This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Focusing nonlocal nonlinear Schrödinger equation with asymmetric boundary conditions: large-time behavior

Anne Boutet de Monvel AB: Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université de Paris, 8 place Aurélie Nemours, 75205 Paris Cedex 13, France [email protected] Yan Rybalko YR: B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Avenue, 61103 Kharkiv, Ukraine [email protected]  and  Dmitry Shepelsky DS: B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Avenue, 61103 Kharkiv, Ukraine [email protected]
Abstract.

We consider the focusing integrable nonlocal nonlinear Schrödinger equation

iqt(x,t)+qxx(x,t)+2q2(x,t)q¯(x,t)=0\mathrm{i}q_{t}(x,t)+q_{xx}(x,t)+2q^{2}(x,t)\bar{q}(-x,t)=0

with asymmetric nonzero boundary conditions: q(x,t)±Ae2iA2tq(x,t)\to\pm A\mathrm{e}^{-2\mathrm{i}A^{2}t} as x±x\to\pm\infty, where A>0A>0 is an arbitrary constant. The goal of this work is to study the asymptotics of the solution of the initial value problem for this equation as t+t\to+\infty. For a class of initial values we show that there exist three qualitatively different asymptotic zones in the (x,t)(x,t) plane. Namely, there are regions where the parameters are modulated (being dependent on the ratio x/tx/t) and a central region, where the parameters are unmodulated. This asymptotic picture is reminiscent of that for the defocusing classical nonlinear Schrödinger equation, but with some important differences. In particular, the absolute value of the solution in all three regions depends on details of the initial data.

Key words and phrases:
nonlocal nonlinear Schrödinger equation, Riemann–Hilbert problem, large-time asymptotics
2010 Mathematics Subject Classification:
Primary: 35Q53; Secondary: 37K15, 35Q15, 35B40, 35Q51, 37K40

1. Introduction

In the present paper we consider the initial value problem for the focusing nonlocal nonlinear Schrödinger (NNLS) equation (we denote a complex conjugate of qq by q¯\bar{q})

iqt(x,t)+qxx(x,t)+2q2(x,t)q¯(x,t)=0,\displaystyle\mathrm{i}q_{t}(x,t)+q_{xx}(x,t)+2q^{2}(x,t)\bar{q}(-x,t)=0, x,t,\displaystyle x\in\mathbb{R},\quad t\in\mathbb{R}, (1.1a)
q(x,0)=q0(x),\displaystyle q(x,0)=q_{0}(x), x,\displaystyle x\in\mathbb{R}, (1.1b)
with asymmetric nonzero boundary conditions:
q(x,t)±Ae2iA2t,x±,t,q(x,t)\to\pm A\mathrm{e}^{-2\mathrm{i}A^{2}t},\qquad x\to\pm\infty,\quad t\in\mathbb{R}, (1.1c)

for some A>0A>0.

The NNLS equation

The integrable NNLS equation was obtained by M. Ablowitz and Z. Musslimani as a nonlocal reduction of the Ablowitz-Kaup-Newell-Segur system [AMP]. This equation satisfies the 𝒫𝒯\mathcal{PT}-symmetric condition [BHH], i.e., q(x,t)q(x,t) and q(x,t)¯\overline{q(-x,-t)} are its solutions simultaneously. Thus the NNLS equation is related to the non-Hermitian quantum mechanics [BB, EMK18]. Also this equation has connections with the theory of magnetism, because it is gauge equivalent to the complex Landau-Lifshitz equation [GA, R21]. Finally, the NNLS equation is an example of a two-place (Alice-Bob) system [Lou18, LH17], which involves the values of the solution at not neighboring points, xx and x-x.

The NNLS equation admits exact solutions with distinctive properties. It has both bright and dark soliton solutions [SMMC], in contrast to its local counterpart, the classical nonlinear Schrödinger (NLS) equation. The simplest one-soliton solution of (1.1a) on zero background has, in general, periodic (in time) point singularities [AMP], so the solution becomes unbounded at these points. Different types of exact solutions with various backgrounds can have such isolated blow-up points in the (x,t)(x,t) plane. For example, solitons with nonzero boundary conditions [ALM18, AMFL, GP, HL16, LX15, RSs], rogue waves [YY20] and breathers [San18]. Other important exact solutions of the NNLS equation are given in, e.g., [MS20, MS18, XCLM19].

Initial value problems

The initial value problem (1.1a)-(1.1b) with nonzero background q(x,t)Aeiθ±(t)q(x,t)\to A\mathrm{e}^{\mathrm{i}\theta_{\pm}(t)}, as x±x\to\pm\infty was firstly considered in [ALM18]. It was shown that eiθ±(t)\mathrm{e}^{\mathrm{i}\theta_{\pm}(t)} remains bounded as |t|\lvert t\rvert\to\infty only in two cases: θ+(t)θ(t)=0\theta_{+}(t)-\theta_{-}(t)=0 or θ+(t)θ(t)=π\theta_{+}(t)-\theta_{-}(t)=\pi. Thus bounded (with respect to tt) boundary conditions can be either q(x,t)Ae2iA2tq(x,t)\to A\mathrm{e}^{2\mathrm{i}A^{2}t} as |x|\lvert x\rvert\to\infty or q(x,t)±Ae2iA2tq(x,t)\to\pm A\mathrm{e}^{-2\mathrm{i}A^{2}t} as x±x\to\pm\infty. The inverse scattering transform method for problems with these two boundary values was developed in [ALM18], where it was shown that the two problems have different continuous spectra. Namely, if q(x,t)Ae2iA2tq(x,t)\to A\mathrm{e}^{2\mathrm{i}A^{2}t} as |x|\lvert x\rvert\to\infty, the continuous spectrum consists of the real line and a vertical band (iA,iA)(-\mathrm{i}A,\mathrm{i}A), which is reminiscent of the problem for the classical (local) focusing NLS equation on a symmetric [BK14] or step-like [BKS11] background. For q(x,t)±Ae2iA2tq(x,t)\to\pm A\mathrm{e}^{-2\mathrm{i}A^{2}t}, x±x\to\pm\infty, the continuous spectrum lies on the real line and has a gap (A,A)(-A,A), as in the problem for the defocusing NLS equation with symmetric nonzero boundary conditions [DPMV13, IU88, ZS73]. Another interesting feature of problem (1.1) is that the boundary functions ±Ae2iA2t\pm A\mathrm{e}^{-2\mathrm{i}A^{2}t} are not exact solutions of the NNLS equation. It is in sharp contrast with the local problems, where for the well-posedness it is necessary that the boundary conditions satisfy the equation.

Long-time asymptotics

The long-time asymptotics for the defocusing NLS equation with nonzero boundary conditions manifests important nonlinear phenomena, including solitons [CJ16, V02, ZS73], rarefaction waves, shock waves, and various plane wave type regions [B89, EGGK, FLQ, IU86, J15]. These developments motivate us to study the asymptotics of problem (1.1) and to highlight its qualitative differences with that for the defocusing NLS equation on a nonzero background, which has a similar spectral picture. We also compare the long-time asymptotic behavior of (1.1) to that for the Cauchy problem for (1.1a) with boundary conditions q(x,t)Ae2iA2tq(x,t)\to A\mathrm{e}^{2\mathrm{i}A^{2}t} as x±x\to\pm\infty, which is considered in [RS21PD].

Methods

The main technical tool used in this paper is the inverse scattering transform method, which allows us to express the solution of (1.1) in terms of the solution of an associated Riemann–Hilbert problem. The jump matrix of this problem depends on the parameters (x,t)(x,t) only via oscillating exponents, so we can apply the Deift and Zhou nonlinear steepest descent method [DZ, DIZ] (see also [DVZ94, DVZ97] for its extensions) to get the asymptotics of the Riemann–Hilbert problem and, therefore, of the solution q(x,t)q(x,t) of (1.1).

Organization of the paper

The article is organized as follows. In Section 2 we develop the inverse scattering transform method for (1.1) and formulate the basic Riemann–Hilbert problem. We also get the one-soliton solution by using the Riemann–Hilbert approach. Section 3 contains our main results, Theorems 3.2 and 3.4, on the long-time asymptotic behavior of q(x,t)q(x,t). More precisely, we present the asymptotics in the “modulated regions” (|x/4t|>A/2|x/4t|>A/2) in Theorem 3.2, and in the central “unmodulated region” (0<|x/4t|<A/20<|x/4t|<A/2) in Theorem 3.4. Finally, we discuss the transition inside the unmodulated region as ξ0\xi\to 0. Theorem 3.9 presents the large time asymptotics with xx fixed 0\neq 0, in which case ξ0\xi\to 0.

2. Inverse scattering transform method

The inverse scattering transform formalism for problem (1.1) was first developed in [ALM18]. Here we perform the direct and inverse analysis in a different way, in particular we define the inverse transform in terms of an associated Riemann–Hilbert problem formulated in the complex plane of the spectral parameter kk entering the standard Lax pair equations for the NNLS equation (1.1a).

2.1. Direct scattering

The NNLS equation (1.1a) is the compatibility condition of the following system of linear equations [AMP] (the “Lax pair”)

Φx+ikσ3Φ\displaystyle\Phi_{x}+\mathrm{i}k\sigma_{3}\Phi =UΦ,\displaystyle=U\Phi, (2.1a)
Φt+2ik2σ3Φ\displaystyle\Phi_{t}+2\mathrm{i}k^{2}\sigma_{3}\Phi =VΦ,\displaystyle=V\Phi, (2.1b)

where σ3=(1001)\sigma_{3}=\left(\begin{smallmatrix}1&0\\ 0&-1\end{smallmatrix}\right) is the third Pauli matrix, Φ(x,t,k)\Phi(x,t,k) is a 2×22\times 2 matrix-valued function, kk\in\mathbb{C} is the spectral parameter, and U(x,t)U(x,t) and V(x,t,k)V(x,t,k) are given in terms of q(x,t)q(x,t) as follows:

U(x,t)=(0q(x,t)q¯(x,t)0),V(x,t,k)=(V11(x,t)V12(x,t,k)V21(x,t,k)V22(x,t)),U(x,t)=\begin{pmatrix}0&q(x,t)\\ -\bar{q}(-x,t)&0\\ \end{pmatrix},\qquad V(x,t,k)=\begin{pmatrix}V_{11}(x,t)&V_{12}(x,t,k)\\ V_{21}(x,t,k)&V_{22}(x,t)\\ \end{pmatrix}, (2.2)

where V11=V22=iq(x,t)q¯(x,t)V_{11}=-V_{22}=\mathrm{i}q(x,t)\bar{q}(-x,t), V12=2kq(x,t)+iqx(x,t)V_{12}=2kq(x,t)+\mathrm{i}q_{x}(x,t), and V21=2kq¯(x,t)+iq¯(x,t)xV_{21}=-2k\bar{q}(-x,t)+\mathrm{i}\bar{q}(-x,t)_{x}.

Assuming that

0|q(x,t)+Ae2iA2t|dx<and0|q(x,t)Ae2iA2t|dx<for all t0,\int_{-\infty}^{0}|q(x,t)+A\mathrm{e}^{-2\mathrm{i}A^{2}t}|\,\mathrm{d}x<\infty\quad\text{and}\quad\int_{0}^{\infty}|q(x,t)-A\mathrm{e}^{-2\mathrm{i}A^{2}t}|\,\mathrm{d}x<\infty\quad\text{for all }t\geq 0,

we introduce the 2×22\times 2 matrix valued functions Ψj(x,t,k)\Psi_{j}(x,t,k), j=1,2j=1,2 as the solutions of the following linear Volterra integral equations (j=1,2j=1,2)

Ψj(x,t,k)=eiA2tσ3j(k)\displaystyle\Psi_{j}(x,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t\sigma_{3}}\mathcal{E}_{j}(k)
+(1)jxGj(x,y,t,k)(U(y,t)Uj(t))Ψj(y,t,k)ei(xy)f(k)σ3dy,k[A,A].\displaystyle\qquad+\int\limits_{(-1)^{j}\infty}^{x}G_{j}(x,y,t,k)(U(y,t)-U_{j}(t))\Psi_{j}(y,t,k)\mathrm{e}^{\mathrm{i}(x-y)f(k)\sigma_{3}}\,\mathrm{d}y,\quad k\in\mathbb{R}\setminus[-A,A]. (2.3)

Here U1(t)U_{1}(t) and U2(t)U_{2}(t) are the limits of U(x,t)U(x,t) as xx\to\mp\infty:

U(x,t)Uj(t),x(1)j,U(x,t)\to U_{j}(t),\quad x\to(-1)^{j}\infty, (2.4)

where

U1(t)=(0Ae2iA2tAe2iA2t0)andU2(t)=(0Ae2iA2tAe2iA2t0).U_{1}(t)=\begin{pmatrix}0&-A\mathrm{e}^{-2\mathrm{i}A^{2}t}\\ -A\mathrm{e}^{2\mathrm{i}A^{2}t}&0\end{pmatrix}\quad\text{and}\quad U_{2}(t)=\begin{pmatrix}0&A\mathrm{e}^{-2\mathrm{i}A^{2}t}\\ A\mathrm{e}^{2\mathrm{i}A^{2}t}&0\end{pmatrix}. (2.5)

The kernels Gj(x,y,t,k)G_{j}(x,y,t,k), j=1,2j=1,2 are defined in terms of functions j(k)\mathcal{E}_{j}(k), j=1,2j=1,2 and f(k)f(k) as follows:

Gj(x,y,t,k)=eiA2tσ3j(k)ei(xy)f(k)σ3j1(k)eiA2tσ3,G_{j}(x,y,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t\sigma_{3}}\mathcal{E}_{j}(k)\mathrm{e}^{-\mathrm{i}(x-y)f(k)\sigma_{3}}\mathcal{E}_{j}^{-1}(k)\mathrm{e}^{\mathrm{i}A^{2}t\sigma_{3}}, (2.6)

where

j(k)12(w(k)+1w(k)(1)ji(w(k)1w(k))(1)j+1i(w(k)1w(k))w(k)+1w(k)),w(k)(kAk+A)14,\mathcal{E}_{j}(k)\coloneqq\frac{1}{2}\begin{pmatrix}w(k)+\frac{1}{w(k)}&(-1)^{j}\,\mathrm{i}\,\left(w(k)-\frac{1}{w(k)}\right)\\ (-1)^{j+1}\,\mathrm{i}\,\left(w(k)-\frac{1}{w(k)}\right)&w(k)+\frac{1}{w(k)}\end{pmatrix},\quad w(k)\coloneqq\left(\frac{k-A}{k+A}\right)^{\frac{1}{4}}, (2.7)

and

f(k)(k2A2)12.f(k)\coloneqq(k^{2}-A^{2})^{\frac{1}{2}}. (2.8)

Here, the functions f(k)f(k) and w(k)w(k) are defined for k[A,A]k\in\mathbb{C}\setminus[-A,A] as the branches fixed by the large kk asymptotics:

f(k)=k+O(k1)andw(k)=1+O(k1),k.f(k)=k+\mathrm{O}(k^{-1})\quad\text{and}\quad w(k)=1+\mathrm{O}(k^{-1}),\quad k\to\infty. (2.9)

We denote by f±(k)f_{\pm}(k) and w±(k)w_{\pm}(k) the limiting values of the corresponding function as kk approaches (A,A)(-A,A) (oriented from A-A to AA) from the left/right side (and similarly for j±(k)\mathcal{E}_{j\pm}(k)). In particular, f+(k)=iA2k2f_{+}(k)=\mathrm{i}\sqrt{A^{2}-k^{2}} for k(A,A)k\in(-A,A), with A2k2>0\sqrt{A^{2}-k^{2}}>0. Observe that G(x,y,t,k)G(x,y,t,k) is entire with respect to kk for all xx, yy, and tt.

Since f(k)f(k) is real for k[A,A]k\in\mathbb{R}\setminus[-A,A], the integral in (2.1) converges for such kk. Let Q[i]Q^{[i]} denote the ii-th column of a matrix QQ, ±{k±Imk>0}\mathbb{C}^{\pm}\coloneqq\{k\in\mathbb{C}\mid\pm\operatorname{Im}k>0\}, and ±¯{k±Imk0}\overline{\mathbb{C}^{\pm}}\coloneqq\{k\in\mathbb{C}\mid\pm\operatorname{Im}k\geq 0\}. Then we can define Ψj[j](x,t,k)\Psi_{j}^{[j]}(x,t,k), j=1,2j=1,2, and Ψ1[2](x,t,k)\Psi_{1}^{[2]}(x,t,k), Ψ2[1](x,t,k)\Psi_{2}^{[1]}(x,t,k) on the cut (A,A)(-A,A) as the limiting values from +\mathbb{C}^{+} and \mathbb{C}^{-}, respectively:

Ψj+[j](x,t,k)=eiA2tσ3j+[j](k)\displaystyle\Psi_{j+}^{[j]}(x,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t\sigma_{3}}\mathcal{E}_{j+}^{[j]}(k)
+(1)jxGj(x,y,t,k)(U(y,t)Uj(t))Ψj+[j](y,t,k)e(1)j+1i(xy)f+(k)dy,k(A,A),\displaystyle+\int\limits_{(-1)^{j}\infty}^{x}G_{j}(x,y,t,k)(U(y,t)-U_{j}(t))\Psi_{j+}^{[j]}(y,t,k)\mathrm{e}^{(-1)^{j+1}\mathrm{i}(x-y)f_{+}(k)}\,\mathrm{d}y,\quad k\in(-A,A), (2.10)

and

Ψ1[2](x,t,k)=eiA2tσ31[2](k)\displaystyle\Psi_{1-}^{[2]}(x,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t\sigma_{3}}\mathcal{E}_{1-}^{[2]}(k)
+xG1(x,y,t,k)(U(y,t)U1(t))Ψ1[2](y,t,k)ei(xy)f(k)dy,k(A,A),\displaystyle\qquad+\int\limits_{-\infty}^{x}G_{1}(x,y,t,k)(U(y,t)-U_{1}(t))\Psi_{1-}^{[2]}(y,t,k)\mathrm{e}^{-\mathrm{i}(x-y)f_{-}(k)}\,\mathrm{d}y,\quad k\in(-A,A), (2.11a)
Ψ2[1](x,t,k)=eiA2tσ32[1](k)\displaystyle\Psi_{2-}^{[1]}(x,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t\sigma_{3}}\mathcal{E}_{2-}^{[1]}(k)
++xG2(x,y,t,k)(U(y,t)U2(t))Ψ2[1](y,t,k)ei(xy)f(k)dy,k(A,A).\displaystyle\qquad+\int\limits_{+\infty}^{x}G_{2}(x,y,t,k)(U(y,t)-U_{2}(t))\Psi_{2-}^{[1]}(y,t,k)\mathrm{e}^{\mathrm{i}(x-y)f_{-}(k)}\,\mathrm{d}y,\quad k\in(-A,A). (2.11b)

Moreover, when the solution q(x,t)q(x,t) converges exponentially fast to its boundary values, we can define Ψj[j](x,t,k)\Psi_{j-}^{[j]}(x,t,k), j=1,2j=1,2, and Ψ1+[2](x,t,k)\Psi_{1+}^{[2]}(x,t,k), Ψ2+[1](x,t,k)\Psi_{2+}^{[1]}(x,t,k) for k(A,A)k\in(-A,A) by integral equations similar to (2.1) and (2.11), respectively.

Proposition 2.1 (properties of Ψj\Psi_{j}).

Ψ1(x,t,k)\Psi_{1}(x,t,k) and Ψ2(x,t,k)\Psi_{2}(x,t,k) have the following properties.

(i) The columns Ψ1[1](x,t,k)\Psi_{1}^{[1]}(x,t,k) and Ψ2[2](x,t,k)\Psi_{2}^{[2]}(x,t,k) are analytic for k+k\in\mathbb{C}^{+} and continuous for k+¯{±A}k\in\overline{\mathbb{C}^{+}}\setminus\{\pm A\}, where Ψj[j](x,t,k)\Psi_{j}^{[j]}(x,t,k) is identified with Ψj+[j](x,t,k)\Psi_{j+}^{[j]}(x,t,k), j=1,2j=1,2 for k(A,A)k\in(-A,A).

Ψ1[1](x,t,k)\Psi_{1}^{[1]}(x,t,k) and Ψ2[2](x,t,k)\Psi_{2}^{[2]}(x,t,k) have the following behaviors at k=k=\infty and k=±Ak=\pm A:

Ψ1[1](x,t,k)=eiA2t(10)+O(k1),\displaystyle\Psi_{1}^{[1]}(x,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t}\begin{pmatrix}1\\ 0\end{pmatrix}+\mathrm{O}(k^{-1}), Ψ2[2](x,t,k)=eiA2t(01)+O(k1),\displaystyle\Psi_{2}^{[2]}(x,t,k)=\mathrm{e}^{\mathrm{i}A^{2}t}\begin{pmatrix}0\\ 1\end{pmatrix}+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, k+,\displaystyle k\in\mathbb{C}^{+},
Ψ1[1](x,t,k)=O((kA)14),\displaystyle\Psi_{1}^{[1]}(x,t,k)=\mathrm{O}\bigl{(}(k\mp A)^{-\frac{1}{4}}\bigr{)}, Ψ2[2](x,t,k)=O((kA)14),\displaystyle\Psi_{2}^{[2]}(x,t,k)=\mathrm{O}\bigl{(}(k\mp A)^{-\frac{1}{4}}\bigr{)}, k±A,\displaystyle k\to\pm A, k+.\displaystyle k\in\mathbb{C}^{+}.

(ii) The columns Ψ1[2](x,t,k)\Psi_{1}^{[2]}(x,t,k) and Ψ2[1](x,t,k)\Psi_{2}^{[1]}(x,t,k) are analytic for kk\in\mathbb{C}^{-} and continuous for k¯{±A}k\in\overline{\mathbb{C}^{-}}\setminus\{\pm A\}, where Ψ1[2](x,t,k)\Psi_{1}^{[2]}(x,t,k) and Ψ2[1](x,t,k)\Psi_{2}^{[1]}(x,t,k) are identified with Ψ1[2](x,t,k)\Psi_{1-}^{[2]}(x,t,k) and Ψ2[1](x,t,k)\Psi_{2-}^{[1]}(x,t,k) for k(A,A)k\in(-A,A).

Ψ1[2](x,t,k)\Psi_{1}^{[2]}(x,t,k) and Ψ2[1](x,t,k)\Psi_{2}^{[1]}(x,t,k) have the following behaviors at k=k=\infty and k=±Ak=\pm A:

Ψ1[2](x,t,k)=eiA2t(01)+O(k1),\displaystyle\Psi_{1}^{[2]}(x,t,k)=\mathrm{e}^{\mathrm{i}A^{2}t}\begin{pmatrix}0\\ 1\end{pmatrix}+\mathrm{O}(k^{-1}), Ψ2[1](x,t,k)=eiA2t(10)+O(k1),\displaystyle\Psi_{2}^{[1]}(x,t,k)=\mathrm{e}^{-\mathrm{i}A^{2}t}\begin{pmatrix}1\\ 0\end{pmatrix}+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, k,\displaystyle k\in\mathbb{C}^{-},
Ψ1[2](x,t,k)=O((kA)14),\displaystyle\Psi_{1}^{[2]}(x,t,k)=\mathrm{O}\bigl{(}(k\mp A)^{-\frac{1}{4}}\bigr{)}, Ψ2[1](x,t,k)=O((kA)14),\displaystyle\Psi_{2}^{[1]}(x,t,k)=\mathrm{O}\bigl{(}(k\mp A)^{-\frac{1}{4}}\bigr{)}, k±A,\displaystyle k\to\pm A, k.\displaystyle k\in\mathbb{C}^{-}.

(iii) The functions Φj(x,t,k)\Phi_{j}(x,t,k), j=1,2j=1,2 defined by

Φj(x,t,k)Ψj(x,t,k)e(ix+2itk)f(k)σ3,k[A,A],\displaystyle\Phi_{j}(x,t,k)\coloneqq\Psi_{j}(x,t,k)\mathrm{e}^{-(\mathrm{i}x+2\mathrm{i}tk)f(k)\sigma_{3}},\quad k\in\mathbb{R}\setminus[-A,A], (2.12)

are the (Jost) solutions of the Lax pair (2.1) satisfying the boundary conditions

Φj(x,t,k)ΦjBC(x,t,k)0,x(1)j,k[A,A],\displaystyle\Phi_{j}(x,t,k)-\Phi_{j}^{\mathrm{BC}}(x,t,k)\to 0,\quad x\to(-1)^{j}\infty,\quad k\in\mathbb{R}\setminus[-A,A], (2.13)

where ΦjBC(x,t,k)eiA2tσ3j(k)e(ix+2itk)f(k)σ3\Phi_{j}^{\mathrm{BC}}(x,t,k)\coloneqq\mathrm{e}^{-\mathrm{i}A^{2}t\sigma_{3}}\mathcal{E}_{j}(k)\mathrm{e}^{-(\mathrm{i}x+2\mathrm{i}tk)f(k)\sigma_{3}}.

(iv) detΨj(x,t,k)1\det\Psi_{j}(x,t,k)\equiv 1 for k[A,A]k\in\mathbb{R}\setminus[-A,A].

(v) The following symmetry relations hold:

σ1Ψ1[1](x,t,k¯)¯=Ψ2[2](x,t,k),k+¯[A,A],σ1Ψ1+[1](x,t,k)¯=Ψ2+[2](x,t,k),k(A,A),σ1Ψ1[2](x,t,k¯)¯=Ψ2[1](x,t,k),k¯[A,A],σ1Ψ1[2](x,t,k)¯=Ψ2[1](x,t,k),k(A,A),\begin{split}\sigma_{1}\overline{\Psi_{1}^{[1]}(-x,t,-\bar{k})}&=\Psi_{2}^{[2]}(x,t,k),\quad k\in\overline{\mathbb{C}^{+}}\setminus[-A,A],\\ \sigma_{1}\overline{\Psi_{1+}^{[1]}(-x,t,-k)}&=\Psi_{2+}^{[2]}(x,t,k),\quad k\in(-A,A),\\ \sigma_{1}\overline{\Psi_{1}^{[2]}(-x,t,-\bar{k})}&=\Psi_{2}^{[1]}(x,t,k),\quad k\in\overline{\mathbb{C}^{-}}\setminus[-A,A],\\ \sigma_{1}\overline{\Psi_{1-}^{[2]}(-x,t,-k)}&=\Psi_{2-}^{[1]}(x,t,k),\quad k\in(-A,A),\end{split} (2.14a)
and
Ψ1+[1](x,t,k)=Ψ1[2](x,t,k),Ψ2+[2](x,t,k)=Ψ2[1](x,t,k),k(A,A),\Psi_{1+}^{[1]}(x,t,k)=-\Psi_{1-}^{[2]}(x,t,k),\quad\Psi_{2+}^{[2]}(x,t,k)=-\Psi_{2-}^{[1]}(x,t,k),\quad k\in(-A,A), (2.14b)

where σ1=(0110)\sigma_{1}=\bigl{(}\begin{smallmatrix}0&1\\ 1&0\end{smallmatrix}\bigl{)} is the first Pauli matrix.

Moreover, when Ψj[j](x,t,k)\Psi_{j-}^{[j]}(x,t,k), j=1,2j=1,2 and Ψ1+[2](x,t,k)\Psi_{1+}^{[2]}(x,t,k), Ψ2+[1](x,t,k)\Psi_{2+}^{[1]}(x,t,k) exist (e.g., when q(x,t)q(x,t) converges exponentially fast to its boundary values), they satisfy the following conditions:

Ψ1[1](x,t,k)=Ψ1+[2](x,t,k),Ψ2[2](x,t,k)=Ψ2+[1](x,t,k),k(A,A).\Psi_{1-}^{[1]}(x,t,k)=\Psi_{1+}^{[2]}(x,t,k),\quad\Psi_{2-}^{[2]}(x,t,k)=\Psi_{2+}^{[1]}(x,t,k),\quad k\in(-A,A). (2.15)
Proof.

Items (i)–(iii) follow directly from the integral equations (2.1). Since the matrix U(x,t)U(x,t) is traceless and detj(k)=1\det\mathcal{E}_{j}(k)=1, j=1,2j=1,2, we get item (iv). Finally, (2.14a) in item (v) follows from the symmetries

σ1U¯(x,t)σ11=U(x,t),andσ1G1(x,y,t,k¯)¯σ11=G2(x,y,t,k),k,\sigma_{1}\overline{U}(-x,t)\sigma_{1}^{-1}=-U(x,t),\quad\text{and}\quad\sigma_{1}\overline{G_{1}(-x,-y,t,-\bar{k})}\sigma_{1}^{-1}=G_{2}(x,y,t,k),\quad k\in\mathbb{C}, (2.16)

whereas (2.14b) and (2.15) follow from the symmetries

j+(k)=(1)j+1ij(k)σ2,j=1,2,k(A,A),\mathcal{E}_{j+}(k)=(-1)^{j+1}\,\mathrm{i}\,\mathcal{E}_{j-}(k)\sigma_{2},\quad j=1,2,\quad k\in(-A,A), (2.17)

where σ2=(0ii0)\sigma_{2}=\bigl{(}\begin{smallmatrix}0&-\mathrm{i}\\ \mathrm{i}&0\end{smallmatrix}\bigl{)} is the second Pauli matrix. ∎

2.2. Spectral functions

The Jost solutions Φ1(x,t,k)\Phi_{1}(x,t,k) and Φ2(x,t,k)\Phi_{2}(x,t,k) of the Lax pair (2.1) are related by a matrix independent of xx and tt, which allows us to introduce the scattering matrix S(k)S(k) as follows:

Φ1(x,t,k)=Φ2(x,t,k)S(k),k[A,A],\Phi_{1}(x,t,k)=\Phi_{2}(x,t,k)S(k),\quad k\in\mathbb{R}\setminus[-A,A], (2.18)

or, in terms of Ψj(x,t,k)\Psi_{j}(x,t,k), j=1,2j=1,2,

Ψ1(x,t,k)=Ψ2(x,t,k)e(ix+2itk)f(k)σ3S(k)e(ix+2itk)f(k)σ3,k[A,A].\Psi_{1}(x,t,k)=\Psi_{2}(x,t,k)\mathrm{e}^{-(\mathrm{i}x+2\mathrm{i}tk)f(k)\sigma_{3}}S(k)\mathrm{e}^{(\mathrm{i}x+2\mathrm{i}tk)f(k)\sigma_{3}},\quad k\in\mathbb{R}\setminus[-A,A]. (2.19)

From the symmetry relations (2.14a) it follows that S(k)S(k) can be written as

S(k)=(a1(k)b(k)¯b(k)a2(k)),k[A,A].S(k)=\begin{pmatrix}a_{1}(k)&-\overline{b(-k)}\\ b(k)&a_{2}(k)\end{pmatrix},\quad k\in\mathbb{R}\setminus[-A,A]. (2.20)

Note that due to the Schwarz symmetry breaking for the solutions Ψj(x,t,k)\Psi_{j}(x,t,k), j=1,2j=1,2, see (2.14a), the values of a1(k)a_{1}(k) for k+k\in\mathbb{C}^{+} and a2(k)a_{2}(k) for kk\in\mathbb{C}^{-} are, in general, not related. In particular, this implies that a1(k)a_{1}(k) and a2(k)a_{2}(k) can have different numbers of zeros in the corresponding complex half-planes.

Relation (2.19) implies that a1(k)a_{1}(k), a2(k)a_{2}(k), and b(k)b(k) can be found in terms of the initial data alone via the following determinants:

a1(k)\displaystyle a_{1}(k) =det(Ψ1[1](0,0,k),Ψ2[2](0,0,k)),\displaystyle=\det\bigl{(}\Psi_{1}^{[1]}(0,0,k),\Psi_{2}^{[2]}(0,0,k)\bigr{)}, k+¯[A,A],\displaystyle k\in\overline{\mathbb{C}^{+}}\setminus[-A,A], (2.21a)
a2(k)\displaystyle a_{2}(k) =det(Ψ2[1](0,0,k),Ψ1[2](0,0,k)),\displaystyle=\det\bigl{(}\Psi_{2}^{[1]}(0,0,k),\Psi_{1}^{[2]}(0,0,k)\bigr{)}, k¯[A,A],\displaystyle k\in\overline{\mathbb{C}^{-}}\setminus[-A,A], (2.21b)
b(k)\displaystyle b(k) =det(Ψ2[1](0,0,k),Ψ1[1](0,0,k)),\displaystyle=\det\bigl{(}\Psi_{2}^{[1]}(0,0,k),\Psi_{1}^{[1]}(0,0,k)\bigr{)}, k[A,A].\displaystyle k\in\mathbb{R}\setminus[-A,A]. (2.21c)

From (2.21) and Proposition 2.1 (i) and (ii) we conclude that aj(k)a_{j}(k), j=1,2j=1,2, and b(k)b(k) have the following large kk behaviors:

a1(k)\displaystyle a_{1}(k) =1+O(k1),\displaystyle=1+\mathrm{O}(k^{-1}), k+¯,\displaystyle k\in\overline{\mathbb{C}^{+}}, k,\displaystyle k\to\infty,
a2(k)\displaystyle a_{2}(k) =1+O(k1),\displaystyle=1+\mathrm{O}(k^{-1}), k¯,\displaystyle k\in\overline{\mathbb{C}^{-}}, k,\displaystyle k\to\infty,
b(k)\displaystyle b(k) =O(k1),\displaystyle=\mathrm{O}(k^{-1}), k,\displaystyle k\in\mathbb{R}, k.\displaystyle k\to\infty.

Defining a1+(k)a_{1+}(k) and a2(k)a_{2-}(k) for k(A,A)k\in(-A,A) as the limits of a1(k)a_{1}(k) and a2(k)a_{2}(k) from +\mathbb{C}^{+} and \mathbb{C}^{-} respectively, we have

a1+(k)=det(Ψ1+[1](0,0,k),Ψ2+[2](0,0,k)),k(A,A),a2(k)=det(Ψ2[1](0,0,k),Ψ1[2](0,0,k)),k(A,A).\begin{split}a_{1+}(k)&=\det\bigl{(}\Psi_{1+}^{[1]}(0,0,k),\Psi_{2+}^{[2]}(0,0,k)\bigr{)},\quad k\in(-A,A),\\ a_{2-}(k)&=\det\bigl{(}\Psi_{2-}^{[1]}(0,0,k),\Psi_{1-}^{[2]}(0,0,k)\bigr{)},\quad k\in(-A,A).\end{split} (2.22)

Moreover, when the initial data q0(x)q_{0}(x) converges exponentially fast to its boundary values, we can define a1(k)a_{1-}(k), a2+(k)a_{2+}(k) and b±(k)b_{\pm}(k) for k(A,A)k\in(-A,A) by taking the corresponding limits in (2.21):

a1(k)\displaystyle a_{1-}(k) =det(Ψ1[1](0,0,k),Ψ2[2](0,0,k)),\displaystyle=\det\bigl{(}\Psi_{1-}^{[1]}(0,0,k),\Psi_{2-}^{[2]}(0,0,k)\bigr{)}, k(A,A),\displaystyle k\in(-A,A), (2.23a)
a2+(k)\displaystyle a_{2+}(k) =det(Ψ2+[1](0,0,k),Ψ1+[2](0,0,k)),\displaystyle=\det\bigl{(}\Psi_{2+}^{[1]}(0,0,k),\Psi_{1+}^{[2]}(0,0,k)\bigr{)}, k(A,A),\displaystyle k\in(-A,A), (2.23b)
b±(k)\displaystyle b_{\pm}(k) =det(Ψ2±[1](0,0,k),Ψ1±[1](0,0,k)),\displaystyle=\det\bigl{(}\Psi_{2\pm}^{[1]}(0,0,k),\Psi_{1\pm}^{[1]}(0,0,k)\bigr{)}, k(A,A).\displaystyle k\in(-A,A). (2.23c)

The symmetry relations (2.14) yield the following symmetries of the spectral functions:

a1(k¯)¯=a1(k),k+¯[A,A]anda2(k¯)¯=a2(k),k¯[A,A],\overline{a_{1}(-\bar{k})}=a_{1}(k),\quad k\in\overline{\mathbb{C}^{+}}\setminus[-A,A]\quad\text{and}\quad\overline{a_{2}(-\bar{k})}=a_{2}(k),\quad k\in\overline{\mathbb{C}^{-}}\setminus[-A,A], (2.24)

whereas (2.15) implies that

a1±(k)=a2(k)andb±(k)=b(k)¯,k(A,A).a_{1\pm}(k)=-a_{2\mp}(k)\quad\text{and}\quad b_{\pm}(k)=-\overline{b_{\mp}(-k)},\quad k\in(-A,A). (2.25)

From Proposition 2.1 (iv), (2.12), and (2.18) it follows that a1(k)a_{1}(k), a2(k)a_{2}(k), and b(k)b(k) satisfy the determinant relations:

a1(k)a2(k)+b(k)b(k)¯=1,k[A,A],a1±(k)a2±(k)+b±(k)b±(k)¯=1,k(A,A).\begin{split}a_{1}(k)a_{2}(k)+b(k)\overline{b(-k)}&=1,\quad k\in\mathbb{R}\setminus[-A,A],\\ a_{1\pm}(k)a_{2\pm}(k)+b_{\pm}(k)\overline{b_{\pm}(-k)}&=1,\quad k\in(-A,A).\end{split} (2.26)

Finally, we point out that a1(k)a_{1}(k), a2(k)a_{2}(k), and b(k)b(k) are O((kA)12)\mathrm{O}\bigl{(}(k\mp A)^{-\frac{1}{2}}\bigr{)} as k±Ak\to\pm A.

Proposition 2.2 (pure step initial data).

Consider problem (1.1) with initial data

q0(x)=q0,R(x)={A,x>R,A,x<R,q_{0}(x)=q_{0,R}(x)=\begin{cases}A,&x>R,\\ -A,&x<R,\end{cases} (2.27)

for some A>0A>0 and RR\in\mathbb{R}. Introduce

h(k)(k2+A2)12,h(k)\coloneqq(k^{2}+A^{2})^{\frac{1}{2}}, (2.28)

which is defined in [iA,iA]\mathbb{C}\setminus[-\mathrm{i}A,\mathrm{i}A] and is fixed by the asymptotics h(k)=k+O(k1)h(k)=k+\mathrm{O}(k^{-1}) as kk\to\infty. Define

λj(k)i(f(k)+(1)j+1h(k)),j=1,2.\lambda_{j}(k)\coloneqq\mathrm{i}(f(k)+(-1)^{j+1}h(k)),\quad j=1,2. (2.29)

Then the spectral functions associated with this problem have the following form, according to the sign of RR\in\mathbb{R}:

  1. (i)

    For R>0R>0,

    a1(k)\displaystyle a_{1}(k) =12f(k)h(k)(e2λ1(k)R(A2+ikλ2(k))e2λ2(k)R(A2+ikλ1(k))),\displaystyle=\frac{1}{2f(k)h(k)}\bigl{(}\mathrm{e}^{2\lambda_{1}(k)R}\bigl{(}A^{2}+\mathrm{i}k\lambda_{2}(k)\bigr{)}-\mathrm{e}^{2\lambda_{2}(k)R}\bigl{(}A^{2}+\mathrm{i}k\lambda_{1}(k)\bigr{)}\bigr{)}, (2.30a)
    a2(k)\displaystyle a_{2}(k) =12f(k)h(k)(e2λ2(k)R(A2ikλ1(k))e2λ1(k)R(A2ikλ2(k))),\displaystyle=\frac{1}{2f(k)h(k)}\bigl{(}\mathrm{e}^{-2\lambda_{2}(k)R}\bigl{(}A^{2}-\mathrm{i}k\lambda_{1}(k)\bigr{)}-\mathrm{e}^{-2\lambda_{1}(k)R}\bigl{(}A^{2}-\mathrm{i}k\lambda_{2}(k)\bigr{)}\bigr{)}, (2.30b)
    b(k)\displaystyle b(k) =iA2f(k)h(k)(e2ih(k)R(h(k)+k)+e2ih(k)R(h(k)k)).\displaystyle=\frac{-\mathrm{i}A}{2f(k)h(k)}\bigl{(}\mathrm{e}^{2\mathrm{i}h(k)R}\bigl{(}h(k)+k\bigr{)}+\mathrm{e}^{-2\mathrm{i}h(k)R}\bigl{(}h(k)-k\bigr{)}\bigr{)}. (2.30c)
  2. (ii)

    For R=0R=0,

    a1(k)=a2(k)=kf(k),b(k)=iAf(k).a_{1}(k)=a_{2}(k)=\frac{k}{f(k)},\qquad b(k)=\frac{-\mathrm{i}A}{f(k)}. (2.31)
  3. (iii)

    For R<0R<0,

    a1(k)\displaystyle a_{1}(k) =12f(k)h(k)(e2λ2(k)R(A2ikλ1(k))e2λ1(k)R(A2ikλ2(k))),\displaystyle=\frac{1}{2f(k)h(k)}\bigl{(}\mathrm{e}^{-2\lambda_{2}(k)R}\bigl{(}A^{2}-\mathrm{i}k\lambda_{1}(k)\bigr{)}-\mathrm{e}^{-2\lambda_{1}(k)R}\bigl{(}A^{2}-\mathrm{i}k\lambda_{2}(k)\bigr{)}\bigr{)}, (2.32a)
    a2(k)\displaystyle a_{2}(k) =12f(k)h(k)(e2λ1(k)R(A2+ikλ2(k))e2λ2(k)R(A2+ikλ1(k))),\displaystyle=\frac{1}{2f(k)h(k)}\bigl{(}\mathrm{e}^{2\lambda_{1}(k)R}\bigl{(}A^{2}+\mathrm{i}k\lambda_{2}(k)\bigr{)}-\mathrm{e}^{2\lambda_{2}(k)R}\bigl{(}A^{2}+\mathrm{i}k\lambda_{1}(k)\bigr{)}\bigr{)}, (2.32b)
    b(k)\displaystyle b(k) =iA2f(k)h(k)(e2ih(k)R(h(k)+k)+e2ih(k)R(h(k)k)).\displaystyle=\frac{-\mathrm{i}A}{2f(k)h(k)}\bigl{(}\mathrm{e}^{2\mathrm{i}h(k)R}\bigl{(}h(k)+k\bigr{)}+\mathrm{e}^{-2\mathrm{i}h(k)R}\bigl{(}h(k)-k\bigr{)}\bigr{)}. (2.32c)
Proof.

See Appendix A. ∎

Remark 2.3.

Note that for any RR\in\mathbb{R}, a1(k)a_{1}(k), a2(k)a_{2}(k), and b(k)b(k) have no jump across [iA,iA][-\mathrm{i}A,\mathrm{i}A]. Also, if we take the limits R±0R\to\pm 0 in the expressions of the spectral functions for R>0R>0 and R<0R<0, we arrive at (2.31).

Remark 2.4.

The NNLS equation is not translation invariant. Therefore, shifting the initial data by a constant value can drastically affect the behavior of the solution [RS21CIMP]. Formulas (2.30)–(2.32) illustrate this in terms of the spectral functions in the case of pure step initial data (2.27).

The scattering map associates to q0(x)q_{0}(x)

  1. (i)

    the spectral functions b(k)b(k) and aj(k)a_{j}(k), j=1,2j=1,2,

  2. (ii)

    the discrete data, which are the zeros of aj(k)a_{j}(k), j=1,2j=1,2 and the associated norming constants.

In studying initial value problems for integrable nonlinear PDEs, the assumptions about these zeros usually rely on properties of the discrete spectrum associated with step-like initial data involving prescribed boundary values, like (1.1c) (see, e.g., [BKS11, BM17, IU86, J15, RS21CIMP]). Alternatively, the discrete spectrum can be added to the formulation of the associated Riemann–Hilbert problem for studying the evolution of more general initial data, which includes solitons [CJ16, V02, ZS73].

In the present paper we consider initial data which are characterized in spectral terms and which are motivated by the pure step initial data with R=0R=0. Namely, we make the following assumptions.

Assumptions 2.5 (on the zeros of the spectral functions a1(k)a_{1}(k) and a2(k)a_{2}(k)).

We assume that

  1. (A1)

    a1(k)a_{1}(k) and a2(k)a_{2}(k) do not have zeros in +¯(A,A)\overline{\mathbb{C}^{+}}\setminus(-A,A) and ¯(A,A)\overline{\mathbb{C}^{-}}\setminus(-A,A), respectively;

  2. (A2)

    for k(A,A)k\in(-A,A), both a1+(k)a_{1+}(k) and a2(k)a_{2-}(k) have a simple zero at k=0k=0, i.e.,

    a1+(k)=a10k+O(k2),k0,a100,a2(k)=a20k+O(k2),k0,a200.\begin{split}a_{1+}(k)&=a_{10}k+\mathrm{O}(k^{2}),\quad k\to 0,\quad a_{10}\neq 0,\\ a_{2-}(k)&=a_{20}k+\mathrm{O}(k^{2}),\quad k\to 0,\quad a_{20}\neq 0.\end{split} (2.33)

Then from (2.25) and (2.24) it follows that

a20=a10andRea10=0.a_{20}=-a_{10}\quad\text{and}\quad\operatorname{Re}a_{10}=0. (2.34)

2.3. Riemann–Hilbert problem

Taking into account the analytical properties of the columns of the matrices Ψj(x,t,k)\Psi_{j}(x,t,k), j=1,2j=1,2 (see Proposition 2.1 (i) and (ii)), we define the 2×22\times 2 sectionally holomorphic matrix M(x,t,k)M(x,t,k) as follows:

M(x,t,k)={eiA2tσ3(Ψ1[1](x,t,k)a1(k),Ψ2[2](x,t,k)),k+,eiA2tσ3(Ψ2[1](x,t,k),Ψ1[2](x,t,k)a2(k)),k.M(x,t,k)=\begin{cases}\mathrm{e}^{\mathrm{i}A^{2}t\sigma_{3}}\Bigl{(}\frac{\Psi_{1}^{[1]}(x,t,k)}{a_{1}(k)},\Psi_{2}^{[2]}(x,t,k)\Bigr{)},&k\in\mathbb{C}^{+},\\ \mathrm{e}^{\mathrm{i}A^{2}t\sigma_{3}}\Bigl{(}\Psi_{2}^{[1]}(x,t,k),\frac{\Psi_{1}^{[2]}(x,t,k)}{a_{2}(k)}\Bigr{)},&k\in\mathbb{C}^{-}.\end{cases} (2.35)

By Assumptions 2.5, a1(k)a_{1}(k) and a2(k)a_{2}(k) have no zeros in the corresponding half-planes and thus the matrix M(x,t,k)M(x,t,k) does not have poles in \mathbb{C}\setminus\mathbb{R}. From the scattering relation (2.19), the symmetries (2.14b), and the relations (2.25) it follows that M(x,t,k)M(x,t,k) satisfies a multiplicative jump condition:

M+(x,t,k)=M(x,t,k)J(x,t,k),k.M_{+}(x,t,k)=M_{-}(x,t,k)J(x,t,k),\quad k\in\mathbb{R}. (2.36a)
Here and below M+(,,k)M_{+}(\,\cdot\,,\,\cdot\,,k) and M(,,k)M_{-}(\,\cdot\,,\,\cdot\,,k) denote the nontangental limits of M(,,k)M(\,\cdot\,,\,\cdot\,,k) as kk approaches the contour from the left and right sides, respectively (here, the real line \mathbb{R} is oriented from -\infty to ++\infty). The jump matrix J(x,t,k)J(x,t,k) has the following form:
J(x,t,k)={(1+r1(k)r2(k)r2(k)e(2ix+4itk)f(k)r1(k)e(2ix+4itk)f(k)1),k[A,A],iσ2,k(A,A),J(x,t,k)=\begin{cases}\begin{pmatrix}1+r_{1}(k)r_{2}(k)&r_{2}(k)\mathrm{e}^{-(2\mathrm{i}x+4\mathrm{i}tk)f(k)}\\ r_{1}(k)\mathrm{e}^{(2\mathrm{i}x+4\mathrm{i}tk)f(k)}&1\end{pmatrix},&k\in\mathbb{R}\setminus[-A,A],\\ -\mathrm{i}\sigma_{2},&k\in(-A,A),\end{cases} (2.36b)
with the reflection coefficients
r1(k)b(k)a1(k)andr2(k)b(k)¯a2(k),k[A,A].r_{1}(k)\coloneqq\frac{b(k)}{a_{1}(k)}\quad\text{and}\quad r_{2}(k)\coloneqq\frac{\overline{b(-k)}}{a_{2}(k)},\quad k\in\mathbb{R}\setminus[-A,A]. (2.36c)
Remark 2.6.

If b(k)b(k) can be analytically continued into a band containing \mathbb{R}, we can also define rj(k)r_{j}(k) in this band. Then in view of (2.25), r1±(k)=r2(k)r_{1\pm}(k)=r_{2\mp}(k) and therefore 1+r1(k)r2(k)1+r_{1}(k)r_{2}(k) does not have a jump across (A,A)(-A,A). From the determinant relation (2.26) it follows that 1+r1(k)r2(k)=a11(k)a21(k)1+r_{1}(k)r_{2}(k)=a_{1}^{-1}(k)a_{2}^{-1}(k), so 1+r1(k)r2(k)1+r_{1}(k)r_{2}(k) can have simple zeros at k=±Ak=\pm A. This takes place, e.g., for pure step initial data (2.27) (see [J15]*Section 3).

In view of Proposition 2.1 (i) and (ii), and Assumptions 2.5, M(x,t,k)M(x,t,k) has weak singularities at k=±Ak=\pm A:

M(x,t,k)=O((k±A)14),kA.M(x,t,k)=\mathrm{O}\bigl{(}(k\pm A)^{-\frac{1}{4}}\bigr{)},\quad k\to\mp A. (2.37)

Also it has the normalization condition for large kk:

M(x,t,k)=I+O(k1),k,M(x,t,k)=I+\mathrm{O}(k^{-1}),\quad k\to\infty, (2.38)

where II is the identity matrix. Finally, M(x,t,k)M(x,t,k) satisfies the following conditions at k=0k=0:

limk0,k+kM[1](x,t,k)=γ+a10e2AxM+[2](x,t,0),\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{+}\end{subarray}}kM^{[1]}(x,t,k)=\frac{\gamma_{+}}{a_{10}}\mathrm{e}^{-2Ax}M^{[2]}_{+}(x,t,0), (2.39a)
limk0,kkM[2](x,t,k)=γa20e2AxM[1](x,t,0),\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{-}\end{subarray}}kM^{[2]}(x,t,k)=\frac{\gamma_{-}}{a_{20}}\mathrm{e}^{-2Ax}M^{[1]}_{-}(x,t,0), (2.39b)

where a10a_{10} and a20a_{20} were introduced in (2.33), and γ±\gamma_{\pm} are defined as follows:

Φ1+[1](x,t,0)=γ+Φ2+[2](x,t,0)andΦ1[2](x,t,0)=γΦ2[1](x,t,0).\Phi_{1+}^{[1]}(x,t,0)=\gamma_{+}\Phi_{2+}^{[2]}(x,t,0)\quad\text{and}\quad\Phi_{1-}^{[2]}(x,t,0)=\gamma_{-}\Phi_{2-}^{[1]}(x,t,0).

From (2.14b) and (2.14a) one concludes that γ+=γ\gamma_{+}=\gamma_{-} and |γ+|=1|\gamma_{+}|=1.

Remark 2.7.

If b(k)b(k) can be analytically continued into a band, the norming constants γ±\gamma_{\pm} can be found in terms of b(k)b(k) as follows: γ+=b+(0)\gamma_{+}=b_{+}(0) and γ=b(0)¯\gamma_{-}=-\overline{b_{-}(0)}.

Thus we arrive at the following basic Riemann–Hilbert (RH) problem:

Basic RH problem.

Find a sectionally analytic 2×22\times 2 matrix M(x,t,k)M(x,t,k), which

  1. (i)

    satisfies the jump condition (2.36) across the real axis,

  2. (ii)

    has weak singularities (2.37) at k=±Ak=\pm A,

  3. (iii)

    converges to the identity matrix as kk\to\infty,

  4. (iv)

    and satisfies the singularity conditions (2.39) at k=0k=0.

Using standard arguments based on Liouville’s theorem, it can be shown that the solution of this RH problem is unique, if it exists.

The solution q(x,t)q(x,t) of the initial value problem (1.1) can be found from the large kk expansion of the solution M(x,t,k)M(x,t,k) of the basic RH problem (follows from (2.1a)):

q(x,t)=2ie2iA2tlimkkM12(x,t,k),q(x,t)=2ie2iA2tlimkkM21(x,t,k)¯.q(x,t)=2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t}\lim_{k\to\infty}kM_{12}(x,t,k),\quad q(-x,t)=-2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t}\lim_{k\to\infty}\overline{kM_{21}(x,t,k)}. (2.40)

Thus both q(x,t)q(x,t) and q(x,t)q(-x,t) can be found from M(x,t,k)M(x,t,k) evaluated for x0x\geq 0.

Remark 2.8.

Since the jump matrix J(x,t,k)J(x,t,k) satisfies the condition

σ1J(x,t,k)¯σ11=(a2(k)001a2(k))J(x,t,k)(a1(k)001a1(k)),k{±A},\sigma_{1}\overline{J(-x,t,-k)}\sigma_{1}^{-1}=\begin{pmatrix}a_{2}(k)&0\\ 0&\frac{1}{a_{2}(k)}\end{pmatrix}J(x,t,k)\begin{pmatrix}a_{1}(k)&0\\ 0&\frac{1}{a_{1}(k)}\end{pmatrix},\quad k\in\mathbb{R}\setminus\{\pm A\}, (2.41)

the solution M(x,t,k)M(x,t,k) of the basic RH problem satisfies the following symmetry conditions (see [RSs]*(2.55)):

M(x,t,k)={σ1M(x,t,k¯)¯σ11(1a1(k)00a1(k)),k+,σ1M(x,t,k¯)¯σ11(a2(k)001a2(k)),k.M(x,t,k)=\begin{cases}\sigma_{1}\overline{M(-x,t,-\bar{k})}\sigma_{1}^{-1}\begin{pmatrix}\frac{1}{a_{1}(k)}&0\\ 0&a_{1}(k)\end{pmatrix},&k\in{\mathbb{C}}^{+},\\ \sigma_{1}\overline{M(-x,t,-\bar{k})}\sigma_{1}^{-1}\begin{pmatrix}a_{2}(k)&0\\ 0&\frac{1}{a_{2}(k)}\end{pmatrix},&k\in{\mathbb{C}}^{-}.\end{cases} (2.42)

2.4. One-soliton solution

The one-soliton solution of the focusing NNLS equation satisfying boundary conditions (1.1c) was obtained in [HL16]*Section 4, by using the Darboux transformation and in [ALM18]*Section 3 via the inverse scattering transform method. Here we rederive this soliton solution using the Riemann–Hilbert approach. Consider the basic RH problem in the reflectionless case, i.e., with r1(k)r2(k)0r_{1}(k)\equiv r_{2}(k)\equiv 0:

M+sol(x,t,k)\displaystyle M^{\mathrm{sol}}_{+}(x,t,k) =iMsol(x,t,k)σ2,\displaystyle=-\mathrm{i}M^{\mathrm{sol}}_{-}(x,t,k)\sigma_{2}, k(A,A),\displaystyle k\in(-A,A), (2.43a)
Msol(x,t,k)\displaystyle M^{\mathrm{sol}}(x,t,k) =I+O(k1),\displaystyle=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (2.43b)
Msol(x,t,k)\displaystyle M^{\mathrm{sol}}(x,t,k) =O((kA)14),\displaystyle=\mathrm{O}\bigl{(}(k\mp A)^{-\frac{1}{4}}\bigr{)}, k±A\displaystyle k\to\pm A (2.43c)

and with conditions at k=0k=0 of type (2.39):

limk0,k+k(Msol)[1](x,t,k)=d0e2Ax(Msol)+[2](x,t,0),\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{+}\end{subarray}}k(M^{\mathrm{sol}})^{[1]}(x,t,k)=d_{0}\,\mathrm{e}^{-2Ax}(M^{\mathrm{sol}})^{[2]}_{+}(x,t,0), (2.44a)
limk0,kk(Msol)[2](x,t,k)=d0e2Ax(Msol)[1](x,t,0),\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{-}\end{subarray}}k(M^{\mathrm{sol}})^{[2]}(x,t,k)=-d_{0}\,\mathrm{e}^{-2Ax}(M^{\mathrm{sol}})^{[1]}_{-}(x,t,0), (2.44b)

for some d0=γ+a10d_{0}=\frac{\gamma_{+}}{a_{10}}, with |γ+|=1|\gamma_{+}|=1.

In the reflectionless case, the spectral functions a1(k)a_{1}(k) and a2(k)a_{2}(k) are as follows (see the trace formula in [ALM18]*Section 3):

a1(k)=k+f(k)iAk+f(k)+iAanda2(k)=k+f(k)+iAk+f(k)iA.a_{1}(k)=\frac{k+f(k)-\mathrm{i}A}{k+f(k)+\mathrm{i}A}\quad\text{and}\quad a_{2}(k)=\frac{k+f(k)+\mathrm{i}A}{k+f(k)-\mathrm{i}A}. (2.45)

From (2.45) we have a10=i2Aa_{10}=-\frac{\mathrm{i}}{2A} (see (2.33)), which implies that

d0=2Aeiϕ0with some ϕ0.d_{0}=2A\mathrm{e}^{\mathrm{i}\phi_{0}}\quad\text{with some }\phi_{0}\in\mathbb{R}. (2.46)

The jump and singularity conditions (2.43a) and (2.44) imply that the solution of the RH problem above can be written in the form

Msol(x,t,k)=N(x,t,k)2(k),k{±A,0},M^{\mathrm{sol}}(x,t,k)=N(x,t,k)\mathcal{E}_{2}(k),\quad k\in\mathbb{C}\setminus\{\pm A,0\}, (2.47)

where 2(k)\mathcal{E}_{2}(k) is defined in (2.7) and N(x,t,k)=I+N1(x,t)kN(x,t,k)=I+\frac{N_{1}(x,t)}{k} with some matrix N1(x,t)N_{1}(x,t). On the other hand, conditions (2.44) imply that M+(x,t,k)M_{+}(x,t,k) can be written as follows:

M+(x,t,k)=(α(x,t)00β(x,t))((d0e2Ax1d0e2Ax1)+P(x,t)k+O(k2))(1/k001),k0,M_{+}(x,t,k)=\begin{pmatrix}\alpha(x,t)&0\\ 0&\beta(x,t)\end{pmatrix}\left(\begin{pmatrix}d_{0}\mathrm{e}^{-2Ax}&1\\ d_{0}\mathrm{e}^{-2Ax}&1\end{pmatrix}+P(x,t)k+\mathrm{O}(k^{2})\right)\begin{pmatrix}1/k&0\\ 0&1\end{pmatrix},\quad k\to 0, (2.48)

with some scalars α(x,t)\alpha(x,t), β(x,t)\beta(x,t), and a matrix-valued function P(x,t)P(x,t). Then, using the relation N(x,t,k)=Msol(x,t,k)21(k)N(x,t,k)=M^{\mathrm{sol}}(x,t,k)\mathcal{E}^{-1}_{2}(k) and

2+1(k)=12(1111)+ik22A(1111)+O(k2),k0,\mathcal{E}^{-1}_{2+}(k)=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\ -1&1\end{pmatrix}+\frac{\mathrm{i}k}{2\sqrt{2}A}\begin{pmatrix}-1&1\\ -1&-1\end{pmatrix}+\mathrm{O}(k^{2}),\quad k\to 0, (2.49)

we conclude that α\alpha, β\beta, and N1N_{1} are independent of tt. Moreover,

N1(x)=d0e2Ax(α(x)0β(x)0)2+1(0)withα(x)=β(x)=2A2A+id0e2Ax.N_{1}(x)=d_{0}\mathrm{e}^{-2Ax}\begin{pmatrix}\alpha(x)&0\\ \beta(x)&0\end{pmatrix}\mathcal{E}_{2+}^{-1}(0)\quad\text{with}\quad\alpha(x)=-\beta(x)=-\frac{\sqrt{2}A}{2A+\mathrm{i}d_{0}\mathrm{e}^{-2Ax}}. (2.50)

Thus Msol(x,t,k)M^{\mathrm{sol}}(x,t,k) is independent of tt and has the form

Msol(x,t,k)=(I+μ(x)k(1111))2(k)M^{\mathrm{sol}}(x,t,k)=\left(I+\frac{\mu(x)}{k}\begin{pmatrix}-1&-1\\ 1&1\end{pmatrix}\right)\mathcal{E}_{2}(k) (2.51)

with μ(x)=Ad0e2Ax2A+id0e2Ax\mu(x)=\frac{Ad_{0}\mathrm{e}^{-2Ax}}{2A+\mathrm{i}d_{0}\mathrm{e}^{-2Ax}}. Finally, using (2.40) and the notation ϕ0\phi_{0} from (2.46), we obtain the exact one-soliton solution as follows (see [ALM18]*(3.106) and [HL16]*(17)):

q(x,t)=Ae2iA2t(12ie2Ax+iϕ01+ie2Ax+iϕ0)Ae2iA2ttanh(Axiϕ0/2iπ/4).q(x,t)=A\mathrm{e}^{-2\mathrm{i}A^{2}t}\left(1-\frac{2\mathrm{i}\mathrm{e}^{-2Ax+\mathrm{i}\phi_{0}}}{1+\mathrm{i}\mathrm{e}^{-2Ax+\mathrm{i}\phi_{0}}}\right)\equiv A\mathrm{e}^{-2\mathrm{i}A^{2}t}\tanh(Ax-\mathrm{i}\phi_{0}/2-\mathrm{i}\pi/4). (2.52)

3. Long-time asymptotic analysis

3.1. Signature table

Introduce the phase function θ(k,ξ)\theta(k,\xi) as follows:

θ(k,ξ)4ξf(k)+2kf(k),ξx4t.\theta(k,\xi)\coloneqq 4\xi f(k)+2kf(k),\quad\xi\coloneqq\frac{x}{4t}. (3.1)

As noticed above, we can consider ξ0\xi\geq 0 only. In terms of θ(k,ξ)\theta(k,\xi), the exponentials in (2.36b) have the form e2itθ(k,ξ)\mathrm{e}^{2\mathrm{i}t\theta(k,\xi)} or e2itθ(k,ξ)\mathrm{e}^{-2\mathrm{i}t\theta(k,\xi)}, and the following transformations of the basic RH problem are guided by the signature structure of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi).

Since θ(k,ξ)=2k2+4ξk+O(1)\theta(k,\xi)=2k^{2}+4\xi k+\mathrm{O}(1) as kk\to\infty, the large kk behavior of the signature table for Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) is the same as for Im(4ξk+2k2)\operatorname{Im}(4\xi k+2k^{2}). Though the equation ddkθ(k,ξ)=0\frac{\mathrm{d}}{\mathrm{d}k}\theta(k,\xi)=0 has two zeros for all ξ>0\xi>0:

k1(ξ)=12(ξ+ξ2+2A2)andk2(ξ)=12(ξξ2+2A2),k_{1}(\xi)=-\frac{1}{2}\left(\xi+\sqrt{\xi^{2}+2A^{2}}\right)\quad\text{and}\quad k_{2}(\xi)=-\frac{1}{2}\left(\xi-\sqrt{\xi^{2}+2A^{2}}\right), (3.2)

the signature table of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) involves k1(ξ)k_{1}(\xi) only, see Figures 3.2 and 3.2. Namely, one can distinguish two cases:

  1. (1)

    ξ(A/2,+)\xi\in(A/2,+\infty). In this case, the signature table of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) is as in Figure 3.2. The curves separating the domains where Imθ(k,ξ)>0\operatorname{Im}\theta(k,\xi)>0 and Imθ(k,ξ)<0\operatorname{Im}\theta(k,\xi)<0 intersect at k=k1(ξ)k=k_{1}(\xi).

  2. (2)

    ξ(0,A/2)\xi\in(0,A/2). In this case, the signature table of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) is as in Figure 3.2. The curves separating the domains where Imθ(k,ξ)>0\operatorname{Im}\theta(k,\xi)>0 and Imθ(k,ξ)<0\operatorname{Im}\theta(k,\xi)<0 intersect at k=2ξk=-2\xi. This is because of

    Imθ±(k,ξ)=±2(2ξ+k)k2A2,k(A,A).\operatorname{Im}\theta_{\pm}(k,\xi)=\pm 2(2\xi+k)\sqrt{k^{2}-A^{2}},\quad k\in(-A,A). (3.3)
Refer to caption
Figure 3.1. Signature table of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) in the modulated wave region ξ>A/2\xi>A/2.
Refer to caption
Figure 3.2. Signature table of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) in the central region 0<ξ<A/20<\xi<A/2.

3.2. Modulated regions |ξ|(A/2,)\lvert\xi\rvert\in(A/2,\infty)

Taking into account the signature structure of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) for ξ(,A/2)-\xi\in(-\infty,-A/2) (see Figure 3.2), we will use two different triangular factorizations of the jump matrix J(x,t,k)J(x,t,k) for k[A,A]k\in\mathbb{R}\setminus[-A,A] (cf. [DIZ, J15, RS21PD]):

J(x,t,k)=(10r1(k)e2itθ1+r1(k)r2(k)1)(1+r1(k)r2(k)0011+r1(k)r2(k))(1r2(k)e2itθ1+r1(k)r2(k)01),k(,k1),J(x,t,k)=\begin{pmatrix}1&0\\ \frac{r_{1}(k)\mathrm{e}^{2\mathrm{i}t\theta}}{1+r_{1}(k)r_{2}(k)}&1\\ \end{pmatrix}\begin{pmatrix}1+r_{1}(k)r_{2}(k)&0\\ 0&\frac{1}{1+r_{1}(k)r_{2}(k)}\\ \end{pmatrix}\begin{pmatrix}1&\frac{r_{2}(k)\mathrm{e}^{-2\mathrm{i}t\theta}}{1+r_{1}(k)r_{2}(k)}\\ 0&1\\ \end{pmatrix},\,k\in(-\infty,k_{1}), (3.4a)
and
J(x,t,k)=(1r2(k)e2itθ01)(10r1(k)e2itθ1),k(k1,A)(A,).J(x,t,k)=\begin{pmatrix}1&r_{2}(k)\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix}\begin{pmatrix}1&0\\ r_{1}(k)\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix},\quad k\in(k_{1},-A)\cup(A,\infty). (3.4b)

For getting rid of the diagonal factor in (3.4a), we introduce the scalar function δ(k,k1)\delta(k,k_{1}) as the solution of the following RH problem:

δ+(k,k1)=δ(k,k1)(1+r1(k)r2(k)),\displaystyle\delta_{+}(k,k_{1})=\delta_{-}(k,k_{1})(1+r_{1}(k)r_{2}(k)), k(,k1),\displaystyle k\in(-\infty,k_{1}), (3.5)
δ(k,k1)1,\displaystyle\delta(k,k_{1})\to 1, k.\displaystyle k\to\infty.

The jump function 1+r1(k)r2(k)1+r_{1}(k)r_{2}(k) in (3.5) is, in general, complex valued for k(,k1)k\in(-\infty,k_{1}), which is an important difference comparing with the problems for the local equations, where it is real [BKS11, BM17, DZ, J15]. The nonzero imaginary part of 1+r1(k)r2(k)1+r_{1}(k)r_{2}(k) is responsible for the singularity (or zero, depending on the sign) of δ\delta at the endpoint k=k1k=k_{1}, which follows from the integral representation for δ(k,k1)\delta(k,k_{1}) (cf. [RS21PD]):

δ(k,k1)=exp{12πik1ln(1+r1(ζ)r2(ζ))ζkdζ}.\delta(k,k_{1})=\exp\left\{\frac{1}{2\pi\mathrm{i}}\int_{-\infty}^{k_{1}}\frac{\ln(1+r_{1}(\zeta)r_{2}(\zeta))}{\zeta-k}\,\mathrm{d}\zeta\right\}. (3.6)

Integrating by parts one concludes that

δ(k,k1)=(kk1)iν(k1)eχ(k,k1),\delta(k,k_{1})=(k-k_{1})^{\mathrm{i}\nu(k_{1})}\mathrm{e}^{\chi(k,k_{1})}, (3.7)

where

χ(k,k1)\displaystyle\chi(k,k_{1}) 12πik1ln(kζ)dln(1+r1(ζ)r2(ζ)),\displaystyle\coloneqq-\frac{1}{2\pi\mathrm{i}}\int_{-\infty}^{k_{1}}\ln(k-\zeta)\mathrm{d}\ln(1+r_{1}(\zeta)r_{2}(\zeta)), (3.8)
ν(k1)\displaystyle\nu(k_{1}) 12πln(1+r1(k1)r2(k1))=12πln|1+r1(k1)r2(k1)|i2πΔ(k1),\displaystyle\coloneqq-\frac{1}{2\pi}\ln(1+r_{1}(k_{1})r_{2}(k_{1}))=-\frac{1}{2\pi}\ln|1+r_{1}(k_{1})r_{2}(k_{1})|-\frac{\mathrm{i}}{2\pi}\Delta(k_{1}), (3.9)
Δ(k1)\displaystyle\Delta(k_{1}) k1darg(1+r1(ζ)r2(ζ)).\displaystyle\coloneqq\int_{-\infty}^{k_{1}}\mathrm{d}\arg(1+r_{1}(\zeta)r_{2}(\zeta)). (3.10)

To obtain the asymptotics in the modulated regions (see Theorem 3.2 below) we need an additional assumption on the spectral functions (cf. [RS21PD]):

Assumption 3.1 (on the spectral functions r1r_{1} and r2r_{2}).
kdarg(1+r1(ζ)r2(ζ))(π,π),for allk(,A).\int_{-\infty}^{k}\mathrm{d}\arg(1+r_{1}(\zeta)r_{2}(\zeta))\in(-\pi,\pi),\quad\text{for all}\quad k\in(-\infty,-A). (3.11)

This implies that |Imν(k1)|<12\lvert\operatorname{Im}\nu(k_{1})\rvert<\frac{1}{2} and, consequently, δσ3(k,k1)\delta^{\sigma_{3}}(k,k_{1}) has a square integrable singularity at k=k1k=k_{1}.

3.2.1. 1st transformation

Using the function δ(k,k1)\delta(k,k_{1}) we make the following transformation of M(x,t,k)M(x,t,k):

M(1)(x,t,k)=M(x,t,k)δσ3(k,k1),k.M^{(1)}(x,t,k)=M(x,t,k)\delta^{-\sigma_{3}}(k,k_{1}),\quad k\in\mathbb{C}\setminus\mathbb{R}. (3.12)

Then M(1)(x,t,k)M^{(1)}(x,t,k) solves the following RH problem:

M+(1)(x,t,k)=M(1)(x,t,k)J(1)(x,t,k),\displaystyle M^{(1)}_{+}(x,t,k)=M^{(1)}_{-}(x,t,k)J^{(1)}(x,t,k), k{±A},\displaystyle k\in\mathbb{R}\setminus\{\pm A\}, (3.13a)
M(1)(x,t,k)=I+O(k1),\displaystyle M^{(1)}(x,t,k)=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (3.13b)
M(1)(x,t,k)=O((k±A)14),\displaystyle M^{(1)}(x,t,k)=\mathrm{O}\left((k\pm A)^{-\frac{1}{4}}\right), kA,\displaystyle k\to\mp A, (3.13c)
M(1)(x,t,k)=O((kk1)p(kk1)p(kk1)p(kk1)p),\displaystyle M^{(1)}(x,t,k)=\mathrm{O}\begin{pmatrix}(k-k_{1})^{p}&(k-k_{1})^{-p}\\ (k-k_{1})^{p}&(k-k_{1})^{-p}\end{pmatrix}, kk1,p(1/2,1/2),\displaystyle k\to k_{1},\,\,p\in(-1/2,1/2), (3.13d)

where the jump matrix J(1)(x,t,k)J^{(1)}(x,t,k) has the form

J(1)={(10r1(k)δ2(k,k1)1+r1(k)r2(k)e2itθ1)(1r2(k)δ+2(k,k1)1+r1(k)r2(k)e2itθ01),k(,k1),(1r2(k)δ2(k,k1)e2itθ01)(10r1(k)δ2(k,k1)e2itθ1),k(k1,A)(A,),(0δ2(k,k1)δ2(k,k1)0),k(A,A).J^{(1)}=\begin{cases}\begin{pmatrix}1&0\\ \frac{r_{1}(k)\delta_{-}^{-2}(k,k_{1})}{1+r_{1}(k)r_{2}(k)}\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix}\begin{pmatrix}1&\frac{r_{2}(k)\delta_{+}^{2}(k,k_{1})}{1+r_{1}(k)r_{2}(k)}\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix},&k\in(-\infty,k_{1}),\\ \begin{pmatrix}1&r_{2}(k)\delta^{2}(k,k_{1})\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix}\begin{pmatrix}1&0\\ r_{1}(k)\delta^{-2}(k,k_{1})\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix},&k\in(k_{1},-A)\cup(A,\infty),\\ \begin{pmatrix}0&-\delta^{2}(k,k_{1})\\ \delta^{-2}(k,k_{1})&0\end{pmatrix},&k\in(-A,A).\end{cases} (3.14)

Moreover, M(1)(x,t,k)M^{(1)}(x,t,k) satisfies singularity conditions at k=0k=0:

limk0,k+k(M(1))[1](x,t,k)\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{+}\end{subarray}}k\left(M^{(1)}\right)^{[1]}(x,t,k) =γ+a10δ2(0,k1)e2Ax(M(1))+[2](x,t,0),\displaystyle=\frac{\gamma_{+}}{a_{10}\,\delta^{2}(0,k_{1})}\mathrm{e}^{-2Ax}\left(M^{(1)}\right)^{[2]}_{+}(x,t,0), (3.15a)
limk0,kk(M(1))[2](x,t,k)\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{-}\end{subarray}}k\left(M^{(1)}\right)^{[2]}(x,t,k) =γδ2(0,k1)a20e2Ax(M(1))[1](x,t,0).\displaystyle=\frac{\gamma_{-}\,\delta^{2}(0,k_{1})}{a_{20}}\mathrm{e}^{-2Ax}\left(M^{(1)}\right)^{[1]}_{-}(x,t,0). (3.15b)

3.2.2. 2nd transformation

Now we are able to get off the real axis and to obtain a RH problem which can be approximated, as t+t\to+\infty, by an exactly solvable problem. We assume that the reflection coefficients rj(k)r_{j}(k), j=1,2j=1,2 can be continued into a band containing the real axis (this takes place, for example, when q0(x)q_{0}(x) converges exponentially fast to its boundary values).

Define M(2)(x,t,k)M^{(2)}(x,t,k) as follows (compare with M(2)M^{(2)} in [RS21PD] and MM in [J15]):

M(2)=M(1)×{(1r2(k)δ2(k,k1)1+r1(k)r2(k)e2itθ01),kΩ^1,(10r1(k)δ2(k,k1)e2itθ1),kΩ^2,(1r2(k)δ2(k,k1)e2itθ01),kΩ^3,(10r1(k)δ2(k,k1)1+r1(k)r2(k)e2itθ1),kΩ^4,I,kΩ^0,M^{(2)}=M^{(1)}\times\begin{cases}\begin{pmatrix}1&\frac{-r_{2}(k)\delta^{2}(k,k_{1})}{1+r_{1}(k)r_{2}(k)}\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix},\,k\in\hat{\Omega}_{1},&\begin{pmatrix}1&0\\ -r_{1}(k)\delta^{-2}(k,k_{1})\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix},\,k\in\hat{\Omega}_{2},\\ \begin{pmatrix}1&r_{2}(k)\delta^{2}(k,k_{1})\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix},\,k\in\hat{\Omega}_{3},&\begin{pmatrix}1&0\\ \frac{r_{1}(k)\delta^{-2}(k,k_{1})}{1+r_{1}(k)r_{2}(k)}\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix},\,k\in\hat{\Omega}_{4},\\ \,I,\quad k\in\hat{\Omega}_{0},\end{cases}

where Ω^j\hat{\Omega}_{j}, j=0,,4j=0,\dots,4 are displayed in Figure 3.4. Let Γ^=j=14γ^j\hat{\Gamma}=\cup_{j=1}^{4}\hat{\gamma}_{j} be the contour also shown in Figure 3.4. Then M(2)(x,t,k)M^{(2)}(x,t,k) solves the following RH problem:

M+(2)(x,t,k)=M(2)(x,t,k)J(2)(x,t,k),\displaystyle M^{(2)}_{+}(x,t,k)=M^{(2)}_{-}(x,t,k)J^{(2)}(x,t,k), kΓ^(A,A),\displaystyle k\in\hat{\Gamma}\cup(-A,A), (3.16a)
M(2)(x,t,k)=I+O(k1),\displaystyle M^{(2)}(x,t,k)=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (3.16b)
M(2)(x,t,k)=O((k±A)14),\displaystyle M^{(2)}(x,t,k)=\mathrm{O}\left((k\pm A)^{-\frac{1}{4}}\right), kA,\displaystyle k\to\mp A, (3.16c)
M(2)(x,t,k)=O((kk1)p(kk1)p(kk1)p(kk1)p),\displaystyle M^{(2)}(x,t,k)=\mathrm{O}\begin{pmatrix}(k-k_{1})^{p}&(k-k_{1})^{-p}\\ (k-k_{1})^{p}&(k-k_{1})^{-p}\end{pmatrix}, kk1,p(1/2,1/2),\displaystyle k\to k_{1},\,\,p\in(-1/2,1/2), (3.16d)

where, using the relations r1±(k)=r2(k)r_{1\pm}(k)=r_{2\mp}(k) and θ+(k)=θ(k)\theta_{+}(k)=-\theta_{-}(k) for k(A,A)k\in(-A,A), one finds that

J(2)={(0δ2(k,k1)δ2(k,k1)0),k(A,A);(1r2(k)δ2(k,k1)1+r1(k)r2(k)e2itθ01),kγ^1;(10r1(k)δ2(k,k1)e2itθ1),kγ^2;(1r2(k)δ2(k,k1)e2itθ01),kγ^3;(10r1(k)δ2(k,k1)1+r1(k)r2(k)e2itθ1),kγ^4.J^{(2)}=\begin{cases}\begin{pmatrix}0&-\delta^{2}(k,k_{1})\\ \delta^{-2}(k,k_{1})&0\end{pmatrix},\,k\in(-A,A);\\ \begin{pmatrix}1&\frac{r_{2}(k)\delta^{2}(k,k_{1})}{1+r_{1}(k)r_{2}(k)}\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix},\,k\in\hat{\gamma}_{1};&\begin{pmatrix}1&0\\ r_{1}(k)\delta^{-2}(k,k_{1})\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix},\ k\in\hat{\gamma}_{2};\\ \begin{pmatrix}1&-r_{2}(k)\delta^{2}(k,k_{1})\mathrm{e}^{-2\mathrm{i}t\theta}\\ 0&1\\ \end{pmatrix},\,k\in\hat{\gamma}_{3};&\begin{pmatrix}1&0\\ \frac{-r_{1}(k)\delta^{-2}(k,k_{1})}{1+r_{1}(k)r_{2}(k)}\mathrm{e}^{2\mathrm{i}t\theta}&1\\ \end{pmatrix},\,k\in\hat{\gamma}_{4}.\end{cases} (3.17)

Using the equalities r1(k)=b+(0)a10k+O(1)r_{1}(k)=\frac{b_{+}(0)}{a_{10}k}+\mathrm{O}(1) as k0k\to 0 with k+k\in\mathbb{C}^{+}, θ+(0,ξ)=iAxt\theta_{+}(0,\xi)=\mathrm{i}A\frac{x}{t}, and γ+=b+(0)\gamma_{+}=b_{+}(0) (see Remark 2.7), direct calculations show that M(2)(x,t,k)=O(1)M^{(2)}(x,t,k)=\mathrm{O}(1) as k0k\to 0, kΩ^2k\in\hat{\Omega}_{2}. Similarly, it can be shown that M(2)(x,t,k)=O(1)M^{(2)}(x,t,k)=\mathrm{O}(1) as k0k\to 0, kΩ^3k\in\hat{\Omega}_{3}. Thus the RH problem for M(2)M^{(2)}, in contrast to that for M(1)M^{(1)}, does not involve any singularity conditions at k=0k=0.

Refer to caption
Figure 3.3. Modulated wave region: contour Γ^=γ^1γ^4\hat{\Gamma}=\hat{\gamma}_{1}\cup\dots\cup\hat{\gamma}_{4} and domains Ω^j\hat{\Omega}_{j}, j=0,,4j=0,\dots,4.
Refer to caption
Figure 3.4. Central region: contour Γ^=γ^1γ^4\hat{\Gamma}=\hat{\gamma}_{1}\cup\dots\cup\hat{\gamma}_{4} and domains Ω^j\hat{\Omega}_{j}, j=0,,4j=0,\dots,4.

In view of the signature table of Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) (see Figure 3.2), the jump matrix J(2)(x,t,k)J^{(2)}(x,t,k) decays to the identity matrix for kΓ^k\in\hat{\Gamma}, uniformly outside any neighborhood of the stationary phase point k=k1k=k_{1}. Arguing as, e.g., in [RS21PD]*Section 3.2, we eliminate δ(k,ξ)\delta(k,\xi) in the jump for k(A,A)k\in(-A,A) by introducing the scalar function

F(k,k1)exp{f(k)πiAAlnδ(ζ,k1)f(ζ)(ζk)dζ},k[A,A].F(k,k_{1})\coloneqq\exp\left\{-\frac{f(k)}{\pi\mathrm{i}}\int_{-A}^{A}\frac{\ln\delta(\zeta,k_{1})}{f_{-}(\zeta)(\zeta-k)}\,\mathrm{d}\zeta\right\},\quad k\in\mathbb{C}\setminus[-A,A]. (3.18)

This function F(k,k1)F(k,k_{1}) satisfies the jump condition

F+(k,k1)F(k,k1)=δ2(k,k1),k(A,A),F_{+}(k,k_{1})F_{-}(k,k_{1})=\delta^{2}(k,k_{1}),\quad k\in(-A,A), (3.19)

and is bounded at k=±Ak=\pm A. In order to recover q(x,t)q(x,t) from the solution of the RH problem, we need the large kk asymptotics of F(k,k1)F(k,k_{1}):

F(k,k1)=eiF(k1)+O(k1),k,F(k1)1πAAlnδ(ζ,k1)f(ζ)dζ.\begin{split}F(k,k_{1})&=\mathrm{e}^{\mathrm{i}F_{\infty}(k_{1})}+\mathrm{O}(k^{-1}),\quad k\to\infty,\\ F_{\infty}(k_{1})&\coloneqq-\frac{1}{\pi}\int_{-A}^{A}\frac{\ln\delta(\zeta,k_{1})}{f_{-}(\zeta)}\,\mathrm{d}\zeta.\end{split} (3.20)

Substituting (3.6) into F(k1)F_{\infty}(k_{1}), we have that

ReF(k1)=12π2AA1A2ζ2(k1ln|1+r1(s)r2(s)|sζds)dζ,\displaystyle\operatorname{Re}F_{\infty}(k_{1})=-\frac{1}{2\pi^{2}}\int_{-A}^{A}\frac{1}{\sqrt{A^{2}-\zeta^{2}}}\left(\int_{-\infty}^{k_{1}}\frac{\ln|1+r_{1}(s)r_{2}(s)|}{s-\zeta}\,\mathrm{d}s\right)\mathrm{d}\zeta, (3.21a)
ImF(k1)=12π2AA1A2ζ2(k1Δ(s)sζds)dζ,\displaystyle\operatorname{Im}F_{\infty}(k_{1})=-\frac{1}{2\pi^{2}}\int_{-A}^{A}\frac{1}{\sqrt{A^{2}-\zeta^{2}}}\left(\int_{-\infty}^{k_{1}}\frac{\Delta(s)}{s-\zeta}\,\mathrm{d}s\right)\mathrm{d}\zeta, (3.21b)

where Δ(s)\Delta(s) is given by (3.10) and A2ζ2>0\sqrt{A^{2}-\zeta^{2}}>0.

3.2.3. 3rd transformation

Using F(k,k1)F(k,k_{1}), we define M(3)(x,t,k)M^{(3)}(x,t,k) as follows

M(3)(x,t,k)=eiF(k1)σ3M(2)(x,t,k)Fσ3(k,k1),k{Γ^[A,A]}.M^{(3)}(x,t,k)=\mathrm{e}^{-\mathrm{i}F_{\infty}(k_{1})\sigma_{3}}M^{(2)}(x,t,k)F^{\sigma_{3}}(k,k_{1}),\quad k\in\mathbb{C}\setminus\left\{\hat{\Gamma}\cup[-A,A]\right\}. (3.22)

Then M(3)M^{(3)} satisfies the following RH problem with constant jump across (A,A)(-A,A):

M+(3)(x,t,k)=M(3)(x,t,k)J(3)(x,t,k),\displaystyle M^{(3)}_{+}(x,t,k)=M^{(3)}_{-}(x,t,k)J^{(3)}(x,t,k), kΓ^(A,A),\displaystyle k\in\hat{\Gamma}\cup(-A,A), (3.23a)
M(3)(x,t,k)=I+O(k1),\displaystyle M^{(3)}(x,t,k)=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (3.23b)
M(3)(x,t,k)=O((k±A)14),\displaystyle M^{(3)}(x,t,k)=\mathrm{O}\left((k\pm A)^{-\frac{1}{4}}\right), kA,\displaystyle k\to\mp A, (3.23c)
M(3)(x,t,k)=O((kk1)p(kk1)p(kk1)p(kk1)p),\displaystyle M^{(3)}(x,t,k)=\mathrm{O}\begin{pmatrix}(k-k_{1})^{p}&(k-k_{1})^{-p}\\ (k-k_{1})^{p}&(k-k_{1})^{-p}\end{pmatrix}, kk1,p(1/2,1/2),\displaystyle k\to k_{1},\ \ p\in(-1/2,1/2), (3.23d)

with

J(3)(x,t,k)={iσ2,k(A,A),Fσ3(k,k1)J(2)(x,t,k)Fσ3(k,k1),kΓ^.J^{(3)}(x,t,k)=\begin{cases}-\mathrm{i}\sigma_{2},&k\in(-A,A),\\ F^{-\sigma_{3}}(k,k_{1})J^{(2)}(x,t,k)F^{\sigma_{3}}(k,k_{1}),&k\in\hat{\Gamma}.\end{cases} (3.24)

Since F(k,k1)F(k,k_{1}) is bounded at k=0k=0, we have M(3)(x,t,k)=O(1)M^{(3)}(x,t,k)=\mathrm{O}(1) as k0k\to 0. Thus, similarly to the RH problem for M(2)M^{(2)}, the RH problem for M(3)M^{(3)} does not involve any singularity conditions at k=0k=0.

The solution q(x,t)q(x,t) of the Cauchy problem (1.1) can be expressed in terms of M(3)(x,t,k)M^{(3)}(x,t,k) as follows:

q(x,t)\displaystyle q(x,t) =2ie2iA2t+2iF(k1)limkkM12(3)(x,t,k),\displaystyle=2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t+2\mathrm{i}F_{\infty}(k_{1})}\lim_{k\to\infty}kM_{12}^{(3)}(x,t,k), x>0,\displaystyle x>0, (3.25a)
q(x,t)\displaystyle q(x,t) =2ie2iA2t+2iF(k1)¯limkkM21(3)(x,t,k)¯,\displaystyle=-2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t+2\mathrm{i}\overline{F_{\infty}(k_{1})}}\lim_{k\to\infty}\overline{kM_{21}^{(3)}(-x,t,k)}, x<0.\displaystyle x<0. (3.25b)

3.2.4. Model RH problem

Arguing as in [RS21PD], the RH problem for M(3)M^{(3)} can be approximated by a model RH problem whose contour is (A,A)(-A,A) and whose jump matrix is constant. Using (3.25), we are able to obtain an asymptotics of q(x,t)q(x,t) including at least the first decaying term [RS21PD]. For the sake of brevity, we present here, in Theorem 3.2 below, the leading (non-decaying) terms only.

Theorem 3.2 (modulated regions |ξ|>A/2\lvert\xi\rvert>A/2).

Assume that the initial data q0(x)q_{0}(x) approaches its boundary values (1.1c) exponentially fast and that the associated spectral functions aj(k)a_{j}(k) and rj(k)=bj(k)aj(k)r_{j}(k)=\frac{b_{j}(k)}{a_{j}(k)}, j=1,2j=1,2 satisfy Assumptions 2.5 and 3.1.

Then the solution q(x,t)q(x,t) of problem (1.1) has the following long-time asymptotics along the rays ξx4t=const\xi\equiv\frac{x}{4t}=\mathrm{const}, uniformly in any compact subset of {ξ:|ξ|(A/2,+)}\{\xi\in\mathbb{R}:\lvert\xi\rvert\in(A/2,+\infty)\}:

q(x,t)={Ae2ImF(k1(|ξ|))e2i(A2tReF(k1(|ξ|)))+E(x,t),ξ>A/2,Ae2ImF(k1(|ξ|))e2i(A2tReF(k1(|ξ|)))+E(x,t),ξ<A/2,q(x,t)=\begin{cases}A\mathrm{e}^{-2\operatorname{Im}F_{\infty}(k_{1}(\lvert\xi\rvert))}\mathrm{e}^{-2\mathrm{i}(A^{2}t-\operatorname{Re}F_{\infty}(k_{1}(\lvert\xi\rvert)))}+E(x,t),&\xi>A/2,\\ -A\mathrm{e}^{2\operatorname{Im}F_{\infty}(k_{1}(\lvert\xi\rvert))}\mathrm{e}^{-2\mathrm{i}(A^{2}t-\operatorname{Re}F_{\infty}(k_{1}(\lvert\xi\rvert)))}+E(x,t),&\xi<-A/2,\end{cases} (3.26)

where k1k_{1} and F(k1)F_{\infty}(k_{1}) are defined by (3.2) and (3.21), respectively, and with error terms E(x,t)=O(t12Imν(k1(|ξ|))+t12+Imν(k1(|ξ|)))E(x,t)=\mathrm{O}(t^{-\frac{1}{2}-\operatorname{Im}\nu(k_{1}(\lvert\xi\rvert))}+t^{-\frac{1}{2}+\operatorname{Im}\nu(k_{1}(\lvert\xi\rvert))}).

Remark 3.3.

In contrast to the plane wave regions for problems for the defocusing NLS equation [B89, EGGK, IU86, J15], the modulus of the main term in (3.26) depends on the direction ξ\xi. Notice that the absolute value of the main term of the asymptotics in the plane wave regions [RS21PD] and the so-called “modulated constant” regions [RSs, RS21CIMP] in problems for the NNLS equation with nonzero symmetric and step-like boundary conditions also depends on the direction ξ\xi.

3.3. Central region (|ξ|(0,A/2)\lvert\xi\rvert\in(0,A/2))

For this region, in contrast to the modulated regions (see Section 3.2), the sign-changing critical point k=2ξk=-2\xi lies on the cut (A,A)(-A,A) (see Figure 3.2). Since Imθ(k,ξ)\operatorname{Im}\theta(k,\xi) does not vanish on the cut (±Imθ±(k,ξ)<0\pm\operatorname{Im}\theta_{\pm}(k,\xi)<0 for k(A,2ξ)k\in(-A,-2\xi) and ±Imθ±(k,ξ)>0\pm\operatorname{Im}\theta_{\pm}(k,\xi)>0 for k(2ξ,A)k\in(-2\xi,A)), we are able to obtain the asymptotics with exponential precision (see [IU86] and [J15]*Section 5.5). Moreover, no additional conditions on the winding of the argument are needed, because in the central region there is no need to deal with a model problem on the cross.

3.3.1. 1st transformation

The first transformation is similar to that in the modulated region, but with δ(k,A)\delta(k,-A) instead of δ(k,k1)\delta(k,k_{1}) (cf. (3.12)):

M(1)(x,t,k)=M(x,t,k)δσ3(k,A),k.M^{(1)}(x,t,k)=M(x,t,k)\delta^{-\sigma_{3}}(k,-A),\quad k\in\mathbb{C}\setminus\mathbb{R}. (3.27)

Then M(1)(x,t,k)M^{(1)}(x,t,k) solves a RH problem similar to that in the modulated regions, but with, in general, a strong singularity at k=Ak=-A. The form of this singularity depends on whether the quantity 1+r1(A)r2(A)1+r_{1}(-A)r_{2}(-A) is equal to zero or not (see Remark 2.6). Here we only consider the most complicated case, when 1+r1(A)r2(A)=01+r_{1}(-A)r_{2}(-A)=0.

Using the results of [G66]*Sections 8.1 and 8.5 about the behavior of Cauchy-type integrals at the end points and the relation ln(A)=lnA+iπ\ln(-A)=\ln A+\mathrm{i}\pi, we have that

12πiAlnζ+Aζζkdζ=12πilnAln(k+A)+14πiln2(k+A)+ΦA(k),\frac{1}{2\pi\mathrm{i}}\int_{-\infty}^{-A}\frac{\ln\frac{\zeta+A}{\zeta}}{\zeta-k}\,\mathrm{d}\zeta=\frac{1}{2\pi\mathrm{i}}\ln A\cdot\ln(k+A)+\frac{1}{4\pi\mathrm{i}}\ln^{2}(k+A)+\Phi_{-A}(k), (3.28)

where ΦA(k)\Phi_{-A}(k) is analytic in a neighborhood of k=Ak=-A. Since

Adarg(1+r1(ζ)r2(ζ))=Adargζ+Aζ(1+r1(ζ)r2(ζ))\int_{-\infty}^{-A}\mathrm{d}\arg(1+r_{1}(\zeta)r_{2}(\zeta))=\int_{-\infty}^{-A}\mathrm{d}\arg\frac{\zeta+A}{\zeta}(1+r_{1}(\zeta)r_{2}(\zeta))

and ln2(k+A)=ln2|k+A|+arg2(k+A)+2iarg(k+A)ln(k+A)\ln^{2}(k+A)=\ln^{2}|k+A|+\arg^{2}(k+A)+2\mathrm{i}\arg(k+A)\cdot\ln(k+A), we obtain the following behavior of δ(k,A)\delta(k,-A) at k=Ak=-A:

δ(k,A)=(k+A)12π(Δ(A)+arg(k+A))δA(k),\delta(k,-A)=(k+A)^{\frac{1}{2\pi}(\Delta(-A)+\arg(k+A))}\delta_{-A}(k), (3.29)

where Δ(A)\Delta(-A) is given by (3.10) and δA(k)\delta_{-A}(k) is bounded at k=Ak=-A. Then M(1)M^{(1)} has the following behavior at k=Ak=-A:

M(1)(x,t,k)=O((k+A)12π(Δ(A)+arg(k+A))14(k+A)12π(Δ(A)+arg(k+A))14(k+A)12π(Δ(A)+arg(k+A))14(k+A)12π(Δ(A)+arg(k+A))14),kA.M^{(1)}(x,t,k)=\mathrm{O}\begin{pmatrix}(k+A)^{-\frac{1}{2\pi}(\Delta(-A)+\arg(k+A))-\frac{1}{4}}&(k+A)^{\frac{1}{2\pi}(\Delta(-A)+\arg(k+A))-\frac{1}{4}}\\ (k+A)^{-\frac{1}{2\pi}(\Delta(-A)+\arg(k+A))-\frac{1}{4}}&(k+A)^{\frac{1}{2\pi}(\Delta(-A)+\arg(k+A))-\frac{1}{4}}\end{pmatrix},\quad k\to-A. (3.30)

3.3.2. 2nd transformation

Further, we define M(2)(x,t,k)M^{(2)}(x,t,k) as in Section 3.2.2 for the modulated wave case, but with domains Ω^j\hat{\Omega}_{j}, j=0,,4j=0,\dots,4 displayed in Figure 3.4. In that case (see Figure 3.4) the points of intersection k^1\hat{k}_{1} and k^2\hat{k}_{2} of the real axis with γ^1\hat{\gamma}_{1} and γ^4\hat{\gamma}_{4}, then with γ^2\hat{\gamma}_{2} and γ^3\hat{\gamma}_{3} are simply chosen such that A<k^1<2ξ<k^2<0-A<\hat{k}_{1}<-2\xi<\hat{k}_{2}<0. Since 1+r1(k)r2(k)1+r_{1}(k)r_{2}(k) has a simple zero at k=Ak=-A, choosing arg(k+A)(2π,3π)\arg(k+A)\in(2\pi,3\pi) for k+k\in\mathbb{C}^{+} in the second column of M(1)M^{(1)} as kAk\to-A and arg(k+A)(3π,2π)\arg(k+A)\in(-3\pi,-2\pi) for kk\in\mathbb{C}^{-} in the first column of M(1)M^{(1)} as kAk\to-A (see (3.30)) we obtain the behavior (3.30) for M(2)M^{(2)} with arg(k+A)(π,π)\arg(k+A)\in(-\pi,\pi). Moreover, similarly to Section 3.2, k=0k=0 lies on the boundary of the domains Ω^2\hat{\Omega}_{2} and Ω^3\hat{\Omega}_{3} and thus M(2)(x,t,k)M^{(2)}(x,t,k) turns to be bounded at k=0k=0 as well.

3.3.3. 3rd transformation

We define M(3)(x,t,k)M^{(3)}(x,t,k) as in Section 3.2.3, but with F(k,A)F(k,-A) instead of F(k,k1)F(k,k_{1}). From (3.29) and [G66]*Section 8.6 we conclude that F(k,A)F(k,-A) behaves at k=Ak=-A as follows:

F(k,A)=(k+A)12π(Δ(A)+arg(k+A))FA(k),F(k,-A)=(k+A)^{\frac{1}{2\pi}(\Delta(-A)+\arg(k+A))}F_{-A}(k), (3.31)

where FA(k)F_{-A}(k) is bounded at k=Ak=-A. Therefore, M(3)(x,t,k)=O((k+A)14)M^{(3)}(x,t,k)=\mathrm{O}\bigl{(}(k+A)^{-\frac{1}{4}}\bigr{)} as kAk\to-A. The jump matrix J(3)J^{(3)} associated with M(3)M^{(3)} is defined similarly to (3.24), with F(k,k1)F(k,k_{1}) replaced by F(k,A)F(k,-A) and with the contour Γ^\hat{\Gamma} displayed in Figure 3.4.

3.3.4. Model RH problem

Taking into account that J(3)(x,t,k)J^{(3)}(x,t,k), kΓ^k\in\hat{\Gamma} (see Figure 3.4) approaches exponentially fast the identity matrix (as t+t\to+\infty), uniformly with respect to kΓ^k\in\hat{\Gamma}, we arrive at the following asymptotics for q(±x,t)q(\pm x,t):

q(x,t)\displaystyle q(x,t) =2ie2iA2t+2iF(A)limkkM12mod(k)+O(ect),\displaystyle=2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t+2\mathrm{i}F_{\infty}(-A)}\lim_{k\to\infty}kM_{12}^{\mathrm{mod}}(k)+\mathrm{O}(\mathrm{e}^{-ct}), x>0,t+,\displaystyle x>0,\,\,t\to+\infty, (3.32a)
q(x,t)\displaystyle q(-x,t) =2ie2iA2t+2iF(A)¯limkkM21mod(k)¯+O(ect),\displaystyle=-2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t+2\mathrm{i}\overline{F_{\infty}(-A)}}\lim_{k\to\infty}\overline{kM_{21}^{\mathrm{mod}}(k)}+\mathrm{O}(\mathrm{e}^{-ct}), x>0,t+,\displaystyle x>0,\,\,t\to+\infty, (3.32b)

with some c>0c>0, and where Mmod(k)M^{\mathrm{mod}}(k) is analytic in [A,A]\mathbb{C}\setminus[-A,A] and solves the following RH problem with constant jump matrix across the contour (A,A)(-A,A):

M+mod(k)=iMmod(k)σ2,\displaystyle M_{+}^{\mathrm{mod}}(k)=-\mathrm{i}M_{-}^{\mathrm{mod}}(k)\sigma_{2}, k(A,A),\displaystyle k\in(-A,A), (3.33a)
Mmod(k)=I+O(k1),\displaystyle M^{\mathrm{mod}}(k)=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (3.33b)
Mmod(k)=O((k±A)14),\displaystyle M^{\mathrm{mod}}(k)=\mathrm{O}\left((k\pm A)^{-\frac{1}{4}}\right), kA.\displaystyle k\to\mp A. (3.33c)

From (2.17) it follows that Mmod(k)=2(k)M^{\mathrm{mod}}(k)=\mathcal{E}_{2}(k). Combining this with (3.32), we arrive at

Theorem 3.4 (unmodulated regions 0<|ξ|<A/20<\lvert\xi\rvert<A/2).

Assume that the initial data q0(x)q_{0}(x) approaches exponentially fast its boundary values (1.1c) and that the associated spectral functions aj(k)a_{j}(k) and rj(k)=bj(k)aj(k)r_{j}(k)=\frac{b_{j}(k)}{a_{j}(k)}, j=1,2j=1,2 satisfy Assumptions 2.5.

Then the solution q(x,t)q(x,t) of problem (1.1) has the following long-time asymptotics along the rays ξ=x4t=const\xi=\frac{x}{4t}=\mathrm{const}, uniformly in any compact subset of {ξ:|ξ|(0,A/2)}\{\xi\in\mathbb{R}:\lvert\xi\rvert\in(0,A/2)\}:

q(x,t)={Ae2ImF(A)e2i(A2tReF(A))+O(ect),0<ξ<A/2,Ae2ImF(A)e2i(A2tReF(A))+O(ect),A/2<ξ<0,q(x,t)=\begin{cases}A\mathrm{e}^{-2\operatorname{Im}F_{\infty}(-A)}\mathrm{e}^{-2\mathrm{i}(A^{2}t-\operatorname{Re}F_{\infty}(-A))}+\mathrm{O}(\mathrm{e}^{-ct}),&0<\xi<A/2,\\ -A\mathrm{e}^{2\operatorname{Im}F_{\infty}(-A)}\mathrm{e}^{-2\mathrm{i}(A^{2}t-\operatorname{Re}F_{\infty}(-A))}+\mathrm{O}(\mathrm{e}^{-ct}),&-A/2<\xi<0,\end{cases} (3.34)

with some c>0c>0 independent of ξ\xi. Here F(A)F_{\infty}(-A) is given by (3.21) with k1=Ak_{1}=-A.

Remark 3.5.

The asymptotics in the central (unmodulated) regions is established without additional restrictions on the winding of the argument of the spectral data (cf. Theorem 3.2 and, e.g., [RS21PD, RS21CIMP]). To the best of our knowledge, it is the first discovered zone for nonlocal integrable equations where the asymptotics of the solution does not depend on the behavior of the argument of a dedicated spectral function.

Remark 3.6.

The asymptotics of q(x,t)q(x,t) for ξ(A/2,0)\xi\in(-A/2,0) and ξ(0,A/2)\xi\in(0,A/2) does not depend on the direction ξ\xi. However, both |q(x,t)||q(x,t)| and argq(x,t)\arg q(x,t) depend on the initial data through F(A)F_{\infty}(-A).

The central region can be compared with the central plateau zone for the defocusing NLS equation, where the asymptotics is also obtained with exponential precision, but the modulus of the solution does not depend on the initial data [B89, EGGK, IU86, J15].

Remark 3.7.

Since k1(A2)=Ak_{1}(\frac{A}{2})=-A, the main terms in the unmodulated regions, see (3.34), match those in the modulated regions (see (3.26)) at ξ=±A2\xi=\pm\frac{A}{2}.

Remark 3.8.

The asymptotic formulas (3.34) do not match as ξ±0\xi\to\pm 0. However, in the central region, the solution q(x,t)q(x,t) can approach a tanh-like function as t+t\to+\infty (see Theorem 3.9 below).

3.4. Transition at ξ=0\xi=0

In this section we analyse the asymptotics of the solution as ξ±0\xi\to\pm 0. For this, we consider (x,t)(x,t) with x=x0>0x=x_{0}>0 fixed and t+t\to+\infty.

3.4.1. First transformations

We perform three transformations of the basic RH problem similar to those made in Section 3.3. However, since ξ+0\xi\to+0, we choose the contour Γ^\hat{\Gamma} (see Figure 3.5) such that its points of intersection k^1\hat{k}_{1} and k^2\hat{k}_{2} with the real axis satisfy A<k^1<0<k^2<A-A<\hat{k}_{1}<0<\hat{k}_{2}<A.

Refer to caption
Figure 3.5. Transition region: contour Γ^=γ^1γ^4\hat{\Gamma}=\hat{\gamma}_{1}\cup\dots\cup\hat{\gamma}_{4} and domains Ω^0,,Ω^4\hat{\Omega}_{0},\dots,\hat{\Omega}_{4}.

In contrast to the cases presented in Sections 3.2 and 3.3, now the point k=0k=0 lies on the boundary of Ω^0\hat{\Omega}_{0}. It follows that the RH problems for both M(2)(x,t,k)M^{(2)}(x,t,k) and M(3)(x,t,k)M^{(3)}(x,t,k) involve singularity conditions at k=0k=0; particularly, these conditions for M(3)M^{(3)} read as follows:

limk0,k+k(M(3))[1](x,t,k)=γ+F+2(0,A)a10δ2(0,A)e2Ax(M(3))+[2](x,t,0),\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{+}\end{subarray}}k\bigl{(}M^{(3)}\bigr{)}^{[1]}(x,t,k)=\frac{\gamma_{+}\,F_{+}^{2}(0,-A)}{a_{10}\,\delta^{2}(0,-A)}\mathrm{e}^{-2Ax}\bigl{(}M^{(3)}\bigr{)}^{[2]}_{+}(x,t,0), (3.35a)
limk0,kk(M(3))[2](x,t,k)=γδ2(0,A)a20F2(0,A)e2Ax(M(3))[1](x,t,0).\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{-}\end{subarray}}k\bigl{(}M^{(3)}\bigr{)}^{[2]}(x,t,k)=\frac{\gamma_{-}\,\delta^{2}(0,-A)}{a_{20}\,F_{-}^{2}(0,-A)}\mathrm{e}^{-2Ax}\bigl{(}M^{(3)}\bigr{)}^{[1]}_{-}(x,t,0). (3.35b)

3.4.2. Model RH problem

The solution M(3)(x,t,k)M^{(3)}(x,t,k) of the RH problem relative to the contour Γ^(A,A)\hat{\Gamma}\cup(-A,A) (see Figure 3.5) can be approximated by the solution Mmod(x,k)M^{\mathrm{mod}}(x,k) of a model problem, which is as follows (cf. (2.43) and (2.44)):

M+mod(x,k)\displaystyle M_{+}^{\mathrm{mod}}(x,k) =iMmod(x,k)σ2,\displaystyle=-\mathrm{i}M_{-}^{\mathrm{mod}}(x,k)\sigma_{2}, k(A,A),\displaystyle k\in(-A,A), (3.36a)
Mmod(x,k)\displaystyle M^{\mathrm{mod}}(x,k) =I+O(k1),\displaystyle=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (3.36b)
Mmod(x,k)\displaystyle M^{\mathrm{mod}}(x,k) =O((k±A)14),\displaystyle=\mathrm{O}\bigl{(}(k\pm A)^{-\frac{1}{4}}\bigr{)}, kA,\displaystyle k\to\mp A, (3.36c)

with singularity conditions at k=0k=0:

limk0,k+kMmod[1](x,k)=γ+F+2(0,A)a10δ2(0,A)e2AxM+mod[2](x,0),\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{+}\end{subarray}}kM^{\mathrm{mod}[1]}(x,k)=\frac{\gamma_{+}\,F_{+}^{2}(0,-A)}{a_{10}\,\delta^{2}(0,-A)}\mathrm{e}^{-2Ax}M^{\mathrm{mod}[2]}_{+}(x,0), (3.37a)
limk0,kkMmod[2](x,k)=γδ2(0,A)a20F2(0,A)e2AxMmod[1](x,0).\displaystyle\lim_{\begin{subarray}{c}k\to 0,\\ k\in\mathbb{C}^{-}\end{subarray}}kM^{\mathrm{mod}[2]}(x,k)=\frac{\gamma_{-}\,\delta^{2}(0,-A)}{a_{20}\,F_{-}^{2}(0,-A)}\mathrm{e}^{-2Ax}M_{-}^{\mathrm{mod}[1]}(x,0). (3.37b)

Indeed, writing

M(3)(x,t,k)=Merr(x,t,k)Mmod(x,k),M^{(3)}(x,t,k)=M^{\mathrm{err}}(x,t,k)M^{\mathrm{mod}}(x,k), (3.38)

MerrM^{\mathrm{err}} satisfies the following RH problem on the contour Γ^\hat{\Gamma}:

M+err(x,t,k)\displaystyle M^{\mathrm{err}}_{+}(x,t,k) =Merr(x,t,k)Jerr(x,t,k),\displaystyle=M^{\mathrm{err}}_{-}(x,t,k)J^{\mathrm{err}}(x,t,k), kΓ^,\displaystyle k\in\hat{\Gamma}, (3.39a)
Merr(x,k)\displaystyle M^{\mathrm{err}}(x,k) =I+O(k1),\displaystyle=I+\mathrm{O}(k^{-1}), k,\displaystyle k\to\infty, (3.39b)
Merr(x,k)\displaystyle M^{\mathrm{err}}(x,k) =O((k±A)12),\displaystyle=\mathrm{O}\left((k\pm A)^{-\frac{1}{2}}\right), kA,\displaystyle k\to\mp A, (3.39c)

where Jerr(x,t,k)J^{\mathrm{err}}(x,t,k), kΓ^k\in\hat{\Gamma} can be uniformly estimated with exponentially small error for large tt:

Jerr(x,t,k)=Mmod(x,k)(I+O(ect))(Mmod)1(x,k),t+,J^{\mathrm{err}}(x,t,k)=M^{\mathrm{mod}}(x,k)(I+\mathrm{O}(\mathrm{e}^{-ct}))(M^{\mathrm{mod}})^{-1}(x,k),\quad t\to+\infty, (3.40)

with some c>0c>0 which does not depend on xx. It follows that for all xx such that 2A+id(A)e2Ax02A+\mathrm{i}d(A)\mathrm{e}^{-2Ax}\neq 0 (see (2.51)),

M1err(x,t)limkk(Merr(x,t,k)I)=O(ect)2A+id(A)e2Ax,t+,M_{1}^{\mathrm{err}}(x,t)\coloneqq\lim_{k\to\infty}k\bigl{(}M^{\mathrm{err}}(x,t,k)-I\bigr{)}=\frac{\mathrm{O}(\mathrm{e}^{-ct})}{2A+\mathrm{i}d(A)\mathrm{e}^{-2Ax}},\quad t\to+\infty, (3.41)

where O(ect)\mathrm{O}(\mathrm{e}^{-ct}) is independent of xx and

d(A)γ+F+2(0,A)a10δ2(0,A),d(A)\coloneqq\frac{\gamma_{+}\,F_{+}^{2}(0,-A)}{a_{10}\,\delta^{2}(0,-A)}, (3.42)

with δ(k,A)\delta(k,-A) and F(k,A)F(k,-A) given by (3.6) and (3.18), respectively. From (3.36) and (3.41) we conclude that q(x,t)q(x,t) and q(x,t)q(-x,t) can be found in terms of the solution Mmod(x,k)M^{\mathrm{mod}}(x,k) as follows:

q(x,t)\displaystyle q(x,t) =2ie2iA2t+2iF(A)limkkM~12(x,k)+O(ect),\displaystyle=2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t+2\mathrm{i}F_{\infty}(-A)}\lim_{k\to\infty}k\tilde{M}_{12}(x,k)+\mathrm{O}(\mathrm{e}^{-ct}), x>0,t+,\displaystyle x>0,\,\,t\to+\infty, (3.43a)
q(x,t)\displaystyle q(-x,t) =2ie2iA2t+2iF(A)¯limkkM~21(x,k)¯+O(ect),\displaystyle=-2\mathrm{i}\mathrm{e}^{-2\mathrm{i}A^{2}t+2\mathrm{i}\overline{F_{\infty}(-A)}}\lim_{k\to\infty}\overline{k\tilde{M}_{21}(x,k)}+\mathrm{O}(\mathrm{e}^{-ct}), x>0,t+.\displaystyle x>0,\,\,t\to+\infty. (3.43b)

Then, arguing as in Section 2.4, we can explicitly solve the RH problem for Mmod(x,k)M^{\mathrm{mod}}(x,k) and thus arrive at

Theorem 3.9 (transition at ξ=0\xi=0).

Assume that the initial data q0(x)q_{0}(x) approaches exponentially fast its boundary values (1.1c) and that the associated spectral functions aj(k)a_{j}(k) and rj(k)=bj(k)aj(k)r_{j}(k)=\frac{b_{j}(k)}{a_{j}(k)}, j=1,2j=1,2 satisfy Assumptions 2.5.

Then the solution q(x,t)q(x,t) of problem (1.1) has the following asymptotics as t+t\to+\infty along the rays x=constx=\mathrm{const}, excluding x=0x=0 and also x=x12Alnid(A)2Ax=x^{\prime}\coloneqq\frac{1}{2A}\ln\frac{-\mathrm{i}d(A)}{2A} if xx^{\prime} is real and positive, and x=x′′12Alnid(A)¯2Ax=x^{\prime\prime}\coloneqq-\frac{1}{2A}\ln\frac{\mathrm{i}\overline{d(A)}}{2A} if x′′x^{\prime\prime} is real and negative:

q(x,t)={Ae2ImF(A)e2i(A2tReF(A))2Aid(A)e2Ax2A+id(A)e2Ax+O(ect),x>0,Ae2ImF(A)e2i(A2tReF(A))2Ae2Ax+id(A)¯2Ae2Axid(A)¯+O(ect),x<0,q(x,t)=\begin{cases}A\mathrm{e}^{-2\operatorname{Im}F_{\infty}(-A)}\mathrm{e}^{-2\mathrm{i}(A^{2}t-\operatorname{Re}F_{\infty}(-A))}\cdot\frac{2A-\mathrm{i}d(A)\mathrm{e}^{-2Ax}}{2A+\mathrm{i}d(A)\mathrm{e}^{-2Ax}}+\mathrm{O}(\mathrm{e}^{-ct}),&x>0,\\ -A\mathrm{e}^{2\operatorname{Im}F_{\infty}(-A)}\mathrm{e}^{-2\mathrm{i}(A^{2}t-\operatorname{Re}F_{\infty}(-A))}\cdot\frac{2A\mathrm{e}^{-2Ax}+\mathrm{i}\overline{d(A)}}{2A\mathrm{e}^{-2Ax}-\mathrm{i}\overline{d(A)}}+\mathrm{O}(\mathrm{e}^{-ct}),&x<0,\end{cases} (3.44)

with some c>0c>0 independent of xx. Here F(A)F_{\infty}(-A) and d(A)d(A) are given by (3.21) and (3.42), respectively.

Remark 3.10.

As x±x\to\pm\infty, the main terms in (3.44) match those in (3.34).

Remark 3.11.

The main term of the asymptotics in (3.44) is continuous at x=0x=0 only if d(A)d(A) and ImF(A)\operatorname{Im}F_{\infty}(-A) satisfies one of the two conditions:

  • ImF(A)=0\operatorname{Im}F_{\infty}(-A)=0 and |d(A)|=2A|d(A)|=2A with d(A)2iAd(A)\neq 2\mathrm{i}A,

  • d(A)=2iAd(A)=-2\mathrm{i}A (without condition on ImF(A)\operatorname{Im}F_{\infty}(-A)).

Appendix A Proof of Proposition 2.2

Proof of item (ii).

Substituting q0,R(x)q_{0,R}(x) with R=0R=0 (see 2.27) to (2.1), we obtain that Ψj(0,0,k)=j(k)\Psi_{j}(0,0,k)=\mathcal{E}_{j}(k), j=1,2j=1,2. Using (2.19), we have S(k)=21(k)1(k)S(k)=\mathcal{E}_{2}^{-1}(k)\mathcal{E}_{1}(k), which implies (2.31) in view of (2.20).

Proof of item (i).

For the initial data q0,R(x)q_{0,R}(x) with R>0R>0, from the integral representations (2.1) we have that

Ψ2(R,0,k)=2(k)\Psi_{2}(R,0,k)=\mathcal{E}_{2}(k) (A.1)

and that the (11)(11) and (12)(12) entries of Ψ1(x,0,k)\Psi_{1}(x,0,k) for x[R,R]x\in[-R,R] satisfy the following integral equations:

(Ψ1)11(x,0,k)=e1(k)+2Ae1(k)e2(k)Rx(1e2if(k)(xy))(Ψ1)11(y,0,k)dy,\displaystyle(\Psi_{1})_{11}(x,0,k)=e_{1}(k)+2Ae_{1}(k)e_{2}(k)\int_{-R}^{x}\left(1-\mathrm{e}^{2\mathrm{i}f(k)(x-y)}\right)(\Psi_{1})_{11}(y,0,k)\,\mathrm{d}y, x[R,R],\displaystyle x\in[-R,R], (A.2a)
(Ψ1)12(x,0,k)=e2(k)2Ae1(k)e2(k)Rx(1e2if(k)(xy))(Ψ1)12(y,0,k)dy,\displaystyle(\Psi_{1})_{12}(x,0,k)=-e_{2}(k)-2Ae_{1}(k)e_{2}(k)\int_{-R}^{x}\left(1-\mathrm{e}^{-2\mathrm{i}f(k)(x-y)}\right)(\Psi_{1})_{12}(y,0,k)\,\mathrm{d}y, x[R,R],\displaystyle x\in[-R,R], (A.2b)

where

e1(k)12(w(k)+1w(k)),e2(k)i2(w(k)1w(k)),e_{1}(k)\coloneqq\frac{1}{2}\left(w(k)+\frac{1}{w(k)}\right),\quad e_{2}(k)\coloneqq\frac{\mathrm{i}}{2}\left(w(k)-\frac{1}{w(k)}\right), (A.3)

with w(k)w(k) given in (2.7). The entries (Ψ1)21(x,0,k)(\Psi_{1})_{21}(x,0,k) and (Ψ1)22(x,0,k)(\Psi_{1})_{22}(x,0,k) can be expressed in terms of (Ψ1)11(x,0,k)(\Psi_{1})_{11}(x,0,k) and (Ψ1)12(x,0,k)(\Psi_{1})_{12}(x,0,k) as follows:

(Ψ1)21(x,0,k)=e2(k)+2ARx(e22(k)+e12(k)e2if(k)(xy))(Ψ1)11(y,0,k)dy,\displaystyle(\Psi_{1})_{21}(x,0,k)=e_{2}(k)+2A\int_{-R}^{x}\left(e_{2}^{2}(k)+e_{1}^{2}(k)\mathrm{e}^{2\mathrm{i}f(k)(x-y)}\right)(\Psi_{1})_{11}(y,0,k)\,\mathrm{d}y, x[R,R],\displaystyle x\in[-R,R], (A.4a)
(Ψ1)22(x,0,k)=e1(k)+2ARx(e12(k)+e22(k)e2if(k)(xy))(Ψ1)12(y,0,k)dy,\displaystyle(\Psi_{1})_{22}(x,0,k)=e_{1}(k)+2A\int_{-R}^{x}\left(e_{1}^{2}(k)+e_{2}^{2}(k)\mathrm{e}^{-2\mathrm{i}f(k)(x-y)}\right)(\Psi_{1})_{12}(y,0,k)\,\mathrm{d}y, x[R,R].\displaystyle x\in[-R,R]. (A.4b)

In order to find Ψ1(R,0,k)\Psi_{1}(R,0,k), we first solve the integral equations (A.2) and then substitute the solutions into (A.4) with x=Rx=R. Using the equality e1(k)e2(k)=iA2f(k)e_{1}(k)e_{2}(k)=-\frac{\mathrm{i}A}{2f(k)}, equation (A.2a) can be reduced to the following Cauchy problem for a linear ordinary differential equation:

{d2dx2(Ψ1)11(x,0,k)2if(k)ddx(Ψ1)11(x,0,k)+2A2(Ψ1)11(x,0,k)=0,x[R,R],(Ψ1)11(R,0,k)=e1(k),ddx(Ψ1)11(R,0,k)=0.\begin{cases}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}(\Psi_{1})_{11}(x,0,k)-2\mathrm{i}f(k)\frac{\mathrm{d}}{\mathrm{d}x}(\Psi_{1})_{11}(x,0,k)+2A^{2}(\Psi_{1})_{11}(x,0,k)=0,&x\in[-R,R],\\ (\Psi_{1})_{11}(-R,0,k)=e_{1}(k),\quad\frac{\mathrm{d}}{\mathrm{d}x}(\Psi_{1})_{11}(-R,0,k)=0.&\end{cases} (A.5)

The solution of (A.5) has the form

(Ψ1)11(x,0,k)=ie1(k)λ2(k)2h(k)eλ1(k)(x+R)ie1(k)λ1(k)2h(k)eλ2(k)(x+R),x[R,R],(\Psi_{1})_{11}(x,0,k)=\frac{\mathrm{i}e_{1}(k)\lambda_{2}(k)}{2h(k)}\mathrm{e}^{\lambda_{1}(k)(x+R)}-\frac{\mathrm{i}e_{1}(k)\lambda_{1}(k)}{2h(k)}\mathrm{e}^{\lambda_{2}(k)(x+R)},\quad x\in[-R,R], (A.6)

where h(k)h(k), λj(k)\lambda_{j}(k), j=1,2j=1,2 are given by (2.28) and (2.29) respectively. Then, substituting (A.6) into (A.4a) and using the relations λ1(k)λ2(k)=f(k)h(k)+k2A2\frac{\lambda_{1}(k)}{\lambda_{2}(k)}=-\frac{f(k)h(k)+k^{2}}{A^{2}}, λ2(k)λ1(k)=f(k)h(k)k2A2\frac{\lambda_{2}(k)}{\lambda_{1}(k)}=\frac{f(k)h(k)-k^{2}}{A^{2}} and e12(k)e22(k)=(k+f(k))2A2\frac{e_{1}^{2}(k)}{e_{2}^{2}(k)}=-\frac{(k+f(k))^{2}}{A^{2}}, we obtain:

(Ψ1)21(R,0,k)\displaystyle(\Psi_{1})_{21}(R,0,k) =e2(k)+iAe1(k)e22(k)h(k)(λ2(k)λ1(k)(e2λ1(k)R1)λ1(k)λ2(k)(e2λ2(k)R1))\displaystyle=e_{2}(k)+\mathrm{i}A\frac{e_{1}(k)e_{2}^{2}(k)}{h(k)}\left(\frac{\lambda_{2}(k)}{\lambda_{1}(k)}\left(\mathrm{e}^{2\lambda_{1}(k)R}-1\right)-\frac{\lambda_{1}(k)}{\lambda_{2}(k)}\left(\mathrm{e}^{2\lambda_{2}(k)R}-1\right)\right)
+iAe13(k)h(k)(e2λ2(k)Re2λ1(k)R)\displaystyle\qquad+\mathrm{i}A\frac{e_{1}^{3}(k)}{h(k)}\left(\mathrm{e}^{2\lambda_{2}(k)R}-\mathrm{e}^{2\lambda_{1}(k)R}\right)
=A2e2(k)2f(k)h(k)(e2λ1(k)R(λ2(k)λ1(k)e12(k)e22(k))e2λ2(k)R(λ1(k)λ2(k)e12(k)e22(k)))\displaystyle=\frac{A^{2}e_{2}(k)}{2f(k)h(k)}\left(\mathrm{e}^{2\lambda_{1}(k)R}\left(\frac{\lambda_{2}(k)}{\lambda_{1}(k)}-\frac{e_{1}^{2}(k)}{e_{2}^{2}(k)}\right)-\mathrm{e}^{2\lambda_{2}(k)R}\left(\frac{\lambda_{1}(k)}{\lambda_{2}(k)}-\frac{e_{1}^{2}(k)}{e_{2}^{2}(k)}\right)\right)
=e2(k)2h(k)(e2λ1(k)R(2kiλ1(k))e2λ2(k)R(2kiλ2(k))).\displaystyle=\frac{e_{2}(k)}{2h(k)}\left(\mathrm{e}^{2\lambda_{1}(k)R}(2k-\mathrm{i}\lambda_{1}(k))-\mathrm{e}^{2\lambda_{2}(k)R}(2k-\mathrm{i}\lambda_{2}(k))\right). (A.7)

Similarly, from the integral equation (A.2b) we deduce that

(Ψ1)12(x,0,k)=ie2(k)λ1(k)2h(k)eλ2(k)(x+R)ie2(k)λ2(k)2h(k)eλ1(k)(x+R),x[R,R],(\Psi_{1})_{12}(x,0,k)=\frac{\mathrm{i}e_{2}(k)\lambda_{1}(k)}{2h(k)}\mathrm{e}^{-\lambda_{2}(k)(x+R)}-\frac{\mathrm{i}e_{2}(k)\lambda_{2}(k)}{2h(k)}\mathrm{e}^{-\lambda_{1}(k)(x+R)},\quad x\in[-R,R], (A.8)

and, consequently, from (A.4b) we have (here we use e22(k)e12(k)=(f(k)k)2A2\frac{e_{2}^{2}(k)}{e_{1}^{2}(k)}=-\frac{(f(k)-k)^{2}}{A^{2}})

(Ψ1)22(R,0,k)\displaystyle(\Psi_{1})_{22}(R,0,k) =e1(k)+iAe12(k)e2(k)h(k)(λ2(k)λ1(k)(e2λ1(k)R1)λ1(k)λ2(k)(e2λ2(k)R1))\displaystyle=e_{1}(k)+\mathrm{i}A\frac{e_{1}^{2}(k)e_{2}(k)}{h(k)}\left(\frac{\lambda_{2}(k)}{\lambda_{1}(k)}\left(\mathrm{e}^{-2\lambda_{1}(k)R}-1\right)-\frac{\lambda_{1}(k)}{\lambda_{2}(k)}\left(\mathrm{e}^{-2\lambda_{2}(k)R}-1\right)\right)
+iAe23(k)h(k)(e2λ2(k)Re2λ1(k)R)\displaystyle\qquad+\mathrm{i}A\frac{e_{2}^{3}(k)}{h(k)}\left(\mathrm{e}^{-2\lambda_{2}(k)R}-\mathrm{e}^{-2\lambda_{1}(k)R}\right)
=A2e1(k)2f(k)h(k)(e2λ1(k)R(λ2(k)λ1(k)e22(k)e12(k))e2λ2(k)R(λ1(k)λ2(k)e22(k)e12(k)))\displaystyle=\frac{A^{2}e_{1}(k)}{2f(k)h(k)}\left(\mathrm{e}^{-2\lambda_{1}(k)R}\left(\frac{\lambda_{2}(k)}{\lambda_{1}(k)}-\frac{e_{2}^{2}(k)}{e_{1}^{2}(k)}\right)-\mathrm{e}^{-2\lambda_{2}(k)R}\left(\frac{\lambda_{1}(k)}{\lambda_{2}(k)}-\frac{e_{2}^{2}(k)}{e_{1}^{2}(k)}\right)\right)
=e1(k)2h(k)(e2λ2(k)R(2k+iλ2(k))e2λ1(k)R(2k+iλ1(k))).\displaystyle=\frac{e_{1}(k)}{2h(k)}\left(\mathrm{e}^{-2\lambda_{2}(k)R}(2k+\mathrm{i}\lambda_{2}(k))-\mathrm{e}^{-2\lambda_{1}(k)R}(2k+\mathrm{i}\lambda_{1}(k))\right). (A.9)

Finally, substituting (A.1) and (A.6)–(A.9) into

S(k)=eiRf(k)σ3Ψ21(R,0,k)Ψ1(R,0,k)eiRf(k)σ3S(k)=\mathrm{e}^{\mathrm{i}Rf(k)\sigma_{3}}\Psi_{2}^{-1}(R,0,k)\Psi_{1}(R,0,k)\mathrm{e}^{-\mathrm{i}Rf(k)\sigma_{3}} (A.10)

and using equalities e12(k)=f(k)+k2f(k)e_{1}^{2}(k)=\frac{f(k)+k}{2f(k)} and e22(k)=f(k)k2f(k)e_{2}^{2}(k)=\frac{f(k)-k}{2f(k)}, we arrive at (2.30).

Proof of item (iii).

Let the entries of the 2×22\times 2 matrix Ψ^1(x,k)\hat{\Psi}_{1}(x,k) satisfy (A.2) and (A.4) for x[R,R]x\in[R,-R] (recall that here R<0R<0). Then from the integral representation for Ψ2(x,0,k)\Psi_{2}(x,0,k), see (2.1), we conclude that the entries of Ψ2(x,0,k)\Psi_{2}(x,0,k) can be found via Ψ^1(x,k)\hat{\Psi}_{1}(x,k) as follows:

(Ψ2)11(x,0,k)=(Ψ^1)11(x,k),(Ψ2)12(x,0,k)=(Ψ^1)12(x,k),(Ψ2)21(x,0,k)=(Ψ^1)21(x,k),(Ψ2)22(x,0,k)=(Ψ^1)22(x,k).\begin{split}&(\Psi_{2})_{11}(x,0,k)=(\hat{\Psi}_{1})_{11}(x,k),\quad\,\,\,\,(\Psi_{2})_{12}(x,0,k)=-(\hat{\Psi}_{1})_{12}(x,k),\\ &(\Psi_{2})_{21}(x,0,k)=-(\hat{\Psi}_{1})_{21}(x,k),\quad(\Psi_{2})_{22}(x,0,k)=(\hat{\Psi}_{1})_{22}(x,k).\end{split} (A.11)

Therefore, using the expressions for the entries of the matrix Ψ^1(R,k)\hat{\Psi}_{1}(R,k) obtained in the proof of item (i), we obtain Ψ2(R,0,k)\Psi_{2}(R,0,k). Since Ψ1(R,0,k)=1(k)\Psi_{1}(R,0,k)=\mathcal{E}_{1}(k), from (A.10) and (A.11) we have (2.32).

References