This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Four generators of an equivalence lattice with consecutive block counts

Gábor Czédli University of Szeged, Bolyai Institute. Szeged, Aradi vértanúk tere 1, HUNGARY 6720, http://www.math.u-szeged.hu/~czedli/ [email protected] Dedicated to my esteemed coauthors, Honorary Professors László Szabó on his seventy-fifth birthday and Lajos Klukovits on his eightieth birthday.
Abstract.

The block count of an equivalence μEqu(A)\mu\in\textup{Equ}(A) is the number blnum(μ)\textup{blnum}(\mu) of blocks of (the partition corresponding to) μ\mu. We say that X={μ1,μ2,μ3,μ4}X=\{\mu_{1},\mu_{2},\mu_{3},\mu_{4}\} is a four-element generating set of Equ(A)\textup{Equ}(A) with consecutive block counts if XX generates Equ(A)\textup{Equ}(A) and blnum(μ1+i)=blnum(μ1)+i\textup{blnum}(\mu_{1+i})=\textup{blnum}(\mu_{1})+i for i{1,2,3}i\in\{1,2,3\}. We prove that if the number of elements of a finite set AA is six or at least eight, then Equ(A)\textup{Equ}(A) has a four-element generating set with consecutive block counts. Also, we present a historical remark on the connection between equivalence lattices and quasiorder lattices.

This research was supported by the National Research, Development and Innovation Fund of Hungary, under funding scheme K 138892. Version of October 20, 2024

Preface

This paper is probably self-contained for those who know the concept of a lattice as an algebraic structure. Our goal is two-fold. First, we present a historical remark on the connection between equivalence lattices and quasiorder lattices; see after the proof of Claim 1.4. Second, we prove a new theorem, Theorem 2.1, which corresponds to the title of the paper.

1. Introduction and a historical remark

We begin with some notations and well-known definitions. The set of equivalences (in other words, equivalence relations, that is, reflexive, symmetric, and transitive relations) of a set AA will be denoted by Equ(A)\textup{Equ}(A). With intersections and the transitive hulls of unions acting as meets and joins, respectively, Equ(A)\textup{Equ}(A) is a lattice, the equivalence lattice of (or over) AA; the notation Equ(A)\textup{Equ}(A) will stand for this lattice, too. By the canonical bijective correspondence between equivalences and partitions of a set, Equ(A)\textup{Equ}(A) is isomorphic to the partition lattice Part(A)\textup{Part}(A) of AA, which consists of all partitions of AA. We will often consider equivalences as partitions. For XYX\subseteq Y, we say that XX is a proper subset of YY if XYX\neq Y. A sublattice or a complete sublattice of Equ(A)\textup{Equ}(A) is a nonempty subset that is closed with respect to binary joins and meets or to arbitrary joins and meets, respectively. A subset XX of Equ(A)\textup{Equ}(A) is a generating set or a complete-generating set of Equ(A)\textup{Equ}(A) if there is no proper sublattice YY or a proper complete sublattice YY of Equ(A)\textup{Equ}(A), respectively, such that XYX\subseteq Y. Quasiorders are reflexive and symmetric relations. The quasiorders of a set AA form a lattice, the quasiorder lattice Quo(A)\textup{Quo}(A) of AA. Note that Equ(A)\textup{Equ}(A) is a complete sublattice of Quo(A)\textup{Quo}(A).

In the middle of the seventies, Henrik Strietz proved that for any finite set AA with |A|3|A|\geq 3, Equ(A)\textup{Equ}(A) is four-generated, that is, it has a four-element generating set; see Strietz [10][11]. Since Strietz’s work, more than a dozen papers have been devoted to four-element (or small) generating sets of equivalence lattices and quasiorder lattices; for details, see the “References” section here and the bibliographic sections and the survey parts of the papers listed there. Hence, instead of giving another survey, we focus only on the connection between the small generating sets of Equ(A)\textup{Equ}(A) and those of Quo(A)\textup{Quo}(A). In one direction, we recall an important statement from [9, page 61]; see also Lemma 2.1 of [7], where the original lemma is recalled.

Lemma 1.1 (Kulin’s Lemma).

If AA is an arbitrary set with at least three elements and SS is a complete sublattice of Quo(A)\textup{Quo}(A) such that Equ(A)\textup{Equ}(A) is a proper subset of SS, then S=Quo(A)S=\textup{Quo}(A).

Refer to caption

Figure 1. Zádori’s construction for |A|=19|A|=19

In other directions, neither any connection nor the forthcoming Claim 1.4 has been published before. To present such a connection of historical value, let |A|=19|A|=19; the case of |A|=2k+15|A|=2k+1\geq 5 would be similar. The construction visualized by Figure 1 is taken from Zádori [12].

Claim 1.2 ([12]; exemplifying the odd case of Zádori’s construction).

If |A|=19|A|=19, then Equ(A)\textup{Equ}(A) has a four-element generating set.

For later reference, we present Zádori’s proof and his generating set.

Proof.

For p,qAp,q\in A, the smallest equivalence collapsing pp and qq is an atom in Equ(A)\textup{Equ}(A); we denote it by at(p,q)\textup{at}(p,q). So (x,y)at(p,q)(x,y)\in\textup{at}(p,q) if and only if x=yx=y or {x,y}={p,q}\{x,y\}=\{p,q\}. Denote the elements of AA as follows: A={a0,a1,,a9A=\{a_{0},a_{1},\dots,a_{9}, b0,b1,,b8}b_{0},b_{1},\dots,b_{8}\}; see Figure 1. The figure defines a subset X:={α,β,γ,δ}X:=\{\alpha,\beta,\gamma,\delta\} of the equivalence lattice Equ(A)\textup{Equ}(A) as follows. Assume that the horizontal edges, the vertical edges, and the slanted straight edges of the graph are labeled by α\alpha, β\beta, and γ\gamma, respectively. To avoid a crowded figure, these labels are not indicated in the figure, but the triangle on the right reminds us of this convention. There are also two δ\delta-labeled edges, which are drawn as curves. For ϵX\epsilon\in X, the figure defines ϵ\epsilon as follows; walks of length zero are allowed.

ϵ:={(x,y)A2:we can walk from x to y along ϵ-colored edges}.\epsilon:=\{(x,y)\in A^{2}:\text{we can walk from }x\text{ to }y\text{ along }\epsilon\text{-colored edges}\}. (1.1)

For example, {b1,a2}\{b_{1},a_{2}\} is a block of γ\gamma and {b0,,b8}\{b_{0},\dots,b_{8}\} is a block of α\alpha. Let SS be the sublattice generated by XX. In Figure 2, where AA is drawn three times, some equivalences are given by their non-singleton blocks. The meanings of these blocks, with different geometric orientations, line styles, and colors, are defined on the right of the figure. For example, ρ0=at(a0,b0)\rho_{0}=\textup{at}(a_{0},b_{0}) and λ1=at(a9,a8)at(a8,a7)at(b8,b7)\lambda^{\prime}_{1}=\textup{at}(a_{9},a_{8})\vee\textup{at}(a_{8},a_{7})\vee\textup{at}(b_{8},b_{7}). We can easily show that, in this order, ρ0\rho_{0}, ρ0\rho^{\prime}_{0}, ρ0′′\rho^{\prime\prime}_{0}, ρ1\rho_{1}, ρ1\rho^{\prime}_{1}, ρ1′′\rho^{\prime\prime}_{1}, ρ2\rho_{2}, ρ2\rho^{\prime}_{2}, ρ2′′\rho^{\prime\prime}_{2}, ρ3\rho_{3}, ρ3\rho^{\prime}_{3}, ρ3′′\rho^{\prime\prime}_{3}, ρ4\rho_{4}, …belong to SS, since each of them is expressible from the generators and the earlier ones. Indeed, ρ0=βδ\rho_{0}=\beta\wedge\delta and, for i=0,1,2,i=0,1,2,\dots, we have that ρi=(ρiγ)α\rho^{\prime}_{i}=(\rho_{i}\vee\gamma)\wedge\alpha, ρi′′=(ρiβ)γ\rho^{\prime\prime}_{i}=(\rho^{\prime}_{i}\vee\beta)\wedge\gamma, and ρi+1=(((ρi′′β)α)ρi′′)β\rho_{i+1}=\bigl{(}((\rho^{\prime\prime}_{i}\vee\beta)\wedge\alpha)\vee\rho^{\prime\prime}_{i}\bigr{)}\wedge\beta. The increasing sequences (ρ0,ρ1,ρ2,)(\rho_{0},\rho_{1},\rho_{2},\dots), (ρ0,ρ1,ρ2,)(\rho^{\prime}_{0},\rho^{\prime}_{1},\rho^{\prime}_{2},\dots), and (ρ0′′,ρ1′′,ρ2′′,)(\rho^{\prime\prime}_{0},\rho^{\prime\prime}_{1},\rho^{\prime\prime}_{2},\dots) are right-going in the sense that when the subscript increases by 11, the subscripted equivalence obtains a new “edge” on the right of the earlier edges. By interchanging the role of β\beta and γ\gamma, we obtain three increasing “left-going” sequences (λ0,λ1,λ2,)(\lambda_{0},\lambda_{1},\lambda_{2},\dots), (λ0,λ1,λ2,)(\lambda^{\prime}_{0},\lambda^{\prime}_{1},\lambda^{\prime}_{2},\dots), and (λ0′′,λ1′′,λ2′′,)(\lambda^{\prime\prime}_{0},\lambda^{\prime\prime}_{1},\lambda^{\prime\prime}_{2},\dots). Where a right-going sequence “reaches” the appropriate left-going one, the meet of the two sequences yields an atom of Equ(A)\textup{Equ}(A). Namely, for i{0,1,,8}i\in\{0,1,\dots,8\}, at(ai,bi)=ρiλ8i′′S\textup{at}(a_{i},b_{i})=\rho_{i}\wedge\lambda^{\prime\prime}_{8-i}\in S, at(ai+1,bi)=ρi′′λ8iS\textup{at}(a_{i+1},b_{i})=\rho^{\prime\prime}_{i}\wedge\lambda_{8-i}\in S, and at(ai,ai+1)=ρiλ8iS\textup{at}(a_{i},a_{i+1})=\rho^{\prime}_{i}\wedge\lambda^{\prime}_{8-i}\in S. Furthermore, for i{0,,7}i\in\{0,\dots,7\}, at(bi,bi+1)=(at(ai+1,bi)at(ai+1,bi+1))αS\textup{at}(b_{i},b_{i+1})=\bigl{(}\textup{at}(a_{i+1},b_{i})\vee\textup{at}(a_{i+1},b_{i+1})\bigr{)}\wedge\alpha\in S. Hence, for every edge (x,y)(x,y) of the graph, at(x,y)S\textup{at}(x,y)\in S. Therefore, the following lemma implies easily that XX generates Equ(A)\textup{Equ}(A). ∎

Refer to caption

Figure 2. Right-going and left-going sequences
Lemma 1.3.

If 3n+={1,2,3,}3\leq n\in{\mathbb{N}^{+}}=\{1,2,3,\dots\}, A={a0,a1,,an1}A=\{a_{0},a_{1},\dots,a_{n-1}\}, and |A|=n|A|=n, then {at(ai1,ai):i{1,,n1}}{at(an1,a0)}\{\textup{at}(a_{i-1},a_{i}):i\in\{1,\dots,n-1\}\}\cup\{\textup{at}(a_{n-1},a_{0})\} generates Equ(A)\textup{Equ}(A).

In some form, this easy lemma occurs in several papers; see, e.g., [3, Lemma 2.2] and [8, Lemma 2.5].

In 1995, the author visited Ivan Chajda at Palacký University in Olomouc. The research plan looked easy: by orienting the edges of the graph in Figure 1 in some way, we should find a small generating set of Quo(A)\textup{Quo}(A). Our first construction was soon developed into a more sophisticated one, and so the first construction does not occur [1]. However, we need the first construction111Its exact details have been lost but the idea of Claim 1.4 is the same. here even though [1] contains a stronger result and we have an even stronger one nowadays.

Refer to caption

Figure 3. Generating a quasiorder lattice

Let A={a0,a1,,a9,b0,b1,,b8}A=\{a_{0},a_{1},\dots,a_{9},b_{0},b_{1},\dots,b_{8}\} be the 19-element set drawn in Figure 3, which is quite similar to Figure 1. Some edges are directed by arrowheads, some others are not. The figure defines a set Y0={α,β,γ,δ}Y_{0}=\{\alpha,\beta,\gamma,\delta\} of quasiorders of AA by (1.1) with the only modification that we cannot walk along a directed edge in the opposite direction. Along an undirected edge, we can walk in both directions. At present, it makes no difference whether an edge is red and thick or not. For example, (a3,a2),(a3,a4)α(a_{3},a_{2}),(a_{3},a_{4})\in\alpha, (a3,b2),(b2,a3)γ(a_{3},b_{2}),(b_{2},a_{3})\in\gamma, but (b4,a4)β(b_{4},a_{4})\notin\beta and (a2,a3),(a3,a7)α(a_{2},a_{3}),(a_{3},a_{7})\notin\alpha. For ϵY0\epsilon\in Y_{0}, denote ϵ1={(y,x):(x,y)ϵ}Quo(A)\epsilon^{-1}=\{(y,x):(x,y)\in\epsilon\}\in\textup{Quo}(A) the inverse of ϵ\epsilon. Note that γ\gamma and δ\delta are equivalences, and so γ1=γ\gamma^{-1}=\gamma and δ1=δ\delta^{-1}=\delta. Let Y:=Y0{ϵ1:ϵY0}={α,α1,β,β1,γ,δ}Y:=Y_{0}\cup\{\epsilon^{-1}:\epsilon\in Y_{0}\}=\{\alpha,\alpha^{-1},\beta,\beta^{-1},\gamma,\delta\}.

Claim 1.4.

The six-element set YY generates Quo(A)\textup{Quo}(A).

Outline of the proof.

For x,yAx,y\in A, qu(x,y)\textup{qu}(x,y) denotes the smallest quasiorder containing (x,y)(x,y). Let SS stand for the sublattice generated by YY. Since f:Quo(A)Quo(A)f\colon\textup{Quo}(A)\to\textup{Quo}(A) defined by μμ1\mu\mapsto\mu^{-1} is an automorphism of Quo(A)\textup{Quo}(A) and YY is ff-closed, SS is also closed with respect to forming inverses. In particular, whenever qu(x,y)\textup{qu}(x,y) is in SS, then so is qu(y,x)\textup{qu}(y,x); this fact will be used without further explanation. Let us compute; each containment “S\in S” below follows from the earlier ones and YSY\subseteq S:

qu(a0,b0)\displaystyle\textup{qu}(a_{0},b_{0}) =βδS,\displaystyle=\beta\wedge\delta\in S, (1.2)
qu(a1,b0)\displaystyle\textup{qu}(a_{1},b_{0}) =(αqu(a0,b0))γS, by (1.2),\displaystyle=(\alpha\vee\textup{qu}(a_{0},b_{0}))\wedge\gamma\in S,\text{ by \eqref{eq:rCpvZnmG2},} (1.3)
qu(a1,a0)\displaystyle\textup{qu}(a_{1},a_{0}) =α(qu(a1,b0)qu(b0,a0))S by (1.3) and (1.2),\displaystyle=\alpha\wedge(\textup{qu}(a_{1},b_{0})\vee\textup{qu}(b_{0},a_{0}))\in S\text{ by \eqref{eq:rCpvZnmG3} and \eqref{eq:rCpvZnmG2}}, (1.4)
qu(b1,a1)\displaystyle\textup{qu}(b_{1},a_{1}) =(αqu(b0,a1))βS by (1.3),\displaystyle=(\alpha\vee\textup{qu}(b_{0},a_{1}))\wedge\beta\in S\text{ by \eqref{eq:rCpvZnmG3}}, (1.5)
qu(b1,b0)\displaystyle\textup{qu}(b_{1},b_{0}) =α(qu(b1,a1)qu(a1,b0))S by (1.5) and (1.3),\displaystyle=\alpha\wedge(\textup{qu}(b_{1},a_{1})\vee\textup{qu}(a_{1},b_{0}))\in S\text{ by \eqref{eq:rCpvZnmG5} and \eqref{eq:rCpvZnmG3}}, (1.6)
qu(b1,a2)\displaystyle\textup{qu}(b_{1},a_{2}) =γ(qu(b1,a1)α)S by (1.5),\displaystyle=\gamma\wedge(\textup{qu}(b_{1},a_{1})\vee\alpha)\in S\text{ by \eqref{eq:rCpvZnmG5}}, (1.7)
qu(a1,a2)\displaystyle\textup{qu}(a_{1},a_{2}) =α(qu(a1,b1)qu(b1,a2))S by (1.5) and (1.7),\displaystyle=\alpha\wedge(\textup{qu}(a_{1},b_{1})\vee\textup{qu}(b_{1},a_{2}))\in S\text{ by \eqref{eq:rCpvZnmG5} and \eqref{eq:rCpvZnmG7}}, (1.8)
qu(a2,b2)\displaystyle\textup{qu}(a_{2},b_{2}) =β(qu(a2,b1)α)S by (1.7),\displaystyle=\beta\wedge(\textup{qu}(a_{2},b_{1})\vee\alpha)\in S\text{ by \eqref{eq:rCpvZnmG7}}, (1.9)
qu(b1,b2)\displaystyle\textup{qu}(b_{1},b_{2}) =α(qu(b1,a2)qu(a2,b2))S by (1.7) and (1.9),\displaystyle=\alpha\wedge(\textup{qu}(b_{1},a_{2})\vee\textup{qu}(a_{2},b_{2}))\in S\text{ by \eqref{eq:rCpvZnmG7} and \eqref{eq:rCpvZnmG9}}, (1.10)
qu(a3,b2)\displaystyle\textup{qu}(a_{3},b_{2}) =γ(αqu(a2,b2))S by (1.9),\displaystyle=\gamma\wedge(\alpha\vee\textup{qu}(a_{2},b_{2}))\in S\text{ by \eqref{eq:rCpvZnmG9}}, (1.11)
qu(a3,a2)\displaystyle\textup{qu}(a_{3},a_{2}) =α(qu(a3,b2)qu(b2,a2))S by (1.11) and (1.9),\displaystyle=\alpha\wedge(\textup{qu}(a_{3},b_{2})\vee\textup{qu}(b_{2},a_{2}))\in S\text{ by \eqref{eq:rCpvZnmG11} and \eqref{eq:rCpvZnmG9}}, (1.12)
qu(b3,a3)\displaystyle\textup{qu}(b_{3},a_{3}) =β(αqu(b2,a3))S by (1.11),\displaystyle=\beta\wedge(\alpha\vee\textup{qu}(b_{2},a_{3}))\in S\text{ by \eqref{eq:rCpvZnmG11}}, (1.13)
qu(b3,b2)\displaystyle\textup{qu}(b_{3},b_{2}) =α(qu(b3,a3)qu(a3,b2))S by (1.13) and (1.11),\displaystyle=\alpha\wedge(\textup{qu}(b_{3},a_{3})\vee\textup{qu}(a_{3},b_{2}))\in S\text{ by \eqref{eq:rCpvZnmG13} and \eqref{eq:rCpvZnmG11}}, (1.14)

and so on. Computations (1.2)–(1.14) and the fact that SS is closed with respect to forming inverses show that for each thick and red edge (x,y)(x,y) of the graph, qu(x,y)\textup{qu}(x,y) and qu(y,x)\textup{qu}(y,x) are in SS. The figure and (1.2)–(1.14) also show how we can proceed further to the right. Hence, qu(x,y)\textup{qu}(x,y) and qu(y,x)\textup{qu}(y,x) are in SS for every edge (x,y)(x,y) of the graph. Thus, the straightforward counterpart of Lemma 1.3 for quasiorder lattices completes the proof of Claim 1.4. ∎

In the proof above, δ\delta was needed only in the first step, (1.2). This step and the whole proof still work if we omit the dashed curve in Figure 3 and replace δ\delta by the equivalence at(a0,b0)\textup{at}(a_{0},b_{0}). Now we do not need a left-going sequence of quasiorders. Hence, and this was a surprise in 1995, we do not need the figure to end on the right. So AA can be {ai:i0}{bi:i0}\{a_{i}:i\in{\mathbb{N}_{0}}\}\cup\{b_{i}:i\in{\mathbb{N}_{0}}\}, where 0={0,1,2,}{\mathbb{N}_{0}}=\{0,1,2,\dots\}; this was the moment when an infinite base set came into the picture.

Infinite base sets required new techniques, first for quasiorder lattices, see [1]. The new techniques were soon adapted to infinite equivalence lattices; see, e.g., [2]. Later, it appeared that these techniques are useful for finite equivalence lattices; see [3] and [8]. Due to the results of these two papers, a connection with cryptography has been discovered; see [3] and, mainly, [4]. This connection and many earlier results on four-element generating sets motivate Section 2, where a new four-element generating set is constructed. To summarize our historical remark: In some sense, most papers mentioned so far and the present one grew from the unpublished proof of Claim 1.4.

Finally, to conclude this section, note that we can obtain a four-element generating set of Quo(A)\textup{Quo}(A) for |A|=19|A|=19, that is, a stronger result, as follows. (However, this argument does not show how to step from the class of finite equivalence and quasiorder lattices to that of the infinite ones.) Going after [7] and using Figure 1, add a new δ\delta-curve, a directed one, from a1a_{1} to a2a_{2}. That is, we change δ\delta to δqu(a1,a2)\delta\vee\textup{qu}(a_{1},a_{2}). By the proof of Claim 1.2; we obtain all members of Equ(A)\textup{Equ}(A) from X:={α,β,γ,δ}X:=\{\alpha,\beta,\gamma,\delta\}. Thus, XX generates Quo(A)\textup{Quo}(A) by (Kulin’s) Lemma 1.1.

2. A new four-element generating set with a special property

The block count of an equivalence μEqu(A)\mu\in\textup{Equ}(A) is the number blnum(μ)\textup{blnum}(\mu) of blocks of (the partition corresponding to) μ\mu. We say that X={μ1,μ2,μ3,μ4}X=\{\mu_{1},\mu_{2},\mu_{3},\mu_{4}\} is a four-element generating set of Equ(A)\textup{Equ}(A) with consecutive block counts if XX generates Equ(A)\textup{Equ}(A) and blnum(μ1+i)=blnum(μ1)+i\textup{blnum}(\mu_{1+i})=\textup{blnum}(\mu_{1})+i for i{1,2,3}i\in\{1,2,3\}. We are going to prove the following theorem.

Theorem 2.1.

If the number of elements of a finite set AA is six or it is at least eight, then Equ(A)\textup{Equ}(A) has a four-element generating set with consecutive block counts.

Similar properties (namely, “same block counts” and “the difference between the block counts 2\leq 2”) have been studied in [5] and [6]; the property we consider in this section is more difficult to fulfill. Despite some similarities with [5] and [6] in the approach, the present paper remains self-contained.

Remark 2.2.

We know that if |A|<6|A|<6, then Equ(A)\textup{Equ}(A) has no four-element generating set with consecutive block counts; we guess the same for |A|=7|A|=7.

A pair (μ,ν)(\mu,\nu) of elements of Equ(A)\textup{Equ}(A) is complementary if μν=𝟏A\mu\vee\nu=\mathbf{1}_{A}, the top element of Equ(A)\textup{Equ}(A), and μν=𝟎A\mu\wedge\nu=\mathbf{0}_{A}, the bottom element of Equ(A)\textup{Equ}(A).

Definition 2.3 ([5]).

A 77-tuple 𝐀=(A;α,β,γ,δ;u,v)\mathbf{A}=(A;\alpha,\beta,\gamma,\delta;u,v) is called an eligible system if AA is a nonempty set, {α,β,γ,δ}\{\alpha,\beta,\gamma,\delta\} is a generating set of Equ(A)\textup{Equ}(A), and the pairs (α,δ)(\alpha,\delta), (β,γat(u,v))\bigl{(}\beta,\gamma\vee\textup{at}(u,v)\bigr{)}, and (βat(u,v),γ)\bigl{(}\beta\vee\textup{at}(u,v),\gamma\bigr{)} are complementary.

For ρ(A)2\rho\subseteq(A^{\prime})^{2}, eq¯(ρ)\overline{\textup{eq}}\kern 1.0pt^{\prime}(\rho) will denote the smallest equivalence of AA^{\prime} that includes ρ\rho. For distinct elements x,yAx,y\in A^{\prime}, let at(x,y):=eq¯({(x,y)})\textup{at}^{\prime}(x,y):=\overline{\textup{eq}}\kern 1.0pt^{\prime}(\{(x,y)\}). The lattice operations in Equ(A)\textup{Equ}(A^{\prime}) will be denoted by \vee^{\prime} and \wedge^{\prime}.

Lemma 2.4.

Let 𝐀\mathbf{A} be an eligible system with components denoted as in Definition 2.3. Assume that u,vAu^{\prime},v^{\prime}\notin A and uvu^{\prime}\neq v^{\prime}. Let A:=A{u,v}A^{\prime}:=A\cup\{u^{\prime},v^{\prime}\}, α:=eq¯(α)at(u,u)\alpha^{\prime}:=\overline{\textup{eq}}\kern 1.0pt^{\prime}(\alpha)\vee^{\prime}\textup{at}^{\prime}(u,u^{\prime}), β:=eq¯(β)at(u,v)\beta^{\prime}:=\overline{\textup{eq}}\kern 1.0pt^{\prime}(\beta)\vee^{\prime}\textup{at}^{\prime}(u,v^{\prime}), γ:=eq¯(γ)at(v,v)\gamma^{\prime}:=\overline{\textup{eq}}\kern 1.0pt^{\prime}(\gamma)\vee^{\prime}\textup{at}^{\prime}(v,v^{\prime}), δ:=eq¯(δ)at(u,v)\delta^{\prime}:=\overline{\textup{eq}}\kern 1.0pt^{\prime}(\delta)\vee^{\prime}\textup{at}^{\prime}(u^{\prime},v^{\prime}). Then 𝐀:=(A;α,β,γ,δ;u,v)\mathbf{A}^{\prime}:=(A^{\prime};\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\delta^{\prime};u^{\prime},v^{\prime}) is an eligible system, too. Furthermore, if Φ:={α,β,γ,δ}\Phi:=\{\alpha,\beta,\gamma,\delta\} is of consecutive block counts, then so is Φ:={α,β,γ,δ}\Phi^{\prime}:=\{\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\delta^{\prime}\}.

Proof.

The situation is visualized in Figure 4, where the blocks of some elements, all important elements from our perspective, are drawn. The three blocks drawn by solid lines are blocks of some members of ΦEqu(A)\Phi\subseteq\textup{Equ}(A). The seven blocks drawn in non-solid line styles (dotted and various kinds of dashed) are blocks of the equivalences belonging to ΦEqu(A)\Phi^{\prime}\subseteq\textup{Equ}(A^{\prime}). The figure uses different line styles or distinct colors for the blocks of different equivalences, but we use the same color for ϵΦ\epsilon\in\Phi and ϵ\epsilon^{\prime}. Note that the geometrically large blocks on the left could be singletons and, on the other hand, u/α:={x:(x,u)α}u/\alpha:=\{x:(x,u)\in\alpha\} and v/γv/\gamma can be but need not be disjoint. Not all blocks of all ϵ\epsilon and ϵ\epsilon^{\prime} are drawn for ϵΦ\epsilon\in\Phi. However, for any xAx\in A and ϵΦ\epsilon\in\Phi, if the block x/ϵx/\epsilon is not drawn, then x/ϵ=x/ϵx/\epsilon=x/\epsilon^{\prime}. The last sentence of Lemma 2.4 follows from the trivial fact that blnum(ϵ)=1+blnum(ϵ)\textup{blnum}(\epsilon^{\prime})=1+\textup{blnum}(\epsilon) holds for every ϵΦ\epsilon\in\Phi. Applying a lemma from [5] twice (in a “twisted way” and in a “straight way”), we could derive the rest of Lemma 2.4 from [5]. To keep the paper self-contained, we give a different and direct proof.

Refer to caption

Figure 4. Illustrating the proof of Lemma 2.4

The existence of an xu/βv/γx\in u/\beta\wedge v/\gamma would violate the conjunction of β(γat(u,v))=𝟎A\beta\wedge(\gamma\vee\textup{at}(u,v))=\mathbf{0}_{A} and γ(βat(u,v))=𝟎A\gamma\wedge(\beta\vee\textup{at}(u,v))=\mathbf{0}_{A} —call them the meet conditions for β\beta and γ\gamma— and uvu\neq v. Thus, u/βu/\beta and v/γv/\gamma are disjoint.

By the two paragraphs above, Figure 4 faithfully represents the situation and contains all the details the proof needs. Hence, it is straightforward to verify that the three pairs in Definition 2.3 for Equ(A)\textup{Equ}(A^{\prime}) are complementary. Let SS and EE denote the sublattice generated by Φ\Phi^{\prime} in Equ(A)\textup{Equ}(A^{\prime}) and the sublattice {μEqu(A)\{\mu\in\textup{Equ}(A^{\prime}) : both u/μu^{\prime}/\mu and v/μv^{\prime}/\mu are singletons}\}. Then f:Equ(A)Ef\colon\textup{Equ}(A)\to E defined by μeq¯(μ)\mu\mapsto\overline{\textup{eq}}\kern 1.0pt^{\prime}(\mu) is a lattice isomorphism.

Observe that {u}\{u^{\prime}\} is a singleton block of βγ\beta^{\prime}\vee^{\prime}\gamma^{\prime}. Furthermore, {v}\{v^{\prime}\} is a singleton block of both α\alpha^{\prime} and δ(βγ)\delta^{\prime}\wedge^{\prime}(\beta^{\prime}\vee^{\prime}\gamma^{\prime}). Thus {v}\{v^{\prime}\} is a singleton block of α(δ(βγ))\alpha^{\prime}\vee^{\prime}\bigl{(}\delta^{\prime}\wedge^{\prime}(\beta^{\prime}\vee^{\prime}\gamma^{\prime})\bigr{)}. Therefore, with

κ:=(βγ)(α(δ(βγ))),\kappa:=(\beta^{\prime}\vee^{\prime}\gamma^{\prime})\wedge^{\prime}\Bigl{(}\alpha^{\prime}\vee^{\prime}\bigl{(}\delta^{\prime}\wedge^{\prime}(\beta^{\prime}\vee^{\prime}\gamma^{\prime})\bigr{)}\Bigr{)},

|u/κ|=|v/κ|=1|u^{\prime}/\kappa|=|v^{\prime}/\kappa|=1. Using the fact that ϵϵ\epsilon\subseteq\epsilon^{\prime} for all ϵX\epsilon\in X, the join condition βat(u,v)γ=𝟏A\beta\vee\textup{at}(u,v)\vee\gamma=\mathbf{1}_{A} for β\beta and γ\gamma, and (u,v)βγ(u,v)\in\beta^{\prime}\vee^{\prime}\gamma^{\prime}, we obtain that A2βγA^{2}\subseteq\beta^{\prime}\vee^{\prime}\gamma^{\prime}. By the previous two “\subseteq” inclusions, δδ(βγ)\delta\subseteq\delta^{\prime}\wedge^{\prime}(\beta^{\prime}\vee^{\prime}\gamma^{\prime}). Using this fact, αα\alpha\subseteq\alpha^{\prime}, and the join condition for the complementary pair (α,δ)(\alpha,\delta), we obtain that A2κA^{2}\subseteq\kappa. Combining this with |u/κ|=|v/κ|=1|u^{\prime}/\kappa|=|v^{\prime}/\kappa|=1, we have that f(𝟏A)=κSf(\mathbf{1}_{A})=\kappa\in S. Thus, for all ϵΦ\epsilon\in\Phi, f(ϵ)=f(𝟏A)ϵSf(\epsilon)=f(\mathbf{1}_{A})\wedge\epsilon^{\prime}\in S, whereby f(Φ)Sf(\Phi)\subseteq S. Since Φ\Phi generates Equ(A)\textup{Equ}(A) and f:Equ(A)Ef\colon\textup{Equ}(A)\to E is an isomorphism, we obtain that ESE\subseteq S. In particular, at(u,v)=f(at(u,v))S\textup{at}^{\prime}(u,v)=f(\textup{at}(u,v))\in S. As the following equalities are clear by the figure, we obtain further elements of SS as follows:

at(v,v)\displaystyle\textup{at}^{\prime}(v,v^{\prime}) =(at(u,v)β)γS,\displaystyle=(\textup{at}^{\prime}(u,v)\vee^{\prime}\beta^{\prime})\wedge^{\prime}\gamma^{\prime}\in S, (2.1)
at(v,u)\displaystyle\textup{at}^{\prime}(v^{\prime},u) =(at(u,v)at(v,v))βS,\displaystyle=(\textup{at}^{\prime}(u,v)\vee\textup{at}^{\prime}(v,v^{\prime}))\wedge^{\prime}\beta^{\prime}\in S,
at(v,u)\displaystyle\textup{at}^{\prime}(v^{\prime},u^{\prime}) =(at(v,u)α)δS, and\displaystyle=(\textup{at}^{\prime}(v^{\prime},u)\vee^{\prime}\alpha^{\prime})\wedge^{\prime}\delta^{\prime}\in S\text{, and} (2.2)
at(u,u)\displaystyle\textup{at}^{\prime}(u^{\prime},u) =α(at(u,v)at(v,u))S.\displaystyle=\alpha^{\prime}\wedge^{\prime}(\textup{at}^{\prime}(u^{\prime},v^{\prime})\vee^{\prime}\textup{at}^{\prime}(v^{\prime},u))\in S. (2.3)

Finally, since ESE\subseteq S and we have (2.1), (2.2), and (2.3), Lemma 1.3 implies that S=Equ(A)S=\textup{Equ}(A^{\prime}). This completes the proof of Lemma 2.4. ∎

Lemma 2.5.

With A={1,2,,6}A=\{1,2,\dots,6\},

α\displaystyle\alpha :=eq(12;3;45;6),\displaystyle:=\textup{eq}(12;3;45;6), (2.4)
β\displaystyle\beta :=eq(1;2;34;5;6),\displaystyle:=\textup{eq}(1;2;34;5;6), (2.5)
γ\displaystyle\gamma :=eq(13;24;56), and\displaystyle:=\textup{eq}(13;24;56),\text{ and} (2.6)
δ\displaystyle\delta :=eq(146;235),\displaystyle:=\textup{eq}(146;235), (2.7)

𝐀=(A;α,β,γ,δ;4,6)\mathbf{A}=(A;\alpha,\beta,\gamma,\delta;4,6) is an eligible system with consecutive block counts.

Proof.

Let Φ:={α,β,γ,δ}\Phi:=\{\alpha,\beta,\gamma,\delta\}, and let SS stand for the sublattice generated by SS. The labels above the equality signs will indicate which members of SS imply that the equivalences on the left of these equality signs belong to SS.

eq(12;345;6)\displaystyle\textup{eq}(12;345;6) =(2.4,2.5)eq(12;3;45;6)eq(1;2;34;5;6),\displaystyle\overset{(\ref{eq6dWk1},\ref{eq6dWk2})}{=}\textup{eq}(12;3;45;6)\vee\textup{eq}(1;2;34;5;6), (2.8)
eq(1234;56)\displaystyle\textup{eq}(1234;56) =(2.5,2.6)eq(1;2;34;5;6)eq(13;24;56),\displaystyle\overset{(\ref{eq6dWk2},\ref{eq6dWk3})}{=}\textup{eq}(1;2;34;5;6)\vee\textup{eq}(13;24;56), (2.9)
eq(12;3;4;5;6)\displaystyle\textup{eq}(12;3;4;5;6) =(2.4,2.9)eq(12;3;45;6)eq(1234;56),\displaystyle\overset{(\ref{eq6dWk1},\ref{eq6dWk8})}{=}\textup{eq}(12;3;45;6)\wedge\textup{eq}(1234;56), (2.10)
eq(1;2;35;4;6)\displaystyle\textup{eq}(1;2;35;4;6) =(2.7,2.8)eq(146;235)eq(12;345;6),\displaystyle\overset{(\ref{eq6dWk4},\ref{eq6dWk5})}{=}\textup{eq}(146;235)\wedge\textup{eq}(12;345;6), (2.11)
eq(14;23;5;6)\displaystyle\textup{eq}(14;23;5;6) =(2.7,2.9)eq(146;235)eq(1234;56),\displaystyle\overset{(\ref{eq6dWk4},\ref{eq6dWk8})}{=}\textup{eq}(146;235)\wedge\textup{eq}(1234;56), (2.12)
eq(1;2;345;6)\displaystyle\textup{eq}(1;2;345;6) =(2.5,2.11)eq(1;2;34;5;6)eq(1;2;35;4;6),\displaystyle\overset{(\ref{eq6dWk2},\ref{eq6dWk10})}{=}\textup{eq}(1;2;34;5;6)\vee\textup{eq}(1;2;35;4;6), (2.13)
eq(1356;24)\displaystyle\textup{eq}(1356;24) =(2.6,2.11)eq(13;24;56)eq(1;2;35;4;6),\displaystyle\overset{(\ref{eq6dWk3},\ref{eq6dWk10})}{=}\textup{eq}(13;24;56)\vee\textup{eq}(1;2;35;4;6), (2.14)
eq(14;235;6)\displaystyle\textup{eq}(14;235;6) =(2.11,2.12)eq(1;2;35;4;6)eq(14;23;5;6),\displaystyle\overset{(\ref{eq6dWk10},\ref{eq6dWk11})}{=}\textup{eq}(1;2;35;4;6)\vee\textup{eq}(14;23;5;6), (2.15)
eq(1;2;3;45;6)\displaystyle\textup{eq}(1;2;3;45;6) =(2.4,2.13)eq(12;3;45;6)eq(1;2;345;6),\displaystyle\overset{(\ref{eq6dWk1},\ref{eq6dWk14})}{=}\textup{eq}(12;3;45;6)\wedge\textup{eq}(1;2;345;6), (2.16)
eq(16;2;35;4)\displaystyle\textup{eq}(16;2;35;4) =(2.7,2.14)eq(146;235)eq(1356;24),\displaystyle\overset{(\ref{eq6dWk4},\ref{eq6dWk16})}{=}\textup{eq}(146;235)\wedge\textup{eq}(1356;24), (2.17)
eq(13;2456)\displaystyle\textup{eq}(13;2456) =(2.6,2.16)eq(13;24;56)eq(1;2;3;45;6),\displaystyle\overset{(\ref{eq6dWk3},\ref{eq6dWk19})}{=}\textup{eq}(13;24;56)\vee\textup{eq}(1;2;3;45;6), (2.18)
eq(126;35;4)\displaystyle\textup{eq}(126;35;4) =(2.10,2.17)eq(12;3;4;5;6)eq(16;2;35;4),\displaystyle\overset{(\ref{eq6dWk9},\ref{eq6dWk21})}{=}\textup{eq}(12;3;4;5;6)\vee\textup{eq}(16;2;35;4), (2.19)
eq(145;23;6)\displaystyle\textup{eq}(145;23;6) =(2.12,2.16)eq(14;23;5;6)eq(1;2;3;45;6),\displaystyle\overset{(\ref{eq6dWk11},\ref{eq6dWk19})}{=}\textup{eq}(14;23;5;6)\vee\textup{eq}(1;2;3;45;6), (2.20)
eq(15;2;3;4;6)\displaystyle\textup{eq}(15;2;3;4;6) =(2.14,2.20)eq(1356;24)eq(145;23;6),\displaystyle\overset{(\ref{eq6dWk16},\ref{eq6dWk27})}{=}\textup{eq}(1356;24)\wedge\textup{eq}(145;23;6), (2.21)
eq(1;26;3;4;5)\displaystyle\textup{eq}(1;26;3;4;5) =(2.18,2.19)eq(13;2456)eq(126;35;4),\displaystyle\overset{(\ref{eq6dWk25},\ref{eq6dWk26})}{=}\textup{eq}(13;2456)\wedge\textup{eq}(126;35;4), (2.22)
eq(135;2;4;6)\displaystyle\textup{eq}(135;2;4;6) =(2.11,2.21)eq(1;2;35;4;6)eq(15;2;3;4;6),\displaystyle\overset{(\ref{eq6dWk10},\ref{eq6dWk31})}{=}\textup{eq}(1;2;35;4;6)\vee\textup{eq}(15;2;3;4;6), (2.23)
eq(14;2356)\displaystyle\textup{eq}(14;2356) =(2.15,2.22)eq(14;235;6)eq(1;26;3;4;5),\displaystyle\overset{(\ref{eq6dWk18},\ref{eq6dWk33})}{=}\textup{eq}(14;235;6)\vee\textup{eq}(1;26;3;4;5), (2.24)
eq(13;2;4;5;6)\displaystyle\textup{eq}(13;2;4;5;6) =(2.6,2.23)eq(13;24;56)eq(135;2;4;6),\displaystyle\overset{(\ref{eq6dWk3},\ref{eq6dWk47})}{=}\textup{eq}(13;24;56)\wedge\textup{eq}(135;2;4;6), (2.25)
eq(1;2;3;4;56)\displaystyle\textup{eq}(1;2;3;4;56) =(2.6,2.24)eq(13;24;56)eq(14;2356).\displaystyle\overset{(\ref{eq6dWk3},\ref{eq6dWk60})}{=}\textup{eq}(13;24;56)\wedge\textup{eq}(14;2356). (2.26)

In particular, at(1,2)S\textup{at}(1,2)\in S by (2.10), at(2,6)S\textup{at}(2,6)\in S by (2.22), at(6,5)S\textup{at}(6,5)\in S by (2.26), at(5,4)S\textup{at}(5,4)\in S by (2.16), at(4,3)S\textup{at}(4,3)\in S by (2.5), and at(3,1)S\textup{at}(3,1)\in S by (2.25). Hence, Φ\Phi is a generating set by Lemma 1.3. Clearly, Φ\Phi is of consecutive block counts. It is easy to check that the pairs in Definition 2.3 are complementary. Thus, 𝐀\mathbf{A} is an eligible system, proving Lemma 2.5. ∎

The author has created a program package called “equ2024p”, available from his website http://tinyurl.com/g-czedli/. This program package can also “prove” that Φ\Phi generates Equ(A)\textup{Equ}(A), but verifying the programs is much more difficult than verifying the proofs of Lemmas 2.5 and (the next) 2.6.

Lemma 2.6.

With A={1,2,,9}A=\{1,2,\dots,9\},

α\displaystyle\alpha :=eq(158;2;3;47;69),\displaystyle:=\textup{eq}(158;2;3;47;69), (2.27)
β\displaystyle\beta :=eq(1;23;4;56;78;9),\displaystyle:=\textup{eq}(1;23;4;56;78;9), (2.28)
γ\displaystyle\gamma :=eq(135;268;4;79), and\displaystyle:=\textup{eq}(135;268;4;79),\text{ and} (2.29)
δ\displaystyle\delta :=eq(16;257;3489),\displaystyle:=\textup{eq}(16;257;3489), (2.30)

𝐀=(A;α,β,γ,δ;1,4)\mathbf{A}=(A;\alpha,\beta,\gamma,\delta;1,4) is an eligible system with consecutive block counts.

The proof of this lemma is similar to but more than three times longer than the previous proof. As the reader would hardly enjoy such an amount of technicalities, the proof goes into the Appendix (Section 3) of the paper.

Now, we are in the position to prove our theorem.

Proof of Theorem 2.1.

Combine Lemmas 2.4, 2.5, and 2.6. ∎

3. Appendix

Proof of Lemma 2.6.

The idea is the same as in the proof of Lemma 2.5 but the concrete computations are different. Again, SS denotes the sublattice generated by {α,,δ}\{\alpha,\dots,\delta\}. Let us compute; to avoid line breaks, the formatting will be slightly different from that of (2.8)–(2.26).

eq(1456789;23)=(2.28)2.27)eq(158;2;3;47;69)eq(1;23;4;56;78;9),\displaystyle\textup{eq}(1456789;23)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j2})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(1;23;4;56;78;9), (3.1)
eq(15;2;3;4;6;7;8;9)=(2.29)2.27)eq(158;2;3;47;69)eq(135;268;4;79),\displaystyle\textup{eq}(15;2;3;4;6;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j3})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\wedge\textup{eq}(135;268;4;79), (3.2)
eq(12356789;4)=(2.29)2.28)eq(1;23;4;56;78;9)eq(135;268;4;79),\displaystyle\textup{eq}(12356789;4)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j3})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\vee\textup{eq}(135;268;4;79), (3.3)
eq(158;2;3;4;69;7)=(3.3)2.27)eq(158;2;3;47;69)eq(12356789;4),\displaystyle\textup{eq}(158;2;3;4;69;7)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j9})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\wedge\textup{eq}(12356789;4), (3.4)
eq(156;23;4;78;9)=(3.2)2.28)eq(1;23;4;56;78;9)eq(15;2;3;4;6;7;8;9),\displaystyle\textup{eq}(156;23;4;78;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j7})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\vee\textup{eq}(15;2;3;4;6;7;8;9), (3.5)
eq(15;2;3;4;68;79)=(3.1)2.29)eq(135;268;4;79)eq(1456789;23),\displaystyle\textup{eq}(15;2;3;4;68;79)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j6})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\wedge\textup{eq}(1456789;23), (3.6)
eq(16;2;3;489;57)=(3.1)2.30)eq(16;257;3489)eq(1456789;23),\displaystyle\textup{eq}(16;2;3;489;57)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j6})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(1456789;23), (3.7)
eq(12567;3489)=(3.2)2.30)eq(16;257;3489)eq(15;2;3;4;6;7;8;9),\displaystyle\textup{eq}(12567;3489)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j7})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\vee\textup{eq}(15;2;3;4;6;7;8;9), (3.8)
eq(16;257;389;4)=(3.3)2.30)eq(16;257;3489)eq(12356789;4),\displaystyle\textup{eq}(16;257;389;4)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j9})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(12356789;4), (3.9)
eq(1456789;2;3)=(3.6)2.27)eq(158;2;3;47;69)eq(15;2;3;4;68;79),\displaystyle\textup{eq}(1456789;2;3)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j12})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(15;2;3;4;68;79), (3.10)
eq(1;2;3;4;56;7;8;9)=(3.8)2.28)eq(1;23;4;56;78;9)eq(12567;3489),\displaystyle\textup{eq}(1;2;3;4;56;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j14})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\wedge\textup{eq}(12567;3489), (3.11)
eq(15;26;3;4;7;8;9)=(3.8)2.29)eq(135;268;4;79)eq(12567;3489),\displaystyle\textup{eq}(15;26;3;4;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j14})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\wedge\textup{eq}(12567;3489), (3.12)
eq(16;2;3;4;5;7;8;9)=(3.5)2.30)eq(16;257;3489)eq(156;23;4;78;9),\displaystyle\textup{eq}(16;2;3;4;5;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j11})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(156;23;4;78;9), (3.13)
eq(15689;2;3;47)=(3.11)2.27)eq(158;2;3;47;69)eq(1;2;3;4;56;7;8;9),\displaystyle\textup{eq}(15689;2;3;47)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j18})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(1;2;3;4;56;7;8;9), (3.14)
eq(1;2;3;4;56;78;9)=(3.10)2.28)eq(1;23;4;56;78;9)eq(1456789;2;3),\displaystyle\textup{eq}(1;2;3;4;56;78;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j17})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\wedge\textup{eq}(1456789;2;3), (3.15)
eq(12356;4;78;9)=(3.12)2.28)eq(1;23;4;56;78;9)eq(15;26;3;4;7;8;9),\displaystyle\textup{eq}(12356;4;78;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j19})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\vee\textup{eq}(15;26;3;4;7;8;9), (3.16)
eq(123568;4;79)=(3.11)2.29)eq(135;268;4;79)eq(1;2;3;4;56;7;8;9),\displaystyle\textup{eq}(123568;4;79)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j18})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\vee\textup{eq}(1;2;3;4;56;7;8;9), (3.17)
eq(158;2;3;4;6;7;9)=(3.17)2.27)eq(158;2;3;47;69)eq(123568;4;79),\displaystyle\textup{eq}(158;2;3;4;6;7;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j31})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\wedge\textup{eq}(123568;4;79), (3.18)
eq(135;26;4;7;8;9)=(3.16)2.29)eq(135;268;4;79)eq(12356;4;78;9),\displaystyle\textup{eq}(135;26;4;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j30})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\wedge\textup{eq}(12356;4;78;9), (3.19)
eq(16;2;3;4;5;7;89)=(3.14)2.30)eq(16;257;3489)eq(15689;2;3;47),\displaystyle\textup{eq}(16;2;3;4;5;7;89)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j27})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(15689;2;3;47), (3.20)
eq(16;25;38;4;7;9)=(3.17)2.30)eq(16;257;3489)eq(123568;4;79),\displaystyle\textup{eq}(16;25;38;4;7;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j31})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(123568;4;79), (3.21)
eq(1256;3;4;78;9)=(3.15)3.12)eq(15;26;3;4;7;8;9)eq(1;2;3;4;56;78;9),\displaystyle\textup{eq}(1256;3;4;78;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j29})}}{\overset{\scriptscriptstyle{\ref{eq9j19})}}{=}}\kern-1.0pt\textup{eq}(15;26;3;4;7;8;9)\vee\textup{eq}(1;2;3;4;56;78;9), (3.22)
eq(1358;269;47)=(3.19)2.27)eq(158;2;3;47;69)eq(135;26;4;7;8;9),\displaystyle\textup{eq}(1358;269;47)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j46})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(135;26;4;7;8;9), (3.23)
eq(15678;23;4;9)=(3.18)2.28)eq(1;23;4;56;78;9)eq(158;2;3;4;6;7;9),\displaystyle\textup{eq}(15678;23;4;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j42})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\vee\textup{eq}(158;2;3;4;6;7;9), (3.24)
eq(156;23;4;789)=(3.20)2.28)eq(1;23;4;56;78;9)eq(16;2;3;4;5;7;89),\displaystyle\textup{eq}(156;23;4;789)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j47})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\vee\textup{eq}(16;2;3;4;5;7;89), (3.25)
eq(123567;489)=(3.19)3.7)eq(16;2;3;489;57)eq(135;26;4;7;8;9),\displaystyle\textup{eq}(123567;489)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j46})}}{\overset{\scriptscriptstyle{\ref{eq9j13})}}{=}}\kern-1.0pt\textup{eq}(16;2;3;489;57)\vee\textup{eq}(135;26;4;7;8;9), (3.26)
eq(1256;378;4;9)=(3.21)3.15)eq(1;2;3;4;56;78;9)eq(16;25;38;4;7;9),\displaystyle\textup{eq}(1256;378;4;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j49})}}{\overset{\scriptscriptstyle{\ref{eq9j29})}}{=}}\kern-1.0pt\textup{eq}(1;2;3;4;56;78;9)\vee\textup{eq}(16;25;38;4;7;9), (3.27)
eq(12356;4;789)=(3.20)3.16)eq(12356;4;78;9)eq(16;2;3;4;5;7;89),\displaystyle\textup{eq}(12356;4;789)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j47})}}{\overset{\scriptscriptstyle{\ref{eq9j30})}}{=}}\kern-1.0pt\textup{eq}(12356;4;78;9)\vee\textup{eq}(16;2;3;4;5;7;89), (3.28)
eq(1256;3;4;789)=(3.22)3.20)eq(16;2;3;4;5;7;89)eq(1256;3;4;78;9),\displaystyle\textup{eq}(1256;3;4;789)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j58})}}{\overset{\scriptscriptstyle{\ref{eq9j47})}}{=}}\kern-1.0pt\textup{eq}(16;2;3;4;5;7;89)\vee\textup{eq}(1256;3;4;78;9), (3.29)
eq(15;2;3;4;6;79;8)=(3.25)2.29)eq(135;268;4;79)eq(156;23;4;789),\displaystyle\textup{eq}(15;2;3;4;6;79;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j66})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\wedge\textup{eq}(156;23;4;789), (3.30)
eq(15;26;3;4;79;8)=(3.29)2.29)eq(135;268;4;79)eq(1256;3;4;789),\displaystyle\textup{eq}(15;26;3;4;79;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j92})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\wedge\textup{eq}(1256;3;4;789), (3.31)
eq(1;2;38;4;5;6;7;9)=(3.23)2.30)eq(16;257;3489)eq(1358;269;47),\displaystyle\textup{eq}(1;2;38;4;5;6;7;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j63})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(1358;269;47), (3.32)
eq(16;2;3;4;57;8;9)=(3.24)2.30)eq(16;257;3489)eq(15678;23;4;9),\displaystyle\textup{eq}(16;2;3;4;57;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j65})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(15678;23;4;9), (3.33)
eq(15;26;38;4;7;9)=(3.23)3.8)eq(12567;3489)eq(1358;269;47),\displaystyle\textup{eq}(15;26;38;4;7;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j63})}}{\overset{\scriptscriptstyle{\ref{eq9j14})}}{=}}\kern-1.0pt\textup{eq}(12567;3489)\wedge\textup{eq}(1358;269;47), (3.34)
eq(1256;37;4;8;9)=(3.27)3.26)eq(123567;489)eq(1256;378;4;9),\displaystyle\textup{eq}(1256;37;4;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j81})}}{\overset{\scriptscriptstyle{\ref{eq9j74})}}{=}}\kern-1.0pt\textup{eq}(123567;489)\wedge\textup{eq}(1256;378;4;9), (3.35)
eq(158;2;3;4679)=(3.30)2.27)eq(158;2;3;47;69)eq(15;2;3;4;6;79;8),\displaystyle\textup{eq}(158;2;3;4679)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j93})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(15;2;3;4;6;79;8), (3.36)
eq(125689;347)=(3.35)2.27)eq(158;2;3;47;69)eq(1256;37;4;8;9),\displaystyle\textup{eq}(125689;347)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j111})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(1256;37;4;8;9), (3.37)
eq(158;2679;3;4)=(3.31)3.4)eq(158;2;3;4;69;7)eq(15;26;3;4;79;8),\displaystyle\textup{eq}(158;2679;3;4)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j95})}}{\overset{\scriptscriptstyle{\ref{eq9j10})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;4;69;7)\vee\textup{eq}(15;26;3;4;79;8), (3.38)
eq(15;2;368;4;79)=(3.32)3.6)eq(15;2;3;4;68;79)eq(1;2;38;4;5;6;7;9),\displaystyle\textup{eq}(15;2;368;4;79)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j96})}}{\overset{\scriptscriptstyle{\ref{eq9j12})}}{=}}\kern-1.0pt\textup{eq}(15;2;3;4;68;79)\vee\textup{eq}(1;2;38;4;5;6;7;9), (3.39)
eq(15;2368;4;79)=(3.34)3.6)eq(15;2;3;4;68;79)eq(15;26;38;4;7;9),\displaystyle\textup{eq}(15;2368;4;79)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j100})}}{\overset{\scriptscriptstyle{\ref{eq9j12})}}{=}}\kern-1.0pt\textup{eq}(15;2;3;4;68;79)\vee\textup{eq}(15;26;38;4;7;9), (3.40)
eq(12568;379;4)=(3.35)3.6)eq(15;2;3;4;68;79)eq(1256;37;4;8;9),\displaystyle\textup{eq}(12568;379;4)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j111})}}{\overset{\scriptscriptstyle{\ref{eq9j12})}}{=}}\kern-1.0pt\textup{eq}(15;2;3;4;68;79)\vee\textup{eq}(1256;37;4;8;9), (3.41)
eq(15679;2;3;4;8)=(3.33)3.30)eq(15;2;3;4;6;79;8)eq(16;2;3;4;57;8;9),\displaystyle\textup{eq}(15679;2;3;4;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j97})}}{\overset{\scriptscriptstyle{\ref{eq9j93})}}{=}}\kern-1.0pt\textup{eq}(15;2;3;4;6;79;8)\vee\textup{eq}(16;2;3;4;57;8;9), (3.42)
eq(15;2;3;4;69;7;8)=(3.42)2.27)eq(158;2;3;47;69)eq(15679;2;3;4;8),\displaystyle\textup{eq}(15;2;3;4;69;7;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j163})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\wedge\textup{eq}(15679;2;3;4;8), (3.43)
eq(1;23;4;5;6;7;8;9)=(3.40)2.28)eq(1;23;4;56;78;9)eq(15;2368;4;79),\displaystyle\textup{eq}(1;23;4;5;6;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j126})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\wedge\textup{eq}(15;2368;4;79), (3.44)
eq(1;2;3;49;5;6;7;8)=(3.36)2.30)eq(16;257;3489)eq(158;2;3;4679),\displaystyle\textup{eq}(1;2;3;49;5;6;7;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j112})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(158;2;3;4679), (3.45)
eq(16;25;34;7;89)=(3.37)2.30)eq(16;257;3489)eq(125689;347),\displaystyle\textup{eq}(16;25;34;7;89)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j116})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(125689;347), (3.46)
eq(1;27;3;4;5;6;8;9)=(3.38)2.30)eq(16;257;3489)eq(158;2679;3;4),\displaystyle\textup{eq}(1;27;3;4;5;6;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j121})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(158;2679;3;4), (3.47)
eq(16;25;39;4;7;8)=(3.41)2.30)eq(16;257;3489)eq(12568;379;4),\displaystyle\textup{eq}(16;25;39;4;7;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j127})}}{\overset{\scriptscriptstyle{\ref{eq9j4})}}{=}}\kern-1.0pt\textup{eq}(16;257;3489)\wedge\textup{eq}(12568;379;4), (3.48)
eq(15;2;36;4;79;8)=(3.39)3.28)eq(12356;4;789)eq(15;2;368;4;79),\displaystyle\textup{eq}(15;2;36;4;79;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j125})}}{\overset{\scriptscriptstyle{\ref{eq9j83})}}{=}}\kern-1.0pt\textup{eq}(12356;4;789)\wedge\textup{eq}(15;2;368;4;79), (3.49)
eq(158;2;34679)=(3.49)2.27)eq(158;2;3;47;69)eq(15;2;36;4;79;8),\displaystyle\textup{eq}(158;2;34679)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j257})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\vee\textup{eq}(15;2;36;4;79;8), (3.50)
eq(135;26789;4)=(3.43)2.29)eq(135;268;4;79)eq(15;2;3;4;69;7;8),\displaystyle\textup{eq}(135;26789;4)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j176})}}{\overset{\scriptscriptstyle{\ref{eq9j3})}}{=}}\kern-1.0pt\textup{eq}(135;268;4;79)\vee\textup{eq}(15;2;3;4;69;7;8), (3.51)
eq(16;235789;4)=(3.44)3.9)eq(16;257;389;4)eq(1;23;4;5;6;7;8;9),\displaystyle\textup{eq}(16;235789;4)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j177})}}{\overset{\scriptscriptstyle{\ref{eq9j15})}}{=}}\kern-1.0pt\textup{eq}(16;257;389;4)\vee\textup{eq}(1;23;4;5;6;7;8;9), (3.52)
eq(16;2359;4;7;8)=(3.48)3.44)eq(1;23;4;5;6;7;8;9)eq(16;25;39;4;7;8),\displaystyle\textup{eq}(16;2359;4;7;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j191})}}{\overset{\scriptscriptstyle{\ref{eq9j177})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;5;6;7;8;9)\vee\textup{eq}(16;25;39;4;7;8), (3.53)
eq(1;2;3;4;58;6;7;9)=(3.52)2.27)eq(158;2;3;47;69)eq(16;235789;4),\displaystyle\textup{eq}(1;2;3;4;58;6;7;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j402})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\wedge\textup{eq}(16;235789;4), (3.54)
eq(1;2;3;4;5;6;78;9)=(3.51)2.28)eq(1;23;4;56;78;9)eq(135;26789;4),\displaystyle\textup{eq}(1;2;3;4;5;6;78;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j344})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\wedge\textup{eq}(135;26789;4), (3.55)
eq(1;29;35;4;6;7;8)=(3.53)3.23)eq(1358;269;47)eq(16;2359;4;7;8),\displaystyle\textup{eq}(1;29;35;4;6;7;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j716})}}{\overset{\scriptscriptstyle{\ref{eq9j63})}}{=}}\kern-1.0pt\textup{eq}(1358;269;47)\wedge\textup{eq}(16;2359;4;7;8), (3.56)
eq(1;2;34;5;6;7;8;9)=(3.50)3.46)eq(16;25;34;7;89)eq(158;2;34679),\displaystyle\textup{eq}(1;2;34;5;6;7;8;9)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j327})}}{\overset{\scriptscriptstyle{\ref{eq9j187})}}{=}}\kern-1.0pt\textup{eq}(16;25;34;7;89)\wedge\textup{eq}(158;2;34679), (3.57)
eq(1;23569;4;78)=(3.56)2.28)eq(1;23;4;56;78;9)eq(1;29;35;4;6;7;8),\displaystyle\textup{eq}(1;23569;4;78)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j1269})}}{\overset{\scriptscriptstyle{\ref{eq9j2})}}{=}}\kern-1.0pt\textup{eq}(1;23;4;56;78;9)\vee\textup{eq}(1;29;35;4;6;7;8), (3.58)
eq(1;2;3;4;5;69;7;8)=(3.58)2.27)eq(158;2;3;47;69)eq(1;23569;4;78).\displaystyle\textup{eq}(1;2;3;4;5;69;7;8)\kern-1.0pt\underset{\scriptscriptstyle{(\ref{eq9j2485})}}{\overset{\scriptscriptstyle{\ref{eq9j1})}}{=}}\kern-1.0pt\textup{eq}(158;2;3;47;69)\wedge\textup{eq}(1;23569;4;78). (3.59)

In particular, at(5,1)S\textup{at}(5,1)\in S by (3.2), at(1,6)S\textup{at}(1,6)\in S by (3.13), at(6.9)S\textup{at}(6.9)\in S by (3.59), at(9,4)S\textup{at}(9,4)\in S by (3.45), at(4,3)S\textup{at}(4,3)\in S by (3.57), at(3,2)S\textup{at}(3,2)\in S by (3.44), at(2,7)S\textup{at}(2,7)\in S by (3.47), at(7,8)S\textup{at}(7,8)\in S by (3.55), and at(8,5)S\textup{at}(8,5)\in S by (3.54). Hence, Lemma 1.3 implies that S=Equ(A)S=\textup{Equ}(A), as required. The rest of the proof is trivial; hence, we omit it. ∎

References

  • [1] I. Chajda, G. Czédli222At the time of writing, see the author’s website http://tinyurl.com/g-czedli/ for some papers and preprints., How to generate the involution lattice of quasiorders? Studia Sci. Math. Hungar., 32 (1996), 415–427.
  • [2] G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. (Szeged), 62 (1996), 47–69.
  • [3] G. Czédli, Four-generated direct powers of partition lattices and authentication, Publicationes Mathematicae (Debrecen), 99 (2021), 447–472. https://doi.org/10.5486/PMD.2021.9024
  • [4] G. Czédli, Generating Boolean lattices by few elements and exchanging session keys, Novi Sad Journal of Mathematics, https://doi.org/10.30755/NSJOM.16637 (online first)
  • [5] G. Czédli, A pair of four-element horizontal generating sets of a partition lattice, preprint.
  • [6] G. Czédli, Four-element generating sets with block count widths at most two in partition lattices, preprint.
  • [7] G. Czédli, J. Kulin, A concise approach to small generating sets of lattices of quasiorders and transitive relations, Acta Sci. Math. (Szeged), 83 (2017), 3–12. https://dx.doi.org/10.14232/actasm-016-056-2
  • [8] G. Czédli, L. Oluoch, Four-element generating sets of partition lattices and their direct products, Acta Sci. Math. (Szeged), 86 (2020), 405–448. https://doi.org/10.14232/actasm-020-126-7
  • [9] J. Kulin, Quasiorder lattices are five-generated. Discussiones Mathematicae — General Algebra and Applications, 36 (2016), 59–70. https://dx.doi.org/10.7151/dmgaa.1248
  • [10] H. Strietz: Finite partition lattices are four-generated. In: Proc. Lattice Theory Conf. Ulm, 1975, pp. 257–259.
  • [11] H. Strietz, Über Erzeugendenmengen endlicher Partitionenverbände, Studia Sci. Math. Hungar., 12 (1977), 1–17. (German)
  • [12] L. Zádori, Generation of finite partition lattices. In: Lectures in universal algebra. (Proc. Colloq. Szeged, 1983) Colloq. Math. Soc. János Bolyai, Vol. 43. Amsterdam: North-Holland, 1986, pp. 573–586.