This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\stackMath

Flexibility of Two-Dimensional Euler Flows with Integrable Vorticity

Elia Bruè111Department of Decision Sciences, Università Bocconi, Milano, Italy. Email: [email protected]. &Maria Colombo222EPFL, Station 8, CH-1015 Lausanne, Switzerland. Email: [email protected]. &Anuj Kumar333Department of Mathematics, University of California Berkeley, CA 94720, USA. Email: [email protected].
Abstract

We propose a new convex integration scheme in fluid mechanics, and we provide an application to the two-dimensional Euler equations. We prove the flexibility and nonuniqueness of LL2L^{\infty}L^{2} weak solutions with vorticity in LLpL^{\infty}L^{p} for some p>1p>1, surpassing for the first time the critical scaling of the standard convex integration technique.

To achieve this, we introduce several new ideas, including:

  • (i)

    A new family of building blocks built from the Lamb-Chaplygin dipole.

  • (ii)

    A new method to cancel the error based on time averages and non-periodic, spatially-anisotropic perturbations.

1 Introduction

We investigate the homogeneous incompressible Euler equations:

{tu+div(uu)+p=0,divu=0,\begin{cases}\partial_{t}u+\mathop{div}\nolimits(u\otimes u)+\nabla p=0,\\ \mathop{div}\nolimits u=0\,,\end{cases} (EU)

where uu represents the unknown velocity field and pp denotes the scalar pressure field. These equations are posed on the two-dimensional domain 𝕋2=[π,π]2\mathbb{T}^{2}=[-\pi,\pi]^{2} with periodic boundary conditions.

Our focus lies on weak solutions uCtLx2u\in C_{t}L^{2}_{x} with vorticity ω:=curlu\omega:=\text{curl}\,u that is uniformly integrable, ωCtLxp\omega\in C_{t}L^{p}_{x}. The main result of this paper asserts that the system (EU) is flexible within this class, for small values of p>1p>1. A first example of flexibility is:

Theorem 1.1 (Flexibility).

There exists p>1p>1 such that the following holds. For any divergence-free velocity fields ustar,uendL2(𝕋2)u_{\rm star},u_{\rm end}\in L^{2}(\mathbb{T}^{2}) with zero mean, and any ε>0{\varepsilon}>0, there exists a weak solution uC([0,1];L2(𝕋2))u\in C([0,1];L^{2}(\mathbb{T}^{2})) to (EU) with ωC([0,1];Lp(𝕋2))\omega\in C([0,1];L^{p}(\mathbb{T}^{2})) such that u(,0)ustarL2ε\|u(\cdot,0)-u_{\rm star}\|_{L^{2}}\leq{\varepsilon} and u(,1)uendL2ε\|u(\cdot,1)-u_{\rm end}\|_{L^{2}}\leq{\varepsilon}.

An immediate consequence of Theorem 1.1 is that there exists a dense set of initial conditions ustartL2W1,pu_{\text{start}}\in L^{2}\cap W^{1,p} with zero mean, such that the Cauchy problem associated with (EU) admits non-conservative weak solutions uCtLx2u\in C_{t}L^{2}_{x} with vorticity ωCtLxp\omega\in C_{t}L^{p}_{x}. To see this, it is enough to pick ustartu_{\text{start}} with much higher kinetic energy than uendu_{\text{end}}.

Our construction is also able to produce non-uniqueness for the same set of wild initial conditions ustartL2W1,pu_{\text{start}}\in L^{2}\cap W^{1,p}.

Theorem 1.2 (Nonuniqueness).

There exists p>1p>1 and a dense subset of divergence-free velocity fields ustartL2(𝕋2)W1,p(𝕋2)u_{\rm{start}}\in L^{2}(\mathbb{T}^{2})\cap W^{1,p}(\mathbb{T}^{2}) with zero mean, such that (EU) admits infinitely many non-conservative weak solutions uC([0,1];L2(𝕋2))u\in C([0,1];L^{2}(\mathbb{T}^{2})) with ωC([0,1];Lp(𝕋2))\omega\in C([0,1];L^{p}(\mathbb{T}^{2})) satisfying u(,0)=ustartu(\cdot,0)=u_{\rm start}.

The weak solutions to (EU) constructed in this paper are built using a new convex integration scheme. It is not surprising that a small modification of our approach is able to establish the following variant of flexibility for (EU) in the class of CtLx2C_{t}L^{2}_{x} with solutions having CtLxpC_{t}L_{x}^{p} vorticity.

Theorem 1.3 (Time-Wise Compact Support).

There exists a non-trivial weak solution uC(;L2(𝕋2))u\in C(\mathbb{R};L^{2}(\mathbb{T}^{2})) to (EU) with compact support in time and ωL(;Lp(𝕋2))\omega\in L^{\infty}(\mathbb{R};L^{p}(\mathbb{T}^{2})) for some p>1p>1.

As for many implementations of convex integration in fluid dynamics, a technical modification of the proof of Theorems 1.1 and 1.3 allows to obtain flexibility of solutions while prescribing their kinetic energy. We expect the following statement to follow by our arguments for some p>1p>1: for every positive smooth function e:[0,1]e:[0,1]\to\mathbb{R} there exists a weak solution uC([0,1];L2(𝕋2))u\in C([0,1];L^{2}(\mathbb{T}^{2})) with ωC([0,1];Lp(𝕋2)\omega\in C([0,1];L^{p}(\mathbb{T}^{2}) such that

e(t)=12𝕋2|u(x,t)|2𝑑x,t[0,1].e(t)=\frac{1}{2}\int_{\mathbb{T}^{2}}|u(x,t)|^{2}\,dx\,,\quad t\in[0,1]\,. (1.1)

The proof of such result should follow by modifying our iterative Proposition 3.1 below by including closeness to the energy profile, which in turn can be guaranteed with the idea introduced in [BDLSV19] of space-time cutoffs. However, given the required technical complications we prefer to not to purse this goal here.

1.1 Context and Motivations

A classical well-posedness result by Wolibner [Wol33] and Hölder [H3̈3] ensures that (EU) is well-posed in C1,αC^{1,\alpha} for any α>0\alpha>0. The proof of this result is based on the fact that the vorticity ω=curlu\omega=\text{curl}\,u of a solution to (EU) is transported by the velocity field uu when the latter is regular enough. More precisely, we have the following vorticity formulation of the Euler system:

{tω+(u)ω=0,u=Δ1ω,\begin{cases}\partial_{t}\omega+(u\cdot\nabla)\omega=0\,,\\ u=\nabla^{\perp}\Delta^{-1}\omega\,,\end{cases} (EUvor)

where the second equation, namely the Biot–Savart law, expresses the inverse of the curl operator on 𝕋2\mathbb{T}^{2}. These well-posedness results are in stark contrast to the three-dimensional case, where Elgindi [Elg21] proved the formation of finite-time singularities due to vortex stretching. In two dimensions, the borderline case uC1u\in C^{1} is more delicate. In this class, Bourgain and Li [BL15] and later Elgindi and Masmoudi [EM20] proved strong ill-posedness for the Euler equation (see also [CMZO24]).


The transport structure of (EUvor) suggests that LpL^{p} norms of the vorticity are formally conserved for any p[1,]p\in[1,\infty]. For p>1p>1, this property was utilized in [DM87] to establish the existence of distributional solutions starting from an initial data with vorticity in LpL^{p}. A similar existence result is significantly more difficult for p=1p=1, and it was demonstrated by Delort [Del91] (see also [EM94, Maj93, VW93]), extending the existence theory to initial vorticities in H1H^{-1} (where this latter condition ensures the finiteness of the energy) whose positive (or negative) part is absolutely continuous.

1.1.1 Uniqueness and Yudovich Class

The class of weak solutions with uniformly bounded vorticity holds a special significance in the well-posedness theory of the 2D-Euler equations. According to the classical result by Yudovich [Yud62, Yud63] (see also the proof in [Loe06] and generalizations [Vis99, CS]), it is stated that for any initial data ω0L\omega_{0}\in L^{\infty}, there exists a unique solution ωLtLx\omega\in L^{\infty}_{t}L^{\infty}_{x} to (EUvor) originating from ω0\omega_{0}. The insight behind Yudovich’s uniqueness result is that a bounded vorticity yields an almost Lipschitz velocity field via the Biot-Savart law. Considering the transport structure of (EUvor), this almost Lipschitz regularity suffices to guarantee well-posedness.

A central question is whether Yudovich’s result extends to the class of weak solutions with vorticity in LtLxpL^{\infty}_{t}L^{p}_{x} for p<p<\infty. In this framework, the fluid velocity uLtWx1,pu\in L^{\infty}_{t}W^{1,p}_{x} is only Sobolev regular, and Yudovich’s Gronwall type argument breaks down. However, in view of the developments on the DiPerna–Lions theory [DL89, Amb04] dealing with passive scalar with Sobolev velocity fields, one might expect to prove some form of well-posedness for (EUvor) in this class.

Recent developments point in the direction of non-uniqueness, although none of them has fully solved the problem yet. Vishik [Visb, Visa], (see also [ABC+24]), has been able to demonstrate non-uniqueness within the class of LtLxpL^{\infty}_{t}L^{p}_{x} vorticity, with an additional degree of freedom: an external body force belonging to the integrability space Lt1LxpL^{1}_{t}L^{p}_{x}. The non-uniqueness takes the form of symmetry breaking, and its construction is based on the existence of an unstable vortex.

A second attempt has been pursued by Bressan and Shen [BS21], based on numerical experiments which exhibit the symmetry-breaking type of non-uniqueness observed by Vishik. Their work represents a preliminary step towards a computer-assisted proof.

In the framework of point vortex systems, Grotto and Pappalettera [GP22] have recently demonstrated that any configuration of NN initial point vortices is the singular limit of an evolution of N+2N+2 point vortices. As a corollary, they managed to prove non-uniqueness for the “symmetrized” weak vorticity formulation (1.2) in the class of measure-valued vorticities. Literature on point vortex systems is extensive and challenging to summarize; we refer the reader to the monographs [MB02, MP94].

1.1.2 Convex Integration and Flexibility

The first flexibility results for the 2D2D Euler equations were obtained by Scheffer [Sch93], who constructed nontrivial weak solutions uLt2Lx2u\in L^{2}_{t}L^{2}_{x} with compact support in space and time. The existence of infinitely many dissipative weak solutions to the Euler equations was first proven by Shnirelman in [Shn00], in the regularity class LtLx2L^{\infty}_{t}L^{2}_{x}.


The convex integration method in fluid dynamics was pioneered by De Lellis and Székelyhidi in the context of the Onsager conjecture [DLS09, DLS13]. These constructions, inspired by Muller and Sverak’s work on Lipschitz differential inclusions [Mv03], as well as Nash’s paradoxical constructions for the isometric embedding problem [Nas54], have led to a remarkable sequence of works including [BDLIS15, DS17, Buc15], culminating in the resolution of the flexibility part of the Onsager Conjecture by Isett [Ise18]. Further developments in the study of the Onsager conjecture can be found in [Cho13, CLJ12, BDLS16, Ise22, NV23, GR24]. We refer to the surveys [BV19a, BV21, DLS17, DLS19, DLS22] for a more complete history of the Onsager program.


A significant breakthrough in convex integration was achieved by Buckmaster and Vicol [BV19b], who introduced intermittency into the scheme. This innovation allows to treat the three-dimensional Navier-Stokes equations, which yields the first flexibility result for weak solutions. Since then, convex integration with intermittency has proven to be powerful and versatile, applicable to various problems [MS18, BCDL21, CL22, CL23, CL21, NV23, BMNV23, KGN23]. In [BC23], the first and second authors designed a convex integration scheme with intermittency to address the problem of uniqueness of the two-dimensional Euler equations (EU) with vorticity ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x}, in relation to Yudovich’s result. However, they could not reach the class of integrable vorticities, proving nonuniqueness in the class of weak solutions with ωLtLx1,\omega\in L^{\infty}_{t}L^{1,\infty}_{x}, where L1,L^{1,\infty} is a Lorentz space. Subsequently, Buck and Modena [BM24b, BM24a] proved nonuniqueness and flexibility in the class of weak solutions with ωLtHxp\omega\in L^{\infty}_{t}H^{p}_{x}, where HpH^{p} is the Hardy space with parameter 0<p<10<p<1. Remarkably, their solutions are also admissible. The first nonuniqueness result with LpL^{p} initial vorticity in the class of admissible solutions was established by Mengual in [Men23]. All these developments have highlighted the limitations of classical convex integration constructions with intermittency in two dimensions. Due to an inherent obstruction arising from the mechanism used to cancel the error and the Sobolev embedding theorem, convex integration solutions cannot achieve L1L^{1} integrability for the vorticity. For an explanation of this obstruction, we refer the reader to [BC23, Section 1.1].

Our main results, Theorem 1.1 and Theorem 1.3, represent the first convex integration constructions that overcome the inherent obstruction and achieve integrability of the vorticity beyond the L1L^{1} space. This is due to a completely new design, which will be explained in the next sections.

1.1.3 Energy Conservation, Vanishing Viscosity, Turbulence

Energy-dissipating solutions to the Euler equations are crucial in the theory of turbulence, particularly in relation to the concepts of anomalous dissipation and the zeroth law of turbulence. In three dimensions, the celebrated conjecture by Onsager, now established as a theorem, states that weak solutions to the Euler equations belonging to the class uCx,tαu\in C^{\alpha}_{x,t} conserve energy when α>13\alpha>\frac{1}{3}, but may dissipate energy when α<13\alpha<\frac{1}{3}. The critical threshold α=13\alpha=\frac{1}{3} is dimensionless. Recently, [GR24] constructed solutions uCx,tαu\in C^{\alpha}_{x,t} to the two-dimensional Euler equations (EU)\eqref{EU} that do not conserve energy for a given α<1/3\alpha<1/3.


The question of energy conservation is particularly meaningful in the context of weak solutions uLtLx2u\in L^{\infty}_{t}L^{2}_{x} to (EU) with uniformly integrable vorticity ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x}. A natural conjecture, generalizing Onsager’s conjecture, is the following.

Conjecture 1.4 (Energy Conservation).
  • (i)

    If p3/2p\geq 3/2, any weak solution uLtLx2u\in L^{\infty}_{t}L^{2}_{x} to (EU) with ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} conserves the kinetic energy.

  • (ii)

    If p<32p<\frac{3}{2}, there exist weak solutions uLtLx2u\in L^{\infty}_{t}L^{2}_{x} to (EU) with ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} that do not conserve the energy.

Energy conservation for p3/2p\geq 3/2 has already been established; see, for instance, [CCFS08], [CFLS16]. To the best of our knowledge, Theorem 1.1 is the first advancement in the direction of flexibility.

In two space dimensions, vanishing viscosity solutions are known to exhibit more rigid properties compared to generic weak solutions to (EU). Specifically, if the initial vorticity ω0Lp\omega_{0}\in L^{p} of a vanishing viscosity solution is integrable in LpL^{p} for some p>1p>1, the solution automatically conserves energy. See [CFLS16], [LMPP21], [RP24], and [CS15]. Notably, the solutions constructed in Theorem 1.1 cannot be vanishing viscosity solutions. To the best of the authors’ knowledge, these represent the first examples of weak solutions to (EU) with uniformly integrable vorticity ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} that are not vanishing viscosity solutions. In contrast, Yudovich solutions are always vanishing viscosity [Mas07, CDE22, CCS21].

Remark 1.1 (Energy Conservation vs Nonuniqueness).

In the context of weak solutions uLtLx2u\in L^{\infty}_{t}L^{2}_{x} to (EU) with uniformly integrable vorticity ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x}, nonuniqueness is expected for every p<p<\infty, whereas energy conservation is expected for p32p\geq\frac{3}{2}. This highlights the distinct nature of non-uniqueness and energy non-conservation.

The vorticity formulation (EUvor) for weak solutions uLtLx2u\in L^{\infty}_{t}L^{2}_{x} to (EU) with ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} makes distributional sense as soon as p43p\geq\frac{4}{3}, since uωLtLx1u\cdot\omega\in L^{\infty}_{t}L^{1}_{x} within this range. Solutions constructed in Theorem 1.1 and Theorem 1.3 are not distributional solutions to (EUvor); however, they satisfy the so-called symmetrized weak vorticity formulation, dating back to the works of Delort and Schochet:

𝕋2ω(x,t)ϕ(x)𝑑x𝕋2ω(x,0)ϕ(x)𝑑x=0t𝕋2×𝕋2Hϕ(x,y)ω(x,s)ω(y,s)𝑑x𝑑y\int_{\mathbb{T}^{2}}\omega(x,t)\phi(x)\,dx-\int_{\mathbb{T}^{2}}\omega(x,0)\phi(x)\,dx=\int_{0}^{t}\int_{\mathbb{T}^{2}\times\mathbb{T}^{2}}H_{\phi}(x,y)\omega(x,s)\omega(y,s)\,dx\,dy (1.2)

for every test function ϕC(𝕋2)\phi\in C^{\infty}(\mathbb{T}^{2}), where Hϕ(x,y):=(ϕ(x)ϕ(y))K(x,y)H_{\phi}(x,y):=(\nabla\phi(x)-\nabla\phi(y))\cdot K(x,y) and K(x,y)K(x,y) is the Biot-Savart kernel.


In the study of 2D turbulence, the concept of enstrophy defect plays an important role in connection with the enstrophy cascade [Eyi01]. This concept suggests that, in certain turbulent regimes, weak solutions to (EUvor) might not satisfy the local enstrophy balance; that is, integral quantities such as

β(ω(x,t))𝑑x,βCc(),\int\beta(\omega(x,t))\,dx\,,\quad\beta\in C_{c}^{\infty}(\mathbb{R})\,, (1.3)

might not be conserved. The local enstrophy balance is closely connected with the so-called renormalization property: we say that ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} is a renormalized solution to (EUvor) if

tβ(ω)+div(uβ(ω))=0,for every βCc().\partial_{t}\beta(\omega)+\mathop{div}\nolimits(u\beta(\omega))=0\,,\quad\text{for every $\beta\in C_{c}^{\infty}(\mathbb{R})$}\,. (1.4)

Notice that the notion of renormalized solution to (EUvor) is meaningful for every ωLt1Lxp\omega\in L^{1}_{t}L^{p}_{x} with p1p\geq 1. It was observed in [Eyi01] and further elaborated in [LFMNL06] that any ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} with p2p\geq 2 is a renormalized solution to (EUvor), as a consequence of the DiPerna-Lions theory [DL89]. Moreover, Crippa and Spirito [CS15] have shown that vanishing viscosity solutions are renormalized for every p1p\geq 1. In stark contrast, our Theorem 1.1 provides the first example of non-renormalized solutions to (EU) with vorticity ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} for some p>1p>1.

In view of the recent result [BCK24], one might guess that the renormalization property holds for p>32p>\frac{3}{2} and might fail for p<32p<\frac{3}{2}. However, this is only a speculation, and we pose it as an open question.

Problem 1.5.

Find p1p^{*}\geq 1 such that any weak solution uLtLx2u\in L^{\infty}_{t}L^{2}_{x} to (EU) with ωLtLxp\omega\in L^{\infty}_{t}L^{p}_{x} is renormalized (i.e., satisfies (1.4)) for p>pp>p^{*}, while there are non-renormalized solutions for p<pp<p^{*}.

To the best of the author’s knowledge, the most accurate estimate to date is 1+16500<p21+\frac{1}{6500}<p^{*}\leq 2.

1.2 A New Convex Integration Scheme

The main obstacle to achieve a two dimensional vorticity that is L1L^{1} integrable in space is the homogeneous nature of the perturbations in convex integration schemes. Typically, these perturbations are periodic with a large wavelength λ1\lambda\gg 1, which makes them appear homogeneous at scales r1/λr\gg 1/\lambda. From the embedding theorem of Nash [Nas54] and the foundational works of De Lellis and Székelyhidi [DLS09, DLS13], every convex integration scheme to date possess this characteristics.

Some form of heterogeneity of perturbation has been introduced in convex integration schemes with intermittency, starting from the work of Buckmaster and Vicol [BV19b]. In these schemes, the λ\lambda-periodic structure is maintained, but the perturbations exhibit heterogeneity at a much smaller scale, 1/μ1/λ1/\mu\ll 1/\lambda, depending on the extent of the intermittency. However, at larger scales r1/λr\gg 1/\lambda, the perturbation remains homogeneous, which mantains the obstruction to achieve uniform L1L^{1} integrability for the vorticity.


In this paper, we overcome this hurdle by drawing inspiration from our recent work [BCK24] on the linear transport equation

tρ+uρ=0,divu=0.\partial_{t}\rho+u\cdot\nabla\rho=0\,,\quad\,\mathop{div}\nolimits u=0\,. (1.5)

with an incompressible velocity field uLtWx1,pu\in L^{\infty}_{t}W^{1,p}_{x} and density ρLtLxr\rho\in L^{\infty}_{t}L^{r}_{x}, which lies within the framework of DiPerna–Lions theory [DL89].

In this context, the convex integration approach has been applied to produce nonuniqueness and flexibility for the Cauchy problem associated with (1.5). However, this method encounters similar obstructions as in the Euler setting and cannot achieve the sharp range of well-posedness recently obtained in our work [BCK24]. In this work, we introduce a novel linear construction that generates nonunique solutions to (1.5) beyond the range attainable by convex integration. The key feature enabling this is the spatial heterogeneity of both the density and the velocity field.

Inspired by this analogy, the first key idea we introduce in convex integration is to completely change the design of the perturbations by:

  • eliminating the λ\lambda periodicity,

  • achieving truly heterogeneous perturbations at every scale.

Given the error cancellation mechanism in the convex integration method, which relies on the low-frequency interaction between highly oscillating perturbations, it seems impractical to use perturbations with the aforementioned characteristics. The key idea to overcome this challenge is to exploit the time variable to rebuild spatial oscillations through time averages.


At a qualitative level, the principal part of the perturbation will be concentrated in a single small moving region at any given time. This approach retains the intermittent structure while losing periodicity. As is standard in convex integration, the primary component of the perturbation must almost solve the Euler equations. Therefore, we introduce another key idea: a new family of building blocks constructed from the Lamb-Chaplygin dipole. These building blocks will incorporate several new features:

  • Variable speed: This is useful to rebuild the error at the previous step without employing slow functions. The latter are unnatural in our scheme since we no longer have fast and slow variables.

  • Variable support size: As the building blocks are almost Euler solutions with a constant L2L^{2} norm, the scaling of the Euler equations forces a variable size of the support.

1.2.1 Overview

In this section, we present a more detailed description of the new convex integration scheme based on the qualitative features described above. As with any convex integration scheme, given a solution uqu_{q} of the Euler–Reynolds system:

tuq+div(uquq)+pq=div(Rq),divuq=0,\partial_{t}u_{q}+\mathop{div}\nolimits(u_{q}\otimes u_{q})+\nabla p_{q}=\mathop{div}\nolimits(R_{q})\,,\quad\mathop{div}\nolimits u_{q}=0\,, (1.6)

our goal is to produce a new velocity field uq+1=uq+vq+1u_{q+1}=u_{q}+v_{q+1}, which solves the Euler–Reynolds system with a smaller error Rq+1R_{q+1}. As a first step we decompose RqR_{q} into rank-one tensors:

div(Rq)=div(i=14ai(x,t)ξiξi)+Pd,\displaystyle-\mathop{div}\nolimits(R_{q})=\mathop{div}\nolimits\left(\sum_{i=1}^{4}a_{i}(x,t)\xi_{i}\otimes\xi_{i}\right)+\nabla P^{\,d}, (1.7)

where the coefficients aia_{i}, i{1,2,3,4}i\in\{1,2,3,4\}, are roughly the same size as RqR_{q}, see Lemma 4.1. Our perturbation vq+1v_{q+1} consists of only one building block moving in one of the ξi\xi_{i} directions at any given time. More precisely, it will be τq+1\tau_{q+1}-periodic in time, and each interval of the form [kτq+1,(k+1)τq+1][k\tau_{q+1},(k+1)\tau_{q+1}], kk\in\mathbb{Z}, will be divided into four sub-intervals of equal length, each associated with a different direction ξi\xi_{i}. See Figure 1 below.

Refer to caption
Figure 1: shows the time interval [kτq,(k+1)τq+1)[k\tau_{q},(k+1)\tau_{q+1}) which is further divided into four subintervals of equal length. The building block moves only in one of the direction ξi\xi_{i}, i{1,,4}i\in\{1,\dots,4\}, on a given subinterval.

For the sake of simplicity, in rest of the outline we assume that Rq(x,t)=a(x,t)ξξR_{q}(x,t)=a(x,t)\xi\otimes\xi, where ξ\xi is a unit vector in a rationally dependent direction.

1.2.2 The New Building Blocks

Our building block is an almost exact solutions to the Euler system with source/sink term on 𝕋2\mathbb{T}^{2}:

{tV+div(VV)+P=Sddt(η(t)r(t))+div(F),div(V)=0,\begin{cases}\partial_{t}V+\mathop{div}\nolimits(V\otimes V)+\nabla P=S\frac{d}{dt}\,(\eta(t)r(t))+\mathop{div}\nolimits(F)\,,\\ \mathop{div}\nolimits(V)=0\,,\end{cases} (1.8)

where FC(𝕋2;2×2)F\in C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2\times 2}) is a small symmetric tensor that will be enclosed in the new error Rq+1R_{q+1}. The source/sink term Sddt(η(t)r(t))S\frac{d}{dt}\,(\eta(t)r(t)) will be employed for the error cancellation through time-average, see the sketch in Section 1.2.3. Up to leading order, the velocity field has the following structure

V(x,t)=η(t)Wr(t)(xx(t)),\displaystyle V(x,t)=\eta(t)W_{r(t)}(x-x(t))\,, (1.9)

where Wr(x)W_{r}(x) is the scaled core of the Lamb-Chaplygin dipole. The center of the core, x(t)x(t), travels at variable speed in the direction ξ\xi, according to the ODE:

x(t)=η(t)r(x(t))ξ,wherer(x)=rq+1a¯(x).x^{\prime}(t)=\frac{\eta(t)}{r(x(t))}\xi\,,\qquad\text{where}\qquad r(x)=r_{q+1}\overline{a}(x). (1.10)

The function r(x)r(x) is a space-dependent scale, proportional to a time average of a(x,t)a(x,t) over intervals of length τq+11\tau_{q+1}\ll 1. The parameter rq+1r_{q+1} plays the role of the intermittency parameter in our construction. The function η(t)\eta(t) is a smooth cut-off with support of size τq+1/4\tau_{q+1}/4; it serves to switch on and off the building block when swapping between the four directions. A fundamental feature of our construction is that ξ\xi is chosen such that the time period of ttξt\mapsto t\xi is large, λq+11\lambda_{q+1}\gg 1. This parameter will play the role of the frequency in our construction.

Refer to caption
(a)
Refer to caption
(b)
Figure 2: shows the streamlines of (a) doublet flow, (b) Lamb–Chaplygin dipole. Panel (b) highlights the core region with a dashed circle, where the vorticity in the Lamb–Chaplygin dipole concentrates.
Remark 1.2 (Comparison with Intermittent Jets).

Our new building blocks share some features with the intermittent jets introduced in [BCV21]. The main differences are:

  • Our new building blocks almost solve the Euler equations without the necessity of introducing time correctors.

  • The support and velocity of our building blocks vary.

  • The intermittent jets are shaped as ellipsoids in contrast with the more rounded design of ours.

The third point is the most problematic in our construction. The ellipsoidal design serves to control the size of the divergence but worsens the size of the vorticity. This loss is irremediable. Our scheme is able to reach ωLtLx1\omega\in L^{\infty}_{t}L^{1}_{x} using intermittent jets but cannot get past it.

Refer to caption
Figure 3: Panel (a) shows the building block at four different times as it traverses through the torus. The background red color is supposed to show the intensity of error. The size of the building block varies depending on the error according to the relation (1.10). Panel (b) shows the trail of the building block, which is a 1/λq+11/\lambda_{q+1} dense stripe and can be narrow in some regions. Panel (c) shows the auxiliary building block, whose size remains (order of λq+11\lambda_{q+1}^{-1}) fixed as it translates. Panel (d) shows the trail of the auxiliary building block, which is the entire 𝕋2\mathbb{T}^{2}.

1.2.3 Time Average and Error Cancellation

In this section, we illustrate the key calculation: how to reconstruct the error using time averages of the source/sink term Sddt(η(t)r(t))S\frac{d}{dt}(\eta(t)r(t)). For the sake of simplicity, let us assume that S(x,t)=U(xx(t))S(x,t)=U(x-x(t)) for some profile UU independent of time. We should stress that this assumption is not satisfied in our framework; however, we will demonstrate how to compensate for this deviation by introducing an auxiliary building block (see Section 4.7).

On every time interval 𝒯[0,]\mathcal{T}\subset[0,\infty] of length τq+1/4\tau_{q+1}/4 where η(t)\eta(t) is supported, the time-average of the source term will be

𝒯(η(t)r(t))U(xx(t))𝑑t=𝒯η(t)r(t)ddtU(xx(t))dt=𝒯η(t)2(ξ)U(xx(t))𝑑t=div(𝒯η(t)2U(xx(t))ξ𝑑t)\begin{split}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}}(\eta(t)r(t))^{\prime}U(x-x(t))\,dt&=-\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}}\eta(t)r(t)\frac{d}{dt}U(x-x(t))\,dt\\ &=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}}\eta(t)^{2}(\xi\cdot\nabla)U(x-x(t))\,dt\\ &=\mathop{div}\nolimits\left(\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}}\eta(t)^{2}U(x-x(t))\otimes\xi\,dt\right)\end{split} (1.11)

We will carefully design r(x)r(x), η(t)\eta(t), and U(x)U(x) to have

𝒯η(t)2U(xx(t))ξ𝑑t=a(x,t)ξξ+G\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}}\eta(t)^{2}U(x-x(t))\otimes\xi\,dt=a(x,t)\xi\otimes\xi+G (1.12)

where GC(𝕋2;2×2)G\in C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2\times 2}) is a new small error.

In other words, the time-mean of the source term is going to match exactly the error at the previous stage of the iteration. Thus, we only need to address the mean-free part of the source term. This is achieved by introducing an ad hoc time corrector Qq+1(x,t)Q_{q+1}(x,t); see Section 4.8.

Acknowledgements:

EB would like to express gratitude for the financial support received from Bocconi University. MC is supported by the Swiss State Secretariat for Education, Research and lnnovation (SERI) under contract number MB22.00034 through the project TENSE.

2 Principal Building Block

In this section, we construct the principal building block velocity field for our convex integration scheme. The main ingredient of our construction is the Lamb–Chaplygin dipole, an exact solution of the 2D Euler equation on 2\mathbb{R}^{2}, which translates with constant velocity without undergoing deformation. The Lamb–Chaplygin dipole consists of two regions: a circular inner core of some fixed radius rr where the vorticity of opposite signs concentrate, and the complement of the core where the velocity field is irrotational. The Lamb–Chaplygin dipole can be understood as the desingularization of a potential flow known as the doublet flow.

We also introduce a cutoff and gluing procedure that enables us to relocate this dipole from 2\mathbb{R}^{2} to 𝕋2\mathbb{T}^{2}, while ensuring that it remains an approximate solution of the Euler equation. In addition to this relocation, we will consider a dipole on 𝕋2\mathbb{T}^{2} whose core size rr expands or contracts as it translates. The effect of this is a source/sink term in the approximate Euler equation, which will ultimately be used to cancel the error term in the convex integration scheme.


2.1 Doublet Flow on 2\mathbb{R}^{2}

A doublet flow is a divergence-free potential flow on 2{0}\mathbb{R}^{2}\setminus\{0\}. We denote x=(x1,x2)2x=(x_{1},x_{2})\in\mathbb{R}^{2} points in the Euclidean plane. In the complex notation, the potential Φ~\widetilde{\Phi} and the stream function Ψ~\widetilde{\Psi} of the doublet flow are given by

Φ~(x1,x2)+iΨ~(x1,x2)1z,wherez=x1+ix2.\displaystyle\widetilde{\Phi}(x_{1},x_{2})+i\widetilde{\Psi}(x_{1},x_{2})\coloneqq-\frac{1}{z},\quad\text{where}\quad z=x_{1}+ix_{2}\,. (2.1)

We define the velocity field V~=(V~1,V~2)\widetilde{V}=(\widetilde{V}_{1},\widetilde{V}_{2}) and the pressure as

V~Ψ~=Φ~,P~1Φ~|Φ~|22.\displaystyle\widetilde{V}\coloneqq\nabla^{\perp}\widetilde{\Psi}=\nabla\widetilde{\Phi}\,,\qquad\widetilde{P}\coloneqq\partial_{1}\widetilde{\Phi}-\frac{|\nabla\widetilde{\Phi}|^{2}}{2}. (2.2)

where =(2,1)\nabla^{\perp}=(-\partial_{2},\partial_{1}). From our definition, it is clear that V~1(x1,x2)iV~2(x1,x2)=z2\widetilde{V}_{1}(x_{1},x_{2})-i\widetilde{V}_{2}(x_{1},x_{2})={z^{-2}}, that V~\widetilde{V} is 2-2-homogeneous, while the pressure is not homogeneous, and that they solve

1V~+(V~)V~+P~=0,on 2{0}.-\partial_{1}\widetilde{V}+(\widetilde{V}\cdot\nabla)\widetilde{V}+\nabla\widetilde{P}=0\,,\quad\text{on $\mathbb{R}^{2}\setminus\{0\}$}\,. (2.3)

Since

V~1(x1,x2)x=(x1x2x12+x22)andV~2(x1,x2)x=(x22x12+x22),\displaystyle\widetilde{V}_{1}(x_{1},x_{2})x=-\nabla^{\perp}\left(\frac{x_{1}x_{2}}{x_{1}^{2}+x_{2}^{2}}\right)\qquad\text{and}\qquad\widetilde{V}_{2}(x_{1},x_{2})x=-\nabla^{\perp}\left(\frac{x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}\right)\,, (2.4)

we have

div(V~x)=0.for x2{0}.\displaystyle\mathop{div}\nolimits(\widetilde{V}\otimes x)=0.\qquad\text{for $x\in\mathbb{R}^{2}\setminus\{0\}$.} (2.5)

2.2 Desingularization of the Doublet Flow: The Lamb–Chaplygin Dipole

To describe the velocity field in this section, we use polar coordinates ρ\rho and θ\theta, where x1=ρcosθx_{1}=\rho\cos\theta and x2=ρsinθx_{2}=\rho\sin\theta. The Lamb–Chaplygin dipole is a desingularization of the doublet flow [MVH94, Lam24]. It consists of two regions:

  • (i)

    ρ1\rho\leq 1 the desingularized region, where the vorticity is nonzero,

  • (ii)

    ρ1\rho\geq 1, where the flow is potential given in section 2.1.

We define the stream function Ψ¯\overline{\Psi} for this flow as

Ψ¯{ρsinθ2J1(bρ)bJ0(b)sinθwhenρ1,sinθρwhenρ1.\displaystyle\overline{\Psi}\coloneqq\begin{cases}\rho\sin\theta-\frac{2J_{1}(b\rho)}{bJ_{0}(b)}\sin\theta\qquad&\text{when}\quad\rho\leq 1,\\ \frac{\sin\theta}{\rho}\qquad&\text{when}\quad\rho\geq 1.\end{cases} (2.6)

Here, J0J_{0} and J1J_{1} are the Bessel functions of first kind of zero and first order respectively. The number b3.831705970b\approx 3.831705970\dots is the first non-trivial zero of J1J_{1}. For ρ1\rho\geq 1 we have Ψ¯=Ψ~.\overline{\Psi}=\widetilde{\Psi}. Using this stream function, we define the velocity field V¯=(V¯1,V¯2):22\overline{V}=(\overline{V}_{1},\overline{V}_{2}):\mathbb{R}^{2}\to\mathbb{R}^{2} and the pressure as

V¯Ψ¯,P¯V¯1V¯12+V¯2221|x|1b22(Ψ¯x2)2for x2.\displaystyle\overline{V}\coloneqq\nabla^{\perp}\overline{\Psi},\qquad\overline{P}\coloneqq\overline{V}_{1}-\frac{\overline{V}_{1}^{2}+\overline{V}_{2}^{2}}{2}-1_{|x|\leq 1}\frac{b^{2}}{2}(\overline{\Psi}-x_{2})^{2}\quad\text{for }x\in\mathbb{R}^{2}\,. (2.7)

The velocity field defined in such a way belongs to C1,1C^{1,1}, i.e., the derivative is Lipschitz, and it solves the equation (2.3). Indeed, the Lamb–Chaplygin dipole has the property that ω=b2(Ψ¯x2)\omega=b^{2}(\overline{\Psi}-x_{2}) [MVH94, Lam24] for ρ1\rho\leq 1, and ω=0\omega=0 for ρ>1\rho>1. From the expression of Ψ¯\overline{\Psi} in (2.6), we then see ωC0,1\omega\in C^{0,1}. Because we also have ΔΨ¯=ω-\Delta\overline{\Psi}=\omega and we have only one mode in θ\theta, hence this equation is a second order ODE in the radial variable. This means ΨC2,1\Psi\in C^{2,1}, which then gives the required regularity for the velocity field.

Finally, we define the rescaled version of V¯\overline{V} and P¯\overline{P} for a given r>0r>0 as

V¯r1rV¯(xr),P¯r1r2P¯(xr).\displaystyle\overline{V}_{r}\coloneqq\frac{1}{r}\overline{V}\left(\frac{x}{r}\right),\quad\overline{P}_{r}\coloneqq\frac{1}{r^{2}}\overline{P}\left(\frac{x}{r}\right). (2.8)

By scaling, they solve

1r1V¯r+(V¯r)V¯r+P¯r=0.\displaystyle-\frac{1}{r}\partial_{1}\overline{V}_{r}+(\overline{V}_{r}\cdot\nabla)\overline{V}_{r}+\nabla\overline{P}_{r}=0\,. (2.9)

and by (2.2) and the 1-1-homogeneity of Φ~\widetilde{\Phi} we have

V¯r(x)=1rΨ¯(xr)=1rΨ~(xr)=1rΦ~(xr)=rΦ~(x)when |x|>r.\displaystyle\overline{V}_{r}(x)=\frac{1}{r}\nabla^{\perp}\overline{\Psi}\left(\frac{x}{r}\right)=\frac{1}{r}\nabla^{\perp}\widetilde{\Psi}\left(\frac{x}{r}\right)=\frac{1}{r}\nabla\widetilde{\Phi}\left(\frac{x}{r}\right)=r\nabla\widetilde{\Phi}(x)\quad\text{when }|x|>r. (2.10)
P¯r(x)=1r2P¯(xr)=1Φ~+r2|Φ~|22,when |x|>r.\displaystyle\overline{P}_{r}(x)=\frac{1}{r^{2}}\overline{P}\left(\frac{x}{r}\right)={\partial_{1}\widetilde{\Phi}}+r^{2}\frac{|\nabla\widetilde{\Phi}|^{2}}{2},\quad\text{when }|x|>r. (2.11)

Since V¯\overline{V} is C1,1C^{1,1} and V¯r\overline{V}_{r} coincides with rΦ~r\nabla\widetilde{\Phi} outside BrB_{r}, for n=0,1,2n=0,1,2 we have

|nΦ~|C1|x|n+1,|nV¯r|Crmax{r,|x|}n+2for x.\displaystyle|\nabla^{n}\widetilde{\Phi}|\leq C\frac{1}{|x|^{n+1}},\quad|\nabla^{n}\overline{V}_{r}|\leq C\frac{r}{\max\{r,|x|\}^{n+2}}\quad\text{for }x\in\mathbb{R}. (2.12)

2.3 Decomposition of the Lamb–Chaplygin Vortex

Fix α(0,1)\alpha\in(0,1). We consider a smooth cutoff function χ:[0,){\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}:[0,\infty)\to\mathbb{R} such that χ(x)=0{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}(x)=0 for x1x\leq 1, and χ(x)=1{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}(x)=1 for x2x\geq 2. We define a rescaled verision χα:[0,){\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}:[0,\infty)\to\mathbb{R} of this cutoff function as

χα(x):=χ(|x|rα).\displaystyle{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}(x):={\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}\Big{(}\frac{|x|}{r^{\alpha}}\Big{)}\,. (2.13)

Next, we define a pressure field Πr:2\Pi_{r}:\mathbb{R}^{2}\to\mathbb{R}:

Πr(x)rχα(x)Φ~(x),\displaystyle\Pi_{r}(x)\coloneqq r\chi_{\alpha}(x)\widetilde{\Phi}(x)\,, (2.14)

and a velocity field Wr:22W_{r}:\mathbb{R}^{2}\to\mathbb{R}^{2}:

Wr(x)V¯r(x)Πr(x)=V¯r(x)r(χα(x)Φ~(x)).\displaystyle W_{r}(x)\coloneqq\overline{V}_{r}(x)-\nabla\Pi_{r}(x)=\overline{V}_{r}(x)-r\nabla({\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}(x)\,\widetilde{\Phi}(x)). (2.15)

Notice that the velocity field WrW_{r} is not divergence-free. Indeed,

divWr=rΔ(χαΦ~)=rΔχαΦ~+2rχαΦ~.\displaystyle\mathop{div}\nolimits W_{r}=-r\Delta({\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\widetilde{\Phi})=r\Delta{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\widetilde{\Phi}+2r\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\cdot\nabla\widetilde{\Phi}\,. (2.16)
Lemma 2.1.

Let Πr\Pi_{r} and WrW_{r} be defined as in (2.14) and (2.15), respectively. Then the following statements hold.

  1. (i)

    suppΠr2Brα(0)\operatorname{supp}\Pi_{r}\subseteq\mathbb{R}^{2}\setminus B_{r^{\alpha}}(0), and suppWrB¯2rα(0)\operatorname{supp}W_{r}\subseteq\overline{B}_{2r^{\alpha}}(0),

  2. (ii)

    WrL1C(α)r|logr|\left\lVert W_{r}\right\rVert_{L^{1}}\leq C(\alpha)r|\log r|, and WrLpC(p)r2p1\left\lVert W_{r}\right\rVert_{L^{p}}\leq C(p)r^{\frac{2}{p}-1} for every p(1,]p\in(1,\infty],

  3. (iii)

    DWrLp+rD2WrLpC(p)r2p2\left\lVert DW_{r}\right\rVert_{L^{p}}+r\left\lVert D^{2}W_{r}\right\rVert_{L^{p}}\leq C(p)r^{\frac{2}{p}-2}, and divWrLpC(p)r1αrα(2p2)\left\lVert\mathop{div}\nolimits W_{r}\right\rVert_{L^{p}}\leq C(p)\,r^{1-\alpha}\,r^{\alpha\left(\frac{2}{p}-2\right)} for every p[1,]p\in[1,\infty].

  4. (iv)
    1r2Wr=(2π0).\displaystyle\frac{1}{r}\int_{\mathbb{R}^{2}}W_{r}=\begin{pmatrix}2\pi\\ 0\end{pmatrix}. (2.17)
Proof.

The item (i) follows from the definitions (2.14) and (2.15) and noticing (2.10). From (2.12) and (2.13), we obtain the following estimates

|Πr|Cr|x|,|Πr|Crrα1|x|+Cr|x|2,|2Πr|Crr2α1|x|+Cr|x|3,\displaystyle|\Pi_{r}|\leq C\frac{r}{|x|}\,,\qquad|\nabla\Pi_{r}|\leq C\frac{r}{r^{\alpha}}\frac{1}{|x|}+C\frac{r}{|x|^{2}}\,,\qquad|\nabla^{2}\Pi_{r}|\leq C\frac{r}{r^{2\alpha}}\frac{1}{|x|}+C\frac{r}{|x|^{3}}\,, (2.18)

for every x2x\in\mathbb{R}^{2}. As WrV¯rW_{r}\equiv\overline{V}_{r} when xBrα(0)x\in B_{r^{\alpha}}(0), from (2.12), we conclude that

|Wr|C1rwhen|x|r,|Wr|Cr|x|2whenr<|x|2rα.\displaystyle|W_{r}|\leq C\frac{1}{r}\quad\text{when}\quad|x|\leq r,\qquad|W_{r}|\leq C\frac{r}{|x|^{2}}\quad\text{when}\quad r<|x|\leq 2r^{\alpha}\,. (2.19)

Combining (i) with (2.19), (ii) easily follows.


By (2.12) and (2.15), we note that |DWr|+r|D2Wr|Cr2|DW_{r}|+r|D^{2}W_{r}|\leq Cr^{-2} when |x|r|x|\leq r, and |DWr|r|x|3|DW_{r}|\leq r|x|^{-3}, |D2Wr|r|x|4|D^{2}W_{r}|\leq r|x|^{-4} when r<|x|2rαr<|x|\leq 2r^{\alpha}. Using this information along with the fact that suppWrB¯2rα(0)\operatorname{supp}W_{r}\subseteq\overline{B}_{2r^{\alpha}}(0) and 0<α<10<\alpha<1, the required estimate on the LpL^{p} norm of DWrDW_{r} follows. Next, the divWr\mathop{div}\nolimits W_{r} is nonzero only in the annulus B2rα(0)Brα(0)B_{2r^{\alpha}}(0)\setminus B_{r^{\alpha}}(0) and that |divWr|Cr13α|\mathop{div}\nolimits W_{r}|\leq Cr^{1-3\alpha}, which completes the proof of (iii).


Finally, we compute the space integral of 1rWr\frac{1}{r}W_{r}. From equation (2.16) and integrating by parts twice, we obtain

1r2Wrdx\displaystyle\frac{1}{r}\int_{\mathbb{R}^{2}}W_{r}\,{\rm d}x =1r2divWr(x1x2)dx\displaystyle=-\frac{1}{r}\int_{\mathbb{R}^{2}}\mathop{div}\nolimits W_{r}\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}\,{\rm d}x
=2(ΔχαΦ~+2χαΦ~)(x1x2)dx\displaystyle=\int_{\mathbb{R}^{2}}\left(\Delta{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\widetilde{\Phi}+2\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\cdot\nabla\widetilde{\Phi}\right)\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}\,{\rm d}x (2.20)
=2Φ~χαdx+2χαΦ~(x1x2)dx\displaystyle=-\int_{\mathbb{R}^{2}}\widetilde{\Phi}\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}{\rm d}x\;+\;\int_{\mathbb{R}^{2}}\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\cdot\nabla\widetilde{\Phi}\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}\,{\rm d}x
=2χαρ(cos2θcosθsinθ)ρdρdθ+2χαρ(cos2θcosθsinθ)ρdρdθ\displaystyle=\int_{\mathbb{R}^{2}}\frac{{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}^{\prime}}{\rho}\begin{pmatrix}\cos^{2}\theta\\ \cos\theta\,\sin\theta\end{pmatrix}\,\rho\,{\rm d}\rho\,{\rm d}\theta\;+\;\int_{\mathbb{R}^{2}}\frac{{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}^{\prime}}{\rho}\begin{pmatrix}\cos^{2}\theta\\ \cos\theta\,\sin\theta\end{pmatrix}\,\rho\,{\rm d}\rho\,{\rm d}\theta
=(2π0).\displaystyle=\begin{pmatrix}2\pi\\ 0\end{pmatrix}. (2.21)

In the fourth line, we used the polar coordinate system (ρ,θ)(\rho,\theta) along with the identities

χα=(cosθsinθ)χα,Φ~=cosθρ,χαΦ~=ρχαρΦ~=χαρ2cosθ.\displaystyle\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}=\begin{pmatrix}\cos\theta\\ \sin\theta\end{pmatrix}\,{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}^{\prime}_{\alpha},\qquad\widetilde{\Phi}=-\frac{\cos\theta}{\rho},\qquad\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\cdot\nabla\widetilde{\Phi}=\partial_{\rho}{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\partial_{\rho}\widetilde{\Phi}=\frac{{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}^{\prime}}{\rho^{2}}\cos\theta. (2.22)

2.4 Compactly Supported Approximate Solution on 2\mathbb{R}^{2}

In this section, we demonstrate that the compactly supported velocity field WrW_{r} constructed in Section 2.3 (when translated with speed r1r^{-1} in the x1x_{1} direction) is an approximate solution to the momentum part of the Euler equation.

In the forthcoming sections, we will work with building blocks traveling with nonconstant speed, which will be achieved by varying the radius rr in time. Thus, the dependence of WrW_{r} on the scale parameter r>0r>0 will play a central role. A fundamental identity is given by (2.24), which involves the derivative with respect to r>0r>0.

Proposition 2.1 (Constant-Speed Building Block, Principal Part).

Fix α(0,1)\alpha\in(0,1). Let the velocity field WrW_{r} be defined in (2.15). Then there exist pressure fields P1,P2C1,1(2;2)P_{1},P_{2}\in C^{1,1}(\mathbb{R}^{2};\mathbb{R}^{2}) and tensors F1,F2C1,1(2;2×2)F_{1},F_{2}\in C^{1,1}(\mathbb{R}^{2};\mathbb{R}^{2\times 2}), such that

1r1Wr+div(WrWr)+P1=div(F1),\displaystyle-\frac{1}{r}\partial_{1}W_{r}+\mathop{div}\nolimits(W_{r}\otimes W_{r})+\nabla P_{1}=\mathop{div}\nolimits(F_{1}), (2.23)
rWr=1rWr+P2+div(F2).\displaystyle\partial_{r}W_{r}=\frac{1}{r}W_{r}+\nabla P_{2}+\mathop{div}\nolimits(F_{2}).\qquad\quad (2.24)

Moreover, the following properties hold:

  1. (i)

    suppP1,suppP2,suppF1,suppF2B2rα(0)\operatorname{supp}P_{1},\,\operatorname{supp}P_{2},\,\operatorname{supp}F_{1},\,\operatorname{supp}F_{2}\subseteq B_{2r^{\alpha}}(0),

  2. (ii)

    F1LpC(p)r22αrα(2p2)\left\lVert F_{1}\right\rVert_{L^{p}}\leq C(p)r^{2-2\alpha}\,r^{\alpha\left(\frac{2}{p}-2\right)} and F2LpC(p)r2p1\left\lVert F_{2}\right\rVert_{L^{p}}\leq C(p)r^{\frac{2}{p}-1} for every p(1,)p\in(1,\infty).

  3. (iii)

    P2L+div(F2)L+r2P2L+rDdiv(F2)LCr2\left\lVert\nabla P_{2}\right\rVert_{L^{\infty}}+\left\lVert\mathop{div}\nolimits(F_{2})\right\rVert_{L^{\infty}}+r\left\lVert\nabla^{2}P_{2}\right\rVert_{L^{\infty}}+r\left\lVert D\mathop{div}\nolimits(F_{2})\right\rVert_{L^{\infty}}\leq Cr^{-2}.

Remark 2.1.

From (2.23), it is clear that Wr(xtr1e1)W_{r}(x-tr^{-1}e_{1}) is an approximate solution to the momentum part of the Euler equation.

Remark 2.2 (Space-Time Smoothing of WrW_{r}).

The velocity field WrW_{r}, pressure fields P1,P2P_{1},P_{2}, and tensors F1F_{1}, F2F_{2} are almost C2C^{2} but not smooth. However, we can smooth them out according to

Wrρ,P1ρ,P2ρ,F2ρ,W_{r}\ast\rho_{\ell}\,,\quad P_{1}\ast\rho_{\ell}\,,\quad P_{2}\ast\rho_{\ell}\,,\quad F_{2}\ast\rho_{\ell}\,, (2.25)

where ρ\rho_{\ell} is a smooth convolution kernel supported at scale \ell. We then replace F1F_{1} with

F1ρ+(WrWr)ρ(Wrρ)(Wrρ),F_{1}\ast\rho_{\ell}+(W_{r}\otimes W_{r})\ast\rho_{\ell}-(W_{r}\ast\rho_{\ell})\otimes(W_{r}\ast\rho_{\ell})\,, (2.26)

which is smooth as well. If \ell is chosen small enough, then the regularized velocity field, pressure fields, and error tensors will satisfy all the properties in Proposition 2.1.

Proof of Proposition 2.1.

We begin by deriving equation (2.23) and proving the relevant properties of P1P_{1} and F1F_{1}. Using (2.9), (2.14) and (2.15), we discover that WrW_{r} satisfies

1r1Wr1r1Πr+div(WrWr)+div(WrΠr+ΠrWr)+div(ΠrΠr)+P¯r=0.\begin{split}-\frac{1}{r}\partial_{1}W_{r}-\frac{1}{r}\partial_{1}\nabla\Pi_{r}+\mathop{div}\nolimits(W_{r}\otimes W_{r})+&\mathop{div}\nolimits(W_{r}\otimes\nabla\Pi_{r}+\nabla\Pi_{r}\otimes W_{r})\\ &+\mathop{div}\nolimits(\nabla\Pi_{r}\otimes\nabla\Pi_{r})+\nabla\overline{P}_{r}=0\,.\end{split} (2.27)

Next, we have the following identity:

div(ΠrΠr)=ΔΠrΠr+|Πr|22.\displaystyle\mathop{div}\nolimits(\nabla\Pi_{r}\otimes\nabla\Pi_{r})=\Delta\Pi_{r}\,\nabla\Pi_{r}+\nabla\frac{|\nabla\Pi_{r}|^{2}}{2}\,. (2.28)

Using the definition of the pressure Πr\Pi_{r} from (2.14), we get

ΔΠrΠr=r2(ΔχαΦ~+2χαΦ~)(χαΦ~+χαΦ~).\displaystyle\Delta\Pi_{r}\,\nabla\Pi_{r}=r^{2}\left(\Delta{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\,\widetilde{\Phi}+2\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\cdot\nabla\widetilde{\Phi}\right)\left(\nabla{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\widetilde{\Phi}+{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}\nabla\widetilde{\Phi}\right). (2.29)

From the first term in the parentheses on the right-hand side and the definition of the cutoff function χα{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}, we see that suppΔΠrΠrB2rα(0)Brα(0)\operatorname{supp}\Delta\Pi_{r}\,\nabla\Pi_{r}\subseteq B_{2r^{\alpha}}(0)\setminus B_{r^{\alpha}}(0). From this, we note that the integral of ΔΠrΠr\Delta\Pi_{r}\,\nabla\Pi_{r} is zero (on 2\mathbb{R}^{2} or equivalently on B2rαB_{2r^{\alpha}}) by integration by parts:

2ΔΠrΠrdx\displaystyle\int_{\mathbb{R}^{2}}\Delta\Pi_{r}\,\nabla\Pi_{r}\,dx =B2rα(div(ΠrΠr)|Πr|22)𝑑x\displaystyle=\int_{B_{2r^{\alpha}}}\Big{(}\mathop{div}\nolimits(\nabla\Pi_{r}\otimes\nabla\Pi_{r})-\nabla\frac{|\nabla\Pi_{r}|^{2}}{2}\Big{)}\,dx
=B2rα(Πr(Πrn)|Πr|22n)𝑑1=0.\displaystyle=\int_{\partial B_{2r^{\alpha}}}\Big{(}\nabla\Pi_{r}(\nabla\Pi_{r}\cdot n)-\frac{|\nabla\Pi_{r}|^{2}}{2}\,n\Big{)}\,d\mathcal{H}^{1}=0. (2.30)

The last equality follows by direct computation in polar coordinates since Πr=rΦ~\Pi_{r}=r\widetilde{\Phi} is explicit when |x|2rα|x|\geq 2r^{\alpha}, hence the integrand is r4[(cos2θ1/2)ρ^sinθcosθθ^]r^{-4}[(\cos^{2}\theta-1/2)\hat{\rho}-\sin\theta\cos\theta\hat{\theta}]. Using this fact along with equation (2.27) and identity (2.28), we see that WrW_{r} satisfies equation (2.23) if we define

P1\displaystyle P_{1} =P¯r1Πrr+|Πr|22,\displaystyle=\overline{P}_{r}-\frac{\partial_{1}\Pi_{r}}{r}+\frac{|\nabla\Pi_{r}|^{2}}{2}, (2.31)
F1\displaystyle F_{1} =WrΠr+ΠrWr+(ΔΠrΠr),\displaystyle=W_{r}\otimes\nabla\Pi_{r}+\nabla\Pi_{r}\otimes W_{r}+\mathcal{B}(\Delta\Pi_{r}\nabla\Pi_{r})\,, (2.32)

where \mathcal{B} is the Bogovskii operator defined in Appendix A. When |x|2rα|x|\geq 2r^{\alpha}, we see Πr=rΦ~\Pi_{r}=r\widetilde{\Phi} and from (2.11), we see that P1=0P_{1}=0, when |x|2rα|x|\geq 2r^{\alpha}. Hence, suppP1B2rα(0)\operatorname{supp}P_{1}\subseteq B_{2r^{\alpha}}(0). From Proposition A.1, we also see that supp(ΔΠrΠr)B9rα(0)\operatorname{supp}\mathcal{B}(\Delta\Pi_{r}\nabla\Pi_{r})\subseteq B_{9r^{\alpha}}(0), which after combining with (i) in Lemma 2.1 implies suppF1B9rα(0)\operatorname{supp}F_{1}\subseteq B_{9r^{\alpha}}(0).


We now estimate the LpL^{p} norm of F1F_{1}. From (i) in Lemma 2.1, (2.18) and (2.19), we see that |Wr||Πr||W_{r}|\,|\nabla\Pi_{r}| is supported in {rα||2rα}\{r^{\alpha}\leq|\cdot|\leq 2r^{\alpha}\} and bounded by r24α{r^{2-4\alpha}}. Analogously, ΔΠrΠr\Delta\Pi_{r}\nabla\Pi_{r} is supported in {rα||2rα}\{r^{\alpha}\leq|\cdot|\leq 2r^{\alpha}\} and bounded by Cr25αC{r^{2-5\alpha}}. Hence, for every p(1,)p\in(1,\infty) we obtain that

WrΠr+ΠrWrLpC(p)r22αrα(2p2),\displaystyle\left\lVert W_{r}\otimes\nabla\Pi_{r}+\nabla\Pi_{r}\otimes W_{r}\right\rVert_{L^{p}}\leq C(p)r^{2-2\alpha}\,r^{\alpha\left(\frac{2}{p}-2\right)}\,, (2.33)
ΔΠrΠrLpC(p)r23αrα(2p2).\displaystyle\left\lVert\Delta\Pi_{r}\nabla\Pi_{r}\right\rVert_{L^{p}}\leq C(p)r^{2-3\alpha}r^{\alpha(\frac{2}{p}-2)}. (2.34)

From Appendix A, an application of Proposition A.1 and (2.34) provides us with the following estimate

(ΔΠrΠr)LpC(p)rαΔΠrΠrLpC(p)r22αrα(2p2),for every p(1,).\displaystyle\left\lVert\mathcal{B}(\Delta\Pi_{r}\nabla\Pi_{r})\right\rVert_{L^{p}}\leq C(p)r^{\alpha}\left\lVert\Delta\Pi_{r}\nabla\Pi_{r}\right\rVert_{L^{p}}\leq C(p)r^{2-2\alpha}r^{\alpha(\frac{2}{p}-2)}\,,\quad\text{for every $p\in(1,\infty)$}\,. (2.35)

Combining (2.33) and (2.35) gives us the required LpL^{p} estimate on F1F_{1}.


Now we focus on equation (2.24). We first observe that

rV¯r=1rV¯r(xr)V¯r=1rV¯rdiv(V¯rxr).\displaystyle\partial_{r}\overline{V}_{r}=-\frac{1}{r}\overline{V}_{r}-\left(\frac{x}{r}\cdot\nabla\right)\overline{V}_{r}=\frac{1}{r}\overline{V}_{r}-\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\,. (2.36)

From which we see that

rWr=1rWrr(Φ~rχα)div(V¯rxr).\displaystyle\partial_{r}W_{r}=\frac{1}{r}W_{r}-r\nabla(\widetilde{\Phi}\partial_{r}{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha})-\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right). (2.37)

As regards the last term in the right-hand side, we observe that |x|r|x|\geq r, we have V¯r=rV~\overline{V}_{r}=r\widetilde{V} by (2.10), which combined with (2.5) leads to

suppdiv(V¯rxr)Br(0).\displaystyle\operatorname{supp}\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\,\subseteq\,B_{r}(0). (2.38)

We next show that this term has integral 0, which is not an immediate from the divergence theorem since V¯r\overline{V}_{r} does not decay sufficiently fast. From (2.37), since (Φ~rχα)\nabla(\widetilde{\Phi}\partial_{r}{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}) is compactly supported and integrates 0, and by (2.17)

2div(V¯rxr)dx=2(rWr1rWr)dx=2rrWrrdx=rr(1r2Wrdx)=0.\displaystyle\int_{\mathbb{R}^{2}}\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\,{\rm d}x=\int_{\mathbb{R}^{2}}(\partial_{r}W_{r}-\frac{1}{r}W_{r})\,{\rm d}x=\int_{\mathbb{R}^{2}}r\partial_{r}\frac{W_{r}}{r}\,{\rm d}x=r\partial_{r}\left(\frac{1}{r}\int_{\mathbb{R}^{2}}W_{r}\,{\rm d}x\right)=0. (2.39)

and explicit computation

From (2.12), for every p[1,]p\in[1,\infty] we get

div(V¯rxr)Lp+rDdiv(V¯rxr)LpCr2p2.\left\lVert\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\right\rVert_{L^{p}}+r\left\lVert D\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\right\rVert_{L^{p}}\leq Cr^{\frac{2}{p}-2}\,. (2.40)

We define the tensor F2F_{2} as

F2(div(V¯rxr)).\displaystyle F_{2}\coloneqq\mathcal{B}\left(\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\right)\,. (2.41)

and we observe that divF2LCr2\left\lVert\mathop{div}\nolimits F_{2}\right\rVert_{L^{\infty}}\leq C{r^{-2}} by (2.40). Now using Proposition A.1, we obtain the following estimate on the LpL^{p} norm of F2F_{2}:

F2LpC(p)rdiv(V¯rxr)LpC(p)r2p1for any p(1,).\left\lVert F_{2}\right\rVert_{L^{p}}\leq C(p)r\left\lVert\mathop{div}\nolimits\left(\overline{V}_{r}\otimes\frac{x}{r}\right)\right\rVert_{L^{p}}\leq C(p)r^{\frac{2}{p}-1}\quad\text{for any }p\in(1,\infty). (2.42)

Finally, from (2.36), we see that WrW_{r} satisfies (2.24) with F2F_{2} as defined in (2.41) and P2=rΦ~rχαP_{2}=-r\widetilde{\Phi}\partial_{r}{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{\alpha}.

Since nrχr\nabla^{n}\partial_{r}{\mathchoice{\raisebox{0.0pt}{$\displaystyle\chi$}}{\raisebox{0.0pt}{$\textstyle\chi$}}{\raisebox{0.0pt}{$\scriptstyle\chi$}}{\raisebox{0.0pt}{$\scriptscriptstyle\chi$}}}_{r} is supported in B¯2rαBrα\overline{B}_{2r^{\alpha}}\setminus B_{r^{\alpha}} and bounded by C(n,α)r1nαC(n,\alpha){r^{-1-n\alpha}} for n0n\geq 0, and by (2.12) we obtain that P2L+r2P2LpC(α)r2α\left\lVert\nabla P_{2}\right\rVert_{L^{\infty}}+r\left\lVert\nabla^{2}P_{2}\right\rVert_{L^{p}}\leq C(\alpha){r^{-2\alpha}}. ∎

2.5 Building Block with Non-Constant Speed on 𝕋2\mathbb{T}^{2}

Let r:𝕋2(0,)r:\mathbb{T}^{2}\to(0,\infty) be a smooth positive function satisfying rLx<19\|r\|_{L_{x}^{\infty}}<\frac{1}{9}. The function rr should be thought of as a space-dependent spatial scale. In the following sections, we will adjust r(x)r(x) in relation to the Reynolds stress tensor in (E–R). We also consider a smooth function η:[0,)\eta:\mathbb{R}\to[0,\infty). It should be understood as a time-dependent cut-off function. It will be used to keep our family of building blocks disjoint in time.

Next, we define the trajectory of the center of our building block. We want it to travel on a linear periodic trajectory in the two-dimensional torus. More precisely, given any unit vector ξ2\xi\in\mathbb{R}^{2} with rationally dependent components, the center of mass x:𝕋2x:\mathbb{R}\to\mathbb{T}^{2} will solve the ODE

{x(t)=η(t)r(x(t))ξx(t0)=x0.\displaystyle\begin{cases}x^{\prime}(t)=\frac{\eta(t)}{r(x(t))}\xi\\ x(t_{0})=x_{0}\,.\end{cases} (2.43)

In the sequel, the time-period of the linear trajectory ttξt\to t\xi will play the role of the frequency parameter λq+1\lambda_{q+1} in classical convex integration schemes. To obtain this, the trajectory realizes a 1/λq+11/\lambda_{q+1}-dense set on the torus.

The velocity field in (2.43) depends on the inverse of the space-dependent scale r(x)r(x) so that the building block will spend more time in locations where the scale is large and leave quickly from locations where the scale is small. This will be key in our new mechanism of error cancellation. The function η(t)\eta(t) in (2.43) mainly serves as a time cut-off.

The principal building block is given by

Vp(x,t)=η(t)Wr(x(t))(xx(t)).\displaystyle V^{p}(x,t)=\eta(t)\,W_{r(x(t))}(x-x(t)). (2.44)

where WrCW_{r}\in C^{\infty} has been built in Proposition 2.1 with α=1/5\alpha=1/5 and has been smoothed according to Remark 2.2, and rotated so that it solves

1r(ξ)Wr+div(WrWr)+P1=div(F1),\displaystyle-\frac{1}{r}(\xi\cdot\nabla)W_{r}+\mathop{div}\nolimits(W_{r}\otimes W_{r})+\nabla P_{1}=\mathop{div}\nolimits(F_{1})\,, (2.45)
rWr=1rWr+P2+div(F2),on 2.\displaystyle\partial_{r}W_{r}=\frac{1}{r}W_{r}+\nabla P_{2}+\mathop{div}\nolimits(F_{2})\,,\quad\text{on $\mathbb{R}^{2}$}\,. (2.46)

As they are compactly supported, we consider the one-periodized version of WrW_{r}, P1P_{1}, P2P_{2}, and F1F_{1}, F2F_{2}, and associate them with functions on the 22-dimensional torus 𝕋2\mathbb{T}^{2}. Finally, we correct the divergence of VpV^{p} by adding a corrector VcV^{c}, obtained from VpV^{p} through the anti-divergence operator Δ1\nabla\Delta^{-1} on the torus, and therefore not supported in a small ball as VpV^{p}

V(x,t)\displaystyle V(x,t) :=Vp(x,t)+Vc(x,t)\displaystyle:=V^{p}(x,t)+V^{c}(x,t) (2.47)
Vc(x,t)\displaystyle V^{c}(x,t) :=Δ1divVp(x,t)\displaystyle:=-\nabla\Delta^{-1}\mathop{div}\nolimits V^{p}(x,t) (2.48)
Proposition 2.2 (Building Block).

Let VV be as in (2.47). There exist SC(𝕋2×;2)S\in C^{\infty}(\mathbb{T}^{2}\times\mathbb{R};\mathbb{R}^{2}), PC(𝕋2×;)P\in C^{\infty}(\mathbb{T}^{2}\times\mathbb{R};\mathbb{R}), and a symmetric tensor FC(𝕋2×;2×2)F\in C^{\infty}(\mathbb{T}^{2}\times\mathbb{R};\mathbb{R}^{2\times 2}) such that

{tV+div(VV)+P=Sddt(η(t)r(x(t)))+div(F),div(V)=0,on 𝕋2×+\begin{cases}\partial_{t}V+\mathop{div}\nolimits(V\otimes V)+\nabla P=S\frac{d}{dt}\left(\eta(t)\,r(x(t))\right)+\mathop{div}\nolimits(F)\,,\\ \mathop{div}\nolimits(V)=0\,,\end{cases}\quad\quad\text{on $\mathbb{T}^{2}\times\mathbb{R}_{+}$} (2.49)

Moreover, the following estimates hold:

  1. (i)

    FLtLx1CηLt2rLx12(1+log(r)Lx)\|F\|_{L^{\infty}_{t}L^{1}_{x}}\leq C\|\eta\|_{L^{\infty}_{t}}^{2}\|r\|_{L^{\infty}_{x}}^{\frac{1}{2}}(1+\|\nabla\log(r)\|_{L^{\infty}_{x}}).

  2. (ii)

    For every p(1,)p\in(1,\infty), it holds

    VLtLxpC(p)ηLtr2p1Lx,DVLtLxpC(p)ηLtr2p2Lx,tVLtLxp+r1Lx1tDVLtLxpC(p)(η2Ltr3Lx(1+rLx)+ηLtr1Lx),S(,t)LxpC(p)r(x(t))2p2.\begin{split}&\|V\|_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\|\eta\|_{L^{\infty}_{t}}\|r^{\frac{2}{p}-1}\|_{L^{\infty}_{x}}\,,\qquad\|DV\|_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\|\eta\|_{L^{\infty}_{t}}\|r^{\frac{2}{p}-2}\|_{L^{\infty}_{x}}\,,\\[5.0pt] &\|\partial_{t}V\|_{L^{\infty}_{t}L^{p}_{x}}+\|r^{-1}\|_{L^{\infty}_{x}}^{-1}\|\partial_{t}DV\|_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\left(\left\lVert\eta^{2}\right\rVert_{L^{\infty}_{t}}\left\lVert r^{-3}\right\rVert_{L^{\infty}_{x}}\left(1+\left\lVert\nabla r\right\rVert_{L^{\infty}_{x}}\right)+\left\lVert\eta^{\prime}\right\rVert_{L^{\infty}_{t}}\left\lVert r^{-1}\right\rVert_{L^{\infty}_{x}}\right)\,,\\[2.0pt] &\|S(\cdot,t)\|_{L_{x}^{p}}\leq C(p)\,r(x(t))^{\frac{2}{p}-2}\,.\end{split} (2.50)
  3. (iii)

    For every t+t\in\mathbb{R}_{+}, S(,t)S(\cdot,t) is supported in a ball centered in r(x(t))r(x(t)) of radius 2(r(x(t)))152(r(x(t)))^{\frac{1}{5}}, and

    𝕋2S(x,t)dx=2πξ.\displaystyle\int_{\mathbb{T}^{2}}S(x,t)\,{\rm d}x=2\pi\xi. (2.51)
Proof.

In the proof, we use the shorthand notations r(t)r(x(t))r(t)\coloneqq r(x(t)). From (2.47), we have

tV+div(VV)\displaystyle\partial_{t}V+\mathop{div}\nolimits(V\otimes V) =tVp+tVc+div(VpVp)\displaystyle=\partial_{t}V^{p}+\partial_{t}V^{c}+\mathop{div}\nolimits(V^{p}\otimes V^{p}) (2.52)
+div(VpVc+VcVp)+div(VcVc),\displaystyle+\mathop{div}\nolimits(V^{p}\otimes V^{c}+V^{c}\otimes V^{p})+\mathop{div}\nolimits(V^{c}\otimes V^{c})\,, (2.53)

then using (2.45) and (2.46), we obtain

tVp(x,t)\displaystyle\partial_{t}V^{p}(x,t) =t(η(t)Wr(x(t))(xx(t)))\displaystyle=\partial_{t}(\eta(t)W_{r(x(t))}(x-x(t))) (2.54)
=η2r(ξ)Wr+ηrrWr+ηWr\displaystyle=-\frac{\eta^{2}}{r}(\xi\cdot\nabla)W_{r}+\eta{r}^{\prime}\partial_{r}W_{r}+\eta^{\prime}W_{r}
=η2(div(WrWr)P1+div(F1))+ηr(1rWr+P2+div(F2))+ηWr\displaystyle={\eta^{2}}\left(-\mathop{div}\nolimits(W_{r}\otimes W_{r})-\nabla P_{1}+\mathop{div}\nolimits(F_{1})\right)+\eta{r}^{\prime}\left(\frac{1}{{r}}W_{r}+\nabla P_{2}+\mathop{div}\nolimits(F_{2})\right)+\eta^{\prime}W_{r}
=div(VpVp)+(ηr)1rWr+(ηrP2η2P1)+div(ηrF2+η2F1).\displaystyle=-\mathop{div}\nolimits(V^{p}\otimes V^{p})+(\eta{r})^{\prime}\frac{1}{{r}}W_{r}+\nabla(\eta{r}^{\prime}P_{2}-\eta^{2}P_{1})+\mathop{div}\nolimits(\eta{r}^{\prime}F_{2}+\eta^{2}F_{1})\,. (2.55)

Since tVc=tΔ1divVp\partial_{t}V^{c}=-\nabla\partial_{t}\Delta^{-1}\mathop{div}\nolimits V^{p}, we conclude that

tV+div(VV)+P=Sddt(η(t)r(t))+div(F),\displaystyle\partial_{t}V+\mathop{div}\nolimits(V\otimes V)+\nabla P=S\frac{d}{dt}\left(\eta(t){r}(t)\right)+\mathop{div}\nolimits(F)\,, (2.56)

where

P\displaystyle P =tΔ1divVp+η2P1ηrP2\displaystyle=\partial_{t}\Delta^{-1}\mathop{div}\nolimits V^{p}+\eta^{2}P_{1}-\eta{r}^{\prime}P_{2} (2.57)
F\displaystyle F =F3+VpVc+VcVp+VcVc\displaystyle=F_{3}+V^{p}\otimes V^{c}+V^{c}\otimes V^{p}+V^{c}\otimes V^{c} (2.58)
S\displaystyle S =1rWr;\displaystyle=\frac{1}{{r}}W_{r}\,; (2.59)

the natural choice for F3F_{3} to satisfy (2.56) is η2F1+ηrF2\eta^{2}F_{1}+\eta{r}^{\prime}F_{2}, but since this is not a symmetric tensor, we replace it with a symmetric tensor, without changing its divergence, thanks to the operator 0\mathcal{R}_{0} recalled in (A.7)

F30div(η2F1+ηrF2).F_{3}\coloneqq\mathcal{R}_{0}\mathop{div}\nolimits(\eta^{2}F_{1}+\eta{r}^{\prime}F_{2})\,. (2.60)

With this definition of SS, statement (iii) and the last inequality of statement (ii) follow from Lemma 2.1(i), (ii) and (iv).

As a consequence of (A.9), item (ii) in Proposition 2.1 and noting

r=rx(t)=η(ξr)r=η(ξlogr),\displaystyle{r}^{\prime}=\nabla r\cdot x^{\prime}(t)=\eta\frac{(\xi\cdot\nabla r)}{{r}}=\eta(\xi\cdot\nabla\log r), (2.61)

for every p(1,+)p\in(1,+\infty) we have

F3LtLx1F3LtLxp\displaystyle\left\lVert F_{3}\right\rVert_{L^{\infty}_{t}L^{1}_{x}}\leq\left\lVert F_{3}\right\rVert_{L^{\infty}_{t}L^{p}_{x}} C(p)η2F1+ηrF2Lxp\displaystyle\leq C(p)\|\eta^{2}F_{1}+\eta{r}^{\prime}F_{2}\|_{L^{p}_{x}} (2.62)
C(p)(ηLt2F1Lxp+ηLt|r|F2Lxp)\displaystyle\leq C(p)\left(\left\lVert\eta\right\rVert_{L^{\infty}_{t}}^{2}\left\lVert F_{1}\right\rVert_{L^{p}_{x}}+\,\left\lVert\eta\right\rVert_{L^{\infty}_{t}}\;|{r}^{\prime}|\;\left\lVert F_{2}\right\rVert_{L^{p}_{x}}\right) (2.63)
C(p)ηLt2(r2+2αp4αLx+logrLxr2p1Lx).\displaystyle\leq C(p)\left\lVert\eta\right\rVert_{L^{\infty}_{t}}^{2}\left(\left\lVert r^{2+\frac{2\alpha}{p}-4\alpha}\right\rVert_{L^{\infty}_{x}}+\left\lVert\nabla\log r\right\rVert_{L^{\infty}_{x}}\left\lVert r^{\frac{2}{p}-1}\right\rVert_{L^{\infty}_{x}}\right). (2.64)

With the choices of p=1211,α=15p=\frac{12}{11},\,\alpha=\frac{1}{5} in (2.64), we see that

F3LtLx1CηLt2r56Lx(1+logrLx).\displaystyle\left\lVert F_{3}\right\rVert_{L^{\infty}_{t}L^{1}_{x}}\leq C\left\lVert\eta\right\rVert_{L^{\infty}_{t}}^{2}\left\lVert r^{\frac{5}{6}}\right\rVert_{L^{\infty}_{x}}\left(1+\left\lVert\nabla\log r\right\rVert_{L^{\infty}_{x}}\right). (2.65)

We observe that by Lemma 2.1(ii) and (iii), for every p(1,)p\in(1,\infty),

Vp(,t)LxpC(p)ηLtr2p1,\displaystyle\left\lVert V^{p}(\cdot,t)\right\rVert_{L^{p}_{x}}\leq C(p)\left\lVert\eta\right\rVert_{L^{\infty}_{t}}\,{r}^{\frac{2}{p}-1}\,, (2.66)
DVp(,t)LxpC(p)ηLtr2p2.\displaystyle\left\lVert DV^{p}(\cdot,t)\right\rVert_{L^{p}_{x}}\leq C(p)\left\lVert\eta\right\rVert_{L^{\infty}_{t}}\,{r}^{\frac{2}{p}-2}. (2.67)

From Poincaré inequality VcLpC(p)DVcLp\left\lVert V^{c}\right\rVert_{L^{p}}\leq C(p)\left\lVert DV^{c}\right\rVert_{L^{p}} and the Calderon–Zygmund theory, we have

Vc(,t)Lxp+DVc(,t)Lxp\displaystyle\left\lVert V^{c}(\cdot,t)\right\rVert_{L^{p}_{x}}+\left\lVert DV^{c}(\cdot,t)\right\rVert_{L^{p}_{x}} C(p)ηLtdivWr(t)LxpC(p)ηLt(r(t))1+2αp3α,\displaystyle\leq C(p)\left\lVert\eta\right\rVert_{L^{\infty}_{t}}\left\lVert\mathop{div}\nolimits W_{{r}(t)}\right\rVert_{L^{p}_{x}}\leq C(p)\left\lVert\eta\right\rVert_{L^{\infty}_{t}}\left({r}(t)\right)^{1+\frac{2\alpha}{p}-3\alpha}\,, (2.68)

for every p(1,)p\in(1,\infty). By Calderon-Zygmund theory, we have Vc(,t)LxpC(p)Vp(,t)Lxp\left\lVert V^{c}(\cdot,t)\right\rVert_{L^{p}_{x}}\leq C(p)\left\lVert V^{p}(\cdot,t)\right\rVert_{L^{p}_{x}}, which together with (2.66) establishes the first inequality in statement (ii). Moreover we obtain

VpVc+VcVp+VcVcLxp\displaystyle\left\lVert V^{p}\otimes V^{c}+V^{c}\otimes V^{p}+V^{c}\otimes V^{c}\right\rVert_{L^{p}_{x}} C(p)VpLx2pVcLx2p\displaystyle\leq C(p)\left\lVert V^{p}\right\rVert_{L^{2p}_{x}}\left\lVert V^{c}\right\rVert_{L^{2p}_{x}} (2.69)
C(p)ηLt2r1+αp3αLx,\displaystyle\leq C(p)\left\lVert\eta\right\rVert_{L^{\infty}_{t}}^{2}\|r^{\frac{1+\alpha}{p}-3\alpha}\|_{L^{\infty}_{x}}\,, (2.70)

for every p(1,)p\in(1,\infty). Using the choice as above of p=1211,α=15p=\frac{12}{11},\,\alpha=\frac{1}{5} in (2.70), we obtain

VpVc+VcVp+VcVcLtLx1\displaystyle\left\lVert V^{p}\otimes V^{c}+V^{c}\otimes V^{p}+V^{c}\otimes V^{c}\right\rVert_{L^{\infty}_{t}L^{1}_{x}} CηLt2r12Lx.\displaystyle\leq C\left\lVert\eta\right\rVert_{L^{\infty}_{t}}^{2}\|r^{\frac{1}{2}}\|_{L^{\infty}_{x}}\,. (2.71)

Finally, combining (2.65) and (2.71), we conclude property (i) in Proposition 2.2.


Now we focus on estimating tV\partial_{t}V and DVDV and tDV\partial_{t}DV in LpL^{p}. We begin by noticing that

Dx,tVcLtLxpC(p)Dx,tVpLtLxp,for every p(1,)\|D_{x,t}V^{c}\|_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\|D_{x,t}V^{p}\|_{L^{\infty}_{t}L^{p}_{x}}\,,\quad\text{for every $p\in(1,\infty)$} (2.72)

by Calderon-Zygmund theory, since Vc=Δ1div(Vp)V^{c}=-\nabla\Delta^{-1}\mathop{div}\nolimits(V^{p}). Hence, it will be enough to estimate Dx,tVpD_{x,t}V^{p}. The same consideration works for tDVp\partial_{t}DV^{p}. By (2.66) we get the estimate DVDV in statement (ii). To bound the time derivative, we restart from the identity

tVp=η2r(ξ)Wr+(ηr)1rWr+(ηrP2)+div(ηrF2),\displaystyle\partial_{t}V^{p}=-\frac{\eta^{2}}{{r}}(\xi\cdot\nabla)W_{r}+(\eta{r})^{\prime}\frac{1}{{r}}W_{r}+\nabla(\eta{r}^{\prime}P_{2})+\mathop{div}\nolimits(\eta{r}^{\prime}F_{2})\,, (2.73)

which implies

tVp(,t)Lxη2rDWrLx+|η|WrL+η|r|(1rWrLx+P2Lx+div(F2)Lx)Cη2r3+C|η|r1+Cη|r|r2,\begin{split}\|\partial_{t}V^{p}(\cdot,t)\|_{L^{\infty}_{x}}&\leq\frac{\eta^{2}}{{r}}\|DW_{r}\|_{L^{\infty}_{x}}+|\eta^{\prime}|\|W_{r}\|_{L^{\infty}}\\ &+\eta|{r}^{\prime}|\left(\frac{1}{{r}}\|W_{r}\|_{L^{\infty}_{x}}+\|\nabla P_{2}\|_{L^{\infty}_{x}}+\|\mathop{div}\nolimits(F_{2})\|_{L^{\infty}_{x}}\right)\\ &\leq C\eta^{2}{r}^{-3}+C|\eta^{\prime}|{r}^{-1}+C\eta|{r}^{\prime}|{r}^{-2}\,,\end{split} (2.74)

where we used Lemma 2.1 and Proposition 2.1 (iii).

Differentiating (2.73) with respect to space, we obtain the estimate for tDVp(,t)Lx\|\partial_{t}DV^{p}(\cdot,t)\|_{L^{\infty}_{x}}. This estimate is analogous to (2.74), but it involves, in the first and second lines, one additional derivative of WrW_{r}, F2F_{2}, and P2P_{2}. The estimates for these quantities can be found in Lemma 2.1 and Proposition 2.1(iii).

3 Iteration and Proof of the Main Theorems


In this section, we will begin by presenting the choice of parameters and the Euler-Reynolds system. Subsequently, the objective of this section is to assemble all the main ingredients necessary to complete our convex integration scheme. The primary components comprise definitions of parameters, the mollification step, error decomposition, time series, adaptation of the building block from Proposition 2.2, auxiliary building block, and a time corrector.

3.1 Choices of Parameters

As described in the overview section, there are four parameters involved in the qqth step of our convex integration scheme, namely, δq\delta_{q} (the amplitude or the error size), λq\lambda_{q} (related to the slope of the trajectory), rqr_{q} (the size of the core of the building block), and τq\tau_{q} (the size of time intervals). Next, we specify the following dependencies among the parameters. Let λ0,σ,κ,\lambda_{0},\sigma,\kappa\in\mathbb{N}, and β,μ\beta,\mu be positive parameters. For q0q\in\mathbb{Z}_{\geq 0}, we define

λq+1=λqσ,δq=λ12βλqβ,rq+1=λq+1μ,τq+1=λq+1κ\displaystyle\lambda_{q+1}=\lambda_{q}^{\sigma}\,,\quad\delta_{q}=\lambda_{1}^{2\beta}\lambda_{q}^{-\beta}\,,\quad r_{q+1}=\lambda_{q+1}^{-\mu}\,,\quad\tau_{q+1}=\lambda_{q+1}^{-\kappa} (3.1)

In the sequel, we will choose the parameters to satisfy a few simple inequalities (see Section 5.3) that will be derived to close the convex integration scheme. For the reader’s convenience, we prefer to specify here one admissible choice of such parameters, found a posteriori, which will satisfy all the required inequalities derived during the proof:

β=1245,μ=5310,κ=3,σ=110.\beta=\frac{1}{245},\quad\mu=\frac{53}{10},\quad\kappa=3,\quad\sigma=110\,. (3.2)

3.2 The Euler–Reynolds System

In this section, we set up the iteration of our convex integration scheme. At the qqth step of the iteration, we construct solutions to the Euler–Reynolds system

{tuq+div(uquq)+pq=div(Rq),divuq=0,\begin{cases}\partial_{t}u_{q}+\mathop{div}\nolimits(u_{q}\otimes u_{q})+\nabla p_{q}=\mathop{div}\nolimits(R_{q}),\\ \mathop{div}\nolimits u_{q}=0\,,\end{cases} (E–R)

on 𝕋2×\mathbb{T}^{2}\times\mathbb{R}, satisfying the estimates:

RqLtLx1δq+1,uqLtLx22δ01/2δq1/2,Dx,tuqLtLx4λqn,\|R_{q}\|_{L^{\infty}_{t}L^{1}_{x}}\leq\delta_{q+1}\,,\quad\|u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\leq 2\delta_{0}^{1/2}-\delta_{q}^{1/2}\ ,\quad{\|D_{x,t}u_{q}\|_{L^{\infty}_{t}L^{4}_{x}}}\leq\lambda^{n}_{q}\,, (3.3)

where the number nn is positive.

Proposition 3.1 (Iteration Step).

Let p¯=1+16500\overline{p}=1+\frac{1}{6500} and σ,β,μ,κ\sigma,\beta,\mu,\kappa as in (3.2), n=16n=16, and α=105\alpha=10^{-5}. There exists M1M\geq 1 such that for every λ0λ0(M)\lambda_{0}\geq\lambda_{0}(M) the following statement holds. Let (uq,pq,Rq)(u_{q},p_{q},R_{q}) be a solution to (E–R) satisfying (3.3). Then, there exists (uq+1,pq+1,Rq+1)(u_{q+1},p_{q+1},R_{q+1}) smooth solution to (E–R) such that

  • (i)

    Rq+1LtLx1δq+2\|R_{q+1}\|_{L^{\infty}_{t}L^{1}_{x}}\leq\delta_{q+2}, uq+1LtLx22δ01/2δq+11/2\|u_{q+1}\|_{L^{\infty}_{t}L^{2}_{x}}\leq 2\delta_{0}^{1/2}-\delta_{q+1}^{1/2}, Dx,tuq+1LtLx4λq+1n\|D_{x,t}u_{q+1}\|_{L^{\infty}_{t}L^{4}_{x}}\leq\lambda^{n}_{q+1}.

  • (ii)

    uq+1uqLtLx2Mδq+11/2\|u_{q+1}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\leq M\delta_{q+1}^{1/2}, Duq+1CtαLxp¯DuqCtαLxp¯+λ0δq+11/10\|Du_{q+1}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}\leq\|Du_{q}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+\lambda_{0}\delta_{q+1}^{1/10}.

  • (iii)

    uq+1(,0)uq(,0)L2λq1\|u_{q+1}(\cdot,0)-u_{q}(\cdot,0)\|_{L^{2}}\leq\lambda_{q}^{-1}, uq+1(,1)uq(,1)L2λq1\|u_{q+1}(\cdot,1)-u_{q}(\cdot,1)\|_{L^{2}}\leq\lambda_{q}^{-1}.

The iterative estimate (i) guarantees that the error RqR_{q} converges to zero in LtLx1L^{\infty}_{t}L^{1}_{x} as qq\to\infty, while maintaining some control over the space-time derivative Dx,tuqD_{x,t}u_{q} of the velocity field. However, the latter control weakens as qq tends to infinity and is ultimately lost. Nonetheless, it serves as a crucial technical component in proving Proposition 3.1. The estimates (ii) ensure that in each iteration, the new velocity field uq+1u_{q+1} is close to the previous one uqu_{q} in the relevant functional space Ct(Lx2Wx1,p¯)C_{t}(L^{2}_{x}\cap W^{1,\overline{p}}_{x}). Finally, (iii) tracks the velocity field at the initial and final times t=0t=0 and t=1t=1. This is crucial in the proof of Theorem 1.1 to prescribe the initial and final conditions up to a small error. Its validity is a consequence of the time intermittency in our construction; see Remark 4.1.

Remark 3.1 (Locality in Time).

In our proof of Proposition 3.1, the construction of (uq+1,pq+1,Rq+1)(u_{q+1},p_{q+1},R_{q+1}) from (uq,pq,Rq)(u_{q},p_{q},R_{q}) exhibits a certain locality in time. The precise statement is as follows:

  • (iv)

    Assume that (uq,pq,Rq)(u_{q},p_{q},R_{q}) and (uq,pq,Rq)(u_{q}^{\prime},p_{q}^{\prime},R_{q}^{\prime}) are solutions to (E–R) satisfying (3.3). If they coincide on [0,t][0,t], for some t1/9t\geq 1/9, then we can construct (uq+1,pq+1,Rq+1)(u_{q+1},p_{q+1},R_{q+1}) and (uq+1,pq+1,Rq+1)(u_{q+1}^{\prime},p_{q+1}^{\prime},R_{q+1}^{\prime}) satisfying (i), (ii), and coinciding on [0,tλq1][0,t-\lambda_{q}^{-1}].

3.3 Proof of Theorem 1.1 and Theorem 1.2

In this section, we rely on Proposition 3.1 to complete the proof of Theorem 1.1 and Theorem 1.2.


We begin with Theorem 1.1. We fix ε>0{\varepsilon}>0 and proceed to define, for (x,t)𝕋2×[0,1](x,t)\in\mathbb{T}^{2}\times[0,1],

u0(x,t):=χ(t)(ustartρ)(x)+(1χ(t))(uendρ)(x),\displaystyle u_{0}(x,t):=\chi(t)(u_{\rm start}\ast\rho_{\ell})(x)+(1-\chi(t))(u_{\rm end}\ast\rho_{\ell})(x)\,, (3.4)
p0(x,t):=0,\displaystyle p_{0}(x,t):=0\,, (3.5)
R0(x,t):=0(tu0+div(u0u0))(x,t),\displaystyle R_{0}(x,t):=\mathcal{R}_{0}(\partial_{t}u_{0}+\mathop{div}\nolimits(u_{0}\otimes u_{0}))(x,t)\,, (3.6)

where ρ\rho_{\ell} is a smooth convolution kernel, >0\ell>0 is small enough to ensure that

ustartustartρL2+uenduendρL2ε2,\|u_{\rm start}-u_{\rm start}\ast\rho_{\ell}\|_{L^{2}}+\|u_{\rm end}-u_{\rm end}\ast\rho_{\ell}\|_{L^{2}}\leq\frac{{\varepsilon}}{2}\,, (3.7)

and χ(t)\chi(t) is a smooth time cut-off such that χ(t)=1\chi(t)=1 for t1/4t\leq 1/4, and χ(t)=0\chi(t)=0 for t1/2t\geq 1/2. Notice that R0R_{0} is a well-defined symmetric tensor since ustaru_{\rm star} and uendu_{\rm end} are mean-free velocity fields.

We choose λ0\lambda_{0}\in\mathbb{N} big enough so that

R0LtLx1δ1,Dx,tu0LtLx4λ016,4λ01ε.\|R_{0}\|_{L^{\infty}_{t}L^{1}_{x}}\leq\delta_{1}\,,\quad\|D_{x,t}u_{0}\|_{L^{\infty}_{t}L^{4}_{x}}\leq\lambda_{0}^{16}\,,\quad 4\lambda_{0}^{-1}\leq{\varepsilon}\,. (3.8)

and it satisfies the condition specified in Proposition 3.1. We can apply Proposition 3.1 to produce a sequence of smooth solutions (uq,pq,Rq)(u_{q},p_{q},R_{q}) to the Euler–Reynolds system (E–R) satisfying properties (i), (ii), and (iii). From (ii), it follows that the sequence (uq)q(u_{q})_{q\in\mathbb{N}} satisfies the gradient bound

supqnDuqDunLtLxpq=nDuq+1DuqLtLxpλ0q=nδq1/10.\sup_{q\geq n}\|Du_{q}-Du_{n}\|_{L^{\infty}_{t}L^{p}_{x}}\leq\sum_{q^{\prime}=n}^{\infty}\|Du_{q^{\prime}+1}-Du_{q^{\prime}}\|_{L^{\infty}_{t}L^{p}_{x}}\leq\lambda_{0}\sum_{q^{\prime}=n}^{\infty}\delta_{q^{\prime}}^{1/10}\,. (3.9)

This shows that (uq)q(u_{q})_{q\in\mathbb{N}} is a Cauchy sequence and converges in Ct(Lx2Wx1,p¯)C_{t}(L^{2}_{x}\cap W^{1,\overline{p}}_{x}) to

u(x,t):=u0(x,t)+q=0(uq+1(x,t)uq(x,t))Ct(Lx2Wx1,p¯).u(x,t):=u_{0}(x,t)+\sum_{q=0}^{\infty}(u_{q+1}(x,t)-u_{q}(x,t))\in C_{t}(L^{2}_{x}\cap W^{1,\overline{p}}_{x})\,. (3.10)

In particular, ω:=curluCtLxp¯\omega:={\rm curl}u\in C_{t}L^{\overline{p}}_{x}.


As a consequence of (iii) and (3.10), it follows that

u(,0)ustartρL2\displaystyle\|u(\cdot,0)-u_{\rm start}\ast\rho_{\ell}\|_{L^{2}} =u(,0)u0(,0)L2\displaystyle=\|u(\cdot,0)-u_{0}(\cdot,0)\|_{L^{2}} (3.11)
q=0uq+1(,0)uq(,0)L2\displaystyle\leq\sum_{q=0}^{\infty}\|u_{q+1}(\cdot,0)-u_{q}(\cdot,0)\|_{L^{2}} (3.12)
q=0λq12λ01ε/2.\displaystyle\leq\sum_{q=0}^{\infty}\lambda_{q}^{-1}\leq 2\lambda_{0}^{-1}\leq{\varepsilon}/2\,. (3.13)

In view of (3.7), we conclude u(,0)ustartL2ε\|u(\cdot,0)-u_{\rm start}\|_{L^{2}}\leq{\varepsilon}. Similarly, we also obtain u(,1)uendL2ε\|u(\cdot,1)-u_{\rm end}\|_{L^{2}}\leq{\varepsilon}.


Finally, it is standard to check that uu is a weak solution of the Euler equations (EU) by taking the limit qq\to\infty in the distributional formulation of (E–R), since uquLtLx20\|u_{q}-u\|_{L^{\infty}_{t}L^{2}_{x}}\to 0 and RqLtLx10\|R_{q}\|_{L^{\infty}_{t}L^{1}_{x}}\to 0, as a consequence of (i) in Proposition 3.1.


To prove Theorem 1.2, it suffices to combine the previous construction together with Remark 3.1. We fix a divergence-free velocity field ustartL2u_{\rm start}\in L^{2} with zero mean. For every uendL2u_{\rm end}\in L^{2}, with zero divergence and mean, we build (u0,p0,R0)(u_{0},p_{0},R_{0}) as in (3.4). All of this solutions to (E–R) coincide in [0,1/4][0,1/4] by construction. Hence, by Remark 3.1, at each stage of the iteration the new solutions will coincide in a definite neighborhood of t=0t=0. Therefore, in the limit we get infinitely many solutions with the same initial condition vv satisfying vustartL2ε\|v-u_{\rm start}\|_{L^{2}}\leq{\varepsilon}.

3.4 Solutions with Time-Wise Compact Support

In this section, we rely on Proposition 3.1 to complete the proof of Theorem 1.3.


Let β,σ\beta,\sigma as in (3.2). Let λ0\lambda_{0}\in\mathbb{N} be big enough. We define

u0(x,t):=λ034βσχ(t)sin(λ0x2)e1\displaystyle u_{0}(x,t):=\lambda^{\frac{3}{4}\beta\sigma}_{0}\chi(t)\sin(\lambda_{0}x_{2})e_{1} (3.14)
p0(x,t):=0,\displaystyle p_{0}(x,t):=0\,, (3.15)
R0(x,t):=λ01+34βσχ(t)cos(λ0x2)(e1e2+e2e1),\displaystyle R_{0}(x,t):=-\lambda_{0}^{-1+\frac{3}{4}\beta\sigma}\chi^{\prime}(t)\cos(\lambda_{0}x_{2})(e_{1}\otimes e_{2}+e_{2}\otimes e_{1})\,, (3.16)

where χC()\chi\in C^{\infty}(\mathbb{R}) is a cut-off function such that χ=1\chi=1 on (1/2,3/4)(1/2,3/4) and χ=0\chi=0 on (,1/4)(7/8,+)(-\infty,1/4)\cup(7/8,+\infty). It turns out that (u0,p0,R0)(u_{0},p_{0},R_{0}) solves the Euler–Reynolds system (E–R) with the following estimates:

R0LtLx120λ01+34βσ,u0LtLx2=Cλ034βσ,Dx,tu0LtLx420λ01+34βσ,\|R_{0}\|_{L^{\infty}_{t}L^{1}_{x}}\leq 20\lambda_{0}^{-1+\frac{3}{4}\beta\sigma}\,,\quad\|u_{0}\|_{L^{\infty}_{t}L^{2}_{x}}=C\lambda_{0}^{\frac{3}{4}\beta\sigma}\,,\quad\|D_{x,t}u_{0}\|_{L^{\infty}_{t}L^{4}_{x}}\leq 20\lambda_{0}^{1+\frac{3}{4}\beta\sigma}\,, (3.17)

which allows us to start the iteration, provided λ0\lambda_{0} is sufficiently large.

We obtain a sequence (uq,pq,Rq)(u_{q},p_{q},R_{q}) of solutions to (E–R) satisfying the inductive estimates (i), (ii) in Proposition 3.1. Taking into account Remark 3.1, we can assume that uq(x,t)=0u_{q}(x,t)=0 when t1/8t\leq 1/8 and t1t\geq 1, for every x𝕋2x\in\mathbb{T}^{2}. Arguing as in Section 3.3 we deduce that uquu_{q}\to u in Ct(Lx2Wx1,p¯)C_{t}(L^{2}_{x}\cap W_{x}^{1,\overline{p}}) while Rq0R_{q}\to 0 in LtLx1L^{\infty}_{t}L^{1}_{x}. Moreover, u(x,t)u(x,t) solves (EU) for a suitable pressure and is compactly supported in time. Moreover,

uu0LtLx2\displaystyle\|u-u_{0}\|_{L^{\infty}_{t}L^{2}_{x}} u1u0LtLx2+q1uq+1uqLtLx2\displaystyle\leq\|u_{1}-u_{0}\|_{L^{\infty}_{t}L^{2}_{x}}+\sum_{q\geq 1}\|u_{q+1}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}} (3.18)
M(δ11/2+q1δq+11/2)\displaystyle\leq M\left(\delta_{1}^{1/2}+\sum_{q\geq 1}\delta_{q+1}^{1/2}\right) (3.19)
Mλ1β/2+C(M)λ0β(1σ/2).\displaystyle\leq M\lambda_{1}^{\beta/2}+C(M)\lambda_{0}^{\beta(1-\sigma/2)}\,. (3.20)

Hence, if λ0λ0(M)\lambda_{0}\geq\lambda_{0}(M) is sufficiently large, then

uu0LtLx22Mλ1β/2<Cλ034βσ=u0LtLx2,\|u-u_{0}\|_{L^{\infty}_{t}L^{2}_{x}}\leq 2M\lambda_{1}^{\beta/2}<C\lambda_{0}^{\frac{3}{4}\beta\sigma}=\|u_{0}\|_{L^{\infty}_{t}L^{2}_{x}}\,, (3.21)

thus uu is nontrivial.

4 The Perturbation

In this section, we gather all the necessary ingredients to define the new velocity field uq+1u_{q+1} as an additive perturbation of uqu_{q}. As explained in the introduction, our perturbation is designed to have, up to lower order corrections, some qualitative features, which we recall here. At any given time, the principal part of our perturbation consists of only one building block whose vorticity is compactly supported and, at first approximation, translating in a fixed direction; in different time intervals, such direction switches between four fixed directions. The speed of translation and the spatial scale of the building block vary and are determined by the previous error.


We give a more detailed overview of the steps of the construction. Firstly, in Section 4.1 given a solution uqu_{q} of the Euler–Reynolds system with error RqR_{q}, we perform a standard procedure in convex integration to avoid the “loss of derivative” problem. We consider a mollified version uu_{\ell} of uqu_{q}, where the convolution parameter is chosen small enough to control the error coming from the convolution of the nonlinearity of the equation. In this way, we have quantitative controls on all the derivatives of the convolved vector field uu_{\ell} and on the associated Reynolds stress RR_{\ell}.

Next in Section 4.2 we consider a decomposition of the error RqR_{q} in rank one directions as

div(Rq)=div(i=14ai(x,t)ξiξi)+Pd,\displaystyle-\mathop{div}\nolimits(R_{q})=\mathop{div}\nolimits\left(\sum_{i=1}^{4}a_{i}(x,t)\xi_{i}\otimes\xi_{i}\right)+\nabla P^{\,d}, (4.1)

such the coefficients aia_{i}, i{1,2,3,4}i\in\{1,2,3,4\}, are bounded below by a positive constant and have the same size as RqR_{q} in LtLx1L^{\infty}_{t}L^{1}_{x}. The peculiarity of our family ξi\xi_{i} is related to the following: the lines ξi\mathbb{R}\xi_{i}, which corresponds to the trajectory of our building block in direction ξi\xi_{i}, need to reconstruct a periodic set on the torus, whose period is, up to a constant, is λq+11\lambda_{q+1}^{-1}.

In Section 4.3, we split \mathbb{R} into time intervals of length τq+1\tau_{q+1}, namely 𝒯k=[kτq+1,(k+1)τq+1]\mathcal{T}^{k}=[k\tau_{q+1},(k+1)\tau_{q+1}]. The intervals 𝒯k\mathcal{T}^{k} is further divided into four subintervals 𝒯ik\mathcal{T}^{k}_{i}, i{1,2,3,4}i\in\{1,2,3,4\} of length τq+1/4\tau_{q+1}/4, on each of which the principal part of the perturbation will have direction ξi\xi_{i} and will run around the associated trajectory in a time, called period, much smaller than τq+1/4\tau_{q+1}/4. Different directions are then patched together with a system of cutoffs ζik\zeta^{k}_{i} whose support is in 𝒯ik\mathcal{T}^{k}_{i}.

In Section 4.4 we introduce the varying size rik(x)r^{k}_{i}(x) of our building block, which is proportional to the (time averaged) coefficients aia_{i} in (4.1), and in Section 4.5 we specify the ODE solved by the center xik(t)x^{k}_{i}(t) of the main part of the perturbation, which is essentially forced by scaling once one fixes the space size and expects the building block to solve Euler up to a small error.

Next, as first mentioned in Section 1.2.2, we define Vik(x,t)V_{i}^{k}(x,t) in Section 4.6 to be the velocity field from Proposition 2.2 applied to the spatial scale rik(x)r^{k}_{i}(x) and the time cutoff ηikζik(t)\eta^{k}_{i}\zeta^{k}_{i}(t), which solves

{tVik+div(VikVik)+Pik=Sikddt(ηikζik(t)rik(xik(t)))+div(Fik),t𝒯ik,divVik=0\begin{cases}\partial_{t}V_{i}^{k}+\mathop{div}\nolimits(V_{i}^{k}\otimes V_{i}^{k})+\nabla P_{i}^{k}=S_{i}^{k}{\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right)}+\mathop{div}\nolimits(F_{i}^{k})\,,\quad t\in\mathcal{T}_{i}^{k}\,,\\ \mathop{div}\nolimits V_{i}^{k}=0\,\end{cases} (4.2)

where the source/sink term Sikddt(ηikζik(t)rik(xik(t)))S_{i}^{k}{\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right)} was designed in the previous section to be supported around xik(t)x^{k}_{i}(t) at scale rik(xik(t))r^{k}_{i}(x^{k}_{i}(t)) and will be responsible for the error cancellation. Physically, this term represents the gain or shedding of momentum due to the size and speed variation of the building block.

The final two essential components of our construction are the auxiliary building blocks and the time corrector introduced in Section 4.7 and 4.8, respectively. To understand the necessity of these objects, we closely inspect the error cancellation procedure, which is broadly described in Section 1.2.3. To cancel the error RqR_{q}, at first, we hope to use the time average of Sikddt(ηikζik(t)rik(xik(t)))S_{i}^{k}{\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right)} on the interval 𝒯k\mathcal{T}^{k}, denoted as Pτq+1(Sikddt{ηikζik(t)rik(xik(t))})P_{\tau_{q+1}}\left(S_{i}^{k}\frac{d}{dt}\left\{\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right\}\right). Hence we hope that this term approximates divRq\mathop{div}\nolimits R_{q} up to an error whose anti-divergence is sufficiently small to be included in the smaller error Rq+1R_{q+1}. Based on this, we define a corrector Qq+1Q_{q+1}, first described in Section 1.2.3, which we add in the perturbation of uqu_{q}, such that tQq+1\partial_{t}Q_{q+1} cancels the difference Sikddt{ηikζik(t)rik(xik(t))}Pτq+1(Sikddt{ηikζik(t)rik(xik(t))})S_{i}^{k}\frac{d}{dt}\left\{\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right\}-P_{\tau_{q+1}}\left(S_{i}^{k}\frac{d}{dt}\left\{\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right\}\right). However, it turns out that for the corrector defined in this manner, the LpL^{p} norm of the vorticity in Qq+1Q_{q+1} becomes uncontrollable, since the support of tQq+1\partial_{t}Q_{q+1} lies in a thin strip of the order of the size of rikr_{i}^{k} (which is small in our construction) around the trajectory of the building block. Therefore, we pay (rik)1(r_{i}^{k})^{-1} (typically quite large) for the spatial derivative.

To remedy the situation, we introduce in Section 4.7 the idea of an auxiliary building block Uq+1U_{q+1} and define the corrector Qq+1Q_{q+1} in Section 4.8 based on Uq+1U_{q+1} instead. We choose Uq+1U_{q+1} such that at any time tt in some 𝒯ik\mathcal{T}^{k}_{i}, Uq+1(x,t)U_{q+1}(x,t) has the same space average of SikS^{k}_{i} and the support of Uq+1(,t)U_{q+1}(\cdot,t) lies in a fixed ball centered around SikS^{k}_{i} but with bigger radius, of size λq+11\sim\lambda_{q+1}^{-1}. Roughly, speaking the term Uq+1(,t)U_{q+1}(\cdot,t) runs parallel to the term Sik(,t)S^{k}_{i}(\cdot,t) as such we can absorb their difference in the new error divRq+1\mathop{div}\nolimits R_{q+1}. The error cancellation happens then thanks to the term Pτq+1(Sikddt{ηikζik(t)rik(xik(t))})P_{\tau_{q+1}}\left(S_{i}^{k}\frac{d}{dt}\left\{\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(x^{k}_{i}(t))\right\}\right), which cancels divRq\mathop{div}\nolimits R_{q}. Correspondingly we introduce the time corrector Qq+1Q_{q+1} based on Uq+1U_{q+1} instead of SikS_{i}^{k}.

We collect the definition of our perturbation (principal part and correction), the associated Reynolds stresses and the pressure in Section 4.9. Finally, in section 5, we present their estimates and give choice of parameters that allow us to close the proof of Proposition 3.1.

4.1 Mollification Step

Let >0\ell>0 be a scale parameter that will be chosen later. We define

u=uqρ,p=pqρ,R=Rqρ+uu(uquq)ρ,u_{\ell}=u_{q}\ast\rho_{\ell}\,,\quad p_{\ell}=p_{q}\ast\rho_{\ell}\,,\quad R_{\ell}=R_{q}\ast\rho_{\ell}+u_{\ell}\otimes u_{\ell}-(u_{q}\otimes u_{q})\ast\rho_{\ell}\,, (4.3)

where ρ\rho_{\ell} is a smooth mollifier in space and time, at length scale \ell. It is immediate to check that (u,p,R)(u_{\ell},p_{\ell},R_{\ell}) solves the Euler–Reynolds equation

tu+div(uu)+p=div(R).\partial_{t}u_{\ell}+\mathop{div}\nolimits(u_{\ell}\otimes u_{\ell})+\nabla p_{\ell}=\mathop{div}\nolimits(R_{\ell})\,. (4.4)

We have

RLtLx1\displaystyle\|R_{\ell}\|_{L^{\infty}_{t}L^{1}_{x}} RqρLtLx1+uu(uquq)ρLtLx1\displaystyle\leq\|R_{q}\ast\rho_{\ell}\|_{L^{\infty}_{t}L^{1}_{x}}+\|u_{\ell}\otimes u_{\ell}-(u_{q}\otimes u_{q})\ast\rho_{\ell}\|_{L^{\infty}_{t}L^{1}_{x}}
RqLtLx1+uuuuqLtLx1+uuq(uquq)ρLtLx1\displaystyle\leq\|R_{q}\|_{L^{\infty}_{t}L^{1}_{x}}+\|u_{\ell}\otimes u_{\ell}-u_{\ell}\otimes u_{q}\|_{L^{\infty}_{t}L^{1}_{x}}+\|u_{\ell}\otimes u_{q}-(u_{q}\otimes u_{q})\ast\rho_{\ell}\|_{L^{\infty}_{t}L^{1}_{x}}
δq+1+C0uqLtLx2Dx,tuqLtLx2.\displaystyle\leq\delta_{q+1}+C_{0}\ell\|u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\|D_{x,t}u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\,. (4.5)

We choose

:=δ01/2λ0βδq+1λqn,\displaystyle\ell:=\delta_{0}^{-1/2}\lambda_{0}^{-\beta}\delta_{q+1}\lambda_{q}^{-n}\ , (4.6)

so that

RLtLx12δq+1,\|R_{\ell}\|_{L^{\infty}_{t}L^{1}_{x}}\leq 2\delta_{q+1}\,, (4.7)

provided λ0λ0(C0)\lambda_{0}\geq\lambda_{0}(C_{0}) is big enough. The same choice of \ell also provides

RCx,t0C2RqLtLx1+C2uqLtLx22Cδ02λ02βδq+12λq2n=Cλq2n+2βσ,\displaystyle\left\lVert R_{\ell}\right\rVert_{C_{x,t}^{0}}\leq C\ell^{-2}\left\lVert R_{q}\right\rVert_{L^{\infty}_{t}L^{1}_{x}}+C\ell^{-2}\|u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}^{2}\leq C\delta_{0}^{2}\lambda_{0}^{2\beta}\delta_{q+1}^{-2}\lambda^{2n}_{q}=C\lambda^{2n+2\beta\sigma}_{q}\,, (4.8)
RCx,t11RCx,t0Cλq3n+3βσ,\displaystyle\left\lVert R_{\ell}\right\rVert_{C_{x,t}^{1}}\leq\ell^{-1}\left\lVert R_{\ell}\right\rVert_{C_{x,t}^{0}}\leq C\lambda^{3n+3\beta\sigma}_{q}\,, (4.9)

and

uuqLtLx2CDx,tuqLtLx2δ01/2λ0βδq+1=λ1βλ0β/2λq+1β=(λ0β/2λq+1β/2)δq+11/2.\|u_{\ell}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\leq C\ell\|D_{x,t}u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\leq\delta_{0}^{-1/2}\lambda_{0}^{-\beta}\delta_{q+1}=\lambda_{1}^{\beta}\lambda_{0}^{-\beta/2}\lambda_{q+1}^{-\beta}=(\lambda_{0}^{-\beta/2}\lambda_{q+1}^{-\beta/2})\delta_{q+1}^{1/2}\,. (4.10)

Notice that the presence of λ0β\lambda_{0}^{-\beta} in the definition of \ell is useful to make uuqLtLx2\|u_{\ell}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}} small for every qq, including in particular q=0q=0; this will be important in Remark 4.1 below.

4.2 Error Decomposition

Lemma 4.1 (Error Decomposition).

Given λq+18,δq+1>0\lambda_{q+1}\geq 8,\delta_{q+1}>0, there exist unitary vectors ξ1,ξ2,ξ3\xi_{1},\xi_{2},\xi_{3},ξ4\xi_{4} in 2\mathbb{R}^{2} with rationally dependent components such that the following holds. For every RC(𝕋2×[0,1];Sym2)R_{\ell}\in C^{\infty}(\mathbb{T}^{2}\times[0,1];{\rm Sym}_{2})

  1. (i)

    The time period of the curve ssξis\to s\xi_{i} in 𝕋2\mathbb{T}^{2} is ciλq+1c_{i}\lambda_{q+1} for ci[1,3]c_{i}\in[1,3],

  2. (ii)

    The following decomposition holds:

    div(R)=div(i=14ai(x,t)ξiξi)+Pd,\displaystyle-\mathop{div}\nolimits(R_{\ell})=\mathop{div}\nolimits\left(\sum_{i=1}^{4}a_{i}(x,t)\xi_{i}\otimes\xi_{i}\right)+\nabla P^{\,d}\,, (4.11)
  3. (iii)

    The functions ai(x,t)a_{i}(x,t) are smooth and satisfy

    ai(x,t)δq+1,aiLtLx1192δq+1,aiCx,t0C(δq+1+RCx,t0),aiCx,t1CRCx,t1.\displaystyle a_{i}(x,t)\geq\delta_{q+1}\,,\quad\|a_{i}\|_{L^{\infty}_{t}L^{1}_{x}}\leq 192\delta_{q+1}\,,\quad\left\lVert a_{i}\right\rVert_{C^{0}_{x,t}}\leq C(\delta_{q+1}+\left\lVert R_{\ell}\right\rVert_{C^{0}_{x,t}}),\quad\left\lVert a_{i}\right\rVert_{C^{1}_{x,t}}\leq C\left\lVert R_{\ell}\right\rVert_{C^{1}_{x,t}}. (4.12)
Proof.

Following [BC23], we define four unitary vectors as follows:

e1(1,0)T,e2(0,1)T,e3(12,12)T,e4(12,12)T.\displaystyle e_{1}\coloneqq(1,0)^{T},\quad e_{2}\coloneqq(0,1)^{T},\quad e_{3}\coloneqq\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)^{T},\quad e_{4}\coloneqq\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)^{T}. (4.13)

Next, let R¯\overline{R} be a symmetric 22-by-22 matrix. We can decompose R¯\overline{R} as follows:

R¯=i=14Γ¯i(R¯)eiei,\displaystyle\overline{R}=\sum_{i=1}^{4}\overline{\Gamma}_{i}(\overline{R})\,e_{i}\otimes e_{i}, (4.14)

where Γ¯i\overline{\Gamma}_{i} are smooth functions given by

Γ¯1(R¯)R1,1R1,212,Γ¯2(R¯)R2,2R1,212,Γ¯3(R¯)2R1,2+12,Γ¯4(R¯)12.\displaystyle\overline{\Gamma}_{1}(\overline{R})\coloneqq R_{1,1}-R_{1,2}-\frac{1}{2},\quad\overline{\Gamma}_{2}(\overline{R})\coloneqq R_{2,2}-R_{1,2}-\frac{1}{2},\quad\overline{\Gamma}_{3}(\overline{R})\coloneqq 2R_{1,2}+\frac{1}{2},\quad\overline{\Gamma}_{4}(\overline{R})\coloneqq\frac{1}{2}. (4.15)

We notice that when R¯I2×2<1/8\left\lVert\overline{R}-I_{2\times 2}\right\rVert_{\infty}<1/8 then 1/4Γ¯i21/4\leq\overline{{\Gamma}}_{i}\leq 2 and that maxi,j,k|Γ¯iR¯j,k|2\max_{i,j,k}\left|\frac{\partial\overline{\Gamma}_{i}}{\partial\overline{R}_{j,k}}\right|\leq 2.

Next, we let Kθ0K_{\theta_{0}} denote the rotation matrix that rotates a vector in 2\mathbb{R}^{2} by an angle θ0\theta_{0} in the counterclockwise direction, where

θ0arctan(λq+11).\displaystyle\theta_{0}\coloneqq-\arctan(\lambda^{-1}_{q+1}). (4.16)

We define ξ1,ξ2,ξ3,ξ4\xi_{1},\xi_{2},\xi_{3},\xi_{4} to be unitary vectors of 2\mathbb{R}^{2} with rationally dependent components as follows:

ξiKθ0eii{1,2,3,4}.\displaystyle\xi_{i}\coloneqq K_{\theta_{0}}\,e_{i}\qquad\forall\;i\in\{1,2,3,4\}. (4.17)

After writing down the explicit expression of ξi\xi_{i}, for instance ξ1=(1+λq+12)1/2(1,λq+11)T\xi_{1}=(1+\lambda^{-2}_{q+1})^{-1/2}(1,\lambda^{-1}_{q+1})^{T} and ξ3=21/2(1+λq+12)1/2(1λq+11,1+λq+11)T\xi_{3}=2^{-1/2}(1+\lambda^{-2}_{q+1})^{1/2}(1-\lambda^{-1}_{q+1},1+\lambda^{-1}_{q+1})^{T} we see that the item (i) in the lemma holds. Moreover, applying (4.14) to R¯=KTRK\bar{R}=K^{T}RK and then left and right multiplying both sides by KK and KTK^{T} respectively, for a given 22-by-22 symmetric matrix RR, we can write

R=i=14Γi(R)ξiξi,where Γi(R)Γ¯i(Kθ0TRKθ0).\displaystyle R=\sum_{i=1}^{4}\Gamma_{i}(R)\,\xi_{i}\otimes\xi_{i},\qquad\mbox{where }\Gamma_{i}(R)\coloneqq\overline{\Gamma}_{i}(K_{\theta_{0}}^{T}\,R\,K_{\theta_{0}}). (4.18)

We note that if RI2×2<1/16\left\lVert R-I_{2\times 2}\right\rVert_{\infty}<1/16 and λq+18\lambda_{q+1}\geq 8 then Kθ0TRKθ0I2×2<1/8\left\lVert K_{\theta_{0}}^{T}\,R\,K_{\theta_{0}}-I_{2\times 2}\right\rVert_{\infty}<1/8, which then implies 1/4Γi21/4\leq{\Gamma}_{i}\leq 2. Moreover,

maxi,j,k|ΓiRj,k|4.\displaystyle\max_{i,j,k}\left|\frac{\partial\Gamma_{i}}{\partial R_{j,k}}\right|\leq 4. (4.19)

Next, we define

ai(x,t)ς(x,t)Γi(I2×21ς(x,t)R(x,t)),whereς(x,t)16(|R(x,t)|2+δq+12)12.\displaystyle a_{i}(x,t)\coloneqq\varsigma(x,t)\,\Gamma_{i}\left(I_{2\times 2}-\frac{1}{\varsigma(x,t)}R_{\ell}(x,t)\right),\qquad\text{where}\quad\varsigma(x,t)\coloneqq 16\left(|R_{\ell}(x,t)|^{2}+\delta_{q+1}^{2}\right)^{\frac{1}{2}}. (4.20)

From, here we see that

ai(x,t)ξiξi=R(x,t)+ς(x,t)I2×2.\displaystyle\sum a_{i}(x,t)\xi_{i}\otimes\xi_{i}=-R_{\ell}(x,t)+\varsigma(x,t)I_{2\times 2}. (4.21)

Therefore, the item (ii) holds with pressure defined as Pd(x,t)ς(x,t)I2×2P^{\,d}(x,t)\coloneqq\varsigma(x,t)I_{2\times 2}. From the lower bounds on the coefficient Γi\Gamma_{i} and definition of ς\varsigma, we derive the required lower bound on aia_{i}. From the upper bound on Γi\Gamma_{i} and a simple integration in the definition of aia_{i} gives the required estimate on aiLtLx1\left\lVert a_{i}\right\rVert_{L^{\infty}_{t}L^{1}_{x}}. From the upper bound on Γi\Gamma_{i} and on its derivatives in (4.19), we also have

aiCx,t0C(δq+1+RCx,t0),aiCx,t1CRCx,t1.\displaystyle\left\lVert a_{i}\right\rVert_{C^{0}_{x,t}}\leq C(\delta_{q+1}+\left\lVert R_{\ell}\right\rVert_{C^{0}_{x,t}}),\qquad\left\lVert a_{i}\right\rVert_{C^{1}_{x,t}}\leq C\left\lVert R_{\ell}\right\rVert_{C^{1}_{x,t}}. (4.22)

4.3 Time Series and Time Cutoffs

We partition [0,+)[0,+\infty) into time intervals of length τq+1\tau_{q+1}. We define,

𝒯k[kτq+1,(k+1)τq+1),\displaystyle\mathcal{T}^{k}\coloneqq[k\tau_{q+1},(k+1)\tau_{q+1}), (4.23)

Each of the 𝒯k\mathcal{T}^{k} intervals are further divided into four intervals of equal length as

𝒯ik[τq+1(k+i14),τq+1(k+i4)),i=1,2,3,4,k.\mathcal{T}^{k}_{i}\coloneqq\left[\tau_{q+1}\left(k+\frac{i-1}{4}\right),\;\tau_{q+1}\left(k+\frac{i}{4}\right)\right)\,,\quad i=1,2,3,4\,,\quad k\in\mathbb{N}\,. (4.24)

It is clear that 𝒯k=i=14𝒯ik\mathcal{T}^{k}=\bigcup_{i=1}^{4}\mathcal{T}^{k}_{i}. For future convenience, we also define a slightly shorter version of the time interval 𝒯k\mathcal{T}^{k} as

𝒯¯ik[τq+1(k+i14+1λq+1),τq+1(k+i41λq+1)),i=1,2,3,4,k.\displaystyle\overline{\mathcal{T}}^{k}_{i}\coloneqq\left[\tau_{q+1}\left(k+\frac{i-1}{4}+\frac{1}{\lambda_{q+1}}\right),\;\tau_{q+1}\left(k+\frac{i}{4}-\frac{1}{\lambda_{q+1}}\right)\right)\,,\quad i=1,2,3,4\,,\quad k\in\mathbb{N}\,. (4.25)
Definition 4.1 (Time-Average Operator).

Given a time-dependent function g:+g:\mathbb{R}_{+}\to\mathbb{R}, we introduce the time-average operator

Pτg(t):=𝒯kg(s)𝑑s,t𝒯k.P_{\tau}g(t):=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}^{k}}g(s)\,ds\,,\quad\quad t\in\mathcal{T}^{k}\,. (4.26)

Given RR_{\ell} as in (4.3), we define ai(x,t)a_{i}(x,t) from Lemma 4.1. Next using the definition of PτP_{\tau} above, we introduce a shorthand notation

aik(x):=Pτq+1ai(x,t)=𝒯kai(x,t)𝑑t,for some t𝒯k.a_{i}^{k}(x):=P_{\tau_{q+1}}a_{i}(x,t)=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}^{k}}a_{i}(x,t)\,dt\,,\quad\text{for some $t\in\mathcal{T}^{k}$}\,. (4.27)

From (4.12), we see that

aik(x)δq+1,aikLx1192δq+1,aikCx0Cλq2n+2βσ,aikCx1Cλq3n+3βσ.\displaystyle a_{i}^{k}(x)\geq\delta_{q+1}\,,\quad\|a_{i}^{k}\|_{L^{1}_{x}}\leq 192\delta_{q+1}\,,\quad\|a_{i}^{k}\|_{C^{0}_{x}}\leq C\lambda^{2n+2\beta\sigma}_{q}\,,\quad\|a_{i}^{k}\|_{C^{1}_{x}}\leq C\lambda^{3n+3\beta\sigma}_{q}\,. (4.28)

Also, note that

Pτq+1aiaiLtLx1τq+1aiCx,t1τq+1λq3n+3βσ, for every t𝒯ik,\|P_{\tau_{q+1}}a_{i}-a_{i}\|_{L^{\infty}_{t}L^{1}_{x}}\leq\tau_{q+1}\|a_{i}\|_{C^{1}_{x,t}}\leq\tau_{q+1}\lambda^{3n+3\beta\sigma}_{q}\,,\quad\text{ for every $t\in\mathcal{T}_{i}^{k}$}\,, (4.29)

is going to be small provided τq+1\tau_{q+1} is sufficiently small.


Given kk\in\mathbb{N} and i{1,2,3,4}i\in\{1,2,3,4\}, we define a smooth, sharp time cut-off function ζik:[0,1]\zeta^{k}_{i}:\mathbb{R}\to[0,1] associated to the intervals 𝒯ik\mathcal{T}^{k}_{i} satisfying suppζik𝒯ik,\operatorname{supp}\zeta^{k}_{i}\subset\mathcal{T}^{k}_{i}, ζik1\zeta_{i}^{k}\equiv 1 in 𝒯¯ik,\overline{\mathcal{T}}_{i}^{k}, and

ddtζikLt10λq+1τq+1.\left\lVert\frac{d}{dt}\zeta_{i}^{k}\right\rVert_{L^{\infty}_{t}}\leq 10\frac{\lambda_{q+1}}{\tau_{q+1}}. (4.30)

4.4 Space Dependent Spatial Scale

To adapt the building block from Proposition 2.2, we need a spatial scale that varies with space. Subsequently, we make the following choice that will eventually allow us to cancel out the error:

rik(x)rq+1aik(x),i=1,2,3,4,k.\displaystyle r^{k}_{i}(x)\coloneqq r_{q+1}a^{k}_{i}(x)\,,\quad i=1,2,3,4\,,\quad k\in\mathbb{N}\,. (4.31)

We choose rq+1r_{q+1} small enough such that 2(rik)15λq+112(r^{k}_{i})^{\frac{1}{5}}\leq\lambda_{q+1}^{-1}. From choices (3.1), (4.28), we impose this by requiring:

Cλq2n+2βσrq+1λq+15.\displaystyle C\lambda^{2n+2\beta\sigma}_{q}r_{q+1}\leq\lambda^{-5}_{q+1}\,. (4.32)

4.5 The Trajectory of the Center of the Core

The cutoff function we will use in Proposition 2.2 is a constant multiplication of ζik\zeta^{k}_{i}, i.e.,

η(t)=ηikζik(t),\displaystyle\eta(t)=\eta^{k}_{i}\zeta^{k}_{i}(t), (4.33)

where ηik\eta^{k}_{i} is a constant chosen to cancel out the error exactly:

(ηik)2=4𝕋2aik(x)𝑑x[4δq+1,768δq+1]\displaystyle(\eta_{i}^{k})^{2}=4\int_{\mathbb{T}^{2}}a_{i}^{k}(x)\,dx\in[4\delta_{q+1},768\delta_{q+1}]\, (4.34)

The estimate on the size of ηik\eta_{i}^{k} above follow from (4.28). We selected this value of ηik\eta^{k}_{i} at the outset of the proof. However, alternatively, we could have kept the value of ηik\eta^{k}_{i} as a free parameter and determine its value in the error cancellation in (4.34) later on.

Next, we define the trajectory of the center of the core as

ddtxik(t)=ηikζik(t)rik(xik(t))ξi,t𝒯ik.\frac{d}{dt}x^{k}_{i}(t)=\frac{\eta_{i}^{k}\zeta_{i}^{k}(t)}{r_{i}^{k}(x^{k}_{i}(t))}\xi_{i}\,,\quad\quad\quad t\in\mathcal{T}_{i}^{k}\,. (4.35)

We denote t0=τq+1(k+i14+λq+11)t_{0}=\tau_{q+1}(k+\frac{i-1}{4}+\lambda_{q+1}^{-1}). We fix xik(t0)x_{i}^{k}(t_{0}) so that

0ciλq+1aik(xik(t0)+sξi)𝑑s=𝕋2aik(x)𝑑x=(ηik)24.\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{0}^{c_{i}\lambda_{q+1}}a_{i}^{k}(x_{i}^{k}(t_{0})+s\xi_{i})\,ds=\int_{\mathbb{T}^{2}}a_{i}^{k}(x)\,dx=\frac{(\eta_{i}^{k})^{2}}{4}\,. (4.36)

We solve the ODE (4.35) both forward and backward in time starting at t0t_{0} with position xik(t0)x^{k}_{i}(t_{0}) to obtain the trajectory on the entire interval 𝒯ik\mathcal{T}^{k}_{i}. We assume

λq+12rq+1δq+11/2τq+1200,which from (3.1) requiresμβ2κ>0.\displaystyle\lambda_{q+1}^{2}r_{q+1}\delta_{q+1}^{1/2}\leq\frac{\tau_{q+1}}{200},\qquad\text{which from (\ref{eq:parameters}) requires}\quad\mu-\beta-2-\kappa>0. (4.37)

and we observe that by (4.34), the trajectory xik(t)x^{k}_{i}(t), t𝒯ikt\in\mathcal{T}_{i}^{k}, is periodic with period

Tik=0ciλq+1rq+1ηikaik(xik(t0)+sξi)𝑑s=ciλq+1rq+1ηik48ciλq+1rq+1δq+11/2τq+18λq+1.T_{i}^{k}=\int_{0}^{c_{i}\lambda_{q+1}}\frac{r_{q+1}}{\eta_{i}^{k}}a_{i}^{k}(x_{i}^{k}(t_{0})+s\xi_{i})\,ds=\frac{c_{i}\lambda_{q+1}r_{q+1}\eta_{i}^{k}}{4}\leq 8{c_{i}\lambda_{q+1}r_{q+1}}\delta_{q+1}^{1/2}\leq\frac{\tau_{q+1}}{8\lambda_{q+1}}\,. (4.38)

In particular, we see from (4.38) that the meaning of the assumption (4.37) is to guarantee sufficiently many periods of xik(t)x^{k}_{i}(t) lie inside 𝒯¯ik\overline{\mathcal{T}}_{i}^{k}. Next we call MikM_{i}^{k}\in\mathbb{N}, Mikλq+1M_{i}^{k}\geq\lambda_{q+1} the number of such periods, namely a natural number such that

  • (i)

    xik(t0+mTik)=xik(t0)x_{i}^{k}(t_{0}+mT_{i}^{k})=x_{i}^{k}(t_{0}) for every mm\in\mathbb{N}, 0mMik0\leq m\leq M_{i}^{k},

  • (ii)

    t0+MikTikτq+1(k+i4λq+11)t_{0}+M_{i}^{k}T_{i}^{k}\leq\tau_{q+1}(k+\frac{i}{4}-\lambda_{q+1}^{-1}) and t0+(Mik+1)Tik>τq+1(k+i4λq+11)t_{0}+(M_{i}^{k}+1)T_{i}^{k}>\tau_{q+1}(k+\frac{i}{4}-\lambda_{q+1}^{-1}),

Notice that (ii) can be equivalently rewritten as

0τq+1(142λq+11)MikTik<Tik=ciλq+1rq+1ηik40\leq\tau_{q+1}\left(\frac{1}{4}-2\lambda_{q+1}^{-1}\right)-M_{i}^{k}T_{i}^{k}<T_{i}^{k}=\frac{c_{i}\lambda_{q+1}r_{q+1}\eta_{i}^{k}}{4} (4.39)

and that

Mik=|𝒯¯ik|Tik=τq+1(142λq+1)ηikciλq+1rq+1𝕋2aik(x)𝑑xλq+1.M_{i}^{k}=\left\lfloor\frac{|\overline{\mathcal{T}}_{i}^{k}|}{T_{i}^{k}}\right\rfloor=\left\lfloor\frac{\tau_{q+1}(\frac{1}{4}-\frac{2}{\lambda_{q+1}})\eta_{i}^{k}}{c_{i}\lambda_{q+1}r_{q+1}\int_{\mathbb{T}^{2}}a_{i}^{k}(x)\,dx}\right\rfloor\geq\lambda_{q+1}\,. (4.40)

4.6 Principal Building Blocks of our perturbation

For every kk\in\mathbb{N} and i=1,2,3,4i=1,2,3,4, we define Vik(x,t)V_{i}^{k}(x,t) to be the velocity field VV from Proposition 2.2 applied to the spatial scale rikr^{k}_{i} and the time cutoff ηikζik(t)\eta^{k}_{i}\zeta^{k}_{i}(t), introduced in the preceding sections. By Proposition 2.2, the velocity field VikV^{k}_{i} solves the following equations

{tVik+div(VikVik)+Pik=Sikddt(ηikζik(t)rik(t))+div(Fik),t𝒯ik,divVik=0\begin{cases}\partial_{t}V_{i}^{k}+\mathop{div}\nolimits(V_{i}^{k}\otimes V_{i}^{k})+\nabla P_{i}^{k}=S_{i}^{k}{\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(t)\right)}+\mathop{div}\nolimits(F_{i}^{k})\,,\quad t\in\mathcal{T}_{i}^{k}\,,\\ \mathop{div}\nolimits V_{i}^{k}=0\,\end{cases} (4.41)

and the associated pressure PikP^{k}_{i}, source/sink term SikS^{k}_{i}, and error FikF^{k}_{i} satisfy the following properties. All such properties follow from Proposition 2.2, the estimates on rikr^{k}_{i} and ζik\zeta^{k}_{i} (4.32) and (4.30), and the definition of ηik\eta_{i}^{k} in (4.34).

  1. (i)

    Since logrikLx=(aik)1aikLxCδq+11λq3n+3βσCλq3n+4βσ\left\lVert\nabla\log r^{k}_{i}\right\rVert_{L^{\infty}_{x}}=\left\lVert({a^{k}_{i}})^{-1}{\nabla a^{k}_{i}}\right\rVert_{L^{\infty}_{x}}\leq C\delta_{q+1}^{-1}\lambda_{q}^{3n+3\beta\sigma}\leq C\lambda_{q}^{3n+4\beta\sigma} by (4.28), we get the estimate on the error FikF^{k}_{i}:

    FikLtLx1\displaystyle\left\lVert F_{i}^{k}\right\rVert_{L_{t}^{\infty}L_{x}^{1}} C(ηik)2rikLx12(1+log(rik)Lx)\displaystyle\leq C(\eta^{k}_{i})^{2}\|r^{k}_{i}\|_{L^{\infty}_{x}}^{\frac{1}{2}}(1+\|\nabla\log(r^{k}_{i})\|_{L^{\infty}_{x}})
    Cδq+1rq+112(λq2n+2βσ)12(λq3n+4βσ)\displaystyle\leq C\delta_{q+1}\,r_{q+1}^{\frac{1}{2}}\,(\lambda_{q}^{2n+2\beta\sigma})^{\frac{1}{2}}\left(\lambda_{q}^{3n+4\beta\sigma}\right)
    =Cδq+1rq+112λq4n+5βσ.\displaystyle=C\delta_{q+1}\,r_{q+1}^{\frac{1}{2}}\,\lambda_{q}^{4n+5\beta\sigma}\,. (4.42)
  2. (ii)

    The LpL^{p} estimate on VikV^{k}_{i} for p=3/2p=3/2 and p=2p=2 are

    VikLtLx3/2CηikrikLx1/3Cδq+112rq+113(λq2n+2βσ)13\displaystyle\left\lVert V^{k}_{i}\right\rVert_{L^{\infty}_{t}L^{3/2}_{x}}\leq C\eta^{k}_{i}\left\lVert r^{k}_{i}\right\rVert^{1/3}_{L^{\infty}_{x}}\leq C\delta_{q+1}^{\frac{1}{2}}r_{q+1}^{\frac{1}{3}}\left(\lambda_{q}^{2n+2\beta\sigma}\right)^{\frac{1}{3}} (4.43)
    VikLtLx2CηikCδq+112.\displaystyle\left\lVert V^{k}_{i}\right\rVert_{L^{\infty}_{t}L^{2}_{x}}\leq C\eta^{k}_{i}\leq C\delta_{q+1}^{\frac{1}{2}}. (4.44)

    For p1p\geq 1, the the LpL^{p} norm of DVDV is controlled as

    DVikLtLxpCηik(rik)2p2LxCδq+112rq+12p2δq+12p2.\displaystyle\left\lVert DV^{k}_{i}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq C\eta^{k}_{i}\left\lVert(r^{k}_{i})^{\frac{2}{p}-2}\right\rVert_{L^{\infty}_{x}}\leq C\delta_{q+1}^{\frac{1}{2}}r_{q+1}^{\frac{2}{p}-2}\delta_{q+1}^{\frac{2}{p}-2}\,. (4.45)

    Finally, the LpL^{p} estimate on tV\partial_{t}V and tDV\partial_{t}DV reads as

    tVikLt1Lxp+\displaystyle\left\lVert\partial_{t}V^{k}_{i}\right\rVert_{L^{1}_{t}L^{p}_{x}}+ (δq+1rq+1)tDVikLtLxp\displaystyle(\delta_{q+1}r_{q+1})\|\partial_{t}DV^{k}_{i}\|_{L^{\infty}_{t}L^{p}_{x}} (4.46)
    C(ηik)2(rik)3Lx(1+rikLx)+Cηik(ζik)Lt(rik)1Lx\displaystyle\leq C(\eta^{k}_{i})^{2}\left\lVert(r^{k}_{i})^{-3}\right\rVert_{L^{\infty}_{x}}\left(1+\left\lVert\nabla r^{k}_{i}\right\rVert_{L^{\infty}_{x}}\right)+C\eta^{k}_{i}\left\lVert(\zeta^{k}_{i})^{\prime}\right\rVert_{L^{\infty}_{t}}\left\lVert(r^{k}_{i})^{-1}\right\rVert_{L^{\infty}_{x}}
    Cδq+12rq+13(1+rq+1λq3n+3βσ)+Cδq+112(λq+1τq+11)rq+11\displaystyle\leq C\delta_{q+1}^{-2}r_{q+1}^{-3}(1+r_{q+1}\lambda_{q}^{3n+3\beta\sigma})+C\delta_{q+1}^{-\frac{1}{2}}(\lambda_{q+1}\tau_{q+1}^{-1})r_{q+1}^{-1}
    Cδq+12rq+13.\displaystyle\leq C\delta_{q+1}^{-2}r_{q+1}^{-3}. (4.47)

    The reasoning behind the last inequality is as follows. From (4.32), we see that Crq+1λq3n+3βσλq+15λqn+βσCr_{q+1}\lambda_{q}^{3n+3\beta\sigma}\leq\lambda_{q+1}^{-5}\lambda_{q}^{n+\beta\sigma}. In rest of the paper, we impose

    λq+15λqn+βσ1.\displaystyle\lambda_{q+1}^{-5}\lambda_{q}^{n+\beta\sigma}\leq 1. (4.48)

    Finally, from (4.37), we see that Cδq+112(λq+1τq+11)rq+11δq+11rq+12λq+11C\delta_{q+1}^{-\frac{1}{2}}(\lambda_{q+1}\tau_{q+1}^{-1})r_{q+1}^{-1}\leq\delta_{q+1}^{-1}r_{q+1}^{-2}\lambda_{q+1}^{-1} which is then controlled by δq+12rq+13\delta_{q+1}^{-2}r_{q+1}^{-3}.

  3. (iii)

    The source term SikS^{k}_{i} satisfies for every p(1,)p\in(1,\infty)

    SikLtLxpC(p)(rik)2p2LxC(p)δq+12p2rq+12p2,\displaystyle\|S_{i}^{k}\|_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\left\lVert(r^{k}_{i})^{\frac{2}{p}-2}\right\rVert_{L^{\infty}_{x}}\leq C(p)\delta_{q+1}^{\frac{2}{p}-2}r_{q+1}^{{\frac{2}{p}-2}}\,, (4.49)
    suppSik(,t)Bλq+11(xik(t)),𝕋2Sik(x,t)dx=ξi.\displaystyle\operatorname{supp}S_{i}^{k}(\cdot,t)\subseteq B_{\lambda_{q+1}^{-1}}(x_{i}^{k}(t)),\qquad\int_{\mathbb{T}^{2}}S_{i}^{k}(x,t)\,{\rm d}x=\xi_{i}\,. (4.50)

    In fact, in Proposition 2.2, the average of SikS_{i}^{k} should be 2πξi2\pi\xi_{i}. However, for the sake of simplicity we normalize VikV_{i}^{k}, rescaling accordingly the time variable, namely replacing it by (2π)1Vik(x,(2π)1t)(2\pi)^{-1}V_{i}^{k}(x,(2\pi)^{-1}t) with a small abuse of notation, so that (4.50) holds and all other properties stated above continue to hold.

4.7 Auxiliary Building Block

As discussed in Section 1.2.3, the time-average of the source term in (4.41) is responsible for cancelling the error in time average. However, to produce smaller errors in the error cancellation process, we first replace the source term

Sikddt(ηikζik(t)rik(t)),\displaystyle S_{i}^{k}\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(t)\right), (4.51)

with a different term of the form

Uq+1(x,t):=ddt(ηikζik(t)rik(t))U~ik(xxik(t))ξi,t𝒯ik.U_{q+1}(x,t):=\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(t)\right)\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\xi_{i},\quad t\in\mathcal{T}_{i}^{k}. (4.52)

This new term is designed such that the anti-divergence of the difference Sik(x,t)U~ik(xxik(t))ξiS^{k}_{i}(x,t)-\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\xi_{i} is small, which ensures that the error introduced by replacing (4.51) with Uq+1U_{q+1} is small. In addition, the term Uq+1U_{q+1} satisfies two more properties:

  1. 1.

    Constant average along trajectories (see (i) below),

  2. 2.

    Mild concentration of support: The support is concentrated on a set of size approximately λq+11\lambda_{q+1}^{-1}, which is significantly larger than the support of SikS^{k}_{i}, which is of size rq+1r_{q+1}.

These properties contribute to reducing errors in the error cancellation process.


We define U~ik(x)0\widetilde{U}_{i}^{k}(x)\geq 0 a scalar function supported on a ball of radius 10λq+1110\lambda_{q+1}^{-1} such that

  • (i)

    Space-average is one:

    𝕋2U~ik(x)𝑑x=1,\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathbb{T}^{2}}\widetilde{U}_{i}^{k}(x)\,dx=1\,, (4.53)
  • (ii)

    For every x𝕋2x\in\mathbb{T}^{2}, it holds

    0ciλq+1U~ik(x(xik(t0)+sξi))𝑑s=1.\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{0}^{c_{i}\lambda_{q+1}}\widetilde{U}_{i}^{k}(x-(x_{i}^{k}(t_{0})+s\xi_{i}))\,ds=1\,. (4.54)
  • (iii)

    For every p[1,]p\in[1,\infty], it holds

    U~ikLpC(p)λq+122p,andDU~ikLpC(p)λq+132p.\|\widetilde{U}_{i}^{k}\|_{L^{p}}\leq C(p)\lambda_{q+1}^{2-\frac{2}{p}}\,,\qquad\text{and}\qquad\|D\widetilde{U}_{i}^{k}\|_{L^{p}}\leq C(p)\lambda_{q+1}^{3-\frac{2}{p}}\,. (4.55)

To build such a scalar function U~ik\widetilde{U}_{i}^{k} we argue as follows. First, we fix any nonnegative Ω0Cc(B10(0))\Omega_{0}\in C^{\infty}_{c}(B_{10}(0)), which is bigger than 11 in B5(0)B_{5}(0). We rescale it by λq+1\lambda_{q+1} as Ω=λq+12Ω0(λq+1)\Omega=\lambda_{q+1}^{2}\Omega_{0}(\lambda_{q+1}\cdot), so that it is supported on a ball of radius 10λq+1110\lambda_{q+1}^{-1} and bigger than λq+12\lambda_{q+1}^{-2} on half of such a ball. We periodize it as a function on the torus and we define

Ω¯(x):=0ciλq+1Ω(x(xik(t0)+sξi))𝑑s,\overline{\Omega}(x):=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{0}^{c_{i}\lambda_{q+1}}\Omega(x-(x_{i}^{k}(t_{0})+s\xi_{i}))\,ds, (4.56)

which is a function invariant on the set {x𝕋2:x=xik(t0)+sξi}\{x\in\mathbb{T}^{2}:x=x_{i}^{k}(t_{0})+s\xi_{i}\} and bounded below by a constant c>0c>0 independent of λq+1\lambda_{q+1}. We then set U~ik=Ω/Ω¯\widetilde{U}^{k}_{i}=\Omega/\overline{\Omega} and observe that it satisfies (4.54), which in turn implies (4.53) by further integrating with respect to the variable xx.

Proposition 4.1.

Assume (4.37) given by λq+12rq+1δq+11/2τq+1200\lambda_{q+1}^{2}r_{q+1}\delta_{q+1}^{1/2}\leq\frac{\tau_{q+1}}{200}, let Uq+1U_{q+1} be as in (4.52). Then,

Uq+1LtLxp+λq+11DUq+1LtLxpC(p)λq+122paikC1\left\lVert U_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}+\lambda_{q+1}^{-1}\left\lVert DU_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\lambda_{q+1}^{2-\frac{2}{p}}\left\lVert a^{k}_{i}\right\rVert_{C^{1}} (4.57)

and there exists a smooth symmetric tensor GikG_{i}^{k} such that

Pτq+1Uq+1(x,t)=𝒯kUq+1(x,s)𝑑s=i=14div(aik(x)ξiξi+Gik(x,t)),t𝒯k.P_{\tau_{q+1}}U_{q+1}(x,t)=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}^{k}}U_{q+1}(x,s)\,ds=\sum_{i=1}^{4}\mathop{div}\nolimits\left(a_{i}^{k}(x)\xi_{i}\otimes\xi_{i}+G_{i}^{k}(x,t)\right)\,,\quad t\in\mathcal{T}^{k}\,. (4.58)
GikLtLx1CaikC1λq+1.\displaystyle\|G_{i}^{k}\|_{L^{\infty}_{t}L^{1}_{x}}\leq C\frac{\|a_{i}^{k}\|_{C^{1}}}{\lambda_{q+1}}\,. (4.59)

In other words, (4.58) shows that with only a small error term GikG_{i}^{k}, Pτq+1Uq+1(x,t)P_{\tau_{q+1}}U_{q+1}(x,t) exactly matches aik(x)ξiξia_{i}^{k}(x)\xi_{i}\otimes\xi_{i}. In light of (4.59), we make the following extra assumption on the parameters, which in particular implies that the errors GikG^{k}_{i} is suitably small

λq+1910λq3n+3βσδq+2.\lambda_{q+1}^{-\frac{9}{10}}\lambda_{q}^{3n+3\beta\sigma}\leq\delta_{q+2}\,. (4.60)
Proof of Proposition 4.1.

From the definition (4.52) of Uq+1U_{q+1} and from (4.55), we deduce that for every t𝒯ikt\in\mathcal{T}^{k}_{i}

Uq+1(t)Lxp+λq+11DUq+1(t)Lxp\displaystyle\left\lVert U_{q+1}(t)\right\rVert_{L^{p}_{x}}+\lambda_{q+1}^{-1}\left\lVert DU_{q+1}(t)\right\rVert_{L^{p}_{x}} sups𝒯ik|dds(ηikζik(s)rik(s))|(U~ikLxp+λq+11DU~ikLxp)\displaystyle\leq\sup_{s\in\mathcal{T}^{k}_{i}}\Big{|}\frac{d}{ds}(\eta_{i}^{k}\zeta_{i}^{k}(s)r_{i}^{k}(s))\Big{|}\Big{(}\left\lVert\widetilde{U}_{i}^{k}\right\rVert_{L^{p}_{x}}+\lambda_{q+1}^{-1}\left\lVert D\widetilde{U}_{i}^{k}\right\rVert_{L^{p}_{x}}\Big{)}
C(p)λq+122psups𝒯ik|dds(ηikζik(s)rik(s))|.\displaystyle\leq C(p)\lambda_{q+1}^{2-\frac{2}{p}}\sup_{s\in\mathcal{T}^{k}_{i}}\Big{|}\frac{d}{ds}(\eta_{i}^{k}\zeta_{i}^{k}(s)r_{i}^{k}(s))\Big{|}. (4.61)

Using the definitions of rikr^{k}_{i} and ηik\eta^{k}_{i} from (4.31) and (4.34) respectively and from the estimate on the derivatives of the cutoff ζik\zeta_{i}^{k} in (4.30), we upper bound the quantity inside the supremum in (4.7) for every s𝒯ks\in\mathcal{T}^{k} as

|dds(ηikζik(s)rik(s))|\displaystyle\Big{|}\frac{d}{ds}(\eta_{i}^{k}\zeta_{i}^{k}(s)r_{i}^{k}(s))\Big{|} |ηikrik(s)dζikds|+|(ηikζik)2rikrik|\displaystyle\leq\Big{|}\eta_{i}^{k}r_{i}^{k}(s)\frac{d\zeta_{i}^{k}}{ds}\Big{|}+\Big{|}(\eta^{k}_{i}\zeta^{k}_{i})^{2}\frac{\nabla r^{k}_{i}}{r^{k}_{i}}\Big{|} (4.62)
Cδq+112rq+1aikLxλq+1τq+1+Cδq+1aikaikLx\displaystyle\leq C\delta_{q+1}^{\frac{1}{2}}r_{q+1}\left\lVert a^{k}_{i}\right\rVert_{L^{\infty}_{x}}\,\frac{\lambda_{q+1}}{\tau_{q+1}}+C\delta_{q+1}\left\lVert\frac{\nabla a_{i}^{k}}{a_{i}^{k}}\right\rVert_{L^{\infty}_{x}} (4.63)
CaikCx1.\displaystyle\leq C\left\lVert a^{k}_{i}\right\rVert_{C^{1}_{x}}\,. (4.64)

To obtain the last inequality we used the fact that aikδq+1a_{i}^{k}\geq\delta_{q+1} on the second term and we used the assumption (4.37) to control the first term. This estimate together with (4.7) yields (4.57).

To show (4.58), we actually prove that

1τq+1𝒯ikUq+1(x,t)𝑑t=div(aik(x)ξiξi+Gik(x)),x𝕋2,\displaystyle\frac{1}{\tau_{q+1}}\int_{\mathcal{T}_{i}^{k}}U_{q+1}(x,t)\,dt=\mathop{div}\nolimits\left(a_{i}^{k}(x)\xi_{i}\otimes\xi_{i}+G_{i}^{k}(x)\right)\,,\quad x\in\mathbb{T}^{2}\,, (4.65)

and then sum over i=1,2,3,4i=1,2,3,4. We compute the time average of Uq+1(x,t)U_{q+1}(x,t) using integration by parts as follows.

𝒯ikUq+1(x,t)𝑑t\displaystyle\int_{\mathcal{T}_{i}^{k}}U_{q+1}(x,t)\,dt =𝒯ikddt(ηikζik(t)rik(t))U~ik(xxik(t))ξi𝑑t\displaystyle=\int_{\mathcal{T}_{i}^{k}}\frac{d}{dt}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(t)\right)\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\xi_{i}\,dt
=𝒯ikηikζik(t)rik(t)ddt(U~ik(xxik(t)))ξi𝑑t\displaystyle=-\int_{\mathcal{T}_{i}^{k}}\eta_{i}^{k}\zeta_{i}^{k}(t)r_{i}^{k}(t)\frac{d}{dt}\left(\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\right)\,\xi_{i}\,dt
=𝒯ik(ηikζik(t))2div(U~ik(xxik(t))ξiξi)dt\displaystyle=\int_{\mathcal{T}_{i}^{k}}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)\right)^{2}\mathop{div}\nolimits\left(\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\xi_{i}\otimes\xi_{i}\right)\,dt
=div(ξiξi𝒯ik(ηikζik(t))2U~ik(xxik(t))𝑑t).\displaystyle=\mathop{div}\nolimits\left(\xi_{i}\otimes\xi_{i}\int_{\mathcal{T}_{i}^{k}}\left(\eta_{i}^{k}\zeta_{i}^{k}(t)\right)^{2}\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\,dt\right)\,. (4.66)

Recall the definitions of t0t_{0}, TikT_{i}^{k} and MikM_{i}^{k} from Section 4.5. We set 𝒯~ik=[t0,t0+MikTik]\widetilde{\mathcal{T}}_{i}^{k}=[t_{0},t_{0}+M_{i}^{k}T_{i}^{k}]. From definition (4.25), we note that 𝒯~ik𝒯¯ik\widetilde{\mathcal{T}}_{i}^{k}\subseteq\overline{\mathcal{T}}_{i}^{k} and therefore ζik(t)=1\zeta_{i}^{k}(t)=1 for t𝒯~ikt\in\widetilde{\mathcal{T}}_{i}^{k}. Next, we write

𝒯ik\displaystyle\int_{\mathcal{T}_{i}^{k}} (ηikζik(t))2U~ik(xxik(t))dt\displaystyle\left(\eta_{i}^{k}\zeta_{i}^{k}(t)\right)^{2}\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\,dt
=(ηik)2𝒯~ikU~ik(xxik(t))𝑑t+(ηik)2𝒯ik𝒯~ik(ηikζik(t))2U~ik(xxik(t))𝑑tI+II.\displaystyle=\big{(}\eta_{i}^{k}\big{)}^{2}\int_{\widetilde{\mathcal{T}}_{i}^{k}}\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\,dt+\big{(}\eta_{i}^{k}\big{)}^{2}\int_{\mathcal{T}_{i}^{k}\setminus\widetilde{\mathcal{T}}_{i}^{k}}\big{(}\eta_{i}^{k}\zeta_{i}^{k}(t)\big{)}^{2}\widetilde{U}_{i}^{k}(x-x_{i}^{k}(t))\,dt\eqqcolon I+II\,. (4.67)

The term IIII, multiplied by ξiξi\xi_{i}\otimes\xi_{i}, will be part of the error GikG_{i}^{k}. By (4.55), the L1L^{1} estimate on IIII is given by

IIL1(ηik)2U~ikL1𝒯ik𝒯~ik(ζik(t))2𝑑tCδq+1τq+1λq+11.\|II\|_{L^{1}}\leq(\eta_{i}^{k})^{2}\|\widetilde{U}_{i}^{k}\|_{L^{1}}\int_{\mathcal{T}_{i}^{k}\setminus\widetilde{\mathcal{T}}_{i}^{k}}(\zeta_{i}^{k}(t))^{2}\,dt\leq C\delta_{q+1}\tau_{q+1}\lambda_{q+1}^{-1}\,. (4.68)

Next, we investigate the main term II. We perform a change of variables tt(s)𝒯~ikt\to t(s)\in\widetilde{\mathcal{T}}_{i}^{k} such that xik(t(s))=xik(t0)+sξix_{i}^{k}(t(s))=x_{i}^{k}(t_{0})+s\xi_{i}, where t(0)=t0t(0)=t_{0}. We note that

ddst(s)=rq+1ηikζik(t(s))aik(xik(t0)+sξi).\frac{d}{ds}t(s)=\frac{r_{q+1}}{\eta_{i}^{k}\zeta_{i}^{k}(t(s))}a_{i}^{k}(x_{i}^{k}(t_{0})+s\xi_{i})\,. (4.69)

Employing the change of variables, we compute the term II as follows:

I\displaystyle I =ηikrq+10ciMikλq+1(aikU~ik)(x(xik(t0)+sξi))𝑑s\displaystyle=\eta_{i}^{k}r_{q+1}\int_{0}^{c_{i}M_{i}^{k}\lambda_{q+1}}(a_{i}^{k}\widetilde{U}_{i}^{k})(x-(x_{i}^{k}(t_{0})+s\xi_{i}))\,ds
=ηikrq+1aik(x)0ciMikλq+1U~ik(x(xik(t0)+sξi))𝑑s\displaystyle=\eta_{i}^{k}r_{q+1}a_{i}^{k}(x)\int_{0}^{c_{i}M_{i}^{k}\lambda_{q+1}}\widetilde{U}_{i}^{k}(x-(x_{i}^{k}(t_{0})+s\xi_{i}))\,ds
+ηikrq+10ciMikλq+1(aik(x(xik(t0)+sξi)aik(x))U~ik(x(xik(t0)+sξi))ds\displaystyle+\eta_{i}^{k}r_{q+1}\int_{0}^{c_{i}M_{i}^{k}\lambda_{q+1}}(a_{i}^{k}(x-(x_{i}^{k}(t_{0})+s\xi_{i})-a_{i}^{k}(x))\widetilde{U}_{i}^{k}(x-(x_{i}^{k}(t_{0})+s\xi_{i}))\,ds
I+II\displaystyle\eqqcolon I^{\prime}+II^{\prime} (4.70)

where II^{\prime} is the main term and II′′II^{\prime\prime} will be part of the error GikG^{k}_{i}. By (4.54), We rewrite the main term

I\displaystyle I^{\prime} =ηikrq+1aik(x)0ciMikλq+1U~ik(x(xik(t0)+sξi))ds,=ηikrq+1ciMikλq+1aik(x)=(τq+1+E)aik(x),\displaystyle=\eta_{i}^{k}r_{q+1}a_{i}^{k}(x)\int_{0}^{c_{i}M_{i}^{k}\lambda_{q+1}}\widetilde{U}_{i}^{k}(x-(x_{i}^{k}(t_{0})+s\xi_{i}))\,ds,=\eta_{i}^{k}r_{q+1}c_{i}M_{i}^{k}\lambda_{q+1}a_{i}^{k}(x)=(\tau_{q+1}+E)a_{i}^{k}(x), (4.71)

where using (4.39) and the formula and the estimate for the period in (4.38), the error EE is estimated by

|E|2τq+1λq+1+ciλq+1rq+1ηik4Cτq+1λq+1+Cδq+11/2rq+1λq+1Cτq+1λq+1.\displaystyle|E|\leq 2\frac{\tau_{q+1}}{\lambda_{q+1}}+\frac{c_{i}\lambda_{q+1}r_{q+1}\eta_{i}^{k}}{4}\leq C\frac{\tau_{q+1}}{\lambda_{q+1}}+C\delta_{q+1}^{1/2}r_{q+1}\lambda_{q+1}\leq C\frac{\tau_{q+1}}{\lambda_{q+1}}. (4.72)

Now, we estimate the term IIII^{\prime} from (4.70) as follows

IIL1Cηikrq+1ciMikλq+1aikC1λq+1C(τq+1+E)aikC1λq+1Cτq+1aikC1λq+1.\displaystyle\|II^{\prime}\|_{L^{1}}\leq C\eta_{i}^{k}r_{q+1}c_{i}M_{i}^{k}\lambda_{q+1}\frac{\|a_{i}^{k}\|_{C^{1}}}{\lambda_{q+1}}\leq C\left(\tau_{q+1}+E\right)\frac{\|a_{i}^{k}\|_{C^{1}}}{\lambda_{q+1}}\leq C\tau_{q+1}\frac{\|a_{i}^{k}\|_{C^{1}}}{\lambda_{q+1}}. (4.73)

Finally, combining (4.66), (4.67), (4.70) and (4.71), we obtain

1τq+1𝒯ikUq+1(x,t)𝑑t=div(aik(x)ξiξi+Gik(x)),whereGik=1τq+1(II+II+Eaik(x))ξiξi.\displaystyle\frac{1}{\tau_{q+1}}\int_{\mathcal{T}_{i}^{k}}U_{q+1}(x,t)\,dt=\mathop{div}\nolimits\left(a_{i}^{k}(x)\xi_{i}\otimes\xi_{i}+G_{i}^{k}(x)\right),\quad\text{where}\quad G_{i}^{k}=\frac{1}{\tau_{q+1}}\left(II+II^{\prime}+E\,a_{i}^{k}(x)\right)\xi_{i}\otimes\xi_{i}. (4.74)

Combining the estimates (4.68), (4.72), and (4.73), we obtain

GikL1Cδq+1λq+1+CaikC1λq+1+CaikL1λq+1CaikC1λq+1.\displaystyle\left\lVert G^{k}_{i}\right\rVert_{L^{1}}\leq C\frac{\delta_{q+1}}{\lambda_{q+1}}+C\frac{\|a_{i}^{k}\|_{C^{1}}}{\lambda_{q+1}}+C\frac{\|a_{i}^{k}\|_{L^{1}}}{\lambda_{q+1}}\leq C\frac{\|a_{i}^{k}\|_{C^{1}}}{\lambda_{q+1}}. (4.75)

4.8 The Time Corrector

As stated earlier, in our construction, it is the time average of Uq+1U_{q+1}, which we called Pτq+1Uq+1P_{\tau_{q+1}}U_{q+1}, that cancels the error. Therefore, to compensate for the difference Uq+1Pτq+1Uq+1U_{q+1}-P_{\tau_{q+1}}U_{q+1}, we define a time corrector, a method used in other contexts (see, for example, [BV19b, CL22]). We define our time corrector Qq+1:𝕋2×[0,1]2Q_{q+1}:\mathbb{T}^{2}\times[0,1]\to\mathbb{R}^{2} as

Qq+1(x,t)(0t(Uq+1(x,s)Pτq+1Uq+1(x,s))𝑑s),\displaystyle-Q_{q+1}(x,t)\coloneqq\mathbb{P}\left(\int_{0}^{t}(U_{q+1}(x,s)-P_{\tau_{q+1}}U_{q+1}(x,s))\,ds\right)\,, (4.76)

where Pτq+1P_{\tau_{q+1}} is as defined in (4.26). Let t𝒯kt\in\mathcal{T}^{k} for some kk\in\mathbb{N}. The crucial observation is that the integral of Uq+1(x,s)Pτq+1Uq+1(x,s)U_{q+1}(x,s)-P_{\tau_{q+1}}U_{q+1}(x,s) vanishes when computed on any time interval of the form [kτq+1,(k+1)τq+1][k\tau_{q+1},(k+1)\tau_{q+1}], kk\in\mathbb{N}, by definition of τq+1\tau_{q+1}-average. Hence, length of interval contributing towards the integral in (4.76) is of length less than τq+1\tau_{q+1}.

Qq+1(x,t)=kτq+1t(Uq+1(x,s)𝒯kUq+1(x,s)𝑑s)𝑑s.-Q_{q+1}(x,t)=\mathbb{P}\int_{k\tau_{q+1}}^{t}\left(U_{q+1}(x,s)-\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}^{k}}U_{q+1}(x,s^{\prime})\,ds^{\prime}\right)\,ds.\, (4.77)

We easily estimate the norms of Qq+1Q_{q+1} in terms of the norms of Uq+1U_{q+1}, which were computed in (4.57). By (4.77) and the Calderon–Zygmund estimates applied to \mathbb{P}, we get

Qq+1LtLxp+λq+11DQq+1LtLxp\displaystyle\left\lVert Q_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}+\lambda_{q+1}^{-1}\left\lVert DQ_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}} Ckτq+1t(Uq+1LtLxp+λq+11DUq+1LtLxp)\displaystyle\leq C\int_{k\tau_{q+1}}^{t}(\left\lVert U_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}+\lambda_{q+1}^{-1}\left\lVert DU_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}})
Cτq+1(Uq+1LtLxp+λq+11DUq+1LtLxp)\displaystyle\leq C\tau_{q+1}(\left\lVert U_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}+\lambda_{q+1}^{-1}\left\lVert DU_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}) (4.78)

for any p(1,)p\in(1,\infty) and any t𝒯kt\in\mathcal{T}^{k}. From (4.76), we also see that

tQq+1LtLxp=Uq+1(x,t)+𝒯kUq+1(x,s)dsLtLxp2Uq+1LtLxp2Uq+1LtLxp,\displaystyle\left\lVert\partial_{t}Q_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}=\left\lVert-\mathbb{P}U_{q+1}(x,t)+\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\mathcal{T}^{k}}\mathbb{P}U_{q+1}(x,s)\,ds\,\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq 2\left\lVert\mathbb{P}U_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq 2\left\lVert U_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}, (4.79)

and analogously

tDQq+1LtLxp2DUq+1LtLxp2DUq+1LtLxp.\displaystyle\left\lVert\partial_{t}DQ_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq 2\left\lVert D\mathbb{P}U_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq 2\left\lVert DU_{q+1}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}. (4.80)

4.9 The Perturbation and the New Reynolds Stress

We define the velocity field uq+1u_{q+1} as

uq+1(x,t)u(x,t)+vq+1(x,t)+Qq+1(x,t),x𝕋2,t0.u_{q+1}(x,t)\coloneqq u_{\ell}(x,t)+v_{q+1}(x,t)+Q_{q+1}(x,t)\,,\quad\quad x\in\mathbb{T}^{2}\,,\,\,t\geq 0\,. (4.81)

where the velocity field vq+1v_{q+1} is the main perturbation and is given by

vq+1(x,t)=ki=14Vik(x,t).v_{q+1}(x,t)=\sum_{k\in\mathbb{N}}\sum_{i=1}^{4}V_{i}^{k}(x,t)\,. (4.82)

The velocity field VikV^{k}_{i} and Qq+1Q_{q+1} are the adapted building block and time corrector from the previous section.

Remark 4.1.

For every kk\in\mathbb{Z}, it follows that vq+1(x,kτq+1)=Qq+1(x,kτq+1)=0v_{q+1}(x,k\tau_{q+1})=Q_{q+1}(x,k\tau_{q+1})=0 due to the time cut-off in the definition of VikV_{i}^{k} and (4.77). This implies that,

uq+1(x,kτq+1)=u(x,kτq+1),for every k and x𝕋2.u_{q+1}(x,k\tau_{q+1})=u_{\ell}(x,k\tau_{q+1})\,,\quad\text{for every $k\in\mathbb{Z}$ and $x\in\mathbb{T}^{2}$}\,. (4.83)

Since τq+11\tau_{q+1}^{-1} is integer, by (4.10) for every kk\in\mathbb{Z} we conclude that

uq+1(,k)uq(,k)L2uquLtLx2Cλ1βλ0β/2λq+1β\left\lVert u_{q+1}(\cdot,k)-u_{q}(\cdot,k)\right\rVert_{L^{2}}\leq\|u_{q}-u_{\ell}\|_{L^{\infty}_{t}L^{2}_{x}}\leq C\lambda_{1}^{\beta}\lambda_{0}^{-\beta/2}\lambda_{q+1}^{-\beta} (4.84)

We define the new pressure field as

pq+1p+Pd+ki=14Pik,\displaystyle p_{q+1}\coloneqq p_{\ell}+P^{\,d}+\sum_{k\in\mathbb{N}}\sum_{i=1}^{4}P_{i}^{k}, (4.85)

where pp_{\ell}, PdP^{\,d} and PikP_{i}^{k} are from (4.4), (4.11) and (4.41), respectively. The velocity field uq+1u_{q+1} and the pressure pq+1p_{q+1} satisfies the Euler–Reynolds system with the error term given by

Rq+1Rq+1(l)+Rq+1(c)+Rq+1(t)+Rq+1(s)+ki=14(Fik+Gik)R_{q+1}\coloneqq R_{q+1}^{(l)}+R_{q+1}^{(c)}+R_{q+1}^{(t)}+R_{q+1}^{(s)}+\sum_{k\in\mathbb{N}}\;\sum_{i=1}^{4}(F_{i}^{k}+G_{i}^{k}) (4.86)

where the error FikF_{i}^{k} is from (4.41) and GikG_{i}^{k} is given by Proposition 4.1. The error Rq+1(l)R^{(l)}_{q+1} represents the terms that are linear in the perturbation and Rq+1(c)R_{q+1}^{(c)} contains the terms involving the time corrector Qq+1Q_{q+1}:

Rq+1(l)\displaystyle R_{q+1}^{(l)} vq+1u+uvq+1,\displaystyle\coloneqq v_{q+1}\otimes u_{\ell}+u_{\ell}\otimes v_{q+1}\,, (4.87)
Rq+1(c)\displaystyle R_{q+1}^{(c)} Qq+1(u+vq+1)+(u+vq+1)Qq+1+Qq+1Qq+1,\displaystyle\coloneqq Q_{q+1}\otimes(u_{\ell}+v_{q+1})+(u_{\ell}+v_{q+1})\otimes Q_{q+1}+Q_{q+1}\otimes Q_{q+1}\,, (4.88)

Finally, for every t𝒯ikt\in\mathcal{T}_{i}^{k} we define the error Rq+1(t)R_{q+1}^{(t)} coming from freezing the coefficients in time and the error Rq+1(s)R_{q+1}^{(s)} coming from replacing the source term with the auxiliary building block

Rq+1(t)(x,t)\displaystyle R_{q+1}^{(t)}(x,t) ai(x,t)aik(x)\displaystyle\coloneqq a_{i}(x,t)-a_{i}^{k}(x) (4.89)
Rq+1(s)(x,t)\displaystyle R_{q+1}^{(s)}(x,t) 0((SikU~ik)ddt(ηikζikrik))(x,t).\displaystyle\coloneqq\mathcal{R}_{0}\left((S_{i}^{k}-\widetilde{U}_{i}^{k})\frac{d}{dt}(\eta_{i}^{k}\zeta_{i}^{k}r_{i}^{k})\right)(x,t). (4.90)

5 Estimates on the Perturbation and on the Reynolds Stress

The goal of this section is to provide a proof of Proposition 3.1. Essentially, given a solution (uq,pq,Rq)(u_{q},p_{q},R_{q}) of the Euler-Reynolds system at the qqth stage, our aim is to construct a solution (uq+1,pq+1,Rq+1)(u_{q+1},p_{q+1},R_{q+1}) at the (q+1)(q+1)th stage that satisfies the conditions stated in the proposition. To that end, we express the estimates on the velocity and the error and express these estimates as powers of λq+1\lambda_{q+1}, where the exponents are determined by the constants β\beta, μ\mu, κ\kappa, σ\sigma, and nn from Section 3. Finally, we ascertain the values of these constants to establish a proof of the Proposition 3.1.

5.1 Estimate on the Velocity Field

We begin with estimating the L2L^{2} norm of uq+1uqu_{q+1}-u_{q}. From the definition of uq+1u_{q+1} given in (4.81) and estimates (4.28),(4.44), (4.57), (4.8), we obtain

uq+1uqLtLx2\displaystyle\|u_{q+1}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}} uuqLtLx2+supi,kVikLtLx2+Qq+1LtLx2\displaystyle\leq\|u_{\ell}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}+\sup_{i,k}\|V_{i}^{k}\|_{L^{\infty}_{t}L^{2}_{x}}+\|Q_{q+1}\|_{L^{\infty}_{t}L^{2}_{x}}
Cδq+11/2+Cτq+1λq+1λq3n+3βσ\displaystyle\leq C\delta_{q+1}^{1/2}+C\tau_{q+1}\lambda_{q+1}\lambda_{q}^{3n+3\beta\sigma}
Cδq+11/2,\displaystyle\leq C\delta_{q+1}^{1/2}, (5.1)

where we impose the more restrictive condition

λq+1κ+1+4nσ+3β+βσ1δ01/2τq+1λq+1λq4n+3βσδq+2.\lambda_{q+1}^{-\kappa+1+\frac{4n}{\sigma}+3\beta+\beta\sigma}\leq 1\quad\Rightarrow\quad\delta_{0}^{1/2}\tau_{q+1}\lambda_{q+1}\lambda_{q}^{4n+3\beta\sigma}\leq\delta_{q+2}. (5.2)

The second inductive assumption follows from the previous computation

uq+1LtLx2uqLtLx2+uq+1uqLtLx22δ01/2δq1/2+Mδq+11/22δ01/2δq+11/2\|u_{q+1}\|_{L^{\infty}_{t}L^{2}_{x}}\leq\|u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}+\|u_{q+1}-u_{q}\|_{L^{\infty}_{t}L^{2}_{x}}\leq 2\delta_{0}^{1/2}-\delta_{q}^{1/2}+M\delta_{q+1}^{1/2}\leq 2\delta_{0}^{1/2}-\delta_{q+1}^{1/2}

provided λ0\lambda_{0} is sufficiently large in terms of MM.

Now we obtain the LpL^{p} estimate on Duq+1Du_{q+1}. From (4.28), (4.45), (4.57) and (4.8) for any p(1,)p\in(1,\infty), we get

Duq+1LtLxpDuLtLxp+supi,kDVikLtLxp+DQq+1LtLxp\displaystyle\|Du_{q+1}\|_{L^{\infty}_{t}L^{p}_{x}}\leq\|Du_{\ell}\|_{L^{\infty}_{t}L^{p}_{x}}+\sup_{i,k}\|DV_{i}^{k}\|_{L^{\infty}_{t}L^{p}_{x}}+\|DQ_{q+1}\|_{L^{\infty}_{t}L^{p}_{x}}
DuqLtLxp+C(p)δq+112(rq+1δq+1)2p2+C(p)τq+1λq+132pλq3n+3βσ\displaystyle\leq\|Du_{q}\|_{L^{\infty}_{t}L^{p}_{x}}+C(p)\delta_{q+1}^{\frac{1}{2}}\left(r_{q+1}\delta_{q+1}\right)^{\frac{2}{p}-2}+C(p)\tau_{q+1}\lambda_{q+1}^{3-\frac{2}{p}}\lambda_{q}^{3n+3\beta\sigma}
DuqLtLxp+C(p)δq+11/10λ1β(λq+1β(85+2p)+μ(22p)+λq+13nσ+5βκ+32p).\displaystyle\leq\|Du_{q}\|_{L^{\infty}_{t}L^{p}_{x}}+C(p)\delta_{q+1}^{1/10}\lambda_{1}^{\beta}\left(\lambda_{q+1}^{-\beta\left(-\frac{8}{5}+\frac{2}{p}\right)+\mu\left(2-\frac{2}{p}\right)}+\lambda_{q+1}^{\frac{3n}{\sigma}+5\beta-\kappa+3-\frac{2}{p}}\right)\,. (5.3)

We will impose (5.16) so that Duq+1LtLxp¯DuqLtLxp¯+λ1βδq+11/10\|Du_{q+1}\|_{L^{\infty}_{t}L^{\overline{p}}_{x}}\leq\|Du_{q}\|_{L^{\infty}_{t}L^{\overline{p}}_{x}}+\lambda_{1}^{\beta}\delta_{q+1}^{1/10}, which then satisfies item (ii) in Proposition 3.1 as we will ensure βσ<1\beta\sigma<1.

By using a simple interpolation inequality, estimates from (5.3) together with (4.28), (4.47), (4.57) and (4.80), we obtain

\displaystyle\| Duq+1CtαLxp¯\displaystyle Du_{q+1}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}
DuqCtαLxp¯+supi,kDVikCtαLxp¯+DQq+1CtαLxp¯\displaystyle\leq\|Du_{q}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+\sup_{i,k}\|DV_{i}^{k}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+\|DQ_{q+1}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}
DuqCtαLxp¯+supi,kDVikLtLxp¯1αtDVikLtLxp¯α+DQq+1LtLxp¯1αtDQq+1LtLxp¯α\displaystyle\leq\|Du_{q}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+\sup_{i,k}\|DV_{i}^{k}\|_{L^{\infty}_{t}L^{\overline{p}}_{x}}^{1-\alpha}\|\partial_{t}DV_{i}^{k}\|_{L^{\infty}_{t}L^{\overline{p}}_{x}}^{\alpha}+\|DQ_{q+1}\|_{L^{\infty}_{t}L^{\overline{p}}_{x}}^{1-\alpha}\|\partial_{t}DQ_{q+1}\|_{L^{\infty}_{t}L^{\overline{p}}_{x}}^{\alpha}
DuqCtαLxp¯+(Cδq+112(rq+1δq+1)2p¯2)1α(Cδq+13rq+14)α+Cτq+11α(λq+132p¯λq3n+3β)\displaystyle\leq\|Du_{q}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+(C\delta_{q+1}^{\frac{1}{2}}\left(r_{q+1}\delta_{q+1}\right)^{\frac{2}{{\overline{p}}}-2})^{1-\alpha}(C\delta_{q+1}^{-3}r_{q+1}^{-4})^{\alpha}+C\tau_{q+1}^{1-\alpha}(\lambda_{q+1}^{3-\frac{2}{{\overline{p}}}}\lambda_{q}^{3n+3\beta})
DuqCtαLxp¯+Cδq+11/100δq+19/100((δq+112(rq+1δq+1)2p¯2)α(δq+13rq+14)α+τq+1α)\displaystyle\leq\|Du_{q}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+C\delta_{q+1}^{1/100}\delta_{q+1}^{9/100}\Big{(}(\delta_{q+1}^{\frac{1}{2}}\left(r_{q+1}\delta_{q+1}\right)^{\frac{2}{{\overline{p}}}-2})^{-\alpha}(\delta_{q+1}^{-3}r_{q+1}^{-4})^{\alpha}+\tau_{q+1}^{-\alpha}\Big{)}
DuqCtαLxp¯+Cδq+11/100[δq+19/100(δq+12p¯α32αrq+15α+τq+1α)]\displaystyle\leq\|Du_{q}\|_{C^{\alpha}_{t}L^{\overline{p}}_{x}}+C\delta_{q+1}^{1/100}\left[\delta_{q+1}^{9/100}\Big{(}\delta_{q+1}^{-\frac{2}{\overline{p}}\alpha-\frac{3}{2}\alpha}r_{q+1}^{-5\alpha}+\tau_{q+1}^{-\alpha}\Big{)}\right] (5.4)

The factor multiplying δq+11/100\delta_{q+1}^{1/100} in (5.4) is bounded by 11 provided α\alpha is chosen sufficiently close to 0 in terms of the parameters.

Finally, we obtain LtLxpL^{\infty}_{t}L^{p}_{x} estimate on tuq+1\partial_{t}u_{q+1}. We note from (4.28), (4.47), (4.57), (4.79) that

tuq+1LtLxp\displaystyle\|\partial_{t}u_{q+1}\|_{L^{\infty}_{t}L^{p}_{x}} tuLtLxp+supi,ktVikLtLxp+tQq+1LtLxp\displaystyle\leq\|\partial_{t}u_{\ell}\|_{L^{\infty}_{t}L^{p}_{x}}+\sup_{i,k}\|\partial_{t}V_{i}^{k}\|_{L^{\infty}_{t}L^{p}_{x}}+\|\partial_{t}Q_{q+1}\|_{L^{\infty}_{t}L^{p}_{x}}
λq+1nσ+Cδq+12rq+13+Cλq+122pλq3n+3βσ\displaystyle\leq\lambda_{q+1}^{\frac{n}{\sigma}}+C\delta_{q+1}^{-2}r_{q+1}^{-3}+C\lambda_{q+1}^{2-\frac{2}{p}}\lambda_{q}^{3n+3\beta\sigma}
λq+1nσ+Cλq+12β+3μ+Cλq+13nσ+3β+22p.\displaystyle\leq\lambda_{q+1}^{\frac{n}{\sigma}}+C\lambda_{q+1}^{2\beta+3\mu}+C\lambda_{q+1}^{\frac{3n}{\sigma}+3\beta+2-\frac{2}{p}}. (5.5)

5.2 Estimate on the Error

From (3.3) and (4.43), we deduce

Rq+1(l)(,t)LtLx1\displaystyle\|R_{q+1}^{(l)}(\cdot,t)\|_{L^{\infty}_{t}L_{x}^{1}} Cvq+1LtLx3/2uLtLx3C(supi,kVikLtLx3/2+Qq+1LtLx2)uLtLx4\displaystyle\leq C\|v_{q+1}\|_{L^{\infty}_{t}L_{x}^{3/2}}\|u_{\ell}\|_{L^{\infty}_{t}L_{x}^{3}}\leq C(\sup_{i,k}\|V^{k}_{i}\|_{L^{\infty}_{t}L^{3/2}_{x}}+\|Q_{q+1}\|_{L^{\infty}_{t}L^{2}_{x}})\,\|u_{\ell}\|_{L^{\infty}_{t}L_{x}^{4}} (5.6)
Cδq+112rq+113(λq2n+2βσ)13λqn+Cτq+1λq+1λq4n+3βσδ01/2110δq+2,\displaystyle\leq C\delta_{q+1}^{\frac{1}{2}}r_{q+1}^{\frac{1}{3}}\left(\lambda_{q}^{2n+2\beta\sigma}\right)^{\frac{1}{3}}\lambda_{q}^{n}+C\tau_{q+1}\lambda_{q+1}\lambda_{q}^{4n+3\beta\sigma}\delta_{0}^{1/2}\leq\frac{1}{10}\delta_{q+2}, (5.7)

where in the last inequality we used the condition on the parameters (4.32), (5.2) and λq+1λqn\lambda_{q+1}\leq\lambda_{q}^{n} which follows from (4.60). Here as well, one can consume the constants by choosing λ0\lambda_{0} large. From (4.28), (4.57), (4.8), (5.2), it follows:

Rq+1(c)LtLx1\displaystyle\|R_{q+1}^{(c)}\|_{L^{\infty}_{t}L^{1}_{x}} CQq+1LtLx2(uLtLx2+vq+1LtLx2+Qq+1LtLx2)\displaystyle\leq C\|Q_{q+1}\|_{L^{\infty}_{t}L_{x}^{2}}(\|u_{\ell}\|_{L^{\infty}_{t}L^{2}_{x}}+\|v_{q+1}\|_{L^{\infty}_{t}L^{2}_{x}}+\|Q_{q+1}\|_{L^{\infty}_{t}L^{2}_{x}})
Cτq+1λq+1λq3n+3βσδ01/2110δq+2.\displaystyle\leq C\tau_{q+1}\lambda_{q+1}\lambda_{q}^{3n+3\beta\sigma}\delta_{0}^{1/2}\leq\frac{1}{10}\delta_{q+2}. (5.8)

From (4.29), we deduce that

Rq+1(t)LtLx1τq+1aiCx,t1Cτq+1λq3n+3βσ110δq+2,\|R_{q+1}^{(t)}\|_{L^{\infty}_{t}L^{1}_{x}}\leq\tau_{q+1}\|a_{i}\|_{C^{1}_{x,t}}\leq C\tau_{q+1}\lambda^{3n+3\beta\sigma}_{q}\leq\frac{1}{10}\delta_{q+2}, (5.9)

where in the last inequality we used the condition on the parameters (5.2). Moreover, from Proposition A.2, (4.49), (4.55) (notice that the estimate for the LtLxpL^{\infty}_{t}L^{p}_{x} of SikS_{i}^{k} is worse than that of U~ik\tilde{U}_{i}^{k}, as expected since they are both normalized in L1L^{1} but the former is more concentrated) and (4.64), for every p(1,)p\in(1,\infty), we see that

Rq+1(s)LtLxpC(p)λq+11(SikLtLxp+U~ikLtLxp)supi,k|ddt(ηikζikrik(xik))|\displaystyle\left\lVert R_{q+1}^{(s)}\right\rVert_{L^{\infty}_{t}L^{p}_{x}}\leq C(p)\lambda_{q+1}^{-1}\left(\|S_{i}^{k}\|_{L^{\infty}_{t}L^{p}_{x}}+\|\tilde{U}_{i}^{k}\|_{L^{\infty}_{t}L^{p}_{x}}\right)\sup_{i,k}\Big{|}\frac{d}{dt}(\eta_{i}^{k}\zeta_{i}^{k}r_{i}^{k}(x_{i}^{k}))\Big{|} (5.10)
C(p)λq+11δq+12p2rq+12p2λq3n+3βσδq+210(C(p)λ14β+4βpλq+1110+(22p)(β+μ))\displaystyle\leq C(p)\lambda_{q+1}^{-1}\delta_{q+1}^{\frac{2}{p}-2}r_{q+1}^{{\frac{2}{p}-2}}\lambda^{3n+3\beta\sigma}_{q}\,\leq\frac{\delta_{q+2}}{10}\left(C(p)\lambda_{1}^{-4\beta+\frac{4\beta}{p}}\lambda_{q+1}^{-\frac{1}{10}+\big{(}2-\frac{2}{p}\big{)}(\beta+\mu)}\right) (5.11)

and the factor multiplying δq+2\delta_{q+2} is bounded by 110\frac{1}{10} provided pp is chosen sufficiently close to 11, and λ0\lambda_{0} is big enough.

Finally by (4.42), (4.59), (4.32) and (4.60) we get

FikLtLx1Cδq+1rq+112λq4n+5βσ110δq+2,\displaystyle\left\lVert F_{i}^{k}\right\rVert_{L^{\infty}_{t}L^{1}_{x}}\leq C\delta_{q+1}\,r_{q+1}^{\frac{1}{2}}\,\lambda_{q}^{4n+5\beta\sigma}\leq\frac{1}{10}\delta_{q+2}, (5.12)
GikLtLx1λq+11λq3n+3βσ110δq+2.\displaystyle\left\lVert G_{i}^{k}\right\rVert_{L^{\infty}_{t}L^{1}_{x}}\leq\lambda_{q+1}^{-1}\lambda^{3n+3\beta\sigma}_{q}\leq\frac{1}{10}\delta_{q+2}\,. (5.13)

5.3 Constraints on the Parameters

Need to take care of extra conditions now. The following constraints have been imposed on the parameters, and are in turn implied by the inequalities below:

  1. (i)

    We satisfy the extra conditions (4.32) and (4.37), (4.60), (5.2), (4.48):

    5+2nσ+2βμ<0,μβ2κ>0,\displaystyle 5+\frac{2n}{\sigma}+2\beta-\mu<0\,,\qquad\mu-\beta-2-\kappa>0\,,\qquad\qquad\qquad\qquad (5.14)
    910+3nσ+3β+βσ<0,κ+1+4nσ+3β+βσ<0,5+nσ+β<0.\displaystyle-\frac{9}{10}+\frac{3n}{\sigma}+3\beta+\beta\sigma<0\,,\qquad{-\kappa+1+\frac{4n}{\sigma}+3\beta+\beta\sigma}<0\,,\qquad-5+\frac{n}{\sigma}+\beta<0. (5.15)
  2. (ii)

    The terms other than DuqLtLxp¯\left\lVert Du_{q}\right\rVert_{L^{\infty}_{t}L^{\bar{p}}_{x}} in (5.3) are smaller than δq+1110\delta_{q+1}^{\frac{1}{10}}:

    β(85+2p)+μ(22p¯)<0,3nσ+9β10κ+32p¯<0.\displaystyle-\beta\left(-\frac{8}{5}+\frac{2}{p}\right)+\mu\left(2-\frac{2}{\bar{p}}\right)<0,\qquad{\frac{3n}{\sigma}+\frac{9\beta}{10}-\kappa+3-\frac{2}{\bar{p}}}<0. (5.16)
  3. (iii)

    Finally, Dx,tuq+1LtLx4\left\lVert D_{x,t}u_{q+1}\right\rVert_{L^{\infty}_{t}L^{4}_{x}} is smaller than λq+1n\lambda_{q+1}^{n} using (5.3) and (5.5) for p=4p=4:

    21β10+32μ<n,3nσ+6βκ+52<n,2β+3μ<n,3nσ+3β+32<n.\displaystyle\frac{21\beta}{10}+\frac{3}{2}\mu<n,\qquad{\frac{3n}{\sigma}+6\beta-\kappa+\frac{5}{2}}<n,\qquad 2\beta+3\mu<n,\qquad\frac{3n}{\sigma}+3\beta+\frac{3}{2}<n\,. (5.17)

These conditions are satisfied, for example, when

β=1245,μ=5310,κ=3,n=16,σ=110,p¯=1+16500.\displaystyle\beta=\frac{1}{245},\quad\mu=\frac{53}{10},\quad\kappa=3,\quad n=16,\quad\sigma=110,\quad\bar{p}=1+\frac{1}{6500}. (5.18)

Once this choice is made, we see that α=1105\alpha=\frac{1}{10^{5}} satisfies (5.11).

Remark 5.1 (Improved exponent).

It is likely that the exponent in our scheme can be increased, for instance, to p¯=1+12000\overline{p}=1+\frac{1}{2000}. Two changes required to get this exponent are as follows. Firstly, one needs to improve the estimate on the support of the source/sink term in Proposition 2.2 by choosing α=1/3\alpha=1/3 in the proof. Secondly, in equation (4.37), one should instead impose λq+13/2rq+1δq+11/2τq+1200\lambda_{q+1}^{3/2}r_{q+1}\delta_{q+1}^{1/2}\leq\frac{\tau_{q+1}}{200}.

APPENDIX

Appendix A Anti-Divergence Operator

A.1 Bogovskii operator

Let us fix a cut-off function γCc(2)\gamma\in C^{\infty}_{c}(\mathbb{R}^{2}) satisfying

  • (i)

    suppγB1(0)\operatorname{supp}\gamma\subset B_{1}(0),

  • (ii)

    2γ(x)𝑑x=1\int_{\mathbb{R}^{2}}\gamma(x)\,dx=1.

For every fL1(2)f\in L^{1}(\mathbb{R}^{2}) with 2f(x)𝑑x=0\int_{\mathbb{R}^{2}}f(x)\,dx=0, we define the Bogovskii operator

(f)(x):=2f(y)(xy)(1γ(y+ρ(xy))ρ𝑑ρ)𝑑y\mathcal{B}(f)(x):=\int_{\mathbb{R}^{2}}f(y)(x-y)\left(\int_{1}^{\infty}\gamma(y+\rho(x-y))\rho\,d\rho\right)\,dy (A.1)

The following Lemma is well-known (see [Gal11]).

Lemma A.1.

Assume that fCc(2)f\in C^{\infty}_{c}(\mathbb{R}^{2}) is supported on B1(0)B_{1}(0) and 2f(x)𝑑x=0\int_{\mathbb{R}^{2}}f(x)\,dx=0. Then, (f)Cc(2;2)\mathcal{B}(f)\in C^{\infty}_{c}(\mathbb{R}^{2};\mathbb{R}^{2}) is supported on B1(0)B_{1}(0) and satisfies

  • (a)

    div((f))=f\mathop{div}\nolimits(\mathcal{B}(f))=f.

  • (b)

    For every p(1,)p\in(1,\infty), it holds

    (f)LpC(p)fLp.\|\mathcal{B}(f)\|_{L^{p}}\leq C(p)\|f\|_{L^{p}}\,. (A.2)

Given a function fCc(2)f\in C^{\infty}_{c}(\mathbb{R}^{2}) with zero mean supported on Br(x0)B_{r}(x_{0}), we define

v(x)=r(f(x0+r))(xx0r).v(x)=r\mathcal{B}(f(x_{0}+r\cdot))\left(\frac{x-x_{0}}{r}\right)\,. (A.3)

By Lemma A.1 applied to f(x0+r)Cc(B1)f(x_{0}+r\cdot)\in C^{\infty}_{c}(B_{1}), we know that suppvBr(x0)\operatorname{supp}v\subset B_{r}(x_{0}), div(v)=f\mathop{div}\nolimits(v)=f, and

vLpC(p)rfLp,for every p(1,).\|v\|_{L^{p}}\leq C(p)r\|f\|_{L^{p}}\,,\quad\text{for every $p\in(1,\infty)$}\,. (A.4)

By applying the previous argument to velocity fields we deduce the following.

Proposition A.1 (Compactly Supported Anti-divergence).

Assume that vC(2;2)v\in C^{\infty}(\mathbb{R}^{2};\mathbb{R}^{2}) is supported in Br(x0)B_{r}(x_{0}) and 2v(x)𝑑x=0\int_{\mathbb{R}^{2}}v(x)\,dx=0. Then there exists AC(2;2×2)A\in C^{\infty}(\mathbb{R}^{2};\mathbb{R}^{2\times 2}) such that

  • (a)

    suppABr(x0)\operatorname{supp}A\subset B_{r}(x_{0}),

  • (b)

    div(A)=v\mathop{div}\nolimits(A)=v,

  • (c)

    for every p(1,)p\in(1,\infty) it holds

    ALpC(p)rvLp.\|A\|_{L^{p}}\leq C(p)r\|v\|_{L^{p}}\,. (A.5)
Remark A.1 (A necessary condition for the symmetry of AA).

The tensor AA built in Proposition A.1 is not necessarily symmetric. A necessary condition for symmetry is

2(x1v2(x)x2v1(x))𝑑x=0.\displaystyle\int_{\mathbb{R}^{2}}(x_{1}v_{2}(x)-x_{2}v_{1}(x))\,dx=0\,. (A.6)

A.2 Symmetric Anti-divergence

On the torus 𝕋2\mathbb{T}^{2}, we consider the operator

0(v)=(DΔ1+(DΔ1)tIdivΔ1)(v)\mathcal{R}_{0}(v)=(D\Delta^{-1}+(D\Delta^{-1})^{t}-I\cdot\mathop{div}\nolimits\Delta^{-1})(v) (A.7)

for every vC(𝕋2;2)v\in C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2}) such that 𝕋2v(x)𝑑x=0\int_{\mathbb{T}^{2}}v(x)\,dx=0. It turns out that

0:C(𝕋2;2)C(𝕋2;Sym2),\mathcal{R}_{0}:C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2})\to C^{\infty}(\mathbb{T}^{2};{\rm Sym}_{2})\,, (A.8)

where Sym2{\rm Sym}_{2} is the space of symmetric tensors in 2\mathbb{R}^{2}. It is immediate to check that div(0(v))=v\mathop{div}\nolimits(\mathcal{R}_{0}(v))=v and that D0D\mathcal{R}_{0} and 0div\mathcal{R}_{0}\mathop{div}\nolimits are Calderon-Zygmund operators. In particular, the following estimates hold for every p(1,)p\in(1,\infty), vC(𝕋2;2)v\in C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2}), AC(𝕋2;2×2)A\in C^{\infty}(\mathbb{T}^{2};\mathbb{R}^{2\times 2})

0(v)LpC(p)D0(v)LpC(p)vLp,0div(A)LpC(p)ALp.\displaystyle\|\mathcal{R}_{0}(v)\|_{L^{p}}\leq C(p)\|D\mathcal{R}_{0}(v)\|_{L^{p}}\leq C(p)\|v\|_{L^{p}}\,,\quad\|\mathcal{R}_{0}\mathop{div}\nolimits(A)\|_{L^{p}}\leq C(p)\|A\|_{L^{p}}. (A.9)

As a consequence of (A.9), we have the following.

Proposition A.2 (Symmetric Anti-divergence of compactly supported vector fields on the torus).

Let 0<r<1/40<r<1/4. Assume that vCc(𝕋2;2)v\in C^{\infty}_{c}(\mathbb{T}^{2};\mathbb{R}^{2}) is supported on an ball or radius rr and 𝕋2v(x)𝑑x=0\int_{\mathbb{T}^{2}}v(x)\,dx=0. Then,

0(v)LpC(p)rvLp,for every p(1,).\|\mathcal{R}_{0}(v)\|_{L^{p}}\leq C(p)r\|v\|_{L^{p}}\,,\quad\text{for every $p\in(1,\infty)$}\,. (A.10)
Proof.

We first identify vv with a velocity field on 2\mathbb{R}^{2} supported on a ball of radius rr contained in [0,1]2[0,1]^{2}. We invert the divergence by means on the Bogovskii operator as in Proposition A.1, obtaining a compactly supported tensor AA. We then periodize AA and apply (A.9). ∎

References

  • [ABC+24] D. Albritton, E. Brué, M. Colombo, C. De Lellis, V. Giri, M. Janisch, and H. Kwon. Instability and non-uniqueness for the 2D Euler equations, after M. Vishik, volume 219 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2024.
  • [Amb04] L. Ambrosio. Transport equation and Cauchy problem for BVBV vector fields. Invent. Math., 158(2):227–260, 2004. doi:10.1007/s00222-004-0367-2.
  • [BC23] E. Brué and M. Colombo. Nonuniqueness of solutions to the Euler equations with vorticity in a Lorentz space. Commun. Math. Phys., 403(2):1171–1192, 2023. doi:10.1007/s00220-023-04816-4.
  • [BCDL21] E. Brué, M. Colombo, and C. De Lellis. Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Arch. Ration. Mech. Anal., 240(2):1055–1090, 2021. doi:10.1007/s00205-021-01628-5.
  • [BCK24] E. Bruè, M. Colombo, and A. Kumar. Sharp Nonuniqueness in the Transport Equation with Sobolev Velocity Field. arXiv preprint arXiv:2405.01670, 2024.
  • [BCV21] T. Buckmaster, M. Colombo, and V. Vicol. Wild solutions of the Navier–Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1. Journal of the European Mathematical Society, 24(9):3333–3378, 2021.
  • [BDLIS15] T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi, Jr. Anomalous dissipation for 1/51/5-Hölder Euler flows. Ann. of Math. (2), 182(1):127–172, 2015. doi:10.4007/annals.2015.182.1.3.
  • [BDLS16] T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr. Dissipative Euler flows with Onsager-critical spatial regularity. Comm. Pure Appl. Math., 69(9):1613–1670, 2016. doi:10.1002/cpa.21586.
  • [BDLSV19] T. Buckmaster, C. De Lellis, L. j. Székelyhidi, and V. Vicol. Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math., 72(2):229–274, 2019. doi:10.1002/cpa.21781.
  • [BL15] J. Bourgain and D. Li. Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math., 201(1):97–157, 2015. doi:10.1007/s00222-014-0548-6.
  • [BM24a] M. Buck and S. Modena. Compactly supported anomalous weak solutions for 2d euler equations with vorticity in hardy spaces. 2024, 2405.19214.
  • [BM24b] M. Buck and S. Modena. Non-uniqueness and energy dissipation for 2d euler equations with vorticity in hardy spaces. Journal of Mathematical Fluid Mechanics, 26(26), 2024. doi:10.1007/s00021-024-00860-9.
  • [BMNV23] T. Buckmaster, N. Masmoudi, M. Novack, and V. Vicol. Intermittent convex integration for the 3D Euler equations, volume 217 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, [2023] ©2023.
  • [BS21] A. Bressan and W. Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete Contin. Dyn. Syst., 41(1):113–130, 2021. doi:10.3934/dcds.2020168.
  • [Buc15] T. Buckmaster. Onsager’s conjecture almost everywhere in time. Comm. Math. Phys., 333(3):1175–1198, 2015. doi:10.1007/s00220-014-2262-z.
  • [BV19a] T. Buckmaster and V. Vicol. Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci., 6(1-2):173–263, 2019. doi:10.4171/emss/34.
  • [BV19b] T. Buckmaster and V. Vicol. Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. (2), 189(1):101–144, 2019. doi:10.4007/annals.2019.189.1.3.
  • [BV21] T. Buckmaster and V. Vicol. Convex integration constructions in hydrodynamics. Bull. Amer. Math. Soc. (N.S.), 58(1):1–44, 2021. doi:10.1090/bull/1713.
  • [CCFS08] A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity, 21(6):1233–1252, 2008. doi:10.1088/0951-7715/21/6/005.
  • [CCS21] G. Ciampa, G. Crippa, and S. Spirito. Strong convergence of the vorticity for the 2D Euler equations in the inviscid limit. Arch. Ration. Mech. Anal., 240(1):295–326, 2021. doi:10.1007/s00205-021-01612-z.
  • [CDE22] P. Constantin, T. D. Drivas, and T. M. Elgindi. Inviscid limit of vorticity distributions in the Yudovich class. Comm. Pure Appl. Math., 75(1):60–82, 2022. doi:10.1002/cpa.21940.
  • [CFLS16] A. Cheskidov, M. C. L. Filho, H. J. N. Lopes, and R. Shvydkoy. Energy conservation in two-dimensional incompressible ideal fluids. Comm. Math. Phys., 348(1):129–143, 2016. doi:10.1007/s00220-016-2730-8.
  • [Cho13] A. Choffrut. hh-principles for the incompressible Euler equations. Arch. Ration. Mech. Anal., 210(1):133–163, 2013. doi:10.1007/s00205-013-0639-3.
  • [CL21] A. Cheskidov and X. Luo. Nonuniqueness of weak solutions for the transport equation at critical space regularity. Ann. PDE, 7(1):Paper No. 2, 45, 2021. doi:10.1007/s40818-020-00091-x.
  • [CL22] A. Cheskidov and X. Luo. Sharp nonuniqueness for the Navier-Stokes equations. Invent. Math., 229(3):987–1054, 2022. doi:10.1007/s00222-022-01116-x.
  • [CL23] A. Cheskidov and X. Luo. L2L^{2}-critical nonuniqueness for the 2D Navier-Stokes equations. Ann. PDE, 9(2):Paper No. 13, 56, 2023. doi:10.1007/s40818-023-00154-9.
  • [CLJ12] A. Choffrut, C. D. Lellis, and L. S. Jr. Dissipative continuous euler flows in two and three dimensions, 2012, 1205.1226.
  • [CMZO24] D. Córdoba, L. Martínez-Zoroa, and W. Ożański. Instantaneous gap loss of sobolev regularity for the 2d incompressible euler equations. Duke Math. J., 2024, arXiv:2210.17458. to appear.
  • [CS] G. Crippa and G. Stefani. An elementary proof of existence and uniqueness for the euler flow in localized yudovich space. To appear on Calc. Var. Partial Differential Equations.
  • [CS15] G. Crippa and S. Spirito. Renormalized solutions of the 2D Euler equations. Comm. Math. Phys., 339(1):191–198, 2015. doi:10.1007/s00220-015-2411-z.
  • [Del91] J.-M. Delort. Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc., 4(3):553–586, 1991. doi:10.2307/2939269.
  • [DL89] R. J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98(3):511–547, 1989. doi:10.1007/BF01393835.
  • [DLS09] C. De Lellis and L. Székelyhidi, Jr. The Euler equations as a differential inclusion. Ann. of Math. (2), 170(3):1417–1436, 2009. doi:10.4007/annals.2009.170.1417.
  • [DLS13] C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377–407, 2013. doi:10.1007/s00222-012-0429-9.
  • [DLS17] C. De Lellis and L. Székelyhidi, Jr. High dimensionality and h-principle in PDE. Bull. Amer. Math. Soc. (N.S.), 54(2):247–282, 2017. doi:10.1090/bull/1549.
  • [DLS19] C. De Lellis and L. Székelyhidi, Jr. On turbulence and geometry: from Nash to Onsager. Notices Amer. Math. Soc., 66(5):677–685, 2019.
  • [DLS22] C. De Lellis and L. Székelyhidi, Jr. Weak stability and closure in turbulence. Philos. Trans. Roy. Soc. A, 380(2218):Paper No. 20210091, 16, 2022. doi:10.1098/rsta.2021.0091.
  • [DM87] R. J. DiPerna and A. J. Majda. Concentrations in regularizations for 22-D incompressible flow. Comm. Pure Appl. Math., 40(3):301–345, 1987. doi:10.1002/cpa.3160400304.
  • [DS17] S. Daneri and L. Székelyhidi, Jr. Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Rational Mech. Anal., 224(2):471–514, 2017.
  • [Elg21] T. Elgindi. Finite-time singularity formation for C1,αC^{1,\alpha} solutions to the incompressible euler equations on 3\mathbb{R}^{3}. Ann. Math. (2), 194(3):647–727, 2021. doi:10.4007/annals.2021.194.3.2.
  • [EM94] L. C. Evans and S. Müller. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity. J. Amer. Math. Soc., 7(1):199–219, 1994. doi:10.2307/2152727.
  • [EM20] T. M. Elgindi and N. Masmoudi. LL^{\infty} ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration. Mech. Anal., 235(3):1979–2025, 2020. doi:10.1007/s00205-019-01457-7.
  • [Eyi01] G. L. Eyink. Dissipation in turbulent solutions of 2d Euler equations. Nonlinearity, 14(4):787–802, 2001. doi:10.1088/0951-7715/14/4/307.
  • [Gal11] G. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems. Springer Science & Business Media, 2011.
  • [GP22] F. Grotto and U. Pappalettera. Correction to: Burst of point vortices and non-uniqueness of 2D Euler equations. Arch. Ration. Mech. Anal., 246(1):139–140, 2022. doi:10.1007/s00205-022-01814-z.
  • [GR24] V. Giri and R.-O. Radu. The 2d Onsager conjecture: a Newton–Nash iteration. 2024, 2405.19214.
  • [H3̈3] E. Hölder. Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit. Math. Z., 37(1):727–738, 1933. doi:10.1007/BF01474611.
  • [Ise18] P. Isett. A proof of Onsager’s conjecture. Ann. of Math. (2), 188(3):871–963, 2018. doi:10.4007/annals.2018.188.3.4.
  • [Ise22] P. Isett. Nonuniqueness and existence of continuous, globally dissipative Euler flows. Arch. Ration. Mech. Anal., 244(3):1223–1309, 2022. doi:10.1007/s00205-022-01780-6.
  • [KGN23] H. Kwon, V. Giri, and M. Novack. A wavelet-inspired l3l^{3}-based convex integration framework for the euler equations. arXiv:2305.18142, 2023. URL https://arxiv.org/abs/2305.18142.
  • [Lam24] H. Lamb. Hydrodynamics. University Press, 1924.
  • [LFMNL06] M. C. Lopes Filho, A. L. Mazzucato, and H. J. Nussenzveig Lopes. Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence. Arch. Ration. Mech. Anal., 179(3):353–387, 2006. doi:10.1007/s00205-005-0390-5.
  • [LMPP21] S. Lanthaler, S. Mishra, and C. Parés-Pulido. On the conservation of energy in two-dimensional incompressible flows. Nonlinearity, 34(2):1084–1135, 2021. doi:10.1088/1361-6544/abb452.
  • [Loe06] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9), 86(1):68–79, 2006. doi:10.1016/j.matpur.2006.01.005.
  • [Maj93] A. J. Majda. Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J., 42(3):921–939, 1993. doi:10.1512/iumj.1993.42.42043.
  • [Mas07] N. Masmoudi. Remarks about the inviscid limit of the Navier-Stokes system. Comm. Math. Phys., 270(3):777–788, 2007. doi:10.1007/s00220-006-0171-5.
  • [MB02] A. J. Majda and A. L. Bertozzi. Vorticity and incompressible flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.
  • [Men23] F. Mengual. Non-uniqueness of admissible solutions for the 2D Euler equation with lpl^{p} vortex data. arXiv preprint, 2023, 2304.09578. URL https://doi.org/10.48550/arXiv.2304.09578.
  • [MP94] C. Marchioro and M. Pulvirenti. Mathematical theory of incompressible nonviscous fluids, volume 96 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994. doi:10.1007/978-1-4612-4284-0.
  • [MS18] S. Modena and L. Székelyhidi, Jr. Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE, 4(2):Paper No. 18, 38, 2018. doi:10.1007/s40818-018-0056-x.
  • [Mv03] S. Müller and V. Šverák. Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. (2), 157(3):715–742, 2003. doi:10.4007/annals.2003.157.715.
  • [MVH94] V. Meleshko and G. Van Heijst. On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid. Journal of Fluid Mechanics, 272:157–182, 1994.
  • [Nas54] J. Nash. C1C^{1} isometric imbeddings. Ann. of Math. (2), 60:383–396, 1954. doi:10.2307/1969840.
  • [NV23] M. Novack and V. Vicol. An intermittent onsager theorem. Inventiones Mathematicae, 233:223–323, 2023. doi:10.1007/s00222-023-01185-6.
  • [RP24] L. D. Rosa and J. Park. No anomalous dissipation in two-dimensional incompressible fluids, 2024, 2403.04668.
  • [Sch93] V. Scheffer. An inviscid flow with compact support in space-time. J. Geom. Anal., 3(4):343–401, 1993. doi:10.1007/BF02921318.
  • [Shn00] A. Shnirelman. Weak solutions with decreasing energy of incompressible Euler equations. Comm. Math. Phys., 210(3):541–603, 2000. doi:10.1007/s002200050791.
  • [Visa] M. Vishik. Instability and non-uniqueness in the cauchy problem for the euler equations of an ideal incompressible fluid. part i. arxiv:1805.09426, 1805.09426. URL https://arxiv.org/pdf/1805.09426.pdf.
  • [Visb] M. Vishik. Instability and non-uniqueness in the cauchy problem for the euler equations of an ideal incompressible fluid. part ii. arxiv:1805.09440, 1805.09440. URL https://arxiv.org/pdf/1805.09440.pdf.
  • [Vis99] M. Vishik. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. (4), 32(6):769–812, 1999. doi:10.1016/S0012-9593(00)87718-6.
  • [VW93] I. Vecchi and S. J. Wu. On L1L^{1}-vorticity for 22-D incompressible flow. Manuscripta Math., 78(4):403–412, 1993. doi:10.1007/BF02599322.
  • [Wol33] W. Wolibner. Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z., 37(1):698–726, 1933. doi:10.1007/BF01474610.
  • [Yud62] V. I. Yudovich. Some bounds for solutions of elliptic equations. Mat. Sb. (N.S.), 59 (101)(suppl.):229–244, 1962. URL https://mathscinet.ams.org/mathscinet-getitem?mr=0149062.
  • [Yud63] V. I. Yudovich. Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat i Mat. Fiz., 3:1032–1066, 1963.