{\mu} (where vμLμv_{\mu}\in L_{\mu} is the highest weight vector). Then we define 𝙲(λ,B)\mathtt{C}(\lambda,B) as the set of functions ϕ:R+0\phi\colon R_{+}\to\mathbb{R}_{\geq 0} which have a base pp expansion such that for all jj\in\mathbb{Z}, the jjth digit ϕj\phi_{j} of ϕ\phi belongs to BB. The Hausdorff (and Minkowski) dimension of 𝙲(λ,B)\mathtt{C}(\lambda,B) equals

τ(λ)=logpdim𝐤Lμ\displaystyle\tau(\lambda)=\log_{p}\dim_{\mathbf{k}}L_{\mu}

for any choice of BB. (However, it must be mentioned that dim𝐤Lμ\dim_{\mathbf{k}}L_{\mu} is notoriously hard to compute in general.)

Also, 𝙲(λ,B)\mathtt{C}(\lambda,B) comes equipped with a natural measure μB\mu_{B}, obtained by suitable rescaling of the counting measures as before (a multiple of the Hausdorff measure). Finally, we have a proper map π:𝙲(λ,B)0r=0R+\pi\colon\mathtt{C}(\lambda,B)\to\mathbb{R}_{\geq 0}^{r}=\mathbb{R}_{\geq 0}R_{+} given by π(ϕ)=τR+ϕ(τ)τ\pi(\phi)=\sum_{\tau\in R_{+}}\phi(\tau)\tau, and the measure μ:=πμB\mu:=\pi_{\ast}\mu_{B} does not depend on BB, nor on the ordering of positive roots (it expresses the large-scale asymptotics of the character of LλL_{\lambda}). This measure completely determines the large-scale behavior of LλL_{\lambda}.

2BIV. Modular representations and Sierpinski gaskets

Fix a prime pp. To give another example, recall Sierpinski’s gasket or triangle, which is Pascal’s triangle modulo pp. For p=2p=2 we have (we only illustrate cutoffs):

[Uncaptioned image]p=2,[Uncaptioned image]p=2.\displaystyle\leavevmode\hbox to149.04pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 74.51895pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-71.18594pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/striangle1}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to149.04pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 74.51895pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-71.18594pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/striangle2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{26.20276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Sierpinski’s triangle is combinatorially given by the limit of the above pictures, keeping the black boxes and disregarding the white boxes.

This example is related to representation theory of Γ=SL2(𝐤)\Gamma=SL_{2}(\mathbf{k}) as follows.

For each NN let us plot the weights of LnL_{n} for npN1n\leq p^{N}-1 on the line x+y=nx+y=n on the coordinate plane: the weight n2kn-2k corresponds to the point (nk,k)(n-k,k). Let us rescale the obtained set by the factor pNp^{-N} and denote the resulting set by ΔN(p)\Delta_{N}(p). Thus ΔN(p)\Delta_{N}(p) is the set of pairs (x,y)(x,y), x=XpNx=\frac{X}{p^{N}}, y=YpNy=\frac{Y}{p^{N}} where X,YX,Y are N\leq N-digit numbers in base pp such that there are no carries in computing X+YX+Y (i.e., for all ii, Xi+Yip1X_{i}+Y_{i}\leq p-1). This shows that ΔN1(p)ΔN(p)\Delta_{N-1}(p)\subset\Delta_{N}(p).

Let Δ(p)=N1Δn(p)\Delta_{\infty}(p)=\cup_{N\geq 1}\Delta_{n}(p) and Δ(p)\Delta(p) be the closure of Δ(p)\Delta_{\infty}(p). Hence, Δ(p)\Delta(p) is the compact set of pairs (x,y)2(x,y)\in\mathbb{R}^{2} such that x=0.x1x2x=0.x_{1}x_{2}\dots, y=0.y1y2y=0.y_{1}y_{2}\dots in base pp, and xi+yip1x_{i}+y_{i}\leq p-1. This set is the Sierpinski triangle from above.

Remark \theRemark.

The set Δ(p)\Delta_{\infty}(p) also has a direct representation-theoretic interpretation. Namely it corresponds to the set of weights in the simple representations of the (infinite type) affine group scheme (SL2)perf(SL_{2})_{\mathrm{perf}}, obtained by ‘perfecting’ SL2SL_{2}, see [CW24, §7.1]. It would be interesting to have a similar direct interpretation for 𝙲\mathtt{C}_{\infty} from Section 2BI. This is less obvious since distribution algebras of perfected group schemes are trivial, see [CW24, Lemma 3.1.2].

It is easy to see that |ΔN|=(p2)N|\Delta_{N}|=\binom{p}{2}^{N}. From this it is not hard to deduce the well-known fact that the Hausdorff dimension of Δ(p)\Delta(p) is the number given by

τ=logp(p2)=1+logpp+12=1+lnp+12lnp,e.g. τ1.631 for p=3.\displaystyle\tau=\log_{p}\binom{p}{2}=1+\log_{p}\frac{p+1}{2}=1+\frac{\ln\frac{p+1}{2}}{\ln p},\quad\text{e.g. }\tau\approx 1.631\text{ for $p=3$}.

This number is transcendental, and can also be seen at the level of the generating function given by

f(z):=n=0(dim𝐤Ln)zn.\displaystyle f(z):=\sum_{n=0}^{\infty}(\dim_{\mathbf{k}}L_{n})z^{n}.

Steinberg’s tensor product theorem yields that ff is a 2-Mahler equation of degree pp:

f(z)\displaystyle f(z) =m=01(p+1)zpm+1+pz(p+1)pm(1zpm)2=(1+2z++pzp1)f(zp)\displaystyle=\prod_{m=0}^{\infty}\frac{1-(p+1)z^{p^{m+1}}+pz^{(p+1)p^{m}}}{(1-z^{p^{m}})^{2}}=(1+2z+\dots+pz^{p-1})\cdot f(z^{p})
=1(p+1)zp+pzp+1(1z)2f(zp).\displaystyle=\frac{1-(p+1)z^{p}+pz^{p+1}}{(1-z)^{2}}\cdot f(z^{p}).

We have (1+2z++pzp1)|z=1=(p2)(1+2z+\dots+pz^{p-1})|_{z=1}=\binom{p}{2}, so we have for some C>1C>1

f(1z)τ:C1(1z)τf(z)C(1z)τ.\displaystyle f\asymp(1-z)^{-\tau}\colon\quad C^{-1}\cdot(1-z)^{-\tau}\leq f(z)\leq C\cdot(1-z)^{-\tau}.

This implies that for some C~>1\widetilde{C}>1, we have, for large enough nn:

j=0ndim𝐤Ljnτ:C~1nτj=0ndim𝐤LjC~nτ.\displaystyle\sum_{j=0}^{n}\dim_{\mathbf{k}}L_{j}\asymp n^{\tau}\colon\quad\widetilde{C}^{-1}\cdot n^{\tau}\leq\sum_{j=0}^{n}\dim_{\mathbf{k}}L_{j}\leq\widetilde{C}\cdot n^{\tau}.

This is illustrated in Equation 2B.4 below. A more detailed asymptotics of f(z)f(z) can be obtained as follows. Note that

(1z)τf(z)=m=01+2zpm++pz(p1)pm(1+zpm++z(p1)pm)τ.\displaystyle(1-z)^{\tau}\cdot f(z)=\prod_{m=0}^{\infty}\frac{1+2z^{p^{m}}+\dots+pz^{(p-1)p^{m}}}{(1+z^{p^{m}}+\dots+z^{(p-1)p^{m}})^{\tau}}.

Thus, we see that

limm(1zpm)τf(zpm)=gp(z),\displaystyle\lim_{m\to\infty}(1-z^{p^{-m}})^{\tau}\cdot f(z^{p^{-m}})=g_{p}(z),

where (note that the product below is absolutely convergent)

gp(z):=m=1+2zpm++pz(p1)pm(1+zpm++z(p1)pm)τ\displaystyle g_{p}(z):=\prod_{m=-\infty}^{\infty}\frac{1+2z^{p^{m}}+\dots+pz^{(p-1)p^{m}}}{(1+z^{p^{m}}+\dots+z^{(p-1)p^{m}})^{\tau}}

is a periodic function in the sense that gp(z)=gp(zp)g_{p}(z)=g_{p}(z^{p}). This implies that the sequence L(n)=nτj=0ndim𝐤LjL(n)=n^{-\tau}\sum_{j=0}^{n}\dim_{\mathbf{k}}L_{j} also exhibits oscillatory behavior:

(2B.4) [Uncaptioned image]p=3,[Uncaptioned image]p=3.\displaystyle\leavevmode\hbox to201.07pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 100.53615pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-97.20314pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/striangle3a}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{31.89322pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to188.06pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 94.03186pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-90.69885pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/striangle3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{31.89322pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Let μp\mu_{p} be the direct image of the (suitably normalized) Hausdorff measure on Δ(p)\Delta_{\infty}(p) under the map (x,y)x+y(x,y)\mapsto x+y. Then the analytic function 𝚑p0(v):=vτhp0(ev)\mathtt{h}_{p0}(v):=v^{-\tau}h_{p0}(e^{-v}) on (0,)(0,\infty) is the Laplace transform of μp\mu_{p}:

𝚑p0(v)=0etv𝑑μp(t),\displaystyle\mathtt{h}_{p0}(v)=\int_{0}^{\infty}e^{-tv}d\mu_{p}(t),
hp0(x)=ln(x1)τ0xtdμp(t).\displaystyle h_{p0}(x)=\ln(x^{-1})^{\tau}\int_{0}^{\infty}x^{t}d\mu_{p}(t).

Similarly, the sequence Cn(p):=nτj=0ndim𝐤LjC_{n}(p):=n^{-\tau}\sum_{j=0}^{n}\dim_{\mathbf{k}}L_{j} for large nn behaves as follows:

limmC[pmw]=wτμp([0,w]),\displaystyle\lim_{m\to\infty}C_{[p^{m}w]}=w^{-\tau}\mu_{p}([0,w]),

Thus, this sequence approaches the periodic function logp(n)τμp([0,logp(n)])\log_{p}(n)^{-\tau}\mu_{p}([0,\log_{p}(n)]) at infinity. As before, this function is continuous but not differentiable, nor absolutely continuous.

2BV. Lengths of tensor powers

Recall that ()\ell({}_{-}) denotes the length of a representation. Finally let us discuss the fractal behavior of the integer sequence ln=(Vn)l_{n}=\ell(V^{\otimes n}) where V𝐤2V\cong\mathbf{k}^{2} is the vector representation of Γ\Gamma. We will not explicitly consider any fractals in this example, however the origin of what we, based on the previous examples, call ‘fractal behavior’ is still found in the same principles, such as Steinberg’s tensor product theorem.

p=2p=2. For simplicity consider the case p=2p=2 first. In this case one can show that the generating function

L(z):=n0lnzn1\displaystyle L(z):=\sum_{n\geq 0}l_{n}z^{-n-1}

is holomorphic for |z|>2|z|>2 and satisfies the functional equation

L(z)=(1+z)L(z22).\displaystyle L(z)=(1+z)\cdot L(z^{2}-2).

In particular, this shows that l2k1=l2kl_{2k-1}=l_{2k} for all k>0k\in\mathbb{Z}_{>0}. This is not a Mahler equation, but it turns into one under a simple change of variable. Namely, setting z=w+w1z=w+w^{-1} and wh(w)=L(z)wh(w)=L(z), we have

h(w)=(1+w+w2)h(w2),\displaystyle h(w)=(1+w+w^{2})\cdot h(w^{2}),

i.e., hh is a 2-Mahler function of degree 22.

One gets

h(w)=n0(1+w2n+w22n) for |w|<1.\displaystyle h(w)=\prod_{n\geq 0}(1+w^{2^{n}}+w^{2\cdot 2^{n}})\text{ for }|w|<1.

Using this, we can compute as previously the asymptotics of hh as w1w\uparrow 1. Set

τ=log231.585,\displaystyle\tau=\log_{2}3\approx 1.585,

which is transcendental. We then have, again by the theory of Mahler functions,

C1(1w)τ(1+o(1))h(w)C2(1w)τ(1+o(1)) for w1,\displaystyle C_{1}\cdot(1-w)^{-\tau}\big{(}1+o(1)\big{)}\leq h(w)\leq C_{2}\cdot(1-w)^{-\tau}\big{(}1+o(1)\big{)}\text{ for }w\uparrow 1,

for some 0<C1<C20<C_{1}<C_{2} with C1,C2C_{1},C_{2}\in\mathbb{R}. Hence, we get

C1(z2)τ/2(1+o(1))L(z)C2(z2)τ/2(1+o(1)) for z2.\displaystyle C_{1}\cdot(z-2)^{-\tau/2}\big{(}1+o(1)\big{)}\leq L(z)\leq C_{2}\cdot(z-2)^{-\tau/2}\big{(}1+o(1)\big{)}\text{ for }z\downarrow 2.

So from the Tauberian theory, cf. Section 6A, it follows that

21τ2C1Γ(τ2+1)nτ2(1+o(1))j=0nlj2j21τ2C2Γ(τ2+1)nτ2(1+o(1)) for n.\displaystyle\frac{2^{1-\frac{\tau}{2}}C_{1}}{\Gamma(\frac{\tau}{2}+1)}\cdot n^{\frac{\tau}{2}}\big{(}1+o(1)\big{)}\leq\sum_{j=0}^{n}\frac{l_{j}}{2^{j}}\leq\frac{2^{1-\frac{\tau}{2}}C_{2}}{\Gamma(\frac{\tau}{2}+1)}\cdot n^{\frac{\tau}{2}}\big{(}1+o(1)\big{)}\text{ for }n\to\infty.

Or, equivalently,

2C13Γ(τ2+1)nτ2(1+o(1))k=1nl2k22k2C23Γ(τ2+1)nτ2(1+o(1)) for n.\displaystyle\frac{2C_{1}}{3\Gamma(\frac{\tau}{2}+1)}\cdot n^{\frac{\tau}{2}}\big{(}1+o(1)\big{)}\leq\sum_{k=1}^{n}\frac{l_{2k}}{2^{2k}}\leq\frac{2C_{2}}{3\Gamma(\frac{\tau}{2}+1)}\cdot n^{\frac{\tau}{2}}\big{(}1+o(1)\big{)}\text{ for }n\to\infty.

As previously, the behavior of h(w)h(w) as w1w\uparrow 1 can be analyzed as follows. We have

limkln(w2k)τh(w2k)=ln(w1)τlimk3km=k(1+w2m+w22m)=𝚑0(w),\displaystyle\lim_{k\to\infty}\ln(w^{-2^{-k}})^{\tau}h(w^{2^{-k}})=\ln(w^{-1})^{\tau}\lim_{k\to\infty}3^{-k}\prod_{m=-k}^{\infty}(1+w^{2^{m}}+w^{2\cdot 2^{m}})=\mathtt{h}_{0}(w),

where (for θ(m)\theta(m) as in Section 2BI above)

𝚑0(w):=ln(w1)τm=1+w2m+w22m3θ(m).\displaystyle\mathtt{h}_{0}(w):=\ln(w^{-1})^{\tau}\prod_{m=-\infty}^{\infty}\frac{1+w^{2^{m}}+w^{2\cdot 2^{m}}}{3^{\theta(m)}}.

This is a periodic function in the sense that 𝚑0(w)=𝚑0(w2)\mathtt{h}_{0}(w)=\mathtt{h}_{0}(w^{2}), and the function ln(w1)τh(w)\ln(w^{-1})^{\tau}h(w) asymptotically approaches the periodic function 𝚑0(w)\mathtt{h}_{0}(w) as w1w\uparrow 1. Writing w=evw=e^{-v}, we obtain that the function vτh(ev)v^{\tau}h(e^{-v}) approaches 𝚑0(ev)\mathtt{h}_{0}(e^{-v}) as v0v\downarrow 0, i.e.,

limk(2kv)τh(e2kv)=𝚑0(ev).\displaystyle\lim_{k\to\infty}(2^{-k}v)^{\tau}h(e^{-2^{-k}v})=\mathtt{h}_{0}(e^{-v}).

Or, equivalently,

limk(2kv)τL(2cosh2kv)=𝚑0(ev).\displaystyle\lim_{k\to\infty}(2^{-k}v)^{\tau}L(2\cosh 2^{-k}v)=\mathtt{h}_{0}(e^{-v}).

But

2cosh2kv=2e22k1v2+O(24k) for k,\displaystyle 2\cosh 2^{-k}v=2e^{2^{-2k-1}v^{2}}+O(2^{-4k})\text{ for }k\to\infty,

so we get

limk(2kv)τL(2e22k1v2)=𝚑0(ev).\displaystyle\lim_{k\to\infty}(2^{-k}v)^{\tau}L(2e^{2^{-2k-1}v^{2}})=\mathtt{h}_{0}(e^{-v}).

Thus, setting x:=ev2/2x:=e^{v^{2}/2}, we obtain

limk(lnx4k)τ/2L(2x4k)=h0~(x):=2τ𝚑0(e2lnx).\displaystyle\lim_{k\to\infty}(\ln x^{4^{-k}})^{\tau/2}L(2x^{4^{-k}})=\widetilde{h_{0}}(x):=2^{-\tau}\mathtt{h}_{0}(e^{-\sqrt{2\ln x}}).

Hence, the function

h~0(e124u)=2τ𝚑0(e2u)\displaystyle\widetilde{h}_{0}(e^{\frac{1}{2}4^{u}})=2^{-\tau}\mathtt{h}_{0}(e^{-2^{u}})

is periodic with period 11 and analytic for |Imu|πln4|\mathrm{Im}\,u|\leq\frac{\pi}{\ln 4}, i.e., the strip of holomorphy is twice as wide as in previous examples. This happens because the role of the prime pp in this example is played by the number 44 (rather than 22), i.e., as z2z\downarrow 2, the function L(z)L(z) behaves as a Mahler function of degree four, rather than a Mahler function of degree two. As we will see, this will lead to much greater regularity of the coefficient sequence l2nl_{2n}.

We would now like to understand the asymptotics of the sequence l2nl_{2n} in more detail. If l2kl_{2k} was known to behave sufficiently regularly, we could read off its asymptotics from the asymptotics of the Cesáro sums k=12nl2k22k\sum_{k=1}^{2n}\frac{l_{2k}}{2^{2k}} by Abel resummation:

2C13Γ(τ2)n1+τ222n(1+o(1))l2n2C23Γ(τ2)n1+τ222n(1+o(1)) for n.\displaystyle\frac{2C_{1}}{3\Gamma(\frac{\tau}{2})}\cdot n^{-1+\frac{\tau}{2}}\cdot 2^{2n}\big{(}1+o(1)\big{)}\leq l_{2n}\leq\frac{2C_{2}}{3\Gamma(\frac{\tau}{2})}\cdot n^{-1+\frac{\tau}{2}}\cdot 2^{2n}\big{(}1+o(1)\big{)}\text{ for }n\to\infty.

The required regularity is guaranteed by the following lemma, showing that the sequence l2n22n\frac{l_{2n}}{2^{2n}} is decreasing.

Lemma \theLemma.

We have 4lnln+24l_{n}\geq l_{n+2}.

Proof.

Let Q(z):=(14z2)L(z)=n0(4ln2ln)zn1Q(z):=-(1-4z^{-2})L(z)=\sum_{n\geq 0}(4l_{n-2}-l_{n})z^{-n-1}, where we agree that l1=l2:=0l_{-1}=l_{-2}:=0. Then the functional equation for LL implies that

Q(z)=z4(1+z)(z22)2Q(z22).\displaystyle Q(z)=z^{-4}(1+z)(z^{2}-2)^{2}Q(z^{2}-2).

So the coefficients cn=4lnln+2c_{n}=4l_{n}-l_{n+2} of Q(z)Q(z) satisfy the recursion

n0cnzn3=z3+z4+z5(1+z1)n0cnz2n(12z2)n+1.\displaystyle\sum_{n\geq 0}c_{n}z^{-n-3}=z^{-3}+z^{-4}+z^{-5}(1+z^{-1})\sum_{n\geq 0}\frac{c_{n}z^{-2n}}{(1-2z^{-2})^{n+1}}.

This shows that 4lnln+204l_{n}-l_{n+2}\geq 0 for all n0n\geq 0, which implies the statement. ∎

From this it follows (with some work) that

limk22[4ky][4ky]1τ/2l2[4ky]=ϕ(log4y),\displaystyle\lim_{k\to\infty}2^{-2\cdot[4^{k}y]}[4^{k}y]^{1-\tau/2}l_{2\cdot[4^{k}y]}=\phi(\log_{4}y),

where ϕ(y)\phi(y) is a periodic function in the sense that ϕ(y)=ϕ(4y)\phi(y)=\phi(4y) (period doubling with respect to the previous examples). Thus, l2nl_{2n} behaves roughly like (2n)0.2122n(2n)^{0.21}\cdot 2^{2n} with 112log230.211-\frac{1}{2}\log_{2}3\approx 0.21 (as expected, growing faster than in characteristic zero, where it is (2n)1/222n(2n)^{-1/2}\cdot 2^{2n}, see Section 1B). Here is the plot (for lnl_{n}; note that l2k+1=l2kl_{2k+1}=l_{2k}):

[Uncaptioned image]p=2,[Uncaptioned image]p=2.\displaystyle\leavevmode\hbox to214.8pt{\vbox to134.58pt{\pgfpicture\makeatletter\hbox{\hskip 107.40181pt\lower-67.29195pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-104.0688pt}{-63.95894pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=128.0374pt]{figs/lengtha}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{31.89322pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to217.69pt{\vbox to134.58pt{\pgfpicture\makeatletter\hbox{\hskip 108.8472pt\lower-67.29195pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-105.51419pt}{-63.95894pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=128.0374pt]{figs/lengthb}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{31.89322pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

To see the oscillation, we zoom into l2n/((2n)0.2122n)l_{2n}/((2n)^{0.21}\cdot 2^{2n}):

[Uncaptioned image]p=2, even n zoom.\displaystyle\leavevmode\hbox to203.24pt{\vbox to134.58pt{\pgfpicture\makeatletter\hbox{\hskip 101.62021pt\lower-67.29195pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-98.2872pt}{-63.95894pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=128.0374pt]{figs/lengthc}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.09596pt}{31.89322pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$, even $n$ zoom}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

As before, the Fourier coefficients ana_{n} of the 1-periodic function ϕ(4u)\phi(4^{u}) are related to the Fourier coefficients AnA_{n} of the function 2τ𝚑0(e2u)2^{-\tau}\mathtt{h}_{0}(e^{-2^{u}}) by the formula

An=Γ(τ2+1+2πinln4)an.\displaystyle A_{n}=\Gamma(\tfrac{\tau}{2}+1+\tfrac{2\pi in}{\ln 4})a_{n}.

So since 𝚑0(e2u)\mathtt{h}_{0}(e^{-2^{u}}) is analytic in the strip |Imu|πln4|\mathrm{Im}\,u|\leq\frac{\pi}{\ln 4}, we have |An|=O(e(2π2ln4ε)|n|)|A_{n}|=O(e^{-(\frac{2\pi^{2}}{\ln 4}-\varepsilon)|n|}) for all ε>0\varepsilon>0, hence

|an|=O(e(π2ln4ε)|n|) for |n|.\displaystyle|a_{n}|=O(e^{-(\frac{\pi^{2}}{\ln 4}-\varepsilon)|n|})\text{ for }|n|\to\infty.

Thus, the function ϕ(4u)\phi(4^{u}) is analytic in the strip |Imu|π2ln4|\mathrm{Im}\,u|\leq\frac{\pi}{2\ln 4}.

This is a significant difference from the previous examples, where the analogous function was not even absolutely continuous (nor differentiable). This happens due to presence of the change of variable z=w+w1z=w+w^{-1} which has a quadratic branch point at w=1w=1 and thus causes doubling of periods and widths of strips of holomorphy.

General pp. The analysis is essentially the same as for p=2p=2, and we will omit a discussion. Let us simply point out that the generating function satisfies

L(w+w1)=w1p(1+w+w2++w2p2)L(wp+wp)\displaystyle L(w+w^{-1})=w^{1-p}(1+w+w^{2}+\dots+w^{2p-2})\cdot L(w^{p}+w^{-p})

which gives

h(w)=(1+w+w2++w2p2)h(wp).\displaystyle h(w)=(1+w+w^{2}+\dots+w^{2p-2})\cdot h(w^{p}).

Hence, we have again a 2-Mahler function of degree pp. From this we get

τ=logp(2p1)\displaystyle\tau=\log_{p}(2p-1)

as the exponent of the subexponential factor.

2BVI. Conclusion and goal

The primary objective of this paper is to study a similar but more complicated problem of precisely estimating the number of indecomposable summands of VnV^{\otimes n}. Unlike the study of the length, which grows faster than the number of indecomposable summands due to the non semisimple nature of the category of representations of SL2(𝐤)SL_{2}(\mathbf{k}), this problem introduces subtleties. For example, since the 2-Mahler equation of degree pp it leads to is inhomogeneous, the generating function h(w)h(w) is not a single product but rather a sum of products. Still, the asymptotic behavior of the sequences and functions we consider ends up being very similar to the above examples. There will be an especial similarity with the example in this subsection (e.g. length of VnV^{\otimes n}). Namely, we also observe doubling of periods and strip widths, resulting in a very high degree of regularity of the sequence of interest.

We will however abstain from exploring specific fractals within this context.

3. Generating function

We fix a prime pp. Our first goal is to explicitly describe the generating function for the sequence bnb_{n} as in Equation 1B.1. All objects will depend on pp, but to keep notation light we usually omit pp from notation.

3A. The function FF

Let ww and zz be formal variables. By expansion, we have a ring inclusion

[[z1]][[w]], corresponding to zw+w1.\displaystyle\mathbb{Q}[[z^{-1}]]\hookrightarrow\mathbb{Q}[[w]],\text{ corresponding to $z\mapsto w+w^{-1}$}.

Moreover, the above restricts to inclusions

[[z1]][[w]]and(z)=(z1)(w).\displaystyle\mathbb{Z}[[z^{-1}]]\hookrightarrow\mathbb{Z}[[w]]\quad\text{and}\quad\mathbb{Q}(z)=\mathbb{Q}(z^{-1})\hookrightarrow\mathbb{Q}(w).

The image of the latter inclusion consists precisely of those rational functions in ww invariant under ww1w\leftrightarrow w^{-1}. We will use this several times tacitly below.

We are now ready to study the generating function for the sequence bnb_{n}. It is a bit more convenient to shift the generating function for bnb_{n} as follows. Let

H(z):=Hp(z):=n0bnzn1[[z1]].\displaystyle H(z):=H_{p}(z):=\sum_{n\geq 0}b_{n}z^{-n-1}\in\mathbb{Z}[[z^{-1}]].

We will also regard H(z)H(z) as a holomorphic function with domain |z|>2|z|>2 which vanishes at infinity.

It will be convenient for formal manipulations to focus on H(w+w1)H(w+w^{-1}). We therefore set

F(w):=Fp(w):=n0bn(w+w1)n1[[w]].\displaystyle F(w):=F_{p}(w):=\sum_{n\geq 0}b_{n}(w+w^{-1})^{-n-1}\in\mathbb{Z}[[w]].

Of course, by construction, we can also interpret F(w)F(w) as a holomorphic function (the singularity of this function that will be important later is now at w=1w=1) on

(3A.1) Ω:={w|w+w1|>2}.Plot of Ω:[Uncaptioned image].\displaystyle\mathbb{C}\supset\Omega:=\{w\in\mathbb{C}\mid|w+w^{-1}|>2\}.\quad\text{Plot of $\Omega$}\colon\leavevmode\hbox to118.68pt{\vbox to120.13pt{\pgfpicture\makeatletter\hbox{\hskip 59.34225pt\lower-60.06496pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.00925pt}{-56.73195pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=113.81102pt]{figs/region}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Indeed, direct manipulation shows that Ω\Omega is the set of complex numbers x+iyx+iy with

(x2+(y1)22)(x2+(y+1)22)>0,\displaystyle\big{(}x^{2}+(y-1)^{2}-2\big{)}\big{(}x^{2}+(y+1)^{2}-2\big{)}>0,

yielding the intersection and joint exterior of two disks, as displayed in Equation 3A.1.

Our main result of this section is:

Theorem \theTheorem.

We have the following explicit formula for F(w)F(w):

F(w)=k=0wpk(1wpk(p1))(1wpk)(1+wpk+1)j=0k11w(p+1)pj(1wpj)(1+wpj+1).\displaystyle F(w)=\sum_{k=0}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})}\prod_{j=0}^{k-1}\frac{1-w^{(p+1)p^{j}}}{(1-w^{p^{j}})(1+w^{p^{j+1}})}.
Remark \theRemark.

As pointed out to us by Henning Haahr Andersen, a finer version (with a quite different formulation) of Section 3A has appeared in [Erd95].

The remainder of this section is devoted to the proof of Section 3A.

Example \theExample.

If p=2p=2, then the expression in Section 3A simplifies to

F(w)=k=01w2k+w2kj=0k1(1+1w2j+w2j),\displaystyle F(w)=\sum_{k=0}^{\infty}\frac{1}{w^{2^{k}}+w^{-2^{k}}}\prod_{j=0}^{k-1}\left(1+\frac{1}{w^{2^{j}}+w^{-2^{j}}}\right),

as one can directly verify.

Example \theExample.

We can also consider the generating function for a field of characteristic zero for the numbers bnb_{n}, see Section 1B. Then we find

H(z)=\displaystyle H_{\infty}(z)= n0(nn/2)zn1=z1+z2+3z3+6z5+\displaystyle\sum_{n\geq 0}\binom{n}{\lfloor n/2\rfloor}z^{-n-1}=z^{-1}+z^{-2}+3z^{-3}+6z^{-5}+\dots
=\displaystyle= 12(z+2z21).\displaystyle\frac{1}{2}\left(\sqrt{\frac{z+2}{z-2}}-1\right).

This is well-known and can be derived from [OEI23, A001405].

3B. Recursion relations

Recall the category of tilting representations for SL2(𝐤)SL_{2}(\mathbf{k}), see e.g. [Don93] and [Rin91] (additional details can be found in [AST18]), or, using the identification with the Temperley–Lieb calculus, [And19] or [TW21]. All the terminology and facts about tilting representations that we use below can be found or derived from these references. We denote the category by Tilt(SL2(𝐤))\mathrm{Tilt}\big{(}SL_{2}(\mathbf{k})\big{)}.

We identify the weight lattice of SL2(𝐤)SL_{2}(\mathbf{k}) with \mathbb{Z} and the dominant weights with 0\mathbb{Z}_{\geq 0}. Let K=KpK=K_{p} be the split Grothendieck ring of Tilt(SL2(𝐤))\mathrm{Tilt}\big{(}SL_{2}(\mathbf{k})\big{)}. Then KK has a \mathbb{Z}-basis {[𝚃i]i0}\{[\mathtt{T}_{i}]\mid i\in\mathbb{Z}_{\geq 0}\}, where 𝚃i\mathtt{T}_{i} is the indecomposable tilting representation of highest weight ii. We then have ring isomorphisms

[u,u1]schK[V]x[x],\displaystyle\mathbb{Z}[u,u^{-1}]^{s}\xleftarrow{\,\mathrm{ch}\,}K\xrightarrow{[V]\mapsto x}\mathbb{Z}[x],

where [u,u1]s\mathbb{Z}[u,u^{-1}]^{s} is the subring of Laurent polynomials symmetric under uu1u\leftrightarrow u^{-1}, and chch associates the formal character to a representation. In particular, the composed isomorphism identifies xx and u+u1u+u^{-1}. We will freely use both isomorphisms and switch notation accordingly.

Let ν=νp:[u,u1]s[x]K\nu=\nu_{p}\colon\mathbb{Z}[u,u^{-1}]^{s}\simeq\mathbb{Z}[x]\simeq K\to\mathbb{Z} be the group homomorphism

ν:K,[𝚃i]1, for all i0.\displaystyle\nu\colon K\to\mathbb{Z},\;[\mathtt{T}_{i}]\mapsto 1,\text{ for all $i\in\mathbb{Z}_{\geq 0}$}.

Hence, we have ν(xn)=bn\nu(x^{n})=b_{n}.

By Donkin’s tensor product formula, for 0k<p0\leq k<p the operation 𝚃𝚃(1)𝚃p1+k\mathtt{T}\mapsto\mathtt{T}^{(1)}\otimes\mathtt{T}_{p-1+k} maps indecomposable tilting representations to indecomposable tilting representations; concretely:

𝚃i(1)𝚃p1+k𝚃pi+p1+k.\displaystyle\mathtt{T}_{i}^{(1)}\otimes\mathtt{T}_{p-1+k}\;\simeq\;\mathtt{T}_{pi+p-1+k}.

Here 𝚃(1)\mathtt{T}^{(1)} is the Frobenius twist of 𝚃\mathtt{T}. In particular, we have

ch(𝚃(1))=(ch(𝚃)),\displaystyle ch(\mathtt{T}^{(1)})=\mathbb{P}\big{(}ch(\mathtt{T})\big{)},

where =p\mathbb{P}=\mathbb{P}_{p} is the endomorphism of [u,u1]\mathbb{Z}[u,u^{-1}] determined by uupu\mapsto u^{p}. Consequently, we have

(3B.1) ν=ν(()ch(𝚃p1+k)),\displaystyle\nu=\nu\big{(}\mathbb{P}({}_{-})\,ch(\mathtt{T}_{p-1+k})\big{)},

for all 0k<p0\leq k<p.

We will interpret (3B.1) as recursion relations to compute bn=ν(xn)b_{n}=\nu(x^{n}). To this end, we need to know the following few characters: it is well-known and easy to compute that

ch(𝚃p1)=upupuu1\displaystyle ch(\mathtt{T}_{p-1})=\frac{u^{p}-u^{-p}}{u-u^{-1}}

and, for 0<k<p0<k<p,

(3B.2) ch(𝚃p1+k)=(uk+uk)upupuu1.\displaystyle ch(\mathtt{T}_{p-1+k})=(u^{k}+u^{-k})\frac{u^{p}-u^{-p}}{u-u^{-1}}.

We can reformulate this in terms of the Chebyshev polynomials of the first kind, TnT_{n} (not to be confused with the notation for tilting modules) and of the second kind, UnU_{n}. Indeed, they can be defined via

(3B.3) Tn(w+w12)=wn+wn2,andUn(w+w12)=wn+1wn1ww1.\displaystyle T_{n}\Big{(}\frac{w+w^{-1}}{2}\Big{)}=\frac{w^{n}+w^{-n}}{2},\quad\text{and}\quad U_{n}\Big{(}\frac{w+w^{-1}}{2}\Big{)}=\frac{w^{n+1}-w^{-n-1}}{w-w^{-1}}.

We then find:

bn=ν(xn)=\displaystyle b_{n}=\nu(x^{n})= ν(2nTp(x/2)nUp1(x/2))\displaystyle\nu\big{(}2^{n}T_{p}(x/2)^{n}U_{p-1}(x/2)\big{)}
=\displaystyle= ν(2n+1Tp(x/2)nTk(x/2)Up1(x/2)),for 0<k<p.\displaystyle\nu\big{(}2^{n+1}T_{p}(x/2)^{n}T_{k}(x/2)U_{p-1}(x/2)\big{)},\quad\text{for $0<k<p$.}
Example \theExample.

For p=2p=2, the two equations become

ν(x(x22)n)=ν(xn)andν(x2(x22)n)=ν(xn).\displaystyle\nu\big{(}x(x^{2}-2)^{n}\big{)}=\nu(x^{n})\quad\text{and}\quad\nu\big{(}x^{2}(x^{2}-2)^{n}\big{)}=\nu(x^{n}).

The first relation allows one to compute b2n+1b_{2n+1} in terms of lower cases and the second relation allows one to compute b2n+2b_{2n+2}. Concretely, one obtains

b2n1=b2n=k=0n1(n1k)2n1kbk.\displaystyle b_{2n-1}=b_{2n}=\sum_{k=0}^{n-1}\binom{n-1}{k}2^{n-1-k}b_{k}.

This gives a very efficient way of computing the numbers b2n1=b2nb_{2n-1}=b_{2n}.

Let 𝔸=𝔸p\mathbb{A}=\mathbb{A}_{p} be the group endomorphism of [[w]]\mathbb{Z}[[w]] given by

(3B.4) 𝔸(r)(w)=1pj=0p1r(ζjw),for r[[w]],\displaystyle\mathbb{A}(r)(w)=\frac{1}{p}\sum_{j=0}^{p-1}r(\zeta^{j}w),\quad\text{for }\;r\in\mathbb{Z}[[w]],

where ζ=e2πi/p\zeta=e^{2\pi i/p} is a primitive complex ppth root of unity. In particular, we have

𝔸(wm)={wmif p divides m,0otherwise.\displaystyle\mathbb{A}(w^{m})=\begin{cases}w^{m}&\text{if $p$ divides $m$},\\ 0&\text{otherwise}.\end{cases}
Lemma \theLemma.

The function F(w)F(w) satisfies

F(wp)\displaystyle F(w^{p}) =𝔸(F(w)),and\displaystyle=\mathbb{A}\big{(}F(w)\big{)},\quad\text{and}
F(wp)+1\displaystyle F(w^{p})+1 =𝔸((wk+wk)F(w)), for 1kp1.\displaystyle=\mathbb{A}\left((w^{k}+w^{-k})F(w)\right),\text{ for }1\leq k\leq p-1.
Proof.

For convenience, we extend the definition of ν:[u,u1]s=K\nu\colon\mathbb{Z}[u,u^{-1}]^{s}=K\to\mathbb{Z} to

ν:K[[w]][[w]],\displaystyle\nu\colon K[[w]]\to\mathbb{Z}[[w]],

[[w]]\mathbb{Z}[[w]]-linearly. Then we can write

F(w)=ν(n0(u+u1)n(w+w1)n+1)=ν(1w+w1uu1).\displaystyle F(w)=\nu\left(\sum_{n\geq 0}\frac{(u+u^{-1})^{n}}{(w+w^{-1})^{n+1}}\right)=\nu\left(\frac{1}{w+w^{-1}-u-u^{-1}}\right).

Using (3B.1) and (3B.2), we can then conclude that

(3B.5) F(wp)=ν(upupuu1Rkwpwpupup), for 0k<p,\displaystyle F(w^{p})=\nu\left(\frac{u^{p}-u^{-p}}{u-u^{-1}}\frac{R_{k}}{w^{p}-w^{-p}-u^{p}-u^{-p}}\right),\text{ for }0\leq k<p,

where R0=1R_{0}=1 and Rk=uk+ukR_{k}=u^{k}+u^{-k} for i>0i>0. We now complete the proof of the first displayed equation, corresponding to k=0k=0, the other cases being similar.

Writing

wwu=i>0wiui\displaystyle\frac{w}{w-u}=-\sum_{i>0}\frac{w^{i}}{u^{i}}

we find that

𝔸(wwu)=wpwpup.\displaystyle\mathbb{A}\left(\frac{w}{w-u}\right)=\frac{w^{p}}{w^{p}-u^{p}}.

Consequently, we find

𝔸(1w+w1uu1)=\displaystyle\mathbb{A}\left(\frac{1}{w+w^{-1}-u-u^{-1}}\right)= 𝔸(wuu1(1wu1wu1))\displaystyle\mathbb{A}\left(\frac{w}{u-u^{-1}}\left(\frac{1}{w-u}-\frac{1}{w-u^{-1}}\right)\right)
=\displaystyle= wpuu1(1wpup1wpup)\displaystyle\frac{w^{p}}{u-u^{-1}}\left(\frac{1}{w^{p}-u^{p}}-\frac{1}{w^{p}-u^{-p}}\right)
=\displaystyle= upupuu11wwpupup.\displaystyle\frac{u^{p}-u^{-p}}{u-u^{-1}}\frac{1}{w-w^{-p}-u^{p}-u^{-p}}.

Comparing this expression with (3B.5) indeed proves the first equation of the lemma. ∎

3C. Functional equation

The following proposition shows that F(w)F(w) is a 2-Mahler function of degree pp.

Proposition \theProposition.

We have

F(w)=dp(w+w1)+(1+dp(w+w1))F(wp),\displaystyle F(w)=d_{p}(w+w^{-1})+\left(1+d_{p}(w+w^{-1})\right)\cdot F(w^{p}),

where dpd_{p} is explicitly given by

dp(w+w1)=w(1wp1)(1w)(1+wp).\displaystyle d_{p}(w+w^{-1})=\frac{w(1-w^{p-1})}{(1-w)(1+w^{p})}.

For p>2p>2, dp(z)d_{p}(z) is also determined as the rational function in z1z^{-1} such that zdp(z)zd_{p}(z) is the Padé approximant of order [p12/p12][\frac{p-1}{2}/\frac{p-1}{2}] of H(z)zp+1H(z)z2+zp\frac{H_{\infty}(z)z^{p+1}}{H_{\infty}(z)z^{2}+z^{p}}.

Example \theExample.

Consider the case p=2p=2. The two equations in Section 3B are

F(w2)=12(F(w)+F(w))andF(w2)+1=w+w12(F(w)F(w)).\displaystyle F(w^{2})=\frac{1}{2}\big{(}F(w)+F(-w)\big{)}\quad\text{and}\quad F(w^{2})+1=\frac{w+w^{-1}}{2}\big{(}F(w)-F(-w)\big{)}.

Taking a linear combination of the two equations neutralising the terms in F(w)F(-w) yields

(w+w1)=d2(w+w1)1F(w)=1+(1+w+w1)=d2(w+w1)1+1F(w2).\displaystyle\underbrace{(w+w^{-1})}_{=d_{2}(w+w^{-1})^{-1}}F(w)=1+\underbrace{(1+w+w^{-1})}_{=d_{2}(w+w^{-1})^{-1}+1}F(w^{2}).

This is equivalent to the functional equation in Section 3C specialized at p=2p=2. The proof of the case p>2p>2 given below is a refinement of this argument.

Proof of Section 3C.

We can obtain the functional equation by taking an appropriate linear combination of the pp equalities in Section 3B. Indeed, we use the interpretation of 𝔸\mathbb{A} in (3B.4), and we will sum with appropriate ww-dependent coefficients to make all terms containing F(ζkw)F(\zeta^{k}w) for k>0k>0 cancel. We can start by adding up the equalities in Section 3B for 1kp11\leq k\leq p-1 with coefficients γk(w)((w))\gamma_{k}(w)\in\mathbb{Q}((w)) so that the resulting coefficients of F(ζkw)F(\zeta^{k}w) yield a value C(w)((w))-C(w)\in\mathbb{Q}((w)) independent of 1kp11\leq k\leq p-1.

So we must have

(3C.1) k=1p1(ζkjwk+ζkjwk)γk(w)=C(w)\displaystyle\sum_{k=1}^{p-1}(\zeta^{kj}w^{k}+\zeta^{-kj}w^{-k})\gamma_{k}(w)=-C(w)

for all j[1,p1]j\in[1,p-1]. Consider

Lw(t):=k=1p1(tk+tk)γk(w)+C(w)((w))[t,t1].\displaystyle L_{w}(t):=\sum_{k=1}^{p-1}(t^{k}+t^{-k})\gamma_{k}(w)+C(w)\in\mathbb{Q}((w))[t,t^{-1}].

By (3C.1) and its complex conjugate, Lw(ζjw)=Lw(ζjw1)=0L_{w}(\zeta^{j}w)=L_{w}(\zeta^{j}w^{-1})=0, for all j[1,p1]j\in[1,p-1]. It follows that, up to scaling,

Lw(t)=t1pj=1p1(tζjw)(tζjw)=t1p(tpwp)(tpwp)(tw)(tw1)=\displaystyle L_{w}(t)=t^{1-p}\prod_{j=1}^{p-1}(t-\zeta^{j}w)(t-\zeta^{-j}w)=t^{1-p}\frac{(t^{p}-w^{p})(t^{p}-w^{-p})}{(t-w)(t-w^{-1})}=
t1p(j=0p1tjwj)(i=0p1tiwi)=i,j=0p1ti+jp+1wij.\displaystyle t^{1-p}\left(\sum_{j=0}^{p-1}t^{j}w^{-j}\right)\left(\sum_{i=0}^{p-1}t^{i}w^{i}\right)=\sum_{i,j=0}^{p-1}t^{i+j-p+1}w^{i-j}.

It follows that, setting [j]w=wjwjww1((w))[j]_{w}=\frac{w^{j}-w^{-j}}{w-w^{-1}}\in\mathbb{Z}((w)), we can choose:

γk(w)=i=0p1kw2i+k+1p=[pk]w,C(w)=[p]w.\displaystyle\gamma_{k}(w)=\sum_{i=0}^{p-1-k}w^{2i+k+1-p}=[p-k]_{w},\quad C(w)=[p]_{w}.

Summing over the p1p-1 equations as intended we thus get

pj=1p1[j]w(F(wp)+1)=(j=1p1[j]w(wpj+wjp))F(w)[p]w(F(ζw)++F(ζp1w)).\displaystyle p\sum_{j=1}^{p-1}[j]_{w}\big{(}F(w^{p})+1\big{)}=\left(\sum_{j=1}^{p-1}[j]_{w}(w^{p-j}+w^{j-p})\right)F(w)-[p]_{w}\big{(}F(\zeta w)+\cdots+F(\zeta^{p-1}w)\big{)}.

So multiplying the first equation, F(wp)=𝔸(F(w))F(w^{p})=\mathbb{A}\big{(}F(w)\big{)}, by p[p]wp[p]_{w}, and adding it to the above equation, we obtain

p[p]wF(wp)+pj=1p1[j]w(F(wp)+1)=([p]w+j=1p1[j]w(wpj+wjp))F(w).\displaystyle p[p]_{w}F(w^{p})+p\sum_{j=1}^{p-1}[j]_{w}\big{(}F(w^{p})+1\big{)}=\left([p]_{w}+\sum_{j=1}^{p-1}[j]_{w}(w^{p-j}+w^{j-p})\right)F(w).

This can be written as

j=1p(wjwj)F(wp)+j=1p1(wjwj)=(wpwp)F(w),\displaystyle\sum_{j=1}^{p}(w^{j}-w^{-j})F(w^{p})+\sum_{j=1}^{p-1}(w^{j}-w^{-j})=(w^{p}-w^{-p})F(w),

subsequently as

(1wp+11w1wp11w1)F(wp)+(1wp1w1wp1w1)=(wpwp)F(w),\displaystyle\left(\frac{1-w^{p+1}}{1-w}-\frac{1-w^{-p-1}}{1-w^{-1}}\right)F(w^{p})+\left(\frac{1-w^{p}}{1-w}-\frac{1-w^{-p}}{1-w^{-1}}\right)=(w^{p}-w^{-p})F(w),

and finally as the expression in the theorem.

The values bnb_{n} for n<pn<p are equal to the corresponding numbers in characteristic zero. Consequently, we have

1Hp(z)=1H(z)+O(z1p).\displaystyle\frac{1}{H_{p}(z)}=\frac{1}{H_{\infty}(z)}+O(z^{1-p}).

If TnT_{n} is the Chebyshev polynomial of the first kind, then we set

Pp(x):=2Tp(x/2).\displaystyle P_{p}(x):=2T_{p}(x/2).

In other words:

Pp(w+w1)=wp+wp.\displaystyle P_{p}(w+w^{-1})=w^{p}+w^{-p}.

The functional equation then implies

Hp(z)=dp(z)+(1+dp(z))Hp(Pp(z)).\displaystyle H_{p}(z)=d_{p}(z)+\big{(}1+d_{p}(z)\big{)}\cdot H_{p}\big{(}P_{p}(z)\big{)}.

Since Pp(z)P_{p}(z) is of degree pp (as a polynomial in zz), we have (as functions in z1z^{-1})

Hp(Pp(z))=zp+O(zp2).\displaystyle H_{p}\big{(}P_{p}(z)\big{)}=z^{-p}+O(z^{-p-2}).

Rewriting the functional equation, we thus find

dp(z)1=1+Hp(Pp(z))Hp(z)Hp(Pp(z))=1H(z)+z2p+O(z1p).\displaystyle d_{p}(z)^{-1}=\frac{1+H_{p}\big{(}P_{p}(z)\big{)}}{H_{p}(z)-H_{p}\big{(}P_{p}(z)\big{)}}=\frac{1}{H_{\infty}(z)}+z^{2-p}+O(z^{1-p}).

It thus follows that z1dp(z)1z^{-1}d_{p}(z)^{-1} is the Padé approximant of order [a/b][a/b] of

z1H(z)+z1p\displaystyle\frac{z^{-1}}{H_{\infty}(z)}+z^{1-p}

if a+b<pa+b<p and z1dp(z)z^{-1}d_{p}(z) is a rational function in z1z^{-1} of degree (a,b)(a,b).

It remains to verify the final statement. For p>2p>2 consider therefore the expansion

dp(w+w1)1=\displaystyle d_{p}(w+w^{-1})^{-1}= 11+w+w2++wp21+wpw\displaystyle\frac{1}{1+w+w^{2}+\cdots+w^{p-2}}\cdot\frac{1+w^{p}}{w}
=\displaystyle= (1+w)wp321+w+w2++wp21+wpwp12(1+w).\displaystyle\frac{(1+w)w^{\frac{p-3}{2}}}{1+w+w^{2}+\cdots+w^{p-2}}\cdot\frac{1+w^{p}}{w^{\frac{p-1}{2}}(1+w)}.

The left factor on the last line is the inverse of a polynomial in w+w1w+w^{-1} of degree (p3)/2(p-3)/2, while the right factor is a polynomial in w+w1w+w^{-1} of degree (p1)/2(p-1)/2. In particular, z1dp(z)1z^{-1}d_{p}(z)^{-1} is a rational function in z1z^{-1} of degree (p12,p12)(\frac{p-1}{2},\frac{p-1}{2}), concluding the proof. ∎

3D. Conclusion

Proof of Section 3A.

We can now employ the functional equation from Section 3C to derive the closed expression for F(w)F(w) in Section 3A. Set

Gp(w):=j=01w(p+1)pj(1wpj)(1+wpj+1)((w))×.\displaystyle G_{p}(w):=\prod_{j=0}^{\infty}\frac{1-w^{(p+1)p^{j}}}{(1-w^{p^{j}})(1+w^{p^{j+1}})}\;\in\mathbb{Q}((w))^{\times}.

So

(3D.1) Gp(w)=1wp+1(1w)(1+wp)Gp(wp)=(1+1dp(w+w1))Gp(wp).\displaystyle G_{p}(w)=\frac{1-w^{p+1}}{(1-w)(1+w^{p})}G_{p}(w^{p})=\left(1+\frac{1}{d_{p}(w+w^{-1})}\right)G_{p}(w^{p}).

Thus setting F(w)=Gp(w)F(w)F(w)=G_{p}(w)F_{\ast}(w), Section 3C can be rewritten as

F(w)=F(wp)+w(1wp1)(1w)(1+wp)Gp(w).\displaystyle F_{\ast}(w)=F_{\ast}(w^{p})+\frac{w(1-w^{p-1})}{(1-w)(1+w^{p})G_{p}(w)}.

So we get

F(w)=k=0wpk(1wpk(p1))(1wpk)(1+wpk+1)Gp(wpk),\displaystyle F_{\ast}(w)=\sum_{k=0}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})G_{p}(w^{p^{k}})},

or equivalently

F(w)=k=0wpk(1wpk(p1))(1wpk)(1+wpk+1)Gp(w)Gp(wpk).\displaystyle F(w)=\sum_{k=0}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})}\frac{G_{p}(w)}{G_{p}(w^{p^{k}})}.

The conclusion of Section 3A then follows from substituting (iterations of) Equation 3D.1. ∎

4. Asymptotics of the generating function

Recall that pp is a fixed prime. In order to understand the sequence bnb_{n} from Equation 1B.1 better, we focus on the generating function H(z)H(z) as zz approaches the radius of convergence 22, see Section 3, as usual in the theory of asymptotics of generating functions.

4A. Asymptotics

Concretely, we will focus on the behavior for w1w\downarrow 1 of F(w)=H(w+w1)F(w)=H(w+w^{-1}), viewed as a smooth function

F:(0,1).\displaystyle F\colon(0,1)\to\mathbb{R}.

This is well-defined, as (0,1)(0,1) lies in Ω𝒞\Omega\subset\mathcal{C} from Equation 3A.1. This can be seen directly from the formula (x2+(y1)22)(x2+(y+1)22)>0(x^{2}+(y-1)^{2}-2)(x^{2}+(y+1)^{2}-2)>0, or the plot Equation 3A.1. We will now prove one of our main results:

Theorem \theTheorem.

We have

F(w)=F0(w)(1w)logp(p+12)(1+o(1)).\displaystyle F(w)=F_{0}(w)\cdot(1-w)^{-\log_{p}(\frac{p+1}{2})}\cdot\big{(}1+o(1)\big{)}.

Here F0(w):(0,1)>0F_{0}(w)\colon(0,1)\to\mathbb{R}_{>0} is real analytic, F0(wp)=F0(w)F_{0}(w^{p})=F_{0}(w) and bounded away from 0 and \infty.

Proof.

Recall from Section 3C that we have

F(w)=w(1wp1)(1w)(1+wp)+(1+w(1wp1)(1w)(1+wp))F(wp).\displaystyle F(w)=\frac{w(1-w^{p-1})}{(1-w)(1+w^{p})}+\left(1+\frac{w(1-w^{p-1})}{(1-w)(1+w^{p})}\right)\cdot F(w^{p}).

A calculation gives

(1w)(1+wp)F(w)=w(1wp1)+(1wp+1)F(wp).\displaystyle(1-w)(1+w^{p})\cdot F(w)=w(1-w^{p-1})+(1-w^{p+1})\cdot F(w^{p}).

This is a 22-Mahler function of degree pp, cf. Equation 2B.1, meaning it is of the form

F(w)=r1(w)+r2(w)F(wp).\displaystyle F(w)=r_{1}(w)+r_{2}(w)\cdot F(w^{p}).

Let λ\lambda be a variable. After clearing denominators so that the ri(w)r_{i}(w) are polynomials, the so-called characteristic polynomial (as recalled e.g. in [BC17]) of a Mahler functional equation as in Equation 2B.2 is

r0(w)λs1r1(w)λs2r2(w)λs3rs(w)λ0[w,λ].\displaystyle r_{0}(w)\cdot\lambda^{s-1}-r_{1}(w)\cdot\lambda^{s-2}-r_{2}(w)\cdot\lambda^{s-3}-\cdots-r_{s}(w)\cdot\lambda^{0}\in\mathbb{C}[w,\lambda].

This in our example is

(1w)(1+wp)λ(1wp+1)\displaystyle(1-w)(1+w^{p})\cdot\lambda-(1-w^{p+1})

which has a root at λ(w)=wp+11(w1)(1+wp)\lambda(w)=\frac{w^{p+1}-1}{(w-1)(1+w^{p})}. At the relevant singularity we get

limw1λ(w)=p+12,\displaystyle\lim_{w\uparrow 1}\lambda(w)=\frac{p+1}{2},

which is the eigenvalue of the Mahler function F(w)F(w). Now the classical theory of Mahler functions, see e.g. [BC17, Theorem 1], implies that the log with base the degree of the Mahler equation of this eigenvalue is minus the exponent of (1w)(1-w) in the asymptotic expansion. The remaining parts of the theorem follow also from [BC17, Theorem 1]. ∎

In the reminder of this section we make Section 4A more explicit.

4B. The oscillating factor

We define the following function on (0,1)(0,1), rescaling FF:

𝐅(w):=(ln(w1))logp(p+12)F(w):(0,1)>0.\displaystyle\mathbf{F}(w):=\big{(}\ln(w^{-1})\big{)}^{\log_{p}(\frac{p+1}{2})}F(w)\colon(0,1)\to\mathbb{R}_{>0}.
Lemma \theLemma.

As a function on (0,1)(0,1) we have:

𝐅(wpr)=(p+12)r(ln(w1))logp(p+12)k=rwpk(1wpk(p1))(1wpk)(1+wpk+1)j=rk11w(p+1)pj(1wpj)(1+wpj+1).\displaystyle\mathbf{F}(w^{p^{-r}})=\left(\tfrac{p+1}{2}\right)^{-r}\big{(}\ln(w^{-1})\big{)}^{\log_{p}(\frac{p+1}{2})}\sum_{k=-r}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})}\prod_{j=-r}^{k-1}\frac{1-w^{(p+1)p^{j}}}{(1-w^{p^{j}})(1+w^{p^{j+1}})}.
Proof.

Directly from Section 3A. ∎

We will now show that there exists a function 𝐅0(w):(0,1)\mathbf{F}_{0}(w)\colon(0,1)\to\mathbb{R} with limr𝐅(wpr)=𝐅0(w)\lim_{r\to\infty}\mathbf{F}(w^{p^{-r}})=\mathbf{F}_{0}(w), defined pointwise, satisfying 𝐅0(wp)=𝐅0(w)\mathbf{F}_{0}(w^{p})=\mathbf{F}_{0}(w). To this end, consider the product in [[w]]\mathbb{Z}[[w]] given by

Π(w):=j=12p+11w(p+1)pj(1wpj)(1+wpj+1)=j=12p+11+wpj+w2pj++wppj1+wpj+1.\displaystyle\Pi(w):=\prod_{j=1}^{\infty}\frac{2}{p+1}\frac{1-w^{(p+1)p^{-j}}}{(1-w^{p^{-j}})(1+w^{p^{-j+1}})}=\prod_{j=1}^{\infty}\frac{2}{p+1}\frac{1+w^{p^{-j}}+w^{2p^{-j}}+\dots+w^{pp^{-j}}}{1+w^{p^{-j+1}}}.

Define the power series

𝐅0(w):=(ln(w1))logp(p+12)k=wpk(1wpk(p1))(1wpk)(1+wpk+1)Π(wpk)(p+12)k.\displaystyle\mathbf{F}_{0}(w):=\big{(}\ln(w^{-1})\big{)}^{\log_{p}(\frac{p+1}{2})}\sum_{k=-\infty}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})}\Pi(w^{p^{k}})\left(\frac{p+1}{2}\right)^{k}.
Proposition \theProposition.

For 0<w<10<w<1, we have

limr𝐅(wpr)=𝐅0(w).\displaystyle\lim_{r\to\infty}\mathbf{F}(w^{p^{-r}})=\mathbf{F}_{0}(w).

Moreover, 𝐅0:(0,1)>0\mathbf{F}_{0}\colon(0,1)\to\mathbb{R}_{>0} is a real analytic and oscillatory term, 𝐅0(wp)=𝐅0(w)\mathbf{F}_{0}(w^{p})=\mathbf{F}_{0}(w), and is bounded away from 0 and \infty.

Remark \theRemark.

The function 𝐅0\mathbf{F}_{0} in Section 4B is a rescaling of F0F_{0} from Section 4A, so describes the oscillation of F0F_{0}.

Proof of Section 4B.

It is easy to see that 𝐅0(w)\mathbf{F}_{0}(w) is well-defined for w(0,1)w\in(0,1): Firstly, the factors in the expression Π(wpk)\Pi(w^{p^{k}}) converge to 11 rapidly, and this implies that Π(wpk)\Pi(w^{p^{k}}) itself converges to some number in (0,1)(0,1), and we can assume that Π(wpk)\Pi(w^{p^{k}}) is equal to 11. Second, the left term in the sum goes to (p1)/2(p-1)/2 and takes values in (1,(p1)/2)\big{(}1,(p-1)/2\big{)} for negative kk, so the negative part of the sum converges. Finally, for positive kk the summands go to 0 rapidly and the sum also converges.

As in the previous paragraph, Π(wpk)\Pi(w^{p^{k}}) converges to 11 for w(0,1)w\in(0,1). We then obtain

𝐅(wpr)Π(wpr)=(ln(w1))logp(p+12)k=rwpk(1wpk(p1))(1wpk)(1+wpk+1)Π(wpk)(p+12)k.\displaystyle\mathbf{F}(w^{p^{-r}})\Pi(w^{p^{-r}})=\big{(}\ln(w^{-1})\big{)}^{\log_{p}(\frac{p+1}{2})}\sum_{k=-r}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})}\Pi(w^{p^{k}})\left(\frac{p+1}{2}\right)^{k}.

The claim follows. ∎

Proposition \theProposition.

The series 𝐅0(pv)\mathbf{F}_{0}(p^{-v}) converges absolutely and uniformly on compact sets in the region Rev>0\mathrm{Re}\,v>0 but has a dense set of singularities on the imaginary axis.

Proof.

This follows as for p=2p=2 proven in Section 4C below. Details are omitted. ∎

4C. Example for p=2p=2

For p=2p=2, the expression for 𝐅0\mathbf{F}_{0} simplifies to

𝐅0(w)=(ln(w1))log2(32)k=(32)k1w2k+w2kj=123(1+1w2kj+w2kj).\displaystyle\mathbf{F}_{0}(w)=\big{(}\ln(w^{-1})\big{)}^{\log_{2}(\frac{3}{2})}\sum_{k=-\infty}^{\infty}\left(\frac{3}{2}\right)^{k}\frac{1}{w^{2^{k}}+w^{-2^{k}}}\prod_{j=1}^{\infty}\frac{2}{3}\left(1+\frac{1}{w^{2^{k-j}}+w^{-2^{k-j}}}\right).

In particular, we have

𝐅0(2v)=ln2k=(2kv)log2(32)22kv+22kvΦ(2kv), where Φ(v):=j=1(1(22j1v22j1v)23(22jv+22jv)).\displaystyle\mathbf{F}_{0}(2^{-v})=\ln 2\sum_{k=-\infty}^{\infty}\frac{(2^{k}v)^{\log_{2}(\frac{3}{2})}}{2^{2^{k}v}+2^{-2^{k}v}}\Phi(2^{k}v),\text{ where }\Phi(v):=\prod_{j=1}^{\infty}\left(1-\frac{(2^{2^{-j-1}v}-2^{-2^{-j-1}v})^{2}}{3(2^{2^{-j}v}+2^{-2^{-j}v})}\right).
Lemma \theLemma.

The product Φ(v)\Phi(v) converges absolutely and uniformly on compact sets (not containing zeros and poles) to a meromorphic function of vv\in\mathbb{C}.

Proof.

This holds since 22jv12^{2^{-j}v}\to 1 exponentially fast as jj\to\infty. ∎

The poles of factors in Φ\Phi are solutions of the equation e2jvln2=±ie^{2^{-j}v\ln 2}=\pm i, i.e.,

v=2j1(2n+1)πiln2.\displaystyle v=\frac{2^{j-1}(2n+1)\pi i}{\ln 2}.

On the other hand, zeros occur when 22j+1v2^{2^{-j+1}v} nontrivial cube roots of 11, so

v=2j(3n±1)πi3ln2,\displaystyle v=\frac{2^{j}(3n\pm 1)\pi i}{3\ln 2},

and they have multiplicities (the number of factors 22 in 3n±13n\pm 1).

Proposition \theProposition.

The series 𝐅0(2v)\mathbf{F}_{0}(2^{-v}) converges absolutely and uniformly on compact sets in the region Rev>0\mathrm{Re}\,v>0 but has a dense set of singularities on the imaginary axis.

Proof.

This holds by the above discussion. ∎

5. Monotonicity

In this section we address the monotonicity of our main sequence.

5A. Neighboring values of bnb_{n}

We will now prove:

Theorem \theTheorem.

We have bn+24bnb_{n+2}\leq 4b_{n}, or equivalently bn+2/2n+2bn/2nb_{n+2}/2^{n+2}\leq b_{n}/2^{n}, for all n0n\in\mathbb{Z}_{\geq 0}.

Proof.

The proof will occupy this section, and is split into a few lemmas. For the first lemma up next, let Ln(w)[w,w1]L_{n}(w)\in\mathbb{Z}[w,w^{-1}] for n0n\in\mathbb{Z}_{\geq 0} be a sequence of Laurent polynomials such that, for some ν\nu\in\mathbb{Z}, we have

(5A.1) Ln(w1)=wνLn(w)andLn+1(w)+Ln1(w)=(w+w1)Ln(w),n1.\displaystyle L_{n}(w^{-1})=w^{\nu}L_{n}(w)\quad\text{and}\quad L_{n+1}(w)+L_{n-1}(w)=(w+w^{-1})L_{n}(w),n\in\mathbb{Z}_{\geq 1}.

Note that Ln/Ln+1(z)[[z1]]L_{n}/L_{n+1}\in\mathbb{Q}(z)\subset\mathbb{Q}[[z^{-1}]], where we use (z)(w)\mathbb{Q}(z)\subset\mathbb{Q}(w) as in Section 3A. Now we will prove that actually Ln/Ln+10[[z1]]L_{n}/L_{n+1}\in\mathbb{Z}_{\geq 0}[[z^{-1}]].

Lemma \theLemma.

If L0/L1L_{0}/L_{1} is a positive power series in z1z^{-1}, then the same is true for Ln/Ln+1L_{n}/L_{n+1} for all n0n\in\mathbb{Z}_{\geq 0}.

Proof.

We have

LnLn+1=LnzLnLn1=z11z1Ln1Ln.\displaystyle\frac{L_{n}}{L_{n+1}}=\frac{L_{n}}{zL_{n}-L_{n-1}}=\frac{z^{-1}}{1-z^{-1}\frac{L_{n-1}}{L_{n}}}.

So the statement follows by induction on nn. ∎

For any n12>0n\in\frac{1}{2}\mathbb{Z}_{>0} and an integer 1rn1\leq r\leq n, let us define

Kr,n(z):=wnr+wn+rwn+wn[[z1]].\displaystyle K_{r,n}(z):=\frac{w^{n-r}+w^{-n+r}}{w^{n}+w^{-n}}\in\mathbb{Z}[[z^{-1}]].

Similarly, define

Mr,n(z):=wnr+wnr2++wn+rwn+wn2++wn=wnr+1wn+r1wn+1wn1[[z1]].\displaystyle M_{r,n}(z):=\frac{w^{n-r}+w^{n-r-2}+...+w^{-n+r}}{w^{n}+w^{n-2}+...+w^{-n}}=\frac{w^{n-r+1}-w^{-n+r-1}}{w^{n+1}-w^{-n-1}}\in\mathbb{Z}[[z^{-1}]].
Lemma \theLemma.
  1. (a)

    The function Kr,n(z)K_{r,n}(z) has positive Taylor coefficients in z1z^{-1}.

  2. (b)

    The function Mr,n(z)M_{r,n}(z) has positive Taylor coefficients in z1z^{-1}.

Proof.

(a). If nn is an integer, let Ln(w)=wn+wnL_{n}(w)=w^{n}+w^{-n}, and if nn is an honest half integer, let Ln12(w)=w12(wn+wn)L_{n-\frac{1}{2}}(w)=w^{\frac{1}{2}}(w^{n}+w^{-n}). Then LnL_{n} satisfy (5A.1) with ν=0\nu=0 or ν=1\nu=1. Moreover, L0/L1=2z1L_{0}/L_{1}=2z^{-1} in the integer case and L0/L1=1z1=z11z1L_{0}/L_{1}=\frac{1}{z-1}=\frac{z^{-1}}{1-z^{-1}} in the non-integer case.

Thus, the result follows from Section 5A, as we can write

Kr,n(z)=Lnr(z)Ln(z)=j=1rLnj(z)Lnj+1(z).\displaystyle K_{r,n}(z)=\frac{L_{n-r}(z)}{L_{n}(z)}=\prod_{j=1}^{r}\frac{L_{n-j}(z)}{L_{n-j+1}(z)}.

(b). Let Ln(w)=wn+wn2++wnL_{n}(w)=w^{n}+w^{n-2}+\dots+w^{-n}. Then LnL_{n} satisfy (5A.1), and L0/L1=z1L_{0}/L_{1}=z^{-1}. Thus, as in part (a), the result follows from Section 5A. ∎

We let

f(z)=n0bn2nzn1=2H(2z).\displaystyle f(z)=\sum_{n\geq 0}\frac{b_{n}}{2^{n}}z^{-n-1}=2H(2z).

Moreover, we consider the renormalization

ψ(z):=(1z2)f(z)=n0cnzn1.\displaystyle\psi(z):=-(1-z^{-2})f(z)=\sum_{n\geq 0}c_{n}z^{-n-1}.

Note that b0=b1=1b_{0}=b_{1}=1, so that c0=1c_{0}=-1 and c1=1/2c_{1}=-1/2 are not positive. But we prove:

Lemma \theLemma.

The Taylor coefficients cnc_{n} in z1z^{-1} of the function ψ(z)\psi(z) satisfy cn>0c_{n}>0 for n>1n>1.

Example \theExample.

For p=2p=2 the function ψ(z)\psi(z) Taylor expands in z1z^{-1} as

ψ(z)=z12z2+34z3+18z4+116z5+332z6+364z7+7128z8+7256z9+\displaystyle\psi(z)=-z-\frac{1}{2}z^{2}+\frac{3}{4}z^{3}+\frac{1}{8}z^{4}+\frac{1}{16}z^{5}+\frac{3}{32}z^{6}+\frac{3}{64}z^{7}+\frac{7}{128}z^{8}+\frac{7}{256}z^{9}+\dots

which can be obtained from the data listed in Section 9A.

Proof of Section 5A.

Recall the 2-Mahler coefficients dp(z)d_{p}(z) from Section 3C, and also the functional equation for H(z)H(z) given in the proof of Section 3C, namely:

H(z)=1dp(z)+(1+1dp(z))H(2Tp(z/2)).\displaystyle H(z)=\frac{1}{d_{p}(z)}+\left(1+\frac{1}{d_{p}(z)}\right)\cdot H\big{(}2T_{p}(z/2)\big{)}.

Here Tm(x)T_{m}(x) is the mmth Chebyshev polynomial of the first kind with T1=0T_{-1}=0, as recalled in Equation 3B.3. Set also sp(z)=dp(2z)s_{p}(z)=d_{p}(2z).

Generalzing the calculation in Section 5B below, we get the following expression (note that ψ(z)=2(1z2)H(2z)\psi(z)=-2(1-z^{-2})H(2z) which gives a rescaling of the above functional equation):

ψ(z)=21z2sp(z)+(1+1sp(z))1z21Tp(z)2ψ(Tp(z)).\displaystyle\psi(z)=-2\frac{1-z^{-2}}{s_{p}(z)}+\left(1+\frac{1}{s_{p}(z)}\right)\frac{1-z^{-2}}{1-T_{p}(z)^{-2}}\cdot\psi\big{(}T_{p}(z)\big{)}.

We let Mn(z)=2(Tn(z)+Tn2(z)++T0 or 1(z))M_{n}(z)=2\big{(}T_{n}(z)+T_{n-2}(z)+\dots+T_{0\text{ or 1}}(z)\big{)}, with the last terms being either T0(z)T_{0}(z) or T1(z)T_{1}(z), depending on the parity. A calculation gives

1z21Tp(z)2=z2Tp(z)2Mp1(z)2.\displaystyle\frac{1-z^{-2}}{1-T_{p}(z)^{-2}}=\frac{z^{-2}T_{p}(z)^{2}}{M_{p-1}(z)^{2}}.

To see this observe that this is equivalent to (Tp(z)21)/(z21)=Mp1(z)2\big{(}T_{p}(z)^{2}-1\big{)}/(z^{2}-1)=M_{p-1}(z)^{2}. This in turn follows by setting 2z=w+w12z=w+w^{-1} and we get

Tp(z)21z21=(wp+wp)24(w+w1)24=(wpwpww1)2\displaystyle\frac{T_{p}(z)^{2}-1}{z^{2}-1}=\frac{(w^{p}+w^{-p})^{2}-4}{(w+w^{-1})^{2}-4}=\left(\frac{w^{p}-w^{-p}}{w-w^{-1}}\right)^{2}
=(wp1+wp3++wp+3+wp+1)2=Mp1(z)2.\displaystyle=\left(w^{p-1}+w^{p-3}+\dots+w^{-p+3}+w^{-p+1}\right)^{2}=M_{p-1}(z)^{2}.

We thus get

ψ(z)=21z2sp(z)+(1+1sp(z))z2Tp(z)2Mp1(z)2ψ(Tp(z)).\displaystyle\psi(z)=-2\frac{1-z^{-2}}{s_{p}(z)}+\left(1+\frac{1}{s_{p}(z)}\right)\frac{z^{-2}T_{p}(z)^{2}}{M_{p-1}(z)^{2}}\cdot\psi\big{(}T_{p}(z)\big{)}.

We get:

z112z2+ψ2(z)=\displaystyle-z^{-1}-\frac{1}{2}z^{-2}+\psi_{\geq 2}(z)= 21z2sp(z)(1+1sp(z))z2(2Tp(z)+1)4Mp1(z)2\displaystyle-2\frac{1-z^{-2}}{s_{p}(z)}-\left(1+\frac{1}{s_{p}(z)}\right)\frac{z^{-2}\big{(}2T_{p}(z)+1\big{)}}{4M_{p-1}(z)^{2}}
+(1+1sp(z))z2Tp(z)2Mp1(z)2ψ2(Tp(z)).\displaystyle+\left(1+\frac{1}{s_{p}(z)}\right)\frac{z^{-2}T_{p}(z)^{2}}{M_{p-1}(z)^{2}}\cdot\psi_{\geq 2}\big{(}T_{p}(z)\big{)}.

We rewrite this as

ψ2(z)=R(z)+S(z)z2Tp(z)2Mp1(z)2ψ2(Tp(z)),\displaystyle\psi_{\geq 2}(z)=R(z)+S(z)\frac{z^{-2}T_{p}(z)^{2}}{M_{p-1}(z)^{2}}\cdot\psi_{\geq 2}\big{(}T_{p}(z)\big{)},

where

R(z)=z1+12z221z2sp(z)(1+1sp(z))z2(2Tp(z)+1)4Mp1(z)2,\displaystyle R(z)=z^{-1}+\frac{1}{2}z^{-2}-2\frac{1-z^{-2}}{s_{p}(z)}-\left(1+\frac{1}{s_{p}(z)}\right)\frac{z^{-2}\big{(}2T_{p}(z)+1\big{)}}{4M_{p-1}(z)^{2}},
S(z)=1+1sp(z).\displaystyle S(z)=1+\frac{1}{s_{p}(z)}.

Recall that the polynomial Tm(z)T_{m}(z) has real roots. Furthermore, Tm(z)T_{m}(z) or Tm(z)/zT_{m}(z)/z depends on z2z^{2}. Both observations together imply that we have that 1/Tm(z)1/T_{m}(z) is a positive series in z1z^{-1}. The same applies to Mm(z)M_{m}(z). So it suffices to check that the series S(z)S(z) and R(z)R(z) are positive. The next two lemmas imply these facts.

Lemma \theLemma.

The function dp(z)1=w(1wp1)(1w)(1+wp)d_{p}(z)^{-1}=\frac{w(1-w^{p-1})}{(1-w)(1+w^{p})} has positive Taylor coefficients in z1z^{-1}. The same holds for sp(z)1s_{p}(z)^{-1}.

Proof.

For p=2p=2 we have

1dp(z)=w(1w)(1w)(1+w2)=w1+w2=1z,\displaystyle\frac{1}{d_{p}(z)}=\frac{w(1-w)}{(1-w)(1+w^{2})}=\frac{w}{1+w^{2}}=\frac{1}{z},

which is manifestly positive.

Hence, we can assume that pp is odd. We have

1dp(z)=w+w2++wp11+wp=K1,p2+K2,p2++Kp12,p2.\displaystyle\frac{1}{d_{p}(z)}=\frac{w+w^{2}+\dots+w^{p-1}}{1+w^{p}}=K_{1,\frac{p}{2}}+K_{2,\frac{p}{2}}+\dots+K_{\frac{p-1}{2},\frac{p}{2}}.

So the result follows from Section 5A.(a).

That sp(z)1s_{p}(z)^{-1} is positive is then immediate from sp(z)=dp(2z)s_{p}(z)=d_{p}(2z). ∎

Lemma \theLemma.

The function z2R(z)z^{2}R(z) has positive Taylor coefficients in z1z^{-1}.

Proof.

A calculation shows that

z2R(z)=2w(1w2p2)1w2pY1+w2(1w2p4)1w2pY2+wp1(1w2)1w2pY3\displaystyle z^{2}R(z)=\underbrace{2\frac{w(1-w^{2p-2})}{1-w^{2p}}}_{Y_{1}}+\underbrace{\frac{w^{2}(1-w^{2p-4})}{1-w^{2p}}}_{Y_{2}}+\underbrace{\frac{w^{p-1}(1-w^{2})}{1-w^{2p}}}_{Y_{3}}
+wp(1w2p2)(1w2)(1w2p)2Y4+w(1wp1)(1w)(1+wp)w2p2(1w2)2(1w2p)2Y5.\displaystyle+\underbrace{\frac{w^{p}(1-w^{2p-2})(1-w^{2})}{(1-w^{2p})^{2}}}_{Y_{4}}+\underbrace{\frac{w(1-w^{p-1})}{(1-w)(1+w^{p})}\frac{w^{2p-2}(1-w^{2})^{2}}{(1-w^{2p})^{2}}}_{Y_{5}}.

The YjY_{j}, as indicated above, are positive for j=1,2,3,4,5j=1,2,3,4,5. Indeed, Y1Y_{1}, Y2Y_{2}, Y3Y_{3}, Y4Y_{4} are positive by Section 5A and Y5Y_{5} is positive by Section 5A and Section 5A. ∎

Section 5A implies that R(z)R(z) is positive, while S(z)S(z) is positive by Section 5A. This finishes the proof of Section 5A. ∎

Taking all together yields Section 5A. ∎

5B. Example for p=2p=2

For p=2p=2 the calculation in Section 5A is rather straightforward. In this case Section 3C implies the functional equation

ψ(z)\displaystyle\psi(z) =(1z2)f(z)=2(1z2)H(2z)\displaystyle=-(1-z^{-2})f(z)=-2(1-z^{-2})H(2z)
=2(1z2)(12z+(1+12z)H(2T2(z)))\displaystyle=-2(1-z^{-2})\big{(}\tfrac{1}{2z}+(1+\tfrac{1}{2z})\cdot H(2T_{2}(z))\big{)}
=2(1z2)(12z+12(1+12z)(2z21)24z4f(2z21))\displaystyle=-2(1-z^{-2})\big{(}\tfrac{1}{2z}+\tfrac{1}{2}(1+\tfrac{1}{2z})\tfrac{(2z^{2}-1)^{2}}{4z^{4}}\cdot f(2z^{2}-1)\big{)}
=z1+z3+(1+12z)(2z21)24z4ψ(2z21)\displaystyle=-z^{-1}+z^{-3}+(1+\tfrac{1}{2z})\tfrac{(2z^{2}-1)^{2}}{4z^{4}}\cdot\psi(2z^{2}-1)
=21z2s2(z)+(1+1s2(z))z2T2(z)2M1(z)2ψ(T2(z)).\displaystyle=-2\frac{1-z^{-2}}{s_{2}(z)}+\left(1+\frac{1}{s_{2}(z)}\right)\frac{z^{-2}T_{2}(z)^{2}}{M_{1}(z)^{2}}\cdot\psi\big{(}T_{2}(z)\big{)}.

This gives a recursion of the coefficients cnc_{n}, namely:

n2cnzn1=3z34+z48+z516+14z4(1+12z1)m2cm(2z2)m+1(112z2)m1.\displaystyle\sum_{n\geq 2}c_{n}z^{-n-1}=\frac{3z^{-3}}{4}+\frac{z^{-4}}{8}+\frac{z^{-5}}{16}+\frac{1}{4}z^{-4}\left(1+\frac{1}{2}z^{-1}\right)\sum_{m\geq 2}c_{m}\frac{(2z^{2})^{-m+1}}{(1-\frac{1}{2z^{2}})^{m-1}}.

This recursion has positive coefficients, hence, Section 5A follows.

6. The main theorem

We now prove Section 1B after an auxiliary lemma for which we use Equation 1B.3.

6A. A Tauberian lemma

The following type of result, often called Tauberian theory, is standard and just reformulated to suit our needs, see for instance [Tit58, §7.53] or [BGT89, Theorem 2.10.2] for related results.

Lemma \theLemma.
  1. (a)

    Consider a sequence (an)n>0(a_{n})_{n\in\mathbb{Z}_{>0}} with an0a_{n}\in\mathbb{R}_{\geq 0}, for which the series f(z)=n=1anznf(z)=\sum_{n=1}^{\infty}a_{n}z^{n} has radius of convergence 11. If, for some t(0,1)t\in(0,1), we have,

    f(z)[t,1)(1z)β,\displaystyle f(z)\;\asymp_{[t,1)}\;(1-z)^{-\beta},

    for some β>0\beta\in\mathbb{R}_{>0}, then:

    k=1nak>0nβ.\displaystyle\sum_{k=1}^{n}a_{k}\;\asymp_{\mathbb{Z}_{>0}}\;n^{\beta}.
  2. (b)

    Assume that, additionally to (a), for some r>0r\in\mathbb{Z}_{>0} and B>0B\in\mathbb{R}_{>0} we have

    an+ranBan+r1,\displaystyle a_{n+r}\leq a_{n}\leq B\cdot a_{n+r-1},

    for all n>0n\in\mathbb{Z}_{>0}. Then:

    an>0nβ1.\displaystyle a_{n}\;\asymp_{\mathbb{Z}_{>0}}\;n^{\beta-1}.
Proof.

Claim (a) We set sn:=k=1naks_{n}:=\sum_{k=1}^{n}a_{k}.

We first prove the upper bound on sns_{n}. For every z[t,1)z\in[t,1) we have

snzn=k=1nakznk=1nakzkf(z)A(1z)β,\displaystyle s_{n}z^{n}=\sum_{k=1}^{n}a_{k}z^{n}\leq\sum_{k=1}^{n}a_{k}z^{k}\leq f(z)\leq\frac{A}{(1-z)^{\beta}},

for some A>0A\in\mathbb{R}_{>0}. The function 1/(zn(1z)β)1/\big{(}z^{n}(1-z)^{\beta}\big{)} attains its minimum at z=n/(β+n)z=n/(\beta+n) (which is larger than tt for nn sufficiently large), allowing us to reformulate the above inequality as

snA(β+n)β+nββnn.\displaystyle s_{n}\leq A\frac{(\beta+n)^{\beta+n}}{\beta^{\beta}n^{n}}.

The latter then implies that for some C>0C>0, we have snCnβs_{n}\leq C\cdot n^{\beta}.

Deriving the inequality in the other direction is more subtle. However, as explained in [Dus20], this (in fact, both inequalities) is a special case of the de Haan–Stadtmüller theorem, see [BGT89, Theorem 2.10.2].

Claim (b) By the conclusion of part (a), we know that for some C>1C>1

C1nβk=1nakCnβ,for all n>0.\displaystyle C^{-1}\cdot n^{\beta}\leq\sum_{k=1}^{n}a_{k}\leq C\cdot n^{\beta},\quad\text{for all }n>0.

We will use this freely.

We again start with the upper bound. For all nrn\geq r we find from monotonicity that

nranj=0(n1)/ranrjCnβ.\displaystyle\tfrac{n}{r}a_{n}\leq\sum_{j=0}^{\lfloor(n-1)/r\rfloor}a_{n-rj}\leq C\cdot n^{\beta}.

From this we can derive anCnβ1a_{n}\leq C^{\prime}\cdot n^{\beta-1} for all n>0n\in\mathbb{Z}_{>0} for C=rC>1C^{\prime}=rC>1.

For the lower bound we consider the case r=1r=1 first (in which case we can take B=1B=1 and the second inequality in (b) is trivial). For any NnN\geq n we have

(Nn)ani=n+1NaiC1NβCnβ.\displaystyle(N-n)a_{n}\geq\sum_{i=n+1}^{N}a_{i}\geq C^{-1}\cdot N^{\beta}-C\cdot n^{\beta}.

Since β>0\beta>0, we can choose m>0m\in\mathbb{Z}_{>0} for which mβ>C2m^{\beta}>C^{2}. For N=mnN=mn, we can rewrite the above inequality as

anC1mβCm1nβ1,for all n>0.\displaystyle a_{n}\geq\frac{C^{-1}m^{\beta}-C}{m-1}\cdot n^{\beta-1},\quad\text{for all }n>0.

By construction the factor in front of nβ1n^{\beta-1} is positive and we are done.

In case r>1r>1 we can similarly show that

(6A.1) an+an1++anr+1Anβ1\displaystyle a_{n}+a_{n-1}+\cdots+a_{n-r+1}\geq A\cdot n^{\beta-1}

for some A>0A>0. On the other hand, we have

ranan+B1an+1r++B1ran(r1)2an+i=1rBian+ir.\displaystyle r\cdot a_{n}\geq a_{n}+B^{-1}\cdot a_{n+1-r}+\dots+B^{1-r}\cdot a_{n-(r-1)^{2}}\geq a_{n}+\sum_{i=1}^{r}B^{-i}\cdot a_{n+i-r}.

In particular, we can take A>0A^{\prime}>0 so that

anA(an+an1++an+1r),\displaystyle a_{n}\geq A^{\prime}\cdot(a_{n}+a_{n-1}+\dots+a_{n+1-r}),

which together with (6A.1) concludes the proof. ∎

Remark \theRemark.

The conclusion in Section 6A.(b) does not follow without the additional assumption anBan+r1a_{n}\geq B\cdot a_{n+r-1} in case r>1r>1. Indeed, it suffices to take the sequence

an={1if n is odd,0if n is even.\displaystyle a_{n}=\begin{cases}1&\text{if $n$ is odd},\\ 0&\text{if $n$ is even}.\end{cases}

Then k=0nak0n\sum_{k=0}^{n}a_{k}\asymp_{\mathbb{Z}_{\geq 0}}n and an+2ana_{n+2}\leq a_{n}, but an01a_{n}\not\asymp_{\mathbb{Z}_{\geq 0}}1.

We in fact already had an example of this type: in Section 2BI the Cantor set sequence (can)n0(\mathrm{ca}_{n})_{n\in\mathbb{Z}_{\geq 0}} satisfies

n0canwnw1(1w)τ(1+o(1))andk=0ncaknτ(1+o(1)),\displaystyle\sum_{n\in\mathbb{Z}_{\geq 0}}\mathrm{ca}_{n}w^{n}\asymp_{w\uparrow 1}(1-w)^{-\tau}\big{(}1+o(1)\big{)}\quad\text{and}\quad\sum_{k=0}^{n}\mathrm{ca}_{k}\asymp n^{\tau}\big{(}1+o(1)\big{)},

for τ=log32\tau=\log_{3}2. However, can0nτ1\mathrm{ca}_{n}\not\asymp_{\mathbb{Z}_{\geq 0}}n^{\tau-1}.

6B. Conclusion

We are ready to prove our main result:

Proof of Section 1B.

Set an:=bn12n1a_{n}:=\frac{b_{n-1}}{2^{n-1}} for n>0n\in\mathbb{Z}_{>0}. Then Section 5A implies that an+2ana_{n+2}\leq a_{n}. We also know that bnbn+1b_{n}\leq b_{n+1}, since each indecomposable summand in VnV^{\otimes n} is responsible for at least one in Vn+1V^{\otimes n+1}. Hence, an2an+1a_{n}\leq 2\cdot a_{n+1}, so the sequence ana_{n} satisfies all conditions in parts (a) and (b) of Section 6A with r=2r=2.

For the purpose of this proof we will write \asymp to mean [t,1)\asymp_{[t,1)} for an arbitrary t(0,1)t\in(0,1). Recall that

F(w)=n0bn(w+w1)n1=H(w+w1).\displaystyle F(w)=\sum_{n\geq 0}b_{n}(w+w^{-1})^{-n-1}=H(w+w^{-1}).

Section 4A implies that

F(w)(1w)2β,β=12logp(p+12)=tp+1.\displaystyle F(w)\asymp(1-w)^{-2\beta},\quad\beta=\frac{1}{2}\log_{p}\left(\frac{p+1}{2}\right)=t_{p}+1.

Recall further that

H(z)=n0bnzn1and thus2H(2z1)=n>0anzn.\displaystyle H(z)=\sum_{n\geq 0}b_{n}z^{-n-1}\quad\text{and thus}\quad 2H(2z^{-1})=\sum_{n>0}a_{n}z^{n}.

Solving 2z1=w+w12z^{-1}=w+w^{-1} for ww in the region w<1w<1 then yields

2H(2z1)(1z2+z1z)2β=(1z)β(z22(11z2))β.\displaystyle 2H(2z^{-1})\asymp\bigg{(}\frac{\sqrt{1-z^{2}}+z-1}{z}\bigg{)}^{-2\beta}=(1-z)^{-\beta}\bigg{(}\frac{z^{2}}{2(1-\sqrt{1-z^{2}})}\bigg{)}^{\beta}.

Since the last factor is bounded on (0,1](0,1] away from 0, we find

n>0anzn=2H(2z)(1z)β.\displaystyle\sum_{n>0}a_{n}z^{n}=2H(\tfrac{2}{z})\asymp(1-z)^{-\beta}.

Section 6A.(b) then implies

an>0nβ1=ntp,\displaystyle a_{n}\asymp_{\mathbb{Z}_{>0}}n^{\beta-1}=n^{t_{p}},

and we are done. ∎

7. Additional results in characteristic two

Throughout this section let p=2p=2. This restriction is mostly for convenience: with some work the statements and proofs below generalize to all primes.

7A. Neighboring values of bnb_{n} in characteristic two

We will now strengthen Section 5A, where we can focus on difference two for the indexes since b2n1=b2nb_{2n-1}=b_{2n} for n>0n\in\mathbb{Z}_{>0}. The auxiliary sequence that we use is dn=1bn+24bnd_{n}=1-\frac{b_{n+2}}{4b_{n}}, for n0n\in\mathbb{Z}_{\geq 0}.

Proposition \theProposition.

We have dn0d_{n}\geq 0 and dnO(nt21)d_{n}\in O(n^{-t_{2}-1}).

Since t210.293-t_{2}-1\approx-0.293, Section 7A shows that limndn=0\lim_{n\to\infty}d_{n}=0.

Proof of Section 7A.

We start with an analysis of cn:=bn+48bn+2+16bnc_{n}:=b_{n+4}-8b_{n+2}+16b_{n}.

Lemma \theLemma.

We have 0cn0\leq c_{n} for all n0n\in\mathbb{Z}_{\geq 0}.

Proof.

By Section 3C, we have H(z)=n0bn2nzn1=z1+(1+z1)H(z22)H(z)=\sum_{n\geq 0}\frac{b_{n}}{2^{n}}z^{-n-1}=z^{-1}+(1+z^{-1})H(z^{2}-2). So, if η(z)=(14z2)2H(z)=z1+z27z35z4+ξ(z)\eta(z)=(1-4z^{-2})^{2}H(z)=z^{-1}+z^{-2}-7z^{-3}-5z^{-4}+\xi(z), then we get

z1+z27z35z4+ξ(z)=z1(14z2)2\displaystyle z^{-1}+z^{-2}-7z^{-3}-5z^{-4}+\xi(z)=z^{-1}(1-4z^{-2})^{2}
+z8(1+z1)((z22)3+(z22)27(z22)5+(z22)4ξ(z22)).\displaystyle+z^{-8}(1+z^{-1})\big{(}(z^{2}-2)^{3}+(z^{2}-2)^{2}-7(z^{2}-2)-5+(z^{2}-2)^{4}\xi(z^{2}-2)\big{)}.

Hence, we get for ξ(z)=n=0cnzn5\xi(z)=\sum_{n=0}^{\infty}c_{n}z^{-n-5} that:

n=0cnzn5=11z5+z6+z7+5z8+5z9+(1+z1)n=0cnz2(n+5)(12z2)n1.\displaystyle\sum_{n=0}^{\infty}c_{n}z^{-n-5}=11z^{-5}+z^{-6}+z^{-7}+5z^{-8}+5z^{-9}+(1+z^{-1})\sum_{n=0}^{\infty}c_{n}z^{-2(n+5)}(1-2z^{-2})^{-n-1}.

This gives a positive recursion for cnc_{n}, which implies the statement. ∎

The numbers dnd_{n} are nonnegative by Section 5A. Moreover, Section 7A implies that 21dn+2+11dn2\leq 1-d_{n+2}+\frac{1}{1-d_{n}} which gives

1dn11+dn+2.\displaystyle 1-d_{n}\leq\frac{1}{1+d_{n+2}}.

This yields 1dn411+dn21-d_{n-4}\leq\frac{1}{1+d_{n-2}} and 111+dndn21-\frac{1}{1+d_{n}}\leq d_{n-2}. Putting these together gives 1dn411+111+dn=1+dn1+2dn1-d_{n-4}\leq\frac{1}{1+1-\frac{1}{1+d_{n}}}=\frac{1+d_{n}}{1+2d_{n}}, and iterating this procedure then gives

1dn2k1+(k1)dn1+kdn.\displaystyle 1-d_{n-2k}\leq\frac{1+(k-1)d_{n}}{1+kd_{n}}.

We also have, say for the even values,

(1d0)(1dn2)=14an14C1nt2\displaystyle(1-d_{0})\cdot\ldots\cdot(1-d_{n-2})=\tfrac{1}{4}\cdot a_{n}\geq\tfrac{1}{4}C_{1}\cdot n^{t_{2}}

for some C1>0C_{1}\in\mathbb{R}_{>0}, where the final inequality is Section 1B. Thus,

C1nt211+ndn,\displaystyle C_{1}^{\prime}\cdot n^{t_{2}}\leq\frac{1}{1+nd_{n}},

for some C1>0C_{1}^{\prime}\in\mathbb{R}_{>0}, which, by rewriting, proves the statement. ∎

7B. The main theorem revisited

The following generalizes Section 1B:

Proposition \theProposition.

Equation 1D.1 is true.

Proof.

Let an=b2n22na_{n}^{\prime}=\frac{b_{2n}}{2^{2n}}. Note that this ignores the odd values since ana_{n} runs only over the even values of bnb_{n}, but since b2n1=b2nb_{2n-1}=b_{2n} for all n>0n\in\mathbb{Z}_{>0} this does not play a role below and just simplifies the notation.

We observe that 4t2=412log283=384^{t_{2}}=4^{-\frac{1}{2}\log_{2}\frac{8}{3}}=\frac{3}{8}, so that Section 1B implies that we can sandwich both, 38an\tfrac{3}{8}\cdot a_{n}^{\prime} and a4na_{4n}^{\prime}, at the same time:

C138(2n)t2{38ana4nC238(2n)t2.\displaystyle C_{1}\cdot\tfrac{3}{8}(2n)^{t_{2}}\leq\left\{\begin{gathered}\tfrac{3}{8}\cdot a_{n}^{\prime}\\ a_{4n}^{\prime}\end{gathered}\right.\leq C_{2}\cdot\tfrac{3}{8}(2n)^{t_{2}}.

However, this does not imply the result yet, we need to know a bit more about the sequence ana_{n}^{\prime}. Firstly, it follows from Section 7A that there is a constant C>0C\in\mathbb{R}_{>0} such that

(7B.1) (1Cn)an<an+1<an.\displaystyle(1-\tfrac{C}{n})a_{n}^{\prime}<a_{n+1}^{\prime}<a_{n}^{\prime}.

Also a0=1a_{0}=1 and, by Section 3B, for n>0n>0 we have

an=2n1(k=0(n1)/2((n12k)+2(n12k1))ak+δ0,nmod22an/2).\displaystyle a_{n}^{\prime}=2^{-n-1}\left(\sum_{k=0}^{\lfloor(n-1)/2\rfloor}\bigg{(}\binom{n-1}{2k}+2\binom{n-1}{2k-1}\bigg{)}a_{k}^{\prime}+\delta_{0,n\bmod 2}\cdot 2a_{n/2}^{\prime}\right).

Thus, when running over even values, we get

(7B.2) a2n=22n1k=0n((2n12k)+2(2n12k1))ak.\displaystyle a_{2n}^{\prime}=2^{-2n-1}\sum_{k=0}^{n}\bigg{(}\binom{2n-1}{2k}+2\binom{2n-1}{2k-1}\bigg{)}a_{k}^{\prime}.

Note also that, for n>0n>0, we have

22n1k=0n((2n12k)+2(2n12k1))=38.\displaystyle 2^{-2n-1}\sum_{k=0}^{n}\bigg{(}\binom{2n-1}{2k}+2\binom{2n-1}{2k-1}\bigg{)}=\frac{3}{8}.

So using this, combined with (7B.1) and (7B.2), we get

a4n38an.\displaystyle a_{4n}^{\prime}\sim\tfrac{3}{8}\cdot a_{n}^{\prime}.

Hence, for all x>0x\in\mathbb{R}_{>0} there exists a limit

limma4mx(4mx)t2=𝐟0(x),\displaystyle\lim_{m\to\infty}a_{\lfloor 4^{m}x\rfloor}^{\prime}(4^{m}x)^{-t_{2}}=\mathbf{f}_{0}(x),

and 𝐟0\mathbf{f}_{0} is continuous on >0\mathbb{R}_{>0} with 𝐟0(4x)=𝐟0(x)\mathbf{f}_{0}(4x)=\mathbf{f}_{0}(x), and bounded away from 0 and \infty. ∎

8. Fourier coefficients

The functions that we have met above are oscillating, and in this section we analyze their Fourier coefficients.

8A. An Abelian lemma

Tauberian theory as in Section 6A, roughly speaking, says that given a certain behavior of a generating function, we get a certain behavior of the associated sequence. There is an “inverse” to Tauberian theory often called Abelian theory.

Below we will need the following well-known result from Abelian theory:

Lemma \theLemma.

Assume that we have two functions F(q)=n=1anqn[[q]]F(q)=\sum_{n=1}^{\infty}a_{n}q^{n}\in\mathbb{R}_{\geq}[[q]] and G(q)=n=1bnqn[[q]]G(q)=\sum_{n=1}^{\infty}b_{n}q^{n}\in\mathbb{R}_{\geq}[[q]] which converge for q[0,1)q\in[0,1) and diverge for q=1q=1. Then

(annbn)(F(q)q1G(q)).\displaystyle\big{(}a_{n}\sim_{n\to\infty}b_{n}\big{)}\Rightarrow\big{(}F(q)\sim_{q\uparrow 1}G(q)\big{)}.
Proof.

This is for example explained at the beginning of [Tit58, Section 7.5]. ∎

8B. Some generalities on asymptotics of Fourier coefficients

Let ν2\nu\in\mathbb{Z}_{\geq 2} and t¯>1\bar{t}>-1. Suppose we have a sequence (an)n>0(a_{n})_{n\in\mathbb{Z}_{>0}} such that we have asymptotically

anh~(logνn)nt¯\displaystyle a_{n}\sim\tilde{h}(\log_{\nu}n)\cdot n^{\bar{t}}

for some continuous 11-periodic function h~:>0\tilde{h}\colon\mathbb{R}\to\mathbb{R}_{>0} with h~(x+1)=h~(x)\tilde{h}(x+1)=\tilde{h}(x). The associated generating function is the series

f(q)=n=1anqn[[q]].\displaystyle f(q)=\sum_{n=1}^{\infty}a_{n}q^{n}\in\mathbb{R}[[q]].
Lemma \theLemma.

The series f(q)f(q) absolutely converges for 0|q|<10\leq|q|<1 with singularity at q=1q=1.

Proof.

This follows since anh~(logνn)nt¯a_{n}\sim\tilde{h}(\log_{\nu}n)\cdot n^{\bar{t}}. ∎

As before, let Γ\Gamma denote the gamma function. Recall that the Fourier coefficient formula of a PP-periodic function gg (so that the integral expression up next makes sense) are given by cn=1PP/2P/2g(x)e2πixn/P𝑑xc_{n}=\frac{1}{P}\int_{-P/2}^{P/2}g(x)e^{-2\pi ixn/P}dx, for nn\in\mathbb{Z}. That is, g(x)=n=cne2πixn/Pg(x)=\sum_{n=-\infty}^{\infty}c_{n}e^{2\pi ixn/P} for x[P/2,P/2]x\in[-P/2,P/2].

We get the following asymptotic of ff:

Proposition \theProposition.

Retain the assumptions above, and denote the Fourier coefficients of hh by hnh_{n}. We have

f(q)q1(ln(q1))t¯1L(logν(ln(q1)))\displaystyle f(q)\sim_{q\uparrow 1}\big{(}\ln(q^{-1})\big{)}^{-\bar{t}-1}L\big{(}\log_{\nu}(\ln(q^{-1}))\big{)}

where LL is the 11-periodic function given by

L(y)=nΓ(t¯+12πinlogν)e2πinyhn.\displaystyle L(y)=\sum_{n\in\mathbb{Z}}\Gamma(\bar{t}+1-\tfrac{2\pi in}{\log\nu})e^{2\pi iny}h_{-n}.
Proof.

For the argument below we note that q=1q=1 is the relevant singularity of ff, and we need to analyze the growth rate of ff for q1q\uparrow 1.

Recalling that anh~(logνn)nt¯a_{n}\sim\tilde{h}(\log_{\nu}n)\cdot n^{\bar{t}}, we use Section 8A and get

f(q)q1n=1h~(logνn)nt¯qn.\displaystyle f(q)\sim_{q\uparrow 1}\sum_{n=1}^{\infty}\tilde{h}(\log_{\nu}n)n^{\bar{t}}q^{n}.

We rewrite this as

f(q)q1r01νrn<νh~(logνn)nt¯qn.\displaystyle f(q)\sim_{q\uparrow 1}\sum_{r\in\mathbb{Z}_{\geq 0}}\sum_{1\leq\nu^{-r}n<\nu}\tilde{h}(\log_{\nu}n)n^{\bar{t}}q^{n}.

So setting x=νrnx=\nu^{-r}n and using the periodicity of h~\tilde{h}, namely h~(x+1)=h~(x)\tilde{h}(x+1)=\tilde{h}(x), we get

f(q)q1r0νrt¯1x<νh~(logνx)xt¯qνrx,\displaystyle f(q)\sim_{q\uparrow 1}\sum_{r\in\mathbb{Z}_{\geq 0}}\nu^{r\cdot\bar{t}}\sum_{1\leq x<\nu}\tilde{h}(\log_{\nu}x)x^{\bar{t}}q^{\nu^{r}x},

where the inner sum is over (not necessarily reduced) fractions with denominator νr\nu^{r}. Note that the main contribution to the asymptotics q1q\uparrow 1 comes from large rr, as t¯>1\bar{t}>-1. Hence, we may replace the inner sum by an integral times νr\nu^{r} (reciprocal length of step), and the range 0\mathbb{Z}_{\geq 0} of summation for the outer sum by \mathbb{Z}. After doing this we get:

f(q)q1r0νr(t¯+1)1νh~(logνx)xt¯qνrx𝑑x.\displaystyle f(q)\sim_{q\uparrow 1}\sum_{r\in\mathbb{Z}_{\geq 0}}\nu^{r(\bar{t}+1)}\int_{1}^{\nu}\tilde{h}(\log_{\nu}x)x^{\bar{t}}q^{\nu^{r}x}dx.

Making the substitution u=logν(x)u=\log_{\nu}(x) allows us to rewrite the above as

ln(ν)r001ν(u+r)(t¯+1)qνr+uh~(u)𝑑u=ln(ν)0νu(t¯+1)qνuh~(u)𝑑u.\ln(\nu)\sum_{r\in\mathbb{Z}_{\geq 0}}\int_{0}^{1}\nu^{(u+r)(\bar{t}+1)}q^{\nu^{r+u}}\tilde{h}(u)du\;=\;\ln(\nu)\int^{\infty}_{0}\nu^{u(\bar{t}+1)}q^{\nu^{u}}\tilde{h}(u)du.

Substituting back to xx, the above yields

f(q)q10xt¯qxh~(logν(x))𝑑x.\displaystyle f(q)\sim_{q\uparrow 1}\int_{0}^{\infty}x^{\bar{t}}q^{x}\tilde{h}(\log_{\nu}(x))dx.

Replacing the dummy variable xx by x/ln(q1)x/\ln(q^{-1}) yields

f(q)q1(ln(q1))t¯10xt¯exh~(logν(x)logν(ln(q1)))𝑑x.\displaystyle f(q)\sim_{q\uparrow 1}(\ln(q^{-1}))^{-\bar{t}-1}\int_{0}^{\infty}x^{\bar{t}}e^{-x}\tilde{h}\left(\log_{\nu}(x)-\log_{\nu}(\ln(q^{-1}))\right)dx.

We can thus define the 1-periodic function

L(y):=0xt¯exh~(logν(x)y)𝑑x.L(y)\;:=\;\int_{0}^{\infty}x^{\bar{t}}e^{-x}\tilde{h}\left(\log_{\nu}(x)-y\right)dx.

That this periodic function corresponds to the one in the proposition follows easily from the definition Γ(z)=0xz1ex𝑑x\Gamma(z)=\int_{0}^{\infty}x^{z-1}e^{-x}dx of the Gamma function. ∎

Theorem \theTheorem.

With the notation as in Section 8B, we have

hn=LnΓ(t¯+1+2πinlogν)\displaystyle h_{n}=\frac{L_{n}}{\Gamma(\bar{t}+1+\frac{2\pi in}{\log\nu})}

for the Fourier coefficients LnL_{n} of L(y)L(y).

Proof.

By Section 8B and Fourier inversion. ∎

8C. Analysis of the Fourier coefficients of the generating function for bn/2nb_{n}/2^{n}

Assume that Equation 1D.1 holds. (For p=2p=2 this assumption is true by Section 7.) We now apply the results in Section 8B to our example of bn/2nb_{n}/2^{n} in characteristic pp. That is, we look at an=bn/2na_{n}=b_{n}/2^{n} for the ana_{n} in Section 8B.

Consider the generating function of ana_{n}:

f(q)=n=0anqn>0[[q]].\displaystyle f(q)=\sum_{n=0}^{\infty}a_{n}q^{n}\in\mathbb{R}_{>0}[[q]].

The relevant singularity is at q=1q=1. Below we will also use the generating function in ww defined mutatis mutandis as in Section 3A.

Moreover, associated to ff we can define 𝐟0\mathbf{f}_{0} similarly as 𝐅0\mathbf{F}_{0} from Section 4B but defined now in qq, and we get the same type of statements for 𝐟0\mathbf{f}_{0} as for 𝐅0\mathbf{F}_{0}.

Recall tp=12logp2p2p1t_{p}=\frac{1}{2}\log_{p}\frac{2p^{2}}{p-1} from Equation 1B.2. Setting ν=2p\nu=2p (which we expect to be correct based on numerical data) and t¯=tp\bar{t}=t_{p}, we get:

Proposition \theProposition.

We have

fq1(ln(q1))tp1𝐟0(log2pln(q1))\displaystyle f\sim_{q\uparrow 1}\big{(}\ln(q^{-1})\big{)}^{-t_{p}-1}\mathbf{f}_{0}\big{(}\log_{2p}\ln(q^{-1})\big{)}

and the Fourier coefficients of 𝐟0\mathbf{f}_{0} are given by Section 9C.

Proof.

Recall from Section 4B that limr(lnwpr)logp(p+12)F(wpr)=𝐅0(w)\lim_{r\to\infty}(\ln w^{-p^{-r}})^{\log_{p}(\frac{p+1}{2})}F(w^{p^{-r}})=\mathbf{F}_{0}(w). We can write this as limq1(ln(q1))2(tp+1)f(q)=𝐟0(log2pln(q1))\lim_{q\uparrow 1}\big{(}\ln(q^{-1})\big{)}^{-2(t_{p}+1)}f(q)=\mathbf{f}_{0}\big{(}\log_{2p}\ln(q^{-1})\big{)}. Then Section 8B as well as Section 8B apply. ∎

9. Numerical data

All of the below can be found on the GitHub page associated to this project [CEOT24], where the reader can find code that can be run online. For convenience, we list a few numerical examples here as well.

Remark \theRemark.

All plots below are logplots (also called semi-log plots). This means that the plots have one axis (the y-axis for us) on a logarithmic scale, the other on a linear scale.

9A. The main sequence

Below we will always use p{2,3,5,7,}p\in\{2,3,5,7,\infty\} with p=p=\infty meaning that the characteristic is large compared to the considered range, which leads to the same data as in characteristic zero.

We first give tables for bnb_{n} for n{0,,15}n\in\{0,\dots,15\}:

b0b_{0} b1b_{1} b2b_{2} b3b_{3} b4b_{4} b5b_{5} b6b_{6} b7b_{7} b8b_{8} b9b_{9} b10b_{10} b11b_{11} b12b_{12} b13b_{13} b14b_{14} b15b_{15}
p=2p=2 1 1 1 3 3 9 9 29 29 99 99 351 351 1273 1273 4679
p=3p=3 1 1 2 2 5 6 15 21 50 77 176 286 637 1066 2340 3978
p=5p=5 1 1 2 3 6 9 19 28 62 91 208 308 716 1079 2522 3886
p=7p=7 1 1 2 3 6 10 20 34 69 117 242 407 858 1431 3069 5085
p=p=\infty 1 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435

.

For completeness, we give here the bnb_{n} for n{0,,30}n\in\{0,\dots,30\} (in order top to bottom, excluding p=p=\infty where the sequence is [OEI23, A001405]) in a copy-able fashion:

{1,1,1,3,3,9,9,29,29,99,99,351,351,1273,1273,4679,4679,17341,17341,64637,64637,242019,242019,909789,909789,3432751,3432751,12998311,12998311,49387289,49387289}\{1,1,1,3,3,9,9,29,29,99,99,351,351,1273,1273,4679,4679,17341,17341,64637,64637,242019,242019,909789,909789,3432751,3432751,12998311,12998311,49387289,49387289\}.

{1,1,2,2,5,6,15,21,50,77,176,286,637,1066,2340,3978,8670,14859,32301,55575,120822,208221,453399,781794,1706301,2942460,6438551,11103665,24357506,42015664,92376280}\{1,1,2,2,5,6,15,21,50,77,176,286,637,1066,2340,3978,8670,14859,32301,55575,120822,208221,453399,781794,1706301,2942460,6438551,11103665,24357506,42015664,92376280\}.

{1,1,2,3,6,9,19,28,62,91,208,308,716,1079,2522,3886,9061,14297,33098,53448,122551,202181,458757,771443,1732406,2962284,6587959,11428743,25193027,44250404,96775581}\{1,1,2,3,6,9,19,28,62,91,208,308,716,1079,2522,3886,9061,14297,33098,53448,122551,202181,458757,771443,1732406,2962284,6587959,11428743,25193027,44250404,96775581\}.

{1,1,2,3,6,10,20,34,69,117,242,407,858,1431,3069,5085,11066,18258,40205,66215,147136,242420,542202,895390,2011165,3334125,7505955,12507121,28174255,47229893,106315770}\{1,1,2,3,6,10,20,34,69,117,242,407,858,1431,3069,5085,11066,18258,40205,66215,147136,242420,542202,895390,2011165,3334125,7505955,12507121,28174255,47229893,106315770\}.

Here is one picture to compare their growth, including the case p=p=\infty:

[Uncaptioned image].\displaystyle\leavevmode\hbox to233.59pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 116.7969pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-113.4639pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/ball}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Note that the sequences get a bit more regular if one runs over the, say, even values. This is in particular true in characteristic p=2p=2 where b2n1=b2nb_{2n-1}=b_{2n}. Below we will strategically sometimes only illustrates the even values.

Next, the logplots of bn/2nb_{n}/2^{n} compared with ntpn^{t_{p}}, and of bnb_{n} compared with ntp2nn^{t_{p}}\cdot 2^{n} are:

[Uncaptioned image]p=2,even,[Uncaptioned image]p=3,even,\displaystyle\leavevmode\hbox to223.48pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 111.738pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-108.405pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plott2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.79337pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to224.92pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 112.46071pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-109.1277pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plott3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.79337pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},
[Uncaptioned image]p=5,even,[Uncaptioned image]p=7,even,\displaystyle\leavevmode\hbox to224.92pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 112.46071pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-109.1277pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plott5}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.79337pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=5$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to223.48pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 111.738pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-108.405pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plott7}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.79337pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=7$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},
[Uncaptioned image]p=2,even,[Uncaptioned image]p=3,even,\displaystyle\leavevmode\hbox to221.31pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 110.65396pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-107.32095pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plotp2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-65.4725pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to221.31pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 110.65396pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-107.32095pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plotp3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-65.4725pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},
[Uncaptioned image]p=5,even,[Uncaptioned image]p=7,even.\displaystyle\leavevmode\hbox to221.31pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 110.65396pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-107.32095pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plotp5}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-65.4725pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=5$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to221.31pt{\vbox to137.47pt{\pgfpicture\makeatletter\hbox{\hskip 110.65396pt\lower-68.73735pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-107.32095pt}{-65.40434pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=130.88284pt]{figs/plotp7}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-65.4725pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=7$,even}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

9B. The length sequence

Let us now also give here the lnl_{n} for n{0,,30}n\in\{0,\dots,30\} (again in order top for p=2p=2 to bottom for p=7p=7, excluding p=p=\infty where the sequence is [OEI23, A001405]) so that it is copy-able:

{1,1,3,3,11,11,41,41,155,155,593,593,2289,2289,8891,8891,34683,34683,135697,135697,532041,532041,2089363,2089363,8215553,8215553,32339011,32339011,127417011,127417011,502458289}\{1,1,3,3,11,11,41,41,155,155,593,593,2289,2289,8891,8891,34683,34683,135697,135697,532041,532041,2089363,2089363,8215553,8215553,32339011,32339011,127417011,127417011,502458289\}.

{1,1,2,4,7,14,26,50,97,184,364,692,1378,2641,5264,10181,20267,39523,78524,154187,305728,603614,1194758,2368906,4682134,9313411,18387902,36663241,72331456,144466892,28488466}\{1,1,2,4,7,14,26,50,97,184,364,692,1378,2641,5264,10181,20267,39523,78524,154187,305728,603614,1194758,2368906,4682134,9313411,18387902,36663241,72331456,144466892,28488466\}.

{1,1,2,3,6,11,21,42,78,161,297,617,1144,2366,4432,9088,17223,34986,67049,135013,261326,522271,1019427,2024828,3979781,7866186,15547861,30614847,60783158,119345091,237790431}\{1,1,2,3,6,11,21,42,78,161,297,617,1144,2366,4432,9088,17223,34986,67049,135013,261326,522271,1019427,2024828,3979781,7866186,15547861,30614847,60783158,119345091,237790431\}.

{1,1,2,3,6,10,20,36,71,135,262,517,990,2001,3796,7786,14690,30379,57188,118712,223515,464341,875955,1817598,3439375,7119305,13522875,27902564,53222511,109424657,209629719}\{1,1,2,3,6,10,20,36,71,135,262,517,990,2001,3796,7786,14690,30379,57188,118712,223515,464341,875955,1817598,3439375,7119305,13522875,27902564,53222511,109424657,209629719\}.

As before for bnb_{n}, here is one picture to compare their growth, including the case p=p=\infty:

[Uncaptioned image].\displaystyle\leavevmode\hbox to236.48pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 118.24231pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-114.9093pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/lengthall}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Note the following comparison of the lnl_{n} plot to the bnb_{n} plot from above: for p<pp<p^{\prime}, the lnl_{n} grows a faster for pp and slower for pp^{\prime}, and vice versa for the bnb_{n}.

9C. The generating function

Continuing with Section 3A, recall from Equation 1B.2 that 2(t2+1)0.5852(t_{2}+1)\approx 0.585. We compare F(w)F(w), with the sum cut-off at k=10k=10, with (w1)0.585(w-1)^{-0.585}:

[Uncaptioned image]

The growth rates towards the singularity w=1w=1 (left side of the picture) are almost the same and this is crucial in Section 6.

Recall from Section 4B that

𝐅0(w)=(ln(w1))logp(p+12)k=wpk(1wpk(p1))(1wpk)(1+wpk+1)Π(wpk)(p+12)k.\displaystyle\mathbf{F}_{0}(w)=\big{(}\ln(w^{-1})\big{)}^{\log_{p}(\frac{p+1}{2})}\sum_{k=-\infty}^{\infty}\frac{w^{p^{k}}(1-w^{p^{k}(p-1)})}{(1-w^{p^{k}})(1+w^{p^{k+1}})}\Pi(w^{p^{k}})\left(\frac{p+1}{2}\right)^{k}.

We now give formulas to compute the Fourier coefficients LnL_{n} of 𝐟0\mathbf{f}_{0}, and thus of 𝐅0\mathbf{F}_{0}, (fairly) efficiently. It turns out that L0L_{0} is moderate but LnL_{n} are tiny for n0n\neq 0, which causes the behavior of 𝐅0(2px)\mathbf{F}_{0}(2^{-p^{x}}) as in the next example, plotted on [0.1,0.9][0.1,0.9]:

[Uncaptioned image]p=2.\displaystyle\leavevmode\hbox to227.09pt{\vbox to143.26pt{\pgfpicture\makeatletter\hbox{\hskip 113.54475pt\lower-71.62816pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-110.21175pt}{-68.29515pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=136.5733pt]{figs/fzero}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.38959pt}{19.08957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

This looks like the sine curve because n>1|Ln|\sum_{n>1}|L_{n}| is much smaller than |L1||L_{1}| as we will see momentarily. To wrap-up, for p=2p=2 one can show that

Ln=1(ln2)2log2(3/2)01ln(w1)log2(32)+inlog2(e2π)w+w1j=1(1(w2j1w2j1)23(w2j+w2j))dwwlog2w1.\displaystyle L_{n}=\frac{1}{(\ln 2)^{2-\log_{2}(3/2)}}\int_{0}^{1}\frac{\ln(w^{-1})^{\log_{2}(\frac{3}{2})+in\log_{2}(e^{2\pi})}}{w+w^{-1}}\prod_{j=1}^{\infty}\left(1-\frac{(w^{2^{-j-1}}-w^{-2^{-j-1}})^{2}}{3(w^{2^{-j}}+w^{-2^{-j}})}\right)\frac{dw}{w\log_{2}w^{-1}}.

Let ζ(x,s)=k=0(k+x)s\zeta(x,s)=\sum_{k=0}^{\infty}(k+x)^{-s} denote the Hurwitz zeta function. Consider the following reparametrization:

ξ(β,u)=4βζ(β,u4).\displaystyle\xi(\beta,u)=4^{-\beta}\zeta(\beta,\tfrac{u}{4}).

Recalling that Γ(z)=0xz1exdx=01(ln1x)z1dx\Gamma(z)=\int_{0}^{\infty}x^{z-1}e^{-x}dx=\int_{0}^{1}(\ln\frac{1}{x})^{z-1}dx, we get

Ln=2Γ(log2(32)+1+2πinln2)(ln2)1+2πinln2limN13N1k1,,kN1ξ(log2(32)+1+2πinln2,2+j=1Nkj2j).\displaystyle L_{n}=\frac{2\Gamma\big{(}\log_{2}(\tfrac{3}{2})+1+\tfrac{2\pi in}{\ln 2}\big{)}}{(\ln 2)^{1+\frac{2\pi in}{\ln 2}}}\lim_{N\to\infty}\frac{1}{3^{N}}\sum_{-1\leq k_{1},\dots,k_{N}\leq 1}\xi\big{(}\log_{2}(\tfrac{3}{2})+1+\tfrac{2\pi in}{\ln 2},2+{\textstyle\sum_{j=1}^{N}}k_{j}2^{-j}\big{)}.

The Hurwitz zeta function is quite easy to compute, so this gives a fairly efficient way to compute the Fourier coefficients LnL_{n}.

A bit of work shows that, for general pp, we have:

Ln=2Γ(logp(p+12)+1+2πinlnp)(lnp)limN1(p+1)N1k1,,kN1ξ(logp(p+12)+1+2πinlnp,2+j=1Nkjpj).L_{n}=\frac{2\Gamma(\log_{p}(\frac{p+1}{2})+1+\frac{2\pi in}{\ln p})}{(\ln p)}\lim_{N\to\infty}\frac{1}{(p+1)^{N}}\sum_{-1\leq k_{1},\dots,k_{N}\leq 1}\xi(\log_{p}(\tfrac{p+1}{2})+1+\tfrac{2\pi in}{\ln p},2+{\textstyle\sum_{j=1}^{N}}k_{j}p^{-j}).

Moreover, using the classical formulas for the Hurwitz zeta function one can show that |Ln||L_{n}| is nonzero. Furthermore, let

S(p,n,N):=|1k1,,kN1ξ(logp(p+12)+1+2πinlnp,2+j=1Nkjpj)|.\displaystyle S(p,n,N):=\bigg{|}\sum_{-1\leq k_{1},\dots,k_{N}\leq 1}\xi(\log_{p}(\tfrac{p+1}{2})+1+\tfrac{2\pi in}{\ln p},2+{\textstyle\sum_{j=1}^{N}}k_{j}p^{-j})\bigg{|}.

One can also show that max{S(p,n,N)}\max\{S(p,n,N)\}, for fixed NN, is obtained at p=2p=2 and n=0n=0. Indeed, the function S(p,n,N)S(p,n,N) behaves as follows when varying nn and pp, respectively, while keeping NN fixed:

[Uncaptioned image]p=2,N=5,[Uncaptioned image]n=0,N=5.\displaystyle\leavevmode\hbox to217.69pt{\vbox to143.26pt{\pgfpicture\makeatletter\hbox{\hskip 108.8472pt\lower-71.62816pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-105.51419pt}{-68.29515pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=136.5733pt]{figs/fourier1}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.0456pt}{-2.44444pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2,N=5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to217.69pt{\vbox to143.26pt{\pgfpicture\makeatletter\hbox{\hskip 108.8472pt\lower-71.62816pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-105.51419pt}{-68.29515pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=136.5733pt]{figs/fourier2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.56004pt}{-2.44444pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n=0,N=5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Here we have divided by 3N3^{N} to highlight the bound 0.60.6 which is quite crude:

[Uncaptioned image]p=2,n=0.\displaystyle\leavevmode\hbox to228.53pt{\vbox to143.26pt{\pgfpicture\makeatletter\hbox{\hskip 114.26746pt\lower-71.62816pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-110.93445pt}{-68.29515pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=136.5733pt]{figs/fourier3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.6069pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2,n=0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

9D. Numerical data for odds and ends

Recall that Section 1B shows that, for some C1,C2>0C_{1},C_{2}\in\mathbb{R}_{>0}, we have

C1ntp2nbnC2ntp2n,n1.\displaystyle C_{1}\cdot n^{t_{p}}\cdot 2^{n}\leq b_{n}\leq C_{2}\cdot n^{t_{p}}\cdot 2^{n},\qquad n\geq 1.

One can probably take C1=1/4C_{1}=1/4 and C2=1C_{2}=1, as illustrated here for p=2p=2:

[Uncaptioned image]p=2,[Uncaptioned image]p=2.\displaystyle\leavevmode\hbox to219.86pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 109.93126pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-106.59825pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/lowerupperp2a}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to224.2pt{\vbox to149.04pt{\pgfpicture\makeatletter\hbox{\hskip 112.09935pt\lower-74.51895pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-108.76634pt}{-71.18594pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=142.26378pt]{figs/lowerupperp2b}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Moreover, Section 5A shows that we have

bn+24bn,n0.\displaystyle b_{n+2}\leq 4b_{n},\;n\geq 0.

One could conjecture that limnbn+2/bn=4\lim_{n\to\infty}b_{n+2}/b_{n}=4, as illustrated here for p=2p=2 where we know this is true by Section 7A:

[Uncaptioned image]p=2,[Uncaptioned image]p=2.\displaystyle\leavevmode\hbox to225.64pt{\vbox to136.03pt{\pgfpicture\makeatletter\hbox{\hskip 112.82205pt\lower-68.01465pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-109.48904pt}{-64.68164pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=129.46011pt]{figs/monoton1}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to225.64pt{\vbox to136.03pt{\pgfpicture\makeatletter\hbox{\hskip 112.82205pt\lower-68.01465pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-109.48904pt}{-64.68164pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=129.46011pt]{figs/monoton2.png}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.36137pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Finally, W=Sym2VW=\mathrm{Sym}^{2}V with dim𝐤W=3\dim_{\mathbf{k}}W=3 is an indecomposable tilting SL2(𝐤)SL_{2}(\mathbf{k})-representation unless p=2p=2. For p=3p=3 we get for bn=bn(W)b_{n}=b_{n}(W) the numbers:

(bn)n0=(\displaystyle(b_{n})_{n\in\mathbb{Z}_{\geq 0}}=( 1,1,2,5,13,35,95,260,715,1976,5486,15301,\displaystyle 1,1,2,5,13,35,95,260,715,1976,5486,15301,
42686,120628,340874,967136,2754455,7872973,).\displaystyle 42686,120628,340874,967136,2754455,7872973,\dots).

One could aim for a statement of the form

D1ntp3nbnD2ntp3n,n1,\displaystyle D_{1}\cdot n^{t_{p}}\cdot 3^{n}\leq b_{n}\leq D_{2}\cdot n^{t_{p}}\cdot 3^{n},\qquad n\geq 1,

where D1,D2>0D_{1},D_{2}\in\mathbb{R}_{>0}. Indeed, we get the following logplots:

[Uncaptioned image]p=3,[Uncaptioned image]p=3.\displaystyle\leavevmode\hbox to236.48pt{\vbox to143.26pt{\pgfpicture\makeatletter\hbox{\hskip 118.24231pt\lower-71.62816pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-114.9093pt}{-68.29515pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=136.5733pt]{figs/sym1}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.9969pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\leavevmode\hbox to228.53pt{\vbox to143.26pt{\pgfpicture\makeatletter\hbox{\hskip 114.26746pt\lower-71.62816pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-110.93445pt}{-68.29515pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\includegraphics[height=136.5733pt]{figs/sym2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.9969pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$p=3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

As one can see, we expect some nontrivial scalar to make the curves fit better. Hence, these plots might indicate an analog of Section 1B for WW instead of VV.

Appendix A Monoidal subcategories of finite tensor categories

We use the terminology of tensor categories from [EGNO15]. Recall that an object XX of a tensor category 𝐂\mathbf{C} is a generator if any object of 𝐂\mathbf{C} is isomorphic to a subquotient of a direct sum of tensor products of XX and its (iterated) duals.

For Section 2A, we need to show that in case 𝐂\mathbf{C} is finite (meaning that 𝐂\mathbf{C} has enough projective objects and finitely many simple objects), all projective objects appear as direct summands of the tensor powers of XX. This follows from Appendix A.(d) below and the fact that projective objects in a tensor category are also injective; see [EGNO15, Proposition 6.1.3]. Note that the theorem is a generalization of the known case of fusion categories in [DGNO10, Corollary F.7]. It can also be interpreted as a generalization of the Burnside–Brauer–Steinberg theorem for Hopf algebras; see, e.g. [PQ95], or a generalization of the main result of [BK72].

Theorem \theTheorem.

The following properties hold for any tensor category 𝐂\mathbf{C} with finitely many isomorphism classes of simple objects:

  1. (a)

    Any full additive subcategory that is closed under taking subquotients and internal tensor products is a tensor subcategory (i.e. rigid).

  2. (b)

    For any X𝐂X\in\mathbf{C}, the left and right dual objects XX^{\ast} and X{}^{\ast}X appear as subquotients of direct sums of XdX^{\otimes d} for d0d\in\mathbb{Z}_{\geq 0}.

  3. (c)

    For any simple object V𝐂V\in\mathbf{C}, the left and right dual objects VV^{\ast} and V{}^{\ast}V appear as subquotients of VdV^{\otimes d} for some d0d\in\mathbb{Z}_{\geq 0}.

  4. (d)

    If XX is a generator, then every object in 𝐂\mathbf{C} is a subquotient of direct sums of tensor powers of XX.

Proof.

Firstly, we can observe that part (a) implies part (b) and that (b) implies (d).

Now we prove that (c) actually implies (a). For this, let 𝐃𝐂\mathbf{D}\subset\mathbf{C} be a subcategory as in (a), and we assume that property (c) is true for 𝐂\mathbf{C}. To show that 𝐃\mathbf{D} is rigid, we show that every object Z𝐃Z\in\mathbf{D} is rigid. We prove this by induction on the length (Z)\ell(Z) of Z𝐃Z\in\mathbf{D}. The base (Z)=1\ell(Z)=1 follows from our assumption (c).

To justify the induction step, let (Z)2\ell(Z)\geq 2 and include ZZ into a short exact sequence

0YZA0,\displaystyle 0\to Y\to Z\to A\to 0,

where Y,AY,A are nonzero. Note that AA and YY are rigid in 𝐃\mathbf{D} by induction, and ZZ is defined by an element hExt(A,Y):=Ext𝐃(A,Y)h\in\mathrm{Ext}(A,Y):=\mathrm{Ext}_{\mathbf{D}}(A,Y). Now, in general, given an element hExt(A,Y)h\in\mathrm{Ext}(A,Y) for objects with duals AA and YY, we have an element 1h1Ext(YAA,YYA)1\otimes h\otimes 1\in\mathrm{Ext}(Y^{\ast}\otimes A\otimes A^{\ast},Y^{\ast}\otimes Y\otimes A^{\ast}) which defines an element hExt(Y,A)h^{\ast}\in\mathrm{Ext}(Y^{\ast},A^{\ast}) obtained by composing 1h11\otimes h\otimes 1 with evaluations and coevaluations. The ZZ^{\ast}, the extension of AA^{\ast} and YY^{\ast} defined by hh^{\ast} is the left dual of ZZ, and thus belongs to 𝐃\mathbf{D}. The right dual Z{}^{\ast}Z can be found in a similar way. Thus, ZZ is rigid.

By the above, we have (c)\Rightarrow(a)\Rightarrow(b)\Rightarrow(d), and it now suffices to prove property (c). This will be done below after some preparation.

The following lemma can be seen as being part of the Frobenius–Perron theorem.

Lemma \theLemma.

Let MM be a nonzero square matrix with nonnegative entries and v,wv,w be row and column vectors with strictly positive entries such that vM=μ1vvM=\mu_{1}v, Mw=μ2wMw=\mu_{2}w for some μ1,μ2\mu_{1},\mu_{2}\in\mathbb{R}. Then μ1=μ2>0\mu_{1}=\mu_{2}>0 and MM is completely reducible (conjugate by a permutation matrix to a direct sum of irreducible matrices).

Proof.

We have μ1vw=μ2vw=vMw>0\mu_{1}vw=\mu_{2}vw=vMw>0, so μ1=μ2=μ>0\mu_{1}=\mu_{2}=\mu>0. It remains to show that if MM is reducible, then it is decomposable. If MM is reducible, then after conjugating MM by a permutation matrix, we have M=(M11M120M22)M=\begin{pmatrix}M_{11}&M_{12}\\ 0&M_{22}\end{pmatrix}. So, if v=(v1,v2)v=(v_{1},v_{2}), w=(w1w2)w=\binom{w_{1}}{w_{2}} then we have

M22w2=μw2,v1M12+v2M22=μv2.\displaystyle M_{22}w_{2}=\mu w_{2},\ v_{1}M_{12}+v_{2}M_{22}=\mu v_{2}.

Multiplying the second equation by w2w_{2}, the first equation by v2v_{2}, and subtracting, we get v1M12w2=0v_{1}M_{12}w_{2}=0, which means M12=0M_{12}=0, so MM is decomposable, as claimed. ∎

Now, let AA be a transitive unital +\mathbb{Z}_{+}-ring of finite rank with basis B=(bj)B=(b_{j}). For X:=xjbjX:=\sum x_{j}b_{j} with xjx_{j}\in\mathbb{R}, let MXM_{X} be the matrix of left multiplication by XX on AA\otimes_{\mathbb{Z}}\mathbb{R} in the basis BB.

Lemma \theLemma.
  1. (i)

    If xj0x_{j}\geq 0, then MXM_{X} is completely reducible.

  2. (ii)

    Suppose that b,bBb,b^{\ast}\in B and that the BB-decomposition of bbbb^{\ast} contains b0=1b_{0}=1. Then there exists n0n\in\mathbb{Z}_{\geq 0} such that the BB-decomposition of bnb^{n} contains bb^{\ast}.

Proof.

(i). Let d:Ad\colon A\to\mathbb{R} be the Frobenius–Perron dimension. Since dd is a character, d(X)d(bj)=d(Xbj)=k(MX)jkd(bk)d(X)d(b_{j})=d(Xb_{j})=\sum_{k}(M_{X})_{jk}d(b_{k}), so the column vector (d(bk))(d(b_{k})) is a right eigenvector of MXM_{X}. Also, by [EGNO15, Proposition 3.3.6(2)], there exists a left (row) eigenvector (ck)(c_{k}) of MXM_{X} with positive entries. Thus, by Appendix A, MXM_{X} is completely reducible.

(ii). Consider the directed graph Γ\Gamma with vertex set BB and edge bibjb_{i}\to b_{j} present if and only if the BB-decomposition of bbibb_{i} contains bjb_{j}. Let Γ1\Gamma_{1} be the connected component of Γ\Gamma that contains b0=1b_{0}=1. Since the BB-decomposition of bbbb^{\ast} contains 11, bΓ1b^{\ast}\in\Gamma_{1}. Thus, by (i), there is an oriented path from 11 to bb^{\ast}, i.e., there exists n0n\in\mathbb{Z}_{\geq 0} such that the BB-decomposition of bnb^{n} contains bb^{\ast}, as desired. ∎

To complete the proof of Appendix A, it now suffices to observe that Appendix A.(c) follows from applying Appendix A(ii) to the Grothendieck ring A=K0(𝐂)A=K_{0}(\mathbf{C}), with BB the basis of simple objects, b=[V]b=[V] and b=[V]b^{\ast}=[V^{\ast}] or b=[V]b^{\ast}=[{}^{\ast}V]. ∎

Remark \theRemark.

The assumption that 𝐂\mathbf{C} has finitely many simple objects in Appendix A cannot be dropped (even for categories with enough projective objects). For instance, the statement is not true if 𝐂\mathbf{C} is the representation category of the multiplicative group and XX is a faithful one dimensional representation.

References

  • [And04] H.H. Andersen. Cells in affine Weyl groups and tilting modules. In Representation theory of algebraic groups and quantum groups, volume 40 of Adv. Stud. Pure Math., pages 1–16. Math. Soc. Japan, Tokyo, 2004. doi:10.2969/aspm/04010001.
  • [And19] H.H. Andersen. Simple modules for Temperley–Lieb algebras and related algebras. J. Algebra, 520:276–308, 2019. URL: https://arxiv.org/abs/1709.00248, doi:10.1016/j.jalgebra.2018.10.035.
  • [AST18] H.H. Andersen, C. Stroppel, and D. Tubbenhauer. Cellular structures using Uq\mathrm{U}_{q}-tilting modules. Pacific J. Math., 292(1):21–59, 2018. URL: https://arxiv.org/abs/1503.00224, doi:10.2140/pjm.2018.292.21.
  • [BC17] J.P. Bell and M. Coons. Transcendence tests for Mahler functions. Proc. Amer. Math. Soc., 145(3):1061–1070, 2017. URL: https://arxiv.org/abs/1511.07530, doi:10.1090/proc/13297.
  • [Bia93] P. Biane. Estimation asymptotique des multiplicités dans les puissances tensorielles d’un 𝔤\mathfrak{g}-module. C. R. Acad. Sci. Paris Sér. I Math., 316(8):849–852, 1993.
  • [BGT89] N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1989.
  • [BK72] R.M. Bryant and L.G. Kovács. Tensor products of representations of finite groups. Bull. London Math. Soc., 4:133–135, 1972. doi:10.1112/blms/4.2.133.
  • [BLS19] G. Burrull, N. Libedinsky, and P. Sentinelli. p-Jones–Wenzl idempotents. Adv. Math., 352(20):246–264, 2019. URL: https://arxiv.org/abs/1902.00305, doi:10.1016/j.aim.2019.06.005.
  • [CE21] M. Coons and J. Evans. A sequential view of self-similar measures; or, what the ghosts of Mahler and Cantor can teach us about dimension. J. Integer Seq., 24(2):Art. 21.2.5, 10, 2021. URL: https://arxiv.org/abs/2011.10722.
  • [CEO24] K. Coulembier, P. Etingof, and V. Ostrik. Asymptotic properties of tensor powers in symmetric tensor categories. Pure Appl. Math. Q. 20 (2024), no. 3, 1141–1179. URL: https://arxiv.org/abs/2301.09804, doi:10.4310/pamq.2024.v20.n3.a4.
  • [CEOT24] K. Coulembier, P. Etingof, V. Ostrik, and D. Tubbenhauer. Code and more for the paper Fractal behavior of tensor powers of the two dimensional space in prime characteristic. 2024. https://github.com/dtubbenhauer/sl2-charp.
  • [COT24] K. Coulembier, V. Ostrik, and D. Tubbenhauer. Growth rates of the number of indecomposable summands in tensor powers. Algebr. Represent. Theory 27 (2024), no. 2, 1033–1062. URL: https://arxiv.org/abs/2301.00885, doi:10.1007/s10468-023-10245-7.
  • [CW24] K. Coulembier and G. Williamson. Perfecting group schemes. J. Inst. Math. Jussieu 23 (2024), no. 6, 2549–2591. URL: https://arxiv.org/abs/2206.05867, doi:10.1017/S1474748024000033.
  • [Del90] P. Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 111–195. Birkhäuser Boston, Boston, MA, 1990.
  • [Don93] S. Donkin. On tilting modules for algebraic groups. Math. Z., 212(1):39–60, 1993. doi:10.1007/BF02571640.
  • [DGNO10] V. Drinfeld and S. Gelaki and D. Nikshych and O. Victor. On tilting modules for algebraic groups. Selecta Math. (N.S.), 16 (2010), no. 1, 1–119. URL: https://arxiv.org/abs/0906.0620, doi:10.1007/s00029-010-0017-z.
  • [Dus20] M. Dus. Weak version of Karamata’s Tauberian theorem. MathOverflow, 2020. Version: 2020-Mar-03; author’s MathOverflow link https://mathoverflow.net/users/111917/m-dus. URL: https://mathoverflow.net/q/353943.
  • [EGNO15] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015. doi:10.1090/surv/205.
  • [Erd95] K. Erdmann. Tensor products and dimensions of simple modules for symmetric groups. Manuscripta Math. 88 (1995), no. 3, 357–386. doi:10.1007/BF02567828.
  • [FS09] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. doi:10.1017/CBO9780511801655.
  • [Hab80] W.J. Haboush. Central differential operators on split semisimple groups over fields of positive characteristic. Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), pp. 35–85, Lecture Notes in Math., 795, Springer, Berlin, 1980.
  • [KST24] M. Khovanov, M. Sitaraman, and D. Tubbenhauer. Monoidal categories, representation gap and cryptography. Trans. Amer. Math. Soc. Ser. B, 11:329–395, 2024. URL: https://arxiv.org/abs/2201.01805, doi:10.1090/btran/151.
  • [LTV23] A. Lacabanne, D. Tubbenhauer, and P. Vaz. Asymptotics in finite monoidal categories. Proc. Amer. Math. Soc. Ser. B, 10:398–412, 2023. URL: https://arxiv.org/abs/2307.03044, doi:10.1090/bproc/198.
  • [LTV24] A. Lacabanne, D. Tubbenhauer, and P. Vaz. Asymptotics in infinite monoidal categories. 2024. URL: https://arxiv.org/abs/2404.09513.
  • [LPRS24] A. Lachowska, O. Postnova, N. Reshetikhin, and D. Solovyev. Tensor powers of vector representation of Uq(sl2)U_{q}(sl_{2}) at even roots of unity. 2024. URL: https://arxiv.org/abs/2404.03933.
  • [La24] M. Larsen. Bounds for SL2-indecomposables in tensor powers of the natural representation in characteristic 2. 2024. URL: https://arxiv.org/abs/2405.16015.
  • [LW18] G. Lusztig and G. Williamson. Billiards and tilting characters for SL3\mathrm{SL}_{3}. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 015, 22, 2018. URL: https://arxiv.org/abs/1703.05898, doi:10.3842/SIGMA.2018.015.
  • [Mis20] M. Mishna. Analytic combinatorics: a multidimensional approach. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, [2020] ©2020.
  • [Nis96] K. Nishioka. Mahler functions and transcendence, volume 1631 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996. doi:10.1007/BFb0093672.
  • [OEI23] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at http://oeis.org.
  • [PQ95] D.S. Passman and D. Quinn. Burnside’s theorem for Hopf algebras. Proc. Amer. Math. Soc., 123(2):327–333, 1995. doi:10.2307/2160884.
  • [Rin91] C.M. Ringel. The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z., 208(2):209–223, 1991. doi:10.1007/BF02571521.
  • [Spe23] R.A. Spencer. The modular Temperley–Lieb algebra. Rocky Mountain J. Math., 53(1):177–208, 2023. URL: https://arxiv.org/abs/2011.01328, doi:10.1216/rmj.2023.53.177.
  • [Tit58] E.C. Titchmarsh. The theory of functions. Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition.
  • [TW21] D. Tubbenhauer and P. Wedrich. Quivers for SL2\mathrm{SL}_{2} tilting modules. Represent. Theory, 25:440–480, 2021. URL: https://arxiv.org/abs/1907.11560, doi:10.1090/ert/569.
  • [STWZ23] L. Sutton, D. Tubbenhauer, P. Wedrich, and J. Zhu. SL2 tilting modules in the mixed case. Selecta Math. (N.S.), 29(3):39, 2023. URL: https://arxiv.org/abs/2105.07724, doi:10.1007/s00029-023-00835-0.