This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Formulae of luminosity and beam-beam tune shifts for flat-beam asymmetric colliders

Demin Zhou dmzhou@post.kek.jp KEK, 1-1 Oho, Tsukuba 305-0801, Japan The Graduate University for Advanced Studies, SOKENDAI
Abstract

This note outline the formulae of luminosity and beam-beam tune shifts applicable to flat-beam asymmetric colliders. The formulae are tested with the machine parameters of SuperKEKB.

I Formulae of luminosity

The luminosity of a collider can be calculated by performing the overlap integral of the 3D distributions of the colliding beams [1]

L=N+NfcKd3x𝑑s0ρ+(x,s0)ρ(x,s0),L=N_{+}N_{-}f_{c}K\int d^{3}\vec{x}ds_{0}\rho_{+}(\vec{x},-s_{0})\rho_{-}(\vec{x},s_{0}), (1)

with fcf_{c} the collision frequency, N±N_{\pm} the bunch populations, ρ±(x,±s0)\rho_{\pm}(\vec{x},\pm s_{0}) the spatial distribution of the beams, and K=(v+v)2(v+×v)2/c2K=\sqrt{(\vec{v}_{+}-\vec{v}_{-})^{2}-(\vec{v}_{+}\times\vec{v}_{-})^{2}/c^{2}} the kinematic factor. For high-energy lepton colliders, the kinematic factor can be well approximated by K2ccos2θc2K\approx 2c\cos^{2}\frac{\theta_{c}}{2}, with |v±|=c|\vec{v}_{\pm}|=c and θc\theta_{c} the full crossing angle. Gaussian distributions are often used to describe the beams

ρ(x,y,s,s0)=ex22σx2(s)y22σy2(s,x)(ss0)22σz2(2π)3/2σx(s)σy(s,x)σz\rho(x,y,s,s_{0})=\frac{e^{-\frac{x^{2}}{2\sigma_{x}^{2}(s)}-\frac{y^{2}}{2\sigma_{y}^{2}(s,x)}-\frac{(s-s_{0})^{2}}{2\sigma_{z}^{2}}}}{(2\pi)^{3/2}\sigma_{x}(s)\sigma_{y}(s,x)\sigma_{z}} (2)

in the beams’ frames. Here the transverse beam sizes σx,y\sigma_{x,y} are written as functions of the longitudinal offset because of hourglass effects

σx(s)=σx1+s2/βx2,\sigma_{x}(s)=\sigma_{x}^{*}\sqrt{1+s^{2}/\beta_{x}^{*2}}, (3)
σy(s,x)=σy1+(s+RCWx/tanθc)2/βy2,\sigma_{y}(s,x)=\sigma_{y}^{*}\sqrt{1+\left(s+R_{CW}x/\tan\theta_{c}\right)^{2}/\beta_{y}^{*2}}, (4)

with βx,y\beta_{x,y}^{*} the beta functions at the IP, σx,y=βx,yϵx,y\sigma_{x,y}^{*}=\sqrt{\beta_{x,y}^{*}\epsilon_{x,y}} the beam sizes at IP. The parameter RCWR_{CW} is the CW ratio, with an arbitrary value of 1 for full CW and 0 for no CW. The luminosity can be written as

L=NbIb+IbRHC2πe2f0ΣxΣy=L0RHC,L=\frac{N_{b}I_{b+}I_{b-}R_{HC}}{2\pi e^{2}f_{0}\Sigma_{x}^{*}\Sigma_{y}^{*}}=L_{0}R_{HC}, (5)

where Σu=σu+2+σu2\Sigma_{u}^{*}=\sqrt{\sigma_{u+}^{*2}+\sigma_{u-}^{*2}} with u=x,yu=x,y, RHCR_{HC} the geometric factor representing the effects of crossing angle, hourglass effect, and the CW. The nominal luminosity L0L_{0} is defined as a function of the number of bunches NbN_{b}, the bunch currents Ib±I_{b\pm}, the transverse beam sizes at IP, and the revolution frequency f0f_{0}.

With RCW=0R_{CW}=0 and flat-beam condition σyσx\sigma_{y}^{*}\ll\sigma_{x}^{*}, the geometric factor can be approximated by [2]

RHC2πaebK0(b),R_{HC}\approx\sqrt{\frac{2}{\pi}}ae^{b}K_{0}(b), (6)

where K0(b)K_{0}(b) is the modified Bessel function of the second kind, and the parameters aa and bb are

a=ΣyΣzΣβ,a=\frac{\Sigma_{y}^{*}}{\Sigma_{z}\Sigma_{\beta}^{*}}, (7)
b=a2(1+Σz2Σx2tan2θc2),b=a^{2}\left(1+\frac{\Sigma_{z}^{2}}{\Sigma_{x}^{*2}}\tan^{2}\frac{\theta_{c}}{2}\right), (8)

with the quantities of Σβ\Sigma_{\beta}^{*}==σy+2/βy+2+σy2/βy2\sqrt{\sigma_{y+}^{*2}/\beta_{y+}^{*2}+\sigma_{y-}^{*2}/\beta_{y-}^{*2}} and Σz\Sigma_{z}==σz+2+σz2\sqrt{\sigma_{z+}^{2}+\sigma_{z-}^{2}}. It is noteworthy that Eq. (6) has the same form as shown in Ref. [2], but here the parameters aa and bb are expressed in terms of the parameters of asymmetric beams.

With RCW=1R_{CW}=1 and a large Piwinski angle (to be explicitly defined later), the geometric factor can be approximated as

RHCCWΣxΣztanθc2Σz2tan2θc2+σx+σxf(d),R_{HC}^{CW}\approx\frac{\Sigma_{x}^{*}\Sigma_{z}\tan\frac{\theta_{c}}{2}}{\Sigma_{z}^{2}\tan^{2}\frac{\theta_{c}}{2}+\sigma_{x+}^{*}\sigma_{x-}^{*}}f(d), (9)

with

f(d)=πded2Erfc(d),f(d)=\sqrt{\pi}d\cdot e^{d^{2}}\text{Erfc}(d), (10)
d=ΣyΣx2Σβσx+σxsinθc.d=\frac{\Sigma_{y}^{*}\Sigma_{x}^{*}}{\sqrt{2}\Sigma_{\beta}^{*}\sigma_{x+}^{*}\sigma_{x-}^{*}}\sin\theta_{c}. (11)

Here Erfc(d)\text{Erfc}(d) represents the complementary error function. For symmetric beams, dd reduces to (βysinθc)/σx(\beta_{y}^{*}\sin\theta_{c})/\sigma_{x}^{*}, and Eq. (9) will have a simpler form, which can be derived from Eq. (15) of Ref. [3].

It is seen that the horizontal beta function βx\beta_{x}^{*} does not appear explicitly in Eqs. (6) and (9), indicating that the horizontal hourglass effect can be neglected thanks to the flat-beam condition. When b1b\gg 1, the geometric factor Eq. (6) reduces to

RHCRC=11+Σz2Σx2tan2θc2,R_{HC}\approx R_{C}=\frac{1}{\sqrt{1+\frac{\Sigma_{z}^{2}}{\Sigma_{x}^{*2}}\tan^{2}\frac{\theta_{c}}{2}}}, (12)

utilizing the asymptotic property of the Bessel function K0(x)exπ2xK_{0}(x)\approx e^{-x}\sqrt{\frac{\pi}{2x}} for large xx. Consequently, the vertical beta function disappears, and the crossing angle alone determines the geometric factor. This implies that the condition for neglecting the vertical hourglass effect is b1b\gtrsim 1. When there is no hourglass effect in both xx- and yy-directions, we have exactly RHC=RCR_{HC}=R_{C}. Therefore, we can define the hourglass factor for luminosity as

RH=RHC/RC.R_{H}=R_{HC}/R_{C}. (13)

From the luminosity formula Eq. (6), we can recognize three important parameters that fundamentally define the luminosity and also the physics of beam-beam (BB) interaction in flat-beam colliders:

  • ϕXZ=ΣzΣxtanθc2\phi_{XZ}=\frac{\Sigma_{z}}{\Sigma_{x}^{*}}\tan\frac{\theta_{c}}{2}, the ratio of projected horizontal beam size (i.e., Σztanθc2\Sigma_{z}\tan\frac{\theta_{c}}{2}) to the nominal horizontal beam size at IP. For symmetric beams, it reduces to ϕP=σzσxtanθc2\phi_{P}=\frac{\sigma_{z}}{\sigma_{x}^{*}}\tan\frac{\theta_{c}}{2}, the well-known Piwinski angle. The quantity ϕXZ\phi_{XZ} is an extension of ϕP\phi_{P} to asymmetric colliders, with Σu\Sigma_{u} indicating the square root of the sum of the squares (SRSS) of the beam sizes in the uu-direction (u=x,zu=x,z).

  • ϕHC=ΣyΣβΣxtanθc2\phi_{HC}=\frac{\Sigma_{y}^{*}}{\Sigma_{\beta}^{*}\Sigma_{x}^{*}}\tan\frac{\theta_{c}}{2}, the ratio of weighted vertical beta function to the projected bunch length (i.e., Σx/tanθc2\Sigma_{x}^{*}/\tan\frac{\theta_{c}}{2}). For asymmetric beams, it is formulated in terms of SRSSs. For symmetric (i.e., βy+=βy=βy\beta_{y+}^{*}=\beta_{y-}^{*}=\beta_{y}^{*}), it reduces to ϕHC=βyΣxtanθc2\phi_{HC}=\frac{\beta_{y}^{*}}{\Sigma_{x}^{*}}\tan\frac{\theta_{c}}{2}. This parameter is important in the crab waist collision scheme where ϕP1\phi_{P}\gg 1 is required. We tentatively take it as the hourglass factor for the crab-waist collision.

  • ϕH=a=ΣyΣzΣβ\phi_{H}=a=\frac{\Sigma_{y}^{*}}{\Sigma_{z}\Sigma_{\beta}^{*}}, the ratio of weighted vertical beta function to the bunch length. For symmetric beams, it reduces to ϕH=βy/σz\phi_{H}=\beta_{y}^{*}/\sigma_{z}, the popular parameter defining the achievable βy\beta_{y}^{*} in colliders.

When ϕP1\phi_{P}\ll 1, then bϕH2b\propto\phi_{H}^{2}. Consequently, b1b\gtrsim 1 requires ϕH1\phi_{H}\gtrsim 1, which is the hourglass condition for colliders with head-on or small crossing-angle collisions. When ϕP1\phi_{P}\gg 1, bϕHC21b\approx\phi_{HC}^{2}\gtrsim 1 results in the requirement of ϕHC1\phi_{HC}\gtrsim 1. This is the hourglass condition for the CW collision: With given horizontal beam sizes at the IP, βy\beta_{y}^{*} needs to be larger than σx/tanθc2\sigma_{x}^{*}/\tan\frac{\theta_{c}}{2}. On the other hand, when βy\beta_{y}^{*} is squeezed to achieve a certain luminosity target, the horizontal beam sizes at the IP must also be scaled down to avoid the unwanted hourglass effects.

Table 1: Machine parameters of SuperKEKB for tests of luminosity formulae. The set of ”Baseline design” refers to Refs. [4, 5] (Note that in Table 1 of Ref. [4], ϵy=11.5\epsilon_{y}=11.5 pm should be ϵy=12.88\epsilon_{y}=12.88 pm, according to Ref. [5].), and ”Phase-3” refers to Table 2 (the column of 2021) of Ref. [6]. The luminosity is calculated by Eqs. (5) and (6). The incoherent BB tune shifts ξx,yi\xi_{x,y}^{i} and ξx,yih\xi_{x,y}^{ih} are calculated by Eq. (34) and by numerical integration of Eq. (7) in Ref. [7], respectively.
Parameters Baseline design Phase-3 (2021)
LER HER LER HER
IbI_{b} (mA) 1.44 1.04 0.673 0.585
ϵx\epsilon_{x} (nm) 3.2 4.6 4.0 4.6
ϵy\epsilon_{y} (pm) 8.64 12.88 52.5 52.5
βx\beta_{x}^{*} (mm) 32 25 80 60
βy\beta_{y}^{*} (mm) 0.27 0.3 1 1
σz\sigma_{z} (mm) 6 5 4.6 5.1
NbN_{b} 2500 1174
ξxi\xi_{x}^{i} 0.0028 0.0012 0.0028 0.0030
ξyi\xi_{y}^{i} 0.078 0.074 0.0432 0.0314
ξxih\xi_{x}^{ih} 0.0019111The numerical integrals for ξxih\xi_{x}^{ih} using Mathematica do not converge well for these cases. This may explain the discrepancy with the results of ξxi\xi_{x}^{i}. 0.0007111The numerical integrals for ξxih\xi_{x}^{ih} using Mathematica do not converge well for these cases. This may explain the discrepancy with the results of ξxi\xi_{x}^{i}. 0.0028 0.0030
ξyih\xi_{y}^{ih} 0.088 0.078 0.0441 0.0318
ϕXZ\phi_{XZ} 22.0 11.6
ϕHC\phi_{HC} 0.8 1.7
LL (1034 cm2s110^{34}\text{ cm}^{-2}\text{s}^{-1}) 80.7 3.0

We define the specific luminosity as

Lsp=LNbIb+Ib,L_{sp}=\frac{L}{N_{b}I_{b+}I_{b-}}, (14)

which is a geometric parameter indicating the potential of a collider for generating collision events in particle detectors. Using the previous formulations, it can be expressed as

Lsp=L0RCNbIb+IbRHRy.L_{sp}=\frac{L_{0}R_{C}}{N_{b}I_{b+}I_{b-}}R_{H}R_{y}. (15)

Here RyR_{y} is the reduction factor from the relative vertical orbit offset Δy\Delta_{y} of the colliding beams at IP

Ry=eΔy22(σy+2+σy2).R_{y}=e^{-\frac{\Delta_{y}^{2}}{2(\sigma_{y+}^{*2}+\sigma_{y-}^{*2})}}. (16)

With this formulation of luminosity, one can see that LspL_{sp} depends on the achievable beam sizes at the IP and collision conditions (such as crossing angle, orbit offset, beams’ tilt angles, etc.). Considering a very large Piwinski angle ϕP1\phi_{P}\gg 1, the specific luminosity is approximated by

Lsp12πe2f0ΣyΣztanθc2.L_{sp}\approx\frac{1}{2\pi e^{2}f_{0}\Sigma_{y}^{*}\Sigma_{z}\tan\frac{\theta_{c}}{2}}. (17)

To check the validity of the aforementioned luminosity formulae for SuperKEKB, we use the machine parameters of Table 1 to perform numerical tests. The full crossing angle of SuperKEKB is θc\theta_{c}=83 mrad. With zero and full CW, analytic formulae are used. While using the strong-strong BB simulation code BBSS [8, 9] to perform numerical integration with the colliding beam modeled by macroparticles, the crab waist ratio RCWR_{CW} can be arbitrarily set. In BBSS simulations, the 3D Gaussian beams are generated using optics parameters. A CW transformation is then applied to the beams before passing to the IP. Finally, the overlap integral is done to calculate the luminosity. The total charges are set to be only 1/1000 of the nominal values to avoid dynamic beam-beam effects since we are only interested in the geometric luminosity with well-defined beam distributions. The beams are tracked through only one turn, and the number of macroparticles is set to 2e6 to reduce statistic errors. The numerical results are summarized in Fig. 1. The main findings are: 1) Without the CW, Eq. (6) is a very good approximation of luminosity for the nano-beam scheme; 2) With the CW and a large Piwinski angle, Eq. (9) is a fairly good approximation to the luminosity for the crab waist scheme; 3) The hourglass effect on luminosity is not negligible only when b<1b<1, considering its dependence on βy\beta_{y}^{*} and σx\sigma_{x}^{*}; 4) The CW modifies the beam distribution, causing a luminosity gain of a few percent or less; 5) With operation conditions up to July 2022 (i.e. βy1\beta_{y}^{*}\geq 1 mm), the simple formula L0RCL_{0}R_{C} is fairly good to describe the luminosity of SuperKEKB. Consequently, using this formula to estimate the beam sizes at the IP from measured luminosity is also valid.

Refer to caption
Figure 1: The hourglass factor RH=L/(L0RC)R_{H}=L/(L_{0}R_{C}) =RHC/RC=R_{HC}/R_{C} as a function of βy\beta_{y}^{*} with beam parameters of Table 1, assuming βy+=βy\beta_{y+}^{*}=\beta_{y-}^{*}. In the legends, ”Analytic-1” and ”Analytic-2” indicate using Eqs. (6), (9), and (12) to calculate RHR_{H}; ”BBSS” indicates using BBSS code to calculate the luminosity LL with the CW ratio varied.

II Formulae of beam-beam tune shifts

The BB interaction will cause betatron tune shifts, which are important parameters to measure the luminosity potential of a collider. We follow the formulations of Ref. [7] to derive the analytic formulae of incoherent BB tune shifts. The amplitude dependence of BB tune shifts is beyond the scope of this note.

The electromagnetic fields of a three-dimensional Gaussian bunch (Here, we take it as an electron beam with the subscript “-” indicating its fields and beam parameters) can be expressed by

Ex(x,y,z,t)=eNγx2ϵ0π3/20𝑑wex22σx2(s)+wy22σy2(s)+wγ2(zs)22γ2σz2+w(2σx2(s)+w)3/2(2σy2(s)+w)1/2(2γ2σz2+w)1/2,E_{x-}(x,y,z,t)=\frac{eN_{-}\gamma_{-}x}{2\epsilon_{0}\pi^{3/2}}\int_{0}^{\infty}dw\frac{e^{-\frac{x^{2}}{2\sigma_{x-}^{2}(s)+w}-\frac{y^{2}}{2\sigma_{y-}^{2}(s)+w}-\frac{\gamma_{-}^{2}(z-s)^{2}}{2\gamma_{-}^{2}\sigma_{z-}^{2}+w}}}{\left(2\sigma_{x-}^{2}(s)+w\right)^{3/2}\left(2\sigma_{y-}^{2}(s)+w\right)^{1/2}\left(2\gamma_{-}^{2}\sigma_{z-}^{2}+w\right)^{1/2}}, (18a)
Ey(x,y,z,t)=eNγy2ϵ0π3/20𝑑wex22σx2(s)+wy22σy2(s)+wγ2(zs)22γ2σz2+w(2σx2(s)+w)1/2(2σy2(s)+w)3/2(2γ2σz2+w)1/2,E_{y-}(x,y,z,t)=\frac{eN_{-}\gamma_{-}y}{2\epsilon_{0}\pi^{3/2}}\int_{0}^{\infty}dw\frac{e^{-\frac{x^{2}}{2\sigma_{x-}^{2}(s)+w}-\frac{y^{2}}{2\sigma_{y-}^{2}(s)+w}-\frac{\gamma_{-}^{2}(z-s)^{2}}{2\gamma_{-}^{2}\sigma_{z-}^{2}+w}}}{\left(2\sigma_{x-}^{2}(s)+w\right)^{1/2}\left(2\sigma_{y-}^{2}(s)+w\right)^{3/2}\left(2\gamma_{-}^{2}\sigma_{z-}^{2}+w\right)^{1/2}}, (18b)
Bx=1cEy,B_{x-}=-\frac{1}{c}E_{y-}, (18c)
By=1cEx.B_{y-}=\frac{1}{c}E_{x-}. (18d)

Here s=cts=ct is taken as the orbit distance from the IP, and tt is interpreted as the arrival time at the IP for a particle inside the bunch. The coordinates (x,y,z)(x,y,z) give the particle’s position relative to the center of the bunch. In the above expressions, the transverse beam sizes are written as a function of ss instead of zz (i.e., the beam sizes depend on the local beta functions and emittances.).

Consider a positron bunch colliding with the electron bunch at IP with a horizontal crossing angle θc\theta_{c}. The centers of the two bunches arrive at the IP simultaneously at s=0s=0. With (x,y,z)(x^{\prime},y^{\prime},z^{\prime}) defining a particle’s coordinates in the system of the positron bunch, the coordinates transformed to the system of the electron bunch are given by

x=xcosθc+zsinθc,x=x^{\prime}\cos\theta_{c}+z^{\prime}\sin\theta_{c}, (19a)
y=y,y=y^{\prime}, (19b)
z=zcosθcxsinθc.z=z^{\prime}\cos\theta_{c}-x^{\prime}\sin\theta_{c}. (19c)

We are to calculate the BB tune shifts for a particle in the positron bunch with

x(t)=x0,x^{\prime}(t)=x_{0}^{\prime}, (20a)
y(t)=y0,y^{\prime}(t)=y_{0}^{\prime}, (20b)
z(t)=s+z0.z^{\prime}(t)=-s+z_{0}^{\prime}. (20c)

Equation (20c) does not describe a particle’s betatron motion around IP in a self-consistent manner. But here, we only focus on the case of x0=y0=z0=0x_{0}^{\prime}=y_{0}^{\prime}=z_{0}^{\prime}=0 to calculate the incoherent BB tune shifts. In this special case, Eq. (20c) is suitable for the following calculations. Translating Eq. (20c) to the system of the electron bunch, the coordinates are

x(t)=ssinθc+x0,x(t)=-s\sin\theta_{c}+x_{0}, (21a)
y(t)=y0,y(t)=y_{0}, (21b)
z(t)=scosθc+z0,z(t)=-s\cos\theta_{c}+z_{0}, (21c)

with x0=x0cosθc+z0sinθcx_{0}=x_{0}^{\prime}\cos\theta_{c}+z_{0}^{\prime}\sin\theta_{c}, y0=y0y_{0}=y_{0}^{\prime}, and z0=z0cosθcx0sinθcz_{0}=z_{0}^{\prime}\cos\theta_{c}-x_{0}^{\prime}\sin\theta_{c}. The Lorentz force felt by the positron particle from the electron bunch is

Fx+(x,y,z)=e(Exvz+By)=eEx(1+cosθc),F_{x+}(x^{\prime},y^{\prime},z^{\prime})=e\left(E_{x-}-v_{z+}B_{y-}\right)=eE_{x-}\left(1+\cos\theta_{c}\right), (22a)
Fy+(x,y,z)=e(Ey+vz+Bx)=eEy(1+cosθc),F_{y+}(x^{\prime},y^{\prime},z^{\prime})=e\left(E_{y-}+v_{z+}B_{x-}\right)=eE_{y-}\left(1+\cos\theta_{c}\right), (22b)

with ExE_{x-} and EyE_{y-} given by Eqs. (18a) and (18b) after coordinates transformations. Integrating the BB force weighted by local β\beta functions yields the incoherent BB tune shifts

ξx+ih=14πp0c𝑑sβx+(s)Fx+x,\xi_{x+}^{ih}=\frac{1}{4\pi p_{0}c}\int_{-\infty}^{\infty}ds\beta_{x+}(s)\frac{\partial F_{x+}}{\partial x^{\prime}}, (23a)
ξy+ih=14πp0c𝑑sβy+(s)Fy+y,\xi_{y+}^{ih}=\frac{1}{4\pi p_{0}c}\int_{-\infty}^{\infty}ds\beta_{y+}(s)\frac{\partial F_{y+}}{\partial y^{\prime}}, (23b)

with the gradients of the BB force evaluated at x0=y0=z0=0x_{0}^{\prime}=y_{0}^{\prime}=z_{0}^{\prime}=0. The hourglass effects originate from ss-dependence of beam sizes and beta functions

βu+=βu+(1+s2βu+2),\beta_{u+}=\beta_{u+}^{*}\left(1+\frac{s^{2}}{\beta_{u+}^{*2}}\right), (24a)
σu=σu1+s2βu2,\sigma_{u-}=\sigma_{u-}^{*}\sqrt{1+\frac{s^{2}}{\beta_{u-}^{*2}}}, (24b)

with u=x,yu=x,y. Applying Eq. (18d) to Eq. (23b), the incoherent BB tune shifts can be formulated as

ξx+ih=Λ+π0𝑑w𝑑sγ(1+cosθc)βx+(s)gx+(s)es2sin2θc2σx2(s)+wγ2s2(1+cosθc)22γ2σz2+w(2σx2(s)+w)3/2(2σy2(s)+w)1/2(2γ2σz2+w)1/2,\xi_{x+}^{ih}=\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds\frac{\gamma_{-}\left(1+\cos\theta_{c}\right)\beta_{x+}(s)g_{x+}(s)e^{-\frac{s^{2}\sin^{2}\theta_{c}}{2\sigma_{x-}^{2}(s)+w}-\frac{\gamma_{-}^{2}s^{2}\left(1+\cos\theta_{c}\right)^{2}}{2\gamma_{-}^{2}\sigma_{z-}^{2}+w}}}{\left(2\sigma_{x-}^{2}(s)+w\right)^{3/2}\left(2\sigma_{y-}^{2}(s)+w\right)^{1/2}\left(2\gamma_{-}^{2}\sigma_{z-}^{2}+w\right)^{1/2}}, (25a)
ξy+ih=Λ+π0𝑑w𝑑sγ(1+cosθc)βy+(s)es2sin2θc2σx2(s)+wγ2s2(1+cosθc)22γ2σz2+w(2σx2(s)+w)1/2(2σy2(s)+w)3/2(2γ2σz2+w)1/2,\xi_{y+}^{ih}=\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds\frac{\gamma_{-}\left(1+\cos\theta_{c}\right)\beta_{y+}(s)e^{-\frac{s^{2}\sin^{2}\theta_{c}}{2\sigma_{x-}^{2}(s)+w}-\frac{\gamma_{-}^{2}s^{2}\left(1+\cos\theta_{c}\right)^{2}}{2\gamma_{-}^{2}\sigma_{z-}^{2}+w}}}{\left(2\sigma_{x-}^{2}(s)+w\right)^{1/2}\left(2\sigma_{y-}^{2}(s)+w\right)^{3/2}\left(2\gamma_{-}^{2}\sigma_{z-}^{2}+w\right)^{1/2}}, (25b)

with

Λ+=reN2πγ+,\Lambda_{+}=\frac{r_{e}N_{-}}{2\pi\gamma_{+}}, (26)
gx+(s)=cosθc+2s2sinθc2[γ2(1+cosθc)2γ2σz2+wcosθc2σx2(s)+w].g_{x+}(s)=\cos\theta_{c}+2s^{2}\sin\theta_{c}^{2}\left[\frac{\gamma_{-}^{2}\left(1+\cos\theta_{c}\right)}{2\gamma_{-}^{2}\sigma_{z-}^{2}+w}-\frac{\cos\theta_{c}}{2\sigma_{x-}^{2}(s)+w}\right]. (27)

Note that the term of gx+(s)g_{x+}(s) in Eq. (25a) is different from Eq. (7) of Ref. [7] as the reader can compare.

When the hourglass effects are negligible, the β\beta functions and beam sizes are independent of ss, i.e., βu±(s)=βu±\beta_{u\pm}(s)=\beta_{u\pm}^{*} and σu±(s)=σu±\sigma_{u\pm}(s)=\sigma_{u\pm}^{*} are constants with u=x,yu=x,y. Consequently, the integration over ss in Eq. (25b) can be done without any approximations, yielding

ξx+i=Λ+βx+0𝑑w1(2σy2+w)1/2(2σ¯x2+α+w)3/2,\xi_{x+}^{i}=\Lambda_{+}\beta_{x+}^{*}\int_{0}^{\infty}dw\frac{1}{\left(2\sigma_{y-}^{*2}+w\right)^{1/2}\left(2\overline{\sigma}_{x-}^{2}+\alpha_{+}w\right)^{3/2}}, (28a)
ξy+i=Λ+βy+0𝑑w1(2σy2+w)3/2(2σ¯x2+α+w)1/2,\xi_{y+}^{i}=\Lambda_{+}\beta_{y+}^{*}\int_{0}^{\infty}dw\frac{1}{\left(2\sigma_{y-}^{*2}+w\right)^{3/2}\left(2\overline{\sigma}_{x-}^{2}+\alpha_{+}w\right)^{1/2}}, (28b)

with

α+=1+1γ+2tan2θc2,\alpha_{+}=1+\frac{1}{\gamma_{+}^{2}}\tan^{2}\frac{\theta_{c}}{2}, (29)
σ¯x=σx2+σz2tan2θc2.\overline{\sigma}_{x-}=\sqrt{\sigma_{x-}^{*2}+\sigma_{z-}^{2}\tan^{2}\frac{\theta_{c}}{2}}. (30)

The integration over ww in Eq. (28b) can also be done analytically, giving

ξx+i=Λ+βx+σx21+ϕ2α+(1+ϕ2+κα+),\xi_{x+}^{i}=\frac{\Lambda_{+}\beta_{x+}^{*}}{\sigma_{x-}^{*2}\sqrt{1+\phi_{-}^{2}}\sqrt{\alpha_{+}}\left(\sqrt{1+\phi_{-}^{2}}+\kappa_{-}\sqrt{\alpha_{+}}\right)}, (31a)
ξy+i=Λ+βy+σxσy(1+ϕ2+κα+),\xi_{y+}^{i}=\frac{\Lambda_{+}\beta_{y+}^{*}}{\sigma_{x-}^{*}\sigma_{y-}^{*}\left(\sqrt{1+\phi_{-}^{2}}+\kappa_{-}\sqrt{\alpha_{+}}\right)}, (31b)

with

ϕ=σzσxtanθc2,\phi_{-}=\frac{\sigma_{z-}}{\sigma_{x-}^{*}}\tan\frac{\theta_{c}}{2}, (32)
κ=σyσx.\kappa_{-}=\frac{\sigma_{y-}^{*}}{\sigma_{x-}^{*}}. (33)

Here ϕ\phi_{-} is the Piwinski angle of the electron beam, and κ\kappa_{-} is the aspect ratio of the transverse beam sizes. Equation (31b) represents the solutions of the BB tune shifts for 3D Gaussian colliding bunches with an arbitrary horizontal crossing angle and beam energies but without hourglass effects. The formulae are obtained starting from Eq. (18d) without any approximations.

For ultrarelativistic beams, there is α±1\alpha_{\pm}\rightarrow 1, and Eq. (31b) can be written in a compact form [10]

ξu±i=re2πγ±Nβu±σ¯u(σ¯x+σ¯y),\xi_{u\pm}^{i}=\frac{r_{e}}{2\pi\gamma_{\pm}}\frac{N_{\mp}\beta_{u\pm}^{*}}{\overline{\sigma}_{u\mp}(\overline{\sigma}_{x\mp}+\overline{\sigma}_{y\mp})}, (34)

with u=x,yu=x,y. The beam sizes in the above equation are defined as σ¯y±=σy±\overline{\sigma}_{y\pm}=\sigma_{y\pm}^{*}, and σ¯x±=σz±2tan2θc2+σx±2\overline{\sigma}_{x\pm}=\sqrt{\sigma_{z\pm}^{2}\tan^{2}\frac{\theta_{c}}{2}+\sigma_{x\pm}^{*2}}. The formula is the same as that for a head-on collision, except that the horizontal beam size is modified, considering the projection from the longitudinal direction. The incoherent BB tune shifts depend on the opposite beam’s bunch current and beam sizes.

For flat beams, there is κ±1\kappa_{\pm}\ll 1, and Eq. (34) can be approximated by

ξu±ire2πγ±Nβu±σ¯uσ¯x.\xi_{u\pm}^{i}\approx\frac{r_{e}}{2\pi\gamma_{\pm}}\frac{N_{\mp}\beta_{u\pm}^{*}}{\overline{\sigma}_{u\mp}\overline{\sigma}_{x\mp}}. (35)

This formula is obtained by dropping the negligible terms in Eq. (28b) as follows

ξx+iΛ+βx+0𝑑w1w1/2(2σ¯x2+w)3/2,\xi_{x+}^{i}\approx\Lambda_{+}\beta_{x+}^{*}\int_{0}^{\infty}dw\frac{1}{w^{1/2}\left(2\overline{\sigma}_{x-}^{2}+w\right)^{3/2}}, (36a)
ξy+iΛ+βy+0𝑑w1(2σy2+w)3/2(2σ¯x2)1/2.\xi_{y+}^{i}\approx\Lambda_{+}\beta_{y+}^{*}\int_{0}^{\infty}dw\frac{1}{\left(2\sigma_{y-}^{*2}+w\right)^{3/2}\left(2\overline{\sigma}_{x-}^{2}\right)^{1/2}}. (36b)

We will use such approximations later when considering the hourglass effects (ss-dependence of β\beta functions and beam sizes.).

With the hourglass effect taken into account, the BB tune shift of on-axis particles (i.e. ξu±ih\xi_{u\pm}^{ih}) can be numerically calculated by integrating the β\beta-function weighted BB force along their path. For example, one can start from Eq. (25b) (i.e., Eq. (7) of Ref. [7] with typos fixed) to perform the numerical integration. We can define the hourglass factor for BB tune shifts as

Rξu±=ξu±ih/ξu±i.R_{\xi u\pm}=\xi_{u\pm}^{ih}/\xi_{u\pm}^{i}. (37)

With approximations of ultrarelativistic beams (α±1\alpha_{\pm}\rightarrow 1) and flat beams (κ±1\kappa_{\pm}\ll 1), we can also find approximate formulae for ξu±ih\xi_{u\pm}^{ih}. Here we also assume βx±σz±\beta_{x\pm}^{*}\gg\sigma_{z\pm} (This is fairly satisfied in flat-beam colliders like SuperKEKB.), i.e., the hourglass effect in the horizontal direction is negligible. With all these assumptions, Eq. (25b) is simplified as

ξx+ihΛ+π0𝑑w𝑑s(1+cosθc)βx+gx+(s)es2sin2θc2σx2+ws2(1+cosθc)22σz2(2σx2+w)3/2(2σy2(s)+w)1/2(2σz2)1/2,\xi_{x+}^{ih}\approx\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds\frac{\left(1+\cos\theta_{c}\right)\beta_{x+}^{*}g_{x+}(s)e^{-\frac{s^{2}\sin^{2}\theta_{c}}{2\sigma_{x-}^{*2}+w}-\frac{s^{2}\left(1+\cos\theta_{c}\right)^{2}}{2\sigma_{z-}^{2}}}}{\left(2\sigma_{x-}^{*2}+w\right)^{3/2}\left(2\sigma_{y-}^{2}(s)+w\right)^{1/2}\left(2\sigma_{z-}^{2}\right)^{1/2}}, (38a)
ξy+ihΛ+π0𝑑w𝑑s(1+cosθc)βy+(s)es2sin2θc2σx2+ws2(1+cosθc)22σz2(2σx2+w)1/2(2σy2(s)+w)3/2(2σz2)1/2,\xi_{y+}^{ih}\approx\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds\frac{\left(1+\cos\theta_{c}\right)\beta_{y+}(s)e^{-\frac{s^{2}\sin^{2}\theta_{c}}{2\sigma_{x-}^{*2}+w}-\frac{s^{2}\left(1+\cos\theta_{c}\right)^{2}}{2\sigma_{z-}^{2}}}}{\left(2\sigma_{x-}^{*2}+w\right)^{1/2}\left(2\sigma_{y-}^{2}(s)+w\right)^{3/2}\left(2\sigma_{z-}^{2}\right)^{1/2}}, (38b)

We only keep the ss-dependence of vertical beam size and the beta function around IP in the above formulation. Obtaining analytic solutions for Eq. (38b) is not trivial and requires further approximations. For flat beams and the vertical beam size does not vary fast in the overlap region, Eq. (38a) reduces to

ξx+ihΛ+π0𝑑w𝑑s(1+cosθc)βx+gx+(s)es2sin2θc2σx2+ws2(1+cosθc)22σz2(2σx2+w)3/2w1/2(2σz2)1/2.\xi_{x+}^{ih}\approx\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds\frac{\left(1+\cos\theta_{c}\right)\beta_{x+}^{*}g_{x+}(s)e^{-\frac{s^{2}\sin^{2}\theta_{c}}{2\sigma_{x-}^{*2}+w}-\frac{s^{2}\left(1+\cos\theta_{c}\right)^{2}}{2\sigma_{z-}^{2}}}}{\left(2\sigma_{x-}^{*2}+w\right)^{3/2}w^{1/2}\left(2\sigma_{z-}^{2}\right)^{1/2}}. (39)

Indeed, the hourglass effects in horizontal and vertical directions are neglected here. Then, the integrations over ww and ss are straightforward, giving

ξx+ire2πγ+Nβx+σ¯x2.\xi_{x+}^{i}\approx\frac{r_{e}}{2\pi\gamma_{+}}\frac{N_{-}\beta_{x+}^{*}}{\overline{\sigma}_{x-}^{2}}. (40)

This expression is consistent with Eq. (35).

To proceed further, in Eq. (38b) we can change the variable ss by

s=ssin2θc2σx2+w+(1+cosθc)22σz2=s4cos4θc2(2σx2+2σz2tan2θc2+w)2σz2(2σx2+w).s^{\prime}=s\sqrt{\frac{\sin^{2}\theta_{c}}{2\sigma_{x-}^{*2}+w}+\frac{\left(1+\cos\theta_{c}\right)^{2}}{2\sigma_{z-}^{2}}}=s\sqrt{\frac{4\cos^{4}\frac{\theta_{c}}{2}\left(2\sigma_{x-}^{*2}+2\sigma_{z-}^{2}\tan^{2}\frac{\theta_{c}}{2}+w\right)}{2\sigma_{z-}^{2}\left(2\sigma_{x-}^{*2}+w\right)}}. (41)

With this substitution, Eq. (38b) becomes

ξy+ihΛ+π0𝑑w𝑑sβy+(s)es2(2σ¯x2+w)1/2(2σy2(s)+w)3/2.\xi_{y+}^{ih}\approx\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds^{\prime}\frac{\beta_{y+}(s^{\prime})e^{-s^{\prime 2}}}{\left(2\overline{\sigma}_{x-}^{2}+w\right)^{1/2}\left(2\sigma_{y-}^{2}(s^{\prime})+w\right)^{3/2}}. (42)

This integral is still complicated because ss^{\prime} contains the variable ww. We can intentionally drop ww in Eq. (41) and make ss^{\prime} simply linear to ss:

ss4cos4θc2(2σx2+2σz2tan2θc2)2σz22σx2=s2σ¯xcos2θc2σzσx.s^{\prime}\approx s\sqrt{\frac{4\cos^{4}\frac{\theta_{c}}{2}\left(2\sigma_{x-}^{*2}+2\sigma_{z-}^{2}\tan^{2}\frac{\theta_{c}}{2}\right)}{2\sigma_{z-}^{2}\cdot 2\sigma_{x-}^{*2}}}=s\frac{\sqrt{2}\overline{\sigma}_{x-}\cos^{2}\frac{\theta_{c}}{2}}{\sigma_{z-}\sigma_{x-}^{*}}. (43)

We also drop one ww of Eq. (42) as follows

ξy+ihΛ+π0𝑑w𝑑sβy+(s)es2(2σ¯x2)1/2(2σy2(s)+w)3/2,\xi_{y+}^{ih}\approx\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{0}^{\infty}dw\int_{-\infty}^{\infty}ds^{\prime}\frac{\beta_{y+}(s^{\prime})e^{-s^{\prime 2}}}{\left(2\overline{\sigma}_{x-}^{2}\right)^{1/2}\left(2\sigma_{y-}^{2}(s^{\prime})+w\right)^{3/2}}, (44)

considering flat-beam condition σ¯xσy(s)\overline{\sigma}_{x-}\gg\sigma_{y-}(s^{\prime}) is satisfied in the overlap region of the colliding beams. The integration over ww can be done first in Eq. (44), giving

ξy+ihΛ+π𝑑sβy+(s)es2(2σ¯x2)1/222σy2(s)=Λ+πσ¯x𝑑sβy+(s)es2σy(s).\xi_{y+}^{ih}\approx\frac{\Lambda_{+}}{\sqrt{\pi}}\int_{-\infty}^{\infty}ds^{\prime}\frac{\beta_{y+}(s^{\prime})e^{-s^{\prime 2}}}{\left(2\overline{\sigma}_{x-}^{2}\right)^{1/2}}\frac{2}{\sqrt{2\sigma_{y-}^{2}(s^{\prime})}}=\frac{\Lambda_{+}}{\sqrt{\pi}\overline{\sigma}_{x-}}\int_{-\infty}^{\infty}ds^{\prime}\frac{\beta_{y+}(s^{\prime})e^{-s^{\prime 2}}}{\sigma_{y-}(s^{\prime})}. (45)

The integration over ss^{\prime} can be explicitly written as

𝑑sβy+(s)es2σy(s)=βy+σy𝑑ses21+s22r2+βy22βy+σyr2𝑑ss2es21+s22r2,\int_{-\infty}^{\infty}ds^{\prime}\frac{\beta_{y+}(s^{\prime})e^{-s^{\prime 2}}}{\sigma_{y-}(s^{\prime})}=\frac{\beta_{y+}^{*}}{\sigma_{y-}^{*}}\int_{-\infty}^{\infty}ds^{\prime}\frac{e^{-s^{\prime 2}}}{\sqrt{1+\frac{s^{\prime 2}}{2r_{-}^{2}}}}+\frac{\beta_{y-}^{*2}}{2\beta_{y+}^{*}\sigma_{y-}^{*}r_{-}^{2}}\int_{-\infty}^{\infty}ds^{\prime}\frac{s^{\prime 2}e^{-s^{\prime 2}}}{\sqrt{1+\frac{s^{\prime 2}}{2r_{-}^{2}}}}, (46)

with

r=βyσ¯xcos2θc2σzσx.r_{-}=\frac{\beta_{y-}^{*}\overline{\sigma}_{x-}\cos^{2}\frac{\theta_{c}}{2}}{\sigma_{z-}\sigma_{x-}^{*}}. (47)

Note that rr_{-} reduces to 2ϕHC\sqrt{2}\phi_{HC} with conditions of θc1\theta_{c}\ll 1, large Piwinski angle, and symmetric colliding beams. In the end, we can obtain the explicit solution for Eq. (45) as follows

ξy+ihreN2πγ+βy+σ¯xσy[2πrer2K0(r2)+βy222βy+2rU(12,0,2r2)],\xi_{y+}^{ih}\approx\frac{r_{e}N_{-}}{2\pi\gamma_{+}}\frac{\beta_{y+}^{*}}{\overline{\sigma}_{x-}\sigma_{y-}^{*}}\left[\sqrt{\frac{2}{\pi}}r_{-}e^{r_{-}^{2}}K_{0}(r_{-}^{2})+\frac{\beta_{y-}^{*2}}{2\sqrt{2}\beta_{y+}^{*2}r_{-}}U\left(\frac{1}{2},0,2r_{-}^{2}\right)\right], (48)

where K0(x)K_{0}(x) is the modified Bessel function of the second kind, and U(a,b,z)U(a,b,z) is Tricomi confluent hypergeometric function. The first term in the square brackets only contains the parameters of the electron beam. It means that it results from the ss-dependece of the charge density of the electron beam. The second term contains βy+\beta_{y+}^{*}. This means that it results from the ss-dependence of the β\beta function of the positron beam.

In the case of r1r_{-}\gg 1, the asymptotic approximation of Eq. (48) is

ξy+ihreN2πγ+βy+σ¯xσy(1+βy24βy+2r2).\xi_{y+}^{ih}\approx\frac{r_{e}N_{-}}{2\pi\gamma_{+}}\frac{\beta_{y+}^{*}}{\overline{\sigma}_{x-}\sigma_{y-}^{*}}\left(1+\frac{\beta_{y-}^{*2}}{4\beta_{y+}^{*2}r_{-}^{2}}\right). (49)

In the limit of rr_{-}\rightarrow\infty, Eq. (49) reduces to Eq. (35).

III Discussions

The hourglass effect simultaneously modifies the local charge density as Eq. (2) and the local β\beta functions as Eq. (24a). Since the charge density at |s|>0|s|>0 is always smaller than that at s=0s=0, the hourglass effect on luminosity results in the reduction factor RH<1R_{H}<1. This can be verified using the formulations of RHCR_{HC} and RCR_{C} as demonstrated in Fig. 1. The combination of two factors determines the hourglass factor for the BB tune shifts: the charge density decreases, and the beta function increases as a function of |s||s|. Consequently, the quantities Rξu±R_{\xi u\pm} can be larger or smaller than 1. In Tables 1 and 2, the incoherent BB tune shifts, i.e., ξx,yi\xi_{x,y}^{i} by the simple estimate of Eq. (34) and ξx,yih\xi_{x,y}^{ih} by numerical integration of Eq. (25b) using Mathematica, are compared. One can see that the two methods give results close to each other except in the case of “Baseline design”. As a further demonstration, numerical results of hourglass factors RHR_{H} (for luminosity) and RξyR_{\xi y} (for incoherent BB tune shifts) using the beam parameters of Table 1 are compared in Figs. 2 and 3. In this comparison, the vertical β\beta function at the IP is varied to reflect the βy\beta_{y}^{*}-dependence of the hourglass effect (see Eq. (24a)). It can be seen that the hourglass factors for luminosity and BB tune shift respectively decrease and increase when βy\beta_{y}^{*} decreases (Note that smaller βy\beta_{y}^{*} means a stronger hourglass effect). Comparing Figs. 2 and 3 also show that the parameter βx\beta_{x}^{*} strongly affects the hourglass effect as reflected from the parameter ϕHC\phi_{HC}. It implies that squeezing βy\beta_{y}^{*} should be performed in parallel with squeezing βx\beta_{x}^{*} if we want to avoid strong hourglass effects.

Refer to caption
Figure 2: The hourglass factor for vertical BB tune shifts Rξy±R_{\xi y\pm} (blue and red lines) and luminosity RHR_{H} (black line) as a function of βy\beta_{y}^{*} with baseline design parameters of Table 1, assuming βy+=βy\beta_{y+}^{*}=\beta_{y-}^{*}. RH=RHC/RCR_{H}=R_{HC}/R_{C} is calculated using Eqs. (6) and (12).
Refer to caption
Figure 3: The hourglass factor for vertical BB tune shifts Rξy±R_{\xi y\pm} (blue and red lines) and luminosity RHR_{H} (black line) as a function of βy\beta_{y}^{*} with Phase-3 (2021) parameters of Table 1, assuming βy+=βy\beta_{y+}^{*}=\beta_{y-}^{*}. RH=RHC/RCR_{H}=R_{HC}/R_{C} is calculated using Eqs. (6) and (12).

To study coherent BB instabilities, it is more suitable to define the coherent BB tune shifts [11]

ξu±c=re2πγ±Nβu±Σ¯u(Σ¯x+Σ¯y),\xi_{u\pm}^{c}=\frac{r_{e}}{2\pi\gamma_{\pm}}\frac{N_{\mp}\beta_{u\pm}^{*}}{\overline{\Sigma}_{u}(\overline{\Sigma}_{x}+\overline{\Sigma}_{y})}, (50)

with u=x,yu=x,y, and the effective beam size Σ¯u=\overline{\Sigma}_{u}= σ¯u+2+σ¯u2\sqrt{\overline{\sigma}_{u+}^{2}+\overline{\sigma}_{u-}^{2}}. Empirically, we often calculate the vertical BB parameter of flat beams from luminosity [12]

L=12ereγ±I±βy±ξy±L12ereγ±I±βy±(2ξu±cRH),L=\frac{1}{2er_{e}}\frac{\gamma_{\pm}I_{\pm}}{\beta_{y\pm}^{*}}\xi_{y\pm}^{L}\simeq\frac{1}{2er_{e}}\frac{\gamma_{\pm}I_{\pm}}{\beta_{y\pm}^{*}}\left(2\xi_{u\pm}^{c}R_{H}\right), (51)

with I±I_{\pm} the total beam currents. Here the hourglass effects are resolved in the BB parameter ξy±L\xi_{y\pm}^{L}. For flat beams σyσx\sigma_{y}^{*}\ll\sigma_{x}^{*}, it is easy to verify that ξy±L2ξu±cRH\xi_{y\pm}^{L}\simeq 2\xi_{u\pm}^{c}R_{H}. In terms of incoherent BB tune shifts with flat beams, the luminosity is expressed as

L=12ereγ±I±βy±ξy±i2σy±σ¯x±ΣyΣ¯xRH,L=\frac{1}{2er_{e}}\frac{\gamma_{\pm}I_{\pm}}{\beta_{y\pm}^{*}}\xi_{y\pm}^{i}\frac{2\sigma_{y\pm}^{*}\overline{\sigma}_{x\pm}}{\Sigma_{y}\overline{\Sigma}_{x}}R_{H}, (52)

Finally, one can see that, for 3D Gaussian beams with identical sizes (i.e. σu+=σu\sigma_{u+}^{*}=\sigma_{u-}^{*}), there is ξy±L=ξy±iRH=2ξy±cRH\xi_{y\pm}^{L}=\xi_{y\pm}^{i}R_{H}=2\xi_{y\pm}^{c}R_{H}. When the hourglass effect is negligible, the relation is further simplified: ξy±L=ξy±i=2ξy±c\xi_{y\pm}^{L}=\xi_{y\pm}^{i}=2\xi_{y\pm}^{c}. Further correlation to the incoherent BB tune shifts with the hourglass effect is

ξy±ih=ξy±iRξy±=ξy±LRξy±/RH.\xi_{y\pm}^{ih}=\xi_{y\pm}^{i}R_{\xi y\pm}=\xi_{y\pm}^{L}R_{\xi y\pm}/R_{H}. (53)

Here ξy±ih\xi_{y\pm}^{ih} is consistent with the definition of ξy\xi_{y} in Eq. (2.3) of Ref. [13], with the condition that the beam sizes of the two beams are equal.

Consider a very large Piwinski angle and assume that the hourglass effect is negligible; from Eq. (34), the incoherent vertical BB tune shift can be simplified to

ξy±ire2πef0γ±tanθc2Ibβy±σyσz.\xi_{y\pm}^{i}\approx\frac{r_{e}}{2\pi ef_{0}\gamma_{\pm}\tan\frac{\theta_{c}}{2}}\frac{I_{b\mp}\beta_{y\pm}^{*}}{\sigma_{y\mp}^{*}\sigma_{z\mp}}. (54)

Furthermore, we assume that a balanced collision is achievable: βy+=βy=βy\beta_{y+}^{*}=\beta_{y-}^{*}=\beta_{y}^{*} and ϵy+=ϵy=ϵy\epsilon_{y+}=\epsilon_{y-}=\epsilon_{y}. The above equation can then be rewritten as

ξy±ire2πef0γ±tanθc2Ibσzβyϵy.\xi_{y\pm}^{i}\approx\frac{r_{e}}{2\pi ef_{0}\gamma_{\pm}\tan\frac{\theta_{c}}{2}}\frac{I_{b\mp}}{\sigma_{z\mp}}\sqrt{\frac{\beta_{y}^{*}}{\epsilon_{y}}}. (55)

If there is an upper limit on the achievable BB tune shift, the above equation shows a constraint between the bunch current, the vertical emittance, and the vertical beta function at the IP. To achieve the same BB tune shift at a given bunch current, squeezing βy\beta_{y}^{*} requires reducing the single-beam emittance ϵy\epsilon_{y}. With fixed βy\beta_{y}^{*}, when increasing the bunch currents, we expect emittance blowup as scaled by ϵyIb±2\epsilon_{y}\propto I_{b\pm}^{2}.

Table 2: SuperKEKB machine parameters for βy\beta_{y}^{*}=2 mm on Jul. 1, 2019 and βy\beta_{y}^{*}=1 mm on Apr. 5, 2022, respectively. The luminosity is calculated by Eqs. (5) and (6). The incoherent BB tune shifts ξx,yi\xi_{x,y}^{i} and ξx,yih\xi_{x,y}^{ih} are calculated by Eq. (34) and by numerical integration of Eq. (7) in Ref. [7], respectively.
Parameters 2019.07.01 2022.04.05
LER HER LER HER
IbI_{b} (mA) 0.51 0.51 0.71 0.57
ϵx\epsilon_{x} (nm) 2.0 4.6 4.0 4.6
ϵy\epsilon_{y} (pm) 40 40 30 35
βx\beta_{x} (mm) 80 80 80 60
βy\beta_{y} (mm) 2 2 1 1
σz0\sigma_{z0} (mm) 4.6 5.0 4.6 5.1
νx\nu_{x} 44.542 45.53 44.524 45.532
νy\nu_{y} 46.605 43.583 46.589 43.572
νs\nu_{s} 0.023 0.027 0.023 0.027
Crab waist ratio 0 0 80% 40%
NbN_{b} 1174 1174
ξxi\xi_{x}^{i} 0.0034 0.0023 0.0036 0.0024
ξyi\xi_{y}^{i} 0.0621 0.0386 0.0516 0.0438
ξxih\xi_{x}^{ih} 0.0034 0.0023 0.0036 0.0024
ξyih\xi_{y}^{ih} 0.0621 0.0383 0.0523 0.0446
ϕXZ\phi_{XZ} 12.3 11.7
ϕHC\phi_{HC} 3.6 1.7
LL (1034 cm2s110^{34}\text{ cm}^{-2}\text{s}^{-1}) 1.7 3.9

In addition to Table 1, Table 2 shows the typical machine parameters from the operation without the CW (2019.07.01) and with the CW (2022.04.05). From these parameter sets, one can see that the hourglass effect modifies the vertical incoherent tune shifts ξy\xi_{y} by about 11% and 5% respectively for LER and HER (see the difference between ξyi\xi_{y}^{i} and ξyih\xi_{y}^{ih}) with the baseline design configuration of SuperKEKB. For other cases of βy1\beta_{y}^{*}\geq 1 mm, the hourglass effect on the vertical incoherent tune shifts is negligible (Suppose βx\beta_{x}^{*} satisfies ϕHC1\phi_{HC}\gtrsim 1. Consequently, Eq. (34) is a good approximation for BB tune shifts. The horizontal incoherent tune shifts are smaller than the vertical ones by one order with flat beams (i.e., the aspect ratios of transverse beam sizes (i.e., α±\alpha_{\pm}) and β\beta functions are small).

Acknowledgements.
The author thanks K. Oide, M. Zobov, and A.V. Bogomyagkov for many discussions.

References

  • Herr and Muratori [2006] W. Herr and B. Muratori, Concept of luminosity,   (2006).
  • Hirata [1995] K. Hirata, Analysis of beam-beam interactions with a large crossing angle, Physical review letters 74, 2228 (1995).
  • Dikansky and Pestrikov [2009] N. Dikansky and D. Pestrikov, Effect of the crab waist and of the micro-beta on the beam–beam instability, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600, 538 (2009).
  • Ohnishi et al. [2013] Y. Ohnishi, T. Abe, T. Adachi, K. Akai, Y. Arimoto, K. Ebihara, K. Egawa, J. Flanagan, H. Fukuma, Y. Funakoshi, et al., Accelerator design at SuperKEKB, Progress of Theoretical and Experimental Physics 2013 (2013).
  • [5] SuperKEKB design report, https://kds.kek.jp/event/15914/.
  • Ohnishi et al. [2021] Y. Ohnishi, T. Abe, K. Akai, Y. Arimoto, K. Egawa, S. Enomoto, H. Fukuma, Y. Funakoshi, K. Furukawa, N. Iida, et al., SuperKEKB operation using crab waist collision scheme, The European Physical Journal Plus 136, 1 (2021).
  • Valishev [2013] A. Valishev, Practical Beam-Beam Tune Shift Formulae for Simulation Cross-Check, Tech. Rep. (Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2013).
  • Ohmi [2000] K. Ohmi, Simulation of beam-beam effects in a circular e+ e- collider, Physical Review E 62, 7287 (2000).
  • Ohmi et al. [2004a] K. Ohmi, M. Tawada, Y. Cai, S. Kamada, K. Oide, and J. Qiang, Beam-beam limit in e+ e- circular colliders, Physical review letters 92, 214801 (2004a).
  • Raimondi and Zobov [2003] P. Raimondi and M. Zobov, Tune shift in beam-beam collisions with a crossing angle, DAΦ\PhiNE Technical Note G-58 26 (2003).
  • Hirata and Keil [1990] K. Hirata and E. Keil, Barycentre motion of beams due to beam-beam interaction in asymmetric ring colliders, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 292, 156 (1990).
  • Ohmi et al. [2004b] K. Ohmi, M. Tawada, Y. Cai, S. Kamada, K. Oide, and J. Qiang, Luminosity limit due to the beam-beam interactions with or without crossing angle, Physical Review Special Topics-Accelerators and Beams 7, 104401 (2004b).
  • KEK [1995] KEKB B-Factory Design Report, KEK Report 95-7 (1995).