This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Floquet Dynamical Decoupling at Zero Bias

Peng Xu [email protected] School of Physics, Zhengzhou University, Zhengzhou 450001, China    Jun Zhang School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
Abstract

Dynamical decoupling (DD) is an efficient method to decouple systems from environmental noises and to prolong the coherence time of systems. In contrast to discrete and continuous DD protocols in the presence of bias field, we propose a Floquet DD at zero bias to perfectly suppress both the zeroth and first orders of noises according to the Floquet theory. Specifically, we demonstrate the effectiveness of this Floquet DD protocol in two typical systems including a spinor atomic Bose-Einstein condensate decohered by classical stray magnetic fields and a semiconductor quantum dot electron spin coupled to nuclear spins. Furthermore, our protocol can be used to sense high-frequency noises. The Floquet DD protocol we propose shines new light on low-cost and high-portable DD technics without bias field and with low controlling power, which may have wide applications in quantum computing, quantum sensing, nuclear magnetic resonance and magnetic resonance imaging.

Introduction. Systems that are not sufficiently isolated inevitably couple to environments, resulting in finite coherence time, finite lifetime and particle loss Nielsen and Chuang (2002); Breuer et al. (2002); Gardiner and Zoller (2004); Suter and Álvarez (2016). The fidelity of entangled state preparations and the reliability of quantum gate operations will be decreased Ma et al. (2011); Aolita et al. (2015); Xu et al. (2019); Knill (2005); Abdelhafez et al. (2020), leading to destructive effects on many quantum applications, such as quantum communication Bouchard et al. (2021), quantum teleportation Oh et al. (2002); Jung et al. (2008), and quantum computing Aliferis and Preskill (2008); Urbanek et al. (2021). Therefore, it is crucial to suppress these destructive channels in experiments. However, the timescale of decoherence induced by noises or interactions is much shorter than other destructive channels. Thus suppressing the decoherence channel and prolonging the coherence time is the first challenge in experiments Paik et al. (2008); Pokharel et al. (2018); Abobeih et al. (2018); Bauch et al. (2020); Wang et al. (2017, 2021).

Dynamical decoupling (DD) is a useful mechanism to prolong the coherence time of systems and to decouple systems from both classical and quantum noises Haeberlen (2012); Mehring (2012); Slichter (2013). It was originally proposed by Hahn as spin echo Hahn (1950), then developed into various forms, such as Carr-Purcell-Meiboom-Gill (CPMG) Carr and Purcell (1954); Meiboom and Gill (1958), periodic DD (PDD) Khodjasteh and Lidar (2005), concatenated DD (CDD) Khodjasteh and Lidar (2005); Zhang et al. (2008), Uhrig DD (UDD) Uhrig (2007) and uniaxial DD (Uni-DD) Yao et al. (2019). The DD protocols mentioned above are the discrete type with strong strength of control pulses. In order to decrease the controlling power, continuous DD protocols have been proposed Fanchini et al. (2007a, b); Bermudez et al. (2012); Chaudhry and Gong (2012); Cai et al. (2012); Timoney et al. (2011); Xu et al. (2012); Zhang et al. (2016); Stark et al. (2017); Anderson et al. (2018); Cai and Xia (2022). Recently, these DD protocols are widely applied to various systems, such as quantum dots Medford et al. (2012); Sun et al. (2022), nitrogen-vacancy centers Xu et al. (2012); Anderson et al. (2018); Abobeih et al. (2018), trapped ions Timoney et al. (2011); Wang et al. (2017, 2021) and superconducting quantum interference devices Guo et al. (2018); Pokharel et al. (2018); Qiu et al. (2021). The coherence time of systems is significantly improved in experiments. However, both discrete and continuous DD protocols require a large bias field, which makes the experimental setups high-cost and low-portable. Besides, there are potential tasks to decouple and to sense noises without bias Dmitriev and Vershovskii (2018); Dmitriev et al. (2019); Dmitriev and Vershovskii (2022); Mikawa et al. (2023). So, it is necessary and significant to propose a novel protocol aiming at suppressing the decoherence channel and sensing high-frequency noises at zero bias.

In this letter, we propose a new method named Floquet DD at zero bias to decouple systems from environments. We first analytically obtain the effective Hamiltonian under Floquet DD based on the Floquet theory, which demonstrates our protocol can not only suppress the zeroth order of noises but prevent systems from being decohered by the first order of noises. Second, numerical simulations confirm the commendable performance of our protocol in a spinor Bose-Einstein condensate (BEC) decohered by stray magnetic fields (classical noises) and in a semiconductor quantum dot (QD) electron spin qubit decohered by nuclear spins (quantum noises). Our results can be applied to research in low control field and zero bias in nuclear magnetic resonance and quantum sensing beyond standard quantum limit.

Floquet DD. Before we discuss the Floquet DD, we briefly review existing DD protocols. To compare our method with these protocols, we depict them in the toggling frame of bias since there is no bias in our method intrinsically. The simplest discrete DD, i.e., spin echo, is shown in Fig. 1 (a). The control Hamiltonian is H^c=Ωδ(tnT)J^x\hat{H}_{c}=\Omega\delta(t-nT)\hat{J}_{x} with controlling strength satisfying nTϵ/2nT+ϵ/2Ωδ(tnT)𝑑t=π\int_{nT-\epsilon/2}^{nT+\epsilon/2}\Omega\delta(t-nT)dt=\pi, then noises along zz-axis H^z=bzJ^z\hat{H}_{z}=b_{z}\hat{J}_{z} with strength bz[bm,bm]b_{z}\in[-b_{m},b_{m}] are suppressed. As a result, the spin returns to its initial state after one period as shown in the right panel of Fig. 1 (a). A typical continuous DD is shown in Fig. 1 (b). The control Hamiltonian is H^c=ΩJ^x\hat{H}_{c}=\Omega\hat{J}_{x}, then the system is decoupled from noises under the condition Ωbm\Omega\gg b_{m}. The evolution trajectory is shown in the right panel of Fig. 1 (b), which forms a closed circle.

The Floquet DD protocol we propose is shown in Fig. 1 (c). The control Hamiltonian is H^=Ωcos(ωt+φ)J^x\hat{H}=\Omega\cos(\omega t+\varphi)\hat{J}_{x} with controlling strength Ω\Omega and frequency ω\omega, then the evolution of systems coupled to longitudinal magnetic noises is governed by

H^=bzJ^z+Ωcos(ωt+φ)J^x,\hat{H}=b_{z}\hat{J}_{z}+\Omega\cos(\omega t+\varphi)\hat{J}_{x}, (1)

where we assume |bz|bm|b_{z}|\leq b_{m}. After applying a rotating wave transformation U^=ei0tΩcos(ωτ+φ)J^x𝑑τ\hat{U}=e^{i\int_{0}^{t}\Omega\cos(\omega\tau+\varphi)\hat{J}_{x}d\tau}, the Hamiltonian becomes

H^r=bz\displaystyle\hat{H}_{r}=b_{z} n=[𝒥2nei2n(ωt+φ)J^zi𝒥2n+1ei(2n+1)(ωt+φ)J^y],\displaystyle\sum_{n=-\infty}^{\infty}\left[\mathcal{J}_{2n}e^{i2n(\omega t+\varphi)}\hat{J}_{z}-i\mathcal{J}_{2n+1}e^{i(2n+1)(\omega t+\varphi)}\hat{J}_{y}\right], (2)

where 𝒥n\mathcal{J}_{n} is the nn-th order Bessel function of Ω/ω\Omega/\omega. When ω\omega is larger than bmb_{m}, we can use the high-frequency expansion to obtain the Floquet effective Hamiltonian, H^eff=H^(0)+n0([H^(n),H^(n)]2nω[H^(n),H^(0)]nω)+\hat{H}_{\text{eff}}=\hat{H}^{(0)}+\sum_{n\neq 0}\left(\frac{\left[\hat{H}^{(n)},\hat{H}^{(-n)}\right]}{2n\omega}-\frac{\left[\hat{H}^{(n)},\hat{H}^{(0)}\right]}{n\omega}\right)+\cdots, where H^(n)=1T0TH^(t)einωt𝑑t\hat{H}^{(n)}=\frac{1}{T}\int_{0}^{T}\hat{H}(t)e^{-in\omega t}dt. In the high-frequency limit, the rotating wave approximation, we can keep the expansion to the leading order

H^eff=bz𝒥0J^z.\hat{H}_{\text{eff}}=b_{z}\mathcal{J}_{0}\hat{J}_{z}. (3)

When the ratio Ω/ω\Omega/\omega satisfies 𝒥0(Ω/ω)=0\mathcal{J}_{0}\left(\Omega/\omega\right)=0, the zeroth order of noises about bzb_{z} is completely suppressed. Furthermore, because of [H^(n),H^(n)]=0\left[\hat{H}^{(n)},\hat{H}^{(-n)}\right]=0, the first order of longitudinal noises is also inhibited perfectly.

Refer to caption
Figure 1: Schematics for different DD protocols. The control is along xx-axis, and noises are along zz-axis, bz[bm,bm]b_{z}\in[-b_{m},b_{m}]. The typical DD protocols are shown in the left panels, while the corresponding evolutions are shown in the right panels. (a) Discrete DD. (b) Continuous DD. (c) Floquet DD.

According to the above analysis, we conclude that both the zeroth and first orders of longitudinal noises are suppressed completely. However, in experiments, there may exist noises with random directions, i.e., stray magnetic fields. So, it is vital for Floquet DD to prevent systems from being decohered by stray magnetic fields. Fortunately, our protocol can be directly extended to suppress these noises. The Hamiltonian with controls in this situation is

H^=𝒃𝑱^+α=x,yΩαcos(ωαt+φα)J^α,\displaystyle\hat{H}=\bm{b\cdot\hat{J}}+\sum_{\alpha=x,y}\Omega_{\alpha}\cos(\omega_{\alpha}t+\varphi_{\alpha})\hat{J}_{\alpha}, (4)

where we assume |𝒃|bm|\bm{b}|\leq b_{m} and ωx=ωy=ω\omega_{x}=\omega_{y}=\omega not (a). In the following, we apply a rotating wave transformation U^I=ei0tΩxcos(ωτ+φx)J^x𝑑τ\hat{U}^{\text{I}}=e^{i\int_{0}^{t}\Omega_{x}\cos(\omega\tau+\varphi_{x})\hat{J}_{x}d\tau}, resulting in the Hamiltonian

H^rI=n=H^(n)einωt,\hat{H}_{r}^{\text{I}}=\sum_{n=-\infty}^{\infty}\hat{H}^{(n)}e^{in\omega t}, (5)

where

H^(0)=bxJ^x+by𝒥0J^y+bz𝒥0J^zΩy𝒥1sin(φxφy)J^z,\displaystyle\hat{H}^{(0)}=b_{x}\hat{J}_{x}+b_{y}\mathcal{J}_{0}\hat{J}_{y}+b_{z}\mathcal{J}_{0}\hat{J}_{z}-\Omega_{y}\mathcal{J}_{1}\sin(\varphi_{x}-\varphi_{y})\hat{J}_{z},
H^(2n0)=by𝒥2nei2nφxJ^y+bz𝒥2nei2nφxJ^z\displaystyle\hat{H}^{(2n\neq 0)}=b_{y}\mathcal{J}_{2n}e^{i2n\varphi_{x}}\hat{J}_{y}+b_{z}\mathcal{J}_{2n}e^{i2n\varphi_{x}}\hat{J}_{z}
+iΩy2[𝒥2n1ei[(2n1)φx+φy]+𝒥2n+1ei[(2n+1)φxφy]]J^z\displaystyle+i\frac{\Omega_{y}}{2}\left[\mathcal{J}_{2n-1}e^{i[(2n-1)\varphi_{x}+\varphi_{y}]}+\mathcal{J}_{2n+1}e^{i[(2n+1)\varphi_{x}-\varphi_{y}]}\right]\hat{J}_{z}
H^(2n+1)=iby𝒥2n+1ei(2n+1)φxJ^zibz𝒥2n+1ei(2n+1)φxJ^y\displaystyle\hat{H}^{(2n+1)}=ib_{y}\mathcal{J}_{2n+1}e^{i(2n+1)\varphi_{x}}\hat{J}_{z}-ib_{z}\mathcal{J}_{2n+1}e^{i(2n+1)\varphi_{x}}\hat{J}_{y}
+Ωy2[𝒥2nei[2nφx+φy]+𝒥2n+2ei[(2n+2)φxφy]]J^y,\displaystyle+\frac{\Omega_{y}}{2}\left[\mathcal{J}_{2n}e^{i[2n\varphi_{x}+\varphi_{y}]}+\mathcal{J}_{2n+2}e^{i[(2n+2)\varphi_{x}-\varphi_{y}]}\right]\hat{J}_{y},

with 𝒥n𝒥n(Ωx/ω)\mathcal{J}_{n}\equiv\mathcal{J}_{n}\left(\Omega_{x}/\omega\right). In the high-frequency limit ωbm,Ωy\omega\gg b_{m},\Omega_{y} and 𝒥0(Ωx/ω)=0\mathcal{J}_{0}\left(\Omega_{x}/\omega\right)=0, the effective Hamiltonian becomes

H^effI=bxJ^x+γJ^z,\hat{H}_{\text{eff}}^{\text{I}}=b_{x}\hat{J}_{x}+\gamma\hat{J}_{z}, (6)

with γ=Ωy𝒥1sin(φxφy)\gamma=-\Omega_{y}\mathcal{J}_{1}\sin(\varphi_{x}-\varphi_{y}). Then we apply another rotating wave transformation U^II=eiγJ^zt\hat{U}^{\text{II}}=e^{i\gamma\hat{J}_{z}t}, which transforms the above Hamiltonian to

H^rII=bx[cos(γt)J^xsin(γt)J^y].\hat{H}_{r}^{\text{II}}=b_{x}\left[\cos(\gamma t)\hat{J}_{x}-\sin(\gamma t)\hat{J}_{y}\right]. (7)

In the rotating wave approximation γbm\gamma\gg b_{m}, the effective Hamiltonian is finally obtained

H^effII=0.\hat{H}_{\text{eff}}^{\text{II}}=0. (8)

Thus, the zeroth order of stray magnetic fields is completely suppressed. Furthermore, according to the Floquet expansion, when φx=π/2\varphi_{x}=\pi/2 or 3π/23\pi/2 and φy=0\varphi_{y}=0 or π\pi, H^(n)\hat{H}^{(n)} is equal to H^(n)\hat{H}^{(-n)} in Eq. (5), thereby inhibiting the first order of noises about by,bzb_{y},b_{z}. The first order of noises about bxb_{x} can also be inhibited by alternatively tuning φy=0\varphi_{y}=0 or φy=π\varphi_{y}=\pi for two nearest neighboring intervals and ensuring |γ|T=2nπ|\gamma|T=2n\pi in each interval not (b). Until now, we have demonstrated the complete suppression of both the zeroth and first orders of stray magnetic noises. Besides, higher orders of noises are also slightly suppressed by small coefficients because of the high-order Bessel function. More significantly, the above discussions about classical magnetic fields are also valid for quantum noises, only regarding 𝒃\bm{b} as 𝒃^\hat{\bm{b}} operator. In the following two sections, we numerically calculate two concrete examples to illustrate that our protocol is capable of suppressing both classical and quantum noises.

Refer to caption
Figure 2: Suppression of classical noises with Floquet DD in an atomic spinor BEC. (a) Expectation values of J^y\hat{J}_{y} at time bm1t=200b_{m}^{-1}t=200 under different controlling parameters, r1=ω/γr_{1}=\omega/\gamma and r2=γ/bmr_{2}=\gamma/b_{m}. (b) Dynamics of J^y\left\langle\hat{J}_{y}\right\rangle under several typical pairs of {r1,r2}\{r_{1},r_{2}\} and FID means there is no control. The black solid line mimics the decaying dynamics by eσ2t2e^{-\sigma^{2}t^{2}} with σ0.35\sigma\approx 0.35. ωx=ωy=ω\omega_{x}=\omega_{y}=\omega, Ωx=ωr0\Omega_{x}=\omega r_{0}, Ωy=γ/𝒥1(r0)\Omega_{y}=\gamma/\mathcal{J}_{1}(r_{0}), with 𝒥0(r0)=0\mathcal{J}_{0}(r_{0})=0. Stray magnetic fields 𝒃\bm{b} are randomly distributed in a sphere and the radius of the sphere is bmb_{m}. The initial state is polarized along yy direction. JJ is the mean value of J^y\hat{J}_{y} for the initial state.
Refer to caption
Figure 3: Suppression of quantum noises with Floquet DD in a GaAs QD. (a) Expectation values of S^y\hat{S}_{y} at time Am1t=200A_{m}^{-1}t=200 under different controlling parameters, r1=ω/γr_{1}=\omega/\gamma and r2=γ/bmr_{2}=\gamma/b_{m}. (b) Dynamics of S^y\langle\hat{S}_{y}\rangle under several typical pairs of {r1,r2}\{r_{1},r_{2}\} and FID means there is no control. The black solid line mimics the decaying dynamics by eσ2t2e^{-\sigma^{2}t^{2}} with σ0.35×3\sigma\approx 0.35\times 3. ωy=ωx=ω\omega_{y}=\omega_{x}=\omega, Ωx=ωr0\Omega_{x}=\omega r_{0}, Ωy=γ/𝒥1(r0)\Omega_{y}=\gamma/\mathcal{J}_{1}(r_{0}), with 𝒥0(r0)=0\mathcal{J}_{0}(r_{0})=0. Coupling strengths of nuclear spin interactions are distributed in a 2D (4 ×\times 3) Gaussian form, Ak=Amexp[(xx0)2/wx2(yy0)2/wy2]A_{k}=A_{m}\text{exp}\left[-(x-x_{0})^{2}/w_{x}^{2}-(y-y_{0})^{2}/w_{y}^{2}\right], with effective widths wx/ax=3/2w_{x}/a_{x}=3/2 and wy/ay=2w_{y}/a_{y}=2 and a shifted center x0/ax=0.1x_{0}/a_{x}=0.1 and y0/ay=0.2y_{0}/a_{y}=0.2. The nuclear spins are initially randomly polarized on the Bloch sphere. The initial electronic spin is polarized along yy direction. SS is the mean value of S^y\hat{S}_{y} for the initial state.

Suppressing classical noises in a spinor BEC. As for classical noises, we consider an atomic spinor BEC in external stray magnetic fields. The system with controls is described by the Hamiltonian H^=𝒃𝑱^+α=x,yΩαcos(ωαt+φα)J^α\hat{H}=\bm{b\cdot\hat{J}}+\sum_{\alpha=x,y}\Omega_{\alpha}\cos(\omega_{\alpha}t+\varphi_{\alpha})\hat{J}_{\alpha} under the single-mode approximation Ho (1998); Ohmi and Machida (1998); Law et al. (1998); Stamper-Kurn and Ueda (2013), which is the same as Eq. (4). 𝑱^\bm{\hat{J}} is the total spin of the spinor BEC and 𝒃\bm{b} are stray magnetic fields that are randomly distributed in a sphere with radius bmb_{m}. The controls are chosen along xx and yy axes. The energy and the time units are bmb_{m} and bm1b_{m}^{-1}, respectively.

As we have demonstrated based on the Floquet theory, stray magnetic fields bx,by,bzb_{x},b_{y},b_{z} are all suppressed to the second order. So without loss of generality, we just show numerical simulations of J^y\langle\hat{J}_{y}\rangle in Fig. 2. Due to 𝒥0(Ωx/ω)=0\mathcal{J}_{0}(\Omega_{x}/\omega)=0, we set r0Ωx/ω2.4048r_{0}\equiv\Omega_{x}/\omega\approx 2.4048. Besides, to satisfy the high-frequency expansion (ω>Ωyγ>bm\omega>\Omega_{y}\simeq\gamma>b_{m}) and the commensuration between two rotating wave transformations, we set r1ω/γ,r2γ/bmr_{1}\equiv\omega/\gamma\in\mathbb{Z},r_{2}\equiv\gamma/b_{m}\in\mathbb{R}. According to numerical results shown in Fig. 2 (a), we find expectation values of J^y\hat{J}_{y} approach to JJ as r1r_{1} and r2r_{2} increase. In Fig. 2 (b), we show five typical dynamics of J^y\langle\hat{J}_{y}\rangle under different controlling parameters, where blue circles depict the free induced decay (FID) without Floquet DD, and other colored lines show decoherence with Floquet DD. These numerical results indicate that the coherence time is significantly prolonged under controls even when the controlling strengths are slightly larger than the strength of noises. For example, when r1=r2=4r_{1}=r_{2}=4, the coherence time is dozens of times longer than that of FID based on the rough estimation, and when r1=r28r_{1}=r_{2}\geq 8, the coherence time is clearly seen prolonged by 2 orders of magnitude, which are consistent with the theoretical analysis indicating that stray magnetic fields are suppressed to the second order O(1/r1,22)O(1/r^{2}_{1,2}).

Suppressing quantum noises in a QD. As for quantum noises, which are intrinsically different from classical noises described by stochastic fields, they are treated by operators and their correlations. To illustrate the suppressing capability of our protocol, we consider a gate-defined GaAs semiconductor QD system, which is well described by a central electron spin decohered by surrounding nuclear spins Petta et al. (2005); Koppens et al. (2006); Taylor et al. (2007). The Hamiltonian of this system with NN nuclear spins under two sequences of alternative controls is H^=𝑺k=1NAk𝑰k+α=x,yΩαcos(ωαt+φα)S^α\hat{H}=\bm{S}\cdot\sum_{k=1}^{N}A_{k}\bm{I}_{k}+\sum_{\alpha=x,y}\Omega_{\alpha}\cos(\omega_{\alpha}t+\varphi_{\alpha})\hat{S}_{\alpha}, where 𝑺\bm{S} and 𝑰\bm{I} are the electron spin and the nuclear spin, respectively, and both are assumed spin-1/21/2 for simplicity. In general, AkA_{k} is proportional to the local density of the electron at the position of the kk-th nucleon, Ak=Amexp[(xx0)2/wx2(yy0)2/wy2]A_{k}=A_{m}\text{exp}\left[-(x-x_{0})^{2}/w_{x}^{2}-(y-y_{0})^{2}/w_{y}^{2}\right], a 2D Gaussian form with effective widths wx/ax=3/2w_{x}/a_{x}=3/2 and wy/ay=2w_{y}/a_{y}=2 and a shifted center x0/ax=0.1x_{0}/a_{x}=0.1 and y0/ay=0.2y_{0}/a_{y}=0.2 Dobrovitski et al. (2006). The energy and the time units are AmA_{m} and Am1A_{m}^{-1}. Here we neglect the interactions between nuclear spins because they are so small that the timescale of their dynamics is much longer than the decoherence time of the electron spin.

Refer to caption
Figure 4: Robustness of Floquet DD under fluctuation in controlling powers. F^y\langle\hat{F}_{y}\rangle means the expectation value of spins along yy-axis at time bm1t=200b_{m}^{-1}t=200 (Am1t=200A_{m}^{-1}t=200). FF denotes JJ (SS) for classical (quantum) noises. r0[2.388,2.417]r_{0}\in[2.388,2.417] corresponds to 1.2%1.2\% fluctuations of controlling power Ωα\Omega_{\alpha}. We set r1=r2=16r_{1}=r_{2}=16 and r1=r2=32r_{1}=r_{2}=32 for suppressing classical noises and quantum noises, respectively. The down (up) triangles depict the results for suppression of classical (quantum) noises with fluctuation of controlling power.

The meanings of controlling parameters r0r_{0}, r1r_{1} and r2r_{2} are the same as that in suppressing classical noises. We choose expectation values of S^y\hat{S}_{y} as the witness for quantum noises suppression. The system evolution is simulated by the Chebyshev polynomial expansion Dobrovitski and De Raedt (2003). According to Fig. 3 (a), we find suppressing effects are increased as strengths of controlling parameters increase, which is similar to the behaviors in suppressing classical noises. However, based on Fig. 3 (b), we find that the coherence time for suppressing quantum noises at r1=r2=8r_{1}=r_{2}=8 is similar to that for suppressing classical noises at r1=r2=4r_{1}=r_{2}=4. To compare these two different types of noises, we use the decaying dynamics eσ2t2e^{-\sigma^{2}t^{2}} to mimic the processes of FID. We obtain σ0.35\sigma\approx 0.35 for the classical noises, while σ0.35×3\sigma\approx 0.35\times 3 for the quantum noises. So in our numerical simulations, the controlling parameters for suppressing quantum noises should be larger than that for suppressing classical noises to achieve a similar coherence time.

Robustness of Floquet DD. Although we have demonstrated the ability of Floquet DD in suppressing both classical and quantum noises, controlling fluctuations arise from power, frequency and phase have not been considered. Based on current experimental conditions, we here mainly consider the fluctuation in controlling power Ωα\Omega_{\alpha}. Therefore, after applying the first rotating wave approximation the Hamiltonian in Eq. (4) becomes H^effI=bxJ^x+byJ^y+bzJ^z+γJ^z\hat{H}_{\text{eff}}^{\text{I}}=b_{x}\hat{J}_{x}+b^{\prime}_{y}\hat{J}_{y}+b^{\prime}_{z}\hat{J}_{z}+\gamma^{\prime}\hat{J}_{z} with by=by𝒥0(Ωx/ω)b^{\prime}_{y}=b_{y}\mathcal{J}_{0}(\Omega^{\prime}_{x}/\omega), bz=bz𝒥0(Ωx/ω)b^{\prime}_{z}=b_{z}\mathcal{J}_{0}(\Omega^{\prime}_{x}/\omega), γ=Ωy𝒥1(Ωy/ω)sin(φxφy)\gamma^{\prime}=-\Omega^{\prime}_{y}\mathcal{J}_{1}(\Omega^{\prime}_{y}/\omega)\sin(\varphi_{x}-\varphi_{y}). The zeroth order of noises about byb_{y} and bzb_{z} is suppressed to byb^{\prime}_{y} and bzb^{\prime}_{z}, respectively. Then after applying the second rotating wave approximation, the above effective Hamiltonian becomes H^effII=bzJ^z[Ωy𝒥1(Ωy/ω)Ωy𝒥1(Ωy/ω)]sin(φxφy)\hat{H}_{\text{eff}}^{\text{II}}=b^{\prime}_{z}\hat{J}_{z}-\left[\Omega^{\prime}_{y}\mathcal{J}_{1}(\Omega^{\prime}_{y}/\omega)-\Omega_{y}\mathcal{J}_{1}(\Omega_{y}/\omega)\right]\sin(\varphi_{x}-\varphi_{y}). Additionally, the second term [Ωy𝒥1(Ωy/ω)Ωy𝒥1(Ωy/ω)]sin(φxφy)-\left[\Omega^{\prime}_{y}\mathcal{J}_{1}(\Omega^{\prime}_{y}/\omega)-\Omega_{y}\mathcal{J}_{1}(\Omega^{\prime}_{y}/\omega)\right]\sin(\varphi_{x}-\varphi_{y}) can be cancelled by alternatively tuning φy=0\varphi_{y}=0 or φy=π\varphi_{y}=\pi for two nearest neighboring intervals. Finally, the fluctuation of Ωα\Omega_{\alpha} leads to the residue of longitudinal magnetic noises bzb^{\prime}_{z}, resulting in a shorter coherence time of spins in the xx-yy plane compared to that along zz-axis. Without loss of generality, we still choose F^y\langle\hat{F}_{y}\rangle as the witness of decoherence, where F^\hat{F} denotes J^\hat{J} for classical noises and S^\hat{S} for quantum noises. Numerically, r0[2.388,2.417]r_{0}\in[2.388,2.417] approximately corresponds to 1.2%1.2\% fluctuations of Ωα\Omega_{\alpha}, and the numerical simulations are shown in Fig. 4. F^y/F\langle\hat{F}_{y}\rangle/F is still larger than 0.70.7 at time bm1t=200b_{m}^{-1}t=200 and Am1t=200A_{m}^{-1}t=200 for classical noises and quantum noises, respectively. Based on these results, we find these two kinds of noises are suppressed well, and the coherence time is still prolonged by 22 orders of magnitude even with fluctuation in controlling powers, which manifests that our protocol is robust against controlling fluctuations.

Conclusions and outlooks. We propose a Floquet DD protocol at zero bias to prevent systems from environmental noises. According to the theoretical analysis based on Floquet expansion, we find our protocol can not only suppress the zeroth order of noises but suppress the first order of noises. Besides, we numerically calculate two systems including a spinor BEC in classical stray magnetic fields and a GaAs quantum dot electron spin coupled to quantum nuclear spins. The numerical results of these two systems show our protocol significantly prolongs the coherence time and is robust against fluctuations in controlling powers. Furthermore, our protocol can be used to sense noises with high frequency by detecting decoherence of systems. Our results suggest alternative low-cost and high-portable DD techniques without bias, which may find wide applications in quantum computing, quantum information processing, nuclear magnetic resonance, magnetic resonance imaging.

Acknowledgements. We thank Wenxian Zhang for invaluable discussions and Qi Yao for helpful discussions. This project is supported by the National Natural Science Foundation of China (NSFC) under Grants No. 12204428.

References

  • Nielsen and Chuang (2002) M. A. Nielsen and I. Chuang, Quantum computation and quantum information (American Association of Physics Teachers, 2002).
  • Breuer et al. (2002) H.-P. Breuer, F. Petruccione, et al.The theory of open quantum systems (Oxford University Press on Demand, 2002).
  • Gardiner and Zoller (2004) C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science & Business Media, 2004).
  • Suter and Álvarez (2016) D. Suter and G. A. Álvarez, Rev. Mod. Phys. 88, 041001 (2016).
  • Ma et al. (2011) J. Ma, Y.-x. Huang, X. Wang,  and C. P. Sun, Phys. Rev. A 84, 022302 (2011).
  • Aolita et al. (2015) L. Aolita, F. de Melo,  and L. Davidovich, Rep. Prog. Phys 78, 042001 (2015).
  • Xu et al. (2019) P. Xu, S. Yi,  and W. Zhang, Phys. Rev. Lett. 123, 073001 (2019).
  • Knill (2005) E. Knill, Nature 434, 39 (2005).
  • Abdelhafez et al. (2020) M. Abdelhafez, B. Baker, A. Gyenis, P. Mundada, A. A. Houck, D. Schuster,  and J. Koch, Phys. Rev. A 101, 022321 (2020).
  • Bouchard et al. (2021) F. Bouchard, D. England, P. J. Bustard, K. L. Fenwick, E. Karimi, K. Heshami,  and B. Sussman, Phys. Rev. Appl. 15, 024027 (2021).
  • Oh et al. (2002) S. Oh, S. Lee,  and H.-w. Lee, Phys. Rev. A 66, 022316 (2002).
  • Jung et al. (2008) E. Jung, M.-R. Hwang, Y. H. Ju, M.-S. Kim, S.-K. Yoo, H. Kim, D. Park, J.-W. Son, S. Tamaryan,  and S.-K. Cha, Phys. Rev. A 78, 012312 (2008).
  • Aliferis and Preskill (2008) P. Aliferis and J. Preskill, Phys. Rev. A 78, 052331 (2008).
  • Urbanek et al. (2021) M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer,  and W. A. de Jong, Phys. Rev. Lett. 127, 270502 (2021).
  • Paik et al. (2008) H. Paik, S. K. Dutta, R. M. Lewis, T. A. Palomaki, B. K. Cooper, R. C. Ramos, H. Xu, A. J. Dragt, J. R. Anderson, C. J. Lobb,  and F. C. Wellstood, Phys. Rev. B 77, 214510 (2008).
  • Pokharel et al. (2018) B. Pokharel, N. Anand, B. Fortman,  and D. A. Lidar, Phys. Rev. Lett. 121, 220502 (2018).
  • Abobeih et al. (2018) M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen,  and T. H. Taminiau, Nat. Commun. 9, 2552 (2018).
  • Bauch et al. (2020) E. Bauch, S. Singh, J. Lee, C. A. Hart, J. M. Schloss, M. J. Turner, J. F. Barry, L. M. Pham, N. Bar-Gill, S. F. Yelin,  and R. L. Walsworth, Phys. Rev. B 102, 134210 (2020).
  • Wang et al. (2017) Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum,  and K. Kim, Nat. Photon. 11, 646 (2017).
  • Wang et al. (2021) P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang,  and K. Kim, Nat. Commun. 12, 233 (2021).
  • Haeberlen (2012) U. Haeberlen, High Resolution NMR in solids selective averaging: supplement 1 advances in magnetic resonance, Vol. 1 (Elsevier, 2012).
  • Mehring (2012) M. Mehring, Principles of high resolution NMR in solids (Springer Science & Business Media, 2012).
  • Slichter (2013) C. P. Slichter, Principles of magnetic resonance, Vol. 1 (Springer Science & Business Media, 2013).
  • Hahn (1950) E. L. Hahn, Phys. Rev. 80, 580 (1950).
  • Carr and Purcell (1954) H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).
  • Meiboom and Gill (1958) S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958).
  • Khodjasteh and Lidar (2005) K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501 (2005).
  • Zhang et al. (2008) W. Zhang, N. P. Konstantinidis, V. V. Dobrovitski, B. N. Harmon, L. F. Santos,  and L. Viola, Phys. Rev. B 77, 125336 (2008).
  • Uhrig (2007) G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).
  • Yao et al. (2019) Q. Yao, J. Zhang, X.-F. Yi, L. You,  and W. Zhang, Phys. Rev. Lett. 122, 010408 (2019).
  • Fanchini et al. (2007a) F. F. Fanchini, J. E. M. Hornos,  and R. d. J. Napolitano, Phys. Rev. A 75, 022329 (2007a).
  • Fanchini et al. (2007b) F. F. Fanchini, J. E. M. Hornos,  and R. d. J. Napolitano, Phys. Rev. A 76, 032319 (2007b).
  • Bermudez et al. (2012) A. Bermudez, P. O. Schmidt, M. B. Plenio,  and A. Retzker, Phys. Rev. A 85, 040302 (2012).
  • Chaudhry and Gong (2012) A. Z. Chaudhry and J. Gong, Phys. Rev. A 85, 012315 (2012).
  • Cai et al. (2012) J. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness, K. D. Jahnke, F. Jelezko, M. B. Plenio,  and A. Retzker, New J. Phys. 14, 113023 (2012).
  • Timoney et al. (2011) N. Timoney, I. Baumgart, M. Johanning, A. Varón, M. B. Plenio, A. Retzker,  and C. Wunderlich, Nature 476, 185 (2011).
  • Xu et al. (2012) X. Xu, Z. Wang, C. Duan, P. Huang, P. Wang, Y. Wang, N. Xu, X. Kong, F. Shi, X. Rong,  and J. Du, Phys. Rev. Lett. 109, 070502 (2012).
  • Zhang et al. (2016) J. Zhang, Y. Han, P. Xu,  and W. Zhang, Phys. Rev. A 94, 053608 (2016).
  • Stark et al. (2017) A. Stark, N. Aharon, T. Unden, D. Louzon, A. Huck, A. Retzker, U. L. Andersen,  and F. Jelezko, Nat. Commun. 8, 1105 (2017).
  • Anderson et al. (2018) R. P. Anderson, M. J. Kewming,  and L. D. Turner, Phys. Rev. A 97, 013408 (2018).
  • Cai and Xia (2022) M. Cai and K. Xia, Phys. Rev. A 106, 042434 (2022).
  • Medford et al. (2012) J. Medford, L. Cywiński, C. Barthel, C. M. Marcus, M. P. Hanson,  and A. C. Gossard, Phys. Rev. Lett. 108, 086802 (2012).
  • Sun et al. (2022) B. Sun, T. Brecht, B. Fong, M. Akmal, J. Z. Blumoff, T. A. Cain, F. W. Carter, D. H. Finestone, M. N. Fireman, W. Ha, et al., arXiv preprint arXiv:2208.11784  (2022).
  • Guo et al. (2018) Q. Guo, S.-B. Zheng, J. Wang, C. Song, P. Zhang, K. Li, W. Liu, H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang, C.-Y. Lu,  and J.-W. Pan, Phys. Rev. Lett. 121, 130501 (2018).
  • Qiu et al. (2021) J. Qiu, Y. Zhou, C.-K. Hu, J. Yuan, L. Zhang, J. Chu, W. Huang, W. Liu, K. Luo, Z. Ni, X. Pan, Z. Yang, Y. Zhang, Y. Chen, X.-H. Deng, L. Hu, J. Li, J. Niu, Y. Xu, T. Yan, Y. Zhong, S. Liu, F. Yan,  and D. Yu, Phys. Rev. Appl. 16, 054047 (2021).
  • Dmitriev and Vershovskii (2018) A. Dmitriev and A. Vershovskii, J. Phys. Conf. Ser. 1135, 012051 (2018).
  • Dmitriev et al. (2019) A. K. Dmitriev, H. Y. Chen, G. D. Fuchs,  and A. K. Vershovskii, Phys. Rev. A 100, 011801 (2019).
  • Dmitriev and Vershovskii (2022) A. K. Dmitriev and A. K. Vershovskii, Phys. Rev. A 105, 043509 (2022).
  • Mikawa et al. (2023) T. Mikawa, R. Okaniwa, Y. Matsuzaki,  and H. Ishi-Hayase, arXiv preprint arXiv:2303.03860  (2023).
  • not (a) The controlling axes are chosen as x,yx,y explicitly in our paper, however, we can select any other two perpendicular axes. Besides, we set ωx=ωy\omega_{x}=\omega_{y}, however, decoupling effects can be obtained by a similar procedure when ωy=nωx\omega_{y}=n\omega_{x} with nn\in\mathbb{Z}.
  • not (b) In this condition, the unitary evlotion after one period including two nearest neighboring intervals becomes U^effII=eiγ2TJ^z𝒯^eiT/2TH^rII,2(t)𝑑teiγ2TJ^z/2eiγ1TJ^z/2×𝒯^ei0T/2H^rII,1(t)𝑑t\hat{U}_{\text{eff}}^{\text{II}}=e^{-i\gamma_{2}T\hat{J}_{z}}\hat{\mathcal{T}}e^{-i\int_{T/2}^{T}\hat{H}_{r}^{\text{II},2}(t)dt}e^{i\gamma_{2}T\hat{J}_{z}/2}e^{-i\gamma_{1}T\hat{J}_{z}/2}\times\\ \hat{\mathcal{T}}e^{-i\int_{0}^{T/2}\hat{H}_{r}^{\text{II},1}(t)dt}, with γ1=γ2\gamma_{1}=-\gamma_{2}, |γj|T=2nπ|\gamma_{j}|T=2n\pi and H^rII,j=bx[cos(γjt)J^xsin(γjt)J^y]\hat{H}_{r}^{\text{II},j}=b_{x}[\cos(\gamma_{j}t)\hat{J}_{x}-\sin(\gamma_{j}t)\hat{J}_{y}]. Then U^effIIei2bx2J^z/γ2+O(bx2/γ22)ei2bx2J^z/γ1+O(bx2/γ12)=eO(bx2/γ22)\hat{U}_{\text{eff}}^{\text{II}}\approx e^{-i2b_{x}^{2}\hat{J}_{z}/\gamma_{2}+O(b_{x}^{2}/\gamma_{2}^{2})}e^{-i2b_{x}^{2}\hat{J}_{z}/\gamma_{1}+O(b_{x}^{2}/\gamma_{1}^{2})}=e^{O(b_{x}^{2}/\gamma_{2}^{2})}.
  • Ho (1998) T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).
  • Ohmi and Machida (1998) T. Ohmi and K. Machida, Journal of the Physical Society of Japan 67, 1822 (1998).
  • Law et al. (1998) C. K. Law, H. Pu,  and N. P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998).
  • Stamper-Kurn and Ueda (2013) D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
  • Petta et al. (2005) J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson,  and A. C. Gossard, Science 309, 2180 (2005).
  • Koppens et al. (2006) F. H. Koppens, C. Buizert, K.-J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. Kouwenhoven,  and L. Vandersypen, Nature 442, 766 (2006).
  • Taylor et al. (2007) J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus,  and M. D. Lukin, Phys. Rev. B 76, 035315 (2007).
  • Dobrovitski et al. (2006) V. V. Dobrovitski, J. M. Taylor,  and M. D. Lukin, Phys. Rev. B 73, 245318 (2006).
  • Dobrovitski and De Raedt (2003) V. V. Dobrovitski and H. A. De Raedt, Phys. Rev. E 67, 056702 (2003).