This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

lemmathm\aliascntresetthelemma \newaliascntcorthm\aliascntresetthecor \newaliascntpropthm\aliascntresettheprop \newaliascntpropAthmA\aliascntresetthepropA \newaliascntdfthm\aliascntresetthedf \newaliascntremthm\aliascntresettherem \newaliascntexthm\aliascntresettheex

Flag matroids with coefficients

Manoel Jarra Manoel Jarra, University of Groningen, the Netherlands, and IMPA, Rio de Janeiro, Brazil [email protected]  and  Oliver Lorscheid Oliver Lorscheid, University of Groningen, the Netherlands, and IMPA, Rio de Janeiro, Brazil [email protected]
Abstract.

This paper is a direct generalization of Baker-Bowler theory to flag matroids, including its moduli interpretation as developed by Baker and the second author for matroids. More explicitly, we extend the notion of flag matroids to flag matroids over any tract, provide cryptomorphic descriptions in terms of basis axioms (Grassmann-Plücker functions), circuit/vector axioms and dual pairs, including additional characterizations in the case of perfect tracts. We establish duality of flag matroids and construct minors. Based on the theory of ordered blue schemes, we introduce flag matroid bundles and construct their moduli space, which leads to algebro-geometric descriptions of duality and minors. Taking rational points recovers flag varieties in several geometric contexts: over (topological) fields, in tropical geometry, and as a generalization of the MacPhersonian.

Introduction

Flag matroids appeared in different disguises—as sequences of strong maps in [Hig68, Ken75, CC76, Kun77], as particular cases of Coxeter matroids in [GS87], and implicitly as MacPhersonians in [MZ93, Bab94]—before their proper name was introduced and before they were systematically studied in the papers [BGVW97, BGW00, BGW01, BGS02] by Borovik, Gelfand, Stone, Vince and White (in varying constellations), culminating in an extended chapter in [BGW03], which summarizes several cryptomorphic descriptions. Duality for flag matroids is developed in [Gar18] and minors are discussed in [BEZ21, Thm. 4.1.5]. Other works on flag matroids include [dM07, CDMS22, BCTJ22, DES21, FH22, BK22].

A generalization of matroids of a different flavour are matroids with coefficients. The first type of such enriched matroids to appear in the literature are oriented matroids, as introduced by Bland and Las Vergnas in [BLV78], which have strong ties to real geometry. Dress and Wenzel provide in [Dre86, DW91, DW92a] a vast generalization with their theory of matroids over fuzzy rings. A particular instance are valuated matroids, as introduced in [DW92b], which are omnipresent in tropical geometry nowadays. Later Baker and Bowler streamlined and generalized Dress and Wenzel’s theory to matroids over tracts in [BB19]. Baker-Bowler theory encompasses cryptomorphic description of matroids over tracts in terms of Grassmann-Plücker functions, dual pairs and circuits, as well as vectors (see [And19]), and treats duality and minors.

To our best knowledge, the only types of flag matroids with coefficients—other than usual flag matroids (trivial coefficients) and flags of linear subspaces (coefficients in a field)—are valuated flag matroids (coefficients in the tropical hyperfield), which appear as flags of tropical linear spaces in [BEZ21, Bor21, JLLAO23, BEW22], and, implicitly, oriented flag matroids (coefficients in the sign hyperfield) as points of MacPhersonians; see [MZ93, And98, BLVS+99].

Summary of results

In this paper, we extend the notion of flag matroids to flag FF-matroids for any tract FF, and we exhibit cryptomorphic axiomatizations in terms of Grassmann-Plücker functions, dual pairs and circuits / vectors, as well as some additional descriptions in the case of perfect tracts. We also establish duality and minors. We explain all these aspects in terms of geometric constructions for the moduli space of flag matroids, which can be thought of as a flag variety over the regular partial field 𝔽1±{{\mathbb{F}}_{1}^{\pm}}.

Flag matroids

Let E={1,,n}E=\{1,\dotsc,n\} and 𝐫=(r1,,rs){\mathbf{r}}=(r_{1},\dotsc,r_{s}) with 0r1rsn0\leqslant r_{1}\leqslant\dotsc\leqslant r_{s}\leqslant n.111We allow for ri=ri+1r_{i}=r_{i+1} since strict inequalities ri<ri+1r_{i}<r_{i+1} are not preserved under contractions and deletions. A flag matroid of rank 𝐫{\mathbf{r}} on EE is a sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of matroids MiM_{i} of rank rir_{i} on EE such that every flat of MiM_{i} is a flat of Mi+1M_{i+1} for i=1,,s1i=1,\dotsc,s-1. We also say that MiM_{i} is a quotient of Mi+1M_{i+1}, and write Mi+1MiM_{i+1}\twoheadrightarrow M_{i}, in this case.

Example (Flags of matroid minors).

A primary example of a flag matroid on EE is of the following form. Let 0nsn1p0\leqslant n_{s}\leqslant\dotsc\leqslant n_{1}\leqslant p and n=n+pn^{\prime}=n+p be integers and MM^{\prime} be a matroid on E={1,,n}E^{\prime}=\{1,\dotsc,n^{\prime}\}. We define Mi=M\Ii/JiM_{i}=M^{\prime}\backslash I_{i}/J_{i} with Ji={n+1,,n+ni}J_{i}=\{n+1,\dotsc,n+n_{i}\} and Ii={n+ni+1,,n}I_{i}=\{n+n_{i}+1,\dotsc,n^{\prime}\} for i=1,,si=1,\dotsc,s. Then (M1,,Ms)(M_{1},\dotsc,M_{s}) is a flag matroid and, in fact, every flag matroid is of this form; see [Kun77].

For the purpose of this introduction, we assume that the reader is familiar with tracts and Baker-Bowler theory; we refer to section 1 for a summary. Let 𝕂{\mathbb{K}} be the Krasner hyperfield, whose incarnation as a tract is given by its unit group 𝕂×={1}{\mathbb{K}}^{\times}=\{1\} and its nullset N𝕂={1}N_{\mathbb{K}}={\mathbb{N}}-\{1\}. Using Baker and Bowler’s reinterpretation of a matroid MM of rank rr on EE as a 𝕂×{\mathbb{K}}^{\times}-class of a Grassmann-Plücker function φ:Er𝕂\myvarphi:E^{r}\to{\mathbb{K}} (mapping bases to 11 and dependent sets to 0) leads us towards the following cryptomorphism for flag matroids, which is section 2.4 and which is essentially known, as explained in section 2.4.

Proposition \thepropA.

Let 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) be a sequence of matroids MiM_{i} with respective Grassmann-Plücker functions φi:Eri𝕂\myvarphi_{i}:E^{r_{i}}\to{\mathbb{K}}. Then 𝐌{\mathbf{M}} is a flag matroid if and only if for all 1ijs1\leqslant i\leqslant j\leqslant s and x1,,xri1,y1,,yrj+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E,

k=1rj+1ϵkφi(yk,x1,,xri1)φj(y1,,yk^,,yrj+1)\sum_{k=1}^{r_{j}+1}\ \myepsilon^{k}\,\myvarphi_{i}(y_{k},x_{1},\dotsc,x_{r_{i}-1})\,\myvarphi_{j}(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{j}+1})

is in the nullset N𝕂N_{\mathbb{K}} where ϵ=1\myepsilon=1 in this case.

This reinterpretation is amenable to a generalization to flag matroids over tracts.222Our definition of flag FF-matroids extends Baker and Bowler’s definition of a strong FF-matroid. It is perceivable that there is also a satisfactory theory of weak flag FF-matroids. We chose to work with strong flag FF-matroids since the work [And19] by Anderson and [BL21] by Baker and the second author show that strong matroids are better behaved with respect to vector axioms and moduli spaces.

Definition.

Let FF be a tract. A flag FF-matroid of rank 𝐫{\mathbf{r}} on EE is a sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of FF-matroids MiM_{i} such that any choice of Grassmann-Plücker functions φi:EriF\myvarphi_{i}:E^{r_{i}}\to F with Mi=[φi]M_{i}=[\myvarphi_{i}] for i=1,,si=1,\dotsc,s satisfies the Plücker flag relations

k=1rj+1ϵkφi(yk,x1,,xri1)φj(y1,,yk^,,yrj+1)NF\sum_{k=1}^{r_{j}+1}\ \myepsilon^{k}\,\myvarphi_{i}(y_{k},x_{1},\dotsc,x_{r_{i}-1})\,\myvarphi_{j}(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{j}+1})\quad\in\quad N_{F}

for all 1ijs1\leqslant i\leqslant j\leqslant s and x1,,xri1,y1,,yrj+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E.

The stepping stone from which our theory of flag FF-matroids lifts off the ground is the extension of Baker and Bowler’s cryptomorphic description of FF-matroids to flag FF-matroids. Given an FF-matroid MM, we denote by 𝒞(M){\mathcal{C}}^{\ast}(M) its set of cocircuits and by 𝒱(M){\mathcal{V}}^{\ast}(M) its set of covectors. The following is Theorem 2.1.

Theorem A.

A sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of FF-matroids is a flag FF-matroid if and only if 𝒞(Mi)𝒱(Mj){\mathcal{C}}^{\ast}(M_{i})\subset{\mathcal{V}}^{\ast}(M_{j}) for all 1ijn1\leqslant i\leqslant j\leqslant n.

It’s notable that the circuit characterization of flag FF-matroids is, in fact, the analog of Baker-Bowler’s dual pair characterization since 𝒞(Mi)𝒱(Mj){\mathcal{C}}^{\ast}(M_{i})\subset{\mathcal{V}}^{\ast}(M_{j}) says nothing less than that the circuit set 𝒞(Mj){\mathcal{C}}(M_{j}) of MjM_{j} is orthogonal to 𝒞(Mi){\mathcal{C}}^{\ast}(M_{i}).

For perfect tracts, such as 𝕂{\mathbb{K}}, 𝕋{\mathbb{T}} and (partial) fields, we find the following, a priori different, characterizations of flag matroids (see Theorem 2.4), which reflect the more common descriptions of flags of linear subspaces over a field.

Theorem B.

Let FF be a perfect tract and 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) a sequence of matroids. Then the following are equivalent:

  1. (1)

    𝐌{\mathbf{M}} is a flag FF-matroid;

  2. (2)

    𝐌{\mathbf{M}} satisfies the Plücker flag relations

    k=1rj+1ϵkφi(yk,x1,,xri1)φj(y1,,yk^,,yrj+1)NF\sum_{k=1}^{r_{j}+1}\ \myepsilon^{k}\,\myvarphi_{i}(y_{k},x_{1},\dotsc,x_{r_{i}-1})\,\myvarphi_{j}(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{j}+1})\quad\in\quad N_{F}

    for all j=i+1{2,,s}j=i+1\in\{2,\dotsc,s\} and x1,,xri1,y1,,yrj+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E;

  3. (3)

    𝒱(M1)𝒱(Ms){\mathcal{V}}^{\ast}(M_{1})\subset\dotsb\subset{\mathcal{V}}^{\ast}(M_{s}).

Example (Flags of linear subspaces as flag KK-matroids).

As a tract, a field KK consists of the unit group K×K^{\times} and the nullset NK={ai[K×]ai=0 as elements of K}N_{K}=\{\sum a_{i}\in{\mathbb{N}}[K^{\times}]\mid\sum a_{i}=0\text{ as elements of }K\}. By Theorem B, a KK-matroid is a sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of KK-matroids whose associated covector sets 𝒱(Mi){\mathcal{V}}^{\ast}(M_{i}) form a chain 𝒱(M1)𝒱(Ms){\mathcal{V}}^{\ast}(M_{1})\subset\dotsb\subset{\mathcal{V}}^{\ast}(M_{s}) of linear subspaces of KEK^{E} with dim𝒱(Mi)=ri\dim{\mathcal{V}}^{\ast}(M_{i})=r_{i}. For more details, see section 2.8.

Example (Tropical flag matroids as flag 𝕋{\mathbb{T}}-matroids).

As a tract, the tropical hyperfield 𝕋{\mathbb{T}} consists of the (multiplicative) unit group 𝕋×=>0{\mathbb{T}}^{\times}={\mathbb{R}}_{>0} and the nullset

N𝕋={a1++an[>0]|the maximum occurs twice in a1,,an}.N_{\mathbb{T}}\ =\ \big{\{}a_{1}+\dotsc+a_{n}\in{\mathbb{N}}[{\mathbb{R}}_{>0}]\,\big{|}\,\text{the maximum occurs twice in }a_{1},\dotsc,a_{n}\big{\}}.

An immediate consequence of this definition is that the bend locus333Note that we use the Berkovich convention for the tropical semifield ¯=0\overline{{\mathbb{R}}}={\mathbb{R}}_{\geqslant 0} with addition max\max and the usual multiplication of real numbers. (f)¯n{\mathcal{B}}(f)\subset\overline{{\mathbb{R}}}^{n} of a tropical polynomial f(x1,,xn)=c(e1,,en)x1e1xnenf(x_{1},\dotsc,x_{n})=\sum c_{(e_{1},\dotsc,e_{n})}x_{1}^{e_{1}}\dotsb x_{n}^{e_{n}} agrees with tropical points (a1,,an)𝕋n(a_{1},\dotsc,a_{n})\in{\mathbb{T}}^{n} for which f(a1,,an)N𝕋f(a_{1},\dotsc,a_{n})\in N_{\mathbb{T}}.

Brandt, Eur and Zhang describe valuated flag matroids in different disguises: one of them ([BEZ21, Prop. 4.2.3]) identifies them as points of the flag Dressian, which is defined by the very same equations that go under the name of Plücker flag relations in our text. This shows that a valuated flag matroid after Brandt, Eur and Zhang is the same thing as a flag 𝕋{\mathbb{T}}-matroid in our sense. Since 𝕋{\mathbb{T}} is perfect and since a tropical linear space is the covector set of a valuated matroid, Theorem B identifies a flag 𝕋{\mathbb{T}}-matroid with a chain V1VsV_{1}\subset\dotsb\subset V_{s} of tropical linear spaces, which recovers [BEZ21, Thm. 4.3.1]. For more details, see section 2.8.

Example (Flag 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-matroids).

In its incarnation as a tract, the regular partial field 𝔽1±{{\mathbb{F}}_{1}^{\pm}} is given by its unit group (𝔽1±)×={1,ϵ}({{\mathbb{F}}_{1}^{\pm}})^{\times}=\{1,\myepsilon\} and its nullset N𝔽1±={n.1+n.ϵn}N_{{\mathbb{F}}_{1}^{\pm}}=\{n.1+n.\myepsilon\mid n\in{\mathbb{N}}\}. Since 𝔽1±{{\mathbb{F}}_{1}^{\pm}} is perfect, Theorem B implies that a flag 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-matroid is a sequence 𝐌=([φ1],,[φs]){\mathbf{M}}=\big{(}[\myvarphi_{1}],\dotsc,[\myvarphi_{s}]\big{)} of (𝔽1±)×({{\mathbb{F}}_{1}^{\pm}})^{\times}-classes of non-trivial functions φi:Eri𝔽1±\myvarphi_{i}:E^{r_{i}}\to{{\mathbb{F}}_{1}^{\pm}} for which

k=1ri+1+1ϵkφi(yk,x1,,xri1)φi+1(y1,,yk^,,yri+1+1)N𝔽1±\sum_{k=1}^{r_{i+1}+1}\ \myepsilon^{k}\,\myvarphi_{i}(y_{k},x_{1},\dotsc,x_{r_{i}-1})\,\myvarphi_{i+1}(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{i+1}+1})\quad\in\quad N_{{{\mathbb{F}}_{1}^{\pm}}}

for i=1,,s1i=1,\dotsc,s-1 and all x1,,xri1,y1,,yri+1+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{i+1}+1}\in E. Since every regular matroid is represented by a unimodular matrix, whose rows span the set of covectors (considered as elements of E{\mathbb{Z}}^{E} with coefficients 0, 11 and 1-1), a sequence (A1,,As)(A_{1},\dotsc,A_{s}) of unimodular ri×nr_{i}\times n-matrices AiA_{i} represents a regular flag matroid if and only if the row space of AiA_{i} is contained in the row space of Ai+1A_{i+1} for i=1,,s1i=1,\dotsc,s-1.

Example (Oriented flag matroids).

The sign hyperfield 𝕊{\mathbb{S}} is the tract with unit group 𝕊×={1,ϵ}{\mathbb{S}}^{\times}=\{1,\myepsilon\} and nullset N𝕊={n.1+m.ϵn=m=0 or n0m}N_{\mathbb{S}}=\{n.1+m.\myepsilon\mid n=m=0\text{ or }n\neq 0\neq m\}. Since 𝕊{\mathbb{S}} is perfect, we can invoke Theorem B and describe a flag 𝕊{\mathbb{S}}-matroid, or oriented flag matroid, as a sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of oriented matroids MiM_{i} that are represented by Grassmann-Plücker functions, or chirotopes, φi:Eri𝕊\myvarphi_{i}:E^{r_{i}}\to{\mathbb{S}} that satisfy

k=1ri+1+1ϵkφi(yk,x1,,xri1)φi+1(y1,,yk^,,yri+1+1)N𝕊\sum_{k=1}^{r_{i+1}+1}\ \myepsilon^{k}\,\myvarphi_{i}(y_{k},x_{1},\dotsc,x_{r_{i}-1})\,\myvarphi_{i+1}(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{i+1}+1})\quad\in\quad N_{{\mathbb{S}}}

for i=1,,s1i=1,\dotsc,s-1 and all x1,,xri1,y1,,yri+1+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{i+1}+1}\in E. Equivalently, a sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of oriented matroids is an oriented flag matroid if every cocircuit of MiM_{i} is in the span of the cocircuits of Mi+1M_{i+1} for i=1,,s1i=1,\dotsc,s-1.

Note that in our terminology, the MacPhersonian MacPh(r,N)\textup{MacPh}(r,N) of a rank ww matroid NN consists of all oriented flag matroids (M,N)(M,N) of type (r,w)(r,w).

Duality, minors of flag matroids and push forwards can be directly derived from the analogous constructions for the FF-matroids of the flag (see section 2.1, section 2.2, Theorem 2.2, Theorem 2.3).

Theorem C.

Let 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) be a flag FF-matroid of rank 𝐫{\mathbf{r}} on EE. Let II and JJ be disjoint subsets of EE and 𝐢=(i1,,it){\mathbf{i}}=(i_{1},\dotsc,i_{t}) with 1i1its1\leqslant i_{1}\leqslant\dotsb\leqslant i_{t}\leqslant s. Then

𝐌=(M1,,Ms),𝐌\I/J=(M1\I/J,,Ms\I/J),π𝐢(𝐌)=(Mi1,,Mit){\mathbf{M}}^{\ast}=(M_{1}^{\ast},\dotsc,M^{\ast}_{s}),\quad{\mathbf{M}}\backslash I/J=(M_{1}\backslash I/J,\dotsc,M_{s}\backslash I/J),\quad\mypi_{\mathbf{i}}({\mathbf{M}})=(M_{i_{1}},\dotsc,M_{i_{t}})

are flag FF-matroids, and (𝐌\I/J)=𝐌\J/I({\mathbf{M}}\backslash I/J)^{\ast}={\mathbf{M}}^{\ast}\backslash J/I. Given a tract morphism f:FFf:F\to F^{\prime}, the sequence f𝐌=(fM1,,fMs)f_{\ast}{\mathbf{M}}=(f_{\ast}M_{1},\dotsc,f_{\ast}M_{s}) is a flag FF^{\prime}-matroid.

Our initial example of a flag matroid as a sequence of matroid minors extends to flag FF-matroids in the following way (see Theorem 2.5, section 2.9).

Theorem D.

Let 0nsn1p0\leqslant n_{s}\leqslant\dotsc\leqslant n_{1}\leqslant p and n=n+pn^{\prime}=n+p be integers and MM^{\prime} be an FF-matroid on E={1,,n}E^{\prime}=\{1,\dotsc,n^{\prime}\}. For i=1,,si=1,\dotsc,s, we define Mi=M\Ii/JiM_{i}=M^{\prime}\backslash I_{i}/J_{i} where Ji={n+1,,n+ni}J_{i}=\{n+1,\dotsc,n+n_{i}\} and Ii={n+(ni+1),,n}I_{i}=\{n+(n_{i}+1),\dotsc,n^{\prime}\}. Then (M1,,Ms)(M_{1},\dotsc,M_{s}) is a flag FF-matroid. If FF is perfect, then every flag FF-matroid of rank (r,r+1)(r,r+1) is of this form.

Application to representation theory

Theorem D has some interesting consequences for the representation theory of flag matroids. We explain a sample application in the following. For a tract FF, we denote by tF:F𝕂t_{F}:F\to{\mathbb{K}} the unique tract morphism to the Krasner hyperfield 𝕂{\mathbb{K}}. A flag matroid is

  • regular if it is of the form t𝔽1±,𝐌t_{{{\mathbb{F}}_{1}^{\pm}},\ast}{\mathbf{M}} for a flag 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-matroid 𝐌{\mathbf{M}};

  • binary if it is of the form t𝔽2,𝐌t_{{\mathbb{F}}_{2},\ast}{\mathbf{M}} for a flag 𝔽2{\mathbb{F}}_{2}-matroid 𝐌{\mathbf{M}};

  • orientable if it is of the form t𝕊,𝐌t_{{\mathbb{S}},\ast}{\mathbf{M}} for a flag 𝕊{\mathbb{S}}-matroid 𝐌{\mathbf{M}}.

Theorem E.

A flag matroid 𝐌{\mathbf{M}} of rank (r,r+1)(r,r+1) is regular if and only if it is binary and orientable.

Proof.

Since the tract morphism t𝔽1±:𝔽1±𝕂t_{{{\mathbb{F}}_{1}^{\pm}}}:{{\mathbb{F}}_{1}^{\pm}}\to{\mathbb{K}} factors through both 𝔽2{\mathbb{F}}_{2} and 𝕊{\mathbb{S}}, every regular flag matroid is binary and orientable.

Conversely assume that 𝐌{\mathbf{M}} is a binary and orientable flag matroid of rank (r,r+1)(r,r+1), i.e., 𝐌=t𝔽2,(𝐌𝔽2){\mathbf{M}}=t_{{\mathbb{F}}_{2},\ast}({\mathbf{M}}_{{\mathbb{F}}_{2}}) for a flag 𝔽2{\mathbb{F}}_{2}-matroid 𝐌𝔽2{\mathbf{M}}_{{\mathbb{F}}_{2}} and 𝐌=t𝕊,(𝐌𝕊){\mathbf{M}}=t_{{\mathbb{S}},\ast}({\mathbf{M}}_{{\mathbb{S}}}) for a flag 𝕊{\mathbb{S}}-matroid 𝐌𝕊{\mathbf{M}}_{{\mathbb{S}}}. Since 𝔽2{\mathbb{F}}_{2} and 𝕊{\mathbb{S}} are perfect, we can apply Theorem D to find an 𝔽2{\mathbb{F}}_{2}-matroid M𝔽2M^{\prime}_{{\mathbb{F}}_{2}} and an 𝕊{\mathbb{S}}-matroid M𝕊M^{\prime}_{{\mathbb{S}}} with 𝐌𝔽2=(M𝔽2/e,M𝔽2\e){\mathbf{M}}_{{\mathbb{F}}_{2}}=(M^{\prime}_{{\mathbb{F}}_{2}}/e,\,M^{\prime}_{{\mathbb{F}}_{2}}\backslash e) and 𝐌𝕊=(M𝕊/e,M𝕊\e){\mathbf{M}}_{{\mathbb{S}}}=(M^{\prime}_{{\mathbb{S}}}/e,\,M^{\prime}_{{\mathbb{S}}}\backslash e). By [Kun77, Prop. 5.1], 𝐌=(M/e,M\e){\mathbf{M}}=(M^{\prime}/e,\,M^{\prime}\backslash e) for a rank r+1r+1-matroid MM^{\prime} on E=E{e}E^{\prime}=E\cup\{e\}, which is unique by section 2.9 as 𝕂×={1}{\mathbb{K}}^{\times}=\{1\}. Since push-forwards commute with taking minors, we conclude that t𝔽2,(M𝔽2)=M=t𝕊,(M𝕊)t_{{\mathbb{F}}_{2},\ast}(M^{\prime}_{{\mathbb{F}}_{2}})=M^{\prime}=t_{{\mathbb{S}},\ast}(M^{\prime}_{{\mathbb{S}}}), which shows that MM^{\prime} is binary and orientable. By [BLV78, Cor. 6.2.6], M=t𝔽1±,(M𝔽1±)M^{\prime}=t_{{{\mathbb{F}}_{1}^{\pm}},\ast}(M^{\prime}_{{{\mathbb{F}}_{1}^{\pm}}}) for an 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-matroid M𝔽1±M^{\prime}_{{{\mathbb{F}}_{1}^{\pm}}}. Using again the compatibility of push-forwards with minors yields that 𝐌=t𝔽1±,(𝐌𝔽1±){\mathbf{M}}=t_{{{\mathbb{F}}_{1}^{\pm}},\ast}({\mathbf{M}}_{{\mathbb{F}}_{1}^{\pm}}) for the flag 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-matroid 𝐌𝔽1±=(M𝔽1±/e,M𝔽1±\e){\mathbf{M}}_{{\mathbb{F}}_{1}^{\pm}}=(M^{\prime}_{{\mathbb{F}}_{1}^{\pm}}/e,\,M^{\prime}_{{{\mathbb{F}}_{1}^{\pm}}}\backslash e), which proves our claim. ∎

The strategy of this proof does not extend to other ranks 𝐫{\mathbf{r}} since not every flag FF-matroid is a sequence of minors of a single matroid MM^{\prime} (where FF stands for an arbitrary perfect tract). But it is perceivable that other techniques from the representation theory of matroids generalize to flag matroids of arbitrary rank. As a sample problem for future investigations, we pose the question:

Problem.

Is every binary and orientable flag matroid regular?

The moduli space

The theory of moduli spaces of matroids from Baker and the second author’s paper [BL21] extends to flag matroids, utilizing ordered blue schemes. We recall some aspects from the theory of ordered blueprints and ordered blue schemes and refer to [BL21] for full details.

An ordered blueprint BB consists of a commutative semiring B+B^{+} with 0 and 11 together with a multiplicatively closed subset BB^{\bullet} that contains 0 and 11 and that generates B+B^{+} as a semiring and together with a partial order \leqslant on B+B^{+} that is closed under addition and multiplication in the sense that xyx\leqslant y implies x+zy+zx+z\leqslant y+z and xzyzxz\leqslant yz. A tract FF defines the ordered blueprint B=FoblprB=F^{\textup{oblpr}} with ambient semiring B+=[F×]B^{+}={\mathbb{N}}[F^{\times}], underlying monoid B=FB^{\bullet}=F and partial order \leqslant that is generated by the relations 0x0\leqslant x for xNFx\in N_{F}.

Since \leqslant is closed under addition, we lose information about tracts FF for which NFN_{F} is not closed under addition. Therefore we restrict our attention in this part of the paper to idylls, which are tracts with additively closed nullset and which can be identified with the associated ordered blueprint. This technical restriction is mild since all (partial) fields and all hyperfields, including 𝔽1±{{\mathbb{F}}_{1}^{\pm}}, 𝕂{\mathbb{K}}, 𝕋{\mathbb{T}} and 𝕊{\mathbb{S}}, are idylls. In the following, FF denotes an idyll.

Flag FF-matroids are canonically identified with FF-rational points of the flag variety Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) over 𝔽1±{{\mathbb{F}}_{1}^{\pm}}, which is defined as the closed subscheme of i=1s𝔽1±nri1\prod_{i=1}^{s}{\mathbb{P}}_{{\mathbb{F}}_{1}^{\pm}}^{{n}^{r_{i}}-1} given by the identities T(σ(x1),,σ(xri))=sign(σ)T(x1,,xri)T_{(\mysigma(x_{1}),\dotsc,\mysigma(x_{r_{i}}))}=\operatorname{{sign}}(\mysigma)T_{(x_{1},\dotsc,x_{r_{i}})} for σSri\mysigma\in S_{r_{i}} and T(x1,,xri)=0T_{(x_{1},\dotsc,x_{r_{i}})}=0 if #{x1,,xri}<ri\#\{x_{1},\dotsc,x_{r_{i}}\}<r_{i}, as well as the multi-homogeneous Plücker flag relations

0k=1rj+1ϵkT(yk,x1,,xri1)T(y1,,yk^,,yrj+1)0\ \leqslant\ \sum_{k=1}^{r_{j}+1}\ \myepsilon^{k}\,T_{(y_{k},x_{1},\dotsc,x_{r_{i}-1})}\,T_{(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{j}+1})}

for all 1ijs1\leqslant i\leqslant j\leqslant s and x1,xri1,y1,,yrj+1Ex_{1}\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E. As the special case 𝐫=(r1){\mathbf{r}}=(r_{1}), the flag variety is the Grassmannian, or matroid space, Gr(r1,E)=Mat(r1,E)\operatorname{Gr}(r_{1},E)=\operatorname{Mat}(r_{1},E); see [BL21, section 5]. The following is section 3.6.

Theorem F.

Let FF be an idyll. Then there is a canonical bijection between flag FF-matroids and FF-rational points of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E).

Theorem F generalizes the fact that the KK-rational points of a flag variety correspond to flags of KK-linear subspaces for fields KK and that the points of the flag Dressian correspond to flags of tropical linear spaces; see [BEZ21]. In fact, Theorem F follows from the stronger property that Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) is the fine moduli space of flag matroid bundles; see Theorem 3.1 for the precise statement.

The previously discussed constructions for flag FF-matroids extend to geometric constructions in terms of certain canonical morphisms between flag varieties under the identification of flag FF-matroids with FF-rational points of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) in Theorem F.

Coordinate projection

Let 𝐢=(i1,,it){\mathbf{i}}=(i_{1},\dotsc,i_{t}) be a sequence of integers with 1i1its1\leqslant i_{1}\leqslant\dotsb\leqslant i_{t}\leqslant s and 𝐫=(ri1,,rit){\mathbf{r}}^{\prime}=(r_{i_{1}},\dotsc,r_{i_{t}}). Then there is a canonical morphism π𝐢:Fl(𝐫,E)Fl(𝐫,E)\mypi_{\mathbf{i}}:\operatorname{Fl}({\mathbf{r}},E)\to\operatorname{Fl}({\mathbf{r}}^{\prime},E), which maps a flag FF-matroid 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) to 𝐌=(Mi1,,Mit){\mathbf{M}}^{\prime}=(M_{i_{1}},\dotsc,M_{i_{t}}). This is section 3.7.

Duality

Define 𝐫=(rs,,r1){\mathbf{r}}^{\ast}=(r_{s}^{\ast},\dotsc,r_{1}^{\ast}) with ri=nrir_{i}^{\ast}=n-r_{i}. Then there is a canonical morphism Fl(𝐫,E)Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E)\to\operatorname{Fl}({\mathbf{r}}^{\ast},E), which maps a flag FF-matroid 𝐌{\mathbf{M}} to its dual 𝐌{\mathbf{M}}^{\ast} (after composition with the duality involution of FF). This is Theorem 3.2.

Minors

Let eEe\in E and 𝐫k=(r11,,rk1,rk+1,,rs){\mathbf{r}}_{k}=(r_{1}-1,\dotsc,r_{k}-1,r_{k+1},\dotsc,r_{s}). Then there exist locally closed subschemes W𝐫,k,/eFl(𝐫,E)W_{{\mathbf{r}},k,/e}\hookrightarrow\operatorname{Fl}({\mathbf{r}},E) and morphisms Ψ𝐫,k,/e:W𝐫,k,/eFl(𝐫k,E)\Psi_{{\mathbf{r}},k,/e}:W_{{\mathbf{r}},k,/e}\to\operatorname{Fl}({\mathbf{r}}_{k},E) such that Fl(𝐫,E)(F)=k=1sW𝐫,k,/e(F)\operatorname{Fl}({\mathbf{r}},E)(F)=\mycoprod_{k=1}^{s}W_{{\mathbf{r}},k,/e}(F) and such that Ψ𝐫,k,/e\Psi_{{\mathbf{r}},k,/e} maps a flag FF-matroid 𝐌{\mathbf{M}} to its contraction 𝐌/e{\mathbf{M}}/e. There are analogous morphisms for the deletion 𝐌\e{\mathbf{M}}\backslash e. This is Theorem 3.3.

Flags of minors

Let n=n+rsr1n^{\prime}=n+r_{s}-r_{1} and E={1,,n}E^{\prime}=\{1,\dotsc,n^{\prime}\}. Let W𝐫,EW_{{\mathbf{r}},E} be the open locus in Gr(rs,E)\operatorname{Gr}(r_{s},E^{\prime}) of matroids for which {n+1,,n}\{n+1,\dotsc,n^{\prime}\} is independent and co-independent. Then there is a canonical morphism W𝐫,EFl(𝐫,E)W_{{\mathbf{r}},E}\to\operatorname{Fl}({\mathbf{r}},E), which sends an FF-matroid MM^{\prime} of rank rsr_{s} on EE^{\prime} to the flag FF-matroid (M\I1/J1,,M\Is/Js)(M^{\prime}\backslash I_{1}/J_{1},\dotsc,M^{\prime}\backslash I_{s}/J_{s}) of rank 𝐫{\mathbf{r}} on EE where Ji={n+1,,rsri}J_{i}=\{n+1,\dotsc,r_{s}-r_{i}\} and Ii={rsri+1,,n}I_{i}=\{r_{s}-r_{i}+1,\dotsc,n^{\prime}\}. This is Theorem 3.4.

As explained in our initial example, every flag matroid is a sequence of minors, i.e., W𝐫,E(𝕂)Fl(𝐫,E)(𝕂)W_{{\mathbf{r}},E}({\mathbb{K}})\to\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) is surjective for all 𝐫{\mathbf{r}} and EE. This is also true for fields KK: the map W𝐫,E(K)Fl(𝐫,E)(K)W_{{\mathbf{r}},E}(K)\to\operatorname{Fl}({\mathbf{r}},E)(K) is surjective since it is GL(E,K)\operatorname{GL}(E,K)-equivariant and since GL(E,K)\operatorname{GL}(E,K) acts transitively on Fl(𝐫,E)(K)\operatorname{Fl}({\mathbf{r}},E)(K). Initially Las Vergnas expected the same for pairs of oriented matroids, but this was later disproven by Richter-Gebert; see [Ric93, Cor. 3.5]. This makes us wonder:

Problem.

For which 𝐫{\mathbf{r}}, EE and FF is W𝐫,E(F)Fl(𝐫,E)(F)W_{{\mathbf{r}},E}(F)\to\operatorname{Fl}({\mathbf{r}},E)(F) surjective?

Topologies on rational point sets

A topology on FF induces a topology on Fl(𝐫,E)(F)\operatorname{Fl}({\mathbf{r}},E)(F), which recovers several known instances of flag varieties. If F=KF=K is a topological field, then Fl(𝐫,E)(K)\operatorname{Fl}({\mathbf{r}},E)(K) is the flag variety over KK together with its strong topology; in particular, Fl(𝐫,E)()\operatorname{Fl}({\mathbf{r}},E)({\mathbb{R}}) is the manifold of flags of real linear subspaces. Endowing F=𝕋F={\mathbb{T}} with the real topology identifies Fl(𝐫,E)(𝕋)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{T}}) with the flag Dressian from [BEZ21] as a tropical variety. Endowing the sign hyperfield 𝕊{\mathbb{S}} with the topology generated by the open subsets {1}\{1\} and {ϵ}\{\myepsilon\} yields a generalization of the MacPhersonian to oriented flag matroids. Endowing the Krasner hyperfield 𝕂{\mathbb{K}} with the topology generated by the open subset {1}\{1\} endows Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) with a topology, in which a matroid MM is in the closure of another matroid NN precisely if all bases of MM are bases of NN. A more detailed discussion of topologies on rational point sets can be found in section 3.11.

Relation to combinatorial flag varieties and Tits geometries

Borovik, Gelfand and White introduce in [BGW01] the combinatorial flag variety ΩW\Omega_{W} for the symmetric group W=SnW=S_{n} as the order complex of the collection of all matroids (of arbitrary rank) on E={1,,n}E=\{1,\dotsc,n\}, endowed with the partial order MNM\leqslant N if and only if NMN\twoheadrightarrow M. Thus ΩW\Omega_{W} is a chamber complex, and its chambers are indexed by flag matroids on EE. The maximal chambers have dimension n2n-2 and correspond to flag matroids of rank (1,,n1)(1,\dotsc,n-1).

The same authors mention at the end of section 7.14 of their book [BGW03] that:

Many geometries over fields have formal analogues which can be thought of as geometries over the field of 11 element. For example, the projective plane over the field 𝔽q{\mathbb{F}}_{q} has q2+q+1q^{2}+q+1 points and the same number of lines; every line in the plane has q+1q+1 points. When q=1q=1, we have a plane with three points and three lines, i.e., a triangle. The flag complex of the triangle is a thin building of type A2=Sym3A_{2}=Sym_{3}. In general, the Coxeter complex 𝒲{\mathcal{W}} of a Coxeter group WW is a thin building of type WW and behaves like the building of type WW over the field of 11 element.

However, the Coxeter complex has a relatively poor structure. In many aspects, ΩW\Omega_{W} and ΩW\Omega_{W}^{\ast} are more suitable candidates for the role of a “universal” combinatorial geometry of type WW over the field of 11 element.

For the Coxeter group W=SnW=S_{n} of type An1A_{n-1}, the combinatorial flag variety ΩW\Omega_{W} resurfaces as the set of 𝕂{\mathbb{K}}-rational points of the 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-schemes Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) (with varying 𝐫{\mathbf{r}}). More precisely, the chambers of ΩW\Omega_{W} correspond bijectively to

𝐫ΘFl(𝐫,E)(𝕂)whereΘ={(r1,,rs)|s>0, 0<r1<<rs<n},\mycoprod_{{\mathbf{r}}\in\Theta}\ \operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}})\quad\text{where}\quad\Theta\ =\ \big{\{}\,(r_{1},\dotsc,r_{s})\,\big{|}\,s>0,\;0<r_{1}<\dotsb<r_{s}<n\,\big{\}},

and the chamber of a flag matroid 𝐍{\mathbf{N}} is the face of the chamber of a flag matroid 𝐌{\mathbf{M}} if and only if 𝐍=π𝐢(𝐌){\mathbf{N}}=\mypi_{\mathbf{i}}({\mathbf{M}}) for an appropriate coordinate projection π𝐢\mypi_{\mathbf{i}} (see Theorem C).

Moreover, Borovik, Gelfand and White observe in [BGW01] that the Coxeter complex 𝒲{\mathcal{W}} of WW appears naturally as the subcomplex of ΩW\Omega_{W} that consists of flags of matroids with exactly one basis, which correspond to the closed points of Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}). This links their idea to Tits’ seminal paper [Tit57] on 𝔽1{{\mathbb{F}}_{1}}, where Tits introduces geometries, which can be thought of as a predecessor of a building over a finite field, and where he muses over the (lack of a) field of characteristic one, which could explain the role of the Coxeter complexes 𝒲{\mathcal{W}}.

In so far, our flag varieties Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E), together with the various coordinate projections π𝐢\mypi_{\mathbf{i}}, can be seen as an enrichment of both Tits’ and Borovik, Gelfand and White’s perspectives on 𝔽1{{\mathbb{F}}_{1}}-geometry.

Acknowledgements

We would like to thank Matthew Baker for several discussions and Christopher Eur for pointing us to the work on strong maps of oriented matroids. We would like to thank Eduardo Vital for his comments on a previous version. The first author was supported by a CNPq fellowship - Brazil (140325/2019-0).

1. Baker-Bowler theory

In this section, we review the theory of matroids over a tract, as developed by Baker and Bowler in [BB19].

1.1. Tracts

A pointed monoid is a (multiplicatively written) monoid FF with neutral element 11 and an absorbing element 0 (or zero for short), which is characterized by the property that 0a=00\cdot a=0 for all aFa\in F. The unit group of FF is the submonoid F×F^{\times} of all invertible elements of FF, which is a group.

A tract is a commutative pointed monoid FF with unit group F×=F{0}F^{\times}=F-\{0\} together with a subset NFN_{F} of the group semiring [F×]{\mathbb{N}}[F^{\times}], called the nullset of FF, which satisfies:

  1. (T0)

    The zero element of [F×]{\mathbb{N}}[F^{\times}] belongs to NFN_{F}.

  2. (T1)

    The multiplicative identity of [F×]{\mathbb{N}}[F^{\times}] is not in NFN_{F}.

  3. (T2)

    There is a unique element ϵ\myepsilon in F×F^{\times} with 1+ϵNF1+\myepsilon\in N_{F}.

  4. (T3)

    NFN_{F} is closed under the natural action of F×F^{\times} on [F×]{\mathbb{N}}[F^{\times}].

Note that the axioms imply that ϵ2=1\myepsilon^{2}=1 and that a+bNFa+b\in N_{F} if and only if b=ϵab=\myepsilon a. A morphism between tracts FF and FF^{\prime} is a multiplicative map f:FFf:F\to F^{\prime} such that f(0)=0f(0)=0 and f(1)=1f(1)=1 and such that f(ai)NF\sum f(a_{i})\in N_{F^{\prime}} whenever aiNF\sum a_{i}\in N_{F}.

Example \theex (Fields).

A field KK can be considered as the tract whose multiplicative monoid equals that of KK and whose nullset is NK={ai[K×]|ai=0 in K}N_{K}=\{\sum a_{i}\in{\mathbb{N}}[K^{\times}]|\;\sum a_{i}=0\text{ in }K\}. If the context is clear, we denote the tract by the same symbol KK, and we say that a tract KK is a field if it is associated with a field.

More generally, partial fields can be considered as tracts, as explained in [BL21, Thm. 2.21]. The most relevant example for our purposes is the regular partial field 𝔽1±{{\mathbb{F}}_{1}^{\pm}}, whose appearance as a tract consists of the multiplicative monoid 𝔽1±={0,1,ϵ}{{\mathbb{F}}_{1}^{\pm}}=\{0,1,\myepsilon\} and the nullset N𝔽1±={n.1+m.ϵn=m}N_{{\mathbb{F}}_{1}^{\pm}}=\{n.1+m.\myepsilon\mid n=m\}.

Example \theex (Hyperfields).

A hyperoperation on a set SS is a map S×S2SS\times S\rightarrow 2^{S}. A hyperfield is a generalization of a field whose addition is replaced by a hyperoperation (a,b)a[-0]b(a,b)\mapsto a{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}b, which satisfies analogous properties to the addition of a field. We consider a hyperfield KK as the tract (K×,NK)(K^{\times},N_{K}) with nullset NK={ai[K×]| 0[2]ai}N_{K}=\big{\{}\sum a_{i}\in{\mathbb{N}}[K^{\times}]\,\big{|}\,0\in\operatorname*{\,\raisebox{-2.2pt}{\larger[2]{$\boxplus$}}\,}a_{i}\big{\}}.

Some particular examples are the following:

  • The Krasner hyperfield is the tract 𝕂={0,1}{\mathbb{K}}=\{0,1\} with nullset N𝕂={1}N_{\mathbb{K}}={\mathbb{N}}-\{1\} and ϵ=1\myepsilon=1. Its hyperaddition is given by 0[-0]a={a}0{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}a=\{a\} for a=0,1a=0,1 and 1[-0] 1={0,1}1{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}1=\{0,1\}.

  • The tropical hyperfield is the tract 𝕋=0{\mathbb{T}}={\mathbb{R}}_{\geqslant 0} with nullset

    N𝕋={ai[>0]|the maximum appears twice in {ai}}\textstyle N_{\mathbb{T}}\ =\ \big{\{}\sum a_{i}\in{\mathbb{N}}[{\mathbb{R}}_{>0}]\,\big{|}\,\text{the maximum appears twice in }\{a_{i}\}\big{\}}

    and ϵ=1\myepsilon=1. Its hyperaddition is given by a[-0]b={max{a,b}}a{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}b=\big{\{}\max\{a,b\}\big{\}} for aba\neq b and a[-0]a=[0,a]a{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}a=[0,a].

  • The sign hyperfield is the tract 𝕊={0,1,1}{\mathbb{S}}=\{0,1,-1\} with nullset

    N𝕊={n.1+m.(1)|n=m=0 or n0m}N_{\mathbb{S}}\ =\ \big{\{}n.1+m.(-1)\,\big{|}\,n=m=0\text{ or }n\neq 0\neq m\big{\}}

    and ϵ=1\myepsilon=-1. Its hyperaddition satisfies a[-0]a={a}a{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}a=\{a\} and a[-0](a)={0,1,1}a{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}(-a)=\{0,1,-1\} for a=1,1a=1,-1.

Note that 𝕂{\mathbb{K}} is a terminal object in the category of tracts: for every tract FF, the terminal map tF:F𝕂t_{F}:F\to{\mathbb{K}} that maps F×F^{\times} to 11 is the unique tract morphism from FF to 𝕂{\mathbb{K}}.

1.2. Matroids over tracts

Let E={1,,n}E=\{1,\dotsc,n\} and 0rn0\leqslant r\leqslant n. A Grassmann–Plücker function of rank rr on EE with coefficients in FF is a function φ:ErF\myvarphi:E^{r}\rightarrow F such that:

  1. (GP1)

    φ\myvarphi is not identically zero;

  2. (GP2)

    φ\myvarphi is alternating, i.e., φ(x1,,xi,,xj,,xr)=ϵφ(x1,,xj,,xi,,xr)\myvarphi(x_{1},\dotsc,x_{i},\dotsc,x_{j},\dotsc,x_{r})=\myepsilon\cdot\myvarphi(x_{1},\dotsc,x_{j},\dotsc,x_{i},\dotsc,x_{r}) and φ(x1,,xr)=0\myvarphi(x_{1},\dotsc,x_{r})=0 if xi=xjx_{i}=x_{j} for some iji\neq j;

  3. (GP3)

    for all x1,,xr1,y1,,yr+1Ex_{1},\dotsc,x_{r-1},y_{1},\dotsc,y_{r+1}\in E, we have

    k=1r+1ϵkφ(y1,,yk^,,yr+1)φ(yk,x1,,xr1)NF.\underset{k=1}{\overset{r+1}{\sum}}\ \myepsilon^{k}\cdot\myvarphi(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r+1})\cdot\myvarphi(y_{k},x_{1},\dotsc,x_{r-1})\quad\in\quad N_{F}.

The relations in (GP3) are called the Plücker relations.

We say that two Grassmann–Plücker functions φ1\myvarphi_{1} and φ2\myvarphi_{2} are equivalent if φ1=aφ2\myvarphi_{1}=a\cdot\myvarphi_{2} for some aF×a\in F^{\times}, and define an FF-matroid (of rank rr on EE) as the equivalence class Mφ=[φ]M_{\myvarphi}=[\myvarphi] of a Grassmann–Plücker function φ:ErF\myvarphi:E^{r}\to F.

Remark \therem.

These are, in fact, the definition of strong Grassmann-Plücker functions and strong FF-matroids in [BB19]. Though weak matroids are important to understand the representations of matroids over fields and other tracts, strong matroids are more suitable to study “cryptomorphic” properties (as in [And19]) and “algebro-geometric” properties (as in [BL21]). We will not encounter weak matroids in this text and omit the attribute “strong.”

1.3. Push-forwards and the underlying matroid

Let f:FFf:F\rightarrow F^{\prime} be a morphism of tracts and φ:ErF\myvarphi:E^{r}\to F a Grassmann-Plücker function. Then fφ:ErFf\circ\myvarphi:E^{r}\rightarrow F^{\prime} is also a Grassmann-Plücker function. We define the push-forward of MφM_{\myvarphi} along ff as fMφ=Mfφf_{\ast}M_{\myvarphi}=M_{f\circ\myvarphi}.

Let MM be an FF-matroid. The underlying matroid of MM is defined as the classical matroid M¯\underline{M} whose set of bases is

(M¯)={{x1,,xr}E|φ(x1,,xr)0}.\mathcal{B}(\underline{M})=\big{\{}\{x_{1},\dotsc,x_{r}\}\subseteq E\,\big{|}\,\myvarphi(x_{1},\dotsc,x_{r})\neq 0\big{\}}.

For a tract morphism f:FFf:F\to F^{\prime} and an FF-matroid MM, we have fM¯=M¯\underline{f_{\ast}M}=\underline{M}. The map

{𝕂-matroids}{usual matroids}MM¯\begin{array}[]{ccc}\big{\{}\text{${\mathbb{K}}$-matroids}\big{\}}&\longrightarrow&\big{\{}\text{usual matroids}\big{\}}\\ M&\longmapsto&\underline{M}\end{array}

is a bijection that identifies classical matroids with 𝕂{\mathbb{K}}-matroids.

1.4. Circuits

For a tuple X=(Xi)iEX=(X_{i})_{i\in E} of FEF^{E}, we define the support of XX as the set X¯:={iEXi0}\underline{X}:=\{i\in E\mid X_{i}\neq 0\}, and for a subset 𝒳FE\mathcal{X}\subseteq F^{E}, we define the support of 𝒳\mathcal{X} as supp(𝒳):={X¯X𝒳}\textup{supp}(\mathcal{X}):=\{\underline{X}\mid X\in\mathcal{X}\}.

We define the set of FF-circuits of MM as follows. Let 𝒞(M¯)\mathcal{C}(\underline{M}) be the set of circuits of M¯\underline{M}. For each C𝒞(M¯)C\in\mathcal{C}(\underline{M}), fix a y0Cy_{0}\in C and a basis {y1,,yr}\{y_{1},\dotsc,y_{r}\} of M¯\underline{M} containing Cy0C-y_{0}. We define XCFEX_{C}\in F^{E} by

XC(y):=\displaystyle X_{C}(y):= {ϵiφ(y0,,yi^,,yr)if y=yi for some i,0if y{y0,,yr}.\displaystyle\begin{cases}\myepsilon^{i}\cdot\myvarphi(y_{0},\dotsc,\widehat{y_{i}},\dotsc,y_{r})&\text{if }y=y_{i}\text{ for some $i$,}\\ 0&\text{if }y\notin\{y_{0},\dotsc,y_{r}\}.\end{cases}

The set of FF-circuits of MM is given by 𝒞(M):={aXC|aF×,C𝒞(M¯)}\mathcal{C}(M):=\{a\cdot X_{C}|\;a\in F^{\times},\,C\in\mathcal{C}(\underline{M})\}. It does not depend on the choice of elements y0Cy_{0}\in C and bases {y1,,yr}\{y_{1},\dotsc,y_{r}\} containing Cy0C-y_{0}. Note that supp(𝒞(M))=𝒞(M¯)\textup{supp}\big{(}\mathcal{C}(M)\big{)}=\mathcal{C}(\underline{M}) and that 𝒞(M)\mathcal{C}(M) satisfies the following three properties:

  1. (C0)

    0𝒞(M)0\notin\mathcal{C}(M).

  2. (C1)

    If X𝒞(M)X\in\mathcal{C}(M) and aF×a\in F^{\times}, then aX𝒞(M)a\cdot X\in\mathcal{C}(M).

  3. (C2)

    If X,Y𝒞(M)X,Y\in\mathcal{C}(M) and X¯Y¯\underline{X}\subseteq\underline{Y}, then there exists aF×a\in F^{\times} such that X=aYX=a\cdot Y.

Remark \therem.

The FF-circuits satisfy an elimination property, which characterizes together with (C0)(C2) the subsets of FEF^{E} that are sets of FF-circuits of an FF-matroid MM. Moreover, MM is determined by 𝒞(M){\mathcal{C}}(M), which yields a cryptomorphic description of FF-matroids in terms of FF-circuits (see [BB19, Thm. 3.17]). We forgo to spell out the elimination axiom, however, since it is somewhat involved and since we do not use it in this text.

1.5. Duality

An involution of FF is a tract morphism τ:FF\mytau:F\to F such that τ2\mytau^{2} is the identity on FF. In the following, we fix an involution τ\mytau and write x¯=τ(x)\overline{x}=\mytau(x).

Fix a total order for E={x1,,xn}E=\{x_{1},\dotsc,x_{n}\} and let σ\mysigma be the unique permutation such that xσ(1)<<xσ(n)x_{\mysigma(1)}<\dotsb<x_{\mysigma(n)}. We consider sign(x1,,xn)=sign(σ){±1}\operatorname{{sign}}(x_{1},\dotsc,x_{n})=\operatorname{{sign}}(\mysigma)\in\{\pm 1\} as an element of FF by identifying 1-1 with ϵ\myepsilon.

The dual of MM is the FF-matroid M=MφM^{*}=M_{\myvarphi^{*}}, where φ\myvarphi^{*} is the Grassmann-Plücker function φ:EnrF\myvarphi^{\ast}:E^{n-r}\to F that is determined by

φ(x1,,xnr)=sign(x1,,xnr,x1,,xr)φ(x1,,xr)¯\myvarphi^{\ast}(x_{1},\dotsc,x_{n-r})\ =\ \operatorname{{sign}}(x_{1},\dotsc,x_{n-r},x^{\prime}_{1},\dotsc,x^{\prime}_{r})\cdot\overline{\myvarphi(x^{\prime}_{1},\dotsc,x^{\prime}_{r})}

whenever E={x1,,xnr,x1,,xr}E=\{x_{1},\dotsc,x_{n-r},x^{\prime}_{1},\dotsc,x^{\prime}_{r}\}. The dual of MM satisfies M=MM^{**}=M, and the underlying matroid of MM^{\ast} is the dual of M¯\underline{M}.

1.6. Orthogonality

Let X,YFEX,Y\in F^{E}. The inner product of XX and YY is

XY=iEXiYi¯,X\cdot Y\ =\ \sum_{i\in E}X_{i}\cdot\overline{Y_{i}},

considered as an element of [F×]{\mathbb{N}}[F^{\times}]. We say that XX and YY are orthogonal, and write XYX\perp Y, if XYNFX\cdot Y\in N_{F}. We say that two subsets 𝒳\mathcal{X} and 𝒴\mathcal{Y} of FEF^{E} are orthogonal, and write 𝒳𝒴\mathcal{X}\perp\mathcal{Y}, if XYX\perp Y for all X𝒳X\in\mathcal{X} and Y𝒴Y\in\mathcal{Y}.

The circuits of MM^{*} are called the cocircuits of MM, and we write 𝒞(M)=𝒞(M)\mathcal{C}^{*}(M)=\mathcal{C}(M^{*}). Circuits and cocircuits are orthogonal: 𝒞(M)𝒞(M)\mathcal{C}(M)\perp\mathcal{C}^{*}(M).

We denote by 𝒳={XFEX𝒳}{\mathcal{X}}^{\perp}=\{X\in F^{E}\mid X\perp{\mathcal{X}}\} the orthogonal complement of a subset 𝒳{\mathcal{X}} of FEF^{E}. The set 𝒱(M)=𝒞(M)\mathcal{V}(M)=\mathcal{C}^{*}(M)^{\perp} is called the set of FF-vectors of MM, and 𝒱(M)=𝒞(M)\mathcal{V^{*}}(M)=\mathcal{C}(M)^{\perp} the set of FF-covectors of MM. There is a cryptomorphic description of FF-matroids in terms of their vectors, as explained in [And19]. Note that, as 𝒞(M)𝒱(M)\mathcal{C}(M)\subseteq\mathcal{V}(M), we have 𝒱(M)𝒱(M)\mathcal{V}(M)^{\perp}\subseteq\mathcal{V}^{*}(M).

Definition \thedf.

A tract FF is perfect if 𝒱(M)𝒱(M)\mathcal{V}(M)\perp\mathcal{V}^{*}(M) for every FF-matroid MM.

Note that all fields and partial fields are perfect, and so are the hyperfields 𝕂{\mathbb{K}}, 𝕊{\mathbb{S}} and 𝕋{\mathbb{T}}.

1.7. Dual pairs

Let NN be a (classical) matroid on EE. We call a subset 𝒞\mathcal{C} of FEF^{E} an FF-signature of NN if supp(𝒞)\textup{supp}(\mathcal{C}) is the set of circuits of NN and 𝒞\mathcal{C} satisfies (C0)(C2).

Definition \thedf.

Let 𝒞\mathcal{C} and 𝒟\mathcal{D} be subsets of FEF^{E}. We say that (𝒞,𝒟)(\mathcal{C},\mathcal{D}) is a dual pair of FF-signatures of NN if:

  1. (DP1)

    𝒞\mathcal{C} is an FF-signature of NN;

  2. (DP2)

    𝒟\mathcal{D} is an FF-signature of NN^{*};

  3. (DP3)

    𝒞𝒟\mathcal{C}\perp\mathcal{D}.

Theorem 1.1 ([BB19, Thm. 3.26]).

There is a bijection between FF-matroids MM with underlying matroid M¯=N\underline{M}=N and dual pairs of FF-signatures of NN, given by

M(𝒞(M),𝒞(M)).M\longmapsto(\mathcal{C}(M),\mathcal{C}^{*}(M)).

1.8. Minors

Let φ:ErF\myvarphi:E^{r}\to F be a Grassmann–Plücker function with associated matroid M=MφM=M_{\myvarphi} and AEA\subset E.

  1. (1)

    (Contraction) Let \ell be the rank of AA in M¯φ\underline{M}_{\myvarphi}, and let {a1,a2,,a}\{a_{1},a_{2},\dotsc,a_{\ell}\} be a maximal M¯φ\underline{M}_{\myvarphi}-independent subset of AA. Define φ/A:(E\A)rF\myvarphi/A:(E\backslash A)^{r-\ell}\rightarrow F by

    (φ/A)(x1,,xr):=φ(x1,,xr,a1,,a).(\myvarphi/A)(x_{1},\dotsc,x_{r-\ell}):=\myvarphi(x_{1},\dotsc,x_{r-\ell},a_{1},\dotsc,a_{\ell}).

    The contraction of MM by AA is M/A=Mφ/AM/A=M_{\myvarphi/A}.

  2. (2)

    (Deletion) Let kk be the rank of E\AE\backslash A in M¯φ\underline{M}_{\myvarphi}, and choose a1,,arkAa_{1},\dotsc,a_{r-k}\in A such that {a1,,ark}\{a_{1},\dotsc,a_{r-k}\} is a basis of M¯φ/(E\A)\underline{M}_{\myvarphi}/(E\backslash A). Define φ\A:(E\A)kF\myvarphi\backslash A:(E\backslash A)^{k}\rightarrow F by

    (φ\A)(x1,,xk):=φ(x1,,xk,a1,,ark).(\myvarphi\backslash A)(x_{1},\dotsc,x_{k}):=\myvarphi(x_{1},\dotsc,x_{k},a_{1},\dotsc,a_{r-k}).

    The deletion of AA from MM is M\A=Mφ\AM\backslash A=M_{\myvarphi\backslash A}.

Contractions and deletions are well-defined due to the following fact.

Lemma \thelemma ([BB19, Lemma 4.4]).
  1. (1)

    Both φ/A\myvarphi/A and φ\A\myvarphi\backslash A are Grassmann–Plücker functions. Their definitions are independent of all choices up to global multiplication by an element of F×F^{\times}.

  2. (2)

    M¯φ/A=M¯φ/A\underline{M}_{\myvarphi/A}=\underline{M}_{\myvarphi}/A and M¯φ\A=M¯φ\A\underline{M}_{\myvarphi\backslash A}=\underline{M}_{\myvarphi}\backslash A.

  3. (3)

    (φ\A)=φ/A(\myvarphi\backslash A)^{*}=\myvarphi^{*}/A and (φ/A)=φ\A(\myvarphi/A)^{*}=\myvarphi^{*}\backslash A.

1.9. Examples

We have mentioned already that usual matroids reappear as 𝕂{\mathbb{K}}-matroids in Baker-Bowler theory. Other examples are:

  • Let KK be a field. There is a bijection from KK-matroids of rank rr on EE to rr-dimensional KK-subspaces of KEK^{E}, given by M𝒱(M)M\mapsto\mathcal{V}^{*}(M); see [And19, Prop. 2.19]).

  • A valuated matroid in the sense of [DW92a] is the same thing as a 𝕋{\mathbb{T}}-matroid.

  • There is a bijection from 𝕊{\mathbb{S}}-matroids to oriented matroids in the sense of [BLV78], given by M(E,𝒞(M))M\mapsto\big{(}E,\mathcal{C}(M)\big{)}.

2. Flag matroids

2.1. Definitions

Let us introduce the central notion of this text: flag matroids with coefficients in tracts. Throughout the whole section, we fix E={1,,n}E=\{1,\dots,n\} and integers rr and ww between 0 and nn.

Definition \thedf.

Let MM and NN be FF-matroids of respective ranks rr and ww on EE. We say that MM is a quotient of NN, and write NMN\twoheadrightarrow M, if every choice of Grassmann-Plücker functions μ\mymu and ν\mynu representing MM and NN, respectively, satisfies the Plücker flag relations

(1) k=1w+1ϵkν(y1,,yk^,yw+1)μ(yk,x1,,xr1)NF\underset{k=1}{\overset{w+1}{\sum}}\ \myepsilon^{k}\;\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc y_{w+1})\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-1})\ \in\ N_{F}

for all y1,,yw+1,x1,,xr1Ey_{1},\dotsc,y_{w+1},x_{1},\dotsc,x_{r-1}\in E.

A flag FF-matroid on EE is a sequence M=(M1,,Ms)\textbf{M}=(M_{1},\dotsc,M_{s}) of FF-matroids such that MjMiM_{j}\twoheadrightarrow M_{i} for all 1i<js1\leqslant i<j\leqslant s. The sequence rk(𝐌)=(rk(M1¯),,rk(Ms¯))\operatorname{{rk}}({\mathbf{M}})=\big{(}\operatorname{{rk}}(\underline{M_{1}}),\dotsc,\operatorname{{rk}}(\underline{M_{s}})\big{)} is called the rank of 𝐌{\mathbf{M}}.

The identification of classical matroids with 𝕂{\mathbb{K}}-matroids yields an identification of classical flag matroids with flag 𝕂{\mathbb{K}}-matroids. The proof of this fact relies, however, on the circuit-vector characterization of flag matroids. We postpone this discussion to section 2.4.

Remark \therem.

The following are some immediate observations.

  1. (1)

    Since two Grassmann-Plücker functions representing the same FF-matroid only differ by a non-zero factor, the validity of equation (1) does not depend on the choice of Grassmann-Plücker functions.

  2. (2)

    Note that for N=MN=M, the Plücker flag relations in (1) are nothing else than the usual Plücker relations of a Grassmann-Plücker function, see (GP3). Thus one always has MMM\twoheadrightarrow M.

  3. (3)

    If 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},...,M_{s}) is a flag FF-matroid, then (M1,,Mi^,,Ms)(M_{1},...,\widehat{M_{i}},...,M_{s}) is also a flag FF-matroid, for all ii in [s][s].

2.2. Functoriality

As for single matroids, we can change the coefficients of flag matroids along tract morphisms.

Proposition \theprop.

Let f:FFf:F\to F^{\prime} be a tract morphism and NMN\twoheadrightarrow M a quotient of FF-matroids. Then fNfMf_{\ast}N\twoheadrightarrow f_{\ast}M. Consequently, if 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) is a flag FF-matroid, then f𝐌=(fM1,,fMs)f_{\ast}{\mathbf{M}}=(f_{\ast}M_{1},\dotsc,f_{\ast}M_{s}) is a flag FF^{\prime}-matroid.

Proof.

Since the Plücker flag relations for fNfMf_{\ast}N\twoheadrightarrow f_{\ast}M are indexed by the same tuples of elements x1,,xrk(M)1,y1,,yrk(N)+1Ex_{1},\dotsc,x_{\operatorname{{rk}}(M)-1},y_{1},\dotsc,y_{\operatorname{{rk}}(N)+1}\in E and are of the same shape, the first assertion follows at once from the definition of a morphism of tracts. The second assertion follows at once from the first and the definition of a flag FF-matroid. ∎

2.3. Cryptomorphism

The core result of our theory consists of the following cryptomorphic description of flag FF-matroids in terms of their cocircuits and covectors.

Theorem 2.1 (Cryptomorphism for flag FF-matroids).

Let (M1,,Ms)(M_{1},\dotsc,M_{s}) be a sequence of FF-matroids on EE with respective cocircuit sets 𝒞(Mi){\mathcal{C}}^{\ast}(M_{i}) and covector sets 𝒱(Mi){\mathcal{V}}^{\ast}(M_{i}). The following are equivalent:

  1. (1)

    (M1,,Ms)(M_{1},\dotsc,M_{s}) is a flag FF-matroid;

  2. (2)

    𝒞(Mi)𝒱(Mj)\mathcal{C}^{*}(M_{i})\subseteq\mathcal{V}^{*}(M_{j}) for all 1i<js1\leqslant i<j\leqslant s.

Proof.

It suffices to show that the following assertions are equivalent for two FF-matroids MM and NN on EE:

  1. (1)

    MM is a quotient of NN;

  2. (2)

    𝒞(M)𝒱(N)\mathcal{C}^{*}(M)\subseteq\mathcal{V}^{*}(N).

As a first step, we show that (1) implies (2). Assume that MM is a quotient of NN. Fix Grassmann-Plücker functions μ\mymu and ν\mynu that represent MM and NN, respectively. Let Z𝒞(M)=𝒞(M)Z\in\mathcal{C}^{*}(M)=\mathcal{C}(M^{*}). By [BB19, p. 841], there exists a z0Z¯z_{0}\in\underline{Z}, an αF×\myalpha\in F^{\times} and a basis D={z1,,znr}D=\{z_{1},\dotsc,z_{n-r}\} of M¯\underline{M}^{*} containing Z¯z0\underline{Z}-z_{0} such that

Z(zi)=αϵiμ(z0,,zi^,znr).Z(z_{i})=\myalpha\cdot\myepsilon^{i}\cdot\mymu^{*}(z_{0},\dotsc,\widehat{z_{i}}\dotsc,z_{n-r}).

Let {x1,,xr1}=E\{z0,,znr}\{x_{1},\dotsc,x_{r-1}\}=E\backslash\{z_{0},\dotsc,z_{n-r}\}. Similarly, for Y𝒞(N)Y\in\mathcal{C}(N), there exist an y0Y¯y_{0}\in\underline{Y}, a λF×\mylambda\in F^{\times} and a basis B={y1,,yw}B=\{y_{1},\dotsc,y_{w}\} of N¯\underline{N} containing Y¯y0\underline{Y}-y_{0} such that

Y(yj)=λϵjν(y0,,yj^,yw).Y(y_{j})=\mylambda\cdot\myepsilon^{j}\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}}\dotsc,y_{w}).

Let S=(D{z0})(B{y0})S=(D\cup\{z_{0}\})\cap(B\cup\{y_{0}\}) and

I={i{0,,nr}|ziS}andJ={j{0,,w}|yjS}.I\ =\ \big{\{}i\in\{0,\dotsc,n-r\}\,\big{|}\,z_{i}\in S\big{\}}\qquad\text{and}\qquad J\ =\ \big{\{}j\in\{0,\dotsc,w\}\,\big{|}\,y_{j}\in S\big{\}}.

There exists a bijection 𝔟:JI\mathfrak{b}:J\rightarrow I such that yj=z𝔟(j)y_{j}=z_{\mathfrak{b}(j)}, for all jJj\in J. Note that

(λα¯)1(YZ)=(λα¯)1eEY(e)Z(e)¯\displaystyle\;(\mylambda\overline{\myalpha})^{-1}\cdot\big{(}Y\cdot Z\big{)}=(\mylambda\overline{\myalpha})^{-1}\cdot\underset{e\in E}{\sum}Y(e)\cdot\overline{Z(e)}
=\displaystyle= (λα¯)1eSY(e)Z(e)¯\displaystyle\;(\mylambda\overline{\myalpha})^{-1}\cdot\underset{e\in S}{\sum}\ Y(e)\cdot\overline{Z(e)}
=\displaystyle= (λα¯)1jJ(λϵjν(y0,,yj^,,yw))(αϵ𝔟(j)μ(z0,,z𝔟(j)^,znr)¯)\displaystyle\;(\mylambda\overline{\myalpha})^{-1}\cdot\underset{j\in J}{\sum}\big{(}\mylambda\cdot\myepsilon^{j}\mynu(y_{0},\dotsc,\widehat{y_{j}},\dotsc,y_{w})\big{)}\cdot\big{(}\overline{\myalpha\cdot\myepsilon^{\mathfrak{b}(j)}\mymu^{*}(z_{0},\dotsc,\widehat{z_{\mathfrak{b}(j)}}\dotsc,z_{n-r})}\big{)}
=\displaystyle= jJϵ(j+𝔟(j))ν(y0,,yj^,yw)sign(z0,,z𝔟(j)^,,znr,z𝔟(j),x1,,xr1)\displaystyle\;\underset{j\in J}{\sum}\ \myepsilon^{\big{(}j+\mathfrak{b}(j)\big{)}}\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}}\dotsc,y_{w})\cdot\operatorname{{sign}}(z_{0},\dotsc,\widehat{z_{\mathfrak{b}(j)}},\dotsc,z_{n-r},z_{\mathfrak{b}(j)},x_{1},\dotsc,x_{r-1})
μ(z𝔟(j),x1,,xr1)\displaystyle\hskip 56.9055pt\cdot\mymu(z_{\mathfrak{b}(j)},x_{1},\dotsc,x_{r-1})
=\displaystyle= jJϵ(j+𝔟(j))sign(z0,,z𝔟(j)^,,znr,z𝔟(j),x1,,xr1)ν(y0,,yj^,yw)\displaystyle\;\underset{j\in J}{\sum}\ \myepsilon^{\big{(}j+\mathfrak{b}(j)\big{)}}\cdot\operatorname{{sign}}(z_{0},\dotsc,\widehat{z_{\mathfrak{b}(j)}},\dotsc,z_{n-r},z_{\mathfrak{b}(j)},x_{1},\dotsc,x_{r-1})\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}}\dotsc,y_{w})
μ(yj,x1,,xr1),\displaystyle\hskip 56.9055pt\cdot\mymu(y_{j},x_{1},\dotsc,x_{r-1}),

because μ(yj,x1,,xr)=0\mymu(y_{j},x_{1},\dotsc,x_{r})=0 for j{0,,s}\Jj\in\{0,\dotsc,s\}\backslash J, since in this case yj{x1,,xr1}y_{j}\in\{x_{1},\dotsc,x_{r-1}\}. Further we have for all jJj\in J that

ϵ(nr)sign(z0,,znr,x1,,xr1)\displaystyle\;\myepsilon^{(n-r)}\cdot\operatorname{{sign}}(z_{0},\dotsc,z_{n-r},x_{1},\dotsc,x_{r-1})
=\displaystyle= ϵ2(nr)𝔟(j)sign(z0,,z𝔟(j)^,,znr,z𝔟(j),x1,,xr1)\displaystyle\;\myepsilon^{2(n-r)-\mathfrak{b}(j)}\cdot\operatorname{{sign}}(z_{0},\dotsc,\widehat{z_{\mathfrak{b}(j)}},\dotsc,z_{n-r},z_{\mathfrak{b}(j)},x_{1},\dotsc,x_{r-1})
=\displaystyle= ϵ𝔟(j)sign(z0,,z𝔟(j)^,,znr,z𝔟(j),x1,,xr1).\displaystyle\;\myepsilon^{\mathfrak{b}(j)}\cdot\operatorname{{sign}}(z_{0},\dotsc,\widehat{z_{\mathfrak{b}(j)}},\dotsc,z_{n-r},z_{\mathfrak{b}(j)},x_{1},\dotsc,x_{r-1}).

Thus

ϵ(nr)sign(z0,,znr,x1,,xr1)(λα¯)1(YZ)\displaystyle\;\myepsilon^{(n-r)}\cdot\operatorname{{sign}}(z_{0},\dotsc,z_{n-r},x_{1},\dotsc,x_{r-1})\cdot(\mylambda\overline{\myalpha})^{-1}\cdot\big{(}Y\cdot Z\big{)}
=\displaystyle= jJϵjν(y0,,yj^,yw)μ(yj,x1,,xr1)\displaystyle\;\underset{j\in J}{\sum}\ \myepsilon^{j}\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}}\dotsc,y_{w})\cdot\mymu(y_{j},x_{1},\dotsc,x_{r-1})
=\displaystyle= j=0𝑤ϵjν(y0,,yj^,yw)μ(yj,x1,,xr1).\displaystyle\;\underset{j=0}{\overset{w}{\sum}}\ \myepsilon^{j}\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}}\dotsc,y_{w})\cdot\mymu(y_{j},x_{1},\dotsc,x_{r-1}).

This implies that YZNFY\cdot Z\in N_{F}. Therefore Z𝒱(N)Z\in\mathcal{V}^{*}(N), which shows that (1) implies (2).

Next we show that (2) implies (1). Assume that 𝒞(M)\mathcal{C}^{*}(M) is a subset of 𝒱(N)\mathcal{V}^{*}(N) and let {y0,,yw}\{y_{0},\dotsc,y_{w}\} be an (w+1)(w+1)-subset and {x1,,xr1}\{x_{1},\dotsc,x_{r-1}\} be an (r1)(r-1)-subset of EE.

Case 1. If there is no \ell in {0,,w}\{0,\dotsc,w\} such that {y,x1,,xr1}\{y_{\ell},x_{1},\dotsc,x_{r-1}\} is a basis of M¯\underline{M} and {y0,,y^,\{y_{0},\dotsc,\widehat{y_{\ell}}, ,yw}\dotsc,y_{w}\} is a basis of N¯\underline{N}, one has that ν(y0,,yj^,,yw)μ(yj,x1,,xr1)=0\mynu(y_{0},\dotsc,\widehat{y_{j}},\dotsc,y_{w})\cdot\mymu(y_{j},x_{1},\dotsc,x_{r-1})=0 for all j{0,,w}j\in\{0,\dotsc,w\}. Thus

k=0𝑤ϵkν(y0,,yk^,,yw)μ(yk,x1,,xr1)= 0NF.\underset{k=0}{\overset{w}{\sum}}\myepsilon^{k}\cdot\mynu(y_{0},\dotsc,\widehat{y_{k}},\dotsc,y_{w})\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-1})\ =\ 0\ \in\ N_{F}.

Case 2. If there is an \ell in {0,,w}\{0,\dotsc,w\} such that {y,x1,,xr1}\{y_{\ell},x_{1},\dotsc,x_{r-1}\} is a basis of M¯\underline{M} and {y0,,y^,,yw}\{y_{0},\dotsc,\widehat{y_{\ell}},\dotsc,y_{w}\} is a basis of N¯\underline{N}, then {z1,,znr}=E{y,x1,,xr1}\{z_{1},\dotsc,z_{n-r}\}=E-\{y_{\ell},x_{1},\dotsc,x_{r-1}\} is a basis of M¯\underline{M^{*}}. Define z0:=yz_{0}:=y_{\ell}. Then

H(z)={ϵiμ(z0,,zi^,,znr)ifz=zi for somei{0,,nr},0otherwise,H(z)\ =\ \begin{cases}\myepsilon^{i}\cdot\mymu^{*}(z_{0},\dotsc,\widehat{z_{i}},\dotsc,z_{n-r})&\text{if}\ z=z_{i}\text{ for some}\ i\in\{0,\dotsc,n-r\},\\ 0&\text{otherwise,}\end{cases}\

defines a circuit of MM^{*} and

G(y)={ϵjν(y0,,yj^,,yw)ify=yj for somej{0,,w},0otherwise,G(y)\ =\ \begin{cases}\myepsilon^{j}\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}},\dotsc,y_{w})&\text{if}\ y=y_{j}\text{ for some}\ j\in\{0,\dotsc,w\},\\ 0&\text{otherwise,}\end{cases}

defines a circuit of NN.

Note that

H(zi)=ϵisign(z0,,zi^,,znr,zi,x1,,xr1)μ(zi,x1,,xr1)¯,H(z_{i})=\myepsilon^{i}\cdot\operatorname{{sign}}(z_{0},\dotsc,\widehat{z_{i}},\dotsc,z_{n-r},z_{i},x_{1},\dotsc,x_{r-1})\cdot\overline{\mymu(z_{i},x_{1},\dotsc,x_{r-1})},

for all i{0,,nr}i\in\{0,\dotsc,n-r\}. Let S={z0,,znr}{y0,,yw}S=\{z_{0},\dotsc,z_{n-r}\}\cap\{y_{0},\dotsc,y_{w}\} and

I={i{0,,nr}|ziS}andJ={j{0,,w}|yjS}.I\ =\ \big{\{}i\in\{0,\dotsc,n-r\}\,\big{|}\,z_{i}\in S\big{\}}\qquad\text{and}\qquad J\ =\ \big{\{}j\in\{0,\dotsc,w\}\,\big{|}\,y_{j}\in S\big{\}}.

There exists a bijection 𝔟:JI\mathfrak{b}:J\rightarrow I such that yj=z𝔟(j)y_{j}=z_{\mathfrak{b}(j)}, for all jJj\in J. Since GHG\cdot H is in NFN_{F}, we have

k=0𝑤ϵkν(y0,,yk^,,yw)μ(yk,x1,,xr1)¯\displaystyle\ \underset{k=0}{\overset{w}{\sum}}\ \myepsilon^{k}\cdot\mynu(y_{0},\dotsc,\widehat{y_{k}},\dotsc,y_{w})\cdot\overline{\mymu(y_{k},x_{1},\dotsc,x_{r-1})}
=\displaystyle= jJϵjν(y0,,yj^,,yw)μ(z𝔟(j),x1,,xr1)¯\displaystyle\ \underset{j\in J}{\sum}\ \myepsilon^{j}\cdot\mynu(y_{0},\dotsc,\widehat{y_{j}},\dotsc,y_{w})\cdot\overline{\mymu(z_{\mathfrak{b}(j)},x_{1},\dotsc,x_{r-1})}
=\displaystyle= ϵ(nr)sign(z0,,znr,x1,,xr1)jJG(yj)H(z𝔟(j))¯\displaystyle\ \myepsilon^{(n-r)}\cdot\operatorname{{sign}}(z_{0},\dotsc,z_{n-r},x_{1},\dotsc,x_{r-1})\cdot\underset{j\in J}{\sum}G(y_{j})\cdot\overline{H(z_{\mathfrak{b}(j)})}
=\displaystyle= ϵ(nr)sign(z0,,znr,x1,,xr1)eEG(e)H(e)¯\displaystyle\ \myepsilon^{(n-r)}\cdot\operatorname{{sign}}(z_{0},\dotsc,z_{n-r},x_{1},\dotsc,x_{r-1})\cdot\underset{e\in E}{\sum}G(e)\cdot\overline{H(e)}
=\displaystyle= ϵ(nr)sign(z0,,znr,x1,,xr1)GHNF,\displaystyle\ \myepsilon^{(n-r)}\cdot\operatorname{{sign}}(z_{0},\dotsc,z_{n-r},x_{1},\dotsc,x_{r-1})\cdot G\cdot H\ \in\ N_{F},

which concludes the proof of the theorem. ∎

Remark \therem.

Theorem 2.1 shows that our definition of quotients extends the concept of quotients of oriented matroids; see [BLVS+99, Def. 7.7.2].

The characterization (2) of flag matroids can be seen, in fact, as an expansion of the concept of dual pairs of FF-signatures since 𝒞(Mi)𝒱(Mj){\mathcal{C}}^{\ast}(M_{i})\subset{\mathcal{V}}^{\ast}(M_{j}) if and only if 𝒞(Mi)𝒞(Mj)\mathcal{C}^{*}(M_{i})\perp\mathcal{C}(M_{j}). This latter form of condition (2) exhibits at once the duality property of flag matroids; see section 2.5.

Corollary \thecor.

Let FF be a tract and MM and NN two FF-matroids such that NMN\twoheadrightarrow M. Then rk(N)=rk(M)\operatorname{{rk}}({N})=\operatorname{{rk}}({M}) implies N=MN=M.

Proof.

One has N¯M¯\underline{N}\twoheadrightarrow\underline{M} by section 2.4 and 𝒞(M)𝒱(N)\mathcal{C}^{*}(M)\subseteq\mathcal{V}^{*}(N) by Theorem 2.1. As rk(N¯)=rk(M¯)\operatorname{{rk}}(\underline{N})=\operatorname{{rk}}(\underline{M}), one also has N¯=M¯\underline{N}=\underline{M} (see [Kun86, Prop. 8.1.6 and Lemma 8.1.7]). As the (co)circuit set characterizes the FF-matroid (see [BB19, Thm. 3.17]), everything follows if we can show that 𝒞(M)=𝒞(N)\mathcal{C}^{*}(M)=\mathcal{C}^{*}(N).

Let Z𝒞(M)Z\in\mathcal{C}^{*}(M). Then Z𝒱(N)Z\in\mathcal{V}^{*}(N) and Z¯𝒞(M¯)=𝒞(N¯)=supp(𝒞(N))\underline{Z}\in\mathcal{C}^{*}(\underline{M})=\mathcal{C}^{*}(\underline{N})=\textup{supp}\big{(}\mathcal{C}^{*}(N)\big{)}. As 𝒞(N)\mathcal{C}^{*}(N) is equal to the set of nonzero covectors of minimal support by [And19, Thm. 2.18], one has that Z𝒞(N)Z\in\mathcal{C}^{*}(N). Therefore 𝒞(M)𝒞(N)\mathcal{C}^{*}(M)\subseteq\mathcal{C}^{*}(N).

Let X𝒞(N)X\in\mathcal{C}^{*}(N). Then there exists an Y𝒞(M)Y\in\mathcal{C}^{*}(M) such that X¯=Y¯\underline{X}=\underline{Y}. As 𝒞(N)\mathcal{C}^{*}(N) satisfies (C2), there is an αF×\myalpha\in F^{\times} such that X=αYX=\myalpha Y. As 𝒞(M)\mathcal{C}^{*}(M) satisfies (C1), X𝒞(M)X\in\mathcal{C}^{*}(M). This shows that 𝒞(M)=𝒞(N)\mathcal{C}^{*}(M)=\mathcal{C}^{*}(N), which implies M=NM=N. ∎

Remark \therem (Exterior algebra description of flag matroids).

The identification of FF-matroids with classes of exterior FF-algebras from the first author’s paper [Jar23] leads to yet another description of flag matroids. To explain, the exterior algebra ΛFE\Lambda F^{E} is an FF-module that generalizes exterior algebras of vector spaces and the Giansiracusa exterior algebra from [GG18] to all idylls FF, which are tracts with additively closed nullset NFN_{F}; we refer the reader to [Jar23] for details.

A Grassmann-Plücker function μ:ErF\mymu:E^{r}\to F determines an element νΛrFE\mynu\in\Lambda^{r}F^{E} with coordinates ν𝐈=μ(𝐈)\mynu_{\mathbf{I}}=\mymu({\mathbf{I}}) for 𝐈Er{\mathbf{I}}\in E^{r}. This association yields a bijection between FF-matroids of rank rr on EE and F×F^{\times}-classes [ν][\mynu] of elements νΛrF\mynu\in\Lambda^{r}F that satisfy the Plücker relations.

Thus a flag FF-matroid of rank (r1,,rs)(r_{1},\dotsc,r_{s}) on EE corresponds to a tuple ([ν1],,[νs])\big{(}[\mynu_{1}],\dotsc,[\mynu_{s}]\big{)} of F×F^{\times}-classes [νi][\mynu_{i}] of elements νiΛriFE\mynu_{i}\in\Lambda^{r_{i}}F^{E} that satisfy the Plücker flag relations

0k=1rj+1ϵkνi,(yk,x1,,xri1)νj,(y1,,yk^,,yrj+1)0\ \leqslant\ \sum_{k=1}^{r_{j}+1}\myepsilon^{k}\;\mynu_{i,(y_{k},x_{1},\dotsc,x_{r_{i}-1})}\mynu_{j,(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r_{j}+1})}

in ΛFE\Lambda F^{E} for all 1ijn1\leqslant i\leqslant j\leqslant n and x1,,xri1,y1,,yrj+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E.

2.4. Flag matroids as flag 𝕂{\mathbb{K}}-matroids

The realization of matroids as 𝕂{\mathbb{K}}-matroids extends to flag matroids as explained in the following.

Let us recall the notion of a flag matroid from [BGVW97]. Given two matroids MM and NN on the same ground set EE, we say that MM is a quotient of NN and write NMN\twoheadrightarrow M if the identity on EE is a strong map from NN to MM, i.e., every flat of MM is a flat of NN or, equivalently, every cocircuit of MM is a union of cocircuits of NN; see [Kun86, Prop. 8.1.6] for details. A flag matroid is a sequence (M1,,Ms)(M_{1},\dotsc,M_{s}) of matroids such that MiM_{i} is a quotient of Mi+1M_{i+1} for i=1,,s1i=1,\dotsc,s-1.

Proposition \theprop (Classical flag matroids).

Let MM and NN be 𝕂{\mathbb{K}}-matroids on EE. Then MM is a quotient of NN if and only if M¯\underline{M} is a quotient of N¯\underline{N}. In consequence, a sequence (M1,,Ms)(M_{1},\dotsc,M_{s}) of 𝕂{\mathbb{K}}-matroids is a flag 𝕂{\mathbb{K}}-matroid if and only if (M1¯,,Ms¯)(\underline{M_{1}},\dotsc,\underline{M_{s}}) is a flag matroid.

Proof.

Baker-Bowler theory provides a bijection between 𝒞(N){\mathcal{C}}^{\ast}(N) and the cocircuit set of N¯\underline{N}, which sends a cocircuit C:E𝕂C:E\to{\mathbb{K}} of NN to its support C¯\underline{C}. By [And19, Prop. 5.2], this association extends to a bijection between 𝒱(N){\mathcal{V}}^{\ast}(N) and unions of cocircuits of NN. Therefore M¯\underline{M} is a quotient of N¯\underline{N}, i.e., every cocircuit of MM is a union of cocircuits of NN, if and only if 𝒞(M)𝒱(N){\mathcal{C}}^{\ast}(M)\subset{\mathcal{V}}^{\ast}(N). By Theorem 2.1, the latter property is equivalent to MM being a quotient of NN, which establishes the first claim of the proposition.

The second claim follows from the analogous definitions of flag 𝕂{\mathbb{K}}-matroids and flag matroids, taking into account that strong maps of classical matroids are composable. ∎

Remark \therem.

An alternative proof of section 2.4 is as follows. It is known that N¯\underline{N} is a quotient of M¯\underline{M} if and only if for every basis BNB_{N} of N¯\underline{N}, for every basis BMB_{M} of M¯\underline{M} and for every eBNBMe\in B_{N}-B_{M} there is an fBMBNf\in B_{M}-B_{N} such that BNe+fB_{N}-e+f is a basis of N¯\underline{N} and BMf+eB_{M}-f+e is a basis of M¯\underline{M}; cf. [Mun18] as well as [Tar85, Bou87, Bou89]. This latter condition is directly equivalent to the Plücker flag relations for MNM\twoheadrightarrow N.

Corollary \thecor.

Let FF be a tract and 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) a flag FF-matroid. Then rk(𝐌)\operatorname{{rk}}({\mathbf{M}}) is a non-decreasing sequence of natural numbers.

Proof.

Since the rank of an FF-matroid MM is equal to the rank of its underlying matroid M¯\underline{M}, we need only to show that NMN\twoheadrightarrow M implies rk(N¯)rk(M¯)\operatorname{{rk}}(\underline{N})\geqslant\operatorname{{rk}}(\underline{M}). Let tF:F𝕂t_{F}:F\to{\mathbb{K}} be the terminal map. By section 2.2, we have tF,NtF,Mt_{F,\ast}N\twoheadrightarrow t_{F,\ast}M, and by section 2.4, we have N¯=tF,N¯tF,M¯=M¯\underline{N}=\underline{t_{F,\ast}N}\twoheadrightarrow\underline{t_{F,\ast}M}=\underline{M}. By [Kun86, Lemma 8.1.7], we have rk(N¯)rk(M¯)\operatorname{{rk}}(\underline{N})\geqslant\operatorname{{rk}}(\underline{M}), as desired. ∎

2.5. Duality

Thanks to the cryptomorphism from Theorem 2.1, many standard properties of matroids fall into their places, the first one being duality.

Proposition \theprop.

Let MM and NN be FF-matroids on EE. Then NMN\twoheadrightarrow M is equivalent to MNM^{*}\twoheadrightarrow N^{*}.

Proof.

By the symmetry of the affirmation, it is enough to prove only one implication. If NMN\twoheadrightarrow M, by Theorem 2.1, one has 𝒞(M)=𝒞(M)𝒱(N)\mathcal{C}(M^{*})=\mathcal{C}^{*}(M)\subseteq\mathcal{V}^{*}(N). Thus

𝒞(N)=𝒞(N)𝒱(N)𝒞(M)=𝒱(M).\mathcal{C}^{*}(N^{*})=\mathcal{C}(N)\subseteq\mathcal{V}^{*}(N)^{\perp}\subseteq\mathcal{C}(M^{*})^{\perp}=\mathcal{V}^{*}(M^{*}).

Again by Theorem 2.1, we conclude that MNM^{*}\twoheadrightarrow N^{*}. ∎

Remark \therem.

Putting Theorem 2.1 and section 2.5 together, one has that the following are equivalent:

(1)NM;\displaystyle(1)\ N\twoheadrightarrow M; (3)𝒞(N)𝒱(M);\displaystyle(3)\ \mathcal{C}(N)\subset\mathcal{V}(M); (5)𝒞(N)𝒞(M);\displaystyle(5)\ \mathcal{C}(N)\perp\mathcal{C}^{\ast}(M);
(2)MN;\displaystyle(2)\ M^{\ast}\twoheadrightarrow N^{\ast};\qquad (4)𝒞(M)𝒱(N);\displaystyle(4)\ \mathcal{C}^{*}(M)\subset\mathcal{V}^{*}(N);\qquad (6)𝒞(M)𝒞(N).\displaystyle(6)\ \mathcal{C}^{\ast}(M)\perp\mathcal{C}(N).
Theorem 2.2 (Duality for flag matroids).

Let EE be a set with nn elements and let 0r1rsn0\leqslant r_{1}\leqslant\dotsc\leqslant r_{s}\leqslant n be integers. The association

𝐌=(M1,,Ms)𝐌:=(Ms,,M1){\mathbf{M}}=(M_{1},\dotsc,M_{s})\longmapsto{\mathbf{M}}^{*}:=(M_{s}^{*},\dotsc,M_{1}^{*})

is a bijection between the flag FF-matroids of rank (r1,,rs)(r_{1},\dotsc,r_{s}) and the flag FF-matroids of rank (nrs,,nr1)(n-r_{s},\dotsc,n-r_{1}).

Proof.

Let 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) be a flag FF-matroid of rank (r1,,rs)(r_{1},\dotsc,r_{s}). As MjMiM_{j}\twoheadrightarrow M_{i}, one has MiMjM_{i}^{*}\twoheadrightarrow M_{j}^{*} for all sj>i1s\geqslant j>i\geqslant 1, which means that M:=(Ms,,M1)\textbf{M}^{*}:=(M_{s}^{*},\dotsc,M_{1}^{*}) is a flag FF-matroid. Note that

rk(𝐌)=(rk(Ms¯),,rk(M1¯))=(nrs,,nr1),\operatorname{{rk}}({\mathbf{M}}^{*})=\big{(}\operatorname{{rk}}(\underline{M_{s}^{*}}),\dotsc,\operatorname{{rk}}(\underline{M_{1}^{*}})\big{)}=(n-r_{s},\dotsc,n-r_{1}),

because M¯=M¯\underline{M^{*}}=\underline{M}^{*} by [BB19, Theorem 3.24].

Again by [BB19, Theorem 3.24], one has (M)=M(M^{*})^{*}=M for all FF-matroids MM, which implies that (𝐌)=𝐌({\mathbf{M}}^{*})^{*}={\mathbf{M}} for all flag FF-matroids. This finishes the proof. ∎

2.6. Minors

Minors of flag matroids are defined by taking minors of the components of the flag. This leads to a meaningful notion of minors due to the following fact.

Proposition \theprop.

Let MM and NN be FF-matroids on EE such that NMN\twoheadrightarrow M, and let ee be an element of EE. Then N/eM/eN/e\twoheadrightarrow M/e and N\eM\eN\backslash e\twoheadrightarrow M\backslash e.

Proof.

Let μ\mymu and ν\mynu be Grassmann-Plücker functions that represent MM and NN, respectively, and let rr and ww be their respective ranks. We begin with showing that N/eM/eN/e\twoheadrightarrow M/e. By section 1.8, μ/e\mymu/e and ν/e\mynu/e represent M/eM/e and N/eN/e, respectively.

Case 1: Assume that ee is not a loop of M¯\underline{M}. By [Rec05, Lemma 1], ee is not a loop of N¯\underline{N}. Thus rk(M/e)=r1\operatorname{{rk}}(M/e)=r-1 and rk(N/e)=w1\operatorname{{rk}}(N/e)=w-1. Let {y1,,yw}\{y_{1},\dotsc,y_{w}\} and {x1,,xr2}\{x_{1},\dotsc,x_{r-2}\} be subsets of EeE-e. Note that μ(e,x1,,xr2,e)=0\mymu(e,x_{1},\dotsc,x_{r-2},e)=0. Thus

k=1𝑤ϵk(ν/e)(y1,,yk^,,yw)(μ/e)(yk,x1,,xr2)\displaystyle\;\underset{k=1}{\overset{w}{\sum}}\myepsilon^{k}\cdot(\mynu/e)(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w})\cdot(\mymu/e)(y_{k},x_{1},\dotsc,x_{r-2})
=\displaystyle= k=1𝑤ϵkν(y1,,yk^,,yw,e)μ(yk,x1,,xr2,e)+0\displaystyle\;\underset{k=1}{\overset{w}{\sum}}\myepsilon^{k}\cdot\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w},e)\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-2},e)+0
=\displaystyle= k=1𝑤ϵkν(y1,,yk^,,yw,e)μ(yk,x1,,xr2,e)\displaystyle\;\underset{k=1}{\overset{w}{\sum}}\myepsilon^{k}\cdot\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w},e)\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-2},e)
+ϵw+1ν(y1,,yw)μ(e,x1,,xr2,e)NF.\displaystyle\hskip 85.35826pt+\myepsilon^{w+1}\cdot\mynu(y_{1},\dotsc,y_{w})\cdot\mymu(e,x_{1},\dotsc,x_{r-2},e)\ \in\ N_{F}.

Case 2: Assume that ee is a loop of both M¯\underline{M} and N¯\underline{N}. We have rk(M/e)=r\operatorname{{rk}}(M/e)=r and rk(N/e)=w\operatorname{{rk}}(N/e)=w. Let {y1,,yw+1}\{y_{1},\dotsc,y_{w+1}\} and {x1,,xr1}\{x_{1},\dotsc,x_{r-1}\} be subsets of EeE-e. Thus

k=1w+1ϵk(ν/e)(y1,,yk^,,yw+1)(μ/e)(yk,x1,,xr1)\displaystyle\;\underset{k=1}{\overset{w+1}{\sum}}\myepsilon^{k}\cdot(\mynu/e)(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w+1})\cdot(\mymu/e)(y_{k},x_{1},\dotsc,x_{r-1})
=\displaystyle= k=1w+1ϵkν(y1,,yk^,,yw+1)μ(yk,x1,,xr1)NF.\displaystyle\;\underset{k=1}{\overset{w+1}{\sum}}\myepsilon^{k}\cdot\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w+1})\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-1})\ \in\ N_{F}.

Case 3: Assume that ee is a loop of M¯\underline{M} but not a loop of N¯\underline{N}. We have rk(M/e)=r\operatorname{{rk}}(M/e)=r and rk(N/e)=w1\operatorname{{rk}}(N/e)=w-1. Let {y1,,yw}\{y_{1},\dotsc,y_{w}\} and {x1,,xr1}\{x_{1},\dotsc,x_{r-1}\} be subsets of EeE-e. Note that μ(e,x1,,xr1)=0\mymu(e,x_{1},\dotsc,x_{r-1})=0. Thus

k=1𝑤ϵk(ν/e)(y1,,yk^,,yw)(μ/e)(yk,x1,,xr1)\displaystyle\ \underset{k=1}{\overset{w}{\sum}}\myepsilon^{k}\cdot(\mynu/e)(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w})\cdot(\mymu/e)(y_{k},x_{1},\dotsc,x_{r-1})
=\displaystyle= k=1𝑤ϵkν(y1,,yk^,,yw,e)μ(yk,x1,,xr1)+0\displaystyle\ \underset{k=1}{\overset{w}{\sum}}\myepsilon^{k}\cdot\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w},e)\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-1})\quad+\quad 0
=\displaystyle= k=1𝑤ϵkν(y1,,yk^,,yw,e)μ(yk,x1,,xr1)\displaystyle\ \underset{k=1}{\overset{w}{\sum}}\myepsilon^{k}\cdot\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{w},e)\cdot\mymu(y_{k},x_{1},\dotsc,x_{r-1})
+ϵw+1ν(y1,,yw)μ(e,x1,,xr1)NF.\displaystyle\hskip 85.35826pt+\ \myepsilon^{w+1}\cdot\mynu(y_{1},\dotsc,y_{w})\cdot\mymu(e,x_{1},\dotsc,x_{r-1})\ \in\ N_{F}.

This shows that N/eM/eN/e\twoheadrightarrow M/e in all cases.

Next we show that N\eM\eN\backslash e\twoheadrightarrow M\backslash e. We have MNM^{*}\twoheadrightarrow N^{*}, by section 2.5. Thus M/eN/eM^{*}/e\twoheadrightarrow N^{*}/e, by what was proved above. This implies that (N/e)(M/e)(N^{*}/e)^{*}\twoheadrightarrow(M^{*}/e)^{*}, by section 2.5. By section 1.8, we have N\e=(N/e)(M/e)=M\eN\backslash e=(N^{*}/e)^{*}\twoheadrightarrow(M^{*}/e)^{*}=M\backslash e. ∎

Theorem 2.3 (Minors of flag matroids).

Let 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) be a flag FF-matroid on EE and II, JJ disjoint subsets of EE. Then 𝐌\I/J:=(M1\I/J,,Ms\I/J){\mathbf{M}}\backslash I/J:=(M_{1}\backslash I/J,\dots,M_{s}\backslash I/J) is a flag FF-matroid on E\(IJ)E\backslash(I\cup J).

Proof.

By Theorem 2.1, we only need to show that if NMN\twoheadrightarrow M, then N\I/JM\I/JN\backslash I/J\twoheadrightarrow M\backslash I/J. A repeated application of section 2.6 to the elements of II shows that N\IM\IN\backslash I\twoheadrightarrow M\backslash I, and a similar argument for the elements of JJ proves that (N\I)/J(M\I)/J(N\backslash I)/J\twoheadrightarrow(M\backslash I)/J. ∎

Remark \therem.

Even if rk(𝐌)\operatorname{{rk}}({\mathbf{M}}) is strictly increasing, rk(𝐌\I/J)\operatorname{{rk}}({\mathbf{M}}\backslash I/J) might not be strictly increasing. For example, let MM and NN be the 𝕂{\mathbb{K}}-matroids on E={1,2}E=\{1,2\} whose circuit sets are 𝒞(M)={(0,1)}\mathcal{C}(M)=\{(0,1)\} and 𝒞(N)=\mathcal{C}(N)=\emptyset, respectively (i.e., M¯=U1,1U0,1\underline{M}=U_{1,1}\oplus U_{0,1} and N¯=U2,2\underline{N}=U_{2,2}). Then M=(M,N)\textbf{M}=(M,N) is a flag matroid of rank (1,2)(1,2), but M\{2}\textbf{M}\backslash\{2\} has rank (1,1)(1,1).

2.7. Flag matroids over perfect tracts

Flag matroids behave particularly well for perfect tracts in a way that carries over the intuition of flags of linear subspaces over a field.

Theorem 2.4.

Let FF be a tract and M1,,MsM_{1},\dotsc,M_{s} FF-matroids. Consider the following properties:

  1. (1)

    The covector sets form a chain 𝒱(M1)𝒱(Ms)\mathcal{V}^{*}(M_{1})\subseteq\dotsc\subseteq\mathcal{V}^{*}(M_{s});

  2. (2)

    (M1,,Ms)(M_{1},\dotsc,M_{s}) is a flag FF-matroid (i.e., MjMiM_{j}\twoheadrightarrow M_{i} for all 1i<js1\leqslant i<j\leqslant s);

  3. (3)

    MiM_{i} is a quotient of Mi+1M_{i+1} for all 1is11\leqslant i\leqslant s-1.

Then the implications (1)\Rightarrow(2)\Rightarrow(3) hold in general, and (3)\Rightarrow(1) holds if FF is perfect.

Proof.

It is evident that (2) implies (3). Given (1), one has 𝒞(Mi)𝒱(Mi)𝒱(Mj)\mathcal{C}^{*}(M_{i})\subseteq\mathcal{V}^{*}(M_{i})\subseteq\mathcal{V}^{*}(M_{j}) for i<ji<j. Thus MjMiM_{j}\twoheadrightarrow M_{i} by Theorem 2.1, which implies (2).

Assume (3), i.e., Mi+1MiM_{i+1}\twoheadrightarrow M_{i}. By section 2.5, we have MiMi+1M_{i}^{*}\twoheadrightarrow M_{i+1}^{*}. Thus 𝒞(Mi+1)𝒱(Mi)\mathcal{C}^{*}(M_{i+1}^{*})\subseteq\mathcal{V}^{*}(M_{i}^{*}) by Theorem 2.1. If FF is perfect, then

𝒱(Mi)=𝒱(Mi)𝒞(Mi+1)=𝒱(Mi+1)=𝒱(Mi+1),\mathcal{V}^{*}(M_{i})\ =\ \mathcal{V}^{*}(M_{i}^{*})^{\perp}\ \subseteq\ \mathcal{C}^{*}(M_{i+1}^{*})^{\perp}\ =\ \mathcal{V}(M_{i+1}^{*})\ =\ \mathcal{V}^{*}(M_{i+1}),

which shows (1). ∎

Remark \therem.

For a perfect tract FF, note that the equivalence of conditions (2) and (3) in Theorem 2.4 implies that quotients of FF-matroids are composable, i.e., if M3M2M_{3}\twoheadrightarrow M_{2} and M2M1M_{2}\twoheadrightarrow M_{1}, then also M3M1M_{3}\twoheadrightarrow M_{1}.This fails to be true in general for non-perfect tracts, as the following example shows.

Example \theex.

We exhibit {\mathbb{P}}-matroids M1M_{1}, M2M_{2} and M3M_{3}, where {\mathbb{P}} is the phase hyperfield, that satisfy the following properties:

  1. (a)

    M3M2M_{3}\twoheadrightarrow M_{2} and M2M1M_{2}\twoheadrightarrow M_{1}, but M1M_{1} is not a quotient of M3M_{3}, which shows that quotients are not composable in general;

  2. (b)

    (M1,M2,M3)(M_{1},M_{2},M_{3}) is not a flag matroid, which shows that (3) does not imply (2) in general;

  3. (c)

    𝒱(M2)\mathcal{V}^{*}(M_{2}) is not a subset of 𝒱(M3)\mathcal{V}^{*}(M_{3}), which shows that (2) does not imply (1) in general.

The phase hyperfield is the hyperfield quotient of {\mathbb{C}} by >0{\mathbb{R}}_{>0}, whose multiplicative monoid is =S1{0}{\mathbb{P}}=S^{1}\cup\{0\}, where S1={z|z|=1}S^{1}=\{z\in{\mathbb{C}}\mid|z|=1\} is the complex unit circle, and whose hyperaddition is given by

x[-0]y={αx+βyαx+βy|α,β>0}x{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}y\ =\ \bigg{\{}\frac{\myalpha x+\mybeta y}{\|\myalpha x+\mybeta y\|}\,\bigg{|}\,\myalpha,\mybeta\in{\mathbb{R}}_{>0}\bigg{\}}

for x,y×x,y\in{\mathbb{P}}^{\times} with yxy\neq-x, which is the smallest open arc in S1S^{1} connecting xx and yy if xyx\neq y and which is {x}\{x\} if y=xy=x. If y=xy=-x, then x[-0]y={0,x,y}x{\,\raisebox{-1.1pt}{\larger[-0]{$\boxplus$}}\,}y=\{0,x,y\}. See [BB19, Example 2.15] for details.

Considered as a tract, the nullset of {\mathbb{P}} is

N={xi[×]|αixi=0 in  for some αi>0}.\textstyle N_{\mathbb{P}}\ =\ \big{\{}\sum x_{i}\in{\mathbb{N}}[{\mathbb{P}}^{\times}]\,\big{|}\,\sum\myalpha_{i}x_{i}=0\text{ in ${\mathbb{C}}$ for some }\myalpha_{i}\in{\mathbb{R}}_{>0}\big{\}}.

Endow {\mathbb{P}} with the trivial involution (cf. [BB19, p. 837]) and let E={1,,4}E=\{1,\dotsc,4\}. We define the aforementioned {\mathbb{P}}-matroids MiM_{i} in terms of dual pairs of {\mathbb{P}}-signatures 𝒞i{\mathcal{C}}_{i} for Ui,4U_{i,4} and 𝒟i{\mathcal{D}}_{i} for U4i,4U_{4-i,4} for i=1,2,3i=1,2,3. Namely, the {\mathbb{P}}-signature 𝒞1{\mathcal{C}}_{1} of U1,4U_{1,4} consists of the multiples (by elements of ×=S1{\mathbb{P}}^{\times}=S^{1}) of the elements

(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)(1,-1,0,0),\ (1,0,-1,0),\ (1,0,0,-1),\ (0,1,-1,0),\ (0,1,0,-1),\ (0,0,1,-1)

of 4=E{\mathbb{P}}^{4}={\mathbb{P}}^{E} and its dual {\mathbb{P}}-signature 𝒟1{\mathcal{D}}_{1} of U3,4U_{3,4} consists of the multiples of (1,1,1,1)(1,1,1,1). The {\mathbb{P}}-signature 𝒞2{\mathcal{C}}_{2} of U2,4U_{2,4} consists of the multiples of

(1,e6πi/4,e3πi/4,0),(1,e2πi/4,0,e5πi/4),(1,0,e3πi/4,e5πi/4),(0,1,e5πi/4,e3πi/4)\big{(}1,e^{6\mypi i/4},e^{3\mypi i/4},0\big{)},\ \big{(}1,e^{2\mypi i/4},0,e^{5\mypi i/4}\big{)},\ \big{(}1,0,e^{3\mypi i/4},e^{5\mypi i/4}\big{)},\ \big{(}0,1,e^{5\mypi i/4},e^{3\mypi i/4}\big{)}

and its dual {\mathbb{P}}-signature 𝒟2{\mathcal{D}}_{2} consists of the multiples of

(1,0,eπi/4,e7πi/4),(0,1,e7πi/4,eπi/4),(e7πi/4,eπi/4,1,0),(eπi/4,e7πi/4,0,1).\big{(}1,0,e^{\mypi i/4},e^{7\mypi i/4}\big{)},\ \big{(}0,1,e^{7\mypi i/4},e^{\mypi i/4}\big{)},\ \big{(}e^{7\mypi i/4},e^{\mypi i/4},1,0\big{)},\ \big{(}e^{\mypi i/4},e^{7\mypi i/4},0,1\big{)}.

The {\mathbb{P}}-signature 𝒞3{\mathcal{C}}_{3} of U3,4U_{3,4} consists of the multiples of (1,1,e7πi/8,e7πi/8)\big{(}1,1,e^{7\mypi i/8},e^{7\mypi i/8}\big{)} and its dual {\mathbb{P}}-signature 𝒟3{\mathcal{D}}_{3} consists of the multiples of

(1,1,0,0),\displaystyle(1,-1,0,0), (e15πi/8,0,1,0),\displaystyle\big{(}e^{15\mypi i/8},0,1,0\big{)}, (0,e15πi/8,1,0),\displaystyle\big{(}0,e^{15\mypi i/8},1,0\big{)},
(0,0,1,1),\displaystyle(0,0,1,-1), (e15πi/8,0,0,1),\displaystyle\big{(}e^{15\mypi i/8},0,0,1\big{)}, (0,e15πi/8,0,1).\displaystyle\big{(}0,e^{15\mypi i/8},0,1\big{)}.

This defines for i=1,2,3i=1,2,3 the {\mathbb{P}}-matroids MiM_{i} with circuit set 𝒞(Mi)=𝒞i{\mathcal{C}}(M_{i})={\mathcal{C}}_{i} and cocircuit set 𝒞(Mi)=𝒟i{\mathcal{C}}^{\ast}(M_{i})={\mathcal{D}}_{i}.

The cocircuit w=(1,1,1,1)w=(1,1,1,1) of M1M_{1} is a covector of M2M_{2} since wvNw\cdot v\in N_{\mathbb{P}} for every v𝒞(M2)v\in{\mathcal{C}}(M_{2}), as can be verified by a direct computation. Since orthogonality is invariant under scaling vectors and 𝒞(M1){\mathcal{C}}^{\ast}(M_{1}) consists of the multiples of ww, we conclude that 𝒞(M1)𝒱(M2){\mathcal{C}}^{\ast}(M_{1})\subset{\mathcal{V}}^{\ast}(M_{2}) and therefore M2M1M_{2}\twoheadrightarrow M_{1}. Similarly, we can verify that 𝒟2𝒞3{\mathcal{D}}_{2}\perp{\mathcal{C}}_{3} and therefore M3M2M_{3}\twoheadrightarrow M_{2}. We have, however, that

w(1,1,e7πi/8,e7πi/8)= 1+1+e7πi/8+e7πi/8,w\cdot\big{(}1,1,e^{7\mypi i/8},e^{7\mypi i/8}\big{)}\ =\ 1+1+e^{7\mypi i/8}+e^{7\mypi i/8},

which is not in NN_{\mathbb{P}} since the summands span a strict cone in =2{\mathbb{C}}={\mathbb{R}}^{2}. Thus ww is not a covector of M3M_{3}. This shows: (a) M1M_{1} is not a quotient of M3M_{3} even though M3M2M_{3}\twoheadrightarrow M_{2} and M2M1M_{2}\twoheadrightarrow M_{1}, (b) (M1,M2,M3)(M_{1},M_{2},M_{3}) is not a flag {\mathbb{P}}-matroid even though condition (3) of Theorem 2.4 holds, and (c) 𝒱(M2){\mathcal{V}}^{\ast}(M_{2}) is not a subset of 𝒱(M3){\mathcal{V}}^{\ast}(M_{3}) even though M3M2M_{3}\twoheadrightarrow M_{2}.

2.8. Flags of linear subspaces and valuated flag matroids

At this point, we are prepared for a comprehensive discussion of flag matroids over fields and over the tropical hyperfield.

Recall that the tract associated with a field KK replaces the addition of KK by the nullset NK={ai[K×]ai=0 in K}N_{K}=\{\sum a_{i}\in{\mathbb{N}}[K^{\times}]\mid\sum a_{i}=0\text{ in $K$}\}.

Proposition \theprop (Flag matroids over fields).

Let KK be a field and 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) a flag KK-matroid. Then 𝒱(M1)𝒱(Ms){\mathcal{V}}^{\ast}(M_{1})\subset\dotsb\subset{\mathcal{V}}^{\ast}(M_{s}). This establishes a bijection between the set of flag KK-matroids of rank 𝐫{\mathbf{r}} on EE and the set of flags V1VsV_{1}\subset\dotsc\subset V_{s} of linear subspaces of KEK^{E} with dimVi=ri\dim V_{i}=r_{i}.

Proof.

By [And19, Prop. 2.19], the tract KK is perfect and the covector set 𝒱(M){\mathcal{V}}^{\ast}(M) of a KK-matroid MM forms a linear subspace VV of KEK^{E}, which establishes a bijection between the set of KK-matroids of rank rr on EE and the set of linear subspaces of KEK^{E} of dimension rr. By Theorem 2.4, a sequence (M1,,Ms)(M_{1},\dotsc,M_{s}) of KK-matroids forms a flag KK-matroid if and only if 𝒱(M1)𝒱(Ms){\mathcal{V}}^{\ast}(M_{1})\subset\dotsb\subset{\mathcal{V}}^{\ast}(M_{s}). ∎

We turn to the comparison of valuated flag matroids in the sense of [BEZ21, Def. 4.2.2] with flag 𝕋{\mathbb{T}}-matroids in our sense. We rephrase the definitions of [BEZ21] in terms of the Berkovich model 0{\mathbb{R}}_{\geqslant 0} of the tropical semifield, using the semiring isomorphism exp:{}0-\exp:{\mathbb{R}}\cup\{\infty\}\to{\mathbb{R}}_{\geqslant 0} between the min-plus algebra and the Berkovich model, which transforms the tropical addition “min” into “max” and the tropical multiplication “plus” into usual multiplication.

A Dress-Wenzel valuation is a map μ:Er0\mymu:E^{r}\to{\mathbb{R}}_{\geqslant 0} such that for every choice of elements x1,,xr1,y1,,yr+1Ex_{1},\dotsc,x_{r-1},y_{1},\dotsc,y_{r+1}\in E there is an i{1,,r}i\in\{1,\dotsc,r\} such that

μ(y1,,yr)μ(yr+1,x1,,xr)μ(y1,,yi^,,yr+1)μ(yi,x1,,xr).\mymu(y_{1},\dotsc,y_{r})\cdot\mymu(y_{r+1},x_{1},\dotsc,x_{r})\ \leqslant\ \mymu(y_{1},\dotsc,\widehat{y_{i}},\dotsc,y_{r+1})\cdot\mymu(y_{i},x_{1},\dotsc,x_{r}).

Two valuations μ1,μ2:Er0\mymu_{1},\mymu_{2}:E^{r}\to{\mathbb{R}}_{\geqslant 0} are equivalent if there exists α>0\myalpha\in{\mathbb{R}}_{>0} such that μ1=αμ2\mymu_{1}=\myalpha\mymu_{2}. A valuated matroid444There is a discrepancy of terminology in the literature. What is called a valuated matroid in [BEZ21] is called a valuation in Dress-Wenzel’s paper that introduces valuated matroids (cf. [DW92b, Def. 1.1]), and it corresponds to a Grassmann-Plücker function with tropical coefficients in Baker-Bowler theory. Valuated matroids in Dress-Wenzel’s sense appear in [BEZ21] as projective classes of valuated matroids in the latter sense, but without a distinct name. We follow the terminological conventions of Dress-Wenzel in our exposition. is the equivalence class [μ][\mymu] of a Dress-Wenzel valuation μ:Er0\mymu:E^{r}\to{\mathbb{R}}_{\geqslant 0}.

Recall that the multiplicative monoid of 𝕋{\mathbb{T}} is 0{\mathbb{R}}_{\geqslant 0} and the nullset

N𝕋={a1++an[>0]|the maximum occurs twice in a1,,an}.N_{\mathbb{T}}\ =\ \big{\{}a_{1}+\dotsc+a_{n}\in{\mathbb{N}}[{\mathbb{R}}_{>0}]\,\big{|}\,\text{the maximum occurs twice in }a_{1},\dotsc,a_{n}\big{\}}.

We denote by ι:0𝕋\myiota:{\mathbb{R}}_{\geqslant 0}\to{\mathbb{T}} the identity map. Note that a function μ:Er0\mymu:E^{r}\to{\mathbb{R}}_{\geqslant 0} is a Dress-Wenzel valuation if and only if ιμ:Er𝕋\myiota\circ\mymu:E^{r}\to{\mathbb{T}} is a Grassmann-Plücker function. This defines a bijection that sends a valuated matroid M=[μ]M=[\mymu] to the 𝕋{\mathbb{T}}-matroid M~=[ιμ]\widetilde{M}=[\myiota\circ\mymu] (cf. [BB19, Ex. 3.32]).

Let M=[μ]M=[\mymu] and N=[ν]N=[\mynu] be valuated matroids on EE of respective ranks rr and ww. Following [BEZ21], we say that MM is a quotient of NN, and write MNM\twoheadleftarrow N, if for all x1,,xr1,y1,,yw+1Ex_{1},\dotsc,x_{r-1},y_{1},\dotsc,y_{w+1}\in E there is some i{1,,w+1}i\in\{1,\dotsc,w+1\} such that

(2) ν(y1,,yw)μ(yw+1,x1,,xr)ν(y1,,yi^,,yw+1)μ(yi,x1,,xr).\mynu(y_{1},\dotsc,y_{w})\cdot\mymu(y_{w+1},x_{1},\dotsc,x_{r})\ \leqslant\ \mynu(y_{1},\dotsc,\widehat{y_{i}},\dotsc,y_{w+1})\cdot\mymu(y_{i},x_{1},\dotsc,x_{r}).

A valuated flag matroid is a sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of valuated matroids such that MiMjM_{i}\twoheadleftarrow M_{j} for all 1ijs1\leqslant i\leqslant j\leqslant s.

Proposition \theprop (Valuated flag matroids).

A sequence 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) of valuated matroids is a valuated flag matroid if and only if the sequence 𝐌~=(M~1,,M~s)\widetilde{\mathbf{M}}=(\widetilde{M}_{1},\dotsc,\widetilde{M}_{s}) of associated 𝕋{\mathbb{T}}-matroids is a flag 𝕋{\mathbb{T}}-matroid.

Proof.

We only need to show for a pair of valuated matroids MM and NN on EE that MNM\twoheadleftarrow N if and only if N~M~\widetilde{N}\twoheadrightarrow\widetilde{M}. Let μ:Er0\mymu:E^{r}\to{\mathbb{R}}_{\geqslant 0} and ν:Ew0\mynu:E^{w}\to{\mathbb{R}}_{\geqslant 0} be Dress-Wenzel valuations representing MM and NN, respectively. Let x1,,xr1,y1,,yw+1Ex_{1},\dotsc,x_{r-1},y_{1},\dotsc,y_{w+1}\in E. Then for every reordering of x1,,xr1x_{1},\dotsc,x_{r-1} and of y1,,yw+1Ey_{1},\dotsc,y_{w+1}\in E there is an i{1,,w+1}i\in\{1,\dotsc,w+1\} such that equation (2) holds if and only if the maximum of

{ν(y1,,yi^,,yw+1)μ(yi,x1,,xr)|i=1,,w+1}\big{\{}\mynu(y_{1},\dotsc,\widehat{y_{i}},\dotsc,y_{w+1})\cdot\mymu(y_{i},x_{1},\dotsc,x_{r})\,\big{|}\,i=1,\dotsc,w+1\big{\}}

is attained at least twice. By the definition of 𝕋{\mathbb{T}}, this happens if and only if

i=1w+1ιν(y1,,yi^,,yw+1)ιμ(yi,x1,,xr)N𝕋.\sum_{i=1}^{w+1}\ \myiota\circ\mynu(y_{1},\dotsc,\widehat{y_{i}},\dotsc,y_{w+1})\cdot\myiota\circ\mymu(y_{i},x_{1},\dotsc,x_{r})\ \ \in\ \ N_{\mathbb{T}}.

Since ϵ=1\myepsilon=1 in 𝕋{\mathbb{T}}, this is precisely the condition for M~N~\widetilde{M}\twoheadrightarrow\widetilde{N} if we vary through all x1,,xr1,y1,,yw+1Ex_{1},\dotsc,x_{r-1},y_{1},\dotsc,y_{w+1}\in E, and thus the result follows. ∎

Remark \therem.

Since 𝕋{\mathbb{T}} is perfect (see [BB19, Cor. 3.45]) and the covector set 𝒱(M){\mathcal{V}}^{\ast}(M) of a valuated matroid MM is a tropical linear space, Theorem 2.4 identifies flag 𝕋{\mathbb{T}}-matroids (M1,,Ms)(M_{1},\dotsc,M_{s}) with flags 𝒱(M1)𝒱(Ms){\mathcal{V}}^{\ast}(M_{1})\subset\dotsb\subset{\mathcal{V}}^{\ast}(M_{s}) of tropical linear subspaces in 𝕋E{\mathbb{T}}^{E}. This recovers [BEZ21, Thm. 4.3.1]. The Plücker flag relations also show at once that a flag 𝕋{\mathbb{T}}-matroid is the same thing as a point of the flag Dressian FlDr(r1,,rs;n)FlDr(r_{1},\dotsc,r_{s};n), which recovers [BEZ21, Prop. 4.2.3]; also see section 3.11.2.

2.9. Flags of minors

As explained in the first example of the introduction, certain sequences of minors of a matroid MM^{\prime} on EE^{\prime} are flag matroids, see [Kun77]. This generalizes verbatim to flag FF-matroids over an arbitrary tract FF.

Theorem 2.5.

Let FF be a tract, pp\in{\mathbb{N}}, MM^{\prime} an FF-matroid on E=E{n+1,,n+p}E^{\prime}=E\sqcup\{n+1,\dotsc,n+p\} and fix integers 0nsn1p0\leqslant n_{s}\leqslant\dotsc\leqslant n_{1}\leqslant p. For i=1,,si=1,\dotsc,s, we define Mi=M\Ii/JiM_{i}=M^{\prime}\backslash I_{i}/J_{i} where Ji={n+1,,n+ni}J_{i}=\{n+1,\dotsc,n+n_{i}\} and Ii={n+(ni+1),,n+p}I_{i}=\{n+(n_{i}+1),\dotsc,n+p\}. Then (M1,,Ms)(M_{1},\dotsc,M_{s}) is a flag FF-matroid on EE.

Proof.

It is enough to show that if aa and bb are integers such that 0b<ap0\leqslant b<a\leqslant p, then M\Ib/JbM\Ia/JaM^{\prime}\backslash I_{b}/J_{b}\twoheadrightarrow M^{\prime}\backslash I_{a}/J_{a}, where Jc:={n+1,,n+c}J_{c}:=\{n+1,\dotsc,n+c\} and Ic:={n+(c+1),,n+p}I_{c}:=\{n+(c+1),\dotsc,n+p\} for c{a,b}c\in\{a,b\}.

Let φ\myvarphi be a Grassmann-Plücker function such that M=MφM^{\prime}=M_{\myvarphi}. Let r:=rk(M)r:=\operatorname{{rk}}(M^{\prime}) and rc:=rk(M\Ic/Jc)r_{c}:=\operatorname{{rk}}(M^{\prime}\backslash I_{c}/J_{c}) for c{a,b}c\in\{a,b\}. We aim to find suitable sets {q1,,qrrb}\{q_{1},\dotsc,q_{r-r_{b}}\} and {u1,,urra}\{u_{1},\dotsc,u_{r-r_{a}}\} such that

φ\Ib/Jb(h1,,hrb)=φ(h1,,hrb,q1,,qrrb)\myvarphi\backslash I_{b}/J_{b}(h_{1},\dotsc,h_{r_{b}})=\myvarphi(h_{1},\dotsc,h_{r_{b}},q_{1},\dotsc,q_{r-r_{b}})

and

φ\Ia/Ja(g1,,gra)=φ(g1,,gra,u1,,urra).\myvarphi\backslash I_{a}/J_{a}(g_{1},\dotsc,g_{r_{a}})=\myvarphi(g_{1},\dotsc,g_{r_{a}},u_{1},\dotsc,u_{r-r_{a}}).

Let Y(M|Jb)Y\in\mathcal{B}(M^{\prime}|J_{b}). Then there are XEX\subseteq E, VJa\JbV\subseteq J_{a}\backslash J_{b} and ZIaZ\subseteq I_{a} such that YX(M|EJb)Y\sqcup X\in\mathcal{B}(M^{\prime}|E\sqcup J_{b}), YXV(M|EJa)Y\sqcup X\sqcup V\in\mathcal{B}(M^{\prime}|E\sqcup J_{a}) and YXVZ(M)Y\sqcup X\sqcup V\sqcup Z\in\mathcal{B}(M^{\prime}). This means that Z(M/EJa)Z\in\mathcal{B}(M^{\prime}/E\sqcup J_{a}), ZV(M/EJb)Z\sqcup V\in\mathcal{B}(M^{\prime}/E\sqcup J_{b}) and YV(M|Ja)Y\sqcup V\in\mathcal{I}(M^{\prime}|J_{a}). Thus there is Y+Ja\(YV)Y^{+}\subseteq J_{a}\backslash(Y\sqcup V) such that YY+V(M|Ja)Y\sqcup Y^{+}\sqcup V\in\mathcal{B}(M^{\prime}|J_{a}). Let Y={y1,,y}Y=\{y_{1},\dotsc,y_{\ell}\}, Y+={y+1,,yt}Y^{+}=\{y_{\ell+1},\dotsc,y_{t}\}, V={v1,,vm}V=\{v_{1},\dotsc,v_{m}\} and Z={z1,,zw}Z=\{z_{1},\dotsc,z_{w}\}. Note that

φ\Ib/Jb(h1,,hrb)\displaystyle\myvarphi\backslash I_{b}/J_{b}(h_{1},\dotsc,h_{r_{b}})
=\displaystyle= φ\Ib(h1,,hrb,y1,,y)\displaystyle\myvarphi\backslash I_{b}(h_{1},\dotsc,h_{r_{b}},y_{1},\dotsc,y_{\ell})
=\displaystyle= φ(h1,,hrb,y1,,y,z1,,zw,v1,,vm)\displaystyle\myvarphi(h_{1},\dotsc,h_{r_{b}},y_{1},\dotsc,y_{\ell},z_{1},\dotsc,z_{w},v_{1},\dotsc,v_{m})

and

φ\Ia/Ja(g1,,gra)\displaystyle\myvarphi\backslash I_{a}/J_{a}(g_{1},\dotsc,g_{r_{a}})
=\displaystyle= φ\Ia(g1,,gra,y1,,y,y+1,,yt,v1,,vm)\displaystyle\myvarphi\backslash I_{a}(g_{1},\dotsc,g_{r_{a}},y_{1},\dotsc,y_{\ell},y_{\ell+1},\dotsc,y_{t},v_{1},\dotsc,v_{m})
=\displaystyle= φ(g1,,gra,y1,,y,y+1,,yt,v1,,vm,z1,,zw).\displaystyle\myvarphi(g_{1},\dotsc,g_{r_{a}},y_{1},\dotsc,y_{\ell},y_{\ell+1},\dotsc,y_{t},v_{1},\dotsc,v_{m},z_{1},\dotsc,z_{w}).

To finish the proof, we only need to show that φ\Ib/Jb\myvarphi\backslash I_{b}/J_{b} and φ\Ia/Ja\myvarphi\backslash I_{a}/J_{a} satisfy the Plücker flag relations (1). Let {w1,,wrb+1}\{w_{1},\dotsc,w_{r_{b}+1}\} and {f1,,fra1}\{f_{1},\dotsc,f_{r_{a}-1}\} be subsets of EE. Define the following two sequences

(wrb+2,,wr+1)=(y1,,y,z1,,zw,v1,,vm)\displaystyle(w_{r_{b}+2},\dotsc,w_{r+1})=(y_{1},\dotsc,y_{\ell},z_{1},\dotsc,z_{w},v_{1},\dotsc,v_{m})
and (fra,,fr1)=(y1,,y,y+1,,yt,v1,,vm,z1,,zw).\displaystyle(f_{r_{a}},\dotsc,f_{r-1})=(y_{1},\dotsc,y_{\ell},y_{\ell+1},\dotsc,y_{t},v_{1},\dotsc,v_{m},z_{1},\dotsc,z_{w}).

Then

k=1rb+1ϵkφ\Ib/Jb(w1,,wk^,wrb+1)φ\Ia/Ja(wk,f1,,fra1)\displaystyle\underset{k=1}{\overset{r_{b}+1}{\sum}}\myepsilon^{k}\myvarphi\backslash I_{b}/J_{b}(w_{1},\dotsc,\widehat{w_{k}},\dotsc w_{r_{b}+1})\cdot\myvarphi\backslash I_{a}/J_{a}(w_{k},f_{1},\dotsc,f_{r_{a}-1})
=\displaystyle= k=1rb+1ϵkφ(w1,,wk^,wr+1)φ(wk,f1,,fr1)\displaystyle\underset{k=1}{\overset{r_{b}+1}{\sum}}\myepsilon^{k}\myvarphi(w_{1},\dotsc,\widehat{w_{k}},\dotsc w_{r+1})\cdot\myvarphi(w_{k},f_{1},\dotsc,f_{r-1})
=\displaystyle= k=1r+1ϵkφ(w1,,wk^,wr+1)φ(wk,f1,,fr1),\displaystyle\,\underset{k=1}{\overset{r+1}{\sum}}\,\myepsilon^{k}\myvarphi(w_{1},\dotsc,\widehat{w_{k}},\dotsc w_{r+1})\cdot\myvarphi(w_{k},f_{1},\dotsc,f_{r-1}),

as the terms for k=rb+2,,r+1k=r_{b}+2,\dotsc,r+1 are zero, because {wrb+2,,wr+1}{fra,,fr1}\{w_{r_{b}+2},\dotsc,w_{r+1}\}\subseteq\{f_{r_{a}},\dotsc,f_{r-1}\}. As φ\myvarphi is a Grassmann-Plücker function, the last sum is in NFN_{F}. ∎

Remark \therem.

By [Kun77], every flag matroid is a sequence of minors. This also holds for flag matroids over a field KK since the association M(M\Ii/Ji)i=1,,sM^{\prime}\mapsto\big{(}M^{\prime}\backslash I_{i}/J_{i}\big{)}_{i=1,\dotsc,s} defines a GL(E,K)\operatorname{GL}(E,K)-equivariant rational map Gr(rs,E)(K)Fl(𝐫,E)(K)\operatorname{Gr}(r_{s},E^{\prime})(K)\mathbin{\leavevmode\hbox to15.28pt{\vbox to7.15pt{\pgfpicture\makeatletter\hbox{\hskip 2.07999pt\lower-2.39998pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}{{}}{} {}{}{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07999pt}{2.39998pt}\pgfsys@curveto{-1.69998pt}{0.95998pt}{-0.85318pt}{0.28pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85318pt}{-0.28pt}{-1.69998pt}{-0.95998pt}{-2.07999pt}{-2.39998pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{2.15277pt}\pgfsys@lineto{12.60002pt}{2.15277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.80002pt}{2.15277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\operatorname{Fl}({\mathbf{r}},E)(K) where 𝐫=(r1,,rs){\mathbf{r}}=(r_{1},\dotsc,r_{s}), E={1,,n}E=\{1,\dotsc,n\} and E={1,,n+rsr1}E^{\prime}=\{1,\dotsc,n+r_{s}-r_{1}\}. Since its image is not empty and since GL(E,K)\operatorname{GL}(E,K) acts transitively on Fl(𝐫,E)(K)\operatorname{Fl}({\mathbf{r}},E)(K), we conclude that every flag KK-matroid is a flag of minors of a KK-matroid MM^{\prime} on EE^{\prime}.

Las Vergnas expected that the same holds true for oriented flag matroids of rank (r1,r2)(r_{1},r_{2}), i.e., that every quotient M2M1M_{2}\twoheadrightarrow M_{1} of oriented matroids is of the form M\IM/IM^{\prime}\backslash I\twoheadrightarrow M^{\prime}/I for some oriented matroid MM^{\prime} on a larger set E=EIE^{\prime}=E\cup I. This was however disproven by Richter-Gebert in [Ric93, Cor. 3.5].

For applications to the representation theory of flag matroids, it would be useful to get a better hold on the question for which 𝐫{\mathbf{r}}, EE and FF all flag FF-matroids of rank 𝐫{\mathbf{r}} on EE are flags of minors.

In the special case of rank (r,r+1)(r,r+1), we obtain a positive answer for perfect tracts.

Proposition \theprop.

Let FF be a perfect tract and 𝐌{\mathbf{M}} a flag FF-matroid of rank (r,r+1)(r,r+1). Let E^=E{e}\widehat{E}=E\sqcup\{e\}. Then there is an FF-matroid M^\widehat{M} of rank r+1r+1 on E^\widehat{E} such that 𝐌=(M^/e,M^\e){\mathbf{M}}=(\widehat{M}/e,\,\widehat{M}\backslash e). More precisely, the set of FF-matroids M^\widehat{M} with 𝐌=(M^/e,M^\e){\mathbf{M}}=(\widehat{M}/e,\,\widehat{M}\backslash e) stays in bijection with F×F^{\times}.

Proof.

Let μ:ErF\mymu:E^{r}\rightarrow F and ν:Er+1F\mynu:E^{r+1}\rightarrow F be Grassmann-Plücker functions such that 𝐌=(Mμ,Mν){\mathbf{M}}=(M_{\mymu},M_{\mynu}). We define the function φ:E^r+1F\myvarphi:\widehat{E}^{r+1}\to F by

φ(x1,,xr+1)={ν(x1,,xr+1)if e{x1,,xr+1};ϵr+1μ(x1,,x^,,xr+1)if e=x{x1,,x^,,xr+1};0if e=x=xk for k.\myvarphi(x_{1},\dotsc,x_{r+1})\ =\ \begin{cases}\mynu(x_{1},\dotsc,x_{r+1})&\text{if }e\notin\{x_{1},\dotsc,x_{r+1}\};\\ \myepsilon^{r+1-\ell}\mymu(x_{1},\dotsc,\widehat{x_{\ell}},\dotsc,x_{r+1})&\text{if }e=x_{\ell}\notin\{x_{1},\dotsc,\widehat{x_{\ell}},\dotsc,x_{r+1}\};\\ 0&\text{if }e=x_{\ell}=x_{k}\text{ for }\ell\neq k.\end{cases}

We aim to show that φ\myvarphi is a Grassmann-Plücker function and 𝐌=(Mφ/e,Mφ\e){\mathbf{M}}=(M_{\myvarphi}/e,M_{\myvarphi}\backslash e). As ν\mynu is not identically zero, φ\myvarphi satisfies (GP1). Property (GP2) is obvious but for the case that e=xi{x1,,xi^,,xr+1}e=x_{i}\notin\{x_{1},\dotsc,\widehat{x_{i}},\dotsc,x_{r+1}\} where we find

φ(x1,,xi,,xj,,xr+1)\displaystyle\myvarphi(x_{1},\dotsc,x_{i},\dotsc,x_{j},\dotsc,x_{r+1})
=\displaystyle= ϵr+1iμ(x1,,xi1,xi^,xi+1,,xj,,xr+1)\displaystyle\myepsilon^{r+1-i}\mymu(x_{1},\dotsc,x_{i-1},\widehat{x_{i}},x_{i+1},\dotsc,x_{j},\dotsc,x_{r+1})
=\displaystyle= ϵ(r+1i)+j(i+1)μ(x1,,xi1,xj,xi+1,,xj1,xi^,xj+1,,xr+1)\displaystyle\myepsilon^{(r+1-i)+j-(i+1)}\mymu(x_{1},\dotsc,x_{i-1},x_{j},x_{i+1},\dotsc,x_{j-1},\widehat{x_{i}},x_{j+1},\dotsc,x_{r+1})
=\displaystyle= ϵφ(x1,,xj,,xi,,xr+1).\displaystyle\myepsilon\cdot\myvarphi(x_{1},\dotsc,x_{j},\dotsc,x_{i},\dotsc,x_{r+1}).

Since FF is perfect, we only need to show that φ\myvarphi satisfies (GP3) for subsets I={y1,,yr+2}I=\{y_{1},\dotsc,y_{r+2}\} and J={x1,,xr}J=\{x_{1},\dotsc,x_{r}\} of EE with #I\J=3\#I\backslash J=3 (see [BB19, Thm. 3.46]). As φ\myvarphi satisfies (GP2), one can suppose that a:=y1,b:=y2,c:=y3a:=y_{1},\,b:=y_{2},\,c:=y_{3} are the elements of I\JI\backslash J, d=x1d=x_{1} is the unique element in J\IJ\backslash I and xi=yi+2x_{i}=y_{i+2} for i=2,,ri=2,\dotsc,r. For w,z{a,b,c,d}w,z\in\{a,b,c,d\} define φ^(w,z):=φ(w,z,y4,,yr+2)\widehat{\myvarphi}(w,z):=\myvarphi(w,z,y_{4},\dotsc,y_{r+2}). Note that

(3) k=1r+2ϵkφ(y1,,yk^,,yr+2)φ(yk,x1,,xr)\underset{k=1}{\overset{r+2}{\sum}}\myepsilon^{k}\cdot\myvarphi(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r+2})\cdot\myvarphi(y_{k},x_{1},\dotsc,x_{r})
=ϵ1φ^(b,c)φ^(a,d)+ϵ2φ^(a,c)φ^(b,d)+ϵ3φ^(a,b)φ^(c,d).=\;\myepsilon^{1}\cdot\widehat{\myvarphi}(b,c)\cdot\widehat{\myvarphi}(a,d)+\myepsilon^{2}\widehat{\myvarphi}(a,c)\cdot\widehat{\myvarphi}(b,d)+\myepsilon^{3}\cdot\widehat{\myvarphi}(a,b)\cdot\widehat{\myvarphi}(c,d).

We have 4 cases to analyze.

Case 1: If eIJe\notin I\cup J, then equation (3) becomes

k=1r+2ϵkν(y1,,yk^,,yr+2)ν(yk,x1,,xr),\underset{k=1}{\overset{r+2}{\sum}}\myepsilon^{k}\cdot\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,y_{r+2})\cdot\mynu(y_{k},x_{1},\dotsc,x_{r}),

which is in NFN_{F} because ν\mynu is a Grassmann-Plücker function.

Case 2: If e=y=x+2IJe=y_{\ell}=x_{\ell+2}\in I\cap J, then we define (t1,,tr+1)=(y1,,y^,,yr+2)(t_{1},\dotsc,t_{r+1})=(y_{1},\dotsc,\widehat{y_{\ell}},\dotsc,y_{r+2}) and (u1,,ur1)=(x1,,x2^,,xr)(u_{1},\dotsc,u_{r-1})=(x_{1},\dotsc,\widehat{x_{\ell-2}},\dotsc,x_{r}). With this, equation (3) becomes

k=11ϵkμ(y1,,yk^,,y^,,yr+2)μ(yk,x1,,x2^,,xr)\displaystyle\underset{k=1}{\overset{\ell-1}{\sum}}\myepsilon^{k}\cdot\mymu(y_{1},\dotsc,\widehat{y_{k}},\dotsc,\widehat{y_{\ell}},\dotsc,y_{r+2})\cdot\mymu(y_{k},x_{1},\dotsc,\widehat{x_{\ell-2}},\dotsc,x_{r})
+\displaystyle+ ϵν(y1,,y^,,yr+2)0\displaystyle\myepsilon^{\ell}\cdot\mynu(y_{1},\dotsc,\widehat{y_{\ell}},\dotsc,y_{r+2})\cdot 0
+\displaystyle+ k=+1r+2ϵk1μ(y1,,y^,,yk^,,yr+2)μ(yk,x1,,x2^,,xr)\displaystyle\underset{k=\ell+1}{\overset{r+2}{\sum}}\myepsilon^{k-1}\cdot\mymu(y_{1},\dotsc,\widehat{y_{\ell}},\dotsc,\widehat{y_{k}},\dotsc,y_{r+2})\cdot\mymu(y_{k},x_{1},\dotsc,\widehat{x_{\ell-2}},\dotsc,x_{r})
=\displaystyle= k=1r+1ϵkμ(t1,,tk^,,tr+1)μ(tk,u1,,ur1),\displaystyle\underset{k=1}{\overset{r+1}{\sum}}\myepsilon^{k}\cdot\mymu(t_{1},\dotsc,\widehat{t_{k}},\dotsc,t_{r+1})\cdot\mymu(t_{k},u_{1},\dotsc,u_{r-1}),

which is in NFN_{F} because μ\mymu is a Grassmann-Plücker function.

Case 3: If e=de=d, then equation (3) becomes

ϵrν(b,c,y4,,yr+2)μ(a,x2,,xr)\displaystyle\myepsilon^{r}\mynu(b,c,y_{4},\dotsc,y_{r+2})\cdot\mymu(a,x_{2},\dotsc,x_{r})
+\displaystyle+ ϵr+1ν(a,c,y4,,yr+2)μ(b,x2,,xr)\displaystyle\myepsilon^{r+1}\mynu(a,c,y_{4},\dotsc,y_{r+2})\cdot\mymu(b,x_{2},\dotsc,x_{r})
+\displaystyle+ ϵr+2ν(a,b,y4,,yr+2)μ(c,x2,,xr)\displaystyle\myepsilon^{r+2}\mynu(a,b,y_{4},\dotsc,y_{r+2})\cdot\mymu(c,x_{2},\dotsc,x_{r})
=\displaystyle= ϵr1k=1r+2ϵkν(y1,,yk^,yr+2)μ(yk,x2,,xr),\displaystyle\myepsilon^{r-1}\cdot\underset{k=1}{\overset{r+2}{\sum}}\myepsilon^{k}\mynu(y_{1},\dotsc,\widehat{y_{k}},\dotsc y_{r+2})\cdot\mymu(y_{k},x_{2},\dotsc,x_{r}),

which is in NFN_{F} because MνMμM_{\mynu}\twoheadrightarrow M_{\mymu}.

Case 4: The cases for e{a,b,c}e\in\{a,b,c\} are similar to prove. We demonstrate the case e=ae=a, in which equation (3) becomes

ϵ(r+1)+2ν(b,c,y4,,yr+2)μ(d,x2,,xr)\displaystyle\myepsilon^{(r+1)+2}\mynu(b,c,y_{4},\dotsc,y_{r+2})\cdot\mymu(d,x_{2},\dotsc,x_{r})
+\displaystyle+ ϵ(r+2)μ(c,x2,,xr)ν(b,d,y4,,yr+2)\displaystyle\myepsilon^{(r+2)}\mymu(c,x_{2},\dotsc,x_{r})\cdot\mynu(b,d,y_{4},\dotsc,y_{r+2})
+\displaystyle+ ϵ(r+3)2μ(b,x2,,xr)ν(c,d,y4,,yr+2)\displaystyle\myepsilon^{(r+3)-2}\mymu(b,x_{2},\dotsc,x_{r})\cdot\mynu(c,d,y_{4},\dotsc,y_{r+2})
=\displaystyle= ϵrk=1r+2ϵkν(z1,,zk^,zr+2)μ(zk,x2,,xr),\displaystyle\myepsilon^{r}\cdot\underset{k=1}{\overset{r+2}{\sum}}\myepsilon^{k}\mynu(z_{1},\dotsc,\widehat{z_{k}},\dotsc z_{r+2})\cdot\mymu(z_{k},x_{2},\dotsc,x_{r}),

which is in NFN_{F} because MνMμM_{\mynu}\twoheadrightarrow M_{\mymu}, where (z1,,zr+2):=(b,c,d,y4,,yr+2)(z_{1},\dotsc,z_{r+2}):=(b,c,d,y_{4},\dotsc,y_{r+2}).

To conclude, this shows that φ\myvarphi is a Grassmann-Plücker function. Since φ/e=μ\myvarphi/e=\mymu and φ\e=ν\myvarphi\backslash e=\mynu, one has (Mφ/e,Mφ\e)=𝐌(M_{\myvarphi}/e,M_{\myvarphi}\backslash e)={\mathbf{M}}.

For the last part of the theorem, it is enough to prove that the set of Grassmann-Plücker functions λ\mylambda with 𝐌=(Mλ/e,Mλ\e){\mathbf{M}}=(M_{\mylambda}/e,M_{\mylambda}\backslash e) stays in bijection with (F×)2(F^{\times})^{2}. This follows from the following two facts:

  1. (1)

    If λ\mylambda is a Grassmann-Plücker function on E^\widehat{E} satisfying 𝐌=(Mλ/e,Mλ\e){\mathbf{M}}=(M_{\mylambda}/e,M_{\mylambda}\backslash e), then there are α\myalpha, βF×\mybeta\in F^{\times} such that λ/e=αμ\mylambda/e=\myalpha\cdot\mymu and λ\e=βν\mylambda\backslash e=\mybeta\cdot\mynu.

  2. (2)

    Conversely, given α\myalpha, βF×\mybeta\in F^{\times}, by a construction analogue to that of φ\myvarphi above, there is a unique Grassmann-Plücker function λ\mylambda on E^\widehat{E} such that λ/e=αμ\mylambda/e=\myalpha\cdot\mymu and λ\e=βν\mylambda\backslash e=\mybeta\cdot\mynu, which implies 𝐌=(Mλ/e,Mλ\e){\mathbf{M}}=(M_{\mylambda}/e,M_{\mylambda}\backslash e).

This concludes the prof of section 2.9. ∎

Corollary \thecor.

Let FF be a perfect tract. Let MM and NN be FF-matroids with respective Grassmann-Plücker functions μ:ErF\mymu:E^{r}\to F and ν:Er+1F\mynu:E^{r+1}\to F. Assume that (M¯,N¯)(\underline{M},\underline{N}) is a flag matroid. Then (M,N)(M,N) is a flag FF-matroid if

μ(a,x1,,xr1)ν(b,c,x1,,xr1)μ(b,x1,,xr1)ν(a,c,x1,,xr1)+μ(c,x1,,xr1)ν(a,b,x1,,xr1)NF\mymu(a,x_{1},\dotsc,x_{r-1})\cdot\mynu(b,c,x_{1},\dotsc,x_{r-1})\ -\ \mymu(b,x_{1},\dotsc,x_{r-1})\cdot\mynu(a,c,x_{1},\dotsc,x_{r-1})\\ +\ \mymu(c,x_{1},\dotsc,x_{r-1})\cdot\mynu(a,b,x_{1},\dotsc,x_{r-1})\quad\in\ N_{F}

for all x1,,xr1,a,b,cEx_{1},\dotsc,x_{r-1},a,b,c\in E.

Proof.

Let E^=E{e}\widehat{E}=E\sqcup\{e\} and φ:E^r+1F\myvarphi:\widehat{E}^{r+1}\to F be defined by

φ(x1,,xr+1)={ν(x1,,xr+1)if e{x1,,xr+1};ϵr+1μ(x1,,x^,,xr+1)if e=x{x1,,x^,,xr+1};0if e=x=xk for k.\myvarphi(x_{1},\dotsc,x_{r+1})\ =\ \begin{cases}\mynu(x_{1},\dotsc,x_{r+1})&\text{if }e\notin\{x_{1},\dotsc,x_{r+1}\};\\ \myepsilon^{r+1-\ell}\mymu(x_{1},\dotsc,\widehat{x_{\ell}},\dotsc,x_{r+1})&\text{if }e=x_{\ell}\notin\{x_{1},\dotsc,\widehat{x_{\ell}},\dotsc,x_{r+1}\};\\ 0&\text{if }e=x_{\ell}=x_{k}\text{ for }\ell\neq k.\end{cases}

Following through the steps of the proof of section 2.9, we see that the relations in the statement of the corollary are sufficient to prove that φ\myvarphi is a weak Grassmann-Plücker function.

Since (M¯,N¯)(\underline{M},\underline{N}) is a flag matroid, it is of the form (M~/e,M~\e)(\widetilde{M}/e,\widetilde{M}\backslash e) for a matroid M~\widetilde{M} on E^\widehat{E} by section 2.9, which is unique since 𝕂×={1}{\mathbb{K}}^{\times}=\{1\}. Since the construction of φ\myvarphi is formally independent of the tract FF, it is evident that φ\myvarphi represents the matroid M~\widetilde{M}. We conclude that φ\myvarphi defines an FF-matroid Mφ=[φ]M_{\myvarphi}=[\myvarphi] by [BB19, Thm. 3.46].

By the construction of φ\myvarphi, we have M=Mφ/eM=M_{\myvarphi}/e and N=Mφ\eN=M_{\myvarphi}\backslash e. Thus it follows from Theorem 2.5 that (M,N)=(Mφ/e,Mφ\e)(M,N)=(M_{\myvarphi}/e,M_{\myvarphi}\backslash e) is a flag FF-matroid. ∎

3. The moduli space of flag matroids

In this part, we construct the moduli space Fl(r1,,rs;E)\operatorname{Fl}(r_{1},\dots,r_{s};E) of flag matroids, which adds the cryptomorphic description of a flag FF-matroid as an FF-rational point of Fl(r1,,rs;E)\operatorname{Fl}(r_{1},\dots,r_{s};E). This extends results by Baker and the second author in [BL21] from matroids to flag matroids.

Our construction of Fl(r1,,rs;E)\operatorname{Fl}(r_{1},\dots,r_{s};E) utilizes ordered blue schemes, a theory that was developed in [Lor15] and [BL21]. Since we cannot present the necessary background on this theory in a compact way, we assume that the reader is familiar with the latter paper by Baker and the second author. In particular, we assume that the reader is familiar with the terminologies and notations for ordered blueprints; see [BL21] for details.

Throughout the section, we fix a ground set E={1,,n}E=\{1,\dotsc,n\} and a rank 𝐫=(r1,,rs){\mathbf{r}}=(r_{1},\dotsc,r_{s}) with 0r1rsn0\leqslant r_{1}\leqslant\dotsb\leqslant r_{s}\leqslant n. For 𝐈=(x1,,xr)Er{\mathbf{I}}=(x_{1},\dotsc,x_{r})\in E^{r} and eEe\in E, we use the notations 𝐈e=(x1,,xr,e){\mathbf{I}}e=(x_{1},\dotsc,x_{r},e) and |𝐈|={x1,,xr}|{\mathbf{I}}|=\{x_{1},\dotsc,x_{r}\}.

3.1. Idylls and ordered blueprints

We recall from [BL21, Thm. 2.21] that a tract F=(F×,NF)F=(F^{\times},N_{F}) can be realized as the ordered blueprint B=FoblprB=F^{\textup{oblpr}} with underlying monoid B=FB^{\bullet}=F, ambient semiring B+=[F×]B^{+}={\mathbb{N}}[F^{\times}] and (additive and multiplicative) partial order 𝔯B=0aiaiNF{\mathfrak{r}}_{B}\ =\ \langle 0\leqslant\sum a_{i}\mid\sum a_{i}\in N_{F}\rangle on B+B^{+}. An idyll is an ordered blueprint of the form B=FoblprB=F^{\textup{oblpr}} for a tract FF.

The association FFoblprF\mapsto F^{\textup{oblpr}} extends naturally to a functor ()oblpr:TractsOBlpr(-)^{\textup{oblpr}}:\operatorname{{Tracts}}\to\operatorname{{OBlpr}} from tracts to ordered blueprints that comes with a right adjoint ()tract:OBlprTracts(-)^{\textup{tract}}:\operatorname{{OBlpr}}\to\operatorname{{Tracts}}. Composing both functors sends a tract FF to the tract F=(Foblpr)tractF^{\prime}=(F^{\textup{oblpr}})^{\textup{tract}} that equals FF as a monoid and whose nullset NFN_{F^{\prime}} equals the closure of NFN_{F} under addition. This means that the functors ()tract(-)^{\textup{tract}} and ()oblpr(-)^{\textup{oblpr}} restrict to mutually inverse equivalence of categories between idylls and tracts whose nullset is additively closed.

By abuse of language, we call tracts with additively closed nullset also idylls and we do not make a distinction between the tract and the associated ordered blueprint. In particular, we denote the associated ordered blueprint with the same symbol, which applies, for instance, to the idylls 𝔽1±{{\mathbb{F}}_{1}^{\pm}}, 𝕂{\mathbb{K}}, 𝕊{\mathbb{S}} and 𝕋{\mathbb{T}}. Note that, more generally, all partial fields and all hyperfields are idylls. Following this logic, we define a flag FF-matroid for an idyll FF with associated tract F=FtractF^{\prime}=F^{\textup{tract}} as a flag FF^{\prime}-matroid.

Note that every idyll is an 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-algebra in a unique way.

Example \theex.

The incarnations of 𝔽1±{{\mathbb{F}}_{1}^{\pm}} and 𝕂{\mathbb{K}} as ordered blueprints are

𝔽1±={0,±1}01+(1)and𝕂={0,1}01+1, 01+1+1.{{\mathbb{F}}_{1}^{\pm}}\ =\ \{0,\pm 1\}\!\sslash\!\langle 0\leqslant 1+(-1)\rangle\quad\text{and}\quad{\mathbb{K}}\ =\ \{0,1\}\!\sslash\!\langle 0\leqslant 1+1,\ 0\leqslant 1+1+1\rangle.

The associated ordered blueprint B=KoblprB=K^{\textup{oblpr}} of a field KK has underlying monoid B=KB^{\bullet}=K, ambient semiring B+=[K×]B^{+}={\mathbb{N}}[K^{\times}] and partial order 𝔯B=0aiai=0 in K{\mathfrak{r}}_{B}\ =\ \langle 0\leqslant\sum a_{i}\mid\sum a_{i}=0\text{ in $K$}\rangle.

3.2. Flag matroid bundles

As a first step towards the moduli space of flag matroids, we generalize the notion of a flag FF-matroid to that of a flag matroid bundle on an (ordered blue) 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-scheme.

Definition \thedf.

Let XX be an 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-scheme, E={1,,n}E=\{1,\dotsc,n\} and 𝐫=(r1,,rs){\mathbf{r}}=(r_{1},\dotsc,r_{s}). A flag of Grassmann-Plücker functions (of rank 𝐫{\mathbf{r}} on EE) in XX are line bundles 1,,s{\mathcal{L}}_{1},\dotsc,{\mathcal{L}}_{s} on XX and functions

φi:EriΓ(X,i)\myvarphi_{i}:\ E^{r_{i}}\ \longrightarrow\ \Gamma(X,{\mathcal{L}}_{i})

for i=1,,si=1,\dotsc,s such that for all 1ijs1\leqslant i\leqslant j\leqslant s,

  1. (GP1)

    the global sections φi(𝐈)\myvarphi_{i}({\mathbf{I}}) with 𝐈Eri{\mathbf{I}}\in E^{r_{i}} generate i{\mathcal{L}}_{i}, i.e., for every point xXx\in X, there is an 𝐈Eri{\mathbf{I}}\in E^{r_{i}} such that the class of φi(𝐈)\myvarphi_{i}({\mathbf{I}}) in 𝒪X,x{\mathcal{O}}_{X,x} is a unit;

  2. (GP2)

    φi\myvarphi_{i} is alternating, i.e., φi(xσ(1),,xσ(ri))=sign(σ)φi(x1,,xri)\myvarphi_{i}(x_{\mysigma(1)},\dotsc,x_{\mysigma(r_{i})})=\operatorname{{sign}}(\mysigma)\cdot\myvarphi_{i}(x_{1},\dotsc,x_{r_{i}}) and φi(𝐈)=0\myvarphi_{i}({\mathbf{I}})=0 if #|𝐈|<ri\#|{\mathbf{I}}|<r_{i};

  3. (GP3)

    φi\myvarphi_{i} and φj\myvarphi_{j} satisfy the Plücker flag relations

    0k=1rj+1ϵkφi(yk,x1,,xri1)φj(y1,,yk^,,yrj+1)0\ \leqslant\ \sum_{k=1}^{r_{j}+1}\ \myepsilon^{k}\,\cdot\,\myvarphi_{i}(y_{k},\,x_{1},\dotsc,\,x_{r_{i}-1})\,\cdot\,\myvarphi_{j}(y_{1},\dotsc,\,\widehat{y_{k}},\dotsc,\,y_{r_{j}+1})

    as relations in Γ(X,ij)\Gamma(X,{\mathcal{L}}_{i}\otimes{\mathcal{L}}_{j}) for all x1,,xri1,y1,,yrj+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E.

Two flags of Grassmann-Plücker functions

(φi:EriΓ(X,i))i=1,,sand(φi:EriΓ(X,i))i=1,,s\big{(}\myvarphi_{i}:E^{r_{i}}\to\Gamma(X,{\mathcal{L}}_{i})\big{)}_{i=1,\dotsc,s}\quad\text{and}\quad\big{(}\myvarphi^{\prime}_{i}:E^{r_{i}}\to\Gamma(X,{\mathcal{L}}^{\prime}_{i})\big{)}_{i=1,\dotsc,s}

are equivalent if there exists a collection of isomorphisms ιi:ii\myiota_{i}:{\mathcal{L}}_{i}\to{\mathcal{L}}_{i}^{\prime} of line bundles (for i=1,,si=1,\dotsc,s) such that φi=ιi,Xφi\myvarphi^{\prime}_{i}=\myiota_{i,X}\circ\myvarphi_{i} for i=1,,si=1,\dotsc,s where ιi,X:Γ(X,i)Γ(X,i)\myiota_{i,X}:\Gamma(X,{\mathcal{L}}_{i})\to\Gamma(X,{\mathcal{L}}_{i}^{\prime}) is ιi\myiota_{i} evaluated on global sections. A flag matroid bundle (of rank (r1,,rs)(r_{1},\dotsc,r_{s}) on EE) over XX is the equivalence class of a flag of Grassmann-Plücker functions (of rank (r1,,rs)(r_{1},\dotsc,r_{s}) on EE) in XX.

Remark \therem.

Flag matroid bundles extend the notion of flag matroids in the following sense. Let FF be an idyll. Then there is a canonical bijection

{flag F-matroids}{flag matroid bundles over SpecF},\big{\{}\text{flag $F$-matroids}\big{\}}\ \longrightarrow\ \big{\{}\text{flag matroid bundles over $\operatorname{Spec}F$}\big{\}},

which is given as follows. Note that we have a canonical bijection ι:FΓ(X,𝒪X)\myiota:F\to\Gamma(X,{\mathcal{O}}_{X}) for X=SpecFX=\operatorname{Spec}F. As explained in [BL21, Prop. 5.3], we can associate with a Grassmann-Plücker function φ:ErF\myvarphi:E^{r}\to F the Grassmann-Plücker function ιφ:ErΓ(X,𝒪X)\myiota\circ\myvarphi:E^{r}\to\Gamma(X,{\mathcal{O}}_{X}), which yields a (well-defined) bijection MM~M\mapsto\widetilde{M} between FF-matroids and matroid bundles over SpecF\operatorname{Spec}F.

Unraveling definitions, we see that a sequence (φ1,,φs)(\myvarphi_{1},\dotsc,\myvarphi_{s}) of Grassmann-Plücker functions φi:EriF\myvarphi_{i}:E^{r_{i}}\to F satisfies the Plücker flag relations if and only if the associated sequence (ιφ1,,ιφs)(\myiota\circ\myvarphi_{1},\dotsc,\myiota\circ\myvarphi_{s}) satisfies them (considered as Grassmann-Plücker functions in XX). Taking classes yields the desired bijection 𝐌=(M1,,Ms)(M~1,,M~s)=𝐌~{\mathbf{M}}=(M_{1},\dotsc,M_{s})\mapsto(\widetilde{M}_{1},\dotsc,\widetilde{M}_{s})=\widetilde{\mathbf{M}}.

Remark \therem.

Note that a Grassmann-Plücker function of rank rr on EE in [BL21] is defined as a function on the collection (Er)\binom{E}{r} of rr-subsets of EE. This is equivalent with our definition since functions on (Er)\binom{E}{r} identify with alternating functions on ErE^{r} by choosing a total order on EE (which we do implicitly by identifying EE with {1,,n}\{1,\dotsc,n\}).

While the Plücker coordinates of Grassmannians are usually indexed by elements of (Er)\binom{E}{r}, the representation of matroids as (alternating) Grassmann-Plücker functions on ErE^{r} is more natural with relation to several constructions in matroid theory, which is our reason to choose alternating functions over functions on rr-subsets.

3.3. The moduli problem

Given an ordered blue 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-scheme XX, we define 𝓁(𝐫;E)(X)\operatorname{\mathpzc{Fl}}({\mathbf{r}};E)(X) as the set of all flag matroid bundles of rank 𝐫{\mathbf{r}} on EE over XX. A morphism α:XY\myalpha:X\to Y defines the map

α:𝓁(𝐫;E)(Y)𝓁(𝐫;E)(X)\myalpha^{\ast}:\ \operatorname{\mathpzc{Fl}}({\mathbf{r}};E)(Y)\ \longrightarrow\ \operatorname{\mathpzc{Fl}}({\mathbf{r}};E)(X)

by pulling back functions via αY:Γ(Y,)Γ(X,α)\myalpha_{Y}^{\sharp}:\Gamma(Y,{\mathcal{L}})\to\Gamma(X,\myalpha^{\ast}{\mathcal{L}}): given a flag matroid bundle 𝐌{\mathbf{M}} on YY that is represented by a flag (φi:EriΓ(Y,i))i=1,,s\big{(}\myvarphi_{i}:E^{r_{i}}\to\Gamma(Y,{\mathcal{L}}_{i})\big{)}_{i=1,\dotsc,s}, then we define α(𝐌)\myalpha^{\ast}({\mathbf{M}}) as the flag matroid bundle on XX that is represented by (αYφi:EriΓ(X,αi))i=1,,s\big{(}\myalpha_{Y}^{\sharp}\circ\myvarphi_{i}:E^{r_{i}}\to\Gamma(X,\myalpha^{\ast}{\mathcal{L}}_{i})\big{)}_{i=1,\dotsc,s}. We omit the verification that the latter family is indeed a flag of Grassmann-Plücker functions. We pose the following moduli problem:

Is there an ordered blue 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-scheme that represents 𝓁(𝐫;E)\operatorname{\mathpzc{Fl}}({\mathbf{r}};E)?

We work in the following sections towards its answer, which is the content of Theorem 3.1.

3.4. Flag varieties

The answer to our moduli problem is given by flag varieties over 𝔽1±{{\mathbb{F}}_{1}^{\pm}}, which are closed subschemes of a product of Grassmannians that parametrize the matroid bundles of the flag. The locus of the flag variety is given by the Plücker flag relations, which are multi-homogeneous with respect to the Plücker coordinates of each Grassmannian in the product. In order to bypass a rigorous treatment of multi-homogeneous calculus in 𝔽1{{\mathbb{F}}_{1}}-geometry, we give an explicit description of flag varieties in terms of open affine coverings.

We define the flag variety Fl(𝐫;E)\operatorname{Fl}({\mathbf{r}};E) as a closed subscheme of the product space

𝔽1±nr11××𝔽1±nrs1=i=1sProj𝔽1±[T𝐈𝐈Eri],{\mathbb{P}}_{{\mathbb{F}}_{1}^{\pm}}^{n^{r_{1}}-1}\times\dotsb\times{\mathbb{P}}_{{\mathbb{F}}_{1}^{\pm}}^{n^{r_{s}}-1}\ =\ \prod_{i=1}^{s}\ \operatorname{Proj}\,{{\mathbb{F}}_{1}^{\pm}}[T_{{\mathbf{I}}}\mid{\mathbf{I}}\in E^{r_{i}}],

which is covered by products i=1sU𝐉i\prod_{i=1}^{s}U_{{\mathbf{J}}_{i}} of the canonical open subsets

U𝐉i=Spec𝔽1±[T𝐈/T𝐉i𝐈Eri]U_{{\mathbf{J}}_{i}}\ =\ \operatorname{Spec}\,{{\mathbb{F}}_{1}^{\pm}}[T_{\mathbf{I}}/T_{{\mathbf{J}}_{i}}\mid{\mathbf{I}}\in E^{r_{i}}]

of 𝔽1±nri1{\mathbb{P}}_{{\mathbb{F}}_{1}^{\pm}}^{n^{r_{i}}-1} where 𝐉iEri{\mathbf{J}}_{i}\in E^{r_{i}} for i=1,,si=1,\dotsc,s.

Definition \thedf.

The flag variety Fl(𝐫;E)\operatorname{Fl}({\mathbf{r}};E) (of type 𝐫{\mathbf{r}} on EE) over 𝔽1±{{\mathbb{F}}_{1}^{\pm}} is the closed subscheme of 𝔽1±nri1\prod{\mathbb{P}}^{n^{r_{i}}-1}_{{\mathbb{F}}_{1}^{\pm}} that is covered by the open subschemes

U𝐉i=Spec((𝔽1±[Ti,𝐈/Ti,𝐉i𝐈Eri])𝔯)\textstyle\prod\ U_{{\mathbf{J}}_{i}}\ =\ \operatorname{Spec}\Big{(}\big{(}\bigotimes{{\mathbb{F}}_{1}^{\pm}}[T_{i,{\mathbf{I}}}/T_{i,{\mathbf{J}}_{i}}\mid{\mathbf{I}}\in E^{r_{i}}]\big{)}\!\sslash\!{\mathfrak{r}}\Big{)}

where 𝔯{\mathfrak{r}} is generated by the following relations for 1ijs1\leqslant i\leqslant j\leqslant s:

Ti,(xσ(1),,xσ(ri))Ti,𝐉i=sign(σ)Ti,(x1,,xri)Ti,𝐉i\frac{T_{i,(x_{\mysigma(1)},\dotsc,x_{\mysigma(r_{i})})}}{T_{i,{\mathbf{J}}_{i}}}\ =\ \operatorname{{sign}}(\mysigma)\ \cdot\ \frac{T_{i,(x_{1},\dotsc,x_{r_{i}})}}{T_{i,{\mathbf{J}}_{i}}}

for all (x1,,xri)Eri(x_{1},\dotsc,x_{r_{i}})\in E^{r_{i}} and all permutations σ𝔖ri\mysigma\in\mathfrak{S}_{r_{i}};

Ti,𝐈Ti,𝐉i= 0\frac{T_{i,{\mathbf{I}}}}{T_{i,{\mathbf{J}}_{i}}}\ =\ 0

for all 𝐈Eri{\mathbf{I}}\in E^{r_{i}} with #|𝐈|<ri\#|{\mathbf{I}}|<r_{i};

0k=1rj+1ϵkTi,(yk,x1,,xri1)Ti,𝐉iTj,(y1,,yk^,,yrj+1)Tj,𝐉j0\ \ \leqslant\ \ \sum_{k=1}^{r_{j}+1}\quad\myepsilon^{k}\,\cdot\,\frac{T_{i,(y_{k},\,x_{1},\dotsc,\,x_{r_{i}-1})}}{T_{i,{\mathbf{J}}_{i}}}\,\cdot\,\frac{T_{j,(y_{1},\dotsc,\,\widehat{y_{k}},\dotsc,\,y_{r_{j}+1})}}{T_{j,{\mathbf{J}}_{j}}}

for all x1,,xri1,y1,,yrj+1Ex_{1},\dotsc,x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E. The Plücker embedding is the closed immersion

pl:Fl(𝐫,E)𝔽1±nri1\operatorname{{pl}}:\ \operatorname{Fl}({\mathbf{r}},E)\ \longrightarrow\ \prod{\mathbb{P}}^{n^{r_{i}}-1}_{{\mathbb{F}}_{1}^{\pm}}

as a subscheme.

Note that the intersection VV of affine opens U𝐉i\prod U_{{\mathbf{J}}_{i}} and U𝐉i\prod U_{{\mathbf{J}}^{\prime}_{i}} is affine. Multiplying the defining relations of Γ(U𝐉i)\Gamma(\prod U_{{\mathbf{J}}_{i}}) with the invertible section Ti,𝐉i/Ti,𝐉iT_{i,{\mathbf{J}}_{i}}/T_{i,{\mathbf{J}}^{\prime}_{i}} on VV yields the defining relations of Γ(U𝐉i)\Gamma(\prod U_{{\mathbf{J}}^{\prime}_{i}}). This shows that Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) is well defined as a closed subscheme of 𝔽1±nri1\prod{\mathbb{P}}^{n^{r_{i}}-1}_{{\mathbb{F}}_{1}^{\pm}}.

Remark \therem.

Note that in the case of s=1s=1 and r1=rr_{1}=r, the flag variety Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) is nothing else than a Grassmannian Gr(r,E)\operatorname{Gr}(r,E) over 𝔽1±{{\mathbb{F}}_{1}^{\pm}}, which Baker and the second author called the matroid space Mat(r,E)\operatorname{Mat}(r,E) in [BL21] to distinct it from other models of Grassmannians in 𝔽1{{\mathbb{F}}_{1}}-geometry (e.g. see [LL12]). We will drop this distinction in our text to appeal better to the reader’s intuition from algebraic geometry.

For arbitrary s1s\geqslant 1, the Plücker embedding factors into closed immersions

Fl(𝐫,E)i=1sGr(ri,E)i=1s𝔽1±ri1,\textstyle\operatorname{Fl}({\mathbf{r}},E)\ \longrightarrow\ \prod_{i=1}^{s}\operatorname{Gr}(r_{i},E)\ \longrightarrow\ \prod_{i=1}^{s}{\mathbb{P}}^{r_{i}-1}_{{\mathbb{F}}_{1}^{\pm}},

i.e., the flag variety is a closed subscheme of a product of Grassmannians over 𝔽1±{{\mathbb{F}}_{1}^{\pm}}.

3.5. The universal flag matroid bundle

The Plücker embedding pl:Fl(𝐫,E)𝔽1±nri1\operatorname{{pl}}:\operatorname{Fl}({\mathbf{r}},E)\to\prod{\mathbb{P}}^{n^{r_{i}}-1}_{{\mathbb{F}}_{1}^{\pm}} endows the flag variety over 𝔽1±{{\mathbb{F}}_{1}^{\pm}} with a flag matroid bundle, which is universal for all matroid bundles (see Theorem 3.1) and which is defined as follows.

Let plj=πjpl\operatorname{{pl}}_{j}=\mypi_{j}\circ\operatorname{{pl}}\, be the composition of the Plücker embedding pl\operatorname{{pl}}\, with the jj-th coordinate projection πj:𝔽1±nri1𝔽1±nrj1\mypi_{j}:\prod{\mathbb{P}}^{n^{r_{i}}-1}_{{\mathbb{F}}_{1}^{\pm}}\to{\mathbb{P}}^{n^{r_{j}}-1}_{{\mathbb{F}}_{1}^{\pm}}. Let 𝒪(1){\mathcal{O}}(1) be the first twisted sheaf on 𝔽1±nri1{\mathbb{P}}^{n^{r_{i}}-1}_{{\mathbb{F}}_{1}^{\pm}}, which is generated by the sections T𝐈T_{{\mathbf{I}}} with 𝐈Eri{\mathbf{I}}\in E^{r_{i}}.

Definition \thedf.

The universal flag of Grassmann-Plücker functions (of rank 𝐫{\mathbf{r}} on EE) is the sequence of Grassmann-Plücker functions (φiuniv:EriΓ(Fl(𝐫,E),iuniv))\big{(}\myvarphi_{i}^{\textup{univ}}:E^{r_{i}}\to\Gamma(\operatorname{Fl}({\mathbf{r}},E),{\mathcal{L}}_{i}^{\textup{univ}})\big{)} with line bundles iuniv=pli(𝒪(1)){\mathcal{L}}^{\textup{univ}}_{i}=\operatorname{{pl}}_{i}^{\ast}\big{(}{\mathcal{O}}(1)\big{)} and with φiuniv(𝐈)=pli(T𝐈)\myvarphi_{i}^{\textup{univ}}({\mathbf{I}})=\operatorname{{pl}}_{i}^{\sharp}(T_{{\mathbf{I}}}). The universal flag matroid bundle 𝐌univ{\mathbf{M}}^{\textup{univ}} (of rank 𝐫{\mathbf{r}} on EE) is the equivalence class of the universal flag of Grassmann-Plücker functions.

Note that the universal flag of Grassmann-Plücker functions is indeed a flag of Grassmann-Plücker functions of rank 𝐫{\mathbf{r}} on EE over Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) since iuniv{\mathcal{L}}_{i}^{\textup{univ}} is generated by {pli(T𝐈)𝐈Eri}\{\operatorname{{pl}}_{i}^{\sharp}(T_{{\mathbf{I}}})\mid{\mathbf{I}}\in E^{r_{i}}\}, and since the relations (GP2) and (GP3) are satisfied by the defining relations (\thedf)–(\thedf) of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E). Consequently, 𝐌univ{\mathbf{M}}^{\textup{univ}} is a flag matroid bundle on Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E).

3.6. The moduli property

We are prepared to formulate the central result of this section.

Theorem 3.1.

The flag variety Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) is the fine moduli space of flag matroid bundles. More explicitly, the maps

ΦX:Hom(X,Fl(𝐫,E))𝓁(𝐫,E)(X)α:XFl(𝐫,E)α(𝐌univ),\begin{array}[]{cccc}\Phi_{X}:&\operatorname{Hom}(X,\;\operatorname{Fl}({\mathbf{r}},E))&\longrightarrow&\operatorname{\mathpzc{Fl}}({\mathbf{r}},E)(X)\\ &\myalpha:X\to\operatorname{Fl}({\mathbf{r}},E)&\longmapsto&\myalpha^{\ast}({\mathbf{M}}^{\textup{univ}}),\end{array}

indexed by ordered blue 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-schemes XX, are functorial bijections.

Proof.

Let us fix an 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-scheme XX. We begin with the construction of the inverse bijection ΨX\Psi_{X} to ΦX\Phi_{X} that maps a flag matroid bundle 𝐌{\mathbf{M}} of rank 𝐫{\mathbf{r}} on EE over XX to a morphism XFl(𝐫,E)X\to\operatorname{Fl}({\mathbf{r}},E).

Let (φi:EriΓ(X,i))\big{(}\myvarphi_{i}:E^{r_{i}}\to\Gamma(X,{\mathcal{L}}_{i})\big{)} be a flag of Grassmann-Plücker functions in XX that represents the flag matroid bundle 𝐌{\mathbf{M}}. Since the global sections in the image of φi\myvarphi_{i} generate the line bundle i{\mathcal{L}}_{i}, we can apply [BL21, Thm. 4.20], which asserts the existence of a unique morphism ψi:Xnri1\mypsi_{i}:X\to{\mathbb{P}}^{n^{r_{i}}-1} and a unique isomorphism ιi:ι(𝒪(1))i\myiota_{i}:\myiota^{\ast}({\mathcal{O}}(1))\to{\mathcal{L}}_{i} such that ιi(ψi(T𝐈))=φi(𝐈)\myiota_{i}\big{(}\mypsi_{i}^{\sharp}(T_{\mathbf{I}})\big{)}=\myvarphi_{i}({\mathbf{I}}) where we fix an identification of the homogeneous coordinates of nri1{\mathbb{P}}^{n^{r_{i}}-1} with {T𝐈𝐈Eri}\{T_{\mathbf{I}}\mid{\mathbf{I}}\in E^{r_{i}}\}.

Taking the product over all i=1,,si=1,\dotsc,s yields a morphism ψ:Xnri1\mypsi:X\to\prod{\mathbb{P}}^{n^{r_{i}}-1}. Since the φi\myvarphi_{i} are Grassmann-Plücker functions, [BL21, Thm. 5.5] applies and shows that the image of ψ\mypsi is contained in Gr(ri,E)\prod\operatorname{Gr}(r_{i},E). Since the functions φi\myvarphi_{i} satisfy moreover the Plücker flag relations, the image is, in fact, contained in Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E), i.e., ψ\mypsi factors into a uniquely determined morphism α:XFl(𝐫,E)\myalpha:X\to\operatorname{Fl}({\mathbf{r}},E) followed by the closed immersion Fl(𝐫,E)nri1\operatorname{Fl}({\mathbf{r}},E)\to\prod{\mathbb{P}}^{n^{r_{i}}-1}. We define ΨX(𝐌)=α\Psi_{X}({\mathbf{M}})=\myalpha.

Next we show that ΦXΨX=id\Phi_{X}\circ\Psi_{X}=\textup{id}. Since iuniv=πi(𝒪(1)){\mathcal{L}}_{i}^{\textup{univ}}=\mypi_{i}^{\ast}({\mathcal{O}}(1)) for the coordinate projection πi:Fl(𝐫,E)nri1\mypi_{i}:\operatorname{Fl}({\mathbf{r}},E)\to{\mathbb{P}}^{n^{r_{i}}-1}, the isomorphism ιi:ι(𝒪(1))i\myiota_{i}:\myiota^{\ast}({\mathcal{O}}(1))\to{\mathcal{L}}_{i} becomes an isomorphism ι~i:α(iuniv)i\widetilde{\myiota}_{i}:\myalpha^{\ast}({\mathcal{L}}_{i}^{\textup{univ}})\to{\mathcal{L}}_{i}, and we have φi(𝐈)=ι~i(α(T𝐈))\myvarphi_{i}({\mathbf{I}})=\widetilde{\myiota}_{i}\big{(}\myalpha^{\sharp}(T_{\mathbf{I}})\big{)}. Thus α(𝐌univ)=𝐌\myalpha^{\ast}({\mathbf{M}}^{\textup{univ}})={\mathbf{M}}, which shows that ΨX\Psi_{X} is right inverse to ΦX\Phi_{X}.

Next we show that ΨXΦX=id\Psi_{X}\circ\Phi_{X}=\textup{id}. Let α:XFl(𝐫,E)\myalpha:X\to\operatorname{Fl}({\mathbf{r}},E) be a morphism and 𝐌=α(𝐌univ){\mathbf{M}}=\myalpha^{\ast}({\mathbf{M}}^{\textup{univ}}) the associated flag matroid bundle over XX. Then 𝐌{\mathbf{M}} is represented by the flag (φ1,,φs)(\myvarphi_{1},\dotsc,\myvarphi_{s}) of Grassmann-Plücker functions

φi:EriφiunivΓ(Fl(𝐫,E),iuniv)αΓ(X,i).\myvarphi_{i}:\ E^{r_{i}}\ \stackrel{{\scriptstyle\myvarphi_{i}^{\textup{univ}}}}{{\longrightarrow}}\ \Gamma\big{(}\operatorname{Fl}({\mathbf{r}},E),{\mathcal{L}}_{i}^{\textup{univ}}\big{)}\ \stackrel{{\scriptstyle\myalpha^{\sharp}}}{{\longrightarrow}}\ \Gamma(X,{\mathcal{L}}_{i}).

The composition of α\myalpha with the coordinate projection πi:Fl(𝐫,E)nri1\mypi_{i}:\operatorname{Fl}({\mathbf{r}},E)\to{\mathbb{P}}^{n^{r_{i}}-1} yields the morphism αi:Xnri1\myalpha_{i}:X\to{\mathbb{P}}^{n^{r_{i}}-1}, which satisfies αi(T𝐈)=φi(𝐈)\myalpha_{i}^{\sharp}(T_{\mathbf{I}})=\myvarphi_{i}({\mathbf{I}}). By the construction of ΨX\Psi_{X}, we have thus ΨX(𝐌)=α\Psi_{X}({\mathbf{M}})=\myalpha, which verifies that ΨX\Psi_{X} is a left inverse to ΦX\Phi_{X}.

We are left to show the functoriality of ΦX\Phi_{X}. Consider a morphism β:YX\mybeta:Y\to X and α:XFl(𝐫,E)\myalpha:X\to\operatorname{Fl}({\mathbf{r}},E). Then

ΦY(β(α))=ΦY(αβ)=(αβ)(𝐌univ)=β(α(𝐌univ))=β(ΦX(α)),\Phi_{Y}\big{(}\mybeta^{\ast}(\myalpha)\big{)}\ =\ \Phi_{Y}(\myalpha\circ\mybeta)\ =\ (\myalpha\circ\mybeta)^{\ast}({\mathbf{M}}^{\textup{univ}})\ =\ \mybeta^{\ast}\big{(}\myalpha^{\ast}({\mathbf{M}}^{\textup{univ}})\big{)}\ =\ \mybeta^{\ast}(\Phi_{X}(\myalpha)\big{)},

which shows that ΦX\Phi_{X} is functorial in XX. ∎

Corollary \thecor.

Let FF be an idyll. Then there is a canonical bijection between the set Fl(𝐫,E)(F)\operatorname{Fl}({\mathbf{r}},E)(F) of FF-rational points of the flag variety Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) over 𝔽1±{{\mathbb{F}}_{1}^{\pm}} and the set of flag FF-matroids of rank 𝐫{\mathbf{r}} on EE.

Proof.

This follows at once from Theorem 3.1 coupled with section 3.2. ∎

Definition \thedf.

Given an idyll FF and a flag FF-matroid 𝐌{\mathbf{M}} of rank 𝐫{\mathbf{r}} on EE, let 𝐌~\widetilde{\mathbf{M}} be the corresponding flag matroid bundle on SpecF\operatorname{Spec}F. We call the inverse image of 𝐌~\widetilde{\mathbf{M}} under ΦX\Phi_{X} the characteristic morphism of 𝐌{\mathbf{M}} and denote it by χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E).

In other words, the characteristic morphism χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E) is the unique morphism with 𝐌~=χ𝐌(𝐌univ)\widetilde{\mathbf{M}}=\mychi_{\mathbf{M}}^{\ast}({\mathbf{M}}^{\textup{univ}}).

3.7. Projection onto subflags

Let 𝐢=(i1,,it){\mathbf{i}}=(i_{1},\dotsc,i_{t}) be a sequence of integers with 1i1<<its1\leqslant i_{1}<\dotsb<i_{t}\leqslant s. Let 𝐫=(ri1,,rit){\mathbf{r}}^{\prime}=(r_{i_{1}},\dotsc,r_{i_{t}}) and

π~𝐢:i=1sGr(ri,E)k=1tGr(rik,E)\widetilde{\mypi}_{\mathbf{i}}:\ \prod_{i=1}^{s}\operatorname{Gr}(r_{i},E)\ \longrightarrow\ \prod_{k=1}^{t}\operatorname{Gr}(r_{i_{k}},E)

be the morphism that is induced by the coordinate projections.

Proposition \theprop.

The morphism π~𝐢\widetilde{\mypi}_{\mathbf{i}} restricts to a morphism π𝐢:Fl(𝐫,E)Fl(𝐫,E)\mypi_{\mathbf{i}}:\operatorname{Fl}({\mathbf{r}},E)\to\operatorname{Fl}({\mathbf{r}}^{\prime},E). Let FF be an idyll and 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) a flag FF-matroid of rank 𝐫{\mathbf{r}} on EE with characteristic morphism χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E). Then the characteristic morphism of the flag FF-matroid 𝐌=(Mi1,,Mit){\mathbf{M}}^{\prime}=(M_{i_{1}},\dotsc,M_{i_{t}}) is

χ𝐌=π𝐢χ𝐌:SpecFχ𝐌Fl(𝐫,E)π𝐢Fl(𝐫,E).\mychi_{{\mathbf{M}}^{\prime}}=\mypi_{\mathbf{i}}\circ\mychi_{\mathbf{M}}:\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mychi_{\mathbf{M}}\;}}{{\longrightarrow}}\ \operatorname{Fl}({\mathbf{r}},E)\ \stackrel{{\scriptstyle\mypi_{\mathbf{i}}}}{{\longrightarrow}}\ \operatorname{Fl}({\mathbf{r}}^{\prime},E).
Proof.

This follows at once from the construction of ΨX\Psi_{X} in the proof of Theorem 3.1 and the definition of χ𝐌\mychi_{\mathbf{M}} as ΨX(𝐌~)\Psi_{X}\big{(}\widetilde{\mathbf{M}}\big{)} where 𝐌~\widetilde{\mathbf{M}} is the matroid bundle over X=SpecFX=\operatorname{Spec}F that corresponds to 𝐌{\mathbf{M}}. ∎

3.8. Duality

The duality of flag FF-matroids extends to a functorial dualization of flag matroid bundles, which is reflected by a canonical isomorphism of flag varieties.

Let Gr(r,E)=Fl((r),E)\operatorname{Gr}(r,E)=\operatorname{Fl}((r),E) be the Grassmannian of rank rr on E={1,,n}E=\{1,\dotsc,n\}. Let r=nrr^{\ast}=n-r. By [BL21, Thm. 5.6], there is a canonical isomorphism

δr,E:Gr(r,E)Gr(r,E)\mydelta_{r,E}:\ \operatorname{Gr}(r,E)\ \longrightarrow\ \operatorname{Gr}(r^{\ast},E)

of 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-schemes that is characterized by the pullback formula555Note that the definition in [BL21] is off by a sign, which is corrected in our formula.

δr,E(Tx1,,xr)=sign(x1,,xr,x1,,xr)Tx1,,xr\mydelta_{r,E}^{\sharp}(T_{x_{1},\dotsc,x_{r^{\ast}}})\ =\ \operatorname{{sign}}(x_{1},\dotsc,x_{r^{\ast}},x_{1}^{\prime},\dotsc,x_{r}^{\prime})\cdot T_{x^{\prime}_{1},\dotsc,x^{\prime}_{r}}

for all E={x1,,xr,x1,,xr}E=\{x_{1},\dotsc,x_{r^{\ast}},x_{1}^{\prime},\dotsc,x_{r}^{\prime}\}, which determines the images of all non-trivial homogeneous coordinates of Gr(r,E)\operatorname{Gr}(r^{\ast},E).

Let FF be a tract with involution τ\mytau and MM an FF-matroid with characteristic morphism χM:SpecFGr(r,E)\mychi_{M}:\operatorname{Spec}F\to\operatorname{Gr}(r,E). Let τ\mytau^{\ast} be the involution of SpecF\operatorname{Spec}F that corresponds to τ\mytau. The characteristic morphism of the dual FF-matroid MM^{\ast} (with respect to τ\mytau) is

χM:SpecFτSpecFχMGr(r,E)δr,EGr(r,E)\mychi_{M^{\ast}}:\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mytau^{\ast}}}{{\longrightarrow}}\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mychi_{M}}}{{\longrightarrow}}\ \operatorname{Gr}(r,E)\ \stackrel{{\scriptstyle\mydelta_{r,E}}}{{\longrightarrow}}\ \operatorname{Gr}(r^{\ast},E)

by [BL21, Prop. 5.8].

We extend this result to flag matroids. Let 𝐫=(nrs,,nr1){\mathbf{r}}^{\ast}=(n-r_{s},\dotsc,n-r_{1}). Note that the isomorphisms δri,E:Gr(ri,E)Gr(ri,E)\mydelta_{r_{i},E}:\operatorname{Gr}(r_{i},E)\to\operatorname{Gr}(r_{i}^{\ast},E) determine an isomorphism

δ^𝐫,E:i=1sGr(ri,E)i=1sGr(ri,E).\textstyle\widehat{\mydelta}_{{\mathbf{r}},E}:\ \prod_{i=1}^{s}\operatorname{Gr}(r_{i},E)\ \longrightarrow\ \prod_{i=1}^{s}\operatorname{Gr}(r_{i}^{\ast},E).
Theorem 3.2.

The isomorphism δ^𝐫,E\widehat{\mydelta}_{{\mathbf{r}},E} restricts to an isomorphism

δ𝐫,E:Fl(𝐫,E)Fl(𝐫,E).\mydelta_{{\mathbf{r}},E}:\ \operatorname{Fl}({\mathbf{r}},E)\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}}^{\ast},E).

Let FF be an idyll with involution τ\mytau and 𝐌{\mathbf{M}} a flag FF-matroid with characteristic morphism χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E). Let τ\mytau^{\ast} be the involution of SpecF\operatorname{Spec}F that corresponds to τ\mytau. The characteristic morphism of the dual flag FF-matroid 𝐌{\mathbf{M}}^{\ast} (with respect to τ\mytau) is

χ𝐌:SpecFτSpecFχ𝐌Fl(𝐫,E)δ𝐫,EFl(𝐫,E).\mychi_{{\mathbf{M}}^{\ast}}:\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mytau^{\ast}}}{{\longrightarrow}}\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mychi_{\mathbf{M}}\;}}{{\longrightarrow}}\ \operatorname{Fl}({\mathbf{r}},E)\ \stackrel{{\scriptstyle\mydelta_{{\mathbf{r}},E}}}{{\longrightarrow}}\ \operatorname{Fl}({\mathbf{r}}^{\ast},E).
Proof.

In order to show that δ^𝐫,E\widehat{\mydelta}_{{\mathbf{r}},E} restricts to an isomorphism δ𝐫,E:Fl(𝐫,E)Fl(𝐫,E)\mydelta_{{\mathbf{r}},E}:\operatorname{Fl}({\mathbf{r}},E)\to\operatorname{Fl}({\mathbf{r}}^{\ast},E), it suffices to verify that the Plücker flag relations are preserved. Consider the relation

0k=1rj+1ϵkTi,(yk,x1,,xri1)Tj,(y1,,yk^,,yrj+1)0\ \ \leqslant\ \ \sum_{k=1}^{r_{j}+1}\quad\myepsilon^{k}\,\cdot\,T_{i,(y_{k},\,x_{1},\dotsc,\,x_{r_{i}-1})}\,\cdot\,T_{j,(y_{1},\dotsc,\,\widehat{y_{k}},\dotsc,\,y_{r_{j}+1})}

in Γ(Fl(𝐫,E),iunivjuniv)\Gamma\big{(}\operatorname{Fl}({\mathbf{r}},E),{\mathcal{L}}_{i}^{\textup{univ}}\otimes{\mathcal{L}}_{j}^{\textup{univ}}\big{)} for 1i<js1\leqslant i<j\leqslant s and x1,xri1,y1,,yrj+1Ex_{1},\dotsc x_{r_{i}-1},y_{1},\dotsc,y_{r_{j}+1}\in E. Since T𝐈=0T_{\mathbf{I}}=0 in Γ(Fl(𝐫,E),iuniv)\Gamma\big{(}\operatorname{Fl}({\mathbf{r}},E),{\mathcal{L}}_{i}^{\textup{univ}}\big{)} if the entries of 𝐈{\mathbf{I}} are not pairwise distinct, we can assume that the x1,,xri1x_{1},\dotsc,x_{r_{i}-1} are pairwise distinct and the same for y1,,yrj+1y_{1},\dotsc,y_{r_{j}+1}. In other words,

E={x1,,xri1,x1,,xri+1}={y1,,yrj+1,y1,,yrj1}E\ =\ \big{\{}x_{1},\dotsc,x_{r_{i}-1},x_{1}^{\prime},\dotsc,x^{\prime}_{r^{\ast}_{i}+1}\big{\}}\ =\ \big{\{}y_{1},\dotsc,y_{r_{j}+1},y_{1}^{\prime},\dotsc,y^{\prime}_{r^{\ast}_{j}-1}\big{\}}

for some xkx^{\prime}_{k} and yly^{\prime}_{l}. Applying δ𝐫,E\mydelta_{{\mathbf{r}},E}^{\sharp} to both sides of the Plücker flag relation in question yields

0k=1ri+1ϵkTj,(xk,y1,,yrj1)Ti,(x1,,xk^,,xri+1),0\ \ \leqslant\ \ \sum_{k=1}^{r_{i}^{\ast}+1}\quad\myepsilon^{k}\,\cdot\,T_{j,(x^{\prime}_{k},\,y^{\prime}_{1},\dotsc,\,y^{\prime}_{r^{\ast}_{j}-1})}\,\cdot\,T_{i,(x^{\prime}_{1},\dotsc,\,\widehat{x^{\prime}_{k}},\dotsc,\,x^{\prime}_{r^{\ast}_{i}+1})},

up to a common sign change, which depends on an ordering of EE; see [BL21, section 5.5] for details on the definition of δ𝐫,E\mydelta_{{\mathbf{r}},E}. This is precisely the Plücker flag relation of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}}^{\ast},E) for the given indices. This shows that the image of δ𝐫,E\mydelta_{{\mathbf{r}},E} is contained in Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}}^{\ast},E). By the symmetry of the argument in Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) and Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}}^{\ast},E), we conclude that δ𝐫,E\mydelta_{{\mathbf{r}},E} is an isomorphism.

The characteristic morphism χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E) determines a flag of Grassmann-Plücker functions (φi:EriF)(\myvarphi_{i}:E^{r_{i}}\to F) that represents the flag FF-matroid 𝐌{\mathbf{M}} in terms of φi(𝐈)=χ𝐌(T𝐈)\myvarphi_{i}({\mathbf{I}})=\mychi_{\mathbf{M}}^{\sharp}(T_{\mathbf{I}}) where we identify Γ(SpecF,χ𝐌(iuniv))=F\Gamma\big{(}\operatorname{Spec}F,\mychi_{\mathbf{M}}^{\ast}({\mathcal{L}}_{i}^{\textup{univ}})\big{)}=F. Let (φi:EriF)(\myvarphi^{\ast}_{i}:E^{r^{\ast}_{i}}\to F) be a flag of Grassmann-Plücker functions that represents 𝐌{\mathbf{M}}^{\ast}, which is uniquely determined up to a common sign change that depends on the ordering of EE; see [BL21, section 5.5]. Thus we have for 𝐈=(x1,,xri){\mathbf{I}}=(x_{1},\dotsc,x_{r_{i}}) and 𝐈=(x1,,xri){\mathbf{I}}^{\ast}=(x^{\prime}_{1},\dotsc,x^{\prime}_{r^{\ast}_{i}}) with |𝐈||𝐈|=E|{\mathbf{I}}|\cup|{\mathbf{I}}^{\ast}|=E that

σ𝐈φi(𝐈)=τ(φi(𝐈))=τ(χM(T𝐈))=τ(χM(δ𝐫,E(σ𝐈T𝐈)))\mysigma_{{\mathbf{I}}^{\ast}}\myvarphi^{*}_{i}({\mathbf{I}}^{\ast})\ =\ \mytau\big{(}\myvarphi_{i}({\mathbf{I}})\big{)}\ =\ \mytau\big{(}\mychi_{M}^{\sharp}(T_{\mathbf{I}}))\ =\ \mytau\big{(}\mychi_{M}^{\sharp}\big{(}\mydelta_{{\mathbf{r}},E}^{\sharp}(\mysigma_{{\mathbf{I}}^{\ast}}T_{{\mathbf{I}}^{\ast}})\big{)}\big{)}

where σ𝐈{1,ϵ}\mysigma_{{\mathbf{I}}^{\ast}}\in\{1,\myepsilon\} is a sign that depends on the induced ordering of |𝐈|E|{\mathbf{I}}^{\ast}|\subset E. After taking classes this yields χ𝐌(𝐌univ)=𝐌=(δ𝐫,Eχ𝐌τ)(𝐌univ)\mychi_{{\mathbf{M}}^{\ast}}^{\ast}({\mathbf{M}}^{\textup{univ}})={\mathbf{M}}^{\ast}=(\mydelta_{{\mathbf{r}},E}\circ\mychi_{\mathbf{M}}\circ\mytau^{\ast})^{\ast}({\mathbf{M}}^{\textup{univ}}). By section 3.6, the characteristic morphism is uniquely determined by the pullback of the universal flag matroid bundle and thus χ𝐌=δ𝐫,Eχ𝐌τ\mychi_{{\mathbf{M}}^{\ast}}=\mydelta_{{\mathbf{r}},E}\circ\mychi_{\mathbf{M}}\circ\mytau^{\ast}, which proves the latter claim of the theorem. ∎

3.9. Minors

Let E=E{e}E^{\prime}=E-\{e\} for some eEe\in E and 0rn0\leqslant r\leqslant n. Let Vr,/eV_{r,/e} and Vr,\eV_{r,\backslash e} be the closed subschemes of Gr(r,E)\operatorname{Gr}(r,E) that are defined by the relations

T𝐈= 0if e|𝐈|andT𝐈= 0if e|𝐈|,T_{\mathbf{I}}\ =\ 0\quad\text{if $e\in|{\mathbf{I}}|$}\qquad\text{and}\qquad T_{\mathbf{I}}\ =\ 0\quad\text{if $e\notin|{\mathbf{I}}|$},

respectively. Let Ur,/eU_{r,/e} and Ur,\eU_{r,\backslash e} be the open subschemes of Gr(r,E)\operatorname{Gr}(r,E) whose underlying sets are the respective complements of Vr,/eV_{r,/e} and Vr,\eV_{r,\backslash e}. As explained in [BL21, section 5.6], we have natural morphisms

Gr(r,E)ιr,/eUr,/eVr,/eΨr,/eGr(r1,E)Gr(r,E)\operatorname{Gr}(r,E)\ \stackrel{{\scriptstyle\myiota_{r,/e}}}{{\longleftarrow}}\ U_{r,/e}\myamalg V_{r,/e}\ \stackrel{{\scriptstyle\Psi_{r,/e}}}{{\longrightarrow}}\ \operatorname{Gr}(r-1,E^{\prime})\myamalg\operatorname{Gr}(r,E^{\prime})

where Ψr,/e\Psi_{r,/e} is given by sending a homogeneous coordinate T𝐈T_{\mathbf{I}} to T𝐈eT_{{\mathbf{I}}e} if e|𝐈|e\notin|{\mathbf{I}}| (which yields Ur,/eGr(r1,E)U_{r,/e}\to\operatorname{Gr}(r-1,E^{\prime})) and to T𝐈T_{{\mathbf{I}}} if e|𝐈|e\in|{\mathbf{I}}| (which yields Vr,/eGr(r,E)V_{r,/e}\to\operatorname{Gr}(r,E^{\prime})). Similarly, we have natural morphisms

Gr(r,E)ιr,\eUr,\eVr,\eΨr,\eGr(r,E)Gr(r1,E).\operatorname{Gr}(r,E)\ \stackrel{{\scriptstyle\myiota_{r,\backslash e}}}{{\longleftarrow}}\ U_{r,\backslash e}\myamalg V_{r,\backslash e}\ \stackrel{{\scriptstyle\Psi_{r,\backslash e}}}{{\longrightarrow}}\ \operatorname{Gr}(r,E^{\prime})\myamalg\operatorname{Gr}(r-1,E^{\prime}).

For k=0,,sk=0,\dotsc,s, let W𝐫,k,/eW_{{\mathbf{r}},k,/e} be the intersection, or fiber product over Gr(ri,E)\prod\operatorname{Gr}(r_{i},E), of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) with

Ur1,/e××Urk,/e×Vrk+1,/e××Vrs,/eU_{r_{1},/e}\ \times\ \dotsb\ \times\ U_{r_{k},/e}\ \times\ V_{r_{k+1},/e}\ \times\ \dotsb\ \times\ V_{r_{s},/e}

and let W𝐫,k,\eW_{{\mathbf{r}},k,\backslash e} be the intersection of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) with

Vr1,\e××Vrk,\e×Urk+1,\e××Urs,\e,V_{r_{1},\backslash e}\ \times\ \dotsb\ \times\ V_{r_{k},\backslash e}\ \times\ U_{r_{k+1},\backslash e}\ \times\ \dotsb\ \times\ U_{r_{s},\backslash e},

which are locally closed subschemes of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E). Let

ι𝐫,/e:k=0sW𝐫,k,/eFl(𝐫,E)andι𝐫,\e:k=0sW𝐫,k,\eFl(𝐫,E)\textstyle\myiota_{{\mathbf{r}},/e}:\mycoprod_{k=0}^{s}W_{{\mathbf{r}},k,/e}\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}},E)\quad\text{and}\quad\myiota_{{\mathbf{r}},\backslash e}:\mycoprod_{k=0}^{s}W_{{\mathbf{r}},k,\backslash e}\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}},E)

be the respective disjoint unions of the embeddings as subschemes. For 0ks0\leqslant k\leqslant s, let

𝐫k=(r11,,rk1,rk+1,,rs).{\mathbf{r}}_{k}\ =\ (r_{1}-1,\dotsc,r_{k}-1,\;r_{k+1},\dotsc,r_{s}).

The morphisms Ψri,/e\Psi_{r_{i},/e} and Ψri,\e\Psi_{r_{i},\backslash e} induce the respective morphisms

Ψ𝐫,k,/e:W𝐫,k,/eFl(𝐫k,E)andΨ𝐫,k,\e:W𝐫,k,\eFl(𝐫k,E).\Psi_{{\mathbf{r}},k,/e}:\ W_{{\mathbf{r}},k,/e}\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}}_{k},E)\qquad\text{and}\qquad\Psi_{{\mathbf{r}},k,\backslash e}:\ W_{{\mathbf{r}},k,\backslash e}\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}}_{k},E).
Theorem 3.3.

Let FF be an idyll. Then the induced maps

k=0sW𝐫,k,/e(F)Fl(𝐫,E)(F)andk=0sW𝐫,k,\e(F)Fl(𝐫,E)(F)\textstyle\mycoprod_{k=0}^{s}W_{{\mathbf{r}},k,/e}(F)\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}},E)(F)\qquad\text{and}\qquad\mycoprod_{k=0}^{s}W_{{\mathbf{r}},k,\backslash e}(F)\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}},E)(F)

of FF-rational point sets are bijections. Let 𝐌{\mathbf{M}} be a flag FF-matroid of rank 𝐫{\mathbf{r}} on EE with characteristic morphism χ𝐌Fl(𝐫,E)(F)\mychi_{\mathbf{M}}\in\operatorname{Fl}({\mathbf{r}},E)(F). Let k/ek_{/e} and k\ek_{\backslash e} be the unique indices for which χ𝐌W𝐫,k/e,/e(F)\mychi_{\mathbf{M}}\in W_{{\mathbf{r}},k_{/e},/e}(F) and χ𝐌W𝐫,k\e,\e(F)\mychi_{\mathbf{M}}\in W_{{\mathbf{r}},k_{\backslash e},\backslash e}(F). Then the characteristic functions of 𝐌/e{\mathbf{M}}/e and 𝐌\e{\mathbf{M}}\backslash e are

χ𝐌/e:SpecFχ𝐌W𝐫,k/e,/eΨ𝐫,k/e,/eFl(𝐫k/e,E)\mychi_{{\mathbf{M}}/e}:\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mychi_{{\mathbf{M}}}}}{{\longrightarrow}}\ W_{{\mathbf{r}},k_{/e},/e}\ \stackrel{{\scriptstyle\Psi_{{\mathbf{r}},k_{/e},/e}}}{{\longrightarrow}}\ \operatorname{Fl}({\mathbf{r}}_{k_{/e}},E^{\prime})

and

χ𝐌\e:SpecFχ𝐌W𝐫,k\e,\eΨ𝐫,k\e,\eFl(𝐫k\e,E),\mychi_{{\mathbf{M}}\backslash e}:\ \operatorname{Spec}F\ \stackrel{{\scriptstyle\mychi_{{\mathbf{M}}}}}{{\longrightarrow}}\ W_{{\mathbf{r}},k_{\backslash e},\backslash e}\ \stackrel{{\scriptstyle\Psi_{{\mathbf{r}},k_{\backslash e},\backslash e}}}{{\longrightarrow}}\ \operatorname{Fl}({\mathbf{r}}_{k_{\backslash e}},E^{\prime}),

respectively.

Proof.

In this proof, we will only derive the claims about contracting ee and omit a proof of the claims about excluding ee, which is analogous.

Let 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) a flag FF-matroid with characteristic morphism χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E). Then χ𝐌\mychi_{\mathbf{M}} factors through W𝐫,k,/eW_{{\mathbf{r}},k,/e} if and only if ee is not a loop for M1,,MkM_{1},\dotsc,M_{k}, but it is a loop for Mk+1,,MsM_{k+1},\dotsc,M_{s}. Since these conditions are mutually exclusive for distinct kk and since the factorization of χ𝐌\mychi_{\mathbf{M}} through W𝐫,k,/eW_{{\mathbf{r}},k,/e} is unique by the nature of locally closed subschemes, we conclude that the map W𝐫,k,/e(F)Fl(𝐫,E)(F)\mycoprod W_{{\mathbf{r}},k,/e}(F)\to\operatorname{Fl}({\mathbf{r}},E)(F) is injective.

It is surjective for the following reason. If ee is a loop for MiM_{i} and i<ji<j, then ee is also a loop for MjM_{j}; see [Rec05, Lemma 1]. Thus there is a kk such that ee is not a loop for M1,,MkM_{1},\dotsc,M_{k}, but it is a loop for Mk+1,,MsM_{k+1},\dotsc,M_{s}, which means that χ𝐌\mychi_{\mathbf{M}} factors through W𝐫,k,/eW_{{\mathbf{r}},k,/e} and shows that W𝐫,k,/e(F)Fl(𝐫,E)(F)\mycoprod W_{{\mathbf{r}},k,/e}(F)\to\operatorname{Fl}({\mathbf{r}},E)(F) is surjective.

The latter claim of the theorem can be deduced as follows. The characteristic morphism χ𝐌\mychi_{\mathbf{M}} of 𝐌{\mathbf{M}} is determined by its compositions with the coordinate projections πi:Fl(𝐫,E)Gr(ri,E)\mypi_{i}:\operatorname{Fl}({\mathbf{r}},E)\to\operatorname{Gr}(r_{i},E) for i=1,,si=1,\dotsc,s. By section 3.7, πiχ𝐌:SpecFGr(ri,E)\mypi_{i}\circ\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Gr}(r_{i},E) is the characteristic morphism of the FF-matroid MiM_{i}. Note that πi(W𝐫,k,/e)\mypi_{i}(W_{{\mathbf{r}},k,/e}) equals Uri,/eU_{r_{i},/e} for iki\leqslant k and Vri,/eV_{r_{i},/e} for i>ki>k. A comparison with [BL21, Thm. 5.9] yields that πiΨ𝐫,k/e,/eχ𝐌\mypi_{i}\circ\Psi_{{\mathbf{r}},k_{/e},/e}\circ\mychi_{\mathbf{M}} is the characteristic morphism of the FF-matroid Mi/eM_{i}/e. By the definition of 𝐌/e{\mathbf{M}}/e as (M1/e,,Ms/e)(M_{1}/e,\dotsc,M_{s}/e), we see that Ψ𝐫,k/e,/eχ𝐌\Psi_{{\mathbf{r}},k_{/e},/e}\circ\mychi_{\mathbf{M}} is the characteristic morphism of 𝐌/e{\mathbf{M}}/e, as claimed. ∎

Remark \therem.

The compatibility of minors of FF-flag matroids with duality extends to geometry in the sense that the duality δ𝐫,E:Fl(𝐫,E)Fl(𝐫,E)\mydelta_{{\mathbf{r}},E}:\operatorname{Fl}({\mathbf{r}},E)\to\operatorname{Fl}({\mathbf{r}}^{\ast},E) restricts to an isomorphism δ|W𝐫,k,/e:W𝐫,k,/eW𝐫,k,\e\mydelta|_{W_{{\mathbf{r}},k,/e}}:W_{{\mathbf{r}},k,/e}\to W_{{\mathbf{r}}^{\ast},k,\backslash e} and that the diagram

Fl(𝐫,E){\operatorname{Fl}({\mathbf{r}},E)}W𝐫,k,/e{W_{{\mathbf{r}},k,/e}}Fl(𝐫k,E){\operatorname{Fl}({\mathbf{r}}_{k},E^{\prime})}Fl(𝐫,E){\operatorname{Fl}({\mathbf{r}}^{\ast},E)}W𝐫,k,\e{W_{{\mathbf{r}}^{\ast},k,\backslash e}}Fl(𝐫k,E){\operatorname{Fl}({\mathbf{r}}_{k}^{\ast},E^{\prime})}δ𝐫,E\scriptstyle{\mydelta_{{\mathbf{r}},E}}\scriptstyle{\sim}ι𝐫,/e\scriptstyle{\myiota_{{\mathbf{r}},/e}}Ψ𝐫,k,/e\scriptstyle{\Psi_{{\mathbf{r}},k,/e}}δ|W𝐫,k,/e\scriptstyle{\mydelta|_{W_{{\mathbf{r}},k,/e}}}\scriptstyle{\sim}δ𝐫k,E\scriptstyle{\mydelta_{{\mathbf{r}}_{k},E^{\prime}}}\scriptstyle{\sim}ι𝐫,\e\scriptstyle{\myiota_{{\mathbf{r}},\backslash e}^{\ast}}Ψ𝐫,k,\e\scriptstyle{\Psi_{{\mathbf{r}},k,\backslash e}^{\ast}}

is commutative for all k=0,,sk=0,\dotsc,s. This can be deduced from the corresponding fact for (usual) matroid bundles (see [BL21, Thm. 5.9]), but for the sake of a compact presentation we omit the details.

3.10. Flags of minors

Let n=n+rsr1n^{\prime}=n+r_{s}-r_{1} and E={1,,n}E^{\prime}=\{1,\dotsc,n^{\prime}\}. For i=1,,si=1,\dotsc,s, let Ji={n+1,,n+rir1}J_{i}=\{n+1,\dotsc,n+r_{i}-r_{1}\} and Ii={n+rir1+1,,n}I_{i}=\{n+r_{i}-r_{1}+1,\dotsc,n^{\prime}\}. Recall from Theorem 2.5 that an FF-matroid MM^{\prime} of rank rsr_{s} on EE^{\prime} gives rise to the flag FF-matroid (M\I1/J1,,M\Is/Js)(M^{\prime}\backslash I_{1}/J_{1},\dotsc,M^{\prime}\backslash I_{s}/J_{s}) of rank 𝐫{\mathbf{r}} on EE.

This association extends to a rational map μ𝐫,E:Gr(rs,E)Fl(𝐫,E)\mymu_{{\mathbf{r}},E}:\operatorname{Gr}(r_{s},E^{\prime})\mathbin{\leavevmode\hbox to13.4pt{\vbox to5.2pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.4472pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{2.15277pt}\pgfsys@lineto{12.60002pt}{2.15277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.80002pt}{2.15277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\operatorname{Fl}({\mathbf{r}},E), which we describe in terms of the images of the multi-homogeneous coordinates of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E). Namely, for e1,,eriEe_{1},\dotsc,e_{r_{i}}\in E, the coordinate Te1,,eriT_{e_{1},\dotsc,e_{r_{i}}} of the ii-th factor in i=1s𝔽1±nri1\prod_{i=1}^{s}{\mathbb{P}}_{{\mathbb{F}}_{1}^{\pm}}^{n^{r_{i}}-1} is mapped to Te1,,eri,n+1,,n+rsriT_{e_{1},\dotsc,e_{r_{i}},n+1,\dotsc,n+r_{s}-r_{i}}.

The domain of the rational map μ𝐫,E:Gr(rs,E)Fl(𝐫,E)\mymu_{{\mathbf{r}},E}:\operatorname{Gr}(r_{s},E^{\prime})\mathbin{\leavevmode\hbox to13.4pt{\vbox to5.2pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.4472pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{2.15277pt}\pgfsys@lineto{12.60002pt}{2.15277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.80002pt}{2.15277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\operatorname{Fl}({\mathbf{r}},E) is as follows. For I={e1,,ers}EI=\{e_{1},\dotsc,e_{r_{s}}\}\subset E^{\prime}, we define VIV_{I} as the intersection of Gr(r,E)\operatorname{Gr}(r^{\prime},E^{\prime}) with the canonical open Ux1,,xrsU_{x_{1},\dotsc,x_{r_{s}}} of (n)rs1{\mathbb{P}}^{(n^{\prime})^{r_{s}}-1}. Note that VIV_{I} does not depend on the order of x1,,xrsx_{1},\dotsc,x_{r_{s}} and that VI=V_{I}=\emptyset if #I<rs\#I<r_{s} due to the defining equations of Gr(rs,E)\operatorname{Gr}(r_{s},E^{\prime}). Let (Ers)\binom{E^{\prime}}{r_{s}} be the collection of rsr_{s}-subsets of EE^{\prime},

Ω={I(Ers)|n+1,,nI}andΩc={I(Ers)|n+1,,nI}\textstyle\Omega\ =\ \big{\{}I\in\binom{E^{\prime}}{r_{s}}\,\big{|}\,n+1,\dotsc,n^{\prime}\in I\big{\}}\quad\text{and}\quad\Omega^{c}\ =\ \big{\{}I\in\binom{E^{\prime}}{r_{s}}\,\big{|}\,n+1,\dotsc,n^{\prime}\notin I\big{\}}

The domain of Gr(rs,E)Fl(𝐫,E)\operatorname{Gr}(r_{s},E^{\prime})\mathbin{\leavevmode\hbox to13.4pt{\vbox to5.2pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.4472pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{2.15277pt}\pgfsys@lineto{12.60002pt}{2.15277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.80002pt}{2.15277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\operatorname{Fl}({\mathbf{r}},E) is

W𝐫,E=IΩ,JΩcVIVJ,W_{{\mathbf{r}},E}\ =\ \bigcup_{I\in\Omega,\,J\in\Omega^{c}}V_{I}\cap V_{J},

which is the locus of all matroids MM^{\prime} for which {n+1,,n}\{n+1,\dotsc,n^{\prime}\} is independent and co-independent. In other words, we can consider μ𝐫,E\mymu_{{\mathbf{r}},E} as morphism μ𝐫,E:W𝐫,EFl(𝐫,E)\mymu_{{\mathbf{r}},E}:W_{{\mathbf{r}},E}\to\operatorname{Fl}({\mathbf{r}},E). We omit further details for the sake of a compact presentation and proceed with the central statement about this morphism (without proof).

Theorem 3.4.

Let FF be a tract and MM^{\prime} be an FF-matroid of rank rsr_{s} on EE^{\prime} with characteristic morphism χM:SpecFGr(rs,E)\mychi_{M^{\prime}}:\operatorname{Spec}F\to\operatorname{Gr}(r_{s},E^{\prime}) whose image we assume to be in W𝐫,EW_{{\mathbf{r}},E}. Let 𝐌=(M1,,Ms){\mathbf{M}}=(M_{1},\dotsc,M_{s}) be the flag FF-matroid of rank 𝐫{\mathbf{r}} on EE with Mi=M\Ii/JiM_{i}=M^{\prime}\backslash I_{i}/J_{i} and χ𝐌:SpecFFl(𝐫,E)\mychi_{\mathbf{M}}:\operatorname{Spec}F\to\operatorname{Fl}({\mathbf{r}},E) its characteristic morphism. Then χ𝐌=μ𝐫,EχM\mychi_{\mathbf{M}}=\mymu_{{\mathbf{r}},E}\circ\mychi_{M^{\prime}}.

3.11. Rational point sets

A topological idyll is an idyll FF together with a topology such that the multiplication F×FFF\times F\to F and the inversion F×F×F^{\times}\to F^{\times} are continuous maps and such that {0}\{0\} is closed. Examples of topological idylls are topological fields (considered as idylls with the same topology), the tropical hyperfield with the real topology, the Krasner hyperfield 𝕂{\mathbb{K}} with the topology generated by the open subset {1}\{1\} and the sign hyperfield 𝕊{\mathbb{S}} with the topology generated by the open subsets {1}\{1\} and {1}\{-1\}.

The sets of FF-rational points X(F)X(F) for an 𝔽1±{{\mathbb{F}}_{1}^{\pm}}-scheme XX and a topological idyll FF come with the fine topology on X(F)X(F), which is characterized by the following properties:

  1. (1)

    for affine X=SpecBX=\operatorname{Spec}B, the fine topology X(F)=Hom(B,F)X(F)=\operatorname{Hom}(B,F) carries the compact-open topology with respect to the discrete topology for BB;

  2. (2)

    the canonical bijection F𝔸F1(F)F\to{\mathbb{A}}_{F}^{1}(F) is a homeomorphism;

  3. (3)

    the canonical bijection (X×Y)(F)X(F)×Y(F)(X\times Y)(F)\to X(F)\times Y(F) is a homeomorphism;

  4. (4)

    for every morphism YXY\to X, the canonical map Y(F)X(F)Y(F)\to X(F) is continuous;

  5. (5)

    for every open / closed immersion YXY\to X, the canonical inclusion Y(F)X(F)Y(F)\to X(F) is an open / closed topological embedding;

  6. (6)

    for every covering of XX by ordered blue open subschemes UiU_{i}, a subset WW of X(F)X(F) is open if and only if WUi(F)W\cap U_{i}(F) is open in Ui(F)U_{i}(F) for every ii;

  7. (7)

    for every continuous morphism FFF\to F^{\prime}, the induced map X(F)X(F)X(F)\to X(F^{\prime}) is continuous.

For more details, see [Lor15, section 6] and [BL21, section 5.10].

In the following, we briefly discuss the topological spaces that arise from the topological idylls that we mention above.

3.11.1. Topological fields

Let KK be a topological field. Then Fl(𝐫,E)(K)\operatorname{Fl}({\mathbf{r}},E)(K) is canonically homeomorphic to the set of KK-rational points of the usual flag variety of type 𝐫{\mathbf{r}} flags of subspaces of KEK^{E}, equipped with the strong topology stemming from KK.

As a particular example, we consider {\mathbb{R}} in its incarnation as an idyll. Then Fl(𝐫,E)()\operatorname{Fl}({\mathbf{r}},E)({\mathbb{R}}) is canonically homeomorphic to the real flag manifold of type 𝐫{\mathbf{r}} flags of linear subspaces of E{\mathbb{R}}^{E}.

3.11.2. The tropical hyperfield

The space Fl(𝐫,E)(𝕋)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{T}}) of tropical points is canonically homeomorphic to the flag Dressian FlDr(r1,,rs)FlDr(r_{1},\dotsc,r_{s}) of Brandt, Eur and Zhang’s paper [BEZ21]. They are naturally tropical subvarieties of a product nri1(𝕋)\prod{\mathbb{P}}^{n^{r_{i}}-1}({\mathbb{T}}) of projective tropical spaces (in their incarnations as tropical varieties). We regain several insights of [BEZ21] from our point of view.

By section 3.6, a point of Fl(𝐫,E)(𝕋)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{T}}) corresponds to a flag 𝕋{\mathbb{T}}-matroid. Since the covectors of a 𝕋{\mathbb{T}}-matroid, or valuated matroid, form a tropical linear space, a flag 𝕋{\mathbb{T}}-matroid corresponds to a flag of tropical linear spaces in 𝕋E{\mathbb{T}}^{E} by Theorem 2.1. In conclusion, Fl(𝐫,E)(𝕋)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{T}}) corresponds bijectively to rank 𝐫{\mathbf{r}}-flags of tropical linear spaces in 𝕋E{\mathbb{T}}^{E}.

The fine topology of Fl(𝐫,E)(𝕋)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{T}}) corresponds to the variation of flags of tropical linear space in terms of open neighbourhoods in 𝕋E{\mathbb{T}}^{E} of a given flag or, equivalently, to a variation of the coefficients of the defining equations of the tropical linear spaces within an open interval.

We alert the reader that tropical Grassmannians are defined as the tropicalizations of classical Grassmannians in tropical geometry, which are in general proper subvarieties of Dressians. This terminological artifact leads to a slight inconsistency in the notation Gr(r,E)\operatorname{Gr}(r,E) for the (underlying scheme of the) Dressian. Still, the generalization of tropical Grassmannians to flag varieties can also be recovered from our viewpoint: let KK be a field with a non-archimedean absolute value v:K0v:K\to{\mathbb{R}}_{\geqslant 0}, which can be seen as an idyll morphism v:K𝕋v:K\to{\mathbb{T}}, see [Lor22, Thm. 2.2]. The tropical flag variety of type 𝐫{\mathbf{r}} on EE stemming from KK is the image of the map v:Fl(𝐫,E)(K)Fl(𝐫,E)(𝕋)v_{\ast}:\operatorname{Fl}({\mathbf{r}},E)(K)\to\operatorname{Fl}({\mathbf{r}},E)({\mathbb{T}}).

3.11.3. The Krasner hyperfield

The natural topology for 𝕂{\mathbb{K}} is the poset topology with 0<10<1, which turns 𝕂{\mathbb{K}} into the terminal object in the category of topological tracts. In consequence, the finite set Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) inherits the topology of a poset, which equals the subspace topology of Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) considered as a subset of the underlying topological space of Fl(𝐫,E)\operatorname{Fl}({\mathbf{r}},E) together with the Zariski topology. In particular, the closed points of Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) correspond to all flag matroids (M1,,Ms)(M_{1},\dotsc,M_{s}) of rank 𝐫{\mathbf{r}} on EE for which the matroids M1,,MsM_{1},\dotsc,M_{s} have each exactly one basis.

The poset Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) has a unique maximal element 1^\hat{1}, or generic point, which is the rank 𝐫{\mathbf{r}}-flag of uniform matroids on EE. Thus {1^}\{\hat{1}\} is an open subset of Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) and, in consequence, Fl(𝐫,E)(𝕂)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{K}}) can be contracted to the point 1^\hat{1}, which generalizes the analogous result of Anderson and Davis for the “hyperfield Grassmannian” Gr(e,E)(𝕂)\operatorname{Gr}(e,E)({\mathbb{K}}); see [AD19, section 6].

3.11.4. The sign hyperfield

Similar to the case of the Krasner hyperfield, Fl(𝐫,E)(𝕊)\operatorname{Fl}({\mathbf{r}},E)({\mathbb{S}}) is a finite poset with the order topology. In this case, the topology is highly non-trivial and links to the (disproven) MacPhersonian conjecture in the case of the Grassmannian Gr(r,E)(𝕊)\operatorname{Gr}(r,E)({\mathbb{S}}), see [MZ93, Liu20, AD19]. An interesting question is whether the results from [AD19] generalize to flag varieties. In particular, we pose the following question.

Problem.

Does the continuous map sign:Fl(𝐫,E)()Fl(𝐫,E)(𝕊)\operatorname{{sign}}_{\ast}:\operatorname{Fl}({\mathbf{r}},E)({\mathbb{R}})\to\operatorname{Fl}({\mathbf{r}},E)({\mathbb{S}}) induce a surjection in mod 22 cohomology?

3.11.5. The triangular hyperfield

Yet another interesting example of a topological idyll is Viro’s triangle hyperfield 𝕍{\mathbb{V}} (see [Vir11, AD19]) whose underlying monoid is 0{\mathbb{R}}_{\geqslant 0}, whose ambient semiring is [>0]{\mathbb{N}}[{\mathbb{R}}_{>0}] and whose partial order is generated by the relations 0a+b+c0\leqslant a+b+c whenever |ab|ca+b|a-b|\leqslant c\leqslant a+b, endowed with the real topology. Alternatively 𝕍{\mathbb{V}} can be described as the hyperfield quotient of {\mathbb{C}} by the unit circle 𝕊1={z|z|=1}{\mathbb{S}}^{1}=\{z\in{\mathbb{C}}\mid|z|=1\}. The continuous morphisms 𝕍{\mathbb{R}}\to{\mathbb{C}}\to{\mathbb{V}} induce continuous maps

Fl(𝐫,E)()Fl(𝐫,E)()Fl(𝐫,E)(𝕍).\operatorname{Fl}({\mathbf{r}},E)({\mathbb{R}})\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}},E)({\mathbb{C}})\ \longrightarrow\ \operatorname{Fl}({\mathbf{r}},E)({\mathbb{V}}).

3.11.6. The regular partial field

The natural choice of topology for the regular partial field is the discrete topology, which retains the position of the regular partial field as an initial object in the category of topological tracts. This topology turns Fl(𝐫,E)(𝔽1±)\operatorname{Fl}({\mathbf{r}},E)({{\mathbb{F}}_{1}^{\pm}}) into a discrete point set. The unique continuous map 𝔽1±F{{\mathbb{F}}_{1}^{\pm}}\to F into any other topological tract FF induces a continuous map Fl(𝐫,E)(𝔽1±)Fl(𝐫,E)(F)\operatorname{Fl}({\mathbf{r}},E)({{\mathbb{F}}_{1}^{\pm}})\to\operatorname{Fl}({\mathbf{r}},E)(F).

References

  • [AD19] Laura Anderson and James F. Davis. Hyperfield Grassmannians. Adv. Math., 341:336–366, 2019.
  • [And98] Laura Anderson. Homotopy groups of the combinatorial Grassmannian. Discrete Comput. Geom., 20(4):549–560, 1998.
  • [And19] Laura Anderson. Vectors of matroids over tracts. J. Combin. Theory Ser. A, 161:236–270, 2019.
  • [Bab94] Eric Kendall Babson. A combinatorial flag space. ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–Massachusetts Institute of Technology.
  • [BB19] Matthew Baker and Nathan Bowler. Matroids over partial hyperstructures. Adv. Math., 343:821–863, 2019.
  • [BCTJ22] Carolina Benedetti, Anastasia Chavez, and Daniel Tamayo Jiménez. Quotients of uniform positroids. Electron. J. Combin., 29(1):Paper No. 1.13, 2022.
  • [BEW22] Jonathan Boretsky, Christopher Eur, and Lauren Williams. Polyhedral and tropical geometry of flag positroids. Preprint, arXiv:2208.09131, 2022.
  • [BEZ21] Madeline Brandt, Christopher Eur, and Leon Zhang. Tropical flag varieties. Adv. Math., 384:Paper No. 107695, 41, 2021.
  • [BGS02] A. V. Borovik, I. M. Gelfand, and D. A. Stone. On the topology of the combinatorial flag varieties. Discrete Comput. Geom., 27(2):195–214, 2002.
  • [BGVW97] Alexandre V. Borovik, Israel M. Gelfand, Andrew Vince, and Neil White. The lattice of flats and its underlying flag matroid polytope. Ann. Comb., 1(1):17–26, 1997.
  • [BGW00] Alexandre V. Borovik, Israel M. Gelfand, and Neil White. Combinatorial Flag Varieties. J. Combin. Theory Ser. A, 91(1-2):111–136, 2000. Dedicated to the memory of Gian-Carlo Rota.
  • [BGW01] Alexandre V. Borovik, Israel M. Gelfand, and Neil White. Representations of matroids in semimodular lattices. European J. Combin., 22(6):789–799, 2001.
  • [BGW03] Alexandre V. Borovik, Israel M. Gelfand, and Neil White. Coxeter Matroids. Progress in Mathematics. Birkhäuser Boston, 2003.
  • [BK22] Carolina Benedetti and Kolja Knauer. Lattice path matroids and quotients. Preprint, arXiv:2202.11634, 2022.
  • [BL21] Matthew Baker and Oliver Lorscheid. The moduli space of matroids. Adv. Math., 390:Paper No. 107883, 118, 2021.
  • [BLV78] Robert G. Bland and Michel Las Vergnas. Orientability of matroids. J. Combin. Theory Ser. B, 24(1):94–123, 1978.
  • [BLVS+99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999.
  • [Bor21] Jonathan Boretsky. Positive Tropical Flags and the Positive Tropical Dressian. Preprint, arXiv:2111.12587, 2021.
  • [Bou87] André Bouchet. Greedy algorithm and symmetric matroids. Math. Programming, 38(2):147–159, 1987.
  • [Bou89] André Bouchet. Maps and \triangle-matroids. Discrete Math., 78(1-2):59–71, 1989.
  • [CC76] Alan Cheung and Henry Crapo. A combinatorial perspective on algebraic geometry. Adv. Math., 20(3):388–414, 1976.
  • [CDMS22] Amanda Cameron, Rodica Dinu, Mateusz Michałek, and Tim Seynnaeve. Flag matroids: Algebra and Geometry. In Alexander M. Kasprzyk and Benjamin Nill, editors, Interactions with Lattice Polytopes, pages 73–114, Cham, 2022. Springer International Publishing.
  • [DES21] Rodica Dinu, Christopher Eur, and Tim Seynnaeve. KK-theoretic Tutte polynomials of morphisms of matroids. J. Combin. Theory Ser. A, 181:Paper No. 105414, 36, 2021.
  • [dM07] Anna de Mier. A natural family of flag matroids. SIAM J. Discrete Math., 21(1):130–140, 2007.
  • [Dre86] Andreas W. M. Dress. Duality theory for finite and infinite matroids with coefficients. Adv. Math., 59(2):97–123, 1986.
  • [DW91] Andreas W. M. Dress and Walter Wenzel. Grassmann-Plücker relations and matroids with coefficients. Adv. Math., 86(1):68–110, 1991.
  • [DW92a] Andreas W. M. Dress and Walter Wenzel. Perfect matroids. Adv. Math., 91(2):158–208, 1992.
  • [DW92b] Andreas W. M. Dress and Walter Wenzel. Valuated matroids. Adv. Math., 93(2):214–250, 1992.
  • [FH22] Satoru Fujishige and Hiroshi Hirai. Compression of MM^{\sharp}-convex functions—Flag matroids and valuated permutohedra. J. Combin. Theory Ser. A, 185:Paper No. 105525, 14, 2022.
  • [Gar18] Zachary David Garcia. Exploring flag matroids and duality. Master’s thesis, California State University, 2018.
  • [GG18] Jeffrey Giansiracusa and Noah Giansiracusa. A Grassmann algebra for matroids. manuscripta math., 156:187–213, 2018.
  • [GS87] I. M. Gelfand and V. V. Serganova. On the general definition of a matroid and a greedoid. Dokl. Akad. Nauk SSSR, 292(1):15–20, 1987.
  • [Hig68] D. A. Higgs. Strong maps of geometries. J. Combinatorial Theory, 5(2):185–191, 1968.
  • [Jar23] Manoel Jarra. Exterior algebras in matroid theory. manuscripta math., 172:427–442, 2023.
  • [JLLAO23] Michael Joswig, Georg Loho, Dante Luber, and Jorge Alberto Olarte. Generalized Permutahedra and Positive Flag Dressians. Int. Math. Res. Not., 2023(19):16748–16777, 2023.
  • [Ken75] Daniel Kennedy. Majors of geometric strong maps. Discrete Math., 12(4):309–340, 1975.
  • [Kun77] Joseph P. S. Kung. The core extraction axiom for combinatorial geometries. Discrete Math., 19(2):167–175, 1977.
  • [Kun86] Joseph P. S. Kung. Strong maps. In Theory of Matroids, Encyclopedia of Mathematics and its Applications, pages 224–253. Cambridge University Press, 1986.
  • [Liu20] Gaku Liu. A counterexample to the extension space conjecture for realizable oriented matroids. J. Lond. Math. Soc., 101:175–193, 2020.
  • [LL12] Javier López Peña and Oliver Lorscheid. Projective geometry for blueprints. C. R. Math. Acad. Sci. Paris, 350(9-10):455–458, 2012.
  • [Lor15] Oliver Lorscheid. Scheme theoretic tropicalization. Preprint, arXiv:1508.07949, 2015.
  • [Lor22] Oliver Lorscheid. Tropical geometry over the tropical hyperfield. Rocky Mountain J. Math., 52(1):189–222, 2022.
  • [Mun18] Joshua Mundiger. Is this condition equivalent to being a matroid quotient? Discussion on Mathoverflow, https://mathoverflow.net/questions/302574/is-this-condition-equivalent-to-being-a-matroid-quotient, 2018.
  • [MZ93] Nicolai E. Mnëv and Günter M. Ziegler. Combinatorial models for the finite-dimensional Grassmannians. Discrete Comput. Geom., 10(3):241–250, 1993.
  • [Rec05] András Recski. Maps on matroids with applications. Discrete Math., 303(1-3):175–185, 2005.
  • [Ric93] Jürgen Richter-Gebert. Oriented matroids with few mutations. Discrete Comput. Geom., 10(3):251–269, 1993.
  • [Tar85] Éva Tardos. Generalized matroids and supermodular colourings. In Matroid theory (Szeged, 1982), volume 40 of Colloq. Math. Soc. János Bolyai, pages 359–382. North-Holland, Amsterdam, 1985.
  • [Tit57] J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. In Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957.
  • [Vir11] Oleg Ya. Viro. On basic concepts of tropical geometry. Proc. Steklov Inst. Math., 273(1):252–282, 2011.