This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fixed Points of KK-Fibonacci Sequences

Brennan Benfield and Oliver Lippard Brennan Benfield: Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA Oliver Lippard: Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
Abstract.

A KK-Fibonacci sequence is a binary recurrence sequence where F0=0F_{0}=0, F1=1F_{1}=1, and Fn=KFn1+Fn2F_{n}=K\cdot F_{n-1}+F_{n-2}. These sequences are known to be periodic modulo every positive integer greater than 11. If the length of one shortest period of a KK-Fibonacci sequence modulo a positive integer is equal to the modulus, then that positive integer is called a fixed point. This paper determines the fixed points of KK-Fibonacci sequences according to the factorization of K2+4K^{2}+4 and concludes that if this process is iterated, then every modulus greater than 3 eventually terminates at a fixed point.

Mathematics Subject Classifications. 11B39, 11B50
Keywords. Fibonacci sequence, Pisano period, fixed points

The results of this paper were presented at the 21st International Fibonacci Conference, hosted at Harvey Mudd College, July 8, 2024.

1. Introduction

Perhaps the most popular sequence of all, the Fibonacci sequence is a binary recurrence defined by F0=0F_{0}=0, F1=1F_{1}=1, and Fn=Fn1+Fn2F_{n}=F_{n-1}+F_{n-2} and has been studied so thoroughly that discovering new properties at all is almost as surprising as the property discovered. The focus of this paper is a particular property that was first recognized in 1877 by Lagrange [10]: the terms in the Fibonacci sequence modulo 1010 (i.e. the one’s place digits) repeat every 6060 terms. Inquiry regarding the periodicity of the sequence modulo a positive integer has continued and in 2003 it was proven by Everest, Shparlinski, and Ward [4] that every binary recurrence sequence is periodic modulo a positive integer m>1m>1.

Define the Pisano period as the length of one (shortest) period of the Fibonacci sequence modulo mm. The Pisano period is denoted π(m)\pi(m) and can be recursively applied: denote π(π(m))=π2(m)\pi(\pi(m))~{}=~{}\pi^{2}(m) and π(πi(m))=πi+1(m)\pi(\pi^{i}(m))=\pi^{i+1}(m) for n>2n>2. The trajectory of an integer mm is the set of integers given by recursively applying the Pisano period to mm. How long can the trajectory of a starting integer mm be?

A fixed point is a positive integer mm such that π(m)=m\pi(m)=m. A kk-periodic point is a kk-tuple of positive integers such that π(m)=π2(m)==πk(m)=m\pi(m)=\pi^{2}(m)=\ldots=\pi^{k}(m)=m. In 1969, Fulton and Morris [6] determined the fixed points of the Fibonacci sequence and proved that the trajectory of every integer will eventually terminate at a fixed point. In 2020, Trojovská [14] showed that there are no kk-periodic points in the Fibonacci sequence.

Theorem 1.1 (Fixed Point Theorem, Fulton and Morris [6]).

For and integer m>1m>1, π(m)=m\pi(m)=m if and only if m=24×5k1m=24\times 5^{k-1}.

Theorem 1.2.

(Iteration Theorem, Fulton and Morris [6]) For every integer m>1m>1, there exists a least integer jj such that πj+1(m)=πj(m)\pi^{j+1}(m)=\pi^{j}(m).

Example.

Trajectories of the integers in the Fibonacci sequence for m24m\leq 24.

π(2)=3π(3)=8π(8)=12π(12)=24\displaystyle\pi(2)=3\rightarrow\pi(3)=8\rightarrow\pi(8)=12\rightarrow\pi(12)=24\qquad π(13)=28π(28)=48π(48)=24\displaystyle\pi(13)=28\rightarrow\pi(28)=48\rightarrow\pi(48)=24
π(3)=8π(8)=12π(12)=24\displaystyle\pi(3)=8\rightarrow\pi(8)=12\rightarrow\pi(12)=24\qquad π(14)=48π(48)=24\displaystyle\pi(14)=48\rightarrow\pi(48)=24
π(4)=6π(6)=24\displaystyle\pi(4)=6\rightarrow\pi(6)=24\qquad π(15)=40π(40)=60π(60)=120\displaystyle\pi(15)=40\rightarrow\pi(40)=60\rightarrow\pi(60)=120
π(5)=20π(20)=60π(60)=120\displaystyle\pi(5)=20\rightarrow\pi(20)=60\rightarrow\pi(60)=120\qquad π(16)=24\displaystyle\pi(16)=24
π(6)=24\displaystyle\pi(6)=24\qquad π(17)=36π(36)=24\displaystyle\pi(17)=36\rightarrow\pi(36)=24
π(7)=16π(16)=24\displaystyle\pi(7)=16\rightarrow\pi(16)=24\qquad π(18)=24\displaystyle\pi(18)=24
π(8)=12π(12)=24\displaystyle\pi(8)=12\rightarrow\pi(12)=24\qquad π(19)=18π(18)=24\displaystyle\pi(19)=18\rightarrow\pi(18)=24
π(9)=24\displaystyle\pi(9)=24\qquad π(20)=60π(60)=120\displaystyle\pi(20)=60\rightarrow\pi(60)=120
π(10)=60π(60)=120\displaystyle\pi(10)=60\rightarrow\pi(60)=120\qquad π(21)=16π(16)=24\displaystyle\pi(21)=16\rightarrow\pi(16)=24
π(11)=10π(10)=60π(60)=120\displaystyle\pi(11)=10\rightarrow\pi(10)=60\rightarrow\pi(60)=120\qquad π(22)=30π(30)=120\displaystyle\pi(22)=30\rightarrow\pi(30)=120
π(12)=24\displaystyle\pi(12)=24\qquad π(23)=48π(48)=24\displaystyle\pi(23)=48\rightarrow\pi(48)=24
π(24)=24\displaystyle\pi(24)=24

Let 𝒯(m)\mathcal{T}(m) denote the number of iterations of the Pisano period of mm until the trajectory reaches a fixed point. For example, 𝒯(2)=4\mathcal{T}(2)=4 and 𝒯(24)=0\mathcal{T}(24)=0.

Theorem 1.3.

lim sup𝒯(m)logm<\limsup\frac{\mathcal{T}(m)}{\log m}<\infty.

Closely related are KK-Fibonacci sequences defined by FK,0=0F_{K,0}=0, FK,1=1F_{K,1}=1, and FK,n=KFn1+Fn2F_{K,n}=KF_{n-1}+F_{n-2}. The Pisano period of these sequences is commonly denoted πK(m)\pi_{K}(m). What are the fixed points of KK-Fibonacci sequences? Some fixed points have already been calculated:

Theorem 1.4 (Falcon and Plaza [5]).

If K2K\geq 2 is even, then πK(2K)=4\pi_{K}(2K)=4. If K3K\geq 3 is odd, then πK(2K)=6\pi_{K}(2K)=6.

It follows that if K=2K=2, then πK(4)=4\pi_{K}(4)=4 and if K=3K=3, then πK(6)=6\pi_{K}(6)=6. The main result of this paper extends the results of Fulton & Morris [6], establishing that for each KK, fixed points may be classified according to one of four categories of KK. Essentially, for every KK the trajectory of every m>1m>1 terminates at a fixed point (or is a kk-periodic point).

Theorem 1.5 (KK-Fixed Point Theorem).

Let p1e1p2e2ptetp_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{t}^{e_{t}} be the prime factorization of K2+4K^{2}+4 for a positive integer K1K\geq 1, then for every modulus m>1m>1 and for ji=0,1,2,j_{i}=0,1,2,\ldots, πK(m)=m\pi_{K}(m)=m if and only if:

  1. (romanenumi)

    K±1(mod6)K\equiv\pm 1\pmod{6} and m=24×p1j1p2j2ptjtm=24\times p_{1}^{j_{1}}p_{2}^{j_{2}}\cdots p_{t}^{j_{t}}.

  2. (romanenumi)

    K2(mod4)K\equiv 2\pmod{4} and m=2j1m=2^{j_{1}} or m=2j1+1p2j2ptjtm=2^{j_{1}+1}p_{2}^{j_{2}}\cdots p_{t}^{j_{t}}  where  p1=2p_{1}=2.

  3. (romanenumi)

    K3(mod6)K\equiv 3\pmod{6} and m=6m=6 or m=12×p3j3p4j4ptjtm=12\times p_{3}^{j_{3}}p_{4}^{j_{4}}\cdots p_{t}^{j_{t}}.

  4. (romanenumi)

    K0(mod4)K\equiv 0\pmod{4} and m=2m=2 or m=4×p2j2+1p3j3+1ptjt+1m=4\times p_{2}^{j_{2}+1}p_{3}^{j_{3}+1}\cdots p_{t}^{j_{t}+1}  where  p1e1=22p_{1}^{e_{1}}=2^{2}.

with the only exception when K3(mod6)K\equiv 3\pmod{6}, which has the 22-periodic points πK(2)=3\pi_{K}(2)=3 and πK(3)=2\pi_{K}(3)=2.

Theorem 1.6 (KK-Iteration Theorem).

For every m>1m>1, there exists a positive integer NN such that πKN(m)=m\pi_{K}^{N}(m)=m, with the only exception when K3(mod6)K\equiv 3\pmod{6}, which has the 22-periodic points π(2)=3\pi(2)=3 and π(3)=2\pi(3)=2.

Note that every positive integer K1K\geq 1 belongs to exactly one of the four categories in Theorem 1.5. Perhaps it is surprising that the prime factors of K2+4K^{2}+4 are important in finding fixed points. Famously, the limit of the ratio between successive Fibonacci numbers is the number ϕ\phi where Binet’s formula gives the nnth Fibonacci number:

Fn=ϕnϕn5whereϕ=1+52.F_{n}=\frac{\phi^{n}-\phi^{-n}}{\sqrt{5}}\qquad\text{where}\ \qquad\phi=\frac{1+\sqrt{5}}{2}.

Something analogous occurs for KK-Fibonacci sequences (see [5, 11]). Note the similarity when K=1K=1:

FK,n=σnσnK2+4whereσ=K+K2+42.F_{K,n}=\frac{\sigma^{n}-\sigma^{-n}}{\sqrt{K^{2}+4}}\qquad\text{where}\ \qquad\sigma=\frac{K+\sqrt{K^{2}+4}}{2}.

KK K2+4K^{2}+4 K±1(mod6)K\equiv\pm 1\pmod{6} K2(mod4)K\equiv 2\pmod{4} K3(mod6)K\equiv 3\pmod{6} K0(mod4)K\equiv 0\pmod{4} K=1K=1 5 24×5j124\times 5^{j_{1}} K=2K=2 232^{3} 2j12^{j_{1}} K=3K=3 1313 66 or 12×13j112\times 13^{j_{1}} K=4K=4 2252^{2}\cdot 5 22 or 4×5j1+14\times 5^{j_{1}+1} K=5K=5 29 24×29j124\times 29^{j_{1}} K=6K=6 2352^{3}\cdot 5 2j12^{j_{1}} or 2j1+1×5j22^{j_{1}+1}\times 5^{j_{2}} K=7K=7 5353 24×53j124\times 53^{j_{1}} K=8K=8 22172^{2}\cdot 17 22 or 4×17j1+14\times 17^{j_{1}+1} K=9K=9 5175\cdot 17 66 or 12×5j1×17j212\times 5^{j_{1}}\times 17^{j_{2}} K=10K=10 23132^{3}\cdot 13 2j12^{j_{1}} or 2j1+1×13j22^{j_{1}+1}\times 13^{j_{2}} K=11K=11 535^{3} 24×5j124\times 5^{j_{1}} K=12K=12 22372^{2}\cdot 37 22 or 4×37j1+14\times 37^{j_{1}+1} K=13K=13 173173 24×173j124\times 173^{j_{1}} K=14K=14 23532^{3}\cdot 5^{3} 2j12^{j_{1}} or 2j1+1×5j22^{j_{1}+1}\times 5^{j_{2}} K=15K=15 229229 66 or 12×229j112\times 229^{j_{1}} K=16K=16 225132^{2}\cdot 5\cdot 13 22 or 4×5j1+1×13j2+14\times 5^{j_{1}+1}\times 13^{j_{2}+1} K=17K=17 293293 24×293j124\times 293^{j_{1}} K=18K=18 23412^{3}\cdot 41 2j12^{j_{1}} or 2j1+1×41j22^{j_{1}+1}\times 41^{j_{2}} K=19K=19 5735\cdot 73 24×5j1×73j224\times 5^{j_{1}}\times 73^{j_{2}} K=20K=20 221012^{2}\cdot 101 22 or 4×101j1+14\times 101^{j_{1}+1} K=21K=21 5895\cdot 89 66 or 12×5j1×89j212\times 5^{j_{1}}\times 89^{j_{2}} K=22K=22 23612^{3}\cdot 61 2j12^{j_{1}} or 2j1+1×61j22^{j_{1}+1}\times 61^{j_{2}} K=23K=23 134113\cdot 41 24×13j1×41j224\times 13^{j_{1}}\times 41^{j_{2}} K=24K=24 225292^{2}\cdot 5\cdot 29 22 or 4×5j1+1×29j2+14\times 5^{j_{1}+1}\times 29^{j_{2}+1}

Table 1. Fixed points of (K,1,0,1)(K,1,0,1)-sequences for k=1,2,,24k=1,2,\ldots,24 and ji=0,1,2,j_{i}=0,1,2,\ldots

2. Preliminaries

Used in the proof of Theorems 1.5 and 1.6 are select results for KK-Fibonacci sequences. Renault [11] generalizes a result of Wall [15] and establishes a particular type of multiplicativity for πK(m)\pi_{K}(m) among the prime factors of mm.

Theorem 2.1 (Renault [11]).

Let m=p1e1p2e2prerm=p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{r}^{e_{r}} be the prime factorization of mm, then

πK(m)=lcm[πK(p1e1),πK(p2e2),,πK(prer)].\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(p_{1}^{e_{1}}),\pi_{K}(p_{2}^{e_{2}}),\ldots,\pi_{K}(p_{r}^{e_{r}})\right].

Another result generalized by Renault [11] concerns Wall-Sun-Sun primes - conjectured primes pp where π(p)=π(p2)\pi(p)=\pi(p^{2}). For the Fibonacci sequence, these primes were originally investigated by Wall [15] in 1960 but became exceedingly popular in the 1990s when Sun & Sun [13] demonstrated that the first case of Fermat’s Last Theorem is false for an exponent pp only if pp is a Wall-Sun-Sun prime. No Wall-Sun-Sun prime has been found, though infinitely many are conjectured to exist. For KK-Fibonacci sequences, any prime pp such that πK(p)=πK(p2)\pi_{K}(p)=\pi_{K}(p^{2}) is a KK-Wall-Sun-Sun prime. These are much more common: if K=2K=2, then π2(13)=π2(169)\pi_{2}(13)=\pi_{2}(169) and π2(31)=π2(961)\pi_{2}(31)=\pi_{2}(961).

Theorem 2.2 (Renault [11]).

For all KK and all primes pp, there exists a maximal ee such that πK(pe)=πK(p)\pi_{K}(p^{e})=\pi_{K}(p). For all xe1x\geq e\geq 1, πK(px)=pxeπK(p)\pi_{K}(p^{x})=p^{x-e}\cdot\pi_{K}(p).

Theorem 2.3 (Renault [11]).

If πK(pe)πK(pe+1)\pi_{K}(p^{e})\neq\pi_{K}(p^{e+1}), then πK(pe+1)πK(pe+2)\pi_{K}(p^{e+1})\neq\pi_{K}(p^{e+2}).

For KK-Fibonacci sequences, Bouazzaoui [2, 3] showed that a prime pp that does not divide K2+4K^{2}+4 is a KK-Wall-Sun-Sun prime if and only if (K2+4)\mathbb{Q}\left(\sqrt{K^{2}+4}\right) is not pp-rational. Results from Harrington & Jones [7, 8, 9] establish necessary and sufficient conditions for precisely which primes that do divide K2+4K^{2}+4 are KK-Wall-Sun-Sun primes. In particular, Harrington & Jones establish that no odd prime divisor of K2+4K^{2}+4 is ever a KK-Wall-Sun-Sun prime.

Theorem 2.4 (Harrington & Jones [7]).

Let pp be a prime divisor of K2+4K^{2}+4. Then pp is a KK-Wall-Sun-Sun prime if and only if p=2p=2 and K0(mod4)K\equiv 0\pmod{4}.

In [1] the authors proved explicit formulas for πK(2e)\pi_{K}(2^{e}), which depend upon the parity of KK:

Theorem 2.5 ([1], Theorems 4.25 and 4.28).

Let KK be an integer and let e1e\geq 1, then:

  • If KK is odd, then πK(2e)=32e1\pi_{K}(2^{e})=3\cdot 2^{e-1}.

  • If KK is even, then πK(2e)=2e+1ν2(gcd(K,2e))\pi_{K}(2^{e})=2^{e+1-\nu_{2}(\gcd(K,2^{e}))} where ν2(x)\nu_{2}(x) is the 2-adic valuation.

In an effort to characterize the behavior of πK(p)\pi_{K}(p) for a prime pp, Renault [11] develops a trichotomy depending on the quadratic residues of K2+4K^{2}+4 modulo pp.

Theorem 2.6 (Renault [11]).

Let pp be an odd prime.

  • If K2+4K^{2}+4 is a nonzero quadratic residue modulo pp, then πK(p)(p1)\pi_{K}(p)\mid(p-1).

  • If K2+4K^{2}+4 is a quadratic non-residue modulo pp, then πK(p)2(p+1)\pi_{K}(p)\mid 2(p+1).

  • If p(K2+4)p\mid(K^{2}+4), then πK(p)=pordp(21K)\pi_{K}(p)=p\cdot\text{ord}_{p}(2^{-1}K).

In light of Theorem 2.6, it is possible to completely determine πK(p)\pi_{K}(p) for primes that divide K2+4K^{2}+4.

Theorem 2.7.

If pp is an odd prime and p(K2+4)p\mid(K^{2}+4), then, ordp(21K)=4\text{ord}_{p}(2^{-1}K)=4 and πK(p)=4p\pi_{K}(p)=4p.

Proof.

Notice that K4=(K2+4)(K24)+16K^{4}=(K^{2}+4)(K^{2}-4)+16, hence K416(modK2+4)K^{4}\equiv 16\pmod{K^{2}+4}. It follows that (21K)4=K4161(modK2+4)(2^{-1}K)^{4}=\frac{K^{4}}{16}\equiv 1\pmod{K^{2}+4}. Similarly, if a prime p(K2+4)p\mid(K^{2}+4), then (21K)41(modp)(2^{-1}K)^{4}\equiv 1\pmod{p}. Thus, ordp(21K)4\text{ord}_{p}(2^{-1}K)\mid 4. Notice that K24(modK2+4)K^{2}\equiv-4\pmod{K^{2}+4}. It follows that (21K)2=K241(modK2+4)(2^{-1}K)^{2}=\frac{K^{2}}{4}\equiv-1\pmod{K^{2}+4}. Hence (21K)21(modp)(2^{-1}K)^{2}\equiv-1\pmod{p} for all p(K2+4)p\mid(K^{2}+4). The condition that (21K)211(modp)(2^{-1}K)^{2}\equiv-1\equiv 1\pmod{p} is equivalent to the condition that p=2p=2, contradicting the assumption that pp is an odd prime. Thus, if p2p\neq 2, then ordp(21K)=4\text{ord}_{p}(2^{-1}K)=4. ∎

Harrington & Jones [7] discovered the value of πK(2)\pi_{K}(2) when KK is an even integer.

Theorem 2.8 (Renault [11] and Harrington & Jones [7]).

If KK is even, (i.e. if 2(K2+4)2\mid(K^{2}+4)), then πK(2)=2\pi_{K}(2)=2.

For the proof of the main result, it is important to also understand the nature of πK(2)\pi_{K}(2) when KK is odd.

Theorem 2.9 (Renault [11]).

If KK is odd, then πK(2)=3\pi_{K}(2)=3.

Theorem 2.10.

If 3K3\mid K, then πK(3)=2\pi_{K}(3)=2. Otherwise, πK(3)=8\pi_{K}(3)=8.

Proof.

Consider the KK-Fibonacci sequence modulo 33. If 3K3\mid K, the sequence becomes 0,1,0,1,\circlearrowleft, with a period of 22. If K1(mod3)K\equiv 1\pmod{3}, the sequence is 0,1,1,2,0,2,2,1,0,1,0,1,1,2,0,2,2,1,0,1,\circlearrowleft with a period of 88. If K2(mod3)K\equiv 2\pmod{3}, the sequence is 0,1,2,2,0,2,1,1,0,1,0,1,2,2,0,2,1,1,0,1,\circlearrowleft again with a period of 88. ∎

Theorem 2.11.

For all odd primes pp, if qq is a prime such that qπK(p)q\mid\pi_{K}(p), then qpq\leq p, with equality only if p(K2+4)p\mid(K^{2}+4).

Proof.

If K2+4K^{2}+4 is a nonzero quadratic residue modulo pp, then q(p1)q\mid(p-1) and q<pq<p. If K2+4K^{2}+4 is a quadratic non-residue, then q2(p+1)q\mid 2(p+1). Since pp is an odd prime, p+1p+1 is composite, and is therefore composed of prime factors smaller than pp. Finally, if p(K2+4)p\mid(K^{2}+4), then by Theorem 2.6 πK(p)=pordp(21K)\pi_{K}(p)=p\cdot\text{ord}_{p}(2^{-1}K). It is clear that pπK(p)p\mid\pi_{K}(p). Since the integers modulo pp form a cyclic group of order at most p1p-1, it follows that ordp(21K)(p1)\text{ord}_{p}(2^{-1}K)\mid(p-1). Hence, qpq\leq p. ∎

3. Proof of the K-Fixed Point Theorem

Theorem 3.1.

If K±1(mod6)K\equiv\pm 1\pmod{6} and m=24p1j1prjrm=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4, then πK(m)=m\pi_{K}(m)=m.

Proof.

Suppose K±1(mod6)K\equiv\pm 1\pmod{6} and m=24p1j1prjrm=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. By Theorem 2.1,

πK(m)=lcm[πK(23),πK(3),πK(p1j1),,πK(prjr)]\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{3}),\pi_{K}(3),\pi_{K}(p_{1}^{j_{1}}),\ldots,\pi_{K}(p_{r}^{j_{r}})\right] (1)

By Theorem 2.4, neither 22, 33, nor any pip_{i} is a KK-Wall-Sun-Sun prime. By Theorems 2.2 and 2.9, πK(23)=231πK(2)=223=12\pi_{K}(2^{3})=2^{3-1}\pi_{K}(2)=2^{2}\cdot 3=12. By Theorem 2.10, πK(3)=8\pi_{K}(3)=8. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

These may be substituted into equation (1) to obtain:

πK(m)=lcm[12,8,4p1,,4pr]=24p1j1prjr=m.\pi_{K}(m)=\operatorname{lcm}\left[12,8,4p_{1},\ldots,4p_{r}\right]=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}=m.

Theorem 3.2.

If K±1(mod6)K\equiv\pm 1\pmod{6} and πK(m)=m\pi_{K}(m)=m, then m=24p1j1prjrm=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4.

Proof.

Suppose K±1(mod6)K\equiv\pm 1\pmod{6} and πK(m)=m\pi_{K}(m)=m. Let m=2j13j2p1j1prjrq1θ1qsθsm=2^{j_{1}}\cdot 3^{j_{2}}\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}} where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. Note that if θλ0\theta_{\lambda}\neq 0 then qλmq_{\lambda}\mid m. By Theorem 2.1,

m=πK(m)=lcm[πK(2j1),πK(3j2),πK(p1j1),,πK(prjr),πK(q1θ1),,πK(qsθs)]\displaystyle m=\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{j_{1}}),\pi_{K}(3^{j_{2}}),\pi_{K}(p_{1}^{j_{1}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\theta_{1}}),\ldots,\pi_{K}(q_{s}^{\theta_{s}})\right] (2)

By Theorem 2.11, if ρπK(qλθλ)\rho\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), then ρ<qλ\rho<q_{\lambda} for all 1is1\leq i\leq s. By Theorem 2.2, πK(qλθλ)=qλθλ1πK(qλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}})=q_{\lambda}^{\theta_{\lambda}-1}\pi_{K}(q_{\lambda}) and by Theorem 2.6, πK(qλ)(qλ1)\pi_{K}(q_{\lambda})\mid(q_{\lambda}-1) if K2+4K^{2}+4 is a quadratic residue, or πK(qλ)2(qλ+1)\pi_{K}(q_{\lambda})\mid 2(q_{\lambda}+1) if K2+4K^{2}+4 is not a quadratic residue modulo qλq_{\lambda}. Either way, it follows that qλ∤πK(qλ)q_{\lambda}\not\mid\pi_{K}(q_{\lambda}) and qλθλ1q_{\lambda}^{\theta_{\lambda}-1} is the largest factor of qλq_{\lambda} that divides πK(qλθλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), that is, qλθλ1πK(qλθλ)q_{\lambda}^{\theta_{\lambda}-1}\mid\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}).

By Theorem 2.4, neither 22, 33, pip_{i}, nor qλq_{\lambda} are KK-Wall-Sun-Sun primes. By Theorems 2.2 and 2.9, πK(2j1)=2j11πK(2)=2j113\pi_{K}(2^{j_{1}})=2^{j_{1}-1}\pi_{K}(2)=2^{j_{1}-1}\cdot 3. By Theorems 2.2 and 2.10, πK(3j2)=3j21πK(3)=3j218\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\pi_{K}(3)=3^{j_{2}-1}\cdot 8. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

Note that qλ∤πK(2j1)=2j113q_{\lambda}\not\mid\pi_{K}(2^{j_{1}})=2^{j_{1}-1}\cdot 3 and qλ∤πK(3j2)=3j212q_{\lambda}\not\mid\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\cdot 2, and qλ∤πK(piji)=4pijiq_{\lambda}\not\mid\pi_{K}(p_{i}^{j_{i}})=4p_{i}^{j_{i}}. Thus, qλθλ1mq_{\lambda}^{\theta_{\lambda}-1}\mid\mid m. But this implies that qλθλ∤mq_{\lambda}^{\theta_{\lambda}}\not\mid m, which is a contradiction. Equation (7) is reduced to:

m=πK(m)=lcm[2j113,3j218,4p1j1,,4prjr]\displaystyle m=\pi_{K}(m)=\operatorname{lcm}\left[2^{j_{1}-1}\cdot 3,3^{j_{2}-1}\cdot 8,4p_{1}^{j_{1}},\ldots,4p_{r}^{j_{r}}\right] (3)

Recall that by hypothesis, m=2j13j2p3j3prjrq1θ1qsθsm=2^{j_{1}}\cdot 3^{j_{2}}\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}}. Suppose j14j_{1}\geq 4, then 2j112^{j_{1}-1} is the largest power of 22 in (3), implying 2j11m2^{j_{1}-1}\mid\mid m. However, this contradicts the hypothesis 2j1m2^{j_{1}}\mid m. Suppose j22j_{2}\geq 2, then 3j213^{j_{2}-1} is the largest power of 33 in (2), implying 3j21m3^{j_{2}-1}\mid\mid m. However, this contradicts the hypothesis 3j2m3^{j_{2}}\mid m. Thus, j2=1j_{2}=1, and equation (3) is reduced to:

m=πk(m)=lcm[2j113,24,4p1j1,,4prjr]=24p1j1prjrm=\pi_{k}(m)=\operatorname{lcm}\left[2^{j_{1}-1}\cdot 3,24,4p_{1}^{j_{1}},\ldots,4p_{r}^{j_{r}}\right]=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}

where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. ∎

Theorem 3.3.

If K2(mod4)K\equiv 2\pmod{4} and m=2j1m=2^{j_{1}} or m=2j1+1p2j2prjrm=2^{j_{1}+1}p_{2}^{j_{2}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1=2p_{1}=2, then πK(m)=m\pi_{K}(m)=m.

Proof.

Suppose K2(mod4)K\equiv 2\pmod{4} and let m=2j1m=2^{j_{1}}. By Theorem 2.4, neither 22 nor any pip_{i} is a KK-Wall-Sun-Sun prime. By Theorem 2.5, πK(2j1)=2j1+1min(1,j1)=2j1\pi_{K}(2^{j_{1}})=2^{j_{1}+1-\min(1,j_{1})}=2^{j_{1}}.

Suppose m=2j1+1p2j2prjrm=2^{j_{1}+1}\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. By Theorem 2.1,

πK(m)=lcm[πK(2j1+1),πK(p2j2),,πK(prjr)]\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{j_{1}+1}),\pi_{K}(p_{2}^{j_{2}}),\ldots,\pi_{K}(p_{r}^{j_{r}})\right] (4)

By Theorem 2.4, neither 22 nor any pip_{i} is a KK-Wall-Sun-Sun prime. By Theorem 2.5, πK(2j1+1)=2j1+1\pi_{K}(2^{j_{1}+1})=2^{j_{1}+1}. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

These may be substituted into equation (4) to obtain:

π(m)=lcm[2j1+1,4p2j2,,4prjr]=2j1+1p2j2prjr=m.\pi(m)=\operatorname{lcm}\left[2^{j_{1}+1},4p_{2}^{j_{2}},\ldots,4p_{r}^{j_{r}}\right]=2^{j_{1}+1}\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}}=m.

Theorem 3.4.

If K2(mod4)K\equiv 2\pmod{4} and πK(m)=m\pi_{K}(m)=m, then m=2j1+1m=2^{j_{1}+1} or m=2j1+2p2j2prjrm=2^{j_{1}+2}p_{2}^{j_{2}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1=2p_{1}=2.

Proof.

Suppose K2(mod4)K\equiv 2\pmod{4} and πK(m)=m\pi_{K}(m)=m. Let m=2j1p2j2prjrq1θ1qsθsm=2^{j_{1}}\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}} where p1j1prjrp_{1}^{j_{1}}\cdots p_{r}^{j_{r}} is the prime factorization of K2+4K^{2}+4 and p1=2p_{1}=2. Note that if θλ0\theta_{\lambda}\neq 0 then qλmq_{\lambda}\mid m. By Theorem 2.1,

m=π(m)=lcm[πK(2j1),πK(p2j2),,πK(prjr),πK(q1θ1),,πK(qsθs)]\displaystyle m=\pi(m)=\operatorname{lcm}\left[\pi_{K}(2^{j_{1}}),\pi_{K}(p_{2}^{j_{2}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\theta_{1}}),\ldots,\pi_{K}(q_{s}^{\theta_{s}})\right] (5)

By Theorem 2.11, if ρπK(qλθλ)\rho\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), then ρ<qλ\rho<q_{\lambda} for all 1is1\leq i\leq s. By Theorem 2.2, πK(qλθλ)=qλθλ1πK(qλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}})=q_{\lambda}^{\theta_{\lambda}-1}\pi_{K}(q_{\lambda}) and by 2.6, πK(qλ)(qλ1)\pi_{K}(q_{\lambda})\mid(q_{\lambda}-1) if K2+4K^{2}+4 is a quadratic residue and πK(qλ)2(qλ+1)\pi_{K}(q_{\lambda})\mid 2(q_{\lambda}+1) if K2+4K^{2}+4 is not a quadratic residue modulo qλq_{\lambda}. Either way, it follows that qλθλ1q_{\lambda}^{\theta_{\lambda}-1} is the largest factor of qλq_{\lambda} that divides πK(qλθλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), that is, qλθλ1πK(qλθλ)q_{\lambda}^{\theta_{\lambda}-1}\mid\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}).

By Theorem 2.4, neither 22, pip_{i}, nor qλq_{\lambda} are KK-Wall-Sun-Sun primes. By Theorems 2.2 and 2.8, πK(2j1)=2j11πK(2)=2j112=2j1\pi_{K}(2^{j_{1}})=2^{j_{1}-1}\pi_{K}(2)=2^{j_{1}-1}\cdot 2=2^{j_{1}}. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

Note that qλ∤πK(2j1)=2j1q_{\lambda}\not\mid\pi_{K}(2^{j_{1}})=2^{j_{1}} and qλ∤πK(3j2)=3j218q_{\lambda}\not\mid\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\cdot 8, and qλ∤πK(piji)=4pijiq_{\lambda}\not\mid\pi_{K}(p_{i}^{j_{i}})=4p_{i}^{j_{i}}. Thus, qλθλ1mq_{\lambda}^{\theta_{\lambda}-1}\mid\mid m. But this implies that qλθλ∤mq_{\lambda}^{\theta_{\lambda}}\not\mid m, which is a contradiction. Equation (5) is reduced to:

m=πK(m)=lcm[2j1,4p3j3,,4prjr]=2j1or 2j1+1p2j2prjrm=\pi_{K}(m)=\operatorname{lcm}\left[2^{j_{1}},4p_{3}^{j_{3}},\ldots,4p_{r}^{j_{r}}\right]=2^{j_{1}}\ \text{or}\ 2^{j_{1}+1}p_{2}^{j_{2}}\cdots p_{r}^{j_{r}}

where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1=2p_{1}=2. ∎

Theorem 3.5.

If K3(mod6)K\equiv 3\pmod{6} and m=6m=6 or m=12p3j3prjrm=12\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2} and p2a2=3p_{2}^{a_{2}}=3, then πK(m)=m\pi_{K}(m)=m.

Proof.

Suppose K3(mod6)K\equiv 3\pmod{6} and m=6m=6. Then by Theorem 2.1, πK(m)=lcm[πK(2),πK(3)]\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2),\pi_{K}(3)\right]. By Theorem 2.9, πK(2)=3\pi_{K}(2)=3. By Theorem 2.10, πK(3)=2\pi_{K}(3)=2. Hence, πK(6)=lcm[3,2]=6\pi_{K}(6)=\operatorname{lcm}\left[3,2\right]=6. Note, this also establishes the 22-periodic point πK(2)=3πK(3)=2\pi_{K}(2)=3\rightarrow\pi_{K}(3)=2\circlearrowleft.

Suppose m=12p3j3prjrm=12\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2} and p2a2=3p_{2}^{a_{2}}=3. By Theorem 2.4, neither 22, 33, nor any pip_{i} is a KK-Wall-Sun-Sun prime. By Theorem 2.1,

πK(m)=lcm[πK(22),πK(3),πK(p3j3),,πK(prjr)]\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{2}),\pi_{K}(3),\pi_{K}(p_{3}^{j_{3}}),\ldots,\pi_{K}(p_{r}^{j_{r})}\right] (6)

By Theorem 2.5, πK(22)=23=6\pi_{K}(2^{2})=2\cdot 3=6. By Theorem 2.10, πK(3)=2\pi_{K}(3)=2. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

These may be substituted into equation (6) to obtain:

πK(m)=lcm[6,2,4p3,,4pr]=12p3j3prjr=m.\pi_{K}(m)=\operatorname{lcm}\left[6,2,4p_{3},\ldots,4p_{r}\right]=12\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}}=m.

Theorem 3.6.

If K3(mod6)K\equiv 3\pmod{6} and πK(m)=m\pi_{K}(m)=m, then m=6m=6 or m=12p3j3prjrm=12\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2} and p2a2=3p_{2}^{a_{2}}=3.

Proof.

Suppose K3(mod6)K\equiv 3\pmod{6} and πK(m)=m\pi_{K}(m)=m. Let m=2j13j2p3j3prjrq1θ1qsθsm=2^{j_{1}}\cdot 3^{j_{2}}\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}} where 223p3j3prjr2^{2}\cdot 3\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}} is the prime factorization of K2+4K^{2}+4. Note that if θλ0\theta_{\lambda}\neq 0 then qλmq_{\lambda}\mid m. By Theorem 2.1,

m=π(m)=lcm[πK(2j1)πK(3j2)πK(p3j3),,πK(prjr),πK(q1θ1),,πK(qsθs)]\displaystyle m=\pi(m)=\operatorname{lcm}\left[\pi_{K}(2^{j_{1}})\,\pi_{K}(3^{j_{2}})\,\pi_{K}(p_{3}^{j_{3}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\theta_{1}}),\ldots,\pi_{K}(q_{s}^{\theta_{s}})\right] (7)

By Theorem 2.11, if ρπK(qλθλ)\rho\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), then ρ<qλ\rho<q_{\lambda} for all 1is1\leq i\leq s. By Theorem 2.2, πK(qλθλ)=qλθλ1πK(qλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}})=q_{\lambda}^{\theta_{\lambda}-1}\pi_{K}(q_{\lambda}) and by 2.6, πK(qλ)(qλ1)\pi_{K}(q_{\lambda})\mid(q_{\lambda}-1) if K2+4K^{2}+4 is a quadratic residue and πK(qλ)2(qλ+1)\pi_{K}(q_{\lambda})\mid 2(q_{\lambda}+1) if K2+4K^{2}+4 is not a quadratic residue modulo qλq_{\lambda}. Either way, it follows that qλθλ1q_{\lambda}^{\theta_{\lambda}-1} is the largest factor of qλq_{\lambda} that divides πK(qλθλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), that is, qλθλ1πK(qλθλ)q_{\lambda}^{\theta_{\lambda}-1}\mid\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}).

By Theorem 2.4, neither 22, 33, pip_{i}, nor qλq_{\lambda} are KK-Wall-Sun-Sun primes. By Theorem 2.5, πK(2j1)=2j113\pi_{K}(2^{j_{1}})=2^{j_{1}-1}\cdot 3. By Theorems 2.2 and 2.10, πK(3j2)=3j21πK(3)=3j212\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\pi_{K}(3)=3^{j_{2}-1}\cdot 2. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

Note that qλ∤πK(2j1)=2j113q_{\lambda}\not\mid\pi_{K}(2^{j_{1}})=2^{j_{1}-1}\cdot 3 and qλ∤πK(3j2)=3j212q_{\lambda}\not\mid\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\cdot 2, and qλ∤πK(piji)=4pijiq_{\lambda}\not\mid\pi_{K}(p_{i}^{j_{i}})=4p_{i}^{j_{i}}. Thus, qλθλ1mq_{\lambda}^{\theta_{\lambda}-1}\mid\mid m. But this implies that qλθλ∤mq_{\lambda}^{\theta_{\lambda}}\not\mid m, which is a contradiction. Equation (7) is reduced to:

m=πK(m)=lcm[2j113,3j212,4p3j3,,4prjr]\displaystyle m=\pi_{K}(m)=\operatorname{lcm}\left[2^{j_{1}-1}\cdot 3,3^{j_{2}-1}\cdot 2,4p_{3}^{j_{3}},\ldots,4p_{r}^{j_{r}}\right] (8)

Recall that by hypothesis, m=2j13j2p3j3prjrq1θ1qsθsm=2^{j_{1}}\cdot 3^{j_{2}}\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}}. Suppose j13j_{1}\geq 3, then 2j112^{j_{1}-1} is the largest power of 22 in (3), implying 2j11m2^{j_{1}-1}\mid\mid m. However, this contradicts the hypothesis 2j1m2^{j_{1}}\mid m. Thus, j1=1j_{1}=1 or 22. Suppose j22j_{2}\geq 2, then 3j213^{j_{2}-1} is the largest power of 33 in (3), implying 3j21m3^{j_{2}-1}\mid\mid m. However, this contradicts the hypothesis 3j2m3^{j_{2}}\mid m. Thus, j2=1j_{2}=1, and equation (3) is reduced to:

m=πk(m)=lcm[(6or 12),6,4p3j3,,4prjr]=12p3j3prjror 6m=\pi_{k}(m)=\operatorname{lcm}\left[(6\ \text{or}\ 12),6,4p_{3}^{j_{3}},\ldots,4p_{r}^{j_{r}}\right]=12\cdot p_{3}^{j_{3}}\cdots p_{r}^{j_{r}}\ \text{or}\ 6

where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2} and p2a2=3p_{2}^{a_{2}}=3. ∎

Theorem 3.7.

If K0(mod4)K\equiv 0\pmod{4} and m=2m=2 or m=4p2j2prjrm=4\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2}, then πK(m)=m\pi_{K}(m)=m.

Proof.

Suppose K0(mod4)K\equiv 0\pmod{4} and m=2m=2. By Theorem 2.8, πK(2)=2\pi_{K}(2)=2. Suppose m=4p2j2prjrm=4\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1j1=22p_{1}^{j_{1}}=2^{2}. By Theorem 2.1,

πK(m)=lcm[πK(22),πK(p2j2),,πK(prjr)].\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{2}),\pi_{K}(p_{2}^{j_{2}}),\ldots,\pi_{K}(p_{r}^{j_{r}})\right]. (9)

By Theorem 2.4, 22 is a KK-Wall-Sun-Sun prime, so πK(22)=πK(2)=2\pi_{K}(2^{2})=\pi_{K}(2)=2. Also by Theorem 2.4, no other pip_{i} is a KK-Wall-Sun-Sun prime. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=piji1πK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

These may be substituted into equation (9) to obtain:

πK(m)=lcm[2,4p2,,4pr]=4p2j2prjr=m.\pi_{K}(m)=\operatorname{lcm}\left[2,4p_{2},\ldots,4p_{r}\right]=4\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}}=m.

Theorem 3.8.

If πK(m)=m\pi_{K}(m)=m and K0(mod4)K\equiv 0\pmod{4}, then m=2m=2 or m=4p2j2prjrm=4\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2}.

Proof.

Suppose K0(mod4)K\equiv 0\pmod{4} and πK(m)=m\pi_{K}(m)=m. Let m=2j13j2p1j1prjrq1θ1qsθsm=2^{j_{1}}\cdot 3^{j_{2}}\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}} where p1j1prjrp_{1}^{j_{1}}\cdots p_{r}^{j_{r}} is the prime factorization of K2+4K^{2}+4. Note that if θλ0\theta_{\lambda}\neq 0 then qλmq_{\lambda}\mid m. By Theorem 2.1,

m=π(m)=lcm[πK(2j1)πK(3j2)πK(p1j1),,πK(prjr),πK(q1θ1),,πK(qsθs)]\displaystyle m=\pi(m)=\operatorname{lcm}\left[\pi_{K}(2^{j_{1}})\,\pi_{K}(3^{j_{2}})\,\pi_{K}(p_{1}^{j_{1}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\theta_{1}}),\ldots,\pi_{K}(q_{s}^{\theta_{s}})\right] (10)

By Theorem 2.11, if ρπK(qλθλ)\rho\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), then ρ<qλ\rho<q_{\lambda} for all 1is1\leq i\leq s. By Theorem 2.2, πK(qλθλ)=qλθλ1πK(qλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}})=q_{\lambda}^{\theta_{\lambda}-1}\pi_{K}(q_{\lambda}) and by Theorem 2.6, πK(qλ)(qλ1)\pi_{K}(q_{\lambda})\mid(q_{\lambda}-1) if K2+4K^{2}+4 is a quadratic residue, or πK(qλ)2(qλ+1)\pi_{K}(q_{\lambda})\mid 2(q_{\lambda}+1) if K2+4K^{2}+4 is not a quadratic residue modulo qλq_{\lambda}. Either way, it follows that qλθλ1q_{\lambda}^{\theta_{\lambda}-1} is the largest factor of qλq_{\lambda} that divides πK(qλθλ)\pi_{K}(q_{\lambda}^{\theta_{\lambda}}), that is, qλθλ1πK(qλθλ)q_{\lambda}^{\theta_{\lambda}-1}\mid\mid\pi_{K}(q_{\lambda}^{\theta_{\lambda}}).

By Theorem 2.4, 22 is a KK-Wall-Sun-Sun prime where πK(2)=πK(22)=2\pi_{K}(2)=\pi_{K}(2^{2})=2 but neither 33, pip_{i}, nor qλq_{\lambda} are KK-Wall-Sun-Sun primes. By Theorem 2.5, for j12,πK(2j1)2j11j_{1}\geq 2,\pi_{K}(2^{j_{1}})\mid 2^{j_{1}-1}. Specifically, if a=2ν2(gcd(K,m))11a=2^{\nu_{2}(\gcd(K,m))}-1\geq 1, then πK(2j1)=2j1a\pi_{K}(2^{j_{1}})=2^{j_{1}-a}. If j1=1,πK(2)=2j_{1}=1,\pi_{K}(2)=2, thus forming a fixed point. By Theorems 2.2 and 2.10, πK(3j2)=3j21πK(3)=3j212\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\pi_{K}(3)=3^{j_{2}-1}\cdot 2 if 3K3\mid K and πK(3j2)=3j21πK(3)=3j218\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\pi_{K}(3)=3^{j_{2}-1}\cdot 8 if 3∤K3\not\mid K. By Theorem 2.2, πK(piji)=piji1πK(pi)\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-1}\pi_{K}(p_{i}) for i=1,2,ri=1,2,\ldots r. By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. It follows that

πK(piji)=pijiaπK(pi)=piji1piordpi(21K)=4piji\pi_{K}(p_{i}^{j_{i}})=p_{i}^{j_{i}-a}\pi_{K}(p_{i})=p_{i}^{j_{i}-1}\cdot p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K)=4p_{i}^{j_{i}}

Note that qλ∤πK(2j11)=2j1q_{\lambda}\not\mid\pi_{K}(2^{j_{1}-1})=2^{j_{1}} and qλ∤πK(3j2)=3j212or 8q_{\lambda}\not\mid\pi_{K}(3^{j_{2}})=3^{j_{2}-1}\cdot 2\ \text{or}\ 8, and qλ∤πK(piji)=4pijiq_{\lambda}\not\mid\pi_{K}(p_{i}^{j_{i}})=4p_{i}^{j_{i}}. Thus, qλθλ1mq_{\lambda}^{\theta_{\lambda}-1}\mid\mid m. But this implies that qλθλ∤mq_{\lambda}^{\theta_{\lambda}}\not\mid m, which is a contradiction. Equation (10) is reduced to:

m=πK(m)=lcm[2j1a,3j21(2or 8),4p2j1,,4prjr]\displaystyle m=\pi_{K}(m)=\operatorname{lcm}\left[2^{j_{1}-a},3^{j_{2}-1}\cdot(2\ \text{or}\ 8),4p_{2}^{j_{1}},\ldots,4p_{r}^{j_{r}}\right] (11)

Recall that by hypothesis, if 4m4\mid m, then m=2j1ap2j2prjrq1θ1qsθsm=2^{j_{1}-a}\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}}\cdot q_{1}^{\theta_{1}}\cdots q_{s}^{\theta_{s}}. Suppose j13j_{1}\geq 3, then 2j112^{j_{1}-1} is the largest power of 22 in (3), implying 2j1am2^{j_{1}-a}\mid\mid m. Because a1a\geq 1, this contradicts the hypothesis that 2j1m2^{j_{1}}\mid m. Thus, equation (11) is reduced to:

m=πk(m)=lcm[2j1a,4p2j2,,4prjr]=4p2j2prjrm=\pi_{k}(m)=\operatorname{lcm}\left[2^{j_{1}-a},4p_{2}^{j_{2}},\ldots,4p_{r}^{j_{r}}\right]=4\cdot p_{2}^{j_{2}}\cdots p_{r}^{j_{r}}

where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4 and p1a1=22p_{1}^{a_{1}}=2^{2}. ∎

4. Proof of the K-Iteration Theorem

Theorem 4.1 (Renault [11]).

For all m>2m>2 and K1K\geq 1, πK(m)\pi_{K}(m) is even.

Theorem 4.2.

If KK is odd, then 22 is not a KK-Wall-Sun-Sun prime.

Proof.

Note that by Theorem 2.9 that πK(2)=3\pi_{K}(2)=3 for odd KK. It remains to show that πK(4)3\pi_{K}(4)\neq 3 for odd KK. If K1(mod4)K\equiv 1\pmod{4}, then the KK-Fibonacci sequence (modulo 4) becomes 0, 1, 1, 2, 3, 1, 0, 1, \circlearrowleft, with period 6. If K3(mod4)K\equiv 3\pmod{4}, then the KK-Fibonacci sequence (modulo 4) becomes 0, 1, 3, 2, 1, 1, 0, 1, \circlearrowleft, again with period 6. Hence, πK(2)πK(4)\pi_{K}(2)\neq\pi_{K}(4) for all odd KK. ∎

Theorem 4.3.

If p(K2+4)p\mid(K^{2}+4), then for all NN, pπKN(pj)p\mid\pi_{K}^{N}(p^{j}).

Proof.

Suppose p(K2+4)p\mid(K^{2}+4). By Theorem 2.4, pp is a KK-Wall-Sun-Sun prime if and only if p=2p=2 and K0(mod4)K\equiv 0\pmod{4}. In this case, by Theorem 2.8 πK(2)=πK(4)=2\pi_{K}(2)=\pi_{K}(4)=2. Hence, 2πKN(p)2\mid\pi_{K}^{N}(p) for all NN. If p=2p=2 and K2(mod4)K\equiv 2\pmod{4}, then πKN(pj)=2j\pi_{K}^{N}(p^{j})=2^{j} for all jj, because this is precisely one family of KK-fixed points by Theorem 3.4. On the other hand, suppose that pp is an odd prime. By Theorems 2.2 and 2.6, πK(pj)=pj1πK(pi)=4p\pi_{K}(p^{j})=p^{j-1}\pi_{K}(p_{i})=4p. Recursively applying the Pisano period yields πK2(p)=πK(4p)=lcm[πK(22),πK(p)]=lcm[πK(22),4p]\pi_{K}^{2}(p)=\pi_{K}\left(4p\right)=\operatorname{lcm}\left[\pi_{K}(2^{2}),\pi_{K}(p)\right]=\operatorname{lcm}\left[\pi_{K}(2^{2}),4p\right]. Iterating the Pisano period always preserves a factor of pp by induction. Thus, for all NN, pπKN(p)p\mid\pi_{K}^{N}(p). ∎

Theorem 4.4.

If q∤(K2+4)q\not\mid(K^{2}+4), then there exists a positive integer NN such that for all nNn\geq N, q∤πKn(qθ)q\not\mid\pi_{K}^{n}(q^{\theta}) for any θ1\theta\geq 1.

Proof.

Suppose q∤(K2+4)q\not\mid(K^{2}+4). By Theorem 2.2, there is a maximal ee such that πK(qe)=πK(q)\pi_{K}(q^{e})=\pi_{K}(q) and for xe1x\geq e\geq 1, πK(qx)=qxeπK(q)\pi_{K}(q^{x})=q^{x-e}\pi_{K}(q). Applying the Pisano period again yields

πK2(qθ)\displaystyle\pi_{K}^{2}(q^{\theta}) =πK(qxeπK(q))=lcm[πK(qxe),πK2(q)]=lcm[qxe1πk(q),πK2(q)].\displaystyle=\pi_{K}\left(q^{x-e}\pi_{K}(q)\right)=\operatorname{lcm}\left[\pi_{K}(q^{x-e}),\pi_{K}^{2}(q)\right]=\operatorname{lcm}\left[q^{x-e-1}\pi_{k}(q),\pi_{K}^{2}(q)\right].

By Theorem 2.6, since qi∤(K2+4)q_{i}\not\mid(K^{2}+4), it follows that qθ∤πK(q)q^{\theta}\not\mid\pi_{K}(q) for any positive integer θ\theta. As the Pisano period is recursively applied, the highest power of qq that carries to the next iteration is strictly decreasing. Applying the Pisano period precisely xex-e times ensures that the highest power of qq that emerges is qxe(xe)q^{x-e-(x-e)}. Hence, there exists a positive integer NN such that for all nNn\geq N, q∤πKn(qθ)q\not\mid\pi_{K}^{n}(q^{\theta}). ∎

Theorem 4.5.

If K±1(mod6)K\equiv\pm 1\pmod{6} and m>1m>1, then there exists an NN such that for all nNn\geq N, πKn(m)=24p1j1prjr\pi_{K}^{n}(m)=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4.

Proof.

Suppose K±1(mod6)K\equiv\pm 1\pmod{6} and m=2s13s2p1j1prjrq1λtqrλtm=2^{s_{1}}3^{s_{2}}p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}q_{1}^{\lambda_{t}}\cdots q_{r}^{\lambda_{t}} for si,ji0s_{i},j_{i}\geq 0 and λi1\lambda_{i}\geq 1, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. By Theorem 2.1,

πK(m)=lcm[πK(2s1),πK(3s2),πK(p1j1),,πK(prjr),πK(q1λ1),,πK(qsλ2)]\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{s_{1}}),\pi_{K}(3^{s_{2}}),\pi_{K}(p_{1}^{j_{1}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\lambda_{1}}),\ldots,\pi_{K}(q_{s}^{\lambda_{2}})\right] (12)

By Theorem 4.1, 2πK(m)2\mid\pi_{K}(m). By Theorem 2.9, πK(2)=3\pi_{K}(2)=3 implying that 3πK2(m)3\mid\pi_{K}^{2}(m). By Theorem 2.10, πK(3)=8\pi_{K}(3)=8, implying that 23πK3(m)2^{3}\mid\pi_{K}^{3}(m). By Theorems 2.2 and 2.8, πK(23)=231πK(2)=43=12\pi_{K}(2^{3})=2^{3-1}\pi_{K}(2)=4\cdot 3=12, implying 12πK4(m)12\mid\pi_{K}^{4}(m). By Theorems 2.1, 2.8, and 2.10, πK(12)=lcm[πK(22),πK(3)]=lcm[6,8]=24\pi_{K}(12)=\operatorname{lcm}\left[\pi_{K}(2^{2}),\pi_{K}(3)\right]=\operatorname{lcm}\left[6,8\right]=24, implying 24πK5(m)24\mid\pi_{K}^{5}(m). By Theorem 4.3, if any ji1j_{i}\geq 1, then the corresponding pip_{i} is preserved for all NN, and piπK(m)p_{i}\mid\pi_{K}(m). By Theorem 4.4, for any qi∤(K2+4)q_{i}\not\mid(K^{2}+4), qiq_{i} vanishes for some sufficiently large NN, and qi∤πK(m)q_{i}\not\mid\pi_{K}(m). Hence, for some NN, πKn(m)=24p1j1prjr\pi_{K}^{n}(m)=24\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. ∎

Theorem 4.6.

If K3(mod6)K\equiv 3\pmod{6} and m>3m>3, then there exists an NN such that for all nNn\geq N, πKn(m)=p1j1prjr\pi_{K}^{n}(m)=p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. And if m=2m=2 or m=3m=3, then πK(2)=3\pi_{K}(2)=3 and πK(3)=2\pi_{K}(3)=2.

Proof.

Suppose K3(mod6)K\equiv 3\pmod{6} and m=p1j1prjrq1λtqrλt>3m=p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}q_{1}^{\lambda_{t}}\cdots q_{r}^{\lambda_{t}}>3 for ji0j_{i}\geq 0 and λi1\lambda_{i}\geq 1, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. By Theorem 2.1,

πK(m)=lcm[πK(p1j1),,πK(prjr),πK(q1λ1),,πK(qsλ2)]\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(p_{1}^{j_{1}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\lambda_{1}}),\ldots,\pi_{K}(q_{s}^{\lambda_{2}})\right] (13)

By Theorem 4.1, 2πK(m)2\mid\pi_{K}(m). If πK(m)=2\pi_{K}(m)=2, then the KK-Fibonacci sequence must reduce to 0,1,K0(modm),0,1,K\equiv 0\pmod{m},\circlearrowleft, so mKm\mid K. In this case, the iterative Pisano period cycles at the 2-periodic point π(2)=3,π(3)=2,\pi(2)=3,\pi(3)=2,\circlearrowleft. Otherwise, either πK(m)=2αβ\pi_{K}(m)=2^{\alpha}\cdot\beta, where α1\alpha\geq 1 and β\beta is an odd number greater than 1, or πK(m)=2γ\pi_{K}(m)=2^{\gamma}, where γ2\gamma\geq 2. By Theorem 2.9, πK(2)=3\pi_{K}(2)=3. If πK(m)=2αβ\pi_{K}(m)=2^{\alpha}\cdot\beta, then πK(m)=lcm[πK(2α),πK(β)]\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(2^{\alpha}),\pi_{K}(\beta)\right]. Since 3πK(2α)3\mid\pi_{K}(2^{\alpha}) and 2πK(β)2\mid\pi_{K}(\beta), 6πK2(m)6\mid\pi_{K}^{2}(m). Else, if πK(m)=2γ\pi_{K}(m)=2^{\gamma}, and since 2 is not a KK-Wall-Sun-Sun prime by Theorem 4.2, then πK2(m)=32γ1\pi_{K}^{2}(m)=3\cdot 2^{\gamma-1}, so 6πK2(m)6\mid\pi_{K}^{2}(m). By Theorem 4.3, if any ji1j_{i}\geq 1, then the corresponding pip_{i} is preserved for all NN, and piπK(m)p_{i}\mid\pi_{K}(m). By Theorem 2.6, πK(pi)=piordpi(21K)\pi_{K}(p_{i})=p_{i}\cdot\text{ord}_{p_{i}}(2^{-1}K) and by Theorem 2.7, ordpi(21K)=4\text{ord}_{p_{i}}(2^{-1}K)=4 since pip_{i} is odd and divides K2+4K^{2}+4. By Theorem 4.4, for any qi∤(K2+4)q_{i}\not\mid(K^{2}+4), qiq_{i} vanishes for some sufficiently large NN, and qi∤πK(m)q_{i}\not\mid\pi_{K}(m). Hence, for some NN, πKn(m)=lcm[6,4p1j1,,4prjr]\pi_{K}^{n}(m)=\operatorname{lcm}\left[6,4p_{1}^{j_{1}},\ldots,4p_{r}^{j_{r}}\right]. If there is at least one such pip_{i}, then πKn(m)=12p1j1prjr\pi_{K}^{n}(m)=12\cdot p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4; otherwise, πKn(m)=6\pi_{K}^{n}(m)=6. Finally, since K3(mod6)K\equiv 3\pmod{6}, there is a 2-periodic point: πK(2)=3πK(3)=2\pi_{K}(2)=3\rightarrow\pi_{K}(3)=2\circlearrowleft. ∎

Theorem 4.7.

If K2or 0(mod4)K\equiv 2\ \text{or}\ 0\pmod{4} and m>1m>1, then there exists an NN such that for all nNn\geq N, πKn(m)=p1j1prjr\pi_{K}^{n}(m)=p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} for ji=0,1,2,j_{i}=0,1,2,\ldots, where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4.

Proof.

Suppose K2or 0(mod4)K\equiv 2\ \text{or}\ 0\pmod{4} and suppose m=p1j1prjrq1λtqtλt>1m=p_{1}^{j_{1}}\cdots p_{r}^{j_{r}}q_{1}^{\lambda_{t}}\cdots q_{t}^{\lambda_{t}}>1 for ji0j_{i}\geq 0 and λi1\lambda_{i}\geq 1 (and m>3m>3 if K3(mod6)K\equiv 3\pmod{6}), where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. By Theorem 2.1,

πK(m)=lcm[πK(p1j1),,πK(prjr),πK(q1λ1),,πK(qsλ2)]\displaystyle\pi_{K}(m)=\operatorname{lcm}\left[\pi_{K}(p_{1}^{j_{1}}),\ldots,\pi_{K}(p_{r}^{j_{r}}),\pi_{K}(q_{1}^{\lambda_{1}}),\ldots,\pi_{K}(q_{s}^{\lambda_{2}})\right] (14)

By Theorem 4.3, if any ji1j_{i}\geq 1, then the corresponding pip_{i} is preserved for all NN, and piπKN(m)p_{i}\mid\pi_{K}^{N}(m). By Theorem 4.4, for any qi∤(K2+4)q_{i}\not\mid(K^{2}+4), qiq_{i} vanishes for some sufficiently large NN, and qi∤πKN(m)q_{i}\not\mid\pi_{K}^{N}(m). Hence, there is a positive integer NN such that for all nNn\geq N, πKn(m)=p1j1prjr\pi_{K}^{n}(m)=p_{1}^{j_{1}}\cdots p_{r}^{j_{r}} where p1a1prarp_{1}^{a_{1}}\cdots p_{r}^{a_{r}} is the prime factorization of K2+4K^{2}+4. ∎

5. Proof of Theorem 1.3

Let qq be an odd prime factor of mm that is coprime to all fixed points, and define S(m)S(m) by

S(m)=qm=νq(m)(log(q)log(3))=logmqmνq(m)log(3).S(m)=\sum_{q\mid m}=\nu_{q}(m)(\log(q)-\log(3))=\log m-\sum_{q\mid m}\nu_{q}(m)\log(3).

where νq(m)\nu_{q}(m) is the qq-adic valuation of mm. By Theorem 2.6, πK(q)2(q+1)83q\pi_{K}(q)\leq 2(q+1)\leq\frac{8}{3}q. Since this number is even if q>2q>2, πK(q)\pi_{K}(q) must have at least two prime factors. For arbitrarily large qq,

S(πK(q))log(q)2log(3)=S(q)+log(8/3)log(3)=S(q)+3log(2)2log(3).S(\pi_{K}(q))\leq\log(q)-2\log(3)=S(q)+\log(8/3)-\log(3)=S(q)+3\log(2)-2\log(3).

Since πK(qe)qe1πK(q)\pi_{K}(q^{e})\mid q^{e-1}\pi_{K}(q), S(πK(qe))<S(qe)+3log(2)2log(3)S(\pi_{K}(q^{e}))<S(q^{e})+3\log(2)-2\log(3). Hence S=0S=0 is reached in at most logm2log(3)3log(2)\frac{\log m}{2\log(3)-3\log(2)} steps, where one step represents the calculation of the Pisano period for a certain qieiq_{i}^{e_{i}}. While one iteration of the Pisano period always accomplishes at least one step, as any qieiq_{i}^{e_{i}} term may be chosen and separated out by Theorem 2.1, it may accomplish more than one step if multiple qiq_{i}’s are present.

Any number mm where S(m)=0S(m)=0 must be of the form 2a3bi=1tpiji2^{a}3^{b}\prod_{i=1}^{t}p_{i}^{j_{i}}, where piK2+4p_{i}\mid K^{2}+4 for all ii as seen in the previous section. Note that by Theorem 2.6, all factors of pijip_{i}^{j_{i}} remain constant upon iteration of the period, as πK(piji)=4piji\pi_{K}(p_{i}^{j_{i}})=4p_{i}^{j_{i}}, and the only factors that vary are powers of 22 and 33. If mm^{\prime} is not a multiple of a fixed point, then the Pisano period may be applied recursively to achieve a fixed point. The maximum number of such iterations is 5, when K±1(mod6)K\equiv\pm 1\pmod{6}.

Now suppose mm^{\prime} is a multiple of a fixed point but not a fixed point itself. The only primes pp whose pp-adic valuations may change on the iteration of the Pisano period when S=0S=0 are 2 and 3; hence let g(m)=ν2(m)+ν3(m)g(m^{\prime})=\nu_{2}(m^{\prime})+\nu_{3}(m^{\prime}). Suppose K±1(mod6)K\equiv\pm 1\pmod{6}. Then, ν2(πK(2a))=a1\nu_{2}(\pi_{K}(2^{a}))=a-1, ν2(πK(3b))=3\nu_{2}(\pi_{K}(3^{b}))=3, and ν2(πK(piei))=2\nu_{2}(\pi_{K}(p_{i}^{e_{i}}))=2; likewise, ν3(πK(2a))=1\nu_{3}(\pi_{K}(2^{a}))=1, ν3(πK(3b))=b1\nu_{3}(\pi_{K}(3^{b}))=b-1, and ν3(πK(piei))=0\nu_{3}(\pi_{K}(p_{i}^{e_{i}}))=0. Since mm is a multiple of a fixed point, ν2(m)3\nu_{2}(m^{\prime})\geq 3 and ν3(m)1\nu_{3}(m^{\prime})\geq 1, and because mm^{\prime} is not a fixed point itself there must be at least one additional factor of either 2 or 3. If ν2(m)>3\nu_{2}(m^{\prime})>3, then ν2(πK(m))=ν2(m)1\nu_{2}(\pi_{K}(m^{\prime}))=\nu_{2}(m^{\prime})-1, and if ν3(m)>1\nu_{3}(m^{\prime})>1, then ν3(πK(m))=ν3(m)1\nu_{3}(\pi_{K}(m^{\prime}))=\nu_{3}(m^{\prime})-1. Hence g(m)g(m^{\prime}) decreases by at least 1 until a fixed point is reached, and may not be greater than log2m=logmlog(2)+logm2log(3)3log(2)+5\log_{2}m^{\prime}=\frac{\log m}{\log(2)}+\frac{\log m}{2\log(3)-3\log(2)}+5. The maximum number of iterations of the Pisano period necessary to reach a fixed point is thus logmlog(2)+logm2log(3)3log(2)+1\frac{\log m}{\log(2)}+\frac{\log m}{2\log(3)-3\log(2)}+1.

If K3(mod6)K\equiv 3\pmod{6}, then the trajectory of mm^{\prime} will end at either the 2-periodic point (2,3)(2,3) or a fixed point that is a multiple of 12. If pimp_{i}\mid m for at least one pi{2,3}p_{i}\not\in\{2,3\}, then 12πKN(m)12\mid\pi_{K}^{N}(m^{\prime}) for N2N\geq 2 since πK(pi)=4pi\pi_{K}(p_{i})=4p_{i} and 3πK(4)3\mid\pi_{K}(4). As above, ν2(πK(2a))=a1\nu_{2}(\pi_{K}(2^{a}))=a-1, ν2(πK(piei))=2\nu_{2}(\pi_{K}(p_{i}^{e_{i}}))=2, ν3(πK(3b))=b1\nu_{3}(\pi_{K}(3^{b}))=b-1, and ν3(πK(piei))=0\nu_{3}(\pi_{K}(p_{i}^{e_{i}}))=0, but ν2(πK(3b))=1\nu_{2}(\pi_{K}(3^{b}))=1. If the trajectory of mm^{\prime} ends at a multiple of 12 and g(m)>3g(m)>3, then g(m)g(m) will again decrease by at least 1 until a fixed point is reached, and the maximum number of iterations is logmlog(2)+logm2log(3)3log(2)+2\frac{\log m}{\log(2)}+\frac{\log m}{2\log(3)-3\log(2)}+2. Two extra steps may be necessary if the trajectory terminates at the 2-periodic point.

If K2(mod4)K\equiv 2\pmod{4}, then any number mm^{\prime} with S=0S=0 will reach a fixed point after at most one more iteration, since any combination of powers of 22 and pip_{i}’s is a fixed point.

If K0(mod4)K\equiv 0\pmod{4}, then πK(2a)2a1\pi_{K}(2^{a})\mid 2^{a-1} for all aa; hence, the powers of 22 vanish in at most logmlog2\frac{\log m}{\log 2} steps, giving logmlog(2)+logm2log(3)3log(2)\frac{\log m}{\log(2)}+\frac{\log m}{2\log(3)-3\log(2)} total iterations.

Combining these yields an overall upper bound of logmlog(2)+logm2log(3)3log(2)+2\frac{\log m}{\log(2)}+\frac{\log m}{2\log(3)-3\log(2)}+2 on the number of iterations of the Pisano period required to reach a fixed point; hence

lim sup𝒯K(m)logm1log2+12log(3)3log(2)9.933.\limsup\frac{\mathcal{T}_{K}(m)}{\log m}\leq\frac{1}{\log 2}+\frac{1}{2\log(3)-3\log(2)}\approx 9.933.
Corollary 5.1.

Let 𝒫K(m)\mathcal{P}_{K}(m) be the fixed point that terminates the trajectory of mm; if K3(mod6)K\equiv 3\pmod{6} and mm terminates at the 2-periodic point, define 𝒫K(m)=0\mathcal{P}_{K}(m)=0. Then lim suplog𝒫K(m)logm<\limsup\frac{\log\mathcal{P}_{K}(m)}{\log m}<\infty.

Proof.

The first part of the proof of Theorem 1.3 shows that there can be at most logm2log(3)3log(2)\frac{\log m}{2\log(3)-3\log(2)} steps in the reduction to S=0S=0, and by Theorem 2.6,

πK(qiei)qiei2q+1q83,\frac{\pi_{K}(q_{i}^{e_{i}})}{q_{i}^{e_{i}}}\leq\frac{2q+1}{q}\leq\frac{8}{3},

since the minimum possible qiq_{i} is 3. If m=πKn(m)m^{\prime}=\pi_{K}^{n}(m) is such that S(m)=0S(m^{\prime})=0, and mm^{\prime} is a multiple of a fixed point, each successive application of the Pisano period reduces mm^{\prime}. If mm^{\prime} is not a multiple of a fixed point, it is multiplied by no more than 24 until a fixed point is reached. Therefore,

log𝒫K(m)(log(8)log(3))(logm2log(3)3log(2))+log(24)\log\mathcal{P}_{K}(m)\leq(\log(8)-\log(3))\left(\frac{\log m}{2\log(3)-3\log(2)}\right)+\log(24)

and

lim suplog𝒫K(m)logmlog(8)log(3)2log(3)3log(2)8.327.\limsup\frac{\log\mathcal{P}_{K}(m)}{\log m}\leq\frac{\log(8)-\log(3)}{2\log(3)-3\log(2)}\approx 8.327.

6. Final Thoughts

A general binary recurrence sequence 𝒰n\mathcal{U}_{n} is determined by the four parameters (a,b,c,d)(a,b,c,d) where

𝒰0=c,𝒰1=d,𝒰n=a×𝒰n1+b×𝒰n2.\mathcal{U}_{0}=c,\qquad\mathcal{U}_{1}=d,\qquad\mathcal{U}_{n}=a\times\mathcal{U}_{n-1}+b\times\mathcal{U}_{n-2}.

For example, the Fibonacci sequence is determined by (1,1,0,1)(1,1,0,1), the Lucas sequence by (1,1,2,1)(1,1,2,1), the Pell sequence by (2,1,0,1)(2,1,0,1), the Jacobsthal sequence by (1,2,0,1)(1,2,0,1), etc. When the initial values are 0 and 11, the recurrence is called an (a,b)(a,b)-Fibonacci sequence. In all of these cases, the binary recurrence sequence is periodic modulo a positive integer m>1m>1 [4]. Naturally, the Pisano period has been considered for many binary recurrence sequences. Is it possible to determine the fixed points for general binary recurrence sequences?

Sequence Pisano Periods for m=2,3,,24m=2,3,\ldots,24
Fibonacci 3,8,6,20,24,16,12,24,60,10,24,28,48,40,24,36,24,18,60,16,30,48,24,…
Lucas 3,8,6,4,24,16,12,24,12,10,24,28,48,8,24,36,24,18,12,16,30,48,24,…
Pell 2,8,4,12,8,6,8,24,12,24,8,28,6,24,16,16,24,40,12,24,24,22,8…
Jacobsthal 6,2,4,6,6,2,18,4,10,6,12,6,12,2,8,18,18,4,6,10,22,6,…

It is well-established that the Pisano period of the Lucas sequence differs from the Pisano period of the Fibonacci sequence only when mm is a multiple of 55 [12]. And note that the Pell sequence is simply the KK-Fibonacci sequence when K=2K=2.

Corollary 6.1.

In the Lucas sequence, m>1m>1 is a fixed point if and only if m=24m=24.

Corollary 6.2.

In the Pell sequence, m>1m>1 is a fixed point if and only if m=2km=2^{k} for k=1,2,k=1,2,\ldots

The Jacobsthal sequence is particularly interesting as a different type of sequence where b1b\neq 1. Note that the results of Renault used in the proofs of Theorem 1.5 used various aspects of a2+4ba^{2}+4b where a=Ka=K and b=1b=1. In the Jacobsthal sequence, note that a2+4b=9=32a^{2}+4b=9=3^{2}.

Conjecture 6.3.

In the Jacobsthal sequence, m>1m>1 is a fixed point if and only if m=23km=2\cdot 3^{k} for k=1,2,k=1,2,\ldots

Renault’s Theorem 2.6 is originally stated for (a,b)(a,b)-Fibonacci sequences, which is less controllable when b1b\neq 1. Let π(a,b)(m)\pi_{(a,b)}(m) denote the (a,b)(a,b)-Pisano period of the (a,b)(a,b)-Fibonacci sequence modulo mm.

Theorem 6.4 (Renault [11]).

Let pp be an odd prime such that p∤bp\not\mid b. Then,

  • if a2+4ba^{2}+4b is a nonzero quadratic residue modulo pp, then π(a,b)(p)(p1)\pi_{(a,b)}(p)\mid(p-1)

  • if a2+4ba^{2}+4b is a quadratic nonresidue, then π(a,b)(p)(p+1)ordp(b)\pi_{(a,b)}(p)\mid(p+1)\text{ord}_{p}(-b) except when b=1b=-1, in which case π(a,b)(p)∤(p+1)\pi_{(a,b)}(p)\not\mid(p+1).

  • if p(a2+4b)p\mid(a^{2}+4b), then π(a,b)(p)=pordp(21a)\pi_{(a,b)}(p)=p\cdot\text{ord}_{p}(2^{-1}\cdot a).

An outlying case occurs when b=1b=-1. There are five degenerate cases: a=±2a=\pm 2 and a=±1a=\pm 1 and a=0a=0. These occur when the ratio of the roots of the characteristic polynomial is a root of unity or if a2+4b=0a^{2}+4b=0.

If a=1a=1, then a24b=3a^{2}-4b=-3, and the sequence is a repeating six-term cycle: 0,1,1,0,1,1,0,1,1,0,-1,-1,\ldots. Note that if m=2m=2, then π(1,1)(2)=3\pi_{(1,-1)}(2)=3 but for all other m>2m>2, π(1,1)(m)=6\pi_{(1,-1)}(m)=6. Hence, the only fixed point is m=6m=6. Similarly, if a=1a=-1, then a24b=3a^{2}-4b=-3, and the sequence is a repeating three-term cycle: 0,1,1,0,1,-1,\ldots. Note that modulo any m>2m>2, the (1,1,0,1)(-1,1,0,1)-sequence always has a period of 3. Hence, the only fixed point is m=3m=3.

If instead, a=2a=2, then a2+4b=0a^{2}+4b=0 and the sequence is exactly: 0,1,2,3,4,5,0,1,2,3,4,5,\ldots, hence every positive integer m>1m>1 is a fixed point, since modulo mm the sequence repeats with a length of mm. Somewhat similarly, if a=2a=-2, then a2+4b=0a^{2}+4b=0 and π(2,1)(m)=m\pi_{(-2,-1)}(m)=m whenever mm is even and π(2,1)(m)=2m\pi_{(-2,-1)}(m)=2m whenever mm is odd. Then, fixed points occur whenever mm is even.

And if a=0a=0, then a24b=4a^{2}-4b=-4, and the sequence is a repeating four-term cycle: 0,1,0,1,0,1,0,-1,\ldots. Note that if m=2m=2, then π(0,1)(2)=2\pi_{(0,-1)}(2)=2 and for all other m>2m>2, π(0,1)(m)=4\pi_{(0,-1)}(m)=4. Hence, the only fixed points are m=2m=2 and m=4m=4.

For other values of aa, a2+4b>0a^{2}+4b>0 and something more familiar occurs.

Conjecture 6.5.

Let p1e1p2e2ptetp_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{t}^{e_{t}} be the prime factorization of a2+4ba^{2}+4b for a>0a>0 and b=1b=-1. Suppose a>2a>2 then, for every modulus m>1m>1 and for ji=0,1,2,j_{i}=0,1,2,\ldots, fixed points π(a,1)(m)=m\pi_{(a,-1)}(m)=m occur if and only if

  1. (i)

    a1(mod6)a\equiv 1\pmod{6} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=6p1j1ptjtm=6\cdot p_{1}^{j_{1}}\cdots p_{t}^{j_{t}}

  2. (ii)

    a2(mod4)a\equiv 2\pmod{4} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=2j1+1p2j2ptjtm=2^{j_{1}+1}\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}} where p1=2p_{1}=2

  3. (iii)

    a3(mod6)a\equiv 3\pmod{6} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m and m=12p1j1ptjtm=12\cdot p_{1}^{j_{1}}\cdots p_{t}^{j_{t}} for a>3a>3,
    and m=12p1j1ptjtm=12\cdot p_{1}^{j_{1}}\cdots p_{t}^{j_{t}} when a=3a=3

  4. (iv)

    a0(mod4)a\equiv 0\pmod{4} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=2p2j2ptjtm=2\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}} or m=4p2j2ptjtm=4\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}} where p1=2p_{1}=2

  5. (v)

    a1(mod6)a\equiv-1\pmod{6} and m=pijim=p_{i}^{j_{i}} or m=6p1j1+1ptjtm=6\cdot p_{1}^{j_{1}+1}\cdots p_{t}^{j_{t}}.

Suppose instead that a<1a<-1, then for every modulus m>1m>1 and for ji=0,1,2,j_{i}=0,1,2,\ldots, fixed points π(a,1)(m)=m\pi_{(a,-1)}(m)=m occur if and only if

  1. (i)

    a1(mod6)a\equiv 1\pmod{6} and m=pijim=p_{i}^{j_{i}} or m=2j13j2+1ptjt+1m=2^{j_{1}}\cdot 3^{j_{2}+1}\cdots p_{t}^{j_{t}+1} where p1=3p_{1}=3

  2. (ii)

    a2(mod4)a\equiv 2\pmod{4} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=2j1+1p2j2ptjtm=2^{j_{1}+1}\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}}

  3. (iii)

    a3(mod6)a\equiv 3\pmod{6} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=12p1j1ptjtm=12\cdot p_{1}^{j_{1}}\cdots p_{t}^{j_{t}}

  4. (iv)

    a0(mod4)a\equiv 0\pmod{4} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=2p2j2ptjtm=2\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}} or m=4p2j2ptjtm=4\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}} where p1=2p_{1}=2

  5. (v)

    a1(mod6)a\equiv-1\pmod{6} and m=pijim=p_{i}^{j_{i}} where pimp_{i}\mid m or m=23p2j2ptjtm=2\cdot 3\cdot p_{2}^{j_{2}}\cdots p_{t}^{j_{t}} where p1=3p_{1}=3.

It appears that in the previous conjecture, only one prime has powers that are fixed points for any given aa; let this be the critical prime for the (a,1)(a,-1)-Fibonacci sequence. However, this prime is not always the smallest prime that divides the a2+4ba^{2}+4b, nor always the largest. What is the behavior of the critical prime in general? A singular case occurs when a=3a=3, there is no critical prime; a2+4b=5a^{2}+4b=5, but powers of 55 are not fixed points.

7. Acknowledgements

The authors would like to extend sincerest appreciation to Dr. Florian Luca for the suggested addition of Theorem 1.3 and Corollary 5.1, and to Michael De Vlieger for their invaluable assistance in writing the code used in the experimental stages of this research.

References

  • [1] B. Benfield and O. Lippard. Connecting zeros in Pisano periods to prime factors of K{K}-Fibonacci numbers. Publication pending, 2024.
  • [2] Z. Bouazzaoui. Fibonacci numbers and real quadratic p-rational fields. Periodica Math. Hungarica, 81(1):123–133, 2020.
  • [3] Z. Bouazzaoui. On periods of Fibonacci sequences and real quadratic p-rational fields. Fibonacci Quart., 58(5):103–110, 2020.
  • [4] G. Everest, A. van der Poorten, I. Sharplinski, and T. Ward. Recurrence Sequences. Rhode Island, USA: American Mathematical Society, 2004.
  • [5] S. Falcon and Á. Plaza. k-Fibonacci sequences modulo m. Chaos, Solitons & Fractals, 41(1):497–504, 2009.
  • [6] J. Fulton and W. Morris. On arithmetical functions related to the Fibonacci numbers. Acta Arith., 2(16):105–110, 1969.
  • [7] J. Harrington and L. Jones. A note on generalised Wall–Sun–Sun primes. Bull. Australian Math. Soc., 108(3):373–378, 2023.
  • [8] L. Jones. Generalized Wall-Sun-Sun primes and monogenic power-compositional trinomials. Albanian J. Math., 17(2), 2023.
  • [9] L. Jones. A new condition for kk-Wall–Sun–Sun primes. Taiwanese J. Math., 28(1):17–28, 2024.
  • [10] J. L. Lagrange. Oeuvres de Lagrange. Gauthier Villars, Paris, 7:5–182, 1877.
  • [11] M. Renault. The period, rank, and order of the (a, b)-Fibonacci sequence mod m. Math. Magazine, 86(5):372–380, 2013.
  • [12] N. J. A. Sloane and The OEIS Foundation Inc. The on-line encyclopedia of integer sequences A106291. http://oeis.org/A106291, 2021.
  • [13] Z.-H. Sun and Z.-W. Sun. Fibonacci numbers and Fermat’s last theorem. Acta Arith., 60(4):371–388, 1992.
  • [14] E. Trojovská. On periodic points of the order of appearance in the Fibonacci sequence. Mathematics, 8(5):773, 2020.
  • [15] D. D. Wall. Fibonacci series modulo m. Amer. Math. Monthly, 67(6):525–532, 1960.