This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fourth post-Newtonian effective-one-body Hamiltonians with generic spins

Mohammed Khalil [email protected] Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany Department of Physics, University of Maryland, College Park, MD 20742, USA    Jan Steinhoff [email protected] Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany    Justin Vines [email protected] Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany    Alessandra Buonanno [email protected] Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany Department of Physics, University of Maryland, College Park, MD 20742, USA
Abstract

In a compact binary coalescence, the spins of the compact objects can have a significant effect on the orbital motion and gravitational-wave (GW) emission. For generic spin orientations, the orbital plane precesses, leading to characteristic modulations of the GW signal. The observation of precession effects is crucial to discriminate among different binary formation scenarios, and to carry out precise tests of General Relativity. Here, we work toward an improved description of spin effects in binary inspirals, within the effective-one-body (EOB) formalism, which is commonly used to build waveform models for LIGO and Virgo data analysis. We derive EOB Hamiltonians including the complete fourth post-Newtonian (4PN) conservative dynamics, which is the current state of the art. We place no restrictions on the spin orientations or magnitudes, or on the type of compact object (e.g., black hole or neutron star), and we produce the first generic-spin EOB Hamiltonians complete at 4PN order. We consider multiple spinning EOB Hamiltonians, which are more or less direct extensions of the varieties found in previous literature, and we suggest another simplified variant. Finally, we compare the circular-orbit, aligned-spin binding-energy functions derived from the EOB Hamiltonians to numerical-relativity simulations of the late inspiral. While finding that all proposed Hamiltonians perform reasonably well, we point out some interesting differences, which could guide the selection of a simpler, and thus faster-to-evolve EOB Hamiltonian to be used in future LIGO and Virgo inference studies.

I Introduction

The observation of gravitational waves (GWs) from coalescing binaries Abbott et al. (2016a, b, 2017, 2019) using a continually improving network of GW detectors Aasi et al. (2015); Acernese et al. (2015); Aso et al. (2013); Iyer et al. (2011) is a milestone in fundamental physics and astrophysics. As the detectors increase their sensitivity, we will observe more events, with larger signal-to-noise ratios, spanning a larger region of the parameter space. Thus, to faithfully recover the sources’ properties, it is important to improve the accuracy of models of waveforms from binaries of compact objects (black holes and/or neutron stars) on generic orbits and with generic spin orientations. In the generic case, the orbital plane and the objects’ spins precess about the direction of the system’s total angular momentum, leading to modulations of the GW signal which are a smoking-gun signature of the dynamical influence of the spins. Including such precession effects in GW template models, as opposed to restricting to the simpler aligned-spin case with no precession, is important for more inclusive GW searches, more accurate inference studies and tests of General Relativity.

The effective-one-body (EOB) framework Buonanno and Damour (1999, 2000) aims at providing a synergy between multiple analytical approximations and numerical-relativity (NR) simulations of relativistic inspiraling binaries. The core ingredient of the EOB approach is the EOB Hamiltonian, a canonical Hamiltonian describing the binary’s (conservative) orbital dynamics, which both (i) agrees, in its post-Newtonian (PN) expansion,111Recently, also the post-Minkowskian (weak-field) approximation for unbound orbits is considered; see below. with known results for arbitrary mass ratios from PN calculations (in the weak-field and low-speed regime), and (ii) becomes, in the extreme-mass-ratio limit, an exact Hamiltonian for a test (or probe) particle in an exact black-hole spacetime, valid for arbitrary separations and speeds. The EOB Hamiltonian is naturally expressed as a deformation of the zero-mass-ratio test-particle Hamiltonian, with the deformation determined by finite-mass-ratio results from the PN approximation. For example, the original (nonspinning) EOB Hamiltonian Buonanno and Damour (1999) becomes, as the mass ratio goes to zero, the exact Hamiltonian for a test mass undergoing geodesic motion in a Schwarzschild (nonspinning black hole) spacetime.

In generalizing to spinning black holes, the first natural replacement for the Schwarzschild-geodesic Hamiltonian is the Hamiltonian for geodesic (test-mass) motion in an exact Kerr (spinning black hole) spacetime.222With the aim of building a first inspiral-merger-ringdown waveform model for generic spins, Ref. Buonanno et al. (2006) employed a spinning EOB Hamiltonian built by adding to the Schwarzschild-geodesic EOB Hamiltonian the PN-expanded spin Hamiltonian. A spinning EOB (SEOB) Hamiltonian incorporating the Kerr-geodesic limit was first constructed in Ref. Damour (2001) including leading-order (LO) spin-orbit and LO spin-squared effects in the PN expansion. This was later extended to the next-to-leading (NLO) Damour et al. (2008a) and next-to-NLO (NNLO) Nagar (2011) spin-orbit levels, and to the NLO spin-squared level for aligned spins Balmelli and Jetzer (2013, 2015) and then for generic (precessing) spins Balmelli and Damour (2015). The Kerr-geodesic-based approach for aligned spins has been further developed in Refs. Pan et al. (2010); Damour and Nagar (2014); Nagar et al. (2016, 2017); Akcay et al. (2019); Nagar et al. (2018); Nagar and Rettegno (2019), e.g., by including matter effects (for neutron stars) and calibration to NR simulations. A second category of SEOB Hamiltonians is based on the Hamiltonian for a spinning test-body (test spin) in a Kerr background Barausse et al. (2009); Vines et al. (2016), first developed with NLO Barausse and Buonanno (2010) and then NNLO Barausse and Buonanno (2011) spin-orbit terms and with LO spin-squared terms. Such Hamiltonians have always been applicable for generic (precessing) spins. They have been generalized to include tidal effects in Refs. Hinderer et al. (2016); Steinhoff et al. (2016), they have been used for studies of extreme-mass-ratio binaries in Ref. Yunes et al. (2011) and periastron advance in Ref. Hinderer et al. (2013), and they have been refined and calibrated to NR simulations in Refs. Taracchini et al. (2012, 2014); Pan et al. (2014); Bohé et al. (2017); Babak et al. (2017); Cotesta et al. (2018). EOB Hamiltonians have also been constructed to include information from gravitational self-force calculations Damour (2010); Akcay et al. (2012); Barausse et al. (2012); Antonelli et al. (2020) (for extreme mass ratios) and from the post-Minkowskian approximation Damour (2016, 2018); Antonelli et al. (2019) (assuming weak fields but allowing arbitrary speeds). A recent comparison of various SEOB waveform models is given in Ref. Rettegno et al. (2019). Waveform models constructed with the SEOB Hamiltonians based on a spinning test-body in a Kerr background Taracchini et al. (2014); Pan et al. (2014); Bohé et al. (2017); Babak et al. (2017); Cotesta et al. (2018) have been employed in template banks of LIGO and Virgo, and inference studies of binary black holes Abbott et al. (2016a, b, 2019). For parameter estimation of binary neutron stars both classes of SEOB Hamiltonians have been employed in Ref. Abbott et al. (2019).

The goal of the present paper is to construct SEOB Hamiltonians for compact binaries (black holes or neutron stars) that include all known PN results to 4PN order for generic orbits and spin orientations. Beyond the up-to-NNLO spin-orbit and spin-squared contributions, the 4PN level includes also the LO cubic and quartic in spin terms. Previous work is not complete to 4PN order for generic spins Barausse and Buonanno (2010, 2011); Balmelli and Damour (2015) or complete to 4PN but valid for aligned spins only Damour and Nagar (2014); Akcay et al. (2019); Nagar et al. (2019, 2018). We construct three SEOB Hamiltonians in this paper: (i) a Hamiltonian based on Ref. Balmelli and Damour (2015), which uses the idea of “centrifugal radius” rcr_{c} Damour and Nagar (2014), while recovering the Kerr-geodesic limit; (ii) a simplified version of the Hamiltonian from Ref. Balmelli and Damour (2015) that does not use a centrifugal radius and has a different factorization for the PN spin corrections, similarly recovering the Kerr-geodesic limit; and (iii) one Hamiltonian following Refs. Barausse et al. (2009); Barausse and Buonanno (2010, 2011) which recovers the dynamics of a spinning test-body in the Kerr spacetime in the small-mass-ratio limit (see Table 1 for a summary of the differences between these Hamiltonians). As we wish to somewhat fairly compare different treatments of spin effects in the EOB formalism, we have modified some details of the original proposals of Refs. Balmelli and Damour (2015); Barausse and Buonanno (2011) such that all the Hamiltonians agree in the zero-spin limit. We compare the aligned-spin circular-orbit binding energy functions from the different Hamiltonians with NR simulations and with the aligned-spin Hamiltonian from Refs. Nagar et al. (2019, 2018); Damour and Nagar (2014). This enables one to assess compromises between accuracy and simplicity of the SEOB Hamiltonians.

The paper is organized as follows. In Sec. II we provide an overview of SEOB Hamiltonians and their construction. Sections III and IV present the ansätze of the SEOB Hamiltonians, with explicit results matched to 4PN in Appendix B. We then compare the aligned-spin circular-orbit binding energy of the Hamiltonians against NR in Sec. V. Our conclusions are given in Sec. VI. Appendix A corrects an omission at NLO S2 in the Hamiltonian of Ref. Balmelli and Jetzer (2013).

Table 1: The SEOB Hamiltonians used in this paper and the differences between them. All Hamiltonians include complete 4PN results for generic spins and compact objects, except for the last Hamiltonian, which is for aligned spins.
SEOB definition references
SEOBTS{}_{\text{TS}} based on the Hamiltonian for a test spin (TS) in Kerr spacetime Barausse and Buonanno (2010, 2011)
SEOBrcTM{}_{\text{TM}}^{r_{c}} based on the Hamiltonian for a test mass (TM) in Kerr spacetime; it uses the centrifugal radius rcr_{c} Balmelli and Damour (2015)
SEOBTM{}_{\text{TM}} simplified version of SEOBrcTM{}_{\text{TM}}^{r_{c}}; it does not use rcr_{c}; it uses different factorization for spin corrections [this paper]
SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}} similar to SEOBrcTM{}_{\text{TM}}^{r_{c}}, but for aligned spins and includes S2 and S4 corrections, differently Damour and Nagar (2014); Nagar et al. (2019, 2018)

Notation

We use geometric units such that the speed of light cc and the Newton constant GG are equal to 1. We utilize various combinations of the masses m1m_{1}, m2m_{2} of the binary’s components,

M=m1+m2,μ=m1m2M,ν=μM,\displaystyle M=m_{1}+m_{2},\quad\mu=\frac{m_{1}m_{2}}{M},\quad\nu=\frac{\mu}{M},
q=m1m2,X1=m1M,X2=m2M.\displaystyle q=\frac{m_{1}}{m_{2}},\quad X_{1}=\frac{m_{1}}{M},\quad X_{2}=\frac{m_{2}}{M}. (1)

For the spins 𝑺1\bm{S}_{1}, 𝑺2\bm{S}_{2}, we define the dimensionless versions

𝝌1=𝒂1m1=𝑺1m12,𝝌2=𝒂2m2=𝑺2m22,\displaystyle\bm{\chi}_{1}=\frac{\bm{a}_{1}}{m_{1}}=\frac{\bm{S}_{1}}{m_{1}^{2}},\qquad\bm{\chi}_{2}=\frac{\bm{a}_{2}}{m_{2}}=\frac{\bm{S}_{2}}{m_{2}^{2}}, (2)

along with the intermediate 𝒂1{\bm{a}}_{1}, 𝒂2{\bm{a}}_{2}. The relative position and momentum are denoted by 𝒓{\bm{r}} and 𝒑{\bm{p}}, respectively. Using an implicit Euclidean background, it holds

𝒑2=pr2+L2r2,pr=𝒏𝒑,𝑳=𝒓×𝒑,{\bm{p}}^{2}=p_{r}^{2}+\frac{L^{2}}{r^{2}},\quad p_{r}=\bm{n}\cdot\bm{p},\quad\bm{L}=\bm{r}\times\bm{p}, (3)

where 𝒏=𝒓/r\bm{n}=\bm{r}/r with r=|𝒓|r=|{\bm{r}}|, and 𝑳{\bm{L}} is the orbital angular momentum with magnitude LL. For convenience, we also introduce rescaled dimensionless variables,

𝒓^=𝒓M,𝒑^=𝒑μ,H^=Hμ,𝑳^=𝑳Mμ,𝒂^=𝒂M,\hat{{\bm{r}}}=\frac{{\bm{r}}}{M},\quad\hat{{\bm{p}}}=\frac{{\bm{p}}}{\mu},\quad\hat{H}=\frac{H}{\mu},\quad\hat{{\bm{L}}}=\frac{{\bm{L}}}{M\mu},\quad\hat{{\bm{a}}}=\frac{{\bm{a}}}{M}, (4)

and similarly for the magnitudes r^=|𝒓^|\hat{r}=|\hat{{\bm{r}}}|, etc.; here, HH is any of several Hamiltonians encountered below, and 𝒂=𝑺Kerr/M{\bm{a}}={\bm{S}}_{\text{Kerr}}/M is the rescaled spin of an effective Kerr black hole.

II Spinning effective-one-body Hamiltonians

In this section, we give an overview of spinning EOB Hamiltonians and their construction Buonanno and Damour (1999); Damour (2001); Damour et al. (2008a); Nagar (2011); Barausse et al. (2009); Barausse and Buonanno (2010, 2011); Balmelli and Jetzer (2013); Damour and Nagar (2014); Balmelli and Jetzer (2015); Balmelli and Damour (2015); Nagar et al. (2018, 2019), on which current EOB waveform models are built Buonanno and Damour (2000); Damour et al. (2009); Taracchini et al. (2012, 2014); Pan et al. (2014); Bohé et al. (2017); Babak et al. (2017); Nagar et al. (2016, 2017); Nagar and Rettegno (2019); Nagar et al. (2018). The EOB Hamiltonians are constructed such that (i) they describe geodesic motion in Kerr spacetime in the limit of vanishing mass ratio and that (ii) they agree (up to a canonical transformation) with a PN approximate Hamiltonian describing the conservative binary motion up to a certain order (here the 4PN order Levi and Steinhoff (2016a)). A certain class of EOB Hamiltonians Barausse and Buonanno (2010); Barausse et al. (2009); Barausse and Buonanno (2011) also incorporates the (nongeodesic) motion of spinning test particles in Kerr spacetime in the small mass-ratio limit, as described by the Matthisson-Papapetrou-Dixon equations Mathisson (1937, 2010); Papapetrou (1951); Corinaldesi and Papapetrou (1951); Dixon (1979).

We consider a spinning binary in the center-of-mass frame. The orbital dynamics is described by the relative separation 𝒓{\bm{r}} and linear momentum 𝒑{\bm{p}} vectors, and the internal dynamics is assumed to be captured by the spins 𝑺1{\bm{S}}_{1} and 𝑺2{\bm{S}}_{2} of each body. The Poisson brackets between these dynamical variables are the standard ones,

{ri,pj}\displaystyle\{r^{i},p_{j}\} =δij,\displaystyle=\delta_{ij}, (5a)
{S1i,S1j}\displaystyle\{S_{1}^{i},S_{1}^{j}\} =ϵijkS1k,\displaystyle=\epsilon_{ijk}S_{1}^{k}, (5b)
{S2i,S2j}\displaystyle\{S_{2}^{i},S_{2}^{j}\} =ϵijkS2k,\displaystyle=\epsilon_{ijk}S_{2}^{k}, (5c)

with all others vanishing. The dynamics on phase space is generated by a Hamiltonian function H(𝒓,𝒑,𝑺1,𝑺2)H({\bm{r}},{\bm{p}},{\bm{S}}_{1},{\bm{S}}_{2}). The equation of motion of a generic phase-space function AA reads

dAdt={A,H}+At.\frac{dA}{dt}=\{A,H\}+\frac{\partial A}{\partial t}. (6)

Here the Hamiltonian is either the PN HPNH^{\text{PN}} or the EOB HEOBH^{\text{EOB}} one. The EOB Hamiltonian HEOBH^{\text{EOB}} itself is given in terms of another Hamiltonian, the effective Hamiltonian HeffH^{\text{eff}}, via the energy map,

HEOB=M1+2ν(Heffμ1).H^{\text{EOB}}=M\sqrt{1+2\nu\left(\frac{H^{\text{eff}}}{\mu}-1\right)}\,. (7)

The utility of this energy map was demonstrated, e.g., in Refs. Buonanno and Damour (1999); Damour et al. (2000); Damour (2016). For instance, if for HeffH^{\text{eff}} one just takes the Hamiltonian of geodesics in Schwarzschild spacetime, then HEOBH^{\text{EOB}} correctly describes both the 1PN and first post-Minkowskian dynamics Buonanno and Damour (1999); Damour (2016).

II.1 The effective Hamiltonian

The central idea of the EOB Hamiltonian is to combine the dynamics in the test-body limit (with no restriction on the speed or field strength) with the PN dynamics (not restricted in the mass ratio). In this way, one might overcome some of the limitations of the individual approximations. This can be achieved by making an ansatz for HeffH^{\text{eff}} as a deformation of the test-body-limit Hamiltonian (deforming it such that PN results are recovered), which is the purpose of this section. Note that in the test-body limit HEOBHeff+constH^{\text{EOB}}\approx H^{\text{eff}}+\text{const}.

Let us review the Hamiltonian of a spinning test-body in Kerr spacetime Barausse et al. (2009); Vines et al. (2016). One can easily specialize this to the nonspinning (geodesic) case, which is the basis of some SEOB models. These test-body Hamiltonians are the basis for all SEOB models. The (inverse) Kerr metric gKerrμνg_{\text{Kerr}}^{\mu\nu} in Boyer-Lindquist coordinates (xμ)=(t,r,θ,ϕ)(x^{\mu})=(t,r,\theta,\phi) is given by the line element

dτ2\displaystyle-d\tau^{2} =gKerrμνμν\displaystyle=g_{\text{Kerr}}^{\mu\nu}\partial_{\mu}\partial_{\nu}
=ΛΔΣt2+ΔΣr2+1Σθ2\displaystyle=-\frac{\Lambda}{\Delta\Sigma}\partial_{t}^{2}+\frac{\Delta}{\Sigma}\partial_{r}^{2}+\frac{1}{\Sigma}\partial_{\theta}^{2}
+Σ2MrΣΔsin2θϕ24MraΣΔtϕ,\displaystyle\quad+\frac{\Sigma-2Mr}{\Sigma\Delta\sin^{2}\theta}\partial_{\phi}^{2}-\frac{4Mra}{\Sigma\Delta}\partial_{t}\partial_{\phi}, (8)

where MM is the mass of the black hole, σ=Ma\sigma=Ma is its spin, and

Σr2+a2cos2θ,Δr22Mr+a2,\displaystyle\Sigma\equiv r^{2}+a^{2}\cos^{2}\theta,\qquad\Delta\equiv r^{2}-2Mr+a^{2}, (9a)
Λ(r2+a2)2a2Δsin2θ.\displaystyle\Lambda\equiv(r^{2}+a^{2})^{2}-a^{2}\Delta\sin^{2}\theta. (9b)

The Hamiltonian of a spinning test-body HKerrH^{\text{Kerr}} can be obtained as a solution of the mass-shell constraint (see, e.g., Ref. Vines et al. (2016))

μ2=gKerrμν(pμ12ωμabSab)(pν12ωμabSab)+𝒪(S2),\begin{split}-\mu^{2}&=g_{\text{Kerr}}^{\mu\nu}\left(p_{\mu}-\frac{1}{2}\omega_{\mu ab}S_{*}^{ab}\right)\left(p_{\nu}-\frac{1}{2}\omega_{\mu ab}S_{*}^{ab}\right)\\ &\quad+\operatorname{\mathcal{O}}(S_{*}^{2}),\end{split} (10)

where pμ=(HKerr,pr,pθ,pϕ)p_{\mu}=(-H^{\text{Kerr}},p_{r},p_{\theta},p_{\phi}), μ\mu is the mass of the test-body, Sab=SabS_{*}^{ab}=-S_{*}^{ab} is its spin tensor in a local Lorentz frame (eaeaνμ=gKerrμνe_{a}{}^{\mu}e^{a\nu}=g_{\text{Kerr}}^{\mu\nu}), ωμab=ebνμeaν\omega_{\mu ab}=e_{b\nu}\nabla_{\mu}e_{a}{}^{\nu} are the Ricci rotation coefficients, and μ\nabla_{\mu} is the covariant derivative. The canonical spin vector of the test-body 𝑺{\bm{S}}_{*} is given by Si=12ϵijkSjkS^{i}_{*}=\frac{1}{2}\epsilon^{ijk}S_{*}^{jk} and the components S0iS_{0i} are fixed by the supplementary condition Sab(ebpμμ+μ2δb0)=0+𝒪(S2)S^{ab}(e_{b}{}^{\mu}p_{\mu}+\mu^{2}\delta^{0}_{b})=0+\operatorname{\mathcal{O}}(S_{*}^{2}), all in the local frame.

Let us split HKerrH^{\text{Kerr}} into a part dependent on the test-spin 𝑺{\bm{S}}_{*} and the remaining SS_{*}-independent terms into parts even and odd in the Kerr spin aa,

HKerr=HevenKerr+HoddKerr+HSKerr.H^{\text{Kerr}}=H^{\text{Kerr}}_{\text{even}}+H^{\text{Kerr}}_{\text{odd}}+H^{\text{Kerr}}_{S_{*}}. (11)

Following the procedure outlined above, and choosing the local frame from Ref. Barausse and Buonanno (2010), this leads to

HevenKerr\displaystyle H^{\text{Kerr}}_{\text{even}} =αKerrμ2+γKerrϕϕpϕ2+γKerrrrpr2+γKerrθθpθ2,\displaystyle=\alpha^{\text{Kerr}}\sqrt{\mu^{2}+\gamma_{\text{Kerr}}^{\phi\phi}p_{\phi}^{2}+\gamma_{\text{Kerr}}^{rr}p_{r}^{2}+\gamma_{\text{Kerr}}^{\theta\theta}p_{\theta}^{2}}, (12a)
HoddKerr\displaystyle H^{\text{Kerr}}_{\text{odd}} =βKerrpϕ\displaystyle=\beta^{\text{Kerr}}p_{\phi} (12b)
HSKerr\displaystyle H^{\text{Kerr}}_{S_{*}} =[𝑭t+(βKerr+αKerrγKerrϕϕpϕqKerr)𝑭ϕ]𝑺\displaystyle=\left[\bm{F}_{t}+\left(\beta^{\text{Kerr}}+\frac{\alpha^{\text{Kerr}}\gamma_{\text{Kerr}}^{\phi\phi}p_{\phi}}{\sqrt{q^{\text{Kerr}}}}\right)\bm{F}_{\phi}\right]\cdot\bm{S}_{*}
+αKerrqKerr(γKerrrrpr𝑭r+γKerrθθpθ𝑭θ)𝑺\displaystyle\quad+\frac{\alpha^{\text{Kerr}}}{\sqrt{q^{\text{Kerr}}}}\left(\gamma_{\text{Kerr}}^{rr}p_{r}\bm{F}_{r}+\gamma_{\text{Kerr}}^{\theta\theta}p_{\theta}\bm{F}_{\theta}\right)\cdot\bm{S}_{*}
+𝒪(S2),\displaystyle\quad+\operatorname{\mathcal{O}}(S_{*}^{2}), (12c)

with

αKerr\displaystyle\alpha^{\text{Kerr}} =1gKerrtt=ΔΣΛ,\displaystyle=\frac{1}{\sqrt{-g_{\text{Kerr}}^{tt}}}=\sqrt{\frac{\Delta\Sigma}{\Lambda}}, (13a)
βKerr\displaystyle\beta^{\text{Kerr}} =gKerrtϕgKerrtt=2aMrΛ,\displaystyle=\frac{g_{\text{Kerr}}^{t\phi}}{g_{\text{Kerr}}^{tt}}=\frac{2aMr}{\Lambda}, (13b)
γKerrϕϕ\displaystyle\gamma_{\text{Kerr}}^{\phi\phi} =gKerrϕϕgKerrtϕgKerrtϕgKerrtt=ΣΛsin2θ,\displaystyle=g_{\text{Kerr}}^{\phi\phi}-\frac{g_{\text{Kerr}}^{t\phi}g_{\text{Kerr}}^{t\phi}}{g_{\text{Kerr}}^{tt}}=\frac{\Sigma}{\Lambda\sin^{2}\theta}, (13c)
γKerrrr\displaystyle\gamma_{\text{Kerr}}^{rr} =gKerrrr=ΔΣ,\displaystyle=g_{\text{Kerr}}^{rr}=\frac{\Delta}{\Sigma}, (13d)
γKerrθθ\displaystyle\gamma_{\text{Kerr}}^{\theta\theta} =gKerrθθ=1Σ,\displaystyle=g_{\text{Kerr}}^{\theta\theta}=\frac{1}{\Sigma}, (13e)
qKerr\displaystyle\sqrt{q^{\text{Kerr}}} =HevenKerrαKerr,\displaystyle=\frac{H^{\text{Kerr}}_{\text{even}}}{\alpha^{\text{Kerr}}}, (13f)

and with explicit expressions for the fictitious gravito-magnetic (frame-dragging) force interacting with the test-spin 𝑺{\bm{S}}_{*} given in Ref. Hinderer et al. (2013) in terms of the vectors 𝑭μ{\bm{F}}_{\mu} (reproduced here in Sec. IV). A simplified version of this Hamiltonian for aligned spins and motion in the equatorial plane can be found in Ref. Bini et al. (2015). Simplifications for the generic-spin case are possible by making a different choice for the local frame which may simplify the Ricci rotation coefficients, see, e.g., Appendix C of Ref. Vines et al. (2016).

The Hamiltonian above is written in terms of components instead of vectors, which is a disadvantage for some purposes. Following Ref. Balmelli and Damour (2015), we transform to a 3-vector notation (with an implicit flat Euclidean background) by treating (r,θ,ϕ)(r,\theta,\phi) as spherical coordinates, with 𝒓=(x,y,z)=r(sinθcosϕ,sinθsinϕ,cosθ){\bm{r}}=(x,y,z)=r(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta) and 𝒂=(0,0,a){\bm{a}}=(0,0,a). This is accompanied by a transformation of the momenta prp_{r}, pθp_{\theta}, pϕp_{\phi} to the new momenta 𝒑{\bm{p}},

pr=𝒏𝒑,pϕ=Lz=(𝒓×𝒑)z\displaystyle p_{r}=\bm{n}\cdot\bm{p},\quad p_{\phi}=L_{z}=({\bm{r}}\times{\bm{p}})_{z} (14a)
pθ2r2=𝒑2pr2pϕ2r2sin2θ\displaystyle\frac{p_{\theta}^{2}}{r^{2}}={\bm{p}}^{2}-p_{r}^{2}-\frac{p_{\phi}^{2}}{r^{2}\sin^{2}\theta} (14b)

which makes it an overall canonical transformation. Noting that a2pϕ2/r2=(𝒏×𝒑𝒂)2a^{2}p_{\phi}^{2}/r^{2}=(\bm{n}\times\bm{p}\cdot\bm{a})^{2}, acosθ=𝒏𝒂a\cos\theta={\bm{n\cdot a}}, and a2sin2θ=a2(𝒏𝒂)2a^{2}\sin^{2}\theta=a^{2}-({\bm{n\cdot a}})^{2}, this results in the even-in-aa Hamiltonian

HevenKerr=[\displaystyle H^{\text{Kerr}}_{\text{even}}=\bigg{[} AKerr(μ2+BpKerr𝒑2+BnpKerr(𝒏𝒑)2\displaystyle A^{\text{Kerr}}\Big{(}\mu^{2}+B_{p}^{\text{Kerr}}\bm{p}^{2}+B_{np}^{\text{Kerr}}(\bm{n}\cdot\bm{p})^{2}
+BnpaKerr(𝒏×𝒑𝒂)2)]1/2,\displaystyle+B_{npa}^{\text{Kerr}}(\bm{n}\times\bm{p}\cdot\bm{a})^{2}\Big{)}\bigg{]}^{1/2}, (15a)

with

AKerr\displaystyle A^{\text{Kerr}} =(αKerr)2=ΔΣΛ,\displaystyle=(\alpha^{\text{Kerr}})^{2}=\frac{\Delta\Sigma}{\Lambda}, (16a)
BpKerr\displaystyle B_{p}^{\text{Kerr}} =r2γKerrθθ=r2Σ,\displaystyle=r^{2}\gamma_{\text{Kerr}}^{\theta\theta}=\frac{r^{2}}{\Sigma}, (16b)
BnpKerr\displaystyle B_{np}^{\text{Kerr}} =γKerrrrr2γKerrθθ=r2Σ[Δr21],\displaystyle=\gamma_{\text{Kerr}}^{rr}-r^{2}\gamma_{\text{Kerr}}^{\theta\theta}=\frac{r^{2}}{\Sigma}\left[\frac{\Delta}{r^{2}}-1\right], (16c)
BnpaKerr\displaystyle B_{npa}^{\text{Kerr}} =r2a2[γKerrϕϕγKerrθθsin2θ]=r2ΣΛ(Σ+2Mr),\displaystyle=\frac{r^{2}}{a^{2}}\left[\gamma_{\text{Kerr}}^{\phi\phi}-\frac{\gamma_{\text{Kerr}}^{\theta\theta}}{\sin^{2}\theta}\right]=-\frac{r^{2}}{\Sigma\Lambda}(\Sigma+2Mr), (16d)

and

Σ=r2+(𝒏𝒂)2,Δ=r22Mr+a2,\displaystyle\Sigma=r^{2}+({\bm{n}}\cdot{\bm{a}})^{2},\qquad\Delta=r^{2}-2Mr+a^{2}, (17a)
Λ=(r2+a2)2Δa2+Δ(𝒏𝒂)2.\displaystyle\Lambda=(r^{2}+a^{2})^{2}-\Delta a^{2}+\Delta({\bm{n}}\cdot{\bm{a}})^{2}. (17b)

Similarly, the odd-in-aa part reads

HoddKerr=βKerrpϕ=2MrΛ𝑳𝒂.H_{\text{odd}}^{\text{Kerr}}=\beta^{\text{Kerr}}p_{\phi}=\frac{2Mr}{\Lambda}\bm{L}\cdot\bm{a}. (18)

We now have all ingredients in order to discuss how an ansatz for the effective Hamiltonian can be built. In general, one takes the effective Hamiltonian to be a deformation of the Kerr Hamiltonian (the deformation parameter being the symmetric mass ratio ν\nu), either for a test spin or a test mass. While all EOB models agree on the identification of the masses between the test-body and comparable mass case (M=m1+m2M=m_{1}+m_{2}, μ=m1m2/M\mu=m_{1}m_{2}/M), different choices are made for mapping the spins 𝒂{\bm{a}} and 𝑺{\bm{S}}_{*} to 𝑺1{\bm{S}}_{1} and 𝑺2{\bm{S}}_{2}. Let us consider a simple explicit example. We could write the even-in-aa part of the effective Hamiltonian as

Heveneff\displaystyle H^{\text{eff}}_{\text{even}} =[A(μ2+Bp𝒑2+Bnp(𝒏𝒑)2\displaystyle=\bigg{[}A\Big{(}\mu^{2}+B_{p}\bm{p}^{2}+B_{np}(\bm{n}\cdot\bm{p})^{2}
+Bnpa(𝒏×𝒑𝒂)2+μ2Q)]1/2,\displaystyle\quad\quad+B_{npa}(\bm{n}\times\bm{p}\cdot\bm{a})^{2}+\mu^{2}Q\Big{)}\bigg{]}^{1/2}, (19)

where the momentum-independent potentials AA, BpB_{p}, BnpB_{np}, BnpaB_{npa} are the Kerr potentials given above modified by PN corrections (to be determined). The quantity QQ is a momentum-dependent potential introduced in Ref. Damour et al. (2000), which may accommodate PN terms that do not fit into the momentum-independent potentials. (In cases where QQ vanishes, the deformed Hamiltonian can be interpreted as describing geodesic motion in a ν\nu-deformed Kerr metric.) The mentioned potentials should all be of even order in spin, while terms of odd order in spin should be included via a deformation of HoddKerrH^{\text{Kerr}}_{\text{odd}}. More explicit ansätze for the PN-corrected SEOB Hamiltonians and their potentials are discussed below.

II.2 Matching to post-Newtonian results

To fix the potentials in the ansatz for an effective Hamiltonian, one demands that the EOB Hamiltonian HEOBH^{\text{EOB}} agrees with the Hamiltonian in the PN approximation HPNH^{\text{PN}} up to a canonical transformation. This will eventually not uniquely fix the potentials, but leave some (gauge) freedom.

Here we use the spinning PN Hamiltonian derived in the framework and gauges introduced in Ref. Levi and Steinhoff (2015a), since it is available to 4PN order in the spinning sector Levi and Steinhoff (2016a). Broken up into leading order (LO), next-to-LO (NLO), next-to-NLO (NNLO) PN parts and into powers of spin, it reads

HspinPN=\displaystyle H^{\text{PN}}_{\text{spin}}= (20)
HSLO+HSNLO+HSNNLO+HS2LO+HS2NLO+HS2NNLO+HS3LO+HS4LO𝒪(1c3)+𝒪(1c4)+𝒪(1c5)+𝒪(1c6)+𝒪(1c7)+𝒪(1c8)\displaystyle\begin{array}[]{l@{\,}l@{\,}l@{\,}l@{\,}l@{\,}l@{\,}}H^{\text{LO}}_{S}&&+H^{\text{NLO}}_{S}&&+H^{\text{NNLO}}_{S}&\\ &+H^{\text{LO}}_{S^{2}}&&+H^{\text{NLO}}_{S^{2}}&&+H^{\text{NNLO}}_{S^{2}}\\ &&&&+H^{\text{LO}}_{S^{3}}&\\ &&&&&+H^{\text{LO}}_{S^{4}}\\ &&&&&\qquad\quad\ddots\\ \operatorname{\mathcal{O}}(\frac{1}{c^{3}})&+\operatorname{\mathcal{O}}(\frac{1}{c^{4}})&+\operatorname{\mathcal{O}}(\frac{1}{c^{5}})&+\operatorname{\mathcal{O}}(\frac{1}{c^{6}})&+\operatorname{\mathcal{O}}(\frac{1}{c^{7}})&+\operatorname{\mathcal{O}}(\frac{1}{c^{8}})\end{array} (27)

where columns correspond to PN orders counted by the inverse of the speed of light cc (one PN order is 𝒪(c2)\operatorname{\mathcal{O}}(c^{-2})). Except for the self-spin-squared interactions in HS2NNLOH^{\text{NNLO}}_{S^{2}} calculated in Ref. Levi and Steinhoff (2016b), these results have been derived in different frameworks and checked against each other: HSLOH^{\text{LO}}_{S} in Refs. Tulczyjew (1959); Barker and O’Connell (1970, 1975); D’Eath (1975); Barker and O’Connell (1979); Damour (1982); Thorne and Hartle (1985); Damour and Schäfer (1988), HSNLOH^{\text{NLO}}_{S} in Refs. Tagoshi et al. (2001); Faye et al. (2006); Damour et al. (2008b); Steinhoff et al. (2008a); Perrodin (2011); Porto (2010); Levi (2010a), HSNNLOH^{\text{NNLO}}_{S} in Refs. Hartung and Steinhoff (2011a); Hartung et al. (2013); Levi and Steinhoff (2016c); Marsat et al. (2013); Bohe et al. (2013), HS2LOH^{\text{LO}}_{S^{2}} in Refs. Barker and O’Connell (1975); D’Eath (1975); Barker and O’Connell (1979); Poisson (1998); Thorne and Hartle (1985), HS2NLOH^{\text{NLO}}_{S^{2}} in Refs. Steinhoff et al. (2008b); Porto and Rothstein (2006, 2008a); Levi (2010b); Porto and Rothstein (2008b); Steinhoff et al. (2008c); Hergt et al. (2010, 2012); Bohé et al. (2015), HS2NNLOH^{\text{NNLO}}_{S^{2}} in Refs. Hartung and Steinhoff (2011b); Levi (2012); Hartung et al. (2013); Levi and Steinhoff (2014, 2016b), HS3LOH^{\text{LO}}_{S^{3}} in Refs. Hergt and Schäfer (2008a, b); Levi and Steinhoff (2015b); Marsat (2015); Vaidya (2015), and HS4LOH^{\text{LO}}_{S^{4}} in Refs. Levi and Steinhoff (2015b); Hergt and Schäfer (2008a, b); Vaidya (2015). These Hamiltonians are valid for both black holes and neutron stars. They depend on coefficients (C~(ES2)\tilde{C}_{(\text{ES}^{2})}, C~(BS3)\tilde{C}_{(\text{BS}^{3})}, C~(ES4)\tilde{C}_{(\text{ES}^{4})}) which are the proportionality constants between the spin-induced multipoles (quadrupole, octupole, hexadecapole) and symmetric-tracefree tensors built out of (two, three, four) spin vectors (respectively). The proportionality constants depend on the type of compact object (and on the equation of state in case of a neutron star); here they are normalized to 0 for black holes (in the original paper Levi and Steinhoff (2016a), they are normalized to 1 and denoted without a tilde; see also Appendix B). This normalization makes sense here since we base the EOB Hamiltonian on a deformation of the Kerr one. Of course, the PN Hamiltonian HPN=HnsPN+HspinPNH^{\text{PN}}=H^{\text{PN}}_{\text{ns}}+H^{\text{PN}}_{\text{spin}} must be supplemented by its nonspinning (ns) part HnsPNH^{\text{PN}}_{\text{ns}}, which we only need to 2PN order here in order to construct the canonical transformation of the spin sector; it can be derived, e.g., from the Lagrangian in Ref. Gilmore and Ross (2008). The nonspinning part was derived to 4PN order using independent methods Damour et al. (2014); Bernard et al. (2017); Foffa and Sturani (2019); Blümlein et al. (2020a) and partial results at 5PN have already been obtained Foffa et al. (2019); Blümlein et al. (2020b); Bini et al. (2019).

The condition that the EOB Hamiltonian HEOBH^{\text{EOB}} must coincide with results for the PN-approximate binary Hamiltonian HPNH^{\text{PN}} up to a canonical transformation reads

HEOB=HPN+{𝒢,HPN}+12!{𝒢,{𝒢,HPN}}+13!{𝒢,{𝒢,{𝒢,HPN}}}+ H^{\text{EOB}}=H^{\text{PN}}+\{\mathcal{G},H^{\text{PN}}\}+\frac{1}{2!}\{\mathcal{G},\{\mathcal{G},H^{\text{PN}}\}\}\\ +\frac{1}{3!}\{\mathcal{G},\{\mathcal{G},\{\mathcal{G},H^{\text{PN}}\}\}\}+\dots{} (28)

where 𝒢\mathcal{G} is the generating function of the canonical transformation. If 𝒢\mathcal{G} is small in the PN approximation, then the series in Eq. (28) terminates after a finite number of terms at a given PN order. In practice, one makes a PN-approximate and manifestly rotation invariant ansatz for 𝒢\mathcal{G} in terms of the canonical variables; we provide an explicit expression for 𝒢\mathcal{G} as Mathematica code in the supplementary material. Equation (28) then leads to constraints on the coefficients in the ansatz for 𝒢\mathcal{G} and HeffH^{\text{eff}}. The remaining freedom in the coefficients is a gauge freedom within the EOB formalism.

Let us note some general considerations about how part of this gauge freedom can be fixed in SEOB models. Since binaries are expected to be on almost circular orbits during their last orbits, it makes sense to fix the gauge freedom of the EOB Hamiltonian such that it simplifies for circular orbits, for which pr𝒏𝒑=0p_{r}\equiv{\bm{n}}\cdot{\bm{p}}=0 Damour et al. (2000). Taking the ansatz in Eq. (II.1) as an example, this means that—using the canonical transformation discussed above—one should transform as many PN terms as possible into a form such that they can be included in the potential BnpKerrB^{\text{Kerr}}_{np}, which drops out of the Hamiltonian for circular orbits. In the nonspinning case, it is additionally possible to require that the potential QQ depends on the momentum only via prp_{r}, and this uniquely fixes all EOB gauge freedom Buonanno and Damour (1999); Damour et al. (2000). For the example in Eq. (II.1), following the structure of the nonspinning Hamiltonian, it is natural to require that: (i) the momentum-dependence of HoddKerrH_{\text{odd}}^{\text{Kerr}} is expressed in terms of prp_{r} whenever possible Damour et al. (2008a), (ii) Bnpa=BnpaKerrB_{npa}=B_{npa}^{\text{Kerr}} Balmelli and Damour (2015), and (iii) terms in QQ have a power in prp_{r} that is as high as possible. The last requirement ensures that QQ vanishes for circular orbits, as in the nonspinning case.

These considerations still leave some remaining gauge freedom in the spinning case, which we fix such to simplify the EOB Hamiltonian also for aligned spins. For example, it is possible to choose PN corrections in the potential BpB_{p} such that it only depends on terms of the form 𝒏𝑺\bm{n}\cdot\bm{S} but not 𝑺𝑺\bm{S}\cdot\bm{S}. Any remaining gauge freedom beyond that may be chosen arbitrarily.

III Spinning effective-one-body Hamiltonians with test mass

In this section we present different ansätze for effective Hamiltonians based on the Kerr geodesic one. That is, we do not include the Kerr test-spin Hamiltonian HSKerrH_{S_{*}}^{\text{Kerr}} here and instead make an ansatz of the form

Heff=Heveneff+Hoddeff.H^{\text{eff}}=H^{\text{eff}}_{\text{even}}+H^{\text{eff}}_{\text{odd}}. (29)

The explicit lengthy results from the matching at 4PN order against PN results (and fixing of the remaining gauge freedom) are given in Appendix B. We start with an extension of the SEOB Hamiltonian from Ref. Balmelli and Damour (2015), which we call SEOBrcTM{}_{\text{TM}}^{r_{c}}, to 4PN order, here including spin effects at LO S3, and NNLO S2. We also extend that Hamiltonian from black holes to generic compact objects, e.g., neutron stars. We proceed with a simplified version of the SEOBrcTM{}_{\text{TM}}^{r_{c}} Hamiltonian to 4PN order that does not make use of the “centrifugal radius” introduced in Ref. Damour and Nagar (2014). For completeness, we also summarize the SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}} Hamiltonian from Refs. Damour and Nagar (2014); Akcay et al. (2019); Nagar et al. (2019, 2018) which is valid for aligned spins only. We do not include additional PN terms in the SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}} Hamiltonian since it is already 4PN complete for generic bodies. For convenience we summarize the Hamiltonians in Table 1.

III.1 Effective-one-body Hamiltonian with test-mass limit and centrifugal radius: SEOBrcTM{}_{\text{TM}}^{r_{c}}

Reference Balmelli and Damour (2015) was the first to construct an SEOB Hamiltonian with NLO spin-squared terms for generic spin orientations (but omitting a subtle contribution, included here, see Appendix A). Here we extend the Hamiltonian to include NNLO spin-squared and LO spin-cubed terms, and add multipole constants to make it applicable to generic bodies like neutron stars.

For the even-in-spin part of the SEOBrcTM{}_{\text{TM}}^{r_{c}} Hamiltonian, we use the ansatz in Eq. (II.1),

Heveneff\displaystyle{H}^{\text{eff}}_{\text{even}} =[A(μ2+Bp𝒑2+Bnp(𝒏𝒑)2\displaystyle=\bigg{[}A\Big{(}\mu^{2}+B_{p}\bm{p}^{2}+B_{np}(\bm{n}\cdot\bm{p})^{2}
+Bnpa(𝒏×𝒑𝒂)2+μ2Q)]1/2,\displaystyle\quad\quad+B_{npa}(\bm{n}\times\bm{p}\cdot\bm{a})^{2}+\mu^{2}Q\Big{)}\bigg{]}^{1/2}, (30)

where the Kerr spin is mapped according to

𝒂=𝒂1+𝒂2.{\bm{a}}={\bm{a}}_{1}+{\bm{a}}_{2}\,. (31)

This ensures that the Hamiltonian reproduces leading-order PN results at all even orders in spin Vines and Steinhoff (2018). The effective Hamiltonian further uses the “centrifugal radius” rcr_{c}, which was introduced in Ref. Damour and Nagar (2014) and is defined such that the Kerr Hamiltonian for aligned spins and equatorial orbits can be written as HevenKerr=AKerr(μ2+pϕ2/rc2+pr2/B(r))H_{\text{even}}^{\text{Kerr}}=\sqrt{A^{\text{Kerr}}\left(\mu^{2}+p_{\phi}^{2}/r_{c}^{2}+p_{r}^{2}/B(r)\right)}, which implies the definition

rc=r2+a2+2Ma2r.r_{c}=\sqrt{r^{2}+a^{2}+\frac{2Ma^{2}}{r}}\,. (32)

The centrifugal radius was generalized to generic spin orientations in Ref. Balmelli and Damour (2015). In terms of rcr_{c}, the Kerr potential AKerrA^{\text{Kerr}} from Eq. (16a) can be written equivalently as

AKerr=(12Mrc)(1+2Mrc)(1+2Mr)1+(𝒏𝒂)2r21+Δ(𝒏𝒂)2r2rc2.A^{\text{Kerr}}=\left(1-\frac{2M}{r_{c}}\right)\frac{\left(1+\frac{2M}{r_{c}}\right)}{\left(1+\frac{2M}{r}\right)}\frac{1+\frac{(\bm{n}\cdot\bm{a})^{2}}{r^{2}}}{1+\Delta\frac{(\bm{n}\cdot\bm{a})^{2}}{r^{2}r_{c}^{2}}}\,. (33)

In the nonspinning limit, only the first term above remains, which reduces to the Schwarzschild AA-potential. This is the reason why Ref. Balmelli and Damour (2015) adds the zero-spin PN corrections to 12M/rc1-2M/r_{c}. However, in this paper we intend to investigate spin effects across different Hamiltonian descriptions, so we need to make sure that the nonspinning Hamiltonians are identical. That is, we need to choose a method for adding zero-spin corrections that can be applied to all four EOB Hamiltonians considered here. We simply multiply the Kerr potential AKerrA^{\text{Kerr}} by zero-spin PN corrections denoted A0A^{0} below (without performing a Padé or log\log resummation333The justification for the Padé or log\log resummations is that they improve agreement with NR in some models and may hence be seen as an implicit calibration. In this paper, however, we consider EOB Hamiltonians with no calibration to NR, so we try to avoid such resummations, in particular in the nonspinning part. of A0A^{0}). For the spin-squared corrections, we follow Ref. Balmelli and Damour (2015) and add spin-squared corrections of the form 𝒏𝑺\bm{n}\cdot\bm{S} to the term 1+(𝒏𝒂)2/r21+(\bm{n}\cdot\bm{a})^{2}/r^{2}, and add corrections of the form 𝑺𝑺\bm{S}\cdot\bm{S} to 1+2M/rc1+2M/r_{c}, since it has an expansion of the form 1+2M/rMa2/r3+1+2M/r-Ma^{2}/r^{3}+\dots. One employs similar considerations for adding PN corrections to the BB-potentials in Eq. (III.1), leading to the following ansatz:

A\displaystyle A =(12Mrc)(1+2Mrc+ASS+AS4)(1+2Mr)(1+(𝒏𝒂)2r2+AnS)(1+Δ(𝒏𝒂)2r2rc2)A0(rc),\displaystyle=\left(1-\frac{2M}{r_{c}}\right)\frac{\left(1+\frac{2M}{r_{c}}+A^{SS}+A^{S^{4}}\right)}{\left(1+\frac{2M}{r}\right)}\frac{\left(1+\frac{(\bm{n}\cdot\bm{a})^{2}}{r^{2}}+A^{nS}\right)}{\left(1+\Delta\frac{(\bm{n}\cdot\bm{a})^{2}}{r^{2}r_{c}^{2}}\right)}A^{0}(r_{c})\,, (34a)
Bp\displaystyle B_{p} =[1+(𝒏𝒂)2r2+BpnS]1,\displaystyle=\left[1+\frac{(\bm{n}\cdot\bm{a})^{2}}{r^{2}}+B_{p}^{nS}\right]^{-1}, (34b)
Bnp\displaystyle B_{np} =11+(𝒏𝒂)2r2[(12Mr+a2r2)(A0(rc)D0(rc)+BnpSS+BnpnS)1],\displaystyle=\frac{1}{1+\frac{(\bm{n}\cdot\bm{a})^{2}}{r^{2}}}\left[\left(1-\frac{2M}{r}+\frac{a^{2}}{r^{2}}\right)\left(A^{0}(r_{c})\,D^{0}(r_{c})+B_{np}^{SS}+B_{np}^{nS}\right)-1\right], (34c)
Bnpa\displaystyle B_{npa} =BnpaKerr,\displaystyle=B_{npa}^{\text{Kerr}}\,, (34d)
Q\displaystyle Q =Q0(rc)+QS2.\displaystyle=Q^{0}(r_{c})+Q^{S^{2}}. (34e)

Note that we use the gauge choice from Ref. Balmelli and Damour (2015), i.e., there are no corrections of the form 𝑺𝑺\bm{S}\cdot\bm{S} in the potential BpB_{p}, which simplifies the Hamiltonian for aligned spins and circular orbits.

The 4PN corrections to the nonspinning effective Hamiltonian were obtained in Ref. Damour et al. (2015). Since we factor the PN corrections in A0(rc)A^{0}(r_{c}), we choose it such that the PN expansion of the AA potential agrees, in the nonspinning limit, with the results of Ref. Damour et al. (2015). Writing the PN corrections using scaled variables (4) to simplify notation, we obtain

A0(rc)\displaystyle A^{0}(r_{c}) =1+ν[2r^c3+(10634132π2)1r^c4+(120+4132π2ν2216ν+963512π2+1285γE+2565ln2+645ln1r^c)1r^c5]\displaystyle=1+\nu\bigg{[}\frac{2}{\hat{r}_{c}^{3}}+\left(\frac{106}{3}-\frac{41}{32}\pi^{2}\right)\frac{1}{\hat{r}_{c}^{4}}+\left(\frac{1}{20}+\frac{41}{32}\pi^{2}\nu-\frac{221}{6}\nu+\frac{963}{512}\pi^{2}+\frac{128}{5}\gamma_{E}+\frac{256}{5}\ln 2+\frac{64}{5}\ln\frac{1}{\hat{r}_{c}}\right)\frac{1}{\hat{r}_{c}^{5}}\bigg{]} (35a)
D0(rc)\displaystyle D^{0}(r_{c}) =1+6ν1r^c2+(52ν6ν2)1r^c3\displaystyle=1+6\nu\frac{1}{\hat{r}_{c}^{2}}+\left(52\nu-6\nu^{2}\right)\frac{1}{\hat{r}_{c}^{3}}
+[(12316π2260)ν2+ν(237611536π253345+118415γE649615ln2+29165ln3)+59215νln1r^c]1r^c4,\displaystyle\quad+\left[\left(\frac{123}{16}\pi^{2}-260\right)\nu^{2}+\nu\left(-\frac{23761}{1536}\pi^{2}-\frac{533}{45}+\frac{1184}{15}\gamma_{E}-\frac{6496}{15}\ln 2+\frac{2916}{5}\ln 3\right)+\frac{592}{15}\nu\ln\frac{1}{\hat{r}_{c}}\right]\frac{1}{\hat{r}_{c}^{4}}, (35b)
Q0(rc)\displaystyle Q^{0}(r_{c}) =[2(43ν)ν1r^c2+((530815+49625645ln2330485ln3)ν83ν2+10ν3)1r^c3]p^r4\displaystyle=\left[2(4-3\nu)\nu\frac{1}{\hat{r}_{c}^{2}}+\left(\left(-\frac{5308}{15}+\frac{496256}{45}\ln 2-\frac{33048}{5}\ln 3\right)\nu-83\nu^{2}+10\nu^{3}\right)\frac{1}{\hat{r}_{c}^{3}}\right]\hat{p}_{r}^{4}
+[(8273235891225ln2+139943750ln3+39062518ln5)ν275ν2+6ν3]p^r6r^c2,\displaystyle\quad+\left[\left(-\frac{827}{3}-\frac{2358912}{25}\ln 2+\frac{1399437}{50}\ln 3+\frac{390625}{18}\ln 5\right)\nu-\frac{27}{5}\nu^{2}+6\nu^{3}\right]\frac{\hat{p}_{r}^{6}}{\hat{r}_{c}^{2}}\,, (35c)

where the corrections are expressed in terms of the centrifugal radius rcr_{c}, with r^c=rc/M\hat{r}_{c}=r_{c}/M, and p^r=pr/μ\hat{p}_{r}=p_{r}/\mu. Note that here and in the SEOB models discussed below, we are using Taylor-expanded and not resummed versions of these potentials—we want to compare the different ansätze of the Hamiltonians irrespective of possible resummations for the potentials (see also footnote 3).

Spin-squared contributions, up to NNLO, are added to the Hamiltonian using the following ansatz

ASS\displaystyle A^{SS} =cnr^c3𝝌i𝝌j+cnr^c4𝝌i𝝌j+cnr^c5𝝌i𝝌j,\displaystyle=\frac{c_{n}}{\hat{r}_{c}^{3}}\bm{\chi}_{i}\cdot\bm{\chi}_{j}+\frac{c_{n}}{\hat{r}_{c}^{4}}\bm{\chi}_{i}\cdot\bm{\chi}_{j}+\frac{c_{n}}{\hat{r}_{c}^{5}}\bm{\chi}_{i}\cdot\bm{\chi}_{j}, (36a)
AnS\displaystyle A^{nS} =cnr^c3(𝒏𝝌i)(𝒏𝝌j)+cnr^c4(𝒏𝝌i)(𝒏𝝌j)\displaystyle=\frac{c_{n}}{\hat{r}_{c}^{3}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j})+\frac{c_{n}}{\hat{r}_{c}^{4}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j})
+cnr^c5(𝒏𝝌i)(𝒏𝝌j),\displaystyle\quad+\frac{c_{n}}{\hat{r}_{c}^{5}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j}), (36b)
BpnS\displaystyle B_{p}^{nS} =cnr^c3(𝒏𝝌i)(𝒏𝝌j)+cnr^c4(𝒏𝝌i)(𝒏𝝌j),\displaystyle=\frac{c_{n}}{\hat{r}_{c}^{3}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j})+\frac{c_{n}}{\hat{r}_{c}^{4}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j}), (36c)
BnpnS\displaystyle B_{np}^{nS} =cnr^c3(𝒏𝝌i)(𝒏𝝌j)+cnr^c4(𝒏𝝌i)(𝒏𝝌j),\displaystyle=\frac{c_{n}}{\hat{r}_{c}^{3}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j})+\frac{c_{n}}{\hat{r}_{c}^{4}}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j}), (36d)
BnpSS\displaystyle B_{np}^{SS} =cnr^c3𝝌i𝝌j+cnr^c4𝝌i𝝌j,\displaystyle=\frac{c_{n}}{\hat{r}_{c}^{3}}\bm{\chi}_{i}\cdot\bm{\chi}_{j}+\frac{c_{n}}{\hat{r}_{c}^{4}}\bm{\chi}_{i}\cdot\bm{\chi}_{j}, (36e)
QS2\displaystyle Q^{S^{2}} =p^r4r^c3[cn𝝌i𝝌j+cn(𝒏𝝌i)(𝒏𝝌j)]\displaystyle=\frac{\hat{p}_{r}^{4}}{\hat{r}_{c}^{3}}\left[c_{n}\bm{\chi}_{i}\cdot\bm{\chi}_{j}+c_{n}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j})\right]
+p^r3r^c3cn(𝒑𝝌i)(𝒏𝝌j),\displaystyle\quad+\frac{\hat{p}_{r}^{3}}{\hat{r}_{c}^{3}}c_{n}(\bm{p}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j}), (36f)

where we followed Ref. Balmelli and Damour (2015) in expressing the corrections in terms of rcr_{c}. We employ notation such that, e.g., cn𝝌i𝝌jcn𝝌12+cn𝝌1𝝌2+cn𝝌22{c_{n}\bm{\chi}_{i}\cdot\bm{\chi}_{j}}\equiv c_{n}\bm{\chi}_{1}^{2}+c_{n}\bm{\chi}_{1}\cdot\bm{\chi}_{2}+c_{n}\bm{\chi}_{2}^{2}. Each cnc_{n} stands for an independent undetermined coefficient in our ansatz, i.e., we use the same symbol cnc_{n} for all coefficients to simplify notation. The full expressions after matching to PN results are provided in Appendix B. Note that we added LO S2 corrections to the AA-potential above (which vanish for black holes) to account for the multipole constants of neutron stars.

The NLO S2 contributions were included in the effective Hamiltonian in Ref. Balmelli and Damour (2015), however the authors missed a contribution in matching the EOB Hamiltonian to PN results, namely from the LO S2 generating function applied to the LO SO Hamiltonian, i.e., from the Poisson bracket {𝒢S2LO,HSLO}\{\mathcal{G}^{\text{LO}}_{S^{2}},H^{\text{LO}}_{S}\}. In Appendix A, we write the matching results for NLO S2, using the notation of Ref. Balmelli and Damour (2015), after taking into account the missing Poisson bracket.

The leading-order quartic-in-spin terms AS4A^{S^{4}} are zero for black holes, since the Kerr Hamiltonian, with the mapping 𝒂=𝒂1+𝒂2{\bm{a}}={\bm{a}}_{1}+{\bm{a}}_{2}, automatically reproduces them, but they are nonzero for other types of compact objects. We take the most generic expression for the S4 corrections

AS4\displaystyle A^{S^{4}} =1r^c5[cn(𝝌i𝝌j)(𝝌k𝝌l)\displaystyle=\frac{1}{\hat{r}_{c}^{5}}\bigg{[}c_{n}(\bm{\chi}_{i}\cdot\bm{\chi}_{j})(\bm{\chi}_{k}\cdot\bm{\chi}_{l})
+cn(𝝌i𝝌j)(𝒏𝝌k)(𝒏𝝌l)\displaystyle\quad\qquad+c_{n}(\bm{\chi}_{i}\cdot\bm{\chi}_{j})(\bm{n}\cdot\bm{\chi}_{k})(\bm{n}\cdot\bm{\chi}_{l})
+cn(𝒏𝝌i)(𝒏𝝌j)(𝒏𝝌k)(𝒏𝝌l)],\displaystyle\quad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{i})(\bm{n}\cdot\bm{\chi}_{j})(\bm{n}\cdot\bm{\chi}_{k})(\bm{n}\cdot\bm{\chi}_{l})\bigg{]}, (37)

where a summation over the spins of the two bodies is implied, and terms symmetric under the exchange of the two bodies’ labels are only included once.

The spin-orbit and spin-cubed PN corrections are added to the odd-in-spin part of the Kerr Hamiltonian HoddKerrH_{\text{odd}}^{\text{Kerr}}. For the SO part we use the ansatz in Refs. Balmelli and Damour (2015); Damour and Nagar (2014), and we add to it S3 corrections,

H^oddeff\displaystyle\hat{H}_{\text{odd}}^{\text{eff}} =GSr^r^c2(1+Δ(𝒏𝒂)2r2rc2)(X12𝑳^𝝌1+X22𝑳^𝝌2)\displaystyle=\frac{G_{S}}{\hat{r}\hat{r}_{c}^{2}\left(1+\Delta\frac{(\bm{n}\cdot\bm{a})^{2}}{{r}^{2}{r}_{c}^{2}}\right)}\left(X_{1}^{2}\hat{\bm{L}}\cdot\bm{\chi}_{1}+X_{2}^{2}\hat{\bm{L}}\cdot\bm{\chi}_{2}\right)
+GSr^c3ν(𝑳^𝝌1+𝑳^𝝌2)\displaystyle\quad+\frac{G_{S^{*}}}{\hat{r}_{c}^{3}}\nu\left(\hat{\bm{L}}\cdot\bm{\chi}_{1}+\hat{\bm{L}}\cdot\bm{\chi}_{2}\right)
+GS3r^c4𝑳^𝝌1+G~S3r^c4𝑳^𝝌2,\displaystyle\quad+\frac{G_{S^{3}}}{\hat{r}_{c}^{4}}\hat{\bm{L}}\cdot\bm{\chi}_{1}+\frac{\tilde{G}_{S^{3}}}{\hat{r}_{c}^{4}}\hat{\bm{L}}\cdot\bm{\chi}_{2}\,, (38a)

where

GS\displaystyle G_{S} =2[1+cnr^c+cnp^r2+cnr^c2+cnp^r2r^c+cnp^r4]1,\displaystyle=2\left[1+\frac{c_{n}}{\hat{r}_{c}}+c_{n}\hat{p}_{r}^{2}+\frac{c_{n}}{\hat{r}_{c}^{2}}+c_{n}\frac{\hat{p}_{r}^{2}}{\hat{r}_{c}}+c_{n}\hat{p}_{r}^{4}\right]^{-1},
GS\displaystyle G_{S^{*}} =32[1+cnr^c+cnp^r2+cnr^c2+cnp^r2r^c+cnp^r4]1\displaystyle=\frac{3}{2}\left[1+\frac{c_{n}}{\hat{r}_{c}}+c_{n}\hat{p}_{r}^{2}+\frac{c_{n}}{\hat{r}_{c}^{2}}+c_{n}\frac{\hat{p}_{r}^{2}}{\hat{r}_{c}}+c_{n}\hat{p}_{r}^{4}\right]^{-1} (39a)
GS3\displaystyle G_{S^{3}} =1r^c[cn𝝌1𝝌1+cn𝝌2𝝌2+cn𝝌1𝝌2\displaystyle=\frac{1}{\hat{r}_{c}}\Big{[}c_{n}\bm{\chi}_{1}\cdot\bm{\chi}_{1}+c_{n}\bm{\chi}_{2}\cdot\bm{\chi}_{2}+c_{n}\bm{\chi}_{1}\cdot\bm{\chi}_{2}
+cn(𝒏𝝌1)2+cn(𝒏𝝌2)2\displaystyle\quad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{2}
+cn(𝒏𝝌1)(𝒏𝝌2)]\displaystyle\quad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})\Big{]}
+p^r2[cn(𝒏𝝌1)2+cn(𝒏𝝌2)2\displaystyle\quad+\hat{p}_{r}^{2}\Big{[}c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{2}
+cn(𝒏𝝌1)(𝒏𝝌2)]\displaystyle\quad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})\Big{]}
+L^2r^2[cn(𝒏𝝌1)2+cn(𝒏𝝌2)2\displaystyle\quad+\frac{\hat{L}^{2}}{\hat{r}^{2}}\Big{[}c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{2}
+cn(𝒏𝝌1)(𝒏𝝌2)],\displaystyle\quad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})\Big{]},
G~S3\displaystyle\tilde{G}_{S^{3}} =GS3with12.\displaystyle=G_{S^{3}}\quad\text{with}\quad 1\leftrightarrow 2. (39b)

Note that an inverse-Taylor resummation is used for GSG_{S} and GSG_{S^{\ast}}, which improves the description of the binary dynamics for aligned spins Damour and Nagar (2014). In the spin-cubed corrections GS3G_{S^{3}} and G~S3\tilde{G}_{S^{3}}, a gauge freedom exists which we chose such that terms of the form pr2𝝌i𝝌jp_{r}^{2}\bm{\chi}_{i}\cdot\bm{\chi}_{j} or L2𝝌i𝝌jL^{2}\bm{\chi}_{i}\cdot\bm{\chi}_{j} are not included. Explicit results after matching at 4PN can be found in Appendix B.1.

III.2 A simplified effective-one-body Hamiltonian with test-mass limit: SEOBTM{}_{\text{TM}}

Since it is important to have fast and simple EOB waveform models, in this section, we consider a simplified version of the SEOBrcTM{}_{\text{TM}}^{r_{c}} Hamiltonian that uses rr instead of rcr_{c} for the PN corrections. In order to assess the effect of this simplification, we also avoid resummations that are not motivated by the structure of the interactions, i.e., we factorize spin corrections to the Kerr potentials and do not use an inverse-Taylor resummation for the spin-orbit part.

The potentials of the effective Hamiltonian are simply taken to be

A\displaystyle A =AKerr(A0+ASS+AnS+AS4),\displaystyle=A^{\text{Kerr}}\left(A^{0}+A^{SS}+A^{nS}+A^{S^{4}}\right), (40a)
Bp\displaystyle B_{p} =BpKerr(1+BpnS),\displaystyle=B_{p}^{\text{Kerr}}\left(1+B_{p}^{nS}\right), (40b)
Bnp\displaystyle B_{np} =(12r^+a^2r^2)(A0D0+BnpSS+BnpnS)11+(𝒏𝒂^)2/r^2,\displaystyle=\frac{\left(1-\frac{2}{\hat{r}}+\frac{\hat{a}^{2}}{\hat{r}^{2}}\right)\left(A^{0}D^{0}+B_{np}^{SS}+B_{np}^{nS}\right)-1}{1+(\bm{n}\cdot\hat{\bm{a}})^{2}/\hat{r}^{2}}, (40c)
Bnpa\displaystyle B_{npa} =BnpaKerr,\displaystyle=B_{npa}^{\text{Kerr}}, (40d)
Q\displaystyle Q =Q0+QS2,\displaystyle=Q^{0}+Q^{S^{2}}, (40e)

where the zero-spin corrections A0(r),D0(r)A^{0}(r),~{}D^{0}(r) and Q0(r)Q^{0}(r) are given by Eq. (35) but in terms of rr instead of rcr_{c}. The ansätze for the S2 and S4 corrections are given by the corresponding expressions from the previous section, i.e., Eqs. (36) and (III.1), but using rr instead of rcr_{c} (and with different coefficients cnc_{n}). For HoddKerrH_{\text{odd}}^{\text{Kerr}}, we modify the odd-in-aa part of the Kerr Hamiltonian by the SO and S3 PN corrections, that is

H^oddeff\displaystyle\hat{H}_{\text{odd}}^{\text{eff}} =1r^r^c2(1+Δ(𝒏𝒂)2r2rc2)[GS(X12𝑳^𝝌1+X22𝑳^𝝌2)\displaystyle=\frac{1}{\hat{r}\hat{r}_{c}^{2}\left(1+\Delta\frac{(\bm{n}\cdot\bm{a})^{2}}{{r}^{2}{r}_{c}^{2}}\right)}\Big{[}G_{S}\left(X_{1}^{2}\hat{\bm{L}}\cdot\bm{\chi}_{1}+X_{2}^{2}\hat{\bm{L}}\cdot\bm{\chi}_{2}\right)
+GSν(𝑳^𝝌1+𝑳^𝝌2)\displaystyle\qquad\quad+G_{S^{*}}\nu\left(\hat{\bm{L}}\cdot\bm{\chi}_{1}+\hat{\bm{L}}\cdot\bm{\chi}_{2}\right)
+GS3r^𝑳^𝝌1+G~S3r^𝑳^𝝌2],\displaystyle\qquad\quad+\frac{G_{S^{3}}}{\hat{r}}\hat{\bm{L}}\cdot\bm{\chi}_{1}+\frac{\tilde{G}_{S^{3}}}{\hat{r}}\hat{\bm{L}}\cdot\bm{\chi}_{2}\Big{]}, (41a)

with the ansätze for the coefficients given in Eqs. (39) and (39b), but again written with rr instead of rcr_{c} (and different cnc_{n}). Explicit results after matching at 4PN can be found in Appendix B.2.

III.3 Aligned effective-one-body Hamiltonian with test-mass limit and centrifugal radius: SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}}

In this section, we consider the aligned-spin EOB Hamiltonian proposed by Damour and Nagar in Ref. Damour and Nagar (2014) and extended in Refs. Akcay et al. (2019); Nagar et al. (2019, 2018), which we denote SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}}. That Hamiltonian is similar to the aligned-spin limit of the SEOBrcTM{}_{\text{TM}}^{r_{c}} Hamiltonian from above, except that the even-in-spin PN corrections are added to the centrifugal radius.

The even-in-spin effective Hamiltonian is given by

H^eveneff\displaystyle\hat{H}^{\text{eff}}_{\text{even}} =A(1+L^2r^c2+p^r2B+Q0).\displaystyle=\sqrt{A\left(1+\frac{\hat{L}^{2}}{\hat{r}_{c}^{2}}+\frac{\hat{p}_{r}^{2}}{B}+Q^{0}\right)}. (42)

The EOB potentials AA and BB are given in Ref. Damour and Nagar (2014), but we do not use Padé resummation and we modify how the zero-spin PN corrections are added such that they agree with the other Hamiltonians in this paper, that is

A\displaystyle A =(12r^c)1+2r^c1+2r^cA0(rc),\displaystyle=\left(1-\frac{2}{\hat{r}_{c}}\right)\frac{1+\frac{2}{\hat{r}_{c}}}{1+\frac{2}{\hat{r}_{c}}}A^{0}(r_{c}), (43a)
B\displaystyle B =r2rc21AD0(rc),\displaystyle=\frac{r^{2}}{r_{c}^{2}}\frac{1}{A\,D^{0}(r_{c})}, (43b)

where A0A^{0}, D0D^{0} and Q0Q^{0} are given by Eq. (35). Note that Refs. Nagar et al. (2019, 2018); Rettegno et al. (2019) use Q2ν(43ν)pr4/rc2Q\equiv 2\nu(4-3\nu)p_{r}^{4}/r_{c}^{2} instead of Q0Q^{0}, and use prprA/Bp_{r_{\ast}}\equiv p_{r}\sqrt{A/B} instead of prp_{r}.

The spin-squared and spin-quartic corrections are added to the centrifugal radius, which is here defined by

r^c2=r^2+a^Q2(1+2r^)+δaNLO2r^+δaNNLO2r^2+δaLO4r^2,\hat{r}_{c}^{2}=\hat{r}^{2}+\hat{a}_{Q}^{2}\left(1+\frac{2}{\hat{r}}\right)+\frac{\delta a^{2}_{\text{NLO}}}{\hat{r}}+\frac{\delta a^{2}_{\text{NNLO}}}{\hat{r}^{2}}+\frac{\delta a^{4}_{\text{LO}}}{\hat{r}^{2}}, (44)

and where a^Q\hat{a}_{Q} depends on the compact object’s multipolar constants

a^Q2a^2+C~1(ES2)a^12+C~2(ES2)a^22,\hat{a}_{Q}^{2}\equiv\hat{a}^{2}+\tilde{C}_{1(ES^{2})}\hat{a}_{1}^{2}+\tilde{C}_{2(ES^{2})}\hat{a}_{2}^{2}, (45)

where a^i=ai/M\hat{a}_{i}=a_{i}/M, a^=|𝒂|/M\hat{a}=|{\bm{a}}|/M, and recalling Eq. (31).

The spin-orbit part was obtained in Ref. Damour and Nagar (2014) with NNNLO ν\nu-independent spinning-test-body contributions and ν\nu-dependent contributions calibrated to NR. We do not include those higher-order corrections here, but we follow Ref. Damour and Nagar (2014) in using an inverse-Taylor resummation/calibration of the coefficients GSG_{S} and GSG_{S^{*}} in

H^oddeff\displaystyle\hat{H}_{\text{odd}}^{\text{eff}} =GSr^r^c2(X12L^χ1+X22L^χ2)+GSr^c3ν(L^χ1+L^χ2)\displaystyle=\frac{G_{S}}{\hat{r}\hat{r}_{c}^{2}}\left(X_{1}^{2}\hat{L}\chi_{1}+X_{2}^{2}\hat{L}\chi_{2}\right)+\frac{G_{S^{*}}}{\hat{r}_{c}^{3}}\nu\left(\hat{L}\chi_{1}+\hat{L}\chi_{2}\right)
+GS3r^c4L^χ1+G~S3r^c4L^χ2,\displaystyle\quad+\frac{G_{S^{3}}}{\hat{r}_{c}^{4}}\hat{L}\,\chi_{1}+\frac{\tilde{G}_{S^{3}}}{\hat{r}_{c}^{4}}\hat{L}\,\chi_{2}\,, (46)

see Eqs. (67), and where GS3G_{S^{3}} and G~S3\tilde{G}_{S^{3}} for aligned spins take the simple form

GS3\displaystyle G_{S^{3}} =1r^c(cnχ12+cnχ1χ2),\displaystyle=\frac{1}{\hat{r}_{c}}\left(c_{n}\chi_{1}^{2}+c_{n}\chi_{1}\chi_{2}\right),
G~S3\displaystyle\tilde{G}_{S^{3}} =1r^c(cnχ22+cnχ1χ2).\displaystyle=\frac{1}{\hat{r}_{c}}\left(c_{n}\chi_{2}^{2}+c_{n}\chi_{1}\chi_{2}\right). (47)

Including spin-cubic contributions was discussed in Appendix A of Ref. Nagar et al. (2019), which we implement here so that the effective Hamiltonian includes all PN information at the same order as the other Hamiltonians considered in this paper. Explicit results after matching at 4PN can be found in Appendix B.3.

IV Effective-one-body Hamiltonian with test-spin limit: SEOBTS{}_{\text{TS}}

The SEOB Hamiltonian proposed in Refs. Barausse and Buonanno (2010, 2011) is based on the Hamiltonian of a spinning test body in the background of a Kerr black hole, which we here denote by SEOBTS{}_{\text{TS}} (see Table 1). In this section, we extend that Hamiltonian to 4PN order; compared to previous results, we add NLO S2, NNLO S2 LO S3, and LO S4 PN corrections, for generic compact objects and spin orientations.

The SEOBTS{}_{\text{TS}} Hamiltonian, as expressed in Ref. Hinderer et al. (2013), is given by

H^eff\displaystyle\hat{H}^{\text{eff}} =H^eveneff+H^oddeff+H^Seff,\displaystyle=\hat{H}^{\text{eff}}_{\text{even}}+\hat{H}^{\text{eff}}_{\text{odd}}+\hat{H}^{\text{eff}}_{S_{*}}, (48a)
H^eveneff\displaystyle\hat{H}^{\text{eff}}_{\text{even}} =αq+Q0,\displaystyle=\alpha\sqrt{q+Q^{0}}, (48b)
H^oddeff\displaystyle\hat{H}^{\text{eff}}_{\text{odd}} =βp^ϕ,\displaystyle=\beta\hat{p}_{\phi}, (48c)
H^Seff\displaystyle\hat{H}^{\text{eff}}_{S_{*}} =[𝑭^t+(β+αγϕϕp^ϕq)𝑭^ϕ]𝑺^\displaystyle=\left[\hat{\bm{F}}_{t}+\left(\beta+\frac{\alpha\gamma^{\phi\phi}\hat{p}_{\phi}}{\sqrt{q}}\right)\hat{\bm{F}}_{\phi}\right]\cdot\hat{\bm{S}}_{*}
+αq(γrrp^r𝑭^r+γθθp^θ𝑭^θ)𝑺^\displaystyle\quad+\frac{\alpha}{\sqrt{q}}\left(\gamma^{rr}\hat{p}_{r}\hat{\bm{F}}_{r}+\gamma^{\theta\theta}\hat{p}_{\theta}\hat{\bm{F}}_{\theta}\right)\cdot\hat{\bm{S}}_{*}
+12r^3[3(𝑺^𝒏)2𝑺^𝑺^],\displaystyle\quad+\frac{1}{2\hat{r}^{3}}\left[3(\hat{\bm{S}}_{*}\cdot\bm{n})^{2}-\hat{\bm{S}}_{*}\cdot\hat{\bm{S}}_{*}\right], (48d)

where

q=1+γϕϕp^ϕ2+γrrp^r2+γθθp^θ2,q=1+\gamma^{\phi\phi}\hat{p}_{\phi}^{2}+\gamma^{rr}\hat{p}_{r}^{2}+\gamma^{\theta\theta}\hat{p}_{\theta}^{2}, (49)

and 𝑺^𝑺/Mμ\hat{\bm{S}}_{*}\equiv\bm{S}_{*}/M\mu is a rescaling of the spin of the test body. The spins are mapped according to

𝑺\displaystyle\bm{S}_{*} =𝝈[1+νf(r,𝐩)]+νg(r,𝐩)𝝈,\displaystyle={\bm{\sigma}}_{*}\left[1+\nu f_{*}(r,\mathbf{p})\right]+\nu g_{*}(r,\mathbf{p}){\bm{\sigma}}, (50a)
𝝈\displaystyle{\bm{\sigma}} =𝑺1+𝑺2,\displaystyle=\bm{S}_{1}+\bm{S}_{2}\ , (50b)
𝝈\displaystyle{\bm{\sigma}}_{*} =m2m1𝑺1+m1m2𝑺2,\displaystyle=\frac{m_{2}}{m_{1}}\bm{S}_{1}+\frac{m_{1}}{m_{2}}\bm{S}_{2}, (50c)

where the functions ff_{*} and gg_{*} are given by Eqs. (50)-(52) of Ref. Barausse and Buonanno (2011), and that 𝝈=M𝒂{\bm{\sigma}}=M{\bm{a}} is the spin of the background Kerr metric; it does not hold 𝒂=𝒂1+𝒂2{\bm{a}}={\bm{a}}_{1}+{\bm{a}}_{2} as for the models discussed above. The spin maps are analogous to the mapping of the masses MM, μ\mu according to Eq. (I), with the difference that the spin maps relate dynamical variables. The deformed metric is obtained by substituting Δ\Delta, Σ\Sigma, and Λ\Lambda in the Kerr metric by

Δt\displaystyle\Delta_{t} =r^2A(r)+σ^2,\displaystyle=\hat{r}^{2}A(r)+\hat{\sigma}^{2}, (51a)
Δr\displaystyle\Delta_{r} =ΔtD0(r),\displaystyle=\Delta_{t}D^{0}(r), (51b)
Σ^\displaystyle\hat{\Sigma} =r^2+σ^2cos2θ,\displaystyle=\hat{r}^{2}+\hat{\sigma}^{2}\cos^{2}\theta, (51c)
Λt\displaystyle\Lambda_{t} =(r^2+σ^2)2σ^2Δtsin2θ,\displaystyle=(\hat{r}^{2}+\hat{\sigma}^{2})^{2}-\hat{\sigma}^{2}\Delta_{t}\sin^{2}\theta, (51d)

as in

α=ΔtΣ^Λt,β=2σ^r^Λt,\displaystyle\alpha=\frac{\sqrt{\Delta_{t}\hat{\Sigma}}}{\sqrt{\Lambda_{t}}},\qquad\beta=\frac{2\hat{\sigma}\hat{r}}{\Lambda_{t}}, (52a)
γϕϕ=Σ^Λtsin2θ,γrr=ΔrΣ^,γθθ=1Σ^.\displaystyle\gamma^{\phi\phi}=\frac{\hat{\Sigma}}{\Lambda_{t}\sin^{2}\theta},\quad\gamma^{rr}=\frac{\Delta_{r}}{\hat{\Sigma}},\quad\gamma^{\theta\theta}=\frac{1}{\hat{\Sigma}}. (52b)

The potential D0(r)D^{0}(r) is given by Eq. (35b), and the potential AA is given by

A=a^2(1r^1r^H,+)(1r^1r^H,)A0(r)a^2r^2,A=\hat{a}^{2}\left(\frac{1}{\hat{r}}-\frac{1}{\hat{r}_{H,+}}\right)\left(\frac{1}{\hat{r}}-\frac{1}{\hat{r}_{H,-}}\right)A^{0}(r)-\frac{\hat{a}^{2}}{\hat{r}^{2}}, (53)

where A0A^{0} is given by Eq. (35a), and r^H,±\hat{r}_{H,\pm} are the scaled inner and outer radii of a Kerr black hole, i.e.,

r^H,±=1±1a^2.\hat{r}_{H,\pm}=1\pm\sqrt{1-\hat{a}^{2}}\,. (54)

Finally, the vectors 𝑭^t\hat{\bm{F}}_{t}, 𝑭^r\hat{\bm{F}}_{r}, 𝑭^θ\hat{\bm{F}}_{\theta}, and 𝑭^ϕ\hat{\bm{F}}_{\phi} describe the fictitious force acting on the test-body spin 𝑺^\hat{\bm{S}}_{*} (frame dragging) in the deformed Kerr metric. They are given by Eq. (6) in Ref. Hinderer et al. (2013), which we rewrite here for convenience,

𝑭^ϕ\displaystyle\hat{\bm{F}}_{\phi} =cosθ𝒏^+𝒗^,\displaystyle=\cos\theta\ \bm{\hat{n}}+\bm{\hat{v}}, (55a)
𝑭^t\displaystyle\hat{\bm{F}}_{t} =𝒏^γϕϕγθθq[p^ϕα,θ(1+2q)(1+q)αp^ϕcotθ(12q)β,θ2γϕϕ]\displaystyle=\bm{\hat{n}}\ \frac{\sqrt{\gamma^{\phi\phi}}\sqrt{\gamma^{\theta\theta}}}{\sqrt{q}}\left[\frac{\hat{p}_{\phi}\alpha_{,\theta}(1+2\sqrt{q})}{(1+\sqrt{q})}-\alpha\hat{p}_{\phi}\cot\theta-\frac{(1-2\sqrt{q})\beta_{,\theta}}{2\gamma^{\phi\phi}}\right]
+𝒗^cscθγrrγϕϕ[γϕϕp^ϕα,r(1+q)+(2q1)β,r+αp^ϕγ,rϕϕ2q],\displaystyle\quad+\bm{\hat{v}}\ \frac{\csc\theta\sqrt{\gamma^{rr}}}{\sqrt{\gamma^{\phi\phi}}}\left[\frac{\gamma^{\phi\phi}\hat{p}_{\phi}\alpha_{,r}}{(1+\sqrt{q})}+\frac{(2\sqrt{q}-1)\beta_{,r}+\alpha\hat{p}_{\phi}\gamma^{\phi\phi}_{,r}}{2\sqrt{q}}\right],\;\;\; (55b)
𝑭^r\displaystyle\hat{\bm{F}}_{r} =𝒏^γθθ(β,θp^r+β,rp^θ)2αγϕϕ(1+q)𝒗^cscθ(β,θγθθp^θ+2p^rγrrβ,r)2αγϕϕγrr(1+q)𝝃^cscθγθθ2αγrr[2qα,θ+p^ϕβ,θ(1+q)+αγ,θθθγθθ],\displaystyle=-\bm{\hat{n}}\ \frac{\sqrt{\gamma^{\theta\theta}}(\beta_{,\theta}\hat{p}_{r}+\beta_{,r}\hat{p}_{\theta})}{2\alpha\sqrt{\gamma^{\phi\phi}}(1+\sqrt{q})}-\bm{\hat{v}}\ \frac{\csc\theta\left(\beta_{,\theta}\gamma^{\theta\theta}\hat{p}_{\theta}+2\hat{p}_{r}\gamma^{rr}\beta_{,r}\right)}{2\alpha\sqrt{\gamma^{\phi\phi}}\sqrt{\gamma^{rr}}(1+\sqrt{q})}-\bm{\hat{\xi}}\ \frac{\csc\theta\sqrt{\gamma^{\theta\theta}}}{2\alpha\sqrt{\gamma^{rr}}}\left[\frac{2\sqrt{q}\alpha_{,\theta}+\hat{p}_{\phi}\beta_{,\theta}}{(1+\sqrt{q})}+\frac{\alpha\gamma^{\theta\theta}_{,\theta}}{\gamma^{\theta\theta}}\right],\ \ (55c)
𝑭^θ\displaystyle\hat{\bm{F}}_{\theta} =𝒏^γθθβ,θp^θαγϕϕ(1+q)𝒗^cscθγrrp^θβ,r2αγϕϕ(1+q)+𝝃^cscθ[1+γrr2αγθθ(2qα,r+p^ϕβ,r(1+q)+αγ,rθθγθθ)].\displaystyle=-\bm{\hat{n}}\ \frac{\sqrt{\gamma^{\theta\theta}}\beta_{,\theta}\hat{p}_{\theta}}{\alpha\sqrt{\gamma^{\phi\phi}}(1+\sqrt{q})}-\bm{\hat{v}}\ \frac{\csc\theta\sqrt{\gamma^{rr}}\hat{p}_{\theta}\beta_{,r}}{2\alpha\sqrt{\gamma^{\phi\phi}}(1+\sqrt{q})}+\bm{\hat{\xi}}\csc\theta\ \bigg{[}1+\frac{\sqrt{\gamma^{rr}}}{2\alpha\sqrt{\gamma^{\theta\theta}}}\bigg{(}\frac{2\sqrt{q}\alpha_{,r}+\hat{p}_{\phi}\beta_{,r}}{(1+\sqrt{q})}+\frac{\alpha\gamma^{\theta\theta}_{\;,r}}{\gamma^{\theta\theta}}\bigg{)}\bigg{]}.\;\;\;\; (55d)

Here, the unit vectors (𝒏^,𝝃^,𝒗^)(\bm{\hat{n}},\bm{\hat{\xi}},\bm{\hat{v}}) are defined by 𝒏^=𝒙r\hat{\bm{n}}=\frac{{\bm{x}}}{r}, 𝝃^=e^Zσ×𝒏^\hat{\bm{\xi}}=\hat{e}_{\rm Z}^{\rm\sigma}\times\hat{\bm{n}}, and 𝒗^=𝒏^×𝝃^\hat{\bm{v}}=\hat{\bm{n}}\times\hat{\bm{\xi}}, where e^Zσ=𝝈/σ\hat{e}_{\rm Z}^{\rm\sigma}={\bm{\sigma}}/\sigma denotes the direction of the (deformed) Kerr spin.

For the purpose of extending the SEOBTS{}_{\text{TS}} Hamiltonian to 4PN in the spinning sector, we deviate from the original philosophy of Refs. Barausse and Buonanno (2010, 2011) in that we do not modify the spin maps or deform the metric entering HSeffH^{\text{eff}}_{S_{*}} with terms of quadratic and higher order in spin. Instead, we only slightly modify the ansatz for the effective Hamiltonian (keeping HSeffH^{\text{eff}}_{S_{*}} unchanged) as

H^eveneff\displaystyle\hat{H}^{\text{eff}}_{\text{even}} =α2+ASS+AnS+AS4q+BpnS𝒑^2+(BnpSS+BnpnS)p^r2+Q0+QS2+QS4\displaystyle=\sqrt{\alpha^{2}+A^{SS}+A^{nS}+A^{S^{4}}}\sqrt{q+B_{p}^{nS}\hat{{\bm{p}}}^{2}+(B_{np}^{SS}+B_{np}^{nS})\hat{p}_{r}^{2}+Q^{0}+Q^{S^{2}}+Q^{S^{4}}} (56a)
H^oddeff\displaystyle\hat{H}^{\text{eff}}_{\text{odd}} =βp^ϕ+GS3r^4𝑳^𝝌1+G~S3r^4𝑳^𝝌2,\displaystyle=\beta\hat{p}_{\phi}+\frac{G_{S^{3}}}{\hat{r}^{4}}\hat{\bm{L}}\cdot\bm{\chi}_{1}+\frac{\tilde{G}_{S^{3}}}{\hat{r}^{4}}\hat{\bm{L}}\cdot\bm{\chi}_{2}, (56b)

where we introduced potentials into HeveneffH^{\text{eff}}_{\text{even}} at quadratic and higher order in spin following the structure of Eq. (II.1). These potentials ASS,AnS,BpnS,BnpSS,BnpnS,QS2A^{SS},\,A^{nS},\,B_{p}^{nS},\,B_{np}^{SS},\,B_{np}^{nS},\,Q^{S^{2}} and AS4A^{S^{4}} are given by Eqs. (36) and (III.1) but with rr instead of rcr_{c} (and different cnc_{n}), and similarly for the spin-cubic corrections GS3G_{S^{3}} and G~S3\tilde{G}_{S^{3}} from Eq. (39b). We take the function QS4Q^{S^{4}} to have the form

QS4\displaystyle Q^{S^{4}} =p^r2r^4[cn(𝒏𝝌1)3(𝒏𝝌2)+cn(𝒏𝝌1)2(𝝌1𝝌2)+cn(𝝌1𝝌1)(𝒏𝝌1)(𝒏𝝌2)+cn(𝒏𝝌2)3(𝒏𝝌1)\displaystyle=\frac{\hat{p}_{r}^{2}}{\hat{r}^{4}}\bigg{[}c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{3}(\bm{n}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}(\bm{\chi}_{1}\cdot\bm{\chi}_{2})+c_{n}(\bm{\chi}_{1}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{3}(\bm{n}\cdot\bm{\chi}_{1})
+cn(𝒏𝝌2)2(𝝌1𝝌2)+cn(𝝌2𝝌2)(𝒏𝝌1)(𝒏𝝌2)+cn(𝒏𝝌1)2(𝒏𝝌2)2+cn(𝒏𝝌1)2(𝝌2𝝌2)\displaystyle\qquad\quad+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{2}(\bm{\chi}_{1}\cdot\bm{\chi}_{2})+c_{n}(\bm{\chi}_{2}\cdot\bm{\chi}_{2})(\bm{n}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}(\bm{n}\cdot\bm{\chi}_{2})^{2}+c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}(\bm{\chi}_{2}\cdot\bm{\chi}_{2})
+cn(𝝌1𝝌1)(𝝌2𝝌2)+cn(𝝌1𝝌1)(𝒏𝝌2)2]\displaystyle\qquad\quad+c_{n}(\bm{\chi}_{1}\cdot\bm{\chi}_{1})(\bm{\chi}_{2}\cdot\bm{\chi}_{2})+c_{n}(\bm{\chi}_{1}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})^{2}\bigg{]}
+𝒑𝝌1p^rr^4[cn(𝝌2𝝌2)(𝒏𝝌2)+cn(𝒏𝝌2)3+cn(𝒏𝝌1)2(𝒏𝝌2)+cn(𝒏𝝌1)(𝝌1𝝌2)+cn(𝒏𝝌1)(𝒏𝝌2)2\displaystyle\quad+\bm{p}\cdot\bm{\chi}_{1}\frac{\hat{p}_{r}}{\hat{r}^{4}}\bigg{[}c_{n}(\bm{\chi}_{2}\cdot\bm{\chi}_{2})(\bm{n}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{3}+c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{2}(\bm{n}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{1})(\bm{\chi}_{1}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{2})^{2}
+cn(𝒏𝝌1)(𝝌2𝝌2)]\displaystyle\qquad\qquad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{1})(\bm{\chi}_{2}\cdot\bm{\chi}_{2})\bigg{]}
+𝒑𝝌2p^rr^4[cn(𝝌1𝝌1)(𝒏𝝌1)+cn(𝒏𝝌1)3+cn(𝒏𝝌2)2(𝒏𝝌1)+cn(𝒏𝝌2)(𝝌1𝝌2)+cn(𝒏𝝌2)(𝒏𝝌1)2\displaystyle\quad+\bm{p}\cdot\bm{\chi}_{2}\frac{\hat{p}_{r}}{\hat{r}^{4}}\bigg{[}c_{n}(\bm{\chi}_{1}\cdot\bm{\chi}_{1})(\bm{n}\cdot\bm{\chi}_{1})+c_{n}(\bm{n}\cdot\bm{\chi}_{1})^{3}+c_{n}(\bm{n}\cdot\bm{\chi}_{2})^{2}(\bm{n}\cdot\bm{\chi}_{1})+c_{n}(\bm{n}\cdot\bm{\chi}_{2})(\bm{\chi}_{1}\cdot\bm{\chi}_{2})+c_{n}(\bm{n}\cdot\bm{\chi}_{2})(\bm{n}\cdot\bm{\chi}_{1})^{2}
+cn(𝒏𝝌2)(𝝌1𝝌1)].\displaystyle\qquad\qquad\qquad+c_{n}(\bm{n}\cdot\bm{\chi}_{2})(\bm{\chi}_{1}\cdot\bm{\chi}_{1})\bigg{]}. (57)

Out of 38 possible terms in the most general expression for QS4Q^{S^{4}}, 16 terms were removed via a gauge choice. We started by removing the three terms that do not vanish for aligned spins, but the other 13 terms were chosen arbitrarily. Explicit results after matching at 4PN can be found in Appendix B.4.

Refer to caption
Figure 1: Binding energy (left panel) and fractional binding energy (right panel) versus the “velocity” parameter vv for nonspinning binary–black-hole configurations with different mass ratios. The four SEOB Hamiltonians considered here are identical for zero spin. The relative NR error shown in the right panel is a conservative 1.1% estimate. The initial value of vv (the left end of the plots’ domain) here is determined by the beginning of the NR simulation with q=10q=10; those with lower mass ratios have several cycles at lower frequencies not shown here. We stress that the SEOB Hamiltonians at 4PN order are not calibrated to NR simulations.
Refer to caption
Figure 2: Binding energy versus the “velocity” parameter vv for the linear-in-spin (left panel), quadratic-in-spin (central panel) and cubic-in-spin (right panel) contributions of the four SEOB Hamiltonians. The NR error is indicated by the shaded regions. In the left panel, the blue and orange curves overlap since the SEOBrcTM{}_{\text{TM}}^{r_{c}} and SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}} Hamiltonians are identical in the spin-orbit limit.

V Comparison with numerical relativity

In this section, we compare the four SEOB Hamiltonians considered in this paper to NR simulations through the binding energy for circular orbits and aligned spins. The NR binding energy data we use here were extracted from the Simulating eXtreme Spacetimes (SXS) catalog SXS in Ref. Ossokine et al. (2018). Hereafter, in this section, we use the term “aligned spins” to mean spins parallel to, and in the same direction as, the orbital angular momentum 𝑳\bm{L}, but we use the term “antialigned spins” to mean spins opposite to the direction of 𝑳\bm{L}.

The binding energy is calculated by evaluating the EOB Hamiltonian for circular orbits (pr=0p_{r}=0) and solving numerically p˙r=HEOB/r=0\dot{p}_{r}=-\partial H_{\text{EOB}}/\partial r=0 for the angular momentum pϕp_{\phi} at some radius. The orbital frequency Ω\Omega is obtained from

Ω=HEOBpϕ.\Omega=\frac{\partial H_{\text{EOB}}}{\partial p_{\phi}}\,. (58)

We then calculate the binding energy and orbital frequency as rr goes from the beginning of the NR simulation to the innermost-stable circular orbit (ISCO) of the Hamiltonian, which marks the end of the inspiral phase of the binary coalescence and the beginning of the plunge. The ISCO is calculated by setting both the first and second derivatives of the Hamiltonian with respect to rr to zero, i.e., HEOB/r=0=2HEOB/r2\partial H_{\text{EOB}}/\partial r=0=\partial^{2}H_{\text{EOB}}/\partial r^{2}.

It should be noted that the binding energy is extracted from NR simulations from an evolving binary, tracking the radiated energy in GWs. From the EOB Hamiltonians, however, we obtain the binding energy here by assuming exact circular orbits at different orbital separations, neglecting the orbital decay (radiation-reaction) due to the emitted GWs. The NR and EOB binding energies are thus not expected to agree exactly here during the last few orbits (see discussions in Ref. Antonelli et al. (2019)).

Refer to caption
Figure 3: Fractional difference in the binding energy between NR and SEOB Hamiltonians for different spin configurations with mass ratio q=3q=3 at 4 GW cycles before merger.

In Fig. 2, we plot the binding energy for nonspinning configurations with different mass ratios qq as a function of the “velocity” parameter v(MΩ)1/3v\equiv(M\Omega)^{1/3}, and we see that the binding energy increases with increasing mass ratio. The top axis of the figure indicates the number of GW cycles before merger, computed from the SXS waveform, for the case of q=1q=1, which is close to the other values of qq; for example, at 2 GW cycles before merger, v=0.416v=0.416 for q=1q=1 while v=0.415v=0.415 for q=10q=10. Since all SEOB Hamiltonians considered here agree in the nonspinning limit by construction, this figure gives a rough estimate for the zero-spin contributions to the binding energy. In all plots of this section the number of GW cycles from merger is always computed from the SXS waveforms, and the merger is defined as the peak of the (2,2) gravitational mode.

The different spin contributions to the binding energy are depicted in Fig. 2. They can be extracted by combining results for various spin combinations as (see Refs. Dietrich et al. (2017); Ossokine et al. (2018))

ESO\displaystyle E_{\text{SO}} =16(0.6,0)+83(0.3,0)2(0,0)12(0.6,0),\displaystyle=-\frac{1}{6}(-0.6,0)+\frac{8}{3}(0.3,0)-2(0,0)-\frac{1}{2}(0.6,0),
ES2\displaystyle E_{S^{2}} =32(0.6,0)2(0,0)+32(0.6,0)(0.6,0.6),\displaystyle=\frac{3}{2}(-0.6,0)-2(0,0)+\frac{3}{2}(0.6,0)-(0.6,-0.6),
ES3\displaystyle E_{S^{3}} =56(0.6,0)83(0.3,0)+3(0,0)12(0.6,0)\displaystyle=-\frac{5}{6}(-0.6,0)-\frac{8}{3}(0.3,0)+3(0,0)-\frac{1}{2}(0.6,0)
+12(0.6,0.6)+12(0.6,0.6),\displaystyle\quad+\frac{1}{2}(0.6,-0.6)+\frac{1}{2}(0.6,0.6), (59a)

where the numbers in brackets refer to the values of the dimensionless spins of the two bodies (χ1\chi_{1}, χ2\chi_{2}). The spin-squared contributions to the binding energy ES2E_{S^{2}} refer to both Si2S_{i}^{2} and S1S2S_{1}S_{2} interactions. Similarly, spin-cubic contributions ES3E_{S^{3}} refer to both Si3S_{i}^{3} and Si2SjS_{i}^{2}S_{j}. We see that the spin-orbit contribution is about an order of magnitude larger than the spin-squared contribution, which in turn is an order of magnitude larger than the spin-cubic contribution. All SEOB Hamiltonians give comparable results for the spin-orbit part, however for the spin-squared contribution, the SEOBTS{}_{\text{TS}} and SEOBTM{}_{\text{TM}} Hamiltonians give better agreement with NR than the other two Hamiltonians. For the cubic-in-spin contributions, the NR error is larger than the EOB values for the binding energy, and hence we cannot conclude which Hamiltonian is better in terms of S3 contributions.

Refer to caption
Figure 4: Binding energy comparison with NR for different aligned-spin configurations for the four SEOB Hamiltonians. Curves that end with a point indicate the location of the ISCO. For the NR error, we used 1.1% relative error as a very conservative estimate.
Refer to caption
Figure 5: As in Fig. 5 but for configurations with antialigned spins.

In Fig. 3, we compare the fractional energy difference |EbEbNR|/EbNR|E_{b}-E_{b}^{\text{NR}}|/E_{b}^{\text{NR}} at four GW cycles (i.e., two orbits) before merger for various spin configurations with mass ratio q=3q=3. We see that, for all configurations at that frequency, the relative difference with NR is around 1%1\%. For aligned spins, all Hamiltonians give comparable results, but the SEOBTS{}_{\text{TS}} Hamiltonian gives better agreement with NR for antialigned spins.

Refer to caption
Figure 6: Comparing the effect of adding spin contributions to the binding energy at different PN orders for the four SEOB Hamiltonians.

We also compare the binding energy as a function of velocity for some configurations with aligned spins (Fig. 5) and antialigned spins (Fig. 5). The curves in these figures start at the beginning of the available NR simulations and end at the ISCO of the EOB Hamiltonians. All effective Hamiltonians considered here have an ISCO for arbitrary spins, except that the SEOBTS{}_{\text{TS}} Hamiltonian does not have an ISCO for large aligned spins 0.92\gtrsim 0.92. From the three panels at the top of Fig. 5, we see that for large aligned spins (0.8\gtrsim 0.8), the SEOBTS{}_{\text{TS}} Hamiltonian shows slightly better agreement with NR than the other Hamiltonians. However, for smaller spins (0.6\lesssim 0.6), all Hamiltonians give very similar results. This is also the case when the two spins are both large but in opposite directions. For antialigned spins, the difference between the four Hamiltonians is smaller than in the aligned-spin case; the SEOBTS{}_{\text{TS}} Hamiltonian gives better agreement with NR than the other Hamiltonians, but the difference is small, even for spin magnitudes of 0.970.97, and becomes negligible for smaller spins.

Finally, in Fig. 6, we compare the effect of adding spin PN orders to the effective Hamiltonian for a configuration with mass ratio q=3q=3 and spins χ1=χ2=0.85\chi_{1}=\chi_{2}=0.85. For all Hamiltonians, adding higher spin orders improves agreement with NR, except for the SEOBTS{}_{\text{TS}} Hamiltonian where adding LO S3 and LO S4 gives slightly worse agreement. We checked that using different spin configurations gives qualitatively similar behavior.

Overall, beside the small differences pointed out above, all Hamiltonians perform reasonably well compared to NR simulations. One should expect that the differences that accumulate during the last orbits can be compensated by a calibration of the Hamiltonians, applying also further resummations to the potentials, which we leave for future work. This would be of particular interest for the simplified Hamiltonian, in order to prepare and evaluate it as a possible starting point for an EOB waveform model.

VI Conclusions

In this paper, we built spinning EOB Hamiltonians that include the complete fourth post-Newtonian conservative dynamics for generic (precessing) spins. These Hamiltonians are also valid for generic compact objects (e.g., black holes or neutron stars) since we included multipole constants that parametrize the deformation of the compact object due to its rotation.

In particular, we considered and extended four SEOB Hamiltonians: (i) an extension of the SEOB Hamiltonian from Ref. Balmelli and Damour (2015) by adding NNLO S2 and LO S3 contributions, in addition to adding the multipole constants; (ii) a simplified version of that Hamiltonian that differs in how the spin corrections are added to the Kerr metric, and that does not use the concept of centrifugal radius; (iii) the aligned-spin Hamiltonian from Refs. Damour and Nagar (2014); Nagar et al. (2019, 2018), which already includes complete 4PN information for generic compact objects, but considered here for comparison with the other Hamiltonians; (iv) an extension of the SEOB Hamiltonian from Refs. Barausse and Buonanno (2010, 2011), which uses a test spin, by adding NLO S2, NNLO S2, LO S3, and LO S4 contributions, in addition to adding the multipole constants. Since our goal in this paper was to improve the description of spin effects in the EOB formalism, we modified the zero-spin part of the above Hamiltonians such that they are identical in that limit. Furthermore, we did not include NR calibration parameters or resummations of the PN corrections (e.g., with Padé or log\log resummations of the zero-spin part) since they constitute an implicit calibration to NR that improves the performance of EOB Hamiltonians only in certain models.

We compared the four SEOB Hamiltonians considered here with NR simulations by calculating the binding energy for circular orbits and aligned spins. We found that all Hamiltonians show good agreement with NR, and that the difference between the Hamiltonians is quite small up to moderate values of the spins and a handful number of GW cycles before merger. For large spins, the SEOBTS{}_{\text{TS}} Hamiltonian performs better at large frequencies, but since all Hamiltonians have an error of about 1%1\% compared to NR at about four GW cycles before merger, the simplest SEOB Hamiltonian SEOBTM{}_{\text{TM}}  could be an excellent candidate for building an improved EOB waveform model with precessing spins. The simplicity will allow one to have a fast-to-evolve set of equations of motion, and could help in calibrating the EOB waveforms built with SEOBTM{}_{\text{TM}}  to NR simulations. However, more analyses, which include dissipative effects, and a careful study of how the GW frequency approaches merger, are needed to pin down the more suitable SEOB Hamiltonian. Indeed, as several studies have shown Taracchini et al. (2012, 2014); Pan et al. (2014); Bohé et al. (2017); Babak et al. (2017); Cotesta et al. (2018), to attach robustly the merger-ringdown waveform to the inspiral-plunge one in the EOB formalism, dynamical quantities, such as the orbital frequency, radial separation and momentum vectors, have to behave regularly around and beyond the EOB photon orbit.

We leave for future work to complete the SEOB Hamiltonians to a gravitational waveform model, i.e., provide resummed expressions for GW modes and associated radiation-reaction forces. Once radiation-reaction forces are included in the model, it is important to perform comparisons with NR for precessing spins and to use those comparisons to study different resummation options and to add calibration parameters in order to improve the accuracy of EOB waveforms toward merger.

Acknowledgments

We thank Sergei Ossokine for providing us with the numerical-relativity data for the binding energy used in this paper.

Appendix A Completing the spinning effective-one-body Hamiltonian in Ref. Balmelli and Damour (2015) at NLO S2

We found that Ref. Balmelli and Damour (2015) missed a contribution in the matching between the EOB Hamiltonian and PN results, namely from the LO spin-squared canonical transformation, generated by GSSLOG^{\text{LO}}_{\text{SS}}, applied to the LO spin-orbit Hamiltonian HSOLOH^{\text{LO}}_{\text{SO}}. This contribution can be obtained using the Poisson bracket as {GSSLO,HSOLO}\{G^{\text{LO}}_{\text{SS}},H^{\text{LO}}_{\text{SO}}\}. This leads to SS contributions via the Poisson bracket of the spin vector {Si,Sj}=ϵijkSk\{S^{i},S^{j}\}=\epsilon_{ijk}S^{k}, which turns out to start at NLO in the SS sector. Taking these additional contributions into account, we find that the coefficients in the EOB potentials aijχa^{\chi}_{ij}, aijnχa^{n\chi}_{ij}, bijp,χb^{p,\chi}_{ij}, bijp,nχb^{p,n\chi}_{ij}, bijnp,χb^{np,\chi}_{ij}, bijnp,nχb^{np,n\chi}_{ij}, defined in Ref. Balmelli and Damour (2015) should read, assuming the gauge conditions bijp,χ=0b^{p,\chi}_{ij}=0,

a11nχ\displaystyle a^{n\chi}_{11} =7νX1+54ν2,\displaystyle=7\nu X_{1}+\frac{5}{4}\nu^{2}, (60a)
a22nχ\displaystyle a^{n\chi}_{22} =7νX2+54ν2,\displaystyle=7\nu X_{2}+\frac{5}{4}\nu^{2}, (60b)
a12nχ\displaystyle a^{n\chi}_{12} =a21nχ=278ν94ν2,\displaystyle=a^{n\chi}_{21}=\frac{27}{8}\nu-\frac{9}{4}\nu^{2}, (60c)
b11p,nχ\displaystyle b^{p,n\chi}_{11} =4νX152ν2,\displaystyle=4\nu X_{1}-\frac{5}{2}\nu^{2}, (60d)
b22p,nχ\displaystyle b^{p,n\chi}_{22} =4νX252ν2,\displaystyle=4\nu X_{2}-\frac{5}{2}\nu^{2}, (60e)
b12p,nχ\displaystyle b^{p,n\chi}_{12} =b21p,nχ=98ν+ν2\displaystyle=b^{p,n\chi}_{21}=\frac{9}{8}\nu+\nu^{2} (60f)
b11np,χ\displaystyle b^{np,\chi}_{11} =9νX1154ν2,\displaystyle=9\nu X_{1}-\frac{15}{4}\nu^{2}, (60g)
b22np,χ\displaystyle b^{np,\chi}_{22} =9νX2154ν2,\displaystyle=9\nu X_{2}-\frac{15}{4}\nu^{2}, (60h)
b12np,χ\displaystyle b^{np,\chi}_{12} =b21np,χ=3ν+94ν2,\displaystyle=b^{np,\chi}_{21}=3\nu+\frac{9}{4}\nu^{2}, (60i)
b11np,nχ\displaystyle b^{np,n\chi}_{11} =15νX1154ν2,\displaystyle=15\nu X_{1}-\frac{15}{4}\nu^{2}, (60j)
b22np,nχ\displaystyle b^{np,n\chi}_{22} =15νX2154ν2,\displaystyle=15\nu X_{2}-\frac{15}{4}\nu^{2}, (60k)
b12np,nχ\displaystyle b^{np,n\chi}_{12} =b21np,nχ=458ν+154ν2,\displaystyle=b^{np,n\chi}_{21}=\frac{45}{8}\nu+\frac{15}{4}\nu^{2}, (60l)

modifying Eqs. (2.52a)–(2.53c) and (2.62) in Ref. Balmelli and Damour (2015). The coefficients aijχa^{\chi}_{ij} from Eq. (2.61) in Ref. Balmelli and Damour (2015) remain unchanged. Also the coefficients bijnp,χb^{np,\chi}_{ij} are unchanged, but their defining Eq. (2.62) in Ref. Balmelli and Damour (2015) is no longer valid, so we listed them here explicitly for clarity. This solution has the three additional terms with coefficients b11np,nχb^{np,n\chi}_{11}, b22np,nχb^{np,n\chi}_{22}, and b12np,nχb^{np,n\chi}_{12}, which vanish in Ref. Balmelli and Damour (2015). The six symmetries between the coefficients in Ref. Balmelli and Damour (2015) are also absent in our solution (assuming the gauge conditions bijp,χ=0b^{p,\chi}_{ij}=0).

Appendix B Hamiltonian coefficients after matching to PN results

In this Appendix, we present the results of matching the SEOB Hamiltonians using the procedure described in Sec. II.2. Here, we express the multipole constants as

C~i(ES2)Ci(ES2)1,C~i(BS2)Ci(BS2)1,etc.\tilde{C}_{\left.i(\text{ES}^{2}\right)}\equiv C_{\left.i(\text{ES}^{2}\right)}-1,\quad\tilde{C}_{\left.i(\text{BS}^{2}\right)}\equiv C_{\left.i(\text{BS}^{2}\right)}-1,\quad\text{etc.} (61)

such that the black hole results are easily obtained by setting C~=0\tilde{C}_{\dots}=0.

The expressions for the Hamiltonians and the potentials given in this Appendix are provided as Supplemental Material sim in the form of Mathematica files.

B.1 Coefficients of the SEOBrcTM{}_{\text{TM}}^{r_{c}} Hamiltonian

The spin-orbit and spin-cubed PN corrections in Eq. (38) are given by

GS\displaystyle G_{S} =2[1+1r^c5ν16+27ν16p^r2+1r^c2(41ν2256+51ν8)+p^r2r^c(21ν449ν2128)+(169ν22565ν16)p^r4]1,\displaystyle=2\bigg{[}1+\frac{1}{\hat{r}_{c}}\frac{5\nu}{16}+\frac{27\nu}{16}\hat{p}_{r}^{2}+\frac{1}{\hat{r}_{c}^{2}}\left(\frac{41\nu^{2}}{256}+\frac{51\nu}{8}\right)+\frac{\hat{p}_{r}^{2}}{\hat{r}_{c}}\left(\frac{21\nu}{4}-\frac{49\nu^{2}}{128}\right)+\left(\frac{169\nu^{2}}{256}-\frac{5\nu}{16}\right)\hat{p}_{r}^{4}\bigg{]}^{-1}, (62a)
GS\displaystyle G_{S^{*}} =32[1+1r^c(ν2+34)+(3ν2+54)p^r2+p^r2r^c(7ν28+5ν1)+1r^c2(3ν28+29ν4+2716)\displaystyle=\frac{3}{2}\bigg{[}1+\frac{1}{\hat{r}_{c}}\left(\frac{\nu}{2}+\frac{3}{4}\right)+\left(\frac{3\nu}{2}+\frac{5}{4}\right)\hat{p}_{r}^{2}+\frac{\hat{p}_{r}^{2}}{\hat{r}_{c}}\left(-\frac{7\nu^{2}}{8}+5\nu-1\right)+\frac{1}{\hat{r}_{c}^{2}}\left(\frac{3\nu^{2}}{8}+\frac{29\nu}{4}+\frac{27}{16}\right)
+(3ν28+25ν12+548)p^r4]1,\displaystyle\qquad\qquad+\left(\frac{3\nu^{2}}{8}+\frac{25\nu}{12}+\frac{5}{48}\right)\hat{p}_{r}^{4}\bigg{]}^{-1}, (62b)
GS3\displaystyle G_{S^{3}} =1r^c{(𝒏𝝌1)2[(5ν+(5ν5)X1)C~1(BS3)+(9νX149ν24)C~1(ES2)5ν22+2ν+(9ν22)X1]\displaystyle=\frac{1}{\hat{r}_{c}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(5\nu+(5\nu-5)X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(\frac{9\nu X_{1}}{4}-\frac{9\nu^{2}}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{2}}{2}+2\nu+\left(\frac{9\nu}{2}-2\right)X_{1}\right]
+𝝌12[((1ν)X1ν)C~1(BS3)+(3ν243νX14)C~1(ES2)ν24+νX14]\displaystyle\quad\qquad+\bm{\chi}_{1}^{2}\left[\left((1-\nu)X_{1}-\nu\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(\frac{3\nu^{2}}{4}-\frac{3\nu X_{1}}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{\nu^{2}}{4}+\frac{\nu X_{1}}{4}\right]
+𝒏𝝌1𝒏𝝌2[(6ν215νX12)C~1(ES2)5ν232νX13]\displaystyle\quad\qquad+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left[\left(-6\nu^{2}-\frac{15\nu X_{1}}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{2}}{3}-\frac{2\nu X_{1}}{3}\right]
+𝝌1𝝌2[(3ν22+3νX12)C~1(ES2)+4ν235νX112]+𝝌22[(3νX243ν24)C~2(ES2)13ν212+2νX23]\displaystyle\quad\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left[\left(\frac{3\nu^{2}}{2}+\frac{3\nu X_{1}}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{4\nu^{2}}{3}-\frac{5\nu X_{1}}{12}\right]+\bm{\chi}_{2}^{2}\left[\left(\frac{3\nu X_{2}}{4}-\frac{3\nu^{2}}{4}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}-\frac{13\nu^{2}}{12}+\frac{2\nu X_{2}}{3}\right]
+(𝒏𝝌2)2[(3ν2415νX24)C~2(ES2)+25ν2617νX26]}\displaystyle\quad\qquad+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left[\left(\frac{3\nu^{2}}{4}-\frac{15\nu X_{2}}{4}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}+\frac{25\nu^{2}}{6}-\frac{17\nu X_{2}}{6}\right]\bigg{\}}
+L^2r^2[(𝒏𝝌1)2(ν22νX12)+𝒏𝝌1𝒏𝝌2(ν2νX1)+(𝒏𝝌2)2(νX223ν22)]\displaystyle\quad+\frac{\hat{L}^{2}}{\hat{r}^{2}}\left[\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{\nu^{2}}{2}-\frac{\nu X_{1}}{2}\right)+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\nu^{2}-\nu X_{1}\right)+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\frac{\nu X_{2}}{2}-\frac{3\nu^{2}}{2}\right)\right]
+p^r2[(𝒏𝝌1)2(5νX125ν22)+𝒏𝝌1𝒏𝝌2(3νX1ν2)+(𝒏𝝌2)2(7ν22νX22)],\displaystyle\quad+\hat{p}_{r}^{2}\left[\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{5\nu X_{1}}{2}-\frac{5\nu^{2}}{2}\right)+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(3\nu X_{1}-\nu^{2}\right)+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\frac{7\nu^{2}}{2}-\frac{\nu X_{2}}{2}\right)\right], (62c)
G~S3\displaystyle\tilde{G}_{S^{3}} =GS3 with 12.\displaystyle=G_{S^{3}}\text{ with }1\leftrightarrow 2. (62d)

The spin-squared corrections in Eq. (36) are given by

ASS\displaystyle A^{SS} =1r^c3𝝌12(νX1)C~1(ES2)\displaystyle=\frac{1}{\hat{r}_{c}^{3}}\bm{\chi}_{1}^{2}\left(\nu-X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+1r^c4{𝝌12[(6ν+(2ν6)X1)C~1(ES2)ν22+3νX1]+12𝝌1𝝌2(2νν2)}\displaystyle\quad+\frac{1}{\hat{r}_{c}^{4}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(6\nu+(2\nu-6)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{\nu^{2}}{2}+3\nu X_{1}\right]+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(2\nu-\nu^{2}\right)\bigg{\}}
+1r^c5{𝝌12[(207ν228+275ν14+(533ν2827514)X1)C~1(ES2)+3ν38157ν28+(123ν445ν28)X1]\displaystyle\quad+\frac{1}{\hat{r}_{c}^{5}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(-\frac{207\nu^{2}}{28}+\frac{275\nu}{14}+\left(\frac{533\nu}{28}-\frac{275}{14}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{3\nu^{3}}{8}-\frac{157\nu^{2}}{8}+\left(\frac{123\nu}{4}-\frac{45\nu^{2}}{8}\right)X_{1}\right]
+12𝝌1𝝌2(3ν34+145ν28+25ν2)}+12,\displaystyle\qquad\qquad+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\frac{3\nu^{3}}{4}+\frac{145\nu^{2}}{8}+\frac{25\nu}{2}\right)\bigg{\}}+1\leftrightarrow 2, (63a)
AnS\displaystyle A^{nS} =1r^c3(𝒏𝝌1)2(3X13ν)C~1(ES2)\displaystyle=\frac{1}{\hat{r}_{c}^{3}}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(3X_{1}-3\nu\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+1r^c4{(𝒏𝝌1)2[(3ν29ν+(93ν)X1)C~1(ES2)5ν247νX1]+12(𝒏𝝌2)(𝒏𝝌1)(9ν2227ν4)}\displaystyle\quad+\frac{1}{\hat{r}_{c}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(-3\nu^{2}-9\nu+(9-3\nu)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{2}}{4}-7\nu X_{1}\right]+\frac{1}{2}(\bm{n}\cdot\bm{\chi}_{2})(\bm{n}\cdot\bm{\chi}_{1})\left(\frac{9\nu^{2}}{2}-\frac{27\nu}{4}\right)\bigg{\}}
+1r^c5{(𝒏𝝌1)2[(7ν38641ν256150ν7+(47ν28+22ν7+1507)X1)C~1(ES2)+11ν3471ν212\displaystyle\quad+\frac{1}{\hat{r}_{c}^{5}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-\frac{7\nu^{3}}{8}-\frac{641\nu^{2}}{56}-\frac{150\nu}{7}+\left(-\frac{47\nu^{2}}{8}+\frac{22\nu}{7}+\frac{150}{7}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{11\nu^{3}}{4}-\frac{71\nu^{2}}{12}
+(63ν2479ν3)X1]+12(𝒏𝝌2)(𝒏𝝌1)(3ν32265ν26387ν16)}+12,\displaystyle\qquad\qquad\quad+\left(-\frac{63\nu^{2}}{4}-\frac{79\nu}{3}\right)X_{1}\bigg{]}+\frac{1}{2}(\bm{n}\cdot\bm{\chi}_{2})(\bm{n}\cdot\bm{\chi}_{1})\left(\frac{3\nu^{3}}{2}-\frac{265\nu^{2}}{6}-\frac{387\nu}{16}\right)\bigg{\}}+1\leftrightarrow 2, (63b)
BpnS\displaystyle B_{p}^{nS} =1r^c3{(𝒏𝝌1)2[(3ν2+3ν+(3ν3)X1)C~1(ES2)5ν22+4νX1]+12𝒏𝝌1𝒏𝝌2(2ν2+9ν4)}\displaystyle=\frac{1}{\hat{r}_{c}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(-3\nu^{2}+3\nu+(3\nu-3)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{2}}{2}+4\nu X_{1}\right]+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(2\nu^{2}+\frac{9\nu}{4}\right)\bigg{\}}
+1r^c4{(𝒏𝝌1)2[(7ν38221ν28+15ν2+(47ν28+169ν4152)X1)C~1(ES2)889ν224+27ν38\displaystyle\quad+\frac{1}{\hat{r}_{c}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-\frac{7\nu^{3}}{8}-\frac{221\nu^{2}}{8}+\frac{15\nu}{2}+\left(-\frac{47\nu^{2}}{8}+\frac{169\nu}{4}-\frac{15}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{889\nu^{2}}{24}+\frac{27\nu^{3}}{8}
+(323ν12217ν28)X1]+12𝒏𝝌1𝒏𝝌2(11ν34427ν224+57ν16)}+12,\displaystyle\qquad\qquad\quad+\left(\frac{323\nu}{12}-\frac{217\nu^{2}}{8}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\frac{11\nu^{3}}{4}-\frac{427\nu^{2}}{24}+\frac{57\nu}{16}\right)\bigg{\}}+1\leftrightarrow 2, (63c)
BnpnS\displaystyle B_{np}^{nS} =1r^c3{(𝒏𝝌1)2(15ν2415νX1)+12𝒏𝝌1𝒏𝝌2(15ν2245ν4)}\displaystyle=\frac{1}{\hat{r}_{c}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{15\nu^{2}}{4}-15\nu X_{1}\right)+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{15\nu^{2}}{2}-\frac{45\nu}{4}\right)\bigg{\}}
+1r^c4{(𝒏𝝌1)2[(7ν32ν24+9ν2+(25ν22+121ν492)X1)C~1(ES2)+17ν38+185ν224\displaystyle\quad+\frac{1}{\hat{r}_{c}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-\frac{7\nu^{3}}{2}-\frac{\nu^{2}}{4}+\frac{9\nu}{2}+\left(\frac{25\nu^{2}}{2}+\frac{121\nu}{4}-\frac{9}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{17\nu^{3}}{8}+\frac{185\nu^{2}}{24}
+(23ν28619ν12)X1]+12𝒏𝝌1𝒏𝝌2(47ν344411ν22439ν2)}+12,\displaystyle\qquad\qquad\quad+\left(-\frac{23\nu^{2}}{8}-\frac{619\nu}{12}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{47\nu^{3}}{4}-\frac{4411\nu^{2}}{24}-\frac{39\nu}{2}\right)\bigg{\}}+1\leftrightarrow 2, (63d)
BnpSS\displaystyle B_{np}^{SS} =1r^c3{𝝌12[(3ν2+3ν+(3ν3)X1)C~1(ES2)15ν24+9νX1]+12(9ν22+6ν)𝝌1𝝌2}\displaystyle=\frac{1}{\hat{r}_{c}^{3}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(-3\nu^{2}+3\nu+(3\nu-3)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{15\nu^{2}}{4}+9\nu X_{1}\right]+\frac{1}{2}\left(\frac{9\nu^{2}}{2}+6\nu\right)\bm{\chi}_{1}\cdot\bm{\chi}_{2}\bigg{\}}
+1r^c4{𝝌12[(159ν24+23ν2+(12ν2+197ν4232)X1)C~1(ES2)+5ν361ν2+(275ν437ν2)X1]\displaystyle\quad+\frac{1}{\hat{r}_{c}^{4}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(-\frac{159\nu^{2}}{4}+\frac{23\nu}{2}+\left(-12\nu^{2}+\frac{197\nu}{4}-\frac{23}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+5\nu^{3}-61\nu^{2}+\left(\frac{275\nu}{4}-37\nu^{2}\right)X_{1}\right]
+12(10ν3+38ν2+20ν)𝝌1𝝌2}+12,\displaystyle\qquad\qquad+\frac{1}{2}\left(10\nu^{3}+38\nu^{2}+20\nu\right)\bm{\chi}_{1}\cdot\bm{\chi}_{2}\bigg{\}}+1\leftrightarrow 2, (63e)
QS2\displaystyle Q^{S^{2}} =p^r3r^c3{𝒏𝝌1𝒑^𝝌1[(20ν335ν2+(35ν20ν2)X1)C~1(ES2)+199ν381085ν224+(130ν3517ν28)X1]\displaystyle=\frac{\hat{p}_{r}^{3}}{\hat{r}_{c}^{3}}\bigg{\{}\bm{n}\cdot\bm{\chi}_{1}\,\hat{\bm{p}}\cdot\bm{\chi}_{1}\left[\left(20\nu^{3}-35\nu^{2}+\left(35\nu-20\nu^{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{199\nu^{3}}{8}-\frac{1085\nu^{2}}{24}+\left(\frac{130\nu}{3}-\frac{517\nu^{2}}{8}\right)X_{1}\right]
+𝒏𝝌1𝒑^𝝌2(79ν38+79ν212+45ν16)}\displaystyle\qquad\quad+\bm{n}\cdot\bm{\chi}_{1}\,\hat{\bm{p}}\cdot\bm{\chi}_{2}\left(-\frac{79\nu^{3}}{8}+\frac{79\nu^{2}}{12}+\frac{45\nu}{16}\right)\bigg{\}}
+p^r4r^c3{𝝌12[(5ν335ν24+(35ν45ν2)X1)C~1(ES2)+55ν38105ν28+(55ν4145ν28)X1]\displaystyle\quad+\frac{\hat{p}_{r}^{4}}{\hat{r}_{c}^{3}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(5\nu^{3}-\frac{35\nu^{2}}{4}+\left(\frac{35\nu}{4}-5\nu^{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{55\nu^{3}}{8}-\frac{105\nu^{2}}{8}+\left(\frac{55\nu}{4}-\frac{145\nu^{2}}{8}\right)X_{1}\right]
+(𝒏𝝌1)2[(245ν2435ν3+(35ν2245ν4)X1)C~1(ES2)91ν32+1015ν212+(119ν21015ν12)X1]\displaystyle\qquad\quad+\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(\frac{245\nu^{2}}{4}-35\nu^{3}+\left(35\nu^{2}-\frac{245\nu}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{91\nu^{3}}{2}+\frac{1015\nu^{2}}{12}+\left(119\nu^{2}-\frac{1015\nu}{12}\right)X_{1}\right]
+12𝝌1𝝌2(25ν34+45ν28+5ν2)+12𝒏𝝌1𝒏𝝌2(77ν32721ν224105ν8)}+12.\displaystyle\qquad\quad+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(-\frac{25\nu^{3}}{4}+\frac{45\nu^{2}}{8}+\frac{5\nu}{2}\right)+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\frac{77\nu^{3}}{2}-\frac{721\nu^{2}}{24}-\frac{105\nu}{8}\right)\bigg{\}}+1\leftrightarrow 2. (63f)

The spin-quartic corrections in Eq. (III.1) are given by

AS4\displaystyle A^{S^{4}} =1r^c5{(𝒏𝝌1)4[(21ν2221ν2+(21221ν)X1)C~1(ES2)+(35ν24+35ν4+(35ν2354)X1)C~1(ES4)]\displaystyle=\frac{1}{\hat{r}_{c}^{5}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{4}\left[\left(\frac{21\nu^{2}}{2}-\frac{21\nu}{2}+\left(\frac{21}{2}-21\nu\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\left(-\frac{35\nu^{2}}{4}+\frac{35\nu}{4}+\left(\frac{35\nu}{2}-\frac{35}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\right]
+𝒏𝝌2(𝒏𝝌1)[(35ν235νX1)C~1(BS3)+(21νX121ν2)C~1(ES2)]3\displaystyle\qquad+\bm{n}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right){}^{3}\left[\left(35\nu^{2}-35\nu X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(21\nu X_{1}-21\nu^{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+𝝌1𝝌2(𝒏𝝌1)2[(15νX115ν2)C~1(BS3)+(3ν23νX1)C~1(ES2)]\displaystyle\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(15\nu X_{1}-15\nu^{2}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(3\nu^{2}-3\nu X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+𝝌12(𝒏𝝌1)2[(9ν22+9ν2+(9ν92)X1)C~1(ES2)+(15ν2215ν2+(15215ν)X1)C~1(ES4)]\displaystyle\qquad+\bm{\chi}_{1}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(-\frac{9\nu^{2}}{2}+\frac{9\nu}{2}+\left(9\nu-\frac{9}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\left(\frac{15\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{15}{2}-15\nu\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\right]
+𝝌22(𝒏𝝌1)2[6C~2(ES2)ν2+C~1(ES2)(152C~2(ES2)ν2+15ν22)]\displaystyle\qquad+\bm{\chi}_{2}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[6\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(\frac{15}{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+\frac{15\nu^{2}}{2}\right)\right]
+12(𝒏𝝌2)2(𝒏𝝌1)2[C~1(ES2)(12105C~2(ES2)ν242ν2)42ν2C~2(ES2)]\displaystyle\qquad+\frac{1}{2}\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-\frac{1}{2}105\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-42\nu^{2}\right)-42\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]
+𝝌12𝒏𝝌2𝒏𝝌1[(15νX115ν2)C~1(BS3)+(6ν26νX1)C~1(ES2)]\displaystyle\qquad+\bm{\chi}_{1}^{2}\,\bm{n}\cdot\bm{\chi}_{2}\,\bm{n}\cdot\bm{\chi}_{1}\left[\left(15\nu X_{1}-15\nu^{2}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(6\nu^{2}-6\nu X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+12𝒏𝝌2𝝌1𝝌2𝒏𝝌1[27C~2(ES2)ν2+C~1(ES2)(30C~2(ES2)ν2+27ν2)]\displaystyle\qquad+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}\cdot\bm{\chi}_{2}\,\bm{n}\cdot\bm{\chi}_{1}\left[27\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(30\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+27\nu^{2}\right)\right]
+𝝌1𝝌2𝝌12(3ν23νX1)C~1(BS3)+𝝌14[3ν24+3ν4+(3ν234)X1]C~1(ES4)\displaystyle\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}^{2}\left(3\nu^{2}-3\nu X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\bm{\chi}_{1}^{4}\left[-\frac{3\nu^{2}}{4}+\frac{3\nu}{4}+\left(\frac{3\nu}{2}-\frac{3}{4}\right)X_{1}\right]\tilde{C}_{\left.1(\text{ES}^{4}\right)}
+12𝝌12𝝌22[C~1(ES2)(123C~2(ES2)ν23ν22)32ν2C~2(ES2)]\displaystyle\qquad+\frac{1}{2}\bm{\chi}_{1}^{2}\bm{\chi}_{2}^{2}\left[\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-\frac{1}{2}3\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-\frac{3\nu^{2}}{2}\right)-\frac{3}{2}\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]
+12(𝝌1𝝌2)2[C~1(ES2)(3C~2(ES2)ν23ν2)3ν2C~2(ES2)]}+12.\displaystyle\qquad+\frac{1}{2}\left(\bm{\chi}_{1}\cdot\bm{\chi}_{2}\right)^{2}\left[\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-3\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-3\nu^{2}\right)-3\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]\bigg{\}}+1\leftrightarrow 2. (64)

B.2 Coefficients of the SEOBTM{}_{\text{TM}} Hamiltonian

The spin-orbit and spin-cubed PN corrections in Eq. (41) are given by

GS\displaystyle G_{S} =2[12716νp^r25ν16r^+(35ν216+5ν16)p^r4+p^r2r^(23ν21621ν4)+1r^2(ν21651ν8)],\displaystyle=2\bigg{[}1-\frac{27}{16}\nu\hat{p}_{r}^{2}-\frac{5\nu}{16\hat{r}}+\left(\frac{35\nu^{2}}{16}+\frac{5\nu}{16}\right)\hat{p}_{r}^{4}+\frac{\hat{p}_{r}^{2}}{\hat{r}}\left(\frac{23\nu^{2}}{16}-\frac{21\nu}{4}\right)+\frac{1}{\hat{r}^{2}}\left(-\frac{\nu^{2}}{16}-\frac{51\nu}{8}\right)\bigg{]}, (65a)
GS\displaystyle G_{S^{*}} =32[1(3ν2+54)p^r21r^(34+ν2)+(15ν28+5ν3+3524)p^r4+p^r2r^(19ν283ν2+238)\displaystyle=\frac{3}{2}\bigg{[}1-\left(\frac{3\nu}{2}+\frac{5}{4}\right)\hat{p}_{r}^{2}-\frac{1}{\hat{r}}\left(\frac{3}{4}+\frac{\nu}{2}\right)+\left(\frac{15\nu^{2}}{8}+\frac{5\nu}{3}+\frac{35}{24}\right)\hat{p}_{r}^{4}+\frac{\hat{p}_{r}^{2}}{\hat{r}}\left(\frac{19\nu^{2}}{8}-\frac{3\nu}{2}+\frac{23}{8}\right)
+1r^2(ν2813ν298)],\displaystyle\quad\qquad+\frac{1}{\hat{r}^{2}}\left(-\frac{\nu^{2}}{8}-\frac{13\nu}{2}-\frac{9}{8}\right)\bigg{]}, (65b)
GS3\displaystyle G_{S^{3}} =1r^{(𝒏𝝌1)2[(5ν+(5ν5)X1)C~1(BS3)+(9νX149ν24)C~1(ES2)2ν2+2νX1]\displaystyle=\frac{1}{\hat{r}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(5\nu+(5\nu-5)X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(\frac{9\nu X_{1}}{4}-\frac{9\nu^{2}}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-2\nu^{2}+2\nu X_{1}\right]
+𝝌12[((1ν)X1ν)C~1(BS3)+(3ν243νX14)C~1(ES2)+ν22νX12]\displaystyle\quad\qquad+\bm{\chi}_{1}^{2}\left[\left((1-\nu)X_{1}-\nu\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(\frac{3\nu^{2}}{4}-\frac{3\nu X_{1}}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{\nu^{2}}{2}-\frac{\nu X_{1}}{2}\right]
+𝝌1𝝌2[(3ν22+3νX12)C~1(ES2)ν265νX112]+𝝌22[(3νX243ν24)C~2(ES2)ν23νX212]\displaystyle\quad\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left[\left(\frac{3\nu^{2}}{2}+\frac{3\nu X_{1}}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{\nu^{2}}{6}-\frac{5\nu X_{1}}{12}\right]+\bm{\chi}_{2}^{2}\left[\left(\frac{3\nu X_{2}}{4}-\frac{3\nu^{2}}{4}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}-\frac{\nu^{2}}{3}-\frac{\nu X_{2}}{12}\right]
+𝒏𝝌1𝒏𝝌2[(6ν215νX12)C~1(ES2)8ν23+10νX13]\displaystyle\quad\qquad+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left[\left(-6\nu^{2}-\frac{15\nu X_{1}}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{8\nu^{2}}{3}+\frac{10\nu X_{1}}{3}\right]
+(𝒏𝝌2)2[(3ν2415νX24)C~2(ES2)+14ν234νX23]}\displaystyle\quad\qquad+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left[\left(\frac{3\nu^{2}}{4}-\frac{15\nu X_{2}}{4}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}+\frac{14\nu^{2}}{3}-\frac{4\nu X_{2}}{3}\right]\bigg{\}}
+L^2r2[(𝒏𝝌1)2(ν22νX12)+𝒏𝝌1𝒏𝝌2(ν2νX1)+(𝒏𝝌2)2(νX223ν22)]\displaystyle\quad+\frac{\hat{L}^{2}}{r^{2}}\left[\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{\nu^{2}}{2}-\frac{\nu X_{1}}{2}\right)+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\nu^{2}-\nu X_{1}\right)+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\frac{\nu X_{2}}{2}-\frac{3\nu^{2}}{2}\right)\right]
+p^r2[(𝒏𝝌1)2(5νX125ν22)+𝒏𝝌1𝒏𝝌2(3νX1ν2)+(𝒏𝝌2)2(7ν22νX22)],\displaystyle\quad+\hat{p}_{r}^{2}\left[\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{5\nu X_{1}}{2}-\frac{5\nu^{2}}{2}\right)+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(3\nu X_{1}-\nu^{2}\right)+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\frac{7\nu^{2}}{2}-\frac{\nu X_{2}}{2}\right)\right], (65c)
G~S3\displaystyle\tilde{G}_{S^{3}} =GS3 with 12.\displaystyle=G_{S^{3}}\text{ with }1\leftrightarrow 2. (65d)

The spin-squared and spin-quartic corrections in Eq. (40) read

ASS\displaystyle A^{SS} =1r^3𝝌12(νX1)C~1(ES2)\displaystyle=\frac{1}{\hat{r}^{3}}\bm{\chi}_{1}^{2}\left(\nu-X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+1r^4{𝝌12[(4ν+(2ν4)X1)C~1(ES2)ν22+3νX1]+12𝝌1𝝌2(2νν2)}\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(4\nu+(2\nu-4)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{\nu^{2}}{2}+3\nu X_{1}\right]+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(2\nu-\nu^{2}\right)\bigg{\}}
+1r^5{𝝌12[(207ν228+163ν14+(421ν2816314)X1)C~1(ES2)+3ν38125ν28+(87ν445ν28)X1]\displaystyle\quad+\frac{1}{\hat{r}^{5}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(-\frac{207\nu^{2}}{28}+\frac{163\nu}{14}+\left(\frac{421\nu}{28}-\frac{163}{14}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{3\nu^{3}}{8}-\frac{125\nu^{2}}{8}+\left(\frac{87\nu}{4}-\frac{45\nu^{2}}{8}\right)X_{1}\right]
+12𝝌1𝝌2(3ν34+113ν28+17ν2)}+12,\displaystyle\qquad\qquad+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\frac{3\nu^{3}}{4}+\frac{113\nu^{2}}{8}+\frac{17\nu}{2}\right)\bigg{\}}+1\leftrightarrow 2, (66a)
AnS\displaystyle A^{nS} =1r^3(𝒏𝝌1)2(3X13ν)C~1(ES2)\displaystyle=\frac{1}{\hat{r}^{3}}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(3X_{1}-3\nu\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+1r^4{(𝒏𝝌1)2[(3ν29ν+(93ν)X1)C~1(ES2)5ν247νX1]+12𝒏𝝌1𝒏𝝌2(9ν2227ν4)}\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(-3\nu^{2}-9\nu+(9-3\nu)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{2}}{4}-7\nu X_{1}\right]+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\frac{9\nu^{2}}{2}-\frac{27\nu}{4}\right)\bigg{\}}
+1r^5{(𝒏𝝌1)2[(7ν38641ν256150ν7+(47ν28+22ν7+1507)X1)C~1(ES2)+11ν3471ν212\displaystyle\quad+\frac{1}{\hat{r}^{5}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-\frac{7\nu^{3}}{8}-\frac{641\nu^{2}}{56}-\frac{150\nu}{7}+\left(-\frac{47\nu^{2}}{8}+\frac{22\nu}{7}+\frac{150}{7}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{11\nu^{3}}{4}-\frac{71\nu^{2}}{12}
+(63ν2479ν3)X1]+12𝒏𝝌1𝒏𝝌2(3ν32265ν26387ν16)}+12,\displaystyle\qquad\qquad\quad+\left(-\frac{63\nu^{2}}{4}-\frac{79\nu}{3}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\frac{3\nu^{3}}{2}-\frac{265\nu^{2}}{6}-\frac{387\nu}{16}\right)\bigg{\}}+1\leftrightarrow 2, (66b)
BpnS\displaystyle B_{p}^{nS} =1r^3{(𝒏𝝌1)2[(3ν23ν+(33ν)X1)C~1(ES2)+5ν224νX1]+12𝒏𝝌1𝒏𝝌2(2ν29ν4)}\displaystyle=\frac{1}{\hat{r}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(3\nu^{2}-3\nu+(3-3\nu)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{5\nu^{2}}{2}-4\nu X_{1}\right]+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-2\nu^{2}-\frac{9\nu}{4}\right)\bigg{\}}
+1r^4{(𝒏𝝌1)2[(7ν38+221ν2815ν2+(47ν28169ν4+152)X1)C~1(ES2)27ν38+889ν224\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(\frac{7\nu^{3}}{8}+\frac{221\nu^{2}}{8}-\frac{15\nu}{2}+\left(\frac{47\nu^{2}}{8}-\frac{169\nu}{4}+\frac{15}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{27\nu^{3}}{8}+\frac{889\nu^{2}}{24}
+(217ν28323ν12)X1]+12𝒏𝝌1𝒏𝝌2(11ν34+427ν22457ν16)}+12,\displaystyle\qquad\qquad\quad+\left(\frac{217\nu^{2}}{8}-\frac{323\nu}{12}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{11\nu^{3}}{4}+\frac{427\nu^{2}}{24}-\frac{57\nu}{16}\right)\bigg{\}}+1\leftrightarrow 2, (66c)
BnpnS\displaystyle B_{np}^{nS} =1r^3{(𝒏𝝌1)2(15ν2415νX1)+12𝒏𝝌1𝒏𝝌2(15ν2245ν4)}\displaystyle=\frac{1}{\hat{r}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{15\nu^{2}}{4}-15\nu X_{1}\right)+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{15\nu^{2}}{2}-\frac{45\nu}{4}\right)\bigg{\}}
+1r^4{(𝒏𝝌1)2[(7ν32ν24+9ν2+(25ν22+121ν492)X1)C~1(ES2)+17ν38+365ν224\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-\frac{7\nu^{3}}{2}-\frac{\nu^{2}}{4}+\frac{9\nu}{2}+\left(\frac{25\nu^{2}}{2}+\frac{121\nu}{4}-\frac{9}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{17\nu^{3}}{8}+\frac{365\nu^{2}}{24}
+(23ν28979ν12)X1]+12(47ν344771ν22442ν)𝒏𝝌1𝒏𝝌2}+12,\displaystyle\qquad\qquad\quad+\left(-\frac{23\nu^{2}}{8}-\frac{979\nu}{12}\right)X_{1}\bigg{]}+\frac{1}{2}\left(-\frac{47\nu^{3}}{4}-\frac{4771\nu^{2}}{24}-42\nu\right)\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\bigg{\}}+1\leftrightarrow 2, (66d)
BnpSS\displaystyle B_{np}^{SS} =1r^3{𝝌12[(3ν2+3ν+(3ν3)X1)C~1(ES2)15ν24+9νX1]+12𝝌1𝝌2(9ν22+6ν)}\displaystyle=\frac{1}{\hat{r}^{3}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(-3\nu^{2}+3\nu+(3\nu-3)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{15\nu^{2}}{4}+9\nu X_{1}\right]+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\frac{9\nu^{2}}{2}+6\nu\right)\bigg{\}}
+1r^4{𝝌12[(159ν24+23ν2+(12ν2+197ν4232)X1)C~1(ES2)+5ν355ν2+(251ν437ν2)X1]\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(-\frac{159\nu^{2}}{4}+\frac{23\nu}{2}+\left(-12\nu^{2}+\frac{197\nu}{4}-\frac{23}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+5\nu^{3}-55\nu^{2}+\left(\frac{251\nu}{4}-37\nu^{2}\right)X_{1}\right]
+12𝝌1𝝌2(10ν3+26ν2+20ν)}+12,\displaystyle\qquad\qquad+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(10\nu^{3}+26\nu^{2}+20\nu\right)\bigg{\}}+1\leftrightarrow 2, (66e)
QS2\displaystyle Q^{S^{2}} =p^r3r^3{𝒏𝝌1𝒑^𝝌1[(20ν335ν2+(35ν20ν2)X1)C~1(ES2)+199ν381085ν224+(130ν3517ν28)X1]\displaystyle=\frac{\hat{p}_{r}^{3}}{\hat{r}^{3}}\bigg{\{}\bm{n}\cdot\bm{\chi}_{1}\,\hat{\bm{p}}\cdot\bm{\chi}_{1}\left[\left(20\nu^{3}-35\nu^{2}+\left(35\nu-20\nu^{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{199\nu^{3}}{8}-\frac{1085\nu^{2}}{24}+\left(\frac{130\nu}{3}-\frac{517\nu^{2}}{8}\right)X_{1}\right]
+𝒏𝝌1𝒑^𝝌2(79ν38+79ν212+45ν16)}\displaystyle\qquad+\bm{n}\cdot\bm{\chi}_{1}\,\hat{\bm{p}}\cdot\bm{\chi}_{2}\left(-\frac{79\nu^{3}}{8}+\frac{79\nu^{2}}{12}+\frac{45\nu}{16}\right)\bigg{\}}
+p^r4r^3{𝝌12[(5ν335ν24+(35ν45ν2)X1)C~1(ES2)+55ν38105ν28+(55ν4145ν28)X1]\displaystyle\quad+\frac{\hat{p}_{r}^{4}}{\hat{r}^{3}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(5\nu^{3}-\frac{35\nu^{2}}{4}+\left(\frac{35\nu}{4}-5\nu^{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{55\nu^{3}}{8}-\frac{105\nu^{2}}{8}+\left(\frac{55\nu}{4}-\frac{145\nu^{2}}{8}\right)X_{1}\right]
+(𝒏𝝌1)2[(245ν2435ν3+(35ν2245ν4)X1)C~1(ES2)91ν32+1015ν212+(119ν21015ν12)X1]\displaystyle\qquad+\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(\frac{245\nu^{2}}{4}-35\nu^{3}+\left(35\nu^{2}-\frac{245\nu}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{91\nu^{3}}{2}+\frac{1015\nu^{2}}{12}+\left(119\nu^{2}-\frac{1015\nu}{12}\right)X_{1}\right]
+12𝝌1𝝌2(25ν34+45ν28+5ν2)+12𝒏𝝌1𝒏𝝌2(77ν32721ν224105ν8)}+12,\displaystyle\qquad+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(-\frac{25\nu^{3}}{4}+\frac{45\nu^{2}}{8}+\frac{5\nu}{2}\right)+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\frac{77\nu^{3}}{2}-\frac{721\nu^{2}}{24}-\frac{105\nu}{8}\right)\bigg{\}}+1\leftrightarrow 2, (66f)
AS4\displaystyle A^{S^{4}} =1r^5{(𝒏𝝌1)4[(15ν2215ν2+(15215ν)X1)C~1(ES2)+(35ν435ν24+(35ν2354)X1)C~1(ES4)]\displaystyle=\frac{1}{\hat{r}^{5}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{4}\left[\left(\frac{15\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{15}{2}-15\nu\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\left(\frac{35\nu}{4}-\frac{35\nu^{2}}{4}+\left(\frac{35\nu}{2}-\frac{35}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\right]
+𝒏𝝌2(𝒏𝝌1)[(35ν235νX1)C~1(BS3)+(15νX115ν2)C~1(ES2)]3\displaystyle\qquad+\bm{n}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right){}^{3}\left[\left(35\nu^{2}-35\nu X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(15\nu X_{1}-15\nu^{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+𝝌1𝝌2(𝒏𝝌1)2[(15νX115ν2)C~1(BS3)+(12ν212νX1)C~1(ES2)]\displaystyle\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(15\nu X_{1}-15\nu^{2}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(12\nu^{2}-12\nu X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+𝝌12(𝒏𝝌1)2[(9ν2+9ν+(18ν9)X1)C~1(ES2)+(15ν2215ν2+(15215ν)X1)C~1(ES4)]\displaystyle\qquad+\bm{\chi}_{1}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(-9\nu^{2}+9\nu+(18\nu-9)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\left(\frac{15\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{15}{2}-15\nu\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\right]
+𝝌22(𝒏𝝌1)2[6C~2(ES2)ν2+C~1(ES2)(152C~2(ES2)ν2+3ν2)]\displaystyle\qquad+\bm{\chi}_{2}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[6\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(\frac{15}{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+3\nu^{2}\right)\right]
+12(𝒏𝝌2)2(𝒏𝝌1)2[C~1(ES2)(12105C~2(ES2)ν245ν2)45ν2C~2(ES2)]\displaystyle\qquad+\frac{1}{2}\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-\frac{1}{2}105\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-45\nu^{2}\right)-45\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]
+𝒏𝝌2𝝌12𝒏𝝌1[(15νX115ν2)C~1(BS3)+(6ν26νX1)C~1(ES2)]\displaystyle\qquad+\bm{n}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}^{2}\bm{n}\cdot\bm{\chi}_{1}\left[\left(15\nu X_{1}-15\nu^{2}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(6\nu^{2}-6\nu X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+12𝒏𝝌2𝝌1𝝌2𝒏𝝌1[27C~2(ES2)ν2+C~1(ES2)(30C~2(ES2)ν2+27ν2)]\displaystyle\qquad+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}\cdot\bm{\chi}_{2}\,\bm{n}\cdot\bm{\chi}_{1}\left[27\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(30\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+27\nu^{2}\right)\right]
+𝝌1𝝌2𝝌12[(3ν23νX1)C~1(BS3)+(3νX13ν2)C~1(ES2)]34ν2𝝌12𝝌22C~1(ES2)C~2(ES2)\displaystyle\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}^{2}\left[\left(3\nu^{2}-3\nu X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(3\nu X_{1}-3\nu^{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]-\frac{3}{4}\nu^{2}\bm{\chi}_{1}^{2}\bm{\chi}_{2}^{2}\tilde{C}_{\left.1(\text{ES}^{2}\right)}\tilde{C}_{\left.2(\text{ES}^{2}\right)}
+𝝌14[(3ν223ν2+(323ν)X1)C~1(ES2)+(3ν24+3ν4+(3ν234)X1)C~1(ES4)]\displaystyle\qquad+\bm{\chi}_{1}^{4}\left[\left(\frac{3\nu^{2}}{2}-\frac{3\nu}{2}+\left(\frac{3}{2}-3\nu\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\left(-\frac{3\nu^{2}}{4}+\frac{3\nu}{4}+\left(\frac{3\nu}{2}-\frac{3}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\right]
+12(𝝌1𝝌2)2[C~1(ES2)(3C~2(ES2)ν23ν2)3ν2C~2(ES2)]}+12.\displaystyle\qquad+\frac{1}{2}\left(\bm{\chi}_{1}\cdot\bm{\chi}_{2}\right)^{2}\left[\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-3\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-3\nu^{2}\right)-3\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]\bigg{\}}+1\leftrightarrow 2. (66g)

B.3 Coefficients of the SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}} Hamiltonian

The coefficients of the SEOBrc,alignTM{}_{\text{TM}}^{r_{c},\text{align}} Hamiltonian are given in Ref. Nagar et al. (2019), but we rewrite them here for convenience in the notation used in the rest of the paper.

The spin-orbit and spin-cubic correction in Eq. (III.3) are given by

GS\displaystyle G_{S} =2[1+2716νp^r2+5ν16r^c+(169ν22565ν16)p^r4+p^r2r^c(12ν49ν2128)+1r^c2(41ν2256+51ν8)]1,\displaystyle=2\bigg{[}1+\frac{27}{16}\nu\hat{p}_{r_{\ast}}^{2}+\frac{5\nu}{16\hat{r}_{c}}+\left(\frac{169\nu^{2}}{256}-\frac{5\nu}{16}\right)\hat{p}_{r_{\ast}}^{4}+\frac{\hat{p}_{r_{\ast}}^{2}}{\hat{r}_{c}}\left(12\nu-\frac{49\nu^{2}}{128}\right)+\frac{1}{\hat{r}_{c}^{2}}\left(\frac{41\nu^{2}}{256}+\frac{51\nu}{8}\right)\bigg{]}^{-1},
GS\displaystyle G_{S^{\ast}} =32[1+1r^c(ν2+34)+(3ν2+54)p^r2+(3ν28+25ν12+548)p^r4+p^r2r^c(7ν28+11ν+4)\displaystyle=\frac{3}{2}\bigg{[}1+\frac{1}{\hat{r}_{c}}\left(\frac{\nu}{2}+\frac{3}{4}\right)+\left(\frac{3\nu}{2}+\frac{5}{4}\right)\hat{p}_{r_{\ast}}^{2}+\left(\frac{3\nu^{2}}{8}+\frac{25\nu}{12}+\frac{5}{48}\right)\hat{p}_{r_{\ast}}^{4}+\frac{\hat{p}_{r_{\ast}}^{2}}{\hat{r}_{c}}\left(-\frac{7\nu^{2}}{8}+11\nu+4\right)
+1r^c2(3ν28+29ν4+2716)]1,\displaystyle\qquad+\frac{1}{\hat{r}_{c}^{2}}\left(\frac{3\nu^{2}}{8}+\frac{29\nu}{4}+\frac{27}{16}\right)\bigg{]}^{-1}, (67a)
GS3\displaystyle G_{S^{3}} =1r^c{χ12[(12ν+(ν1)X1)C~1(BS3)+(ν24+5ν4+(34ν2)X134)C~1(ES2)+ν243ν4+14\displaystyle=\frac{1}{\hat{r}_{c}}\bigg{\{}\chi_{1}^{2}\bigg{[}\left(1-2\nu+(\nu-1)X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(\frac{\nu^{2}}{4}+\frac{5\nu}{4}+\left(\frac{3}{4}-\frac{\nu}{2}\right)X_{1}-\frac{3}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{\nu^{2}}{4}-\frac{3\nu}{4}+\frac{1}{4}
+(ν214)X1]+χ1χ2[(ν24+2ν2νX1)C~1(ES2)ν24+ν2νX12]},\displaystyle\qquad\qquad+\left(\frac{\nu}{2}-\frac{1}{4}\right)X_{1}\bigg{]}+\chi_{1}\chi_{2}\left[\left(\frac{\nu^{2}}{4}+2\nu-2\nu X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{\nu^{2}}{4}+\frac{\nu}{2}-\frac{\nu X_{1}}{2}\right]\bigg{\}},
G~S3\displaystyle\tilde{G}_{S^{3}} =GS3 with 12.\displaystyle=G_{S^{3}}\text{ with }1\leftrightarrow 2. (67b)

The spin-squared and spin-quartic corrections in Eq. (44) are given by

δaNLO2\displaystyle\delta a^{2}_{\text{NLO}} =χ12[((42ν)X14ν)C~1(ES2)+ν223νX1]+12χ1χ2(ν22ν)+12,\displaystyle=\chi_{1}^{2}\left[\left((4-2\nu)X_{1}-4\nu\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{\nu^{2}}{2}-3\nu X_{1}\right]+\frac{1}{2}\chi_{1}\chi_{2}\left(\nu^{2}-2\nu\right)+1\leftrightarrow 2, (68a)
δaNNLO2\displaystyle\delta a^{2}_{\text{NNLO}} =χ12[(207ν228275ν14+(27514533ν28)X1)C~1(ES2)3ν38+157ν28+(45ν28123ν4)X1]\displaystyle=\chi_{1}^{2}\left[\left(\frac{207\nu^{2}}{28}-\frac{275\nu}{14}+\left(\frac{275}{14}-\frac{533\nu}{28}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{3\nu^{3}}{8}+\frac{157\nu^{2}}{8}+\left(\frac{45\nu^{2}}{8}-\frac{123\nu}{4}\right)X_{1}\right]
+12χ1χ2(3ν34145ν2825ν2)+12,\displaystyle\quad+\frac{1}{2}\chi_{1}\chi_{2}\left(-\frac{3\nu^{3}}{4}-\frac{145\nu^{2}}{8}-\frac{25\nu}{2}\right)+1\leftrightarrow 2, (68b)
δaLO4\displaystyle\delta a^{4}_{\text{LO}} =χ13χ2[(3νX13ν2)C~1(BS3)+(3ν23νX1)C~1(ES2)]\displaystyle=\chi_{1}^{3}\chi_{2}\left[\left(3\nu X_{1}-3\nu^{2}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(3\nu^{2}-3\nu X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+12χ12χ22[C~1(ES2)(3ν2C~2(ES2)+3ν2)+3ν2C~2(ES2)]\displaystyle\quad+\frac{1}{2}\chi_{1}^{2}\chi_{2}^{2}\left[\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(3\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}+3\nu^{2}\right)+3\nu^{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]
+χ14[(3ν24+9ν4+(343ν2)X234)C~1(ES2)2+(3ν22+9ν2+(323ν)X232)C~1(ES2)\displaystyle\quad+\chi_{1}^{4}\bigg{[}\left(-\frac{3\nu^{2}}{4}+\frac{9\nu}{4}+\left(\frac{3}{4}-\frac{3\nu}{2}\right)X_{2}-\frac{3}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}^{2}+\left(-\frac{3\nu^{2}}{2}+\frac{9\nu}{2}+\left(\frac{3}{2}-3\nu\right)X_{2}-\frac{3}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+(3ν249ν4+(3ν234)X2+34)C~1(ES4)]+12.\displaystyle\qquad\qquad+\left(\frac{3\nu^{2}}{4}-\frac{9\nu}{4}+\left(\frac{3\nu}{2}-\frac{3}{4}\right)X_{2}+\frac{3}{4}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\bigg{]}+1\leftrightarrow 2. (68c)

B.4 Coefficients of the SEOBTS{}_{\text{TS}} Hamiltonian

The spin-squared corrections in Eq. (56) are given by

ASS\displaystyle A^{SS} =1r^3𝝌12(νX1)C~1(ES2)\displaystyle=\frac{1}{\hat{r}^{3}}\bm{\chi}_{1}^{2}\left(\nu-X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+1r^4{𝝌12[(2ν+(2ν2)X1)C~1(ES2)+17ν26+(23ν26+ν6)X1]+3712ν2𝝌1𝝌2}\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\bm{\chi}_{1}^{2}\left[\left(2\nu+(2\nu-2)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{17\nu^{2}}{6}+\left(\frac{23\nu^{2}}{6}+\frac{\nu}{6}\right)X_{1}\right]+\frac{37}{12}\nu^{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\bigg{\}}
+1r^5{𝝌12[(207ν228+51ν14+(309ν285114)X1)C~1(ES2)+529ν41442353ν3144+55ν24\displaystyle\quad+\frac{1}{\hat{r}^{5}}\bigg{\{}\bm{\chi}_{1}^{2}\bigg{[}\left(-\frac{207\nu^{2}}{28}+\frac{51\nu}{14}+\left(\frac{309\nu}{28}-\frac{51}{14}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{529\nu^{4}}{144}-\frac{2353\nu^{3}}{144}+\frac{55\nu^{2}}{4}
+(143ν372+7015ν2144155ν8)X1]+12𝝌1𝝌2(529ν472112ν33+51ν28)}+12,\displaystyle\qquad\qquad\quad+\left(\frac{143\nu^{3}}{72}+\frac{7015\nu^{2}}{144}-\frac{155\nu}{8}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\frac{529\nu^{4}}{72}-\frac{112\nu^{3}}{3}+\frac{51\nu^{2}}{8}\right)\bigg{\}}+1\leftrightarrow 2, (69a)
AnS\displaystyle A^{nS} =1r^3(3X13ν)C~1(ES2)(𝒏𝝌1)2\displaystyle=\frac{1}{\hat{r}^{3}}\left(3X_{1}-3\nu\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}
+1r^4{(𝒏𝝌1)2[(3ν23ν+(33ν)X1)C~1(ES2)5ν34+3ν22+(15ν246ν)X1]\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(-3\nu^{2}-3\nu+(3-3\nu)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{3}}{4}+\frac{3\nu^{2}}{2}+\left(-\frac{15\nu^{2}}{4}-6\nu\right)X_{1}\right]
+12𝒏𝝌1𝒏𝝌2(5ν3267ν24)}\displaystyle\qquad\qquad+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{5\nu^{3}}{2}-\frac{67\nu^{2}}{4}\right)\bigg{\}}
+1r^5{(𝒏𝝌1)2[(ν34205ν22824ν7+(37ν24+64ν7+247)X1)C~1(ES2)109ν412+113ν34515ν212\displaystyle\quad+\frac{1}{\hat{r}^{5}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(\frac{\nu^{3}}{4}-\frac{205\nu^{2}}{28}-\frac{24\nu}{7}+\left(-\frac{37\nu^{2}}{4}+\frac{64\nu}{7}+\frac{24}{7}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{109\nu^{4}}{12}+\frac{113\nu^{3}}{4}-\frac{515\nu^{2}}{12}
+(13ν32374ν23+149ν3)X1]+12𝒏𝝌1𝒏𝝌2(109ν46+133ν3121301ν248)}+12,\displaystyle\qquad\qquad\quad+\left(-\frac{13\nu^{3}}{2}-\frac{374\nu^{2}}{3}+\frac{149\nu}{3}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{109\nu^{4}}{6}+\frac{133\nu^{3}}{12}-\frac{1301\nu^{2}}{48}\right)\bigg{\}}+1\leftrightarrow 2, (69b)
BpnS\displaystyle B_{p}^{nS} =1r^3{(𝒏𝝌1)2[(3ν23ν+(33ν)X1)C~1(ES2)+5ν3429ν24+(13ν231ν24)X1]\displaystyle=\frac{1}{\hat{r}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[\left(3\nu^{2}-3\nu+(3-3\nu)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{5\nu^{3}}{4}-\frac{29\nu^{2}}{4}+\left(\frac{13\nu}{2}-\frac{31\nu^{2}}{4}\right)X_{1}\right]
+12𝒏𝝌1𝒏𝝌2(5ν32+15ν24)}\displaystyle\quad\qquad+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\frac{5\nu^{3}}{2}+\frac{15\nu^{2}}{4}\right)\bigg{\}}
+1r^4{(𝒏𝝌1)2[(ν34+59ν2215ν2+(37ν24169ν4+152)X1)C~1(ES2)31ν416413ν348101ν224\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-\frac{\nu^{3}}{4}+\frac{59\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{37\nu^{2}}{4}-\frac{169\nu}{4}+\frac{15}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{31\nu^{4}}{16}-\frac{413\nu^{3}}{48}-\frac{101\nu^{2}}{24}
+(13ν324+763ν248+155ν24)X1]+12𝒏𝝌1𝒏𝝌2(31ν48+217ν36+1493ν248)}+12,\displaystyle\qquad\qquad\quad+\left(\frac{13\nu^{3}}{24}+\frac{763\nu^{2}}{48}+\frac{155\nu}{24}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{31\nu^{4}}{8}+\frac{217\nu^{3}}{6}+\frac{1493\nu^{2}}{48}\right)\bigg{\}}+1\leftrightarrow 2, (69c)
BnpnS\displaystyle B_{np}^{nS} =1r^3{(𝒏𝝌1)2(15ν34+15ν2+(75ν2415ν)X1)+12𝒏𝝌1𝒏𝝌2(15ν3245ν24)}\displaystyle=\frac{1}{\hat{r}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(-\frac{15\nu^{3}}{4}+15\nu^{2}+\left(\frac{75\nu^{2}}{4}-15\nu\right)X_{1}\right)+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{15\nu^{3}}{2}-\frac{45\nu^{2}}{4}\right)\bigg{\}}
+1r^4{(𝒏𝝌1)2[(ν331ν24+9ν2+(ν2+121ν492)X1)C~1(ES2)63ν416+2615ν348899ν224\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(\nu^{3}-\frac{31\nu^{2}}{4}+\frac{9\nu}{2}+\left(-\nu^{2}+\frac{121\nu}{4}-\frac{9}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{63\nu^{4}}{16}+\frac{2615\nu^{3}}{48}-\frac{899\nu^{2}}{24}
+(509ν3241331ν216+1223ν24)X1]+12𝒏𝝌1𝒏𝝌2(63ν48455ν312+63ν24)}+12,\displaystyle\qquad\qquad\quad+\left(\frac{509\nu^{3}}{24}-\frac{1331\nu^{2}}{16}+\frac{1223\nu}{24}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(-\frac{63\nu^{4}}{8}-\frac{455\nu^{3}}{12}+\frac{63\nu^{2}}{4}\right)\bigg{\}}+1\leftrightarrow 2, (69d)
BnpSS\displaystyle B_{np}^{SS} =1r^3𝝌12[(3ν2+3ν+(3ν3)X1)C~1(ES2)+9ν24+(3ν223ν2)X1]\displaystyle=\frac{1}{\hat{r}^{3}}\bm{\chi}_{1}^{2}\left[\left(-3\nu^{2}+3\nu+(3\nu-3)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{9\nu^{2}}{4}+\left(\frac{3\nu^{2}}{2}-\frac{3\nu}{2}\right)X_{1}\right]
+1r^4{𝝌12[(135ν24+11ν2+(12ν2+173ν4112)X1)C~1(ES2)+187ν448409ν348+781ν272\displaystyle\quad+\frac{1}{\hat{r}^{4}}\bigg{\{}\bm{\chi}_{1}^{2}\bigg{[}\left(-\frac{135\nu^{2}}{4}+\frac{11\nu}{2}+\left(-12\nu^{2}+\frac{173\nu}{4}-\frac{11}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{187\nu^{4}}{48}-\frac{409\nu^{3}}{48}+\frac{781\nu^{2}}{72}
+(187ν324+605ν21441807ν72)X1]+12𝝌1𝝌2(187ν424181ν341213ν218)}+12,\displaystyle\qquad\qquad\quad+\left(-\frac{187\nu^{3}}{24}+\frac{605\nu^{2}}{144}-\frac{1807\nu}{72}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\frac{187\nu^{4}}{24}-\frac{181\nu^{3}}{4}-\frac{1213\nu^{2}}{18}\right)\bigg{\}}+1\leftrightarrow 2, (69e)
QS2\displaystyle Q^{S^{2}} =p^r3r^3{𝒏𝝌1𝒑^𝝌1[(20ν335ν2+(35ν20ν2)X1)C~1(ES2)+45ν48425ν312+35ν26\displaystyle=\frac{\hat{p}_{r}^{3}}{\hat{r}^{3}}\bigg{\{}\bm{n}\cdot\bm{\chi}_{1}\hat{\bm{p}}\cdot\bm{\chi}_{1}\bigg{[}\left(20\nu^{3}-35\nu^{2}+\left(35\nu-20\nu^{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{45\nu^{4}}{8}-\frac{425\nu^{3}}{12}+\frac{35\nu^{2}}{6}
+(100ν33+145ν2435ν6)X1]+𝒏𝝌1𝒑^𝝌2[45ν48+10ν3325ν216]}\displaystyle\qquad\qquad\quad+\left(-\frac{100\nu^{3}}{3}+\frac{145\nu^{2}}{4}-\frac{35\nu}{6}\right)X_{1}\bigg{]}+\bm{n}\cdot\bm{\chi}_{1}\hat{\bm{p}}\cdot\bm{\chi}_{2}\left[\frac{45\nu^{4}}{8}+\frac{10\nu^{3}}{3}-\frac{25\nu^{2}}{16}\right]\bigg{\}}
+p^r4r^3{(𝒏𝝌1)2[(35ν3+245ν24+(35ν2245ν4)X1)C~1(ES2)105ν416+2135ν34835ν224\displaystyle\quad+\frac{\hat{p}_{r}^{4}}{\hat{r}^{3}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(-35\nu^{3}+\frac{245\nu^{2}}{4}+\left(35\nu^{2}-\frac{245\nu}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{105\nu^{4}}{16}+\frac{2135\nu^{3}}{48}-\frac{35\nu^{2}}{24}
+(1085ν324595ν216+35ν24)X1]+12𝒏𝝌1𝒏𝝌2[105ν48245ν312+35ν28]\displaystyle\qquad\qquad\quad+\left(\frac{1085\nu^{3}}{24}-\frac{595\nu^{2}}{16}+\frac{35\nu}{24}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left[-\frac{105\nu^{4}}{8}-\frac{245\nu^{3}}{12}+\frac{35\nu^{2}}{8}\right]
+𝝌12[(5ν335ν24+(35ν45ν2)X1)C~1(ES2)+5ν416145ν34835ν224\displaystyle\quad\qquad+\bm{\chi}_{1}^{2}\bigg{[}\left(5\nu^{3}-\frac{35\nu^{2}}{4}+\left(\frac{35\nu}{4}-5\nu^{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{5\nu^{4}}{16}-\frac{145\nu^{3}}{48}-\frac{35\nu^{2}}{24}
+(95ν324+5ν216+35ν24)X1]+12𝝌1𝝌2[5ν48+55ν3125ν212]}+12.\displaystyle\qquad\qquad\quad+\left(-\frac{95\nu^{3}}{24}+\frac{5\nu^{2}}{16}+\frac{35\nu}{24}\right)X_{1}\bigg{]}+\frac{1}{2}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left[\frac{5\nu^{4}}{8}+\frac{55\nu^{3}}{12}-\frac{5\nu^{2}}{12}\right]\bigg{\}}+1\leftrightarrow 2. (69f)

The spin-cubed corrections in Eq. (56b) are

GS3\displaystyle G_{S^{3}} =1r^{(𝒏𝝌1)2[(5ν+(5ν5)X1)C~1(BS3)+(3ν329ν24+(3ν2+9ν4)X1)C~1(ES2)ν4+7ν3+5ν24\displaystyle=\frac{1}{\hat{r}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\left(5\nu+(5\nu-5)X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(-\frac{3\nu^{3}}{2}-\frac{9\nu^{2}}{4}+\left(3\nu^{2}+\frac{9\nu}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\nu^{4}+7\nu^{3}+\frac{5\nu^{2}}{4}
+(3ν37ν25ν4)X1]+𝝌12[((1ν)X1ν)C~1(BS3)+(3ν243νX14)C~1(ES2)5ν34+3ν2X12]\displaystyle\qquad\qquad+\left(3\nu^{3}-7\nu^{2}-\frac{5\nu}{4}\right)X_{1}\bigg{]}+\bm{\chi}_{1}^{2}\left[\left((1-\nu)X_{1}-\nu\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(\frac{3\nu^{2}}{4}-\frac{3\nu X_{1}}{4}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-\frac{5\nu^{3}}{4}+\frac{3\nu^{2}X_{1}}{2}\right]
+𝒏𝝌1𝒏𝝌2[(7ν325ν2215νX12)C~1(ES2)2ν4+37ν365ν2+(ν3311ν23)X1]\displaystyle\quad\qquad+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left[\left(-\frac{7\nu^{3}}{2}-\frac{5\nu^{2}}{2}-\frac{15\nu X_{1}}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}-2\nu^{4}+\frac{37\nu^{3}}{6}-5\nu^{2}+\left(\frac{\nu^{3}}{3}-\frac{11\nu^{2}}{3}\right)X_{1}\right]
+𝝌1𝝌2[(ν3+ν22+3νX12)C~1(ES2)+17ν312+ν2+(5ν367ν26)X1]\displaystyle\quad\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left[\left(\nu^{3}+\frac{\nu^{2}}{2}+\frac{3\nu X_{1}}{2}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}+\frac{17\nu^{3}}{12}+\nu^{2}+\left(\frac{5\nu^{3}}{6}-\frac{7\nu^{2}}{6}\right)X_{1}\right]
+(𝒏𝝌2)2[(2ν35ν2415νX24)C~2(ES2)ν4+89ν365ν22+(8ν3325ν23)X2]\displaystyle\quad\qquad+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left[\left(2\nu^{3}-\frac{5\nu^{2}}{4}-\frac{15\nu X_{2}}{4}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}-\nu^{4}+\frac{89\nu^{3}}{6}-\frac{5\nu^{2}}{2}+\left(\frac{8\nu^{3}}{3}-\frac{25\nu^{2}}{3}\right)X_{2}\right]
+𝝌22[(ν3+ν24+3νX24)C~2(ES2)31ν36+ν22+(8ν235ν36)X2]}\displaystyle\quad\qquad+\bm{\chi}_{2}^{2}\left[\left(-\nu^{3}+\frac{\nu^{2}}{4}+\frac{3\nu X_{2}}{4}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}-\frac{31\nu^{3}}{6}+\frac{\nu^{2}}{2}+\left(\frac{8\nu^{2}}{3}-\frac{5\nu^{3}}{6}\right)X_{2}\right]\bigg{\}}
+L^2r^2[(𝒏𝝌1)2(ν423ν32+ν22+(3ν32+2ν2ν2)X1)+𝒏𝝌1𝒏𝝌2(ν4ν3X1)\displaystyle\quad+\frac{\hat{L}^{2}}{\hat{r}^{2}}\bigg{[}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(\frac{\nu^{4}}{2}-\frac{3\nu^{3}}{2}+\frac{\nu^{2}}{2}+\left(-\frac{3\nu^{3}}{2}+2\nu^{2}-\frac{\nu}{2}\right)X_{1}\right)+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(\nu^{4}-\nu^{3}X_{1}\right)
+(𝒏𝝌2)2(ν42ν3X22)]\displaystyle\qquad\qquad\qquad+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\frac{\nu^{4}}{2}-\frac{\nu^{3}X_{2}}{2}\right)\bigg{]}
+p^r2[(𝒏𝝌1)2(5ν42+15ν325ν22+(15ν3210ν2+5ν2)X1)+𝒏𝝌1𝒏𝝌2(5ν3X15ν4)\displaystyle\quad+\hat{p}_{r}^{2}\bigg{[}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(-\frac{5\nu^{4}}{2}+\frac{15\nu^{3}}{2}-\frac{5\nu^{2}}{2}+\left(\frac{15\nu^{3}}{2}-10\nu^{2}+\frac{5\nu}{2}\right)X_{1}\right)+\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left(5\nu^{3}X_{1}-5\nu^{4}\right)
+(𝒏𝝌2)2(5ν3X225ν42)],\displaystyle\qquad\qquad\qquad+\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\frac{5\nu^{3}X_{2}}{2}-\frac{5\nu^{4}}{2}\right)\bigg{]}, (70a)
G~S3\displaystyle\tilde{G}_{S^{3}} =GS3 with 12.\displaystyle=G_{S^{3}}\text{ with }1\leftrightarrow 2. (70b)

The spin-quartic corrections in Eq. (56) read

AS4\displaystyle A^{S^{4}} =1r^5{(𝒏𝝌1)4[63ν44+36ν3+3ν2+(15ν32+45ν2215ν2+(45ν2230ν+152)X1)C~1(ES2)\displaystyle=\frac{1}{\hat{r}^{5}}\bigg{\{}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{4}\bigg{[}-\frac{63\nu^{4}}{4}+36\nu^{3}+3\nu^{2}+\left(-\frac{15\nu^{3}}{2}+\frac{45\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{45\nu^{2}}{2}-30\nu+\frac{15}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+(46ν333ν23ν)X1+(35ν24+35ν4+(35ν2354)X1)C~1(ES4)]\displaystyle\qquad\qquad\qquad+\left(46\nu^{3}-33\nu^{2}-3\nu\right)X_{1}+\left(-\frac{35\nu^{2}}{4}+\frac{35\nu}{4}+\left(\frac{35\nu}{2}-\frac{35}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\bigg{]}
+𝒏𝝌2(𝒏𝝌1)3[3ν4+3ν3+(6ν36ν2)X1+(3ν23νX1)C~1(BS3)+(3ν2X13ν3)C~1(ES2)]\displaystyle\quad\qquad+\bm{n}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{3}\left[-3\nu^{4}+3\nu^{3}+\left(6\nu^{3}-6\nu^{2}\right)X_{1}+\left(3\nu^{2}-3\nu X_{1}\right)\tilde{C}_{\left.1(\text{BS}^{3}\right)}+\left(3\nu^{2}X_{1}-3\nu^{3}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}\right]
+𝝌12(𝒏𝝌1)2[21ν4227ν33ν2+(9ν327ν2+9ν+(27ν2+36ν9)X1)C~1(ES2)\displaystyle\quad\qquad+\bm{\chi}_{1}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\frac{21\nu^{4}}{2}-27\nu^{3}-3\nu^{2}+\left(9\nu^{3}-27\nu^{2}+9\nu+\left(-27\nu^{2}+36\nu-9\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+(33ν3+24ν2+3ν)X1+(15ν2215ν2+(15215ν)X1)C~1(ES4)]\displaystyle\qquad\qquad\qquad+\left(-33\nu^{3}+24\nu^{2}+3\nu\right)X_{1}+\left(\frac{15\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{15}{2}-15\nu\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\bigg{]}
+𝝌22(𝒏𝝌1)2[63ν4+58ν3+(35ν235νX2)C~2(BS3)\displaystyle\quad\qquad+\bm{\chi}_{2}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}-63\nu^{4}+58\nu^{3}+\left(35\nu^{2}-35\nu X_{2}\right)\tilde{C}_{\left.2(\text{BS}^{3}\right)}
+(104ν393ν2)X2+((6ν3+12ν2)X212ν3)C~2(ES2)]\displaystyle\qquad\qquad\qquad+\left(104\nu^{3}-93\nu^{2}\right)X_{2}+\left(\left(6\nu^{3}+12\nu^{2}\right)X_{2}-12\nu^{3}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}\bigg{]}
+𝝌1𝝌2(𝒏𝝌1)2[189ν42+54ν342ν2+(21ν32105ν22+(21ν226ν3)X1)C~2(ES2)\displaystyle\quad\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}-\frac{189\nu^{4}}{2}+54\nu^{3}-42\nu^{2}+\left(-\frac{21\nu^{3}}{2}-\frac{105\nu^{2}}{2}+\left(\frac{21\nu^{2}}{2}-6\nu^{3}\right)X_{1}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}
+C~1(ES2)(33ν321052C~2(ES2)ν242ν2+(6ν321ν22)X1)]\displaystyle\qquad\qquad\qquad+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-\frac{33\nu^{3}}{2}-\frac{105}{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-42\nu^{2}+\left(6\nu^{3}-\frac{21\nu^{2}}{2}\right)X_{1}\right)\bigg{]}
+12(𝒏𝝌2)2(𝒏𝝌1)2[21ν4227ν33ν2+(9ν327ν2+9ν+(27ν2+36ν9)X2)C~2(ES2)\displaystyle\quad\qquad+\frac{1}{2}\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bigg{[}\frac{21\nu^{4}}{2}-27\nu^{3}-3\nu^{2}+\left(9\nu^{3}-27\nu^{2}+9\nu+\left(-27\nu^{2}+36\nu-9\right)X_{2}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}
+(33ν3+24ν2+3ν)X2+(15ν2215ν2+(15215ν)X2)C~2(ES4)]\displaystyle\qquad\qquad\qquad+\left(-33\nu^{3}+24\nu^{2}+3\nu\right)X_{2}+\left(\frac{15\nu^{2}}{2}-\frac{15\nu}{2}+\left(\frac{15}{2}-15\nu\right)X_{2}\right)\tilde{C}_{\left.2(\text{ES}^{4}\right)}\bigg{]}
+𝒏𝝌2𝝌12𝒏𝝌1[23ν4215ν32+9ν22+(2ν46ν3+9ν22)X1+(3ν323X1ν22+15ν22)C~2(ES2)\displaystyle\quad\qquad+\bm{n}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}^{2}\bm{n}\cdot\bm{\chi}_{1}\bigg{[}\frac{23\nu^{4}}{2}-\frac{15\nu^{3}}{2}+\frac{9\nu^{2}}{2}+\left(-2\nu^{4}-6\nu^{3}+\frac{9\nu^{2}}{2}\right)X_{1}+\left(\frac{3\nu^{3}}{2}-\frac{3X_{1}\nu^{2}}{2}+\frac{15\nu^{2}}{2}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}
+C~1(ES2)(9ν32+9X1ν22+152C~2(ES2)ν2+3ν2)]\displaystyle\qquad\qquad\qquad+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(\frac{9\nu^{3}}{2}+\frac{9X_{1}\nu^{2}}{2}+\frac{15}{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}+3\nu^{2}\right)\bigg{]}
+12𝒏𝝌2𝝌1𝝌2𝒏𝝌1[23ν4215ν32+9ν22+(9ν222ν46ν3)X2+(9ν32+9X2ν22+3ν2)C~2(ES2)\displaystyle\quad\qquad+\frac{1}{2}\bm{n}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}\cdot\bm{\chi}_{2}\,\bm{n}\cdot\bm{\chi}_{1}\bigg{[}\frac{23\nu^{4}}{2}-\frac{15\nu^{3}}{2}+\frac{9\nu^{2}}{2}+\left(\frac{9\nu^{2}}{2}-2\nu^{4}-6\nu^{3}\right)X_{2}+\left(\frac{9\nu^{3}}{2}+\frac{9X_{2}\nu^{2}}{2}+3\nu^{2}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}
+C~1(ES2)(3ν32+152C~2(ES2)ν23X2ν22+15ν22)]\displaystyle\qquad\qquad\qquad+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(\frac{3\nu^{3}}{2}+\frac{15}{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-\frac{3X_{2}\nu^{2}}{2}+\frac{15\nu^{2}}{2}\right)\bigg{]}
+𝝌14[3ν44+3ν3+(3ν33ν2)X1+(3ν32+9ν223ν2+(9ν226ν+32)X1)C~1(ES2)\displaystyle\quad\qquad+\bm{\chi}_{1}^{4}\bigg{[}-\frac{3\nu^{4}}{4}+3\nu^{3}+\left(3\nu^{3}-3\nu^{2}\right)X_{1}+\left(-\frac{3\nu^{3}}{2}+\frac{9\nu^{2}}{2}-\frac{3\nu}{2}+\left(\frac{9\nu^{2}}{2}-6\nu+\frac{3}{2}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{2}\right)}
+(3ν24+3ν4+(3ν234)X1)C~1(ES4)]\displaystyle\qquad\qquad\qquad+\left(-\frac{3\nu^{2}}{4}+\frac{3\nu}{4}+\left(\frac{3\nu}{2}-\frac{3}{4}\right)X_{1}\right)\tilde{C}_{\left.1(\text{ES}^{4}\right)}\bigg{]}
+12(𝝌1𝝌2)2[3ν4+3ν3+(6ν36ν2)X2+(3ν23νX2)C~2(BS3)+(3ν2X23ν3)C~2(ES2)]\displaystyle\quad\qquad+\frac{1}{2}\left(\bm{\chi}_{1}\cdot\bm{\chi}_{2}\right)^{2}\left[-3\nu^{4}+3\nu^{3}+\left(6\nu^{3}-6\nu^{2}\right)X_{2}+\left(3\nu^{2}-3\nu X_{2}\right)\tilde{C}_{\left.2(\text{BS}^{3}\right)}+\left(3\nu^{2}X_{2}-3\nu^{3}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}\right]
+12𝝌12𝝌22[18ν455ν32+(2ν447ν3+85ν22)X2+(15νX215ν2)C~2(BS3)\displaystyle\quad\qquad+\frac{1}{2}\bm{\chi}_{1}^{2}\bm{\chi}_{2}^{2}\bigg{[}18\nu^{4}-\frac{55\nu^{3}}{2}+\left(-2\nu^{4}-47\nu^{3}+\frac{85\nu^{2}}{2}\right)X_{2}+\left(15\nu X_{2}-15\nu^{2}\right)\tilde{C}_{\left.2(\text{BS}^{3}\right)}
+(9ν3+(6ν39ν2)X2)C~2(ES2)]\displaystyle\qquad\qquad\qquad+\left(9\nu^{3}+\left(-6\nu^{3}-9\nu^{2}\right)X_{2}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}\bigg{]}
+𝝌1𝝌2𝝌12[3ν42+3ν33ν22+(3ν32+3X1ν223ν22)C~2(ES2)\displaystyle\quad\qquad+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\,\bm{\chi}_{1}^{2}\bigg{[}-\frac{3\nu^{4}}{2}+3\nu^{3}-\frac{3\nu^{2}}{2}+\left(-\frac{3\nu^{3}}{2}+\frac{3X_{1}\nu^{2}}{2}-\frac{3\nu^{2}}{2}\right)\tilde{C}_{\left.2(\text{ES}^{2}\right)}
+C~1(ES2)(3ν3232C~2(ES2)ν23X1ν22)]}+12,\displaystyle\qquad\qquad\qquad+\tilde{C}_{\left.1(\text{ES}^{2}\right)}\left(-\frac{3\nu^{3}}{2}-\frac{3}{2}\tilde{C}_{\left.2(\text{ES}^{2}\right)}\nu^{2}-\frac{3X_{1}\nu^{2}}{2}\right)\bigg{]}\bigg{\}}+1\leftrightarrow 2, (71a)
QS4\displaystyle Q^{S^{4}} =p^r2r^4{𝝌22(𝒏𝝌1)2(3ν46ν4X2)+𝝌1𝝌2(𝒏𝝌1)2[9ν43ν3+(6ν412ν3+3ν2)X1]\displaystyle=\frac{\hat{p}_{r}^{2}}{\hat{r}^{4}}\Big{\{}\bm{\chi}_{2}^{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left(3\nu^{4}-6\nu^{4}X_{2}\right)+\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\left[9\nu^{4}-3\nu^{3}+\left(6\nu^{4}-12\nu^{3}+3\nu^{2}\right)X_{1}\right]
+𝝌12𝒏𝝌1𝒏𝝌2[9ν4+3ν3+(6ν4+12ν33ν2)X1]}\displaystyle\qquad\qquad+\bm{\chi}_{1}^{2}\bm{n}\cdot\bm{\chi}_{1}\,\bm{n}\cdot\bm{\chi}_{2}\left[-9\nu^{4}+3\nu^{3}+\left(-6\nu^{4}+12\nu^{3}-3\nu^{2}\right)X_{1}\right]\Big{\}}
+p^rr^4{𝒑^𝝌1[(𝒏𝝌2)3(12ν4+4ν3+(8ν4+16ν34ν2)X2)+𝒏𝝌1𝝌22(8ν4X24ν4)\displaystyle\quad+\frac{\hat{p}_{r}}{\hat{r}^{4}}\bigg{\{}\hat{\bm{p}}\cdot\bm{\chi}_{1}\bigg{[}\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{3}\left(-12\nu^{4}+4\nu^{3}+\left(-8\nu^{4}+16\nu^{3}-4\nu^{2}\right)X_{2}\right)+\bm{n}\cdot\bm{\chi}_{1}\bm{\chi}_{2}^{2}\left(8\nu^{4}X_{2}-4\nu^{4}\right)
+𝝌22𝒏𝝌2(12ν44ν3+(8ν416ν3+4ν2)X2)+𝒏𝝌1(𝒏𝝌2)2(8ν416ν4X2)\displaystyle\qquad\qquad+\bm{\chi}_{2}^{2}\bm{n}\cdot\bm{\chi}_{2}\left(12\nu^{4}-4\nu^{3}+\left(8\nu^{4}-16\nu^{3}+4\nu^{2}\right)X_{2}\right)+\bm{n}\cdot\bm{\chi}_{1}\left(\bm{n}\cdot\bm{\chi}_{2}\right)^{2}\left(8\nu^{4}-16\nu^{4}X_{2}\right)
+(𝒏𝝌1)2𝒏𝝌2(20ν420ν3+4ν2+(8ν4+16ν34ν2)X2)\displaystyle\qquad\qquad+\left(\bm{n}\cdot\bm{\chi}_{1}\right)^{2}\bm{n}\cdot\bm{\chi}_{2}\left(20\nu^{4}-20\nu^{3}+4\nu^{2}+\left(-8\nu^{4}+16\nu^{3}-4\nu^{2}\right)X_{2}\right)
+𝒏𝝌1𝝌1𝝌2(20ν4+20ν34ν2+(8ν416ν3+4ν2)X2)]}+12.\displaystyle\qquad\qquad+\bm{n}\cdot\bm{\chi}_{1}\bm{\chi}_{1}\cdot\bm{\chi}_{2}\left(-20\nu^{4}+20\nu^{3}-4\nu^{2}+\left(8\nu^{4}-16\nu^{3}+4\nu^{2}\right)X_{2}\right)\bigg{]}\bigg{\}}+1\leftrightarrow 2. (71b)

References