This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Flavor-changing phenomenology in a U(1)U(1) model

N. T. Duy [email protected] Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 100000, Vietnam    D. T. Huong [email protected] (corresponding author) Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 100000, Vietnam    Duong Van Loi [email protected] Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Yen Nghia, Ha Dong, Hanoi 100000, Vietnam    Phung Van Dong [email protected] Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Yen Nghia, Ha Dong, Hanoi 100000, Vietnam
Abstract

We investigate a family-nonuniversal Abelian extension of hypercharge, which significantly alters the phenomenological features of the standard model. Anomaly cancellation requires that the third quark family transforms differently from the first two quark families. Additionally, it acquires that three right-handed neutrinos are presented. This model generates naturally small neutrino masses and a WW-boson mass deviation appropriate to recent measurements. Additionally, the model introduces flavor-changing neutral currents (FCNCs) of quarks coupled to the new gauge boson ZZ^{\prime} and new Higgs fields. These FCNCs significantly modify the neutral-meson mixing amplitudes and rare meson decays, which are studied in detail. We also address flavor changing processes in the charged lepton sector.

I Introduction

The evidence of neutrino oscillations  McDonald (2016); Kajita (2016) suggests that the Standard Model (SM) is incomplete. Moreover, the SM lacks a dark matter candidate, which makes up most of the mass of galaxies and galatic clusters, as already observed Bertone et al. (2005).

To address these shortcomings, one approach is to extend the SM with a U(1)U(1) gauge symmetry. Popular approaches include U(1)BLU(1)_{B-L}, U(1)T3RU(1)_{T_{3R}}, U(1)LiLjU(1)_{L_{i}-L_{j}} for i,j=e,μ,τi,j=e,\mu,\tau, or a dark U(1)DU(1)_{D}. Most of these extensions assume universality of quark and lepton families under the U(1)U(1) charge, except for LiLjL_{i}-L_{j} model, which introduces non-universal lepton families. In contrast, the alternative U(1)XU(1)_{X} model Van Dong et al. (2023) proposes non-universal quark families. All lepton doublets and some quark doublets are assigned the same XX charge, denoted by xx, while the remaining quark doublets are assigned an opposite XX charge, i.e. x-x. This model has been shown to explain the fermion family number as matched to the color number, because of anomaly cancellation. On the other hand, the theory can be embedded in a (flipped) trinification Huong and Dong (2016); Dong et al. (2018); Singer et al. (1980); Valle and Singer (1983); Pisano and Pleitez (1992) or E6E_{6} Glashow (1961) grand unification. Right-handed neutrinos appear as fundamental components, required by anomaly cancellation too. The breaking of this Abelian symmetry naturally induces small neutrino masses.

The recent measurements of the WW boson mass have had significant implications for electroweak precision tests. The SM prediction for the WW boson mass is based on well-established relationships between the electroweak coupling constants and the masses of ZZ boson and top quark. Any deviation from these predictions could indicate to new physics beyond the SM. The extended Higgs sector as associated to a symmetry breaking beyond the SM leads to the mixing of neutral gauge bosons, ZZ and ZZ^{\prime}. This reduces the ZZ boson mass, thus it modifies the WW-gauge boson mass. The combination of the electroweak precision tests on the ρ\rho parameter and the WW boson mass based on the CDF measurement provides constraints on the new physical scale Van Dong et al. (2023) and rules out the alternative U(1)XU(1)_{X} model according to x=±16x=\pm\frac{1}{6}. Notably, the CDF experiment Aaltonen et al. (2022) reported a surprisingly high precision measurement of the WW boson mass in 2022, deviating significantly from the SM prediction. While ATLAS Aad et al. (2024) and LHCb Aaij et al. (2022a) measurements have aligned with previous results, the most recent CMS measurement Bendavid (2024),

mWCMS,2024=80.3602±0.0099GeV,\displaystyle m_{W}^{\text{CMS,2024}}=80.3602\pm 0.0099\ \text{GeV}, (1)

has a comparable precision to the SM prediction. The discrepancy between the CDF result and other measurements remains unresolved. However, the CMS measurements are closer to the SM predictions, propping us to reassess earlier findings Van Dong et al. (2023).

The third family of quarks transforms differently from the first two, leading to intriguing tree-level flavor-changing neutral currents (FCNCs) mediated by the new ZZ^{\prime} gauge boson. Additionally, the model includes a new Higgs doublet, resulting in both up- and down-type quarks coupling to both Higgs doublets and inevitably giving rise to tree-level FCNCs mediated by the neutral Higgs field. While the SM FCNCs vanish at tree level, they arise at the loop level through charged current contributions from WW-boson, which are strictly suppressed by the GIM mechanism. SM predictions for FCNC effects in meson physics, such as neutral-meson mixings and rare meson decays, bsγb\to s\gamma, tcγt\to c\gamma, are generally consistent with experimental observations Workman and Others (2022).

Quark FCNCs impose strong constraints on new physics proposals Duy et al. (2024); Thu et al. (2023); Duy et al. (2022); Dinh et al. (2019); Huong et al. (2019). Previous studies Van Dong et al. (2023) investigated the impact of the FCNCs associated with the new ZZ^{\prime} gauge boson on the meson mixing systems, providing qualitative lower bounds on the ZZ^{\prime} gauge boson mass. In this work, we carefully examine several experimental observations related to the quark flavor-changing processes which are mediated by new gauge boson and scalar boson, considering both tree-level and loop-level corrections mediated by new gauge bosons and scalar bosons. This comprehensive analysis allows us to derive robust constraints on new physics scenarios. Moreover, the model introduces three right-handed Majorana neutrinos, providing a solution for the observed smallness of neutrino masses. This also enriches the model’s phenomenology with lepton flavor violation processes, making them a focal point of our research interest.

The rest of this work is organized as follows. In Sec. II, we give a review of the model in which the fermion, scalar, and gauge boson mass spectra are diagonalized, and the fermion couplings to scalars and gauge bosons are identified. In Sec. III, we revisit the electroweak precision fit complemented by the WW mass measurement. In Sec. IV, we investigate the flavor-changing phenomenology. In Sec. V, we make a numerical analysis and discussion. Finally, we conclude this work in Sec. VI.

II The model

In the proposed model, the new electroweak group is SU(2)L×U(1)X×U(1)NSU(2)_{L}\times U(1)_{X}\times U(1)_{N}, where U(1)X×U(1)NU(1)_{X}\times U(1)_{N} breaks down to U(1)YU(1)_{Y} at high energy, with N=YXN=Y-X. The X and NN charges satisfy the condition: 3NqL+NlL=(3XqL+XlL)03N_{q_{L}}+N_{l_{L}}=-(3X_{q_{L}}+X_{l_{L}})\neq 0, for each family. Since X and N can be unified with SU(2)LSU(2)_{L} in a higher isospin group, X and N can be fixed as the neutral charges of the larger group Van Dong et al. (2023). Specifically, XlL=xX_{l_{L}}=x for all lepton doublets, XqL=xX_{q_{L}}=x for some quark doublets, and XqL=xX_{q_{L}}=-x for the remaining quark doublets. The [SU(2)L]2U(1)X[SU(2)_{L}]^{2}U(1)_{X} anomaly vanishes if the family number, Nf=3(nm)N_{f}=3(n-m), where mm and n=Nfmn=N_{f}-m are the numbers of qLq_{L} doublets with xx and x-x, respectively. This implies that NfN_{f} must be a multiple of the color number, leading to Nf=3,n=2N_{f}=3,n=2, and m=1m=1. All other anomalies, such as [SU(3)c]2U(1)X[SU(3)_{c}]^{2}U(1)_{X}, [gravity]2U(1)X[gravity]^{2}U(1)_{X}, and others involving XX and NN, also cancel out due to the matching number of families and colors and the presence of the right-handed neutrinos.

For symmetry breaking and mass generations, we introduce three scalar multiples: HH (identical to the SM Higgs doublet), Φ\Phi (coupling the two types of quarks to recover the CKM matrix), and χ\chi (coupling to right-handed neutrinos for neutrino mass generation). The particle content of the model is listed in Table 1.

Field SU(3)CSU(3)_{C} SU(2)LSU(2)_{L} U(1)XU(1)_{X} U(1)NU(1)_{N}
laL=(νaLeaL)l_{aL}=\begin{pmatrix}\nu_{aL}\\ e_{aL}\end{pmatrix} 1 2 xx 1/2x-1/2-x
νaR\nu_{aR} 1 1 xx x-x
eaRe_{aR} 1 1 xx 1x-1-x
qαL=(uαLdαL)q_{\alpha L}=\begin{pmatrix}u_{\alpha L}\\ d_{\alpha L}\end{pmatrix} 3 2 x-x 1/6+x1/6+x
uαRu_{\alpha R} 3 1 x-x 2/3+x2/3+x
dαRd_{\alpha R} 3 1 x-x 1/3+x-1/3+x
q3L=(u3Ld3L)q_{3L}=\begin{pmatrix}u_{3L}\\ d_{3L}\end{pmatrix} 3 2 xx 1/6x1/6-x
u3Ru_{3R} 3 1 xx 2/3x2/3-x
d3Rd_{3R} 3 1 xx 1/3x-1/3-x
H=(H1+H20)H=\begin{pmatrix}H^{+}_{1}\\ H^{0}_{2}\end{pmatrix} 1 2 0 1/21/2
Φ=(Φ1+Φ20)\Phi=\begin{pmatrix}\Phi^{+}_{1}\\ \Phi^{0}_{2}\end{pmatrix} 1 2 2x-2x 1/2+2x1/2+2x
χ\chi 1 1 2x-2x 2x2x
Table 1: Field representation under the gauge symmetry.

II.1 Mass spectrum

II.1.1 Scalar mass spectrum

The scalar potential has a following form

V\displaystyle V =\displaystyle= μ12HH+μ22ΦΦ+μ32χχ+μ4[(ΦH)χ+H.c.]\displaystyle\mu^{2}_{1}H^{\dagger}H+\mu^{2}_{2}\Phi^{\dagger}\Phi+\mu^{2}_{3}\chi^{\dagger}\chi+\mu_{4}[(\Phi^{\dagger}H)\chi+H.c.] (2)
+λ1(HH)2+λ2(ΦΦ)2+λ3(χχ)2\displaystyle+\lambda_{1}(H^{\dagger}H)^{2}+\lambda_{2}(\Phi^{\dagger}\Phi)^{2}+\lambda_{3}(\chi^{\dagger}\chi)^{2}
+λ4(HH)(χχ)+λ5(ΦΦ)(χχ)\displaystyle+\lambda_{4}(H^{\dagger}H)(\chi^{\dagger}\chi)+\lambda_{5}(\Phi^{\dagger}\Phi)(\chi^{\dagger}\chi)
+λ6(HH)(ΦΦ)+λ7(HΦ)(ΦH),\displaystyle+\lambda_{6}(H^{\dagger}H)(\Phi^{\dagger}\Phi)+\lambda_{7}(H^{\dagger}\Phi)(\Phi^{\dagger}H),

where H~=iσ2H\tilde{H}=i\sigma_{2}H^{*}, Φ~=iσ2Φ\tilde{\Phi}=i\sigma_{2}\Phi^{*}, and fνf^{\nu}, hh’s, and λ\lambda’s are dimensionless, while μ1,2,3,4\mu_{1,2,3,4} have a mass dimension. After symmetry breaking, the scalar fields have the vacuum expectation values (VEVs) are given by

χ=Λ/2,H=(0,v1/2),Φ=(0,v2/2)\displaystyle\langle\chi\rangle=\Lambda/\sqrt{2},\hskip 14.22636pt\langle H\rangle=(0,v_{1}/\sqrt{2}),\hskip 14.22636pt\langle\Phi\rangle=(0,v_{2}/\sqrt{2}) (3)

This satisfies v12+v22=(246GeV)2v^{2}_{1}+v^{2}_{2}=(246\ \mathrm{GeV})^{2} for consistency with the SM. To understand its stability and vacuum structure, we need to determine the necessary conditions for this potential to be:

μ1,2,32<0,λ1,2,3>0,|μ1,2||μ3|\displaystyle\mu^{2}_{1,2,3}<0,\hskip 14.22636pt\lambda_{1,2,3}>0,\hskip 14.22636pt|\mu_{1,2}|\ll|\mu_{3}| (4)
λ4>2λ1λ3,λ5>2λ2λ3,λ6+λ7Θ(λ7)>2λ1λ2.\displaystyle\lambda_{4}>-2\sqrt{\lambda_{1}\lambda_{3}},\hskip 14.22636pt\lambda_{5}>-2\sqrt{\lambda_{2}\lambda_{3}},\hskip 14.22636pt\lambda_{6}+\lambda_{7}\Theta(-\lambda_{7})>-2\sqrt{\lambda_{1}\lambda_{2}}. (5)

We expand the scalar fields around their VEVs as follows:

H\displaystyle H =\displaystyle= (H1+12(v1+S1+iA1)),Φ=(Φ1+12(v2+S2+iA2)),\displaystyle\begin{pmatrix}H^{+}_{1}\\ \frac{1}{\sqrt{2}}(v_{1}+S_{1}+iA_{1})\end{pmatrix},\hskip 14.22636pt\Phi=\begin{pmatrix}\Phi^{+}_{1}\\ \frac{1}{\sqrt{2}}(v_{2}+S_{2}+iA_{2})\end{pmatrix}, (6)
χ\displaystyle\chi =\displaystyle= 12(Λ+S3+iA3),\displaystyle\frac{1}{\sqrt{2}}(\Lambda+S_{3}+iA_{3}), (7)

Substituting these fields into the scalar potential, we obtain the following minimum potential conditions:

(2λ1v12+λ4Λ2+λ6v22+λ7v22+2μ12)v1+2Λμ4v2\displaystyle(2\lambda_{1}v_{1}^{2}+\lambda_{4}\Lambda^{2}+\lambda_{6}v_{2}^{2}+\lambda_{7}v_{2}^{2}+2\mu_{1}^{2})v_{1}+\sqrt{2}\Lambda\mu_{4}v_{2} =\displaystyle= 0,\displaystyle 0, (8)
(2λ2v22+λ5Λ2+λ6v12+λ7v12+2μ22)v2+2Λμ4v1\displaystyle(2\lambda_{2}v_{2}^{2}+\lambda_{5}\Lambda^{2}+\lambda_{6}v_{1}^{2}+\lambda_{7}v_{1}^{2}+2\mu_{2}^{2})v_{2}+\sqrt{2}\Lambda\mu_{4}v_{1} =\displaystyle= 0,\displaystyle 0, (9)
(2λ3Λ2+λ4v12+λ5v22+2μ32)Λ+2μ4v1v2\displaystyle(2\lambda_{3}\Lambda^{2}+\lambda_{4}v_{1}^{2}+\lambda_{5}v_{2}^{2}+2\mu_{3}^{2})\Lambda+\sqrt{2}\mu_{4}v_{1}v_{2} =\displaystyle= 0.\displaystyle 0. (10)

Utilizing the conditions derived in Eqs.(10), we obtain a predicted scalar mass spectrum for considered model. This spectrum comprises three massive neutral CP-even Higgs bosons, denoted by ,1,2\mathcal{H},\mathcal{H}_{1},\mathcal{H}_{2} . In the limit, μ4Λv1,v2\mu_{4}\simeq\Lambda\gg v_{1},v_{2}, they have the following masses:

m2\displaystyle m^{2}_{\mathcal{H}} \displaystyle\simeq 2[λ1v14+λ2v24+(λ6+λ7)v12v22]v12+v22(λ4v12+λ5v22)22λ3(v12+v22)\displaystyle\frac{2[\lambda_{1}v_{1}^{4}+\lambda_{2}v_{2}^{4}+(\lambda_{6}+\lambda_{7})v_{1}^{2}v_{2}^{2}]}{v_{1}^{2}+v_{2}^{2}}-\frac{(\lambda_{4}v_{1}^{2}+\lambda_{5}v_{2}^{2})^{2}}{2\lambda_{3}(v_{1}^{2}+v_{2}^{2})} (12)
2v1v2(λ4v12+λ5v22)λ3(v12+v22)μ4Λv12v22λ3(v12+v22)μ42Λ2,\displaystyle-\frac{\sqrt{2}v_{1}v_{2}(\lambda_{4}v_{1}^{2}+\lambda_{5}v_{2}^{2})}{\lambda_{3}(v_{1}^{2}+v_{2}^{2})}\frac{\mu_{4}}{\Lambda}-\frac{v_{1}^{2}v_{2}^{2}}{\lambda_{3}(v_{1}^{2}+v_{2}^{2})}\frac{\mu_{4}^{2}}{\Lambda^{2}},
m12\displaystyle m^{2}_{\mathcal{H}_{1}} \displaystyle\simeq μ4Λ(v12+v22)2v1v2,m222λ3Λ2.\displaystyle-\frac{\mu_{4}\Lambda(v_{1}^{2}+v_{2}^{2})}{\sqrt{2}v_{1}v_{2}},\hskip 14.22636ptm^{2}_{\mathcal{H}_{2}}\simeq 2\lambda_{3}\Lambda^{2}. (13)

There are also CP-odd and charged Higgs bosons denoted by 𝒜\mathcal{A} and ±\mathcal{H}^{\pm}. Their masses are also given by

m𝒜2\displaystyle m^{2}_{\mathcal{A}} =\displaystyle= μ4[Λ2(v12+v22)+v12v22]2Λv1v2,\displaystyle-\frac{\mu_{4}[\Lambda^{2}(v_{1}^{2}+v_{2}^{2})+v_{1}^{2}v_{2}^{2}]}{\sqrt{2}\Lambda v_{1}v_{2}}, (14)
m±2\displaystyle m^{2}_{\mathcal{H^{\pm}}} =\displaystyle= (2Λμ4+λ7v1v2)(v12+v22)2v1v2.\displaystyle-\frac{(\sqrt{2}\Lambda\mu_{4}+\lambda_{7}v_{1}v_{2})(v_{1}^{2}+v_{2}^{2})}{2v_{1}v_{2}}. (15)

The model predicts the existence of massless particles called Goldstone bosons, denoted by GZ,ZW±,GZG_{Z},Z_{W^{\pm}},G_{Z^{\prime}}. These particles are absorbed by Z,W±,ZZ,W^{\pm},Z^{\prime} gauge boson.

In term of physical states, the original Higgs doublets and singlet Higgs can be written as linear combinations of physical fields. These combinations can be expressed as:

H\displaystyle H \displaystyle\simeq (cαGW++sα+12(v1+cα+sα1+icαGZ+isα𝒜)),\displaystyle\begin{pmatrix}c_{\alpha}G^{+}_{W}+s_{\alpha}\mathcal{H}^{+}\\ \frac{1}{\sqrt{2}}(v_{1}+c_{\alpha}\mathcal{H}+s_{\alpha}\mathcal{H}_{1}+ic_{\alpha}G_{Z}+is_{\alpha}\mathcal{A})\end{pmatrix}, (16)
Φ\displaystyle\Phi \displaystyle\simeq (sαGW+cα+12(v2+sαcα1+isαGZicα𝒜)),\displaystyle\begin{pmatrix}s_{\alpha}G^{+}_{W}-c_{\alpha}\mathcal{H}^{+}\\ \frac{1}{\sqrt{2}}(v_{2}+s_{\alpha}\mathcal{H}-c_{\alpha}\mathcal{H}_{1}+is_{\alpha}G_{Z}-ic_{\alpha}\mathcal{A})\end{pmatrix}, (17)
χ\displaystyle\chi \displaystyle\simeq 12(Λ+2+iGZ).\displaystyle\frac{1}{\sqrt{2}}(\Lambda+\mathcal{H}_{2}+iG_{Z^{\prime}}). (18)

Here, we define tanαtα=v2v1\tan\alpha\equiv t_{\alpha}=\frac{v_{2}}{v_{1}}.

II.1.2 Fermion masses

The fermion masses are analyzed in more detail in Van Dong et al. (2023). For the reader’s convenience, we summarize the key findings. The Yukawa Lagrangian of the model can be expressed as Van Dong et al. (2023)

Yuk\displaystyle\mathcal{L}_{\mathrm{Yuk}} =\displaystyle= habel¯aLHebR+habνl¯aLH~νbR+12fabνν¯aRcνbRχ\displaystyle h^{e}_{ab}\bar{l}_{aL}He_{bR}+h^{\nu}_{ab}\bar{l}_{aL}\tilde{H}\nu_{bR}+\frac{1}{2}f^{\nu}_{ab}\bar{\nu}^{c}_{aR}\nu_{bR}\chi (19)
+hαβdq¯αLHdβR+hαβuq¯αLH~uβR+h33dq¯3LHd3R+h33uq¯3LH~u3R\displaystyle+h^{d}_{\alpha\beta}\bar{q}_{\alpha L}Hd_{\beta R}+h^{u}_{\alpha\beta}\bar{q}_{\alpha L}\tilde{H}u_{\beta R}+h^{d}_{33}\bar{q}_{3L}Hd_{3R}+h^{u}_{33}\bar{q}_{3L}\tilde{H}u_{3R}
+hα3dq¯αLΦd3R+h3βuq¯3LΦ~uβR+H.c.\displaystyle+h^{\prime d}_{\alpha 3}\bar{q}_{\alpha L}\Phi d_{3R}+h^{\prime u}_{3\beta}\bar{q}_{3L}\tilde{\Phi}u_{\beta R}+H.c.

After the gauge symmetry breaking, fermions obtain their masses, as discussed in Van Dong et al. (2023). The d-quarks, (d1,d2,d3)(d_{1},d_{2},d_{3}), mix together according to the mass matrix:

Md=v12(h11dh12dtαh13dh21dh22dtαh23d00h33d,),\displaystyle M_{d}=-\frac{v_{1}}{\sqrt{2}}\begin{pmatrix}h_{11}^{d}&h_{12}^{d}&t_{\alpha}h_{13}^{\prime d}\\ h_{21}^{d}&h_{22}^{d}&t_{\alpha}h_{23}^{\prime d}\\ 0&0&h^{d}_{33},\end{pmatrix}, (20)

and in the the basis (u1,u2,u3)(u_{1},u_{2},u_{3}), the mass matrix has the form

Mu=v12(h11uh12u0h21uh22u0tαh31dtαh32dh33u,).\displaystyle M_{u}=-\frac{v_{1}}{\sqrt{2}}\begin{pmatrix}h_{11}^{u}&h_{12}^{u}&0\\ h_{21}^{u}&h_{22}^{u}&0\\ t_{\alpha}h_{31}^{\prime d}&t_{\alpha}h_{32}^{\prime d}&h^{u}_{33},\end{pmatrix}. (21)

The quark matrices, Mu,MdM_{u},M_{d}, can be diagonalized by a pair of bi-unitary matrices:

VuLMuVuR=Diag(mumc,mt);VdLMdVdR=Diag(mdms,mb).\displaystyle V_{uL}^{\dagger}M_{u}V_{uR}=\text{Diag}\begin{pmatrix}m_{u}&m_{c},m_{t}\end{pmatrix};\hskip 14.22636ptV_{dL}^{\dagger}M_{d}V_{dR}=\text{Diag}\begin{pmatrix}m_{d}&m_{s},m_{b}\end{pmatrix}. (22)

Charged leptons acquire mass through their coupling,heh^{e}, given by:

[me]ab=habev12.[m_{e}]_{ab}=-h^{e}_{ab}\frac{v_{1}}{\sqrt{2}}. (23)

The smallness of active neutrinos is explained by the canonical seesaw mechanism, involving right-handed neutrinos with large Majorana masses, [mM]ab=fabνΛ2[m_{M}]_{ab}=-f^{\nu}_{ab}\frac{\Lambda}{\sqrt{2}}, and Dirac mass via hνh^{\nu} coupling, [mD]ab=habνv12[m_{D}]_{ab}=-h^{\nu}_{ab}\frac{v_{1}}{\sqrt{2}}. Active neutrinos thus acqurire a small effective mass given by:

[mνl]ab=[mDmM1mDT]abv12/Λ,[m_{\nu_{l}}]_{ab}=-[m_{D}m^{-1}_{M}m^{T}_{D}]_{ab}\sim v^{2}_{1}/\Lambda, (24)

while heavy neutrinos have a mass:

mνhM.m_{\nu_{h}}\simeq M. (25)

The physical neutrino states νl,νh\nu_{l},\nu_{h} are related to the flavor states via a rotation matrix:

(νLνRc)=Vν(νlνh)(VLlVLhVRlVRh)(νlνh).\displaystyle\begin{pmatrix}\nu_{L}\\ \nu_{R}^{c}\end{pmatrix}=V_{\nu}\begin{pmatrix}\nu_{l}\\ \nu_{h}\end{pmatrix}\equiv\begin{pmatrix}V_{Ll}&V_{Lh}\\ V_{Rl}&V_{Rh}\end{pmatrix}\begin{pmatrix}\nu_{l}\\ \nu_{h}\end{pmatrix}. (26)

II.1.3 Gauge boson masses

Let us list the gauge boson mass spectrum, as considered in Van Dong et al. (2023). Gauge boson masses arise from the scalar kinetic terms s(DμS)(DμS)\sum_{s}\left(D^{\mu}S\right)^{\dagger}\left(D_{\mu}S\right) after spontaneous symmetry breaking. Similar to the SM, the model predicts the physical charged gauge boson, Wμ±=A1μiA2μ2,W^{\pm}_{\mu}=\frac{A_{1\mu}\mp iA_{2\mu}}{\sqrt{2}}, with mass mW2=g24(v12+v22)m_{W}^{2}=\frac{g^{2}}{4}\left(v_{1}^{2}+v_{2}^{2}\right). Three neutral gauge bosons, A3μ,Bμ,CμA_{3\mu},B_{\mu},C_{\mu}, mix. After a suitable rotation,, we obtain the photon AμA_{\mu} and two physical sates, denoted by Z1,Z2Z_{1},Z_{2}, given by:

Z1=cosφZsinφZ,Z2=sinφZ+cosφZ,\displaystyle Z_{1}=\cos\varphi Z-\sin\varphi Z^{\prime},\hskip 28.45274ptZ_{2}=\sin\varphi Z+\cos\varphi Z^{\prime}, (27)

where

tan2φsin2θ(sin2θv12+(sin2θ+4x)v22)16sWx2Λ2\displaystyle\tan 2\varphi\simeq\frac{\sin 2\theta\left(\sin^{2}\theta v_{1}^{2}+(\sin^{2}\theta+4x)v_{2}^{2}\right)}{16s_{W}x^{2}\Lambda^{2}} (28)

with

Aμ\displaystyle A_{\mu} =\displaystyle= sinθWA3μ+cosθW(sinθWBμ+cosθCμ),\displaystyle\sin\theta_{W}A_{3\mu}+\cos\theta_{W}\left(\sin\theta_{W}B_{\mu}+\cos\theta C_{\mu}\right),
Zμ\displaystyle Z_{\mu} =\displaystyle= cosθWA3μsinθW(sinθBμ+cosθCμ),\displaystyle\cos\theta_{W}A_{3\mu}-\sin\theta_{W}\left(\sin\theta B_{\mu}+\cos\theta C_{\mu}\right),
Zμ\displaystyle Z^{\prime}_{\mu} =\displaystyle= cosθBμsinθCμ.\displaystyle\cos\theta B_{\mu}-\sin\theta C_{\mu}.

Here, tanθW=gYg=gXgNggX2+gN2\tan\theta_{W}=\frac{g_{Y}}{g}=\frac{g_{X}g_{N}}{g\sqrt{g_{X}^{2}+g_{N}^{2}}}, tanθ=gNgX.\tan\theta=\frac{g_{N}}{g_{X}}.

II.2 Scalar and vector currents

II.2.1 (Pseudo) Scalar currents

The Yukawa interactions can be split into the fermion masses and interaction terms. These interaction terms have a form

ints=intsNC+intsCC,\displaystyle\mathcal{L}_{\text{int}}^{s}=\mathcal{L}_{\text{int}}^{s-\text{NC}}+\mathcal{L}_{\text{int}}^{s-\text{CC}}, (29)

where intsNC\mathcal{L}_{\text{int}}^{s-\text{NC}} is neutral scalar currents for both lepton and quark. In the limit μ4Λv1,v2\mu_{4}\simeq\Lambda\gg v_{1},v_{2}, it can be written as follows:

intsNC=lsNC+qsNC,\displaystyle\mathcal{L}_{\text{int}}^{s-\text{NC}}=\mathcal{L}_{l-s}^{\text{NC}}+\mathcal{L}_{q-s}^{\text{NC}}, (30)

where

lsNC=g2mW{e¯aLmlaeaR{+tα(1+i𝒜)}ν¯aLmνaDνaR{+tα(1+i𝒜)}}+H.c.,\displaystyle\mathcal{L}_{l-s}^{\text{NC}}=-\frac{g}{2m_{W}}\left\{\bar{e}_{aL}m_{l_{a}}e_{aR}\left\{\mathcal{H}+t_{\alpha}\left(\mathcal{H}_{1}+i\mathcal{A}\right)\right\}-\bar{\nu}_{aL}m_{\nu_{a}}^{D}\nu_{aR}\left\{\mathcal{H}+t_{\alpha}\left(\mathcal{H}_{1}+i\mathcal{A}\right)\right\}\right\}+H.c.,

and

qsNC=\displaystyle\mathcal{L}_{q-s}^{\text{NC}}= g2mW{iq¯iLmqiqiR+tαiq¯iLmqiqiR1+i,jq¯iL(Γ1q)ijqjR1}\displaystyle-\frac{g}{2m_{W}}\left\{\sum_{i}\bar{q^{\prime}}_{iL}m_{q^{\prime}_{i}}q^{\prime}_{iR}\mathcal{H}+t_{\alpha}\sum_{i}\bar{q^{\prime}}_{iL}m_{q^{\prime}_{i}}q^{\prime}_{iR}\mathcal{H}_{1}+\sum_{i,j}\bar{q^{\prime}}_{iL}\left(\Gamma^{q}_{\mathcal{H}_{1}}\right)_{ij}q^{\prime}_{jR}\mathcal{H}_{1}\right\} (32)
ig2mW{±tαiq¯iLmqiqiR𝒜±i,jq¯iL(Γ𝒜q)ijqjR𝒜}+H.c.\displaystyle-i\frac{g}{2m_{W}}\left\{\pm t_{\alpha}\sum_{i}\bar{q^{\prime}}_{iL}m_{q^{\prime}_{i}}q^{\prime}_{iR}\mathcal{A}\pm\sum_{i,j}\bar{q^{\prime}}_{iL}\left(\Gamma^{q}_{\mathcal{A}}\right)_{ij}q^{\prime}_{jR}\mathcal{A}\right\}+H.c.

with

(Γ1d)ij=2s2αβ=12k=13(VLd)iβ(VLd)βkmdk(VRd)k3(VRd)3j,\displaystyle\left(\Gamma_{\mathcal{H}_{1}}^{d}\right)_{ij}=\frac{-2}{s_{2\alpha}}\sum_{\beta=1}^{2}\sum_{k=1}^{3}\left(V_{L}^{d}\right)^{\dagger}_{i\beta}\left(V_{L}^{d}\right)_{\beta k}m_{d_{k}}\left(V_{R}^{d}\right)^{\dagger}_{k3}\left(V_{R}^{d}\right)_{3j},
(Γ1u)ij=2s2αβ=12k=13(VLu)i3(VLu)3kmuk(VRu)kβ(VRu)βj.\displaystyle\left(\Gamma_{\mathcal{H}_{1}}^{u}\right)_{ij}=-\frac{2}{s_{2\alpha}}\sum_{\beta=1}^{2}\sum_{k=1}^{3}\left(V_{L}^{u}\right)^{\dagger}_{i3}\left(V_{L}^{u}\right)_{3k}m_{u_{k}}\left(V_{R}^{u}\right)^{\dagger}_{k\beta}\left(V_{R}^{u}\right)_{\beta j}.

taking - for u-quark and ++ for d-quark, and Γ𝒜q=Γ1q=Γq\Gamma_{\mathcal{A}}^{q}=\Gamma_{\mathcal{H}_{1}}^{q}=\Gamma^{q}. In equation (32), the terms containing interaction constants Γ𝒜q,Γ1q\Gamma_{\mathcal{A}}^{q},\Gamma_{\mathcal{H}_{1}}^{q}, and Γq\Gamma^{q} describe FCNC interactions. In contrast, the remaining terms in the equation represent interactions that conserve flavor, similar to the coupling observed the SM. Note that the charged leptons couples only the SM Higgs doublet, it does not encounter any tree-FCNC for them. The scalar charged currents can be written as:

intsCC=lsCC+qsCC\displaystyle\mathcal{L}_{\text{int}}^{s-\text{CC}}=\mathcal{L}_{l}^{s-\text{CC}}+\mathcal{L}_{q}^{s-\text{CC}} (33)

with

qsCC\displaystyle\mathcal{L}_{q}^{s-\text{CC}} =g2mW{d¯iL𝒳ijujR+d¯iR𝒴ijujL}+H.c.,\displaystyle=-\frac{g}{\sqrt{2}m_{W}}\left\{\bar{d}^{\prime}_{iL}\mathcal{X}_{ij}u^{\prime}_{jR}+\bar{d}^{\prime}_{iR}\ \mathcal{Y}_{ij}u^{\prime}_{jL}\right\}\mathcal{H}^{-}+H.c., (34)

where

𝒳ij\displaystyle\mathcal{X}_{ij} =\displaystyle= tα(VdL)ijmuj+k=13β=12[2s2α(VdL)i3(VuL)3kmuk(VuR)kβ(VuR)βj],\displaystyle-t_{\alpha}(V_{d_{L}}^{\dagger})_{ij}m_{u_{j}}+\sum_{k=1}^{3}\sum_{\beta=1}^{2}\left[\frac{2}{s_{2\alpha}}(V_{d_{L}}^{\dagger})_{i3}(V_{u_{L}})_{3k}m_{u_{k}}(V_{u_{R}}^{\dagger})_{k\beta}(V_{u_{R}})_{\beta j}\right],
𝒴ij\displaystyle\mathcal{Y}_{ij} =\displaystyle= tαmdi(VdL)ijk=13β=12[2s2α(VdR)i3(VuR)3kmdk(VdL)kβ(VuL)βj].\displaystyle t_{\alpha}m_{d_{i}}(V_{d_{L}}^{\dagger})_{ij}-\sum_{k=1}^{3}\sum_{\beta=1}^{2}\left[\frac{2}{s_{2\alpha}}(V_{d_{R}}^{\dagger})_{i3}(V_{u_{R}})_{3k}m_{d_{k}}(V_{d_{L}}^{\dagger})_{k\beta}(V_{u_{L}})_{\beta j}\right]. (35)

The charged scalar currents associated to lepton have a form:

lsCC=g2mWtα{ν¯l(mνlVRllPL+VLlmlPR)l\displaystyle\mathcal{L}_{l}^{s-\text{CC}}=-\frac{g}{\sqrt{2}m_{W}}t_{\alpha}\left\{\bar{\nu}_{l}\left(-m_{\nu_{l}}V^{\dagger}_{Rll}P_{L}+V_{Ll}^{\dagger}m_{l}P_{R}\right)l\right. (36)
+ν¯h(mνhVRhPL+VLhmlPR)l}++H.c.\displaystyle\quad\left.+\bar{\nu}_{h}\left(-m_{\nu_{h}}V^{\dagger}_{Rh}P_{L}+V^{\dagger}_{Lh}m_{l}P_{R}\right)l\right\}\mathcal{H}^{+}+H.c. (37)

Charged scalar currents introduce new contributions to flavor-changing processes in both the lepton and quark sectors at the loop level. We will delve deeper into these contributions in the next section.

II.2.2 (Axial) Vector Currents

The W±W^{\pm} interact with fermions similarly as the SM

W=g2{(ν¯LVLl+ν¯hVLh)γμPLl}Wμ++H.c.\displaystyle\mathcal{L}_{W}=-\frac{g}{\sqrt{2}}\left\{\left(\bar{\nu}_{L}V^{\dagger}_{Ll}+\bar{\nu}_{h}V^{\dagger}_{Lh}\right)\gamma^{\mu}P_{L}l\right\}W_{\mu}^{+}+H.c. (38)

The interactions of neutral gauge bosons Z1,2Z_{1,2} with fermions have been given in Van Dong et al. (2023). Quark families transform differently under XX and NN, but transform identically under T3T_{3} and hypercharge YY. Ignoring the ZZZ-Z^{\prime} mixing, the model provides FCNCs coupled to the ZZ^{\prime} gauge boson. These FCNCs can be expressed mathematically as follows:

qZ=Lijgq¯iLγμqjLZμ+(LR),\mathcal{L}_{\mathrm{q-Z^{\prime}}}=L_{ij}g\bar{q^{\prime}}_{iL}\gamma^{\mu}q^{\prime}_{jL}Z^{\prime}_{\mu}+(L\rightarrow R), (39)

where we have defined,

Lij=2xtWsθcθ(VqL)3i(VqL)3j.L_{ij}=-2x\frac{t_{W}}{s_{\theta}c_{\theta}}(V^{*}_{qL})_{3i}(V_{qL})_{3j}. (40)

III Electroweak fit with the CMS WW boson mass measurement

The measurement of the WW boson mass has significant implications for electroweak precision tests. In the previous studies Van Dong et al. (2023), the authors used CDF measurement Aaltonen et al. (2022) for the WW boson mass in combination with electroweak precision tests on ρ\rho parameter. However, given the recent discrepancies between the CDF data and LHC measurements reported by CMS and ATLAS, the validity of the model under consideration is subject to scrutiny. To address this, we will re-examine the new physics contributions to gauge boson masses, focusing on the LHC measurement. The mixing between ZZ and ZZ^{\prime} can potentially reduce the observed Z1Z_{1} mass compared to the SM ZZ boson mass. It can also give rise to a positive contribution to ρ\rho- parameter Van Dong et al. (2023):

ρ1=mW2cW2mZ121tan22φαT.\displaystyle\rho-1=\frac{m_{W}^{2}}{c_{W}^{2}m_{Z_{1}}^{2}}-1\simeq\tan^{2}2\varphi\simeq\alpha T. (41)

It leads to a dominant enhancement of the WW mass:

ΔmW2cos4θWmZ2cos2θWαT\displaystyle\Delta m^{2}_{W}\simeq\frac{\cos^{4}\theta_{W}m_{Z}^{2}}{\cos 2\theta_{W}}\alpha T (42)

The Fig. 1 shows the regions allowed by both the deviation between CMS measurement with SM prediction of the WW boson mass ΔmW2=mW2|CMSmW2|SM=1.1571±0.6269\Delta m_{W}^{2}=m_{W}^{2}|_{\text{CMS}}-m_{W}^{2}|_{\text{SM}}=1.1571\pm 0.6269 GeV2\text{GeV}^{2} and electroweak precision test on ρ\rho parameter ρ=1.00031±0.00019\rho=1.00031\pm 0.00019 Workman and Others (2022). The figures are plotted in the v1Λv_{1}-\Lambda plane for different values x=±12,±16x=\pm\frac{1}{2},\pm\frac{1}{6}, whereas other parameters are chosen as given in Van Dong et al. (2023), i.e tθ=1t_{\theta}=1, and sW20.231s_{W}^{2}\simeq 0.231. The parameter space, particularly dependent on the xx charge, has significantly shifted compared to previous results Van Dong et al. (2023). All four models, x=±12,±16x=\pm\frac{1}{2},\pm\frac{1}{6}, allow for a region of parameter space consistent with the CMS measurements of the WW boson mass and global fits of the ρ\rho parameter. For each value of v1v_{1}, we can determine the permissible range of the new physical scale Λ\Lambda. For example, we find Λ=4.328.1\Lambda=4.3-28.1 TeV for x=1/2x=1/2 and Λ=13.239.3\Lambda=13.2-39.3 TeV and x=1/6x=1/6. However, the model with x=12x=-\frac{1}{2} and x=16x=-\frac{1}{6} impose specific constraints on v1v_{1}, namely Λ=116.7\Lambda=1-16.7 TeV, v1204v_{1}\leq 204 GeV or Λ=15.4\Lambda=1-5.4 TeV, v1220v_{1}\geq 220 GeV for x=1/2x=-1/2; Λ=15.7\Lambda=1-5.7 TeV, v1108v_{1}\leq 108 GeV or Λ=1.516.7\Lambda=1.5-16.7 TeV, v1141v_{1}\geq 141 GeV for x=1/6x=-1/6.

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 1: The blue and yellow areas represent the region allowed by the deviation between CMS measurement and SM result of the W-mass ΔmW2\Delta m_{W}^{2} and electroweak precision test on ρ\rho parameter Workman and Others (2022), respectively, in the v1Λv_{1}-\Lambda plane. The top and bottom panels correspond to the model with x=±12x=\pm\frac{1}{2} and x=±16x=\pm\frac{1}{6}.

IV Flavor phenomenology

IV.1 Quark flavor phenomenology

IV.1.1 Neutral meson mixing

Previous studies Van Dong et al. (2023) have explored the specific contribution of vector FCNCs to the amplitude of neutral meson mixing while neglecting the contribution of scalar currents. In this work, we aim to analyze the combined impact of both vector and scalar interactions on the mass difference of the mesons. From the scalar FCNCs given in ( 32) and vector FCNCs in (40), we can construct the effective interaction involving four quarks by integrating out the heavy fields 1,2,𝒜\mathcal{H}_{1},\mathcal{H}_{2},\mathcal{A}, and ZZ^{\prime}. This process yields the effective interactions,

FCNCeff\displaystyle\mathcal{H}^{\mathrm{eff}}_{\mathrm{FCNC}} =g24mW2{(Γijq)2(1m121m𝒜2)(q¯iLqjR)2+(Γjiq)2(1m121m𝒜2)(q¯iRqjL)2}\displaystyle=-\frac{g^{2}}{4m_{W}^{2}}\left\{\left(\Gamma_{ij}^{q}\right)^{2}\left(\frac{1}{m_{\mathcal{H}_{1}}^{2}}-\frac{1}{m_{\mathcal{A}}^{2}}\right)\left(\bar{q}_{iL}q_{jR}\right)^{2}+\left(\Gamma^{q*}_{ji}\right)^{2}\left(\frac{1}{m_{\mathcal{H}_{1}}^{2}}-\frac{1}{m_{\mathcal{A}}^{2}}\right)\left(\bar{q}_{iR}q_{jL}\right)^{2}\right\}
g24mW2{ΓjiqΓijq(1m12+1m𝒜2){(q¯iLqjR)(q¯iRqjL)+(q¯iRqjL)(q¯iLqjR)}}\displaystyle-\frac{g^{2}}{4m_{W}^{2}}\left\{\Gamma_{ji}^{q*}\Gamma_{ij}^{q}\left(\frac{1}{m_{\mathcal{H}_{1}}^{2}}+\frac{1}{m_{\mathcal{A}}^{2}}\right)\left\{(\bar{q}_{iL}q_{jR})(\bar{q}_{iR}q_{jL})+(\bar{q}_{iR}q_{jL})(\bar{q}_{iL}q_{jR})\right\}\right\}
+g2mZ22{Lij2(q¯iLγμqjL)2+2LijRij(q¯iLγμqjL)(q¯iRγμqjR)+Rij2(q¯iRγμqjR)2}.\displaystyle+\frac{g^{2}}{m^{2}_{Z_{2}}}\left\{L^{2}_{ij}(\bar{q}_{iL}\gamma^{\mu}q_{jL})^{2}+2L_{ij}R_{ij}(\bar{q}_{iL}\gamma^{\mu}q_{jL})(\bar{q}_{iR}\gamma^{\mu}q_{jR})+R^{2}_{ij}(\bar{q}_{iR}\gamma^{\mu}q_{jR})^{2}\right\}.

The effective interactions presented in Eq. (IV.1.1) contribute to the amplitude of neutral meson mixing. The calculations yield the following results:

ΔmKNP\displaystyle\Delta m_{K}^{\text{NP}} 23Re{L122[32+(mKmd+ms)2]L12R12+R122}g2mZ22mKfK2\displaystyle\simeq\frac{2}{3}\mathrm{Re}\left\{L^{2}_{12}-\left[\frac{3}{2}+\left(\frac{m_{K}}{m_{d}+m_{s}}\right)^{2}\right]L_{12}R_{12}+R^{2}_{12}\right\}\frac{g^{2}}{m^{2}_{Z_{2}}}m_{K}f^{2}_{K} (43)
+548Re{[(Γ12q)2+(Γ21q)2](mKms+md)2}(g2m12g2m𝒜2)mKfK2\displaystyle+\frac{5}{48}\mathrm{Re}\left\{\left[\left(\Gamma_{12}^{q}\right)^{2}+\left(\Gamma_{21}^{q*}\right)^{2}\right]\left(\frac{m_{K}}{m_{s}+m_{d}}\right)^{2}\right\}\left(\frac{g^{2}}{m^{2}_{\mathcal{H}_{1}}}-\frac{g^{2}}{m^{2}_{\mathcal{A}}}\right)m_{K}f_{K}^{2}
14Re{Γ21qΓ12q(16+mK2(ms+md)2)}(g2m12+g2m𝒜2)mKfK2,\displaystyle-\frac{1}{4}\mathrm{Re}\left\{\Gamma_{21}^{q*}\Gamma_{12}^{q}\left(\frac{1}{6}+\frac{m_{K}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\right)\right\}\left(\frac{g^{2}}{m^{2}_{\mathcal{H}_{1}}}+\frac{g^{2}}{m_{\mathcal{A}}^{2}}\right)m_{K}f_{K}^{2},
ΔmBdNP\displaystyle\Delta m_{B_{d}}^{\text{NP}} 23Re{L132[32+(mBdmd+mb)2]L13R13+R132}g2mZ22mBdfBd2\displaystyle\simeq\frac{2}{3}\mathrm{Re}\left\{L^{2}_{13}-\left[\frac{3}{2}+\left(\frac{m_{B_{d}}}{m_{d}+m_{b}}\right)^{2}\right]L_{13}R_{13}+R^{2}_{13}\right\}\frac{g^{2}}{m^{2}_{Z_{2}}}m_{B_{d}}f^{2}_{B_{d}} (44)
+548Re{[(Γ13q)2+(Γ31q)2](mBdmb+md)2}(g2m12g2m𝒜2)mBdfBd2\displaystyle+\frac{5}{48}\mathrm{Re}\left\{\left[\left(\Gamma_{13}^{q}\right)^{2}+\left(\Gamma_{31}^{q*}\right)^{2}\right]\left(\frac{m_{B_{d}}}{m_{b}+m_{d}}\right)^{2}\right\}\left(\frac{g^{2}}{m^{2}_{\mathcal{H}_{1}}}-\frac{g^{2}}{m^{2}_{\mathcal{A}}}\right)m_{B_{d}}f_{B_{d}}^{2}
14Re{Γ31qΓ13q(16+mBd2(mb+md)2)}(g2m12+g2m𝒜2)mBdfBd2,\displaystyle-\frac{1}{4}\mathrm{Re}\left\{\Gamma_{31}^{q*}\Gamma_{13}^{q}\left(\frac{1}{6}+\frac{m_{B_{d}}^{2}}{\left(m_{b}+m_{d}\right)^{2}}\right)\right\}\left(\frac{g^{2}}{m^{2}_{\mathcal{H}_{1}}}+\frac{g^{2}}{m_{\mathcal{A}}^{2}}\right)m_{B_{d}}f_{B_{d}}^{2},
ΔmBsNP\displaystyle\Delta m_{B_{s}}^{\text{NP}} \displaystyle\simeq 23Re{L232[32+(mBsms+mb)2]L23R23+R232}g2mZ22mBsfBs2\displaystyle\frac{2}{3}\mathrm{Re}\left\{L^{2}_{23}-\left[\frac{3}{2}+\left(\frac{m_{B_{s}}}{m_{s}+m_{b}}\right)^{2}\right]L_{23}R_{23}+R^{2}_{23}\right\}\frac{g^{2}}{m^{2}_{Z_{2}}}m_{B_{s}}f^{2}_{B_{s}} (45)
+548Re{[(Γ23q)2+(Γ32q)2](mBsmb+ms)2}(g2m12g2m𝒜2)mBsfBs2\displaystyle+\frac{5}{48}\mathrm{Re}\left\{\left[\left(\Gamma_{23}^{q}\right)^{2}+\left(\Gamma_{32}^{q*}\right)^{2}\right]\left(\frac{m_{B_{s}}}{m_{b}+m_{s}}\right)^{2}\right\}\left(\frac{g^{2}}{m^{2}_{\mathcal{H}_{1}}}-\frac{g^{2}}{m^{2}_{\mathcal{A}}}\right)m_{B_{s}}f_{B_{s}}^{2}
14Re{Γ32qΓ23q(16+mBd2(mb+ms)2)}(g2m12+g2m𝒜2)mBsfBs2.\displaystyle-\frac{1}{4}\mathrm{Re}\left\{\Gamma_{32}^{q*}\Gamma_{23}^{q}\left(\frac{1}{6}+\frac{m_{B_{d}}^{2}}{\left(m_{b}+m_{s}\right)^{2}}\right)\right\}\left(\frac{g^{2}}{m^{2}_{\mathcal{H}_{1}}}+\frac{g^{2}}{m_{\mathcal{A}}^{2}}\right)m_{B_{s}}f_{B_{s}}^{2}.

The hadronic matrix elements have been determined by using PCAC Gabbiani et al. (1996). The total contribution to the mass difference in meson mixing systems arises from both standard model (SM) and new physics (NP) effects. This can be expressed as:

ΔmK,Bd,Bs=ΔmK,Bd,BsSM+ΔmK,Bd,BsNP.\displaystyle\Delta m_{K,B_{d},B_{s}}=\Delta m^{\text{SM}}_{K,B_{d},B_{s}}+\Delta m^{\text{NP}}_{K,B_{d},B_{s}}. (46)

The SM predictions and experimental values for these meson mass differences is provided in the Table 2

Table 2: The SM predictions and corresponding world average experimental values for flavor-changing observables
Observables SM predictions Experimental values
ΔmK\Delta m_{K} 0.467×102ps10.467\times 10^{-2}\ \text{ps}^{-1} Workman and Others (2022) 0.5293(9)×102ps10.5293(9)\times 10^{-2}\ \text{ps}^{-1} (PDG) Workman and Others (2022)
ΔmBs\Delta m_{B_{s}} 18.77(86)ps118.77(86)\ \text{ps}^{-1}Lenz and Tetlalmatzi-Xolocotzi (2020) 17.765(6)ps117.765(6)\ \text{ps}^{-1} (HFLAV) Amhis et al. (2022)
ΔmBd\Delta m_{B_{d}} 0.543(29)ps10.543(29)\ \text{ps}^{-1} Lenz and Tetlalmatzi-Xolocotzi (2020) 0.5065(19)ps1s0.5065(19)\ \text{ps}^{-1}s (HFLAV) Amhis et al. (2022)
BR(Bsμ+μ)\text{BR}(B_{s}\to\mu^{+}\mu^{-}) (3.66±0.14)×109(3.66\pm 0.14)\times 10^{-9} Beneke et al. (2019) (3.45±0.29)×109(3.45\pm 0.29)\times 10^{-9} (HFLAV) Aaij et al. (2022b)
BR(B¯Xsγ)\text{BR}(\bar{B}\to X_{s}\gamma) (3.40±0.17)×104(3.40\pm 0.17)\times 10^{-4}Misiak et al. (2020) (3.49±0.19)×104(3.49\pm 0.19)\times 10^{-4} (HFLAV) Amhis et al. (2022)

In K0K¯0K^{0}-\bar{K}^{0} system, the uncertainties are quite large because the lattice QCD calculations for long-distance effect are not well controlled. Therefore, we assume the predicted theory contributes about 30% to ΔmK\Delta m_{K}, it reads

(ΔmK)SM(ΔmK)exp=1(1±0.3),\displaystyle\frac{(\Delta m_{K})_{\text{SM}}}{(\Delta m_{K})_{\text{exp}}}=1(1\pm 0.3), (47)

and translates to the following constraint

(ΔmK)NP(ΔmK)exp[0.3,0.3].\displaystyle\frac{(\Delta m_{K})_{\text{NP}}}{(\Delta m_{K})_{\text{exp}}}\in[-0.3,0.3]. (48)

The SM contributions for ΔmBs,Bd\Delta m_{B_{s},B_{d}} are more accurate compared with ΔmK\Delta m_{K}, we have the following constraints, as can be seen from Table .2. We combine in quadrature the relative uncertainties in both SM and experiment and get the 2σ2\sigma following constraints

(ΔmBd)NP(ΔmBd)Exp[0.187,0.043],(ΔmBs)NP(ΔmBs)Exp[0.153,0.04].\displaystyle\frac{(\Delta m_{B_{d}})_{\text{NP}}}{(\Delta m_{B_{d}})_{\mathrm{Exp}}}\in[-0.187,0.043],\hskip 14.22636pt\frac{(\Delta m_{B_{s}})_{\text{NP}}}{(\Delta m_{B_{s}})_{\mathrm{Exp}}}\in[-0.153,0.04]. (49)

IV.1.2 Bsμ+μ,BKμ+μB_{s}\to\mu^{+}\mu^{-},B\to K^{*}\mu^{+}\mu^{-}, B+K+μ+μB^{+}\to K^{+}\mu^{+}\mu^{-}

The B-meson decay rates are extremely sensitive to new physics. Quark FCNCs and lepton currents determine the effective Hamiltonian for the meson decay processes: Bsμ+μ,BKμ+μB_{s}\to\mu+\mu-,B\to K*\mu+\mu-, and B+K+μ+μB^{+}\to K^{+}\mu^{+}\mu^{-}.  The interaction terms of leptons with the new scalar fields, 1,𝒜\mathcal{H}_{1},\mathcal{A} are obtained from the Yukawa Lagrangian (19) as follows

l1/𝒜=tαg2mWl¯aLmlalaR(1+i𝒜)+H.c.,\displaystyle\mathcal{L}_{l-\mathcal{H}_{1}/\mathcal{A}}=-t_{\alpha}\frac{g}{2m_{W}}\bar{l}_{aL}m_{l_{a}}l_{aR}\left(\mathcal{H}_{1}+i\mathcal{A}\right)+H.c., (50)

and the new neutral gauge boson couples with two charged leptons, such as

lZ2=g2cWl¯γμ(gVZ2(f)gAZ2(f)γ5)lZ2μ,\displaystyle\mathcal{L}_{l-Z_{2}}=-\frac{g}{2c_{W}}\bar{l}\gamma^{\mu}\left(g_{V}^{Z_{2}}(f)-g_{A}^{Z_{2}}(f)\gamma_{5}\right)lZ_{2\mu}, (51)

where gVZ2(f),gAZ2(f)g_{V}^{Z_{2}}(f),g_{A}^{Z_{2}}(f) can be found in Van Dong et al. (2023). Combining with the FCNCs given in Eqs.(32,40), we obtain the effective Hamiltonian as follows

Heff=4GF2VtbVtsj=9,10,9,10,S,P(Cj(μ)𝒪J(μ)+Cj(μ)𝒪J(μ))\displaystyle H_{\text{eff}}=-\frac{4G_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\sum_{j=9,10,9^{\prime},10^{\prime},S,P}\left(C_{j}(\mu)\mathcal{O}_{J}(\mu)+C_{j}^{\prime}(\mu)\mathcal{O}^{\prime}_{J}(\mu)\right) (52)

with

𝒪9\displaystyle\mathcal{O}_{9} =e2(4π)2(s¯γμPLb)(l¯γμl),𝒪9=e2(4π)2(s¯γμPRb)(l¯γμl),\displaystyle=\frac{e^{2}}{\left(4\pi\right)^{2}}\left(\bar{s}\gamma_{\mu}P_{L}b\right)\left(\bar{l}\gamma^{\mu}l\right),\hskip 14.22636pt\mathcal{O}^{\prime}_{9}=\frac{e^{2}}{\left(4\pi\right)^{2}}\left(\bar{s}\gamma_{\mu}P_{R}b\right)\left(\bar{l}\gamma^{\mu}l\right),
𝒪10\displaystyle\mathcal{O}_{10} =e2(4π)2(s¯γμPLb)(l¯γμγ5l),𝒪10=e2(4π)2(s¯γμPRb)(l¯γμγ5l),\displaystyle=\frac{e^{2}}{\left(4\pi\right)^{2}}\left(\bar{s}\gamma_{\mu}P_{L}b\right)\left(\bar{l}\gamma^{\mu}\gamma^{5}l\right),\hskip 14.22636pt\mathcal{O}_{10}^{\prime}=\frac{e^{2}}{\left(4\pi\right)^{2}}\left(\bar{s}\gamma_{\mu}P_{R}b\right)\left(\bar{l}\gamma^{\mu}\gamma^{5}l\right),
𝒪S\displaystyle\mathcal{O}_{S} =e2(4π)2(s¯PRb)(l¯l),𝒪S=e2(4π)2(s¯PLb)(l¯l),\displaystyle=\frac{e^{2}}{(4\pi)^{2}}\left(\bar{s}P_{R}b\right)\left(\bar{l}l\right),\hskip 14.22636pt\mathcal{O}^{\prime}_{S}=\frac{e^{2}}{(4\pi)^{2}}\left(\bar{s}P_{L}b\right)\left(\bar{l}l\right),
𝒪P\displaystyle\mathcal{O}_{P} =e2(4π)2(s¯PRb)(l¯γ5l),𝒪P=e2(4π)2(s¯PLb)(l¯γ5l).\displaystyle=\frac{e^{2}}{(4\pi)^{2}}\left(\bar{s}P_{R}b\right)\left(\bar{l}\gamma_{5}l\right),\hskip 14.22636pt\mathcal{O}^{\prime}_{P}=\frac{e^{2}}{(4\pi)^{2}}\left(\bar{s}P_{L}b\right)\left(\bar{l}\gamma_{5}l\right). (53)

The Wilson coefficients (WCs), Ci,CiC_{i},C^{\prime}_{i}, are dived into two parts, Ci()=Ci()SM+Ci()NPC_{i}^{(\prime)}=C_{i}^{(\prime)\text{SM}}+C_{i}^{(\prime)\text{NP}}, where only the C9,10SMC_{9,10}^{\text{SM}} are non vanished and their central points are given in Beneke et al. (2018), C9SM=4.344,C10SM=4.198C_{9}^{\text{SM}}=4.344,C_{10}^{\text{SM}}=-4.198. The contributions of NP to the WCs are

C9NP\displaystyle C_{9}^{\text{NP}} =L23mW2cWVtbVts(4π)2e2gVZ2(μ)mZ22,C9NP=R23mW2cWVtbVts(4π)2e2gVZ2(μ)mZ22,\displaystyle=L_{23}\frac{m_{W}^{2}}{c_{W}V_{tb}V^{*}_{ts}}\frac{(4\pi)^{2}}{e^{2}}\frac{g_{V}^{Z_{2}}(\mu)}{m_{Z_{2}}^{2}},\hskip 14.22636ptC_{9}^{\prime\text{NP}}=R_{23}\frac{m_{W}^{2}}{c_{W}V_{tb}V^{*}_{ts}}\frac{(4\pi)^{2}}{e^{2}}\frac{g_{V}^{Z_{2}}(\mu)}{m_{Z_{2}}^{2}},
C10NP\displaystyle C_{10}^{\text{NP}} =L23mW2cWVtbVts(4π)2e2gAZ2(μ)mZ22,C10NP=R23mW2cWVtbVts(4π)2e2gAZ2(μ)mZ22,\displaystyle=-L_{23}\frac{m_{W}^{2}}{c_{W}V_{tb}V^{*}_{ts}}\frac{(4\pi)^{2}}{e^{2}}\frac{g_{A}^{Z_{2}}(\mu)}{m_{Z_{2}}^{2}},\hskip 14.22636ptC_{10}^{\prime\text{NP}}=-R_{23}\frac{m_{W}^{2}}{c_{W}V_{tb}V^{*}_{ts}}\frac{(4\pi)^{2}}{e^{2}}\frac{g_{A}^{Z_{2}}(\mu)}{m_{Z_{2}}^{2}},
CSNP\displaystyle C_{\text{S}}^{\text{NP}} =8π2e21VtbVtsΓ23qm12tαml,CSNP=8π2e21VtbVts(Γ32q)m12tαml,\displaystyle=\frac{8\pi^{2}}{e^{2}}\frac{1}{V_{tb}V^{*}_{ts}}\frac{\Gamma^{q}_{23}}{m_{\mathcal{H}_{1}}^{2}}t_{\alpha}m_{l},\hskip 14.22636pt\hskip 14.22636pt\hskip 14.22636pt\hskip 14.22636ptC_{\text{S}}^{\prime\text{NP}}=\frac{8\pi^{2}}{e^{2}}\frac{1}{V_{tb}V^{*}_{ts}}\frac{\left(\Gamma^{q}_{32}\right)^{*}}{m_{\mathcal{H}_{1}}^{2}}t_{\alpha}m_{l},
CPNP\displaystyle C_{\text{P}}^{\text{NP}} =8π2e21VtbVtsΓ23qm𝒜2tαml,CPNP=8π2e21VtbVts(Γ32q)m𝒜2tαml.\displaystyle=-\frac{8\pi^{2}}{e^{2}}\frac{1}{V_{tb}V^{*}_{ts}}\frac{\Gamma^{q}_{23}}{m_{\mathcal{A}}^{2}}t_{\alpha}m_{l},\hskip 14.22636pt\hskip 14.22636pt\hskip 14.22636pt\hskip 14.22636ptC_{\text{P}}^{\prime\text{NP}}=-\frac{8\pi^{2}}{e^{2}}\frac{1}{V_{tb}V^{*}_{ts}}\frac{\left(\Gamma^{q}_{32}\right)^{*}}{m_{\mathcal{A}}^{2}}t_{\alpha}m_{l}. (54)

Theoretically the branching ratio of the Bslα+lαB_{s}\to l_{\alpha}^{+}l_{\alpha}^{-} decay is determined by

BR(Bslα+lα)=τBs64π3α2GF2fBs2|VtbVts|2mBs14mlα2mBs2\displaystyle\mathrm{BR}(B_{s}\to l_{\alpha}^{+}l_{\alpha}^{-})=\frac{\tau_{B_{s}}}{64\pi^{3}}\alpha^{2}G_{F}^{2}f_{B_{s}}^{2}|V_{tb}V^{*}_{ts}|^{2}m_{B_{s}}\sqrt{1-\frac{4m_{l_{\alpha}}^{2}}{m^{2}_{B_{s}}}}
×{(14mlα2mBs2)|mBs2mb+ms(CSCS)|2+|2mlα(C10C10)+mBs2mb+ms(CPCP)|2}\displaystyle\times\left\{\left(1-\frac{4m^{2}_{l_{\alpha}}}{m^{2}_{B_{s}}}\right)\left|\frac{m_{B_{s}}^{2}}{m_{b}+m_{s}}\left(C_{\text{S}}-C_{\text{S}}^{\prime}\right)\right|^{2}+\left|2m_{l_{\alpha}}\left(C_{10}-C^{\prime}_{10}\right)+\frac{m_{B_{s}}^{2}}{m_{b}+m_{s}}\left(C_{\text{P}}-C_{\text{P}}^{\prime}\right)\right|^{2}\right\} (55)

with τBs\tau_{B_{s}} is a lifetime of the BsB_{s}. Because of the effect of oscillations of the meson, the experimental results relate to theories presented in De Bruyn et al. (2012):

BR(Bslα+lα)exp11ysBR(Bslα+lα)theory\displaystyle\mathrm{BR}(B_{s}\to l_{\alpha}^{+}l_{\alpha}^{-})_{\text{exp}}\sim\frac{1}{1-y_{s}}\mathrm{BR}(B_{s}\to l_{\alpha}^{+}l_{\alpha}^{-})_{\text{theory}} (56)

with ys=ΔΓBs2ΓBsy_{s}=\frac{\Delta\Gamma_{B_{s}}}{2\Gamma_{B_{s}}} and is numerically given in the Table. 3.

We would like to emphasize that the SM predicted the following outcomes Bobeth et al. (2014)Beneke et al. (2019):

BR(Bse+e)SM\displaystyle\mathrm{BR}(B_{s}\to e^{+}e^{-})_{\text{SM}} =(8.54±0.55)×1014,\displaystyle=\left(8.54\pm 0.55\right)\times 10^{-14},
BR(Bsμ+μ)SM\displaystyle\mathrm{BR}(B_{s}\to\mu^{+}\mu^{-})_{\text{SM}} =(3.66±0.14)×109.\displaystyle=\left(3.66\pm 0.14\right)\times 10^{-9}. (57)

While the experimental bounds have been given in Aaij et al. (2020) as follows:

BR(Bse+e)exp\displaystyle\mathrm{BR}(B_{s}\to e^{+}e^{-})_{\text{exp}} <9.4×109,\displaystyle<9.4\times 10^{-9}, (58)

and BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}) has the most current average experimental value given in Table 2 which is benefited from the newest results of LHCb Aaij et al. (2022b), and CMS Tumasyan et al. (2023). This upgrade of BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}) bring the measurement and SM prediction closer, and therefore the NP contribution, if having will be very small.

Similarly the meson mixing systems, we combine both uncertainties from SM and experimental of BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}) and obtain the 2σ2\sigma range as follows

BR(Bsμ+μ)expBR(Bsμ+μ)SM\displaystyle\frac{\text{BR}(B_{s}\to\mu^{+}\mu^{-})_{\text{exp}}}{\text{BR}(B_{s}\to\mu^{+}\mu^{-})_{\text{SM}}} =11ys(14mμ2mBs2)|S~|2+|P~|2|C10SM|2[0.7684,1.1168]\displaystyle=\frac{1}{1-y_{s}}\frac{\left(1-\frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right)|\tilde{S}|^{2}+|\tilde{P}|^{2}}{|C_{10}^{\text{SM}}|^{2}}\in[0.7684,1.1168] (59)

with

P~=(C10C10)+mBs22mμ(mb+ms)(CPCP),\displaystyle\tilde{P}=(C_{10}-C_{10}^{\prime})+\frac{m_{B_{s}}^{2}}{2m_{\mu}(m_{b}+m_{s})}(C_{P}-C_{P}^{\prime}),
S~=mBs22mμ(mb+ms)|CSCS|2.\displaystyle\tilde{S}=\frac{m_{B_{s}}^{2}}{2m_{\mu}(m_{b}+m_{s})}|C_{S}-C_{S}^{\prime}|^{2}. (60)

IV.1.3 B¯Xsγ\bar{B}\to X_{s}\gamma

The contributions to the decay processes, B¯Xsγ\bar{B}\to X_{s}\gamma, come from the FCNCs coupled by both new neutral gauge boson ZZ^{\prime} and new scalars ,𝒜\mathcal{H},\mathcal{A}. Their relevant Lagrangian are obtained from Eqs. (40,32). The effective Hamiltonian for the decay bsγb\rightarrow s\gamma is expressed by

effbsγ\displaystyle\mathcal{H}_{\text{eff}}^{b\rightarrow s\gamma} =4GF2VtbVts[C7(μb)𝒪7+C8(μb)𝒪8+C7(μb)𝒪7+C8(μb)𝒪8],\displaystyle=-\frac{4G_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}[C_{7}(\mu_{b})\mathcal{O}_{7}+C_{8}(\mu_{b})\mathcal{O}_{8}+C_{7}^{\prime}(\mu_{b})\mathcal{O}^{\prime}_{7}+C_{8}^{\prime}(\mu_{b})\mathcal{O}^{\prime}_{8}], (61)

with μb=𝒪(mb)\mu_{b}=\mathcal{O}(m_{b}) is the energy scale of the decay bsγb\to s\gamma. The electromagnetic and chromomagnetic dipole operators 𝒪7,𝒪8\mathcal{O}_{7},\mathcal{O}_{8} are defined as

𝒪7=e(4π)2mb(s¯ασμνPRbα)Fμν,𝒪8=gs(4π)2mb(s¯ασμνTαβaPRbβ)Gaμν,\displaystyle\mathcal{O}_{7}=\frac{e}{(4\pi)^{2}}m_{b}(\bar{s}_{\alpha}\sigma_{\mu\nu}P_{R}b_{\alpha})F^{\mu\nu},\hskip 14.22636pt\mathcal{O}_{8}=\frac{g_{s}}{(4\pi)^{2}}m_{b}(\bar{s}_{\alpha}\sigma_{\mu\nu}T^{a}_{\alpha\beta}P_{R}b_{\beta})G^{a\mu\nu}, (62)

and the primed operators 𝒪7,8\mathcal{O}_{7,8}^{\prime} are obtained by replacing PLPRP_{L}\leftrightarrow P_{R}. The primed Wilson coefficients (WCs) C7,8C_{7,8}^{\prime} are obtained by replacing PLPRP_{L}\to P_{R}. It should be noted that in the limit mbms0m_{b}\gg m_{s}\sim 0, the WCs C7,8C_{7,8}^{\prime} can be ignored, and there are left unprimed WCs C7,8C_{7,8}.The WCs C7,8(μb)C_{7,8}(\mu_{b}) split as the sum of the SM and NP contributions

C7,8(μb)=C7,8SM(μb)+C7,8NP(μb),\displaystyle C_{7,8}(\mu_{b})=C_{7,8}^{\text{SM}}(\mu_{b})+C_{7,8}^{\text{NP}}(\mu_{b}), (63)

with C7,8SMC_{7,8}^{\text{SM}} are the SM WCs which are first given by Inami and Lim (1981), at the scale μmW\mu\sim m_{W}

C7SM(0)(mW)=mt2mW2fγ(mt2mW2),C8SM(0)(mW)=mt2mW2fg(mt2mW2),\displaystyle C^{\text{SM}(0)}_{7}(m_{W})=\frac{m_{t}^{2}}{m_{W}^{2}}f_{\gamma}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right),\hskip 14.22636ptC_{8}^{\text{SM}(0)}(m_{W})=\frac{m_{t}^{2}}{m_{W}^{2}}f_{g}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right), (64)

where the index 0 indicates that the WCs are calculated without QCD correction. The NP contributions to the WCs , C7,8NPC_{7,8}^{\text{NP}}, come from the charged scalar currents given in Eq. (34) and the FCNCs given in Eqs. (32), (40). We can divide the contributions as follows:

C7,8NP(0)=C7,8H±(0)(mH±)+C7,8Z(0)(mZ)+C7,81,𝒜(0)(m1,𝒜),\displaystyle C_{7,8}^{\text{NP}(0)}=C_{7,8}^{H^{\pm}(0)}(m_{H^{\pm}})+C_{7,8}^{Z^{\prime}(0)}(m_{Z^{\prime}})+C_{7,8}^{\mathcal{H}_{1},\mathcal{A}(0)}(m_{\mathcal{H}_{1},\mathcal{A}}), (65)

where

C7H±(0)(mH±)=tα2mt2mH±2[13fγ(mt2mH±2)fγ(mt2mH±2)],\displaystyle C_{7}^{H^{\pm}(0)}(m_{H^{\pm}})=t_{\alpha}^{2}\frac{m_{t}^{2}}{m_{H^{\pm}}^{2}}\left[\frac{1}{3}f_{\gamma}\left(\frac{m_{t}^{2}}{m_{H^{\pm}}^{2}}\right)-f^{\prime}_{\gamma}\left(\frac{m_{t}^{2}}{m_{H^{\pm}}^{2}}\right)\right],
C8H±(0)(mH±)=tα2mt2mH±2[13fg(mt2mH±2)fg(mt2mH±2)].\displaystyle C_{8}^{H^{\pm}(0)}(m_{H^{\pm}})=t_{\alpha}^{2}\frac{m_{t}^{2}}{m_{H^{\pm}}^{2}}\left[\frac{1}{3}f_{g}\left(\frac{m_{t}^{2}}{m_{H^{\pm}}^{2}}\right)-f^{\prime}_{g}\left(\frac{m_{t}^{2}}{m_{H^{\pm}}^{2}}\right)\right]. (66)

The functions fγ,gf_{\gamma,g} and fγ,gf^{\prime}_{\gamma,g} are defined by

fγ(x)=(75x8x2)24(x1)3+x(3x2)4(x1)4lnx,fγ(x)=(35x)12(x1)2+(3x2)6(x1)3lnx,\displaystyle f_{\gamma}(x)=\frac{(7-5x-8x^{2})}{24(x-1)^{3}}+\frac{x(3x-2)}{4(x-1)^{4}}\ln{x},\hskip 14.22636ptf^{\prime}_{\gamma}(x)=\frac{(3-5x)}{12(x-1)^{2}}+\frac{(3x-2)}{6(x-1)^{3}}\ln{x},
fg(x)=2+5xx28(x1)33x4(x1)4lnx,fg(x)=3x4(x1)212(x1)3lnx.\displaystyle f_{g}(x)=\frac{2+5x-x^{2}}{8(x-1)^{3}}-\frac{3x}{4(x-1)^{4}}\ln{x},\hskip 14.22636ptf^{\prime}_{g}(x)=\frac{3-x}{4(x-1)^{2}}-\frac{1}{2(x-1)^{3}}\ln{x}. (67)

It is important to comment that the C7Z(0)(mZ)C_{7}^{Z^{\prime}(0)}(m_{Z^{\prime}}) is suppressed by a factor mW2/mZ2v2/Λ21m_{W}^{2}/m_{Z^{\prime}}^{2}\sim v^{2}/\Lambda^{2}\ll 1, which is much smaller than SM and can be ignored. Similarly, for FCNC associated scalars 1,𝒜\mathcal{H}_{1},\mathcal{A}, their corresponding WCs are proportional with Γ3idΓ3jdm,𝒜2md2m,𝒜21\frac{\Gamma^{d}_{3i}\Gamma^{d}_{3j}}{m_{\mathcal{H},\mathcal{A}}^{2}}\sim\frac{m^{2}_{d}}{m_{\mathcal{H},\mathcal{A}}^{2}}\ll 1, therefore we can also remove these terms in our calculation.

The QCD corrections to bsγb\rightarrow s\gamma are necessary for the analysis. In SM, C7,8SMC_{7,8}^{\text{SM}} were calculated up to Next-to-Next-Leading Order (NNLO), specifically, we compute C7SM(μb)=0.3636C_{7}^{\text{SM}}(\mu_{b})=-0.3636 for μb=2.0\mu_{b}=2.0 GeV, based on the Refs. Misiak and Steinhauser (2007); Czakon et al. (2007, 2015). However, the NP contributions to the C7,8NPC_{7,8}^{\text{NP}} have been considered at the Leading Order (LO) Buras et al. (2013), Buras et al. (2011). In this work, we study the effect of QCD corrections on the C7,8NPC_{7,8}^{\text{NP}} at the LO. If including the LO of QCD corrections, C7H±C_{7}^{H^{\pm}} at the scale μb\mu_{b} has the forms as Buras et al. (2013), Buras et al. (2011)

C7H±(μb)=κ7C7H±(mH±)+κ8C8H±(mH±),\displaystyle C_{7}^{H^{\pm}}(\mu_{b})=\kappa_{7}C_{7}^{H^{\pm}}(m_{H^{\pm}})+\kappa_{8}C_{8}^{H^{\pm}}(m_{H^{\pm}}), (68)

where κ7,8\kappa_{7,8} are so called ”magic numbers” and given in Buras et al. (2011).The branching ratio for the considering decay is given as Buras et al. (2011)

BR(B¯Xsγ)\displaystyle\text{BR}(\bar{B}\to X_{s}\gamma) =\displaystyle= 6αemπC|VtsVtbVcb|2[|C7(μb)|2+N(Eγ)]BR(B¯Xclν¯),\displaystyle\frac{6\alpha_{\text{em}}}{\pi C}\left|\frac{V_{ts}^{*}V_{tb}}{V_{cb}}\right|^{2}[|C_{7}(\mu_{b})|^{2}+N(E_{\gamma})]\text{BR}(\bar{B}\rightarrow X_{c}l\bar{\nu}), (69)

where N(Eγ)N(E_{\gamma}) is a non-perturbative contribution which amounts around 4%4\% of the branching ratio. We compute the leading order contribution to N(Eγ)N(E_{\gamma}) followed the Eq. (3.8) in Ref. Misiak et al. (2020) and obtain N(Eγ)3.3×103N(E_{\gamma})\simeq 3.3\times 10^{-3}. CC is the semileptonic phase-space factor C=|Vub/Vcb|2Γ(B¯Xceν¯e)/Γ(B¯Xueν¯e)C=|V_{ub}/V_{cb}|^{2}\Gamma(\bar{B}\rightarrow X_{c}e\bar{\nu}_{e})/\Gamma(\bar{B}\rightarrow X_{u}e\bar{\nu}_{e}) and BR(B¯Xclν¯)(\bar{B}\rightarrow X_{c}l\bar{\nu}) is the branching ratio for semi-leptonic decay .

To combine both the SM and experimental uncertainties from Table 2 and reduce the amount of input parameters for this observable, we consider the ratio between SM and world average experimental value, thus obtaining the following 2σ2\sigma constraint

|C7NP|2+2C7SMRe[C7NP]|C7SM|2+N(Eγ)[0.1252,0.1782]\displaystyle\frac{|C_{7}^{\text{NP}}|^{2}+2C_{7}^{\text{SM}}\text{Re}[C_{7}^{\text{NP}}]}{|C_{7}^{\text{SM}}|^{2}+N(E_{\gamma})}\in[-0.1252,0.1782] (70)

IV.1.4 Radiative decays of top quark tu(c)γt\to u(c)\gamma

Similar to the down-type quark sector, the model also features several flavor observables related to up-type quark sector, including branching ratio of radiative top quark decays tu(c)γt\to u(c)\gamma. These processes can be generated at one-loop level by FCNC interactions associated with ZZ^{\prime} gauge boson in Eq. (40) and by interactions of charged Higgs bosons H±H^{\pm} in Eq. (34).

The branching ratio of radiative top quark decays tu(c)γt\to u(c)\gamma is given by

BR(tuiγ)\displaystyle\text{BR}(t\to u_{i}\gamma) =\displaystyle= Γ(tu(c)γ)Γttotal=mt3(|CLtuiγ|2+|CRtuiγ|2)16πΓttotal,ui=u,c\displaystyle\frac{\Gamma(t\to u(c)\gamma)}{\Gamma^{\text{total}}_{t}}=\frac{m_{t}^{3}(|C^{tu_{i}\gamma}_{L}|^{2}+|C_{R}^{tu_{i}\gamma}|^{2})}{16\pi\Gamma^{\text{total}}_{t}},\hskip 14.22636ptu_{i}=u,c (71)

where CL,RtC^{t}_{L,R} are the coefficients obtained in the limit mtmu,mcm_{t}\gg m_{u},m_{c}. They can be split into different contributions as follows :

CLtui,Z=iemt16π2mZ2i=13[RiIRi3h(mui2mZ2)+muimtRiILi3h(mui2mZ2)],\displaystyle C^{tu_{i},Z^{\prime}}_{L}=\frac{iem_{t}}{16\pi^{2}m_{Z^{\prime}}^{2}}\sum_{i=1}^{3}\left[R^{*}_{iI}R_{i3}h\left(\frac{m_{u_{i}}^{2}}{m_{Z^{\prime}}^{2}}\right)+\frac{m_{u_{i}}}{m_{t}}R^{*}_{iI}L_{i3}h^{\prime}\left(\frac{m_{u_{i}}^{2}}{m_{Z^{\prime}}^{2}}\right)\right],
CRtui,Z=iemt16π2mZ2i=13[LiILi3h(mui2mZ2)+muimtLiIRi3h(mui2mZ2)],\displaystyle C^{tu_{i},Z^{\prime}}_{R}=\frac{iem_{t}}{16\pi^{2}m_{Z^{\prime}}^{2}}\sum_{i=1}^{3}\left[L^{*}_{iI}L_{i3}h\left(\frac{m_{u_{i}}^{2}}{m_{Z^{\prime}}^{2}}\right)+\frac{m_{u_{i}}}{m_{t}}L^{*}_{iI}R_{i3}h^{\prime}\left(\frac{m_{u_{i}}^{2}}{m_{Z^{\prime}}^{2}}\right)\right],
CLtui,±=iemt16π2m±2g22mW2i=13[𝒳iI𝒳i3g(mdi2m±2)+mdimt𝒳iI𝒴i3g(mdi2m±2)],\displaystyle C^{tu_{i},\mathcal{H}^{\pm}}_{L}=\frac{iem_{t}}{16\pi^{2}m_{\mathcal{H}^{\pm}}^{2}}\frac{g^{2}}{2m_{W}^{2}}\sum_{i=1}^{3}\left[\mathcal{X}^{*}_{iI}\mathcal{X}_{i3}g\left(\frac{m_{d_{i}}^{2}}{m_{\mathcal{H}^{\pm}}^{2}}\right)+\frac{m_{d_{i}}}{m_{t}}\mathcal{X}^{*}_{iI}\mathcal{Y}_{i3}g^{\prime}\left(\frac{m_{d_{i}}^{2}}{m_{\mathcal{H}^{\pm}}^{2}}\right)\right],
CRtui,±=iemt16π2m±2g22mW2i=13[𝒴iI𝒴i3g(mdi2m±2)+mdimt𝒴iI𝒳i3g(mdi2mH±2)].\displaystyle C^{tu_{i},\mathcal{H}^{\pm}}_{R}=\frac{iem_{t}}{16\pi^{2}m_{\mathcal{H}^{\pm}}^{2}}\frac{g^{2}}{2m_{W}^{2}}\sum_{i=1}^{3}\left[\mathcal{Y}^{*}_{iI}\mathcal{Y}_{i3}g\left(\frac{m_{d_{i}}^{2}}{m_{\mathcal{H}^{\pm}}^{2}}\right)+\frac{m_{d_{i}}}{m_{t}}\mathcal{Y}^{*}_{iI}\mathcal{X}_{i3}g^{\prime}\left(\frac{m_{d_{i}}^{2}}{m_{H^{\pm}}^{2}}\right)\right]. (72)

The loop functions h()(x),g()(x)h^{(^{\prime})}(x),g^{(^{\prime})}(x) are defined by

h(x)=830x+9x25x318(x1)3+x2(x1)4lnx,\displaystyle h(x)=\frac{8-30x+9x^{2}-5x^{3}}{18(x-1)^{3}}+\frac{x^{2}}{(x-1)^{4}}\ln{x},
h(x)=x2+x+43(x1)22x(x1)3lnx,\displaystyle h^{\prime}(x)=\frac{x^{2}+x+4}{3(x-1)^{2}}-\frac{2x}{(x-1)^{3}}\ln{x},
g(x)=510x7x236(x1)3+x(3x1)6(x1)4lnx,\displaystyle g(x)=\frac{5-10x-7x^{2}}{36(x-1)^{3}}+\frac{x(3x-1){6(x-1)^{4}}}{\ln}{x},
g(x)=23(x1)2+3x13(x1)3lnx\displaystyle g^{\prime}(x)=-\frac{2}{3(x-1)^{2}}+\frac{3x-1}{3(x-1)^{3}}\ln{x} (73)

The predicted branching ratios of top quark decays have to be compared the upper experimental limits Workman and Others (2022): BR(tuγ)exp<0.85×105(t\to u\gamma)_{\text{exp}}<0.85\times 10^{-5} and BR(tcγ)exp<4.2×105.(t\to c\gamma)_{\text{exp}}<4.2\times 10^{-5}.

IV.2 Lepton flavor phenomenology

In this model, charged Higgs bosons ±\mathcal{H}^{\pm} and right-handed neutrinos νaR\nu_{aR} contribute to lepton flavor violation (LFV) processes at the one-loop level. This includes branching ratios of radiative decays (eI)eJγ(e_{I})\to e_{J}\gamma, three-body leptonic decays eI3eJe_{I}\to 3e_{J} (IJI\neq J) and anomalous magnetic moments for electron (muon) Δae,mu\Delta a_{e,mu}. The effective Hamiltonian descring these observables is given by

efflepton=CLJIe¯JσμνPLeIFμν+(LR),\displaystyle\mathcal{H}^{\text{lepton}}_{\text{eff}}=C^{JI}_{L}\bar{e}_{J}\sigma_{\mu\nu}P_{L}e_{I}F^{\mu\nu}+(L\to R), (74)

where the coefficients CL,RJIC^{JI}_{L,R} are obtained by one-loop diagram calculations. In the limit meImeJm_{e_{I}}\gg m_{e_{J}}, these coefficients can be expressed as:

CL,RJI=CL,RJI,W±+CL,RJI,±,\displaystyle C^{JI}_{L,R}=C^{JI,W^{\pm}}_{L,R}+C^{JI,\mathcal{H}^{\pm}}_{L,R}, (75)

with

CRJI,W±=iemI16π2mW2i=13(VLν)Ii(VLν)Jir(mνiL2mW2),CLIJ,W±=0,\displaystyle C^{JI,W^{\pm}}_{R}=\frac{iem_{I}}{16\pi^{2}m_{W}^{2}}\sum_{i=1}^{3}(V^{\nu*}_{L})_{Ii}(V^{\nu}_{L})_{Ji}r\left(\frac{m_{\nu_{iL}^{2}}}{m_{W}^{2}}\right),\hskip 14.22636ptC^{IJ,W^{\pm}}_{L}=0,
CRJI,±=iemIsα216π2m±2i=13hIiνhJiνk(mνiR2m±2),CLIJ,±=0,\displaystyle C^{JI,\mathcal{H}^{\pm}}_{R}=\frac{iem_{I}s_{\alpha}^{2}}{16\pi^{2}m_{\mathcal{H}^{\pm}}^{2}}\sum_{i=1}^{3}h^{\nu*}_{Ii}h^{\nu}_{Ji}k\left(\frac{m_{\nu_{iR}}^{2}}{m_{\mathcal{H}^{\pm}}^{2}}\right),\hskip 14.22636ptC^{IJ,\mathcal{H}^{\pm}}_{L}=0, (76)

where CL,RJi,W±C^{Ji,W^{\pm}}_{L,R} are contributions from the SM W±W^{\pm} boson, and r(x)r(x) and k(x)k(x) are loop functions which are given as follows:

r(x)=10+x[33+(454x)x]12(x1)33x32(x1)4lnx,\displaystyle r(x)=\frac{10+x[-33+(45-4x)x]}{12(x-1)^{3}}-\frac{3x^{3}}{2(x-1)^{4}}\ln{x},
k(x)=1+5x+2x212(x1)3x22(x1)4lnx.\displaystyle k(x)=\frac{-1+5x+2x^{2}}{12(x-1)^{3}}-\frac{x^{2}}{2(x-1)^{4}}\ln{x}. (77)

The branching ratios of the LFV decay processes, eIeJγe_{I}\to e_{J}\gamma, are determined by

BR(eIeJγ)=meI34ΓeI(|CLJI|2+|CRJI|2),\text{BR}(e_{I}\to e_{J}\gamma)=\frac{m_{e_{I}}^{3}}{4\Gamma_{e_{I}}}(|C^{JI}_{L}|^{2}+|C^{JI}_{R}|^{2}), (78)

where ΓeI\Gamma_{e_{I}} is the total decay width of decaying lepton eIe_{I}. The electron and muon anomalous magnetic moments Δae,μ\Delta a_{e,\mu} read

ΔaeI\displaystyle\Delta a_{e_{I}} =\displaystyle= 4meIeRe[CRII],\displaystyle-\frac{4m_{e_{I}}}{e}\text{Re}[C_{R}^{II}],
CRII,±\displaystyle C^{II,\mathcal{H}^{\pm}}_{R} =\displaystyle= iemIsα216π2mH±2i=13|hIiν|2r(mνiR2m±2)\displaystyle\frac{iem_{I}s_{\alpha}^{2}}{16\pi^{2}m_{H^{\pm}}^{2}}\sum_{i=1}^{3}|h^{\nu}_{Ii}|^{2}r\left(\frac{m_{\nu_{iR}}^{2}}{m_{\mathcal{H}^{\pm}}^{2}}\right) (79)

It is important to note that the leptonic observables like BR(eIeJγ)(e_{I}\to e_{J}\gamma) are proportional to the squared product of two Yukawa couplings hIiνhJiνh^{\nu*}_{Ii}h^{\nu}_{Ji}. The small neutrino mass mν𝒪(0.1)m_{\nu}\sim\mathcal{O}(0.1) eV, obtained from type-I seesaw mechanism, implied that these Yukawa couplings are highly constrained, hν105h^{\nu}\sim 10^{-5}. Consequently, BR(eIeJγ)|hIiνhJiν|21020(e_{I}\to e_{J}\gamma)\sim|h^{\nu*}_{Ii}h^{\nu}_{Ji}|^{2}\sim 10^{-20}, combined with the overall factor iemI16π2mH±2106\frac{iem_{I}}{16\pi^{2}m_{H^{\pm}}^{2}}\sim 10^{-6}, results in observables that are significantly smaller than current upper experimental limits Workman and Others (2022) of 𝒪(1081013).\mathcal{O}(10^{-8}-10^{-13}).

Due to these suppressed rates, we will focus on quark flavor changing processes in the following numerical study, neglecting lepton flavor observable such as the predicted anomalous magnetic moments for the electron and muon, Δae,μ\Delta a_{e,\mu}, which are also significantly lower than measurements Aguillard et al. (2023), Workman and Others (2022).

V Numerical analysis

Let us first discuss our assumptions for input parameters. For processes related to down-type quarks sector, we assume the left-handed quark mixing matrix VdLV_{dL} to be the CKM matrix which has been extensively measured Workman and Others (2022). For the right-handed down type quark mixing matrix VdRV_{dR}, we parameterize it as CKM matrix with three parameters s12,13,23Rs_{12,13,23}^{R} and one CP violation phase δR\delta^{R}.

In the lepton sector, we set the mixing matrix VeL=1V_{e_{L}}=1, implying that the mixing matrix of active neutrinos VνLV_{\nu_{L}} is identified as PMNS matrix VνL=VPMNSV_{\nu_{L}}=V_{\text{PMNS}}.

For the matrix VdRV_{d_{R}}, we consider the normal relation (NR) scenario, where s12R>s23R>s13Rs_{12}^{R}>s_{23}^{R}>s_{13}^{R}, and:

s13Rs12R\displaystyle\frac{s_{13}^{R}}{s_{12}^{R}} =\displaystyle= s13CKMs12CKM=Aλ2+12Aλ4ρ¯2+η¯20.0157,\displaystyle\frac{s_{13}^{\text{CKM}}}{s_{12}^{\text{CKM}}}=A\lambda^{2}+\frac{1}{2}A\lambda^{4}\sqrt{\bar{\rho}^{2}+\bar{\eta}^{2}}\simeq 0.0157,
s23Rs12R\displaystyle\frac{s_{23}^{R}}{s_{12}^{R}} =\displaystyle= s23CKMs12CKM=Aλ0.1826,\displaystyle\frac{s_{23}^{\text{CKM}}}{s_{12}^{\text{CKM}}}=A\lambda\simeq 0.1826, (80)

where λ,A,ρ¯,η¯\lambda,A,\bar{\rho},\bar{\eta} are listed in the Table. 4. We also explore the inverted relation (IR) scenario, where s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}, and:

s13Rs12R=s23CKMs12CKM0.1826,s23Rs12R=s13CKMs12CKM0.0157.\displaystyle\frac{s_{13}^{R}}{s_{12}^{R}}=\frac{s_{23}^{\text{CKM}}}{s_{12}^{\text{CKM}}}\simeq 0.1826,\hskip 14.22636pt\frac{s_{23}^{R}}{s_{12}^{R}}=\frac{s_{13}^{\text{CKM}}}{s_{12}^{\text{CKM}}}\simeq 0.0157. (81)

The CP violation phase is set in the range δR[0,2π]\delta^{R}\in[0,2\pi]. For the Higgs coupling μ4\mu_{4}, we apply the condition μ4Λv1,v2-\mu_{4}\sim\Lambda\gg v_{1},v_{2}, due to the diagonalization of the mass mixing matrix MS2M_{S}^{2}.

For up-type quark flavor processes, we assume the mixing matrices of left and right-handed up-type quarks VuL,RV_{uL,R} to be the identity matrices. With theses assumptions, there are no ZZ^{\prime} contributions to flavor-changing observables related to up-type quark sectors, including branching ratios of top quark decays tu(c)γt\to u(c)\gamma, or meson oscillation D¯0D0\bar{D}^{0}-D^{0}. Therefore, the only new contributions to up-type quark flavor changing processes come from charged Higgs boson H±H^{\pm}. For the remaining parameters, please refer of Table 3 and Table 4 for their numerical values.

For x-charge, we consider specific values x=±1/2x=\pm 1/2 and x=±1/6x=\pm 1/6. Regarding the new physics scale, we focus on the region allowed by electroweak precision tests based on both CMS and CDF measurements.

Based on aforementioned assumptions, we will focus on following observables: meson mass differences ΔmK,ΔmBs,ΔmBd\Delta m_{K},\Delta m_{B_{s}},\Delta m_{B_{d}}, and the branching ratios, BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}), BR(B¯Xsγ)(\bar{B}\to X_{s}\gamma), and BR(tu(c)γ)(t\to u(c)\gamma). The bsl+lb\to sl^{+}l^{-} observables namely BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}), BR(B¯Xsγ)(\bar{B}\to X_{s}\gamma) are also called as clean observables since they have controllable theoretical uncertainties. It is important to note that new physics contributions not only effect these clean observables but also influence other bsllb\to sll observables such as branching ratios BR(B0,+K0,+μ+μ)(B^{0,+}\to K^{0,+}\mu^{+}\mu^{-}), Br(Bsϕμ+μ)(B_{s}\to\phi\mu^{+}\mu^{-}), angular distributions in decays B+K+μ+μ,Bsϕμ+μ,ΛbΛμ+μB^{+}\to K^{*+}\mu^{+}\mu^{-},B_{s}\to\phi\mu^{+}\mu^{-},\Lambda_{b}\to\Lambda\mu^{+}\mu^{-}, etc. These observables are strongly influenced by short-distance effects, including form factor determination and charm-loop contributions c¯c\bar{c}c, which are challenging to quantify accurately. This leads to substantial theoretical uncertainties compared to clean observables. Therefore, in addition to study clean observables, we aim to assess whether the model can explain other bsl+lb\to sl^{+}l^{-} observables by comparing its predicted NP WC with constraints from global fits Algueró et al. (2023).

Table 3: The numerical values of input parameters.
Input parameters Values Input parameters Values
fKf_{K} 155.7(3)MeV155.7(3)\ \text{MeV} Aoki et al. (2022) mKm_{K} 497.611(13)MeV497.611(13)\ \text{MeV} Workman and Others (2022)
fBsf_{B_{s}} 230.3(1.3)MeV230.3(1.3)\ \text{MeV} Aoki et al. (2022) mBsm_{B_{s}} 5366.88(11)MeV5366.88(11)\ \text{MeV} Workman and Others (2022)
fBdf_{B_{d}} 190(1.3)MeV190(1.3)\ \text{MeV} Aoki et al. (2022) mBdm_{B_{d}} 5279.65(12)MeV5279.65(12)\ \text{MeV} Workman and Others (2022)
mum_{u} 2.14(8)MeV2.14(8)\ \text{MeV} Aoki et al. (2022) mdm_{d} 4.70(5)MeV4.70(5)\ \text{MeV} Aoki et al. (2022)
m¯c(3GeV)\bar{m}_{c}\ (3\ \text{GeV}) 0.988(11)GeV0.988(11)\ \text{GeV} Aoki et al. (2022) msm_{s} 93.40(57)MeV93.40(57)\ \text{MeV} Aoki et al. (2022)
mt,polem_{t,\text{pole}} 173.21(51)(71)GeV173.21(51)(71)\ \text{GeV} Czakon et al. (2015) m¯b(m¯b)\bar{m}_{b}(\bar{m}_{b}) 4.203(11)GeV4.203(11)\ \text{GeV} Bon
N(Eγ)N(E_{\gamma}) 3.3×1033.3\times 10^{-3} Misiak et al. (2020) C7SM(μb=2.0GeV)C_{7}^{\text{SM}}(\mu_{b}=2.0\ \text{GeV}) 0.3636-0.3636Misiak and Steinhauser (2007); Czakon et al. (2007); Misiak et al. (2020)
C9SM(μb=5.0GeV)C_{9}^{\text{SM}}(\mu_{b}=5.0\ \text{GeV}) 4.3444.344 Beneke et al. (2018) C10SM(μb=5.0GeV)C_{10}^{\text{SM}}(\mu_{b}=5.0\ \text{GeV}) 4.198-4.198  Beneke et al. (2018)
ysy_{s} 0.0645(3)0.0645(3) Amhis et al. (2022) λ7\lambda_{7} 0.10.1
κ7(μ=5TeV)\kappa_{7}(\mu=5\ \text{TeV}) 0.4080.408 Buras et al. (2011) κ8\kappa_{8} 0.1290.129
Table 4: The common SM parameters.
SM Parameters Values
λ\lambda 0.225480.00034+0.000680.22548^{+0.00068}_{-0.00034} Charles et al. (2015)
AA 0.8100.024+0.0180.810^{+0.018}_{-0.024} Charles et al. (2015)
ρ¯\bar{\rho} 0.1450.007+0.00130.145^{+0.0013}_{-0.007} Charles et al. (2015)
η¯\bar{\eta} 0.3430.012+0.00110.343^{+0.0011}_{-0.012} Charles et al. (2015)
mWm_{W} 80.385GeV80.385\ \text{GeV} Czakon et al. (2015)
mZm_{Z} 91.1876GeV91.1876\ \text{GeV} Czakon et al. (2015)
GFG_{F} 1.166379×105GeV21.166379\times 10^{-5}\ \text{GeV}^{-2} Workman and Others (2022)
sW2s_{W}^{2} 0.23120.2312 Workman and Others (2022)

V.1 New physics scale is limited by CDF measurement of the WW gauge boson mass

The CDF measurement of the WW gauge boson mass rules out the alternative U(1)XU(1)_{X} model with x=±1/6x=\pm 1/6. Consequently, we focus on the two remaining models with x=±1/2.x=\pm 1/2.

V.1.1 The case x=1/2x=-1/2

For the model with x=1/2x=-1/2, phenomenological studies Van Dong et al. (2023) constraint the new physics scale to Λ5\Lambda\sim 5 TeV, the electroweak scale to v1[0,55]v_{1}\in[0,55] GeV, and the gauge coupling ratio to tθ=gNgX=1t_{\theta}=\frac{g_{N}}{g_{X}}=1. With these constraints and the input parameters from Table. 3, the model has three free parameters, s12Rs_{12}^{R}, δR\delta^{R} and v1v_{1}, which are relevant for quark flavor-changing processes.

Refer to caption Refer to caption
Figure 2: The left and right panels show the correlations between s12Rs_{12}^{R} with δR\delta^{R} and VEV v1v_{1}, respectively. The panels is plotted in the NR scenario s12R>s23R>s13Rs_{12}^{R}>s_{23}^{R}>s_{13}^{R}.

We first consider the NR scenario. Figure. 2 shows the correlations between parameters s12Rs_{12}^{R}, δR\delta^{R} and v1v_{1} satisfying the constraints for flavor-changing observables: ΔmK\Delta m_{K} (Eq. 48), ΔmBs\Delta m_{B_{s}}, ΔmBd\Delta m_{B_{d}} (Eq.49), BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}) (Eq. 59), BR(B¯Xsγ)(\bar{B}\to X_{s}\gamma) (Eq. 70) and the upper experimental limits Workman and Others (2022): BR(tuγ)exp<0.85×105(t\to u\gamma)_{\text{exp}}<0.85\times 10^{-5} and BR(tcγ)exp<4.2×105(t\to c\gamma)_{\text{exp}}<4.2\times 10^{-5}.
In the left panel of Figure. 2, the mixing angle s12Rs_{12}^{R} is significantly constrained to the range s12R[0.08,0.1]s_{12}^{R}\sim[0.08,0.1], while the CP violation phase δR\delta^{R} is bounded within [0.76π,1.54π][0.76\pi,1.54\pi]. Notably, the obtained range of s12Rs_{12}^{R} is smaller than the corresponding CKM value s12CKM0.22548.s_{12}^{\text{CKM}}\simeq 0.22548.
The right panel shows the correlation between VEV v1v_{1} and mixing angle s12Rs_{12}^{R}. We observe that v1v_{1} behaves similarly to s12Rs_{12}^{\text{R}} in the left panel. The allowed range for v1v_{1} is quite limited, implying v1[22,55]v_{1}\sim[22,55] GeV. Therefore, the model with x=1/2x=-1/2 in the NR case, combined with the parameter space: Λ5TeV,δR[0.76π,1.54π],v1[22,55]GeV,s12R[0.08,0.1]\Lambda\sim 5\ \text{TeV},\hskip 14.22636pt\delta^{R}\sim[0.76\pi,1.54\pi],\hskip 14.22636ptv_{1}\sim[22,55]\ \text{GeV},\hskip 14.22636pts_{12}^{R}\sim[0.08,0.1], can simultaneously fit all the constraints for meson mixing ΔmK,Bs,Bd\Delta m_{K,B_{s},B_{d}}, and BR(B¯Xsγ)(\bar{B}\to X_{s}\gamma), BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}) and BR(tu(c)γt\to u(c)\gamma).

Refer to caption
Figure 3: The correlation between predicted values of ΔmK\Delta m_{K} and ΔmBs\Delta m_{B_{s}} for the x=1/2x=-1/2 case. The red dot-dashed and green dashed lines present the constraints of ΔmBs\Delta m_{B_{s}} and ΔmK\Delta m_{K} respectively, as given by Eq. (48) and Eq. (49). The mixing angle parameters in VdRV_{dR} matrix are assumed to follow the IR scenario s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}.

Next, we numerically study in the IR case. By randomly sampling s12R[0,1]s_{12}^{R}\in[0,1], δR[0,2π]\delta_{R}\in[0,2\pi] and v1[0,55]GeVv_{1}\in[0,55]\text{GeV} while adhering to the constraints on ΔmBd\Delta m_{B_{d}}, BR(B¯Xsγ)(\bar{B}\to X_{s}\gamma), and BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}), we obtain the correlation between the predicted values for ΔmK,ΔmBs\Delta m_{K},\Delta m_{B_{s}}, as depicted in Figure 3.

The figure reveals that points satisfying the experimental constraint for ΔmK\Delta m_{K} are significant more abundant than those satisfying the constraint for ΔmBs\Delta m_{B_{s}}. No points simultaneously satisfy both constraints. Consequently, the IR scenario in the model with x=1/2x=-1/2 cannot adequately explain the constraints on clean down-type quark flavor observables, unlike the NR case. This suggests that the IR scenario can be ruled out in the x=1/2x=-1/2 model.

Beyond the clean observables considered above, the WCs in Eqs. (54,68) also effect other bsllb\to sll observables. We examine the effects of these WCs using the parameter space defined in Eq. (V.1.1). The scalar and pseudoscalar WCs CS,P()C_{S,P}^{(^{\prime})} are estimated to be CS,P()𝒪(105)C_{S,P}^{(^{\prime})}\sim\mathcal{O}(10^{-5}), which are significantly suppressed compared to the SM WCs and can be neglected.

For remaining six WCs C7,9,10NPC_{7,9,10}^{\text{NP}}, we note that they are identical for different lepton flavors l=e,μ,τl=e,\mu,\tau, implying lepton flavor university (LFU). We compare these predicted WCs with the 6D LFU global fits at the 1σ1\sigma confidence interval Algueró et al. (2023), as presented in Table 5.

Table 5: The comparison between predicted NP WCs in the case x=1/2x=-1/2 with 1σ1\sigma confidence interval in the 6D LFU global fit result Algueró et al. (2023)
WCs C9NPC_{9}^{\text{NP}} C10NPC_{10}^{\text{NP}} C9NPC_{9}^{{}^{\prime}\text{NP}} C10NPC_{10}^{{}^{\prime}\text{NP}} C7NPC_{7}^{\text{NP}} C7NPC_{7}^{{}^{\prime}\text{NP}}
Global fits [1.38,1.03][-1.38,-1.03] [0.09,0.22][-0.09,0.22] [0.40,0.33][-0.40,0.33] [0.25,0.13][-0.25,0.13] [0.01,0.02][-0.01,0.02] [0,0.03][0,0.03]
NR scenario 0.243-0.243 0.2430.243 [0.106,0.086][-0.106,-0.086] [0.086,0.106][0.086,0.106] [0.00796,0.0241][0.00796,0.0241] 0

The WCs C9,10NPC_{9,10}^{{}^{\prime}\text{NP}} lie within the 1σ1\sigma intervals, while C7()NPC_{7}^{(^{\prime})\text{NP}} have ranges interfering with their corresponding global fit values. Since the WCs C9,10NPC_{9,10}^{\text{NP}} primarily depend on the NP scale Λ\Lambda, which is fixed at 5TeV5\text{TeV} for x=1/2x=-1/2, we obtain C9NP0.243C_{9}^{\text{NP}}\simeq-0.243 and C10NP0.243C_{10}^{\text{NP}}\simeq 0.243. However, these values exceeds the global fit upper bounds C9NP-fit1.03C_{9}^{\text{NP-fit}}\leq-1.03 and C10NP-fit0.22C_{10}^{\text{NP-fit}}\leq 0.22 by approximately 76% and 10%, respectively.

Consequently, for x=1/2x=-1/2 with parameter space in Eq. (V.1.1), the model can explain the clean observables but not for other bsllb\to sll observables.

V.1.2 The case x=1/2x=1/2

In contrast to the previous scenario, the NP scale Λ\Lambda is now constrained to the range Λ[4.5,8.5]\Lambda\in[4.5,8.5] TeV, while VEV v1v_{1} falls within the range v1[1,185]v_{1}\in[1,185] GeV, as reported in Van Dong et al. (2023). For the case x=1/2x=1/2, we numerically investigate the parameter spaces that satisfy the constraints on clean observables given in Eqs.(48),(49),(59),(70) in both the NR and IR scenarios for mixing angles in VdRV_{dR} matrix.

Refer to caption Refer to caption
Figure 4: The left and right panels show the correlation between s12RδRs_{12}^{R}-\delta^{R} and Λv1\Lambda-v_{1}, respectively. The mixing angle parameters in VdRV_{dR} matrix are assumed in the NR scenario s12R>s23R>s13Rs_{12}^{R}>s_{23}^{R}>s_{13}^{R}.

The left panel in the Fig. 4 shows the correlation between mixing angle parameter s12Rs_{12}^{R} and CP-violating phase δR\delta^{R} when relaxing the 2σ2\sigma constraint on quark flavor-changing processes. We note that the allowed region for s12Rs_{12}^{R} and δR\delta^{R} is larger than in the x=1/2x=-1/2 case. Specifically, we find s12R[0.074,0.123]s_{12}^{R}\in[0.074,0.123] and δR[0.52π,1.74π]\delta^{R}\in[0.52\pi,1.74\pi]. Turning to the right panel, which presents the correlation between two VEVs Λ\Lambda and v1v_{1} while satisfying all 2σ2\sigma constraint on quark flavor observables, we obtain the lower limits v110.6v_{1}\geq 10.6 GeV and Λ5964\Lambda\geq 5964 GeV.

For the IR scenario with s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}, we conducted a numerical study similar to the NR case and obtain the results shown in Figs.(5).

Refer to caption Refer to caption
Figure 5: The left and right panels show the correlation between s12RδRs_{12}^{R}-\delta^{R} and Λv1\Lambda-v_{1}, respectively. The mixing angle parameters in VdRV_{dR} matrix are assumed in the IR scenario s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}.

Figs. 5 illustrates the correlation between s12RδRs_{12}^{R}-\delta^{R}, and Λv1\Lambda-v_{1} in the x=1/2x=1/2 case with IR condition on the mixing angle parameters in VdRV_{dR} matrix. Compared to NR case, this scenario yields significantly fewer points that satisfy the constraints of flavor observations. Especially, the left panel reveals remarkably narrow regimes for δR\delta^{R} around δR0.32π\delta^{R}\sim 0.32\pi and δR1.72π\delta^{R}\sim 1.72\pi, while the mixing angle s12R0.28s_{12}^{R}\sim 0.28 and s12R[0.265,0.295]s_{12}^{R}\sim[0.265,0.295], respectively. These obtained values for s12Rs_{12}^{R} are slightly larger than the central value of the relative CKM mixing angle s12CKM0.22548s_{12}^{\text{CKM}}\sim 0.22548 Charles et al. (2015). In the right panel, the points are primarily concentrated in the region where Λ7200\Lambda\geq 7200 GeV and v122v_{1}\geq 22 GeV. These lower bounds for the VEVs are stringent than in the NR case.

Using the free parameters obtained from the NR and IR scenarios, we can estimate the impact of the non-standard model WCs C7,9,10,S,P()NPC_{7,9,10,S,P}^{(\prime)\text{NP}} on other bsllb\to sll observables. Numerical analysis reveal that scalar and pseudoscalar WCs |CS,P()||C_{S,P}^{(\prime)}|, with magnitudes of𝒪(104105)\mathcal{O}(10^{-4}-10^{-5}), are significantly suppressed compared to the SM WCs, C7,9,10SM𝒪(101)C_{7,9,10}^{\text{SM}}\sim\mathcal{O}(10^{-1}). Consequently, the effects of new scalars can be safely neglected. This leaves six NP WCs C7,9,10()NPC_{7,9,10}^{(\prime)\text{NP}} contributing to bsllb\to sll observables. This result aligns with x=1/2x=-1/2 case. The predicted results and the 6D LFU global fit Algueró et al. (2023) are shown in Table 6.

Table 6: The comparison between predicted NP WCs in the case x=1/2x=1/2 with 1σ1\sigma confidence interval in the 6D LFU global fit results Algueró et al. (2023)
WCs C9NPC_{9}^{\text{NP}} C10NPC_{10}^{\text{NP}} C9NPC_{9}^{{}^{\prime}\text{NP}} C10NPC_{10}^{{}^{\prime}\text{NP}} C7NPC_{7}^{\text{NP}} C7NPC_{7}^{{}^{\prime}\text{NP}}
Global fits [1.38,1.03][-1.38,-1.03] [0.09,0.22][-0.09,0.22] [0.40,0.33][-0.40,0.33] [0.25,0.13][-0.25,0.13] [0.01,0.02][-0.01,0.02] [0,0.03][0,0.03]
NR scenario [1.19,0.59][-1.19,-0.59] [0.17,0.08][-0.17,-0.08] [0.55,0.19][-0.55,-0.19] [0.08,0.03][-0.08,-0.03] [1.1×104,2.41×102][1.1\times 10^{-4},2.41\times 10^{-2}] 0
IR scenario [1.45,0.59][-1.45,-0.59] [0.21,0.08][-0.21,-0.08] [0.99,0.40][-0.99,-0.40] [0.14,0.06][-0.14,-0.06] [1.26×104,9.79×103][1.26\times 10^{-4},9.79\times 10^{-3}] 0

As shown in Table 6, for NR scenario, the predicted interval for C10NPC_{10}^{{}^{\prime}\text{NP}} falls within the 1σ1\sigma global fit range for C10NP-fitC_{10}^{{}^{\prime}\text{NP-fit}}. However, the remaining C9()NPC_{9}^{(^{\prime})\text{NP}}, C10NPC_{10}^{\text{NP}} and C7()NPC_{7}^{(^{\prime})\text{NP}} exhibit interference with their corresponding global fit values . In contrast, for IR scenario, the predicted interval for C9NPC_{9}^{{}^{\prime}\text{NP}} does not overlap with the 1σ1\sigma global fit for C9NP-fitC_{9}^{{}^{\prime}\text{NP-fit}}. Specifically, the maximum value of C9NP0.4C_{9}^{{}^{\prime}\text{NP}}\leq-0.4, while the global fit implies C9NP-fit0.4C_{9}^{{}^{\prime}\text{NP-fit}}\geq-0.4. Consequently, the model with x=1/2x=1/2 and NR mixing angles in VdRV_{dR} matrix can successfully explain both clean observables and other bsllb\to sll observables. However, the IR scenario fails to account for bsllb\to sll observables, despite explaining the clean observables.

V.2 New physics scale is limited by CMS measurement of the WW gauge boson mass

Given the recent CMS measurement of WW gauge boson mass, which is now consistent with SM prediction Bendavid (2024) Bon , the model suggests that all four cases of xx charge parameter x=±1/6,±1/2x={\pm 1/6,\pm 1/2} can accommodate this new CMS measurement and the global fit of the ρ\rho parameter. In this section, we will revisit the flavor observables inspired by constraints on the NP scale arising from the CMS measurement of the WW gauge boson mass .

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 6: Top and bottom panels show the correlation between s12RδRs_{12}^{R}-\delta^{R} for x=±1/2x=\pm 1/2 and x=±1/6x=\pm 1/6, respectively. The mixing angle parameters in VdRV_{dR} matrix are assumed in the NR scenario s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}.
Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 7: Top and bottom panels show the correlation between v1Λv_{1}-\Lambda for x=±1/2x=\pm 1/2 and x=±1/6x=\pm 1/6, respectively. The mixing angle parameters in VdRV_{dR} matrix are assumed in the NR scenario s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}.

In the panels corresponding four cases x=±1/2x=\pm 1/2 and x=±1/6x=\pm 1/6 of Figs. 6, we present the correlations between the mixing angle s12Rs_{12}^{R} and CP violating phase δR\delta^{R} satisfying constraints on quark flavor observables, with the mixing angles of VdRV_{d_{R}} set to NR values.

All four choices of xx allow for regions thats satisfy given flavor constraints. Notably, the obtained ranges for s12Rs_{12}^{R} and δR\delta^{R} are larger than in previous studies, For instance, we find δR[0,2π]\delta^{R}\in[0,2\pi] and s12R[0,0.4]s_{12}^{R}\in[0,0.4] for cases x=1/2,1/6x=1/2,1/6 and s12R[0.05,0.4]s_{12}^{R}\in[0.05,0.4] for x=1/2,1/6x=-1/2,-1/6. This behavior can be attributed to the new physics scale Λ\Lambda being significantly larger than in previous studies based on CDF II results. As a result, the NP contributions are more suppressed, allowing for a wider range of acceptable parameter values.

The panels in Figs .7 illustrate the relationship between two VEVs v1v_{1} and Λ\Lambda satisfying flavor constraints. Comparing these panels with these in Figs .1, we observe that the behavior for x=1/2,1/6x=1/2,1/6 is quite consistent, whereas the panels for x=1/2,1/6x=-1/2,-1/6 exhibit two distinct regions. Specifically, there are narrow regimes with Λ24\Lambda\sim 2-4 TeV and v1[240,246]v_{1}\in[240,246] GeV, as well as Λ5\Lambda\sim 5 TeV and v1[20,50]v_{1}\in[20,50] GeV for x=1/2x=-1/2 and x=1/6x=-1/6, respectively. Notably, the panels for x=1/2x=-1/2 and x=1/6x=-1/6 in Figs. 6 exhibit excluded regions δR[5π/4,7π/4]\delta^{R}\in[5\pi/4,7\pi/4] and s12R[0.2,0.3]s_{12}^{R}\in[0.2,0.3]. These regions arise due to the discontinuous nature of the allowed v1Λv_{1}-\Lambda parameter space in the corresponding panels of Figs .7. Specifically, there are gaps in the allowed region for v1v_{1} around v1[190,240]v_{1}\in[190,240] GeV and v1[60,160]v_{1}\in[60,160] GeV, which prevent the model from satisfying the flavor constraints.

Next, we focus on the IR scenario, as depicted in Fig .8 and 9. In Fig .8, we observe a stronger correlation between the mixing angle s12Rs_{12}^{R} and the CP-violating phase δR\delta^{R} compared to the NR scenario. For x=1/2x=-1/2 and x=1/6x=-1/6, the allowed region for s12Rs_{12}^{R} is significantly constrained to s12R[0.2,0.4]s_{12}^{R}\sim[0.2,0.4] with δR3π/4\delta^{R}\sim 3\pi/4 or δR7π/4\delta^{R}\sim 7\pi/4; In contrast, for x=1/2x=1/2 and 1/61/6, the allowed regions for δR\delta^{R} is primarily limited to δR[π/4,7π/4]\delta^{R}\in[\pi/4,7\pi/4], while s12Rs_{12}^{R} can attain maximum values of s12R1s_{12}^{R}\sim 1 at specific values of δR{π/4,3π/4,11π/8,7π/4}\delta^{R}\sim\left\{\pi/4,3\pi/4,11\pi/8,7\pi/4\right\}. In Fig .9, the constraints on the VEVs v1v_{1} and Λ\Lambda are more stringent in the IR scenario compared to the NR scenario, especially for x=1/2x=-1/2 and 1.6-1.6. For example, we find limits such as v1[0,150]v_{1}\in[0,150] GeV, Λ[10,16]\Lambda\in[10,16] TeV and v1[230,246]v_{1}\in[230,246] GeV, Λ[12,16]\Lambda\in[12,16] TeV.

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 8: Top and bottom panels show the correlation between s12RδRs_{12}^{R}-\delta^{R} for x=±1/2x=\pm 1/2 and x=±1/6x=\pm 1/6, respectively. The mixing angle parameters in VdRV_{dR} matrix are assumed in the IR scenario s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}.
Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 9: Top and bottom panels show the correlation between v1Λv_{1}-\Lambda for x=±1/2x=\pm 1/2 and x=±1/6x=\pm 1/6, respectively. The mixing angle parameters in VdRV_{dR} matrix are assumed in the NR scenario s12R>s13R>s23Rs_{12}^{R}>s_{13}^{R}>s_{23}^{R}.

Finally, we examine the impact of the obtained parameter spaces on the non-standard model WCs. As shown in Table 7, for NR scenario, the choices x=1/2x=-1/2 and x=±1/6x=\pm 1/6 are ruled out due to predicted ranges of C9NPC_{9}^{\text{NP}} that significantly exceed the 1σ1\sigma global fit range for C9global-fitC_{9}^{\text{global-fit}}. In contrast, the x=1/2x=1/2 case can potentially explain both clean and other bsl+lb\to sl^{+}l^{-} obsevables. Turning to IR situation, as presented in Table 8, all four cases x=±1/2,±1/6x=\pm 1/2,\pm 1/6 conflict with global fit for C9NPC_{9}^{\text{NP}}. If we revisit flavor constraints inspired by current CMS result of mWm_{W}, the model with x=1/2x=1/2 and NR mixing angles of VdRV_{d_{R}} can successfully explain both clean and other bsl+lb\to sl^{+}l^{-} observables, while the IR scenario is excluded for all values of xx. This finding aligns with previous studies, indicating that impact of CMS measurement on mWm_{W} does not significantly alter the overall conclusions related to flavor changing procsesses.

Table 7: The comparison between predicted NP WCs in the case x=±1/2,±1/6x=\pm 1/2,\pm 1/6 with 1σ1\sigma confidence interval in the 6D LFU global fit results Algueró et al. (2023)
WCs Global fits NR scenario
x=1/2x=1/2 x=1/2x=-1/2 x=1/6x=1/6 x=1/6x=-1/6
C9NPC_{9}^{\text{NP}} [1.38,1.03][-1.38,-1.03] [1.12,0.054][-1.12,-0.054] [0.64,0.021][-0.64,-0.021] [0.448,0.051][-0.448,-0.051] [0.109,1.737][0.109,1.737]
C10NPC_{10}^{\text{NP}} [0.09,0.22][-0.09,0.22] [0.16,0.0073][-0.16,-0.0073] [0.021,0.63][0.021,0.63] [0.103,0.012][-0.103,-0.012] [0.065,1.04][0.065,1.04]
C9NPC_{9}^{{}^{\prime}\text{NP}} [0.40,0.33][-0.40,0.33] [0.49,0][-0.49,0] [0.24,0.005][-0.24,-0.005] [0.574,0][-0.574,0] [0.024,0.675][0.024,0.675]
C10NPC_{10}^{{}^{\prime}\text{NP}} [0.25,0.13][-0.25,0.13] [0.071,0][-0.071,0] [0.005,0.24][0.005,0.24] [0.133,0][-0.133,0] [0.015,0.404][0.015,0.404]
C7NPC_{7}^{\text{NP}} [0.01,0.02][-0.01,0.02] [0,0.024][0,0.024] [0,0.024][0,0.024] [0,0.024][0,0.024] [0,0.022][0,0.022]
C7NPC_{7}^{{}^{\prime}\text{NP}} [0,0.03][0,0.03] 0 0 0 0
Table 8: The comparison between predicted NP WCs in the case x=±1/2,±1/6x=\pm 1/2,\pm 1/6 with 1σ1\sigma confidence interval in the 6D LFU global fit results Algueró et al. (2023)
WCs Global fits IR scenario
x=1/2x=1/2 x=1/2x=-1/2 x=1/6x=1/6 x=1/6x=-1/6
C9NPC_{9}^{\text{NP}} [1.38,1.03][-1.38,-1.03] [0.501,0.054][-0.501,-0.054] [0.084,0.022][-0.084,-0.022] [0.4,0.051][-0.4,-0.051] [0.122,0.208][0.122,0.208]
C10NPC_{10}^{\text{NP}} [0.09,0.22][-0.09,0.22] [0.072,0.008][-0.072,-0.008] [0.022,0.84][0.022,0.84] [0.092,0.012][-0.092,-0.012] [0.073,1.25][0.073,1.25]
C9NPC_{9}^{{}^{\prime}\text{NP}} [0.40,0.33][-0.40,0.33] [1.127,0.314][-1.127,0.314] [0.11,0.004][-0.11,-0.004] [0.946,0.282][-0.946,0.282] [0.047,0.107][0.047,0.107]
C10NPC_{10}^{{}^{\prime}\text{NP}} [0.25,0.13][-0.25,0.13] [0.161,0.045][-0.161,0.045] [0.004,0.11][0.004,0.11] [0.218,0.065][-0.218,0.065] [0.028,0.064][0.028,0.064]
C7NPC_{7}^{\text{NP}} [0.01,0.02][-0.01,0.02] [7×105,0.024][-7\times 10^{-5},0.024] [5.7×104,0.021][5.7\times 10^{-4},0.021] [1.1×104,0.023][-1.1\times 10^{-4},0.023] [5×105,8×105][5\times 10^{-5},8\times 10^{-5}]
C7NPC_{7}^{{}^{\prime}\text{NP}} [0,0.03][0,0.03] 0 0 0 0

VI Conclusion

The extension of hypercharge introduces a family-nonuniversal extension of the SM, altering its phenomenology. Due to the non-universality of quark generations, the model requires additional Higgs doublets to generate quark masses and recover the CKM matrix. This non-universality leads to FCNCs associated with both new vector gauge bosons and new scalar Higgs boson.

The additional Higgs doublets involved in spontaneous symmetry breaking induce mixing between ZZ and ZZ^{\prime}. This mixing can reduce the Z1Z_{1} mass compared to the SM ZZ mass and contribute positively to the ρ\rho parameter and WW-boson mass. Recent measurements of the WW boson mass have shown a slight deviation from the SM predictions, prompting further investigation. Previous constraints on the ρ\rho parameter and WW mass measurement by CDF from Run II at the Tevatron differed significantly other measurements, ruling out the model with x=±16x=\pm\frac{1}{6}. However, the other measurements of mWm_{W} Aad et al. (2024); Aaij et al. (2022a) including the latest CMS result Bendavid (2024) are in good agreement with each other and the SM prediction. By combining theses updated constraints on the ρ\rho parameter and WW mass, we find that the model can be viable for all cases of the xx parameter x=±12,x=±16x=\pm\frac{1}{2},x=\pm\frac{1}{6}. The analysis provides constraints on the new physics scale. For instance, with positive x={1/2,1/6}x=\left\{1/2,1/6\right\}, we respectively obtain Λ[4.328.1]\Lambda\in[4.3-28.1] TeV and Λ[13.239.3]\Lambda\in[13.2-39.3] TeV with v1[0,246]v_{1}\in[0,246] GeV. The cases with negative values x={1/2,1/6}x=\left\{-1/2,-1/6\right\} are more complicated, with constraints like:

  • For x=1/2x=-1/2, we obtain the allowed regions Λ[116.7]\Lambda\in[1-16.7] TeV if v1[0,204]v_{1}\in[0,204] GeV, and Λ[15.4]\Lambda\in[1-5.4] TeV if v1[220,246]v_{1}\in[220,246] GeV.

  • For x=1/2x=-1/2, the allowed regions are Λ[15.7]\Lambda\in[1-5.7] TeV if v1[0,108]v_{1}\in[0,108] GeV , and Λ[1.516.7]\Lambda\in[1.5-16.7] TeV if v1[141,246]v_{1}\in[141,246] GeV.

We investigate both (axial)vector and (pseudo)scalar currents, including neutral and charged currents. In lepton sector, the lepton flavor conserves at the tree-level. The charged scalar currents contribute to leptonic observables such as BR(eiejγ)(e_{i}\to e_{j}\gamma), which are found to be highly suppressed due to the tight constraints on Yukawa coupling hijν105h^{\nu}_{ij}\sim 10^{-5}.

In quark sector, the FCNCs exit at the tree-level. We consider the effects of both scalar and vector FCNCs on meson mixing systems ΔmK,Bs,Bd\Delta m_{K,B_{s},B_{d}}, branching ratios of top quark decays tu(c)γt\to u(c)\gamma, the bsl+lb\to sl^{+}l^{-} clean observables BR(Bsμ+μ)(B_{s}\to\mu^{+}\mu^{-}), BR(B¯Xsγ(\bar{B}\to X_{s}\gamma, and the bsl+lb\to sl^{+}l^{-} observables, which are strongly influenced by short-distance effects.

We explore the parameter space that allows for explaining all mentioned flavor phenomenologies while remaining consistent with either CDF measurement Aaltonen et al. (2022) or newest CMS measurement Bendavid (2024) of the WW boson mass. Interestingly, we find that in both cases, the model with the charge parameter x=1/2x=1/2 and NR mixing angles in VdRV_{d_{R}} matrix can not only accommodate the constraints in Eqs. ( 48,49, 59, 59) but also other bsl+lb\to sl^{+}l^{-} observables. The other cases of xx are ruled out as they predict NP WCs outside the 1σ1\sigma global fit interval Algueró et al. (2023). Specifically, for the CDF case, we obtain the constraints s12R[0.074,0.123]s_{12}^{R}\in[0.074,0.123], δR[0.52π,1.74π]\delta^{R}\in[0.52\pi,1.74\pi], v110.6v_{1}\geq 10.6 GeV and Λ5.964\Lambda\geq 5.964 TeV. For CMS case , the constraints are broader: s12R[0,0.4]s_{12}^{R}\in[0,0.4], δR[0,2π]\delta^{R}\in[0,2\pi], v1[0,246]v_{1}\in[0,246] GeV and Λ[4.328.1]\Lambda\in[4.3-28.1] TeV.

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2023.50.

References