This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fitting ideals in two-variable equivariant Iwasawa theory and an application

Takenori Kataoka Faculty of Science and Technology, Keio University. 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan [email protected]
Abstract.

We study equivariant Iwasawa theory for two-variable abelian extensions of an imaginary quadratic field. One of the main goals of this paper is to describe the Fitting ideals of Iwasawa modules using pp-adic LL-functions. We also provide an application to Selmer groups of elliptic curves with complex multiplication.

Key words and phrases:
Iwasawa modules, Fitting ideals, main conjecture
2010 Mathematics Subject Classification:
11R23 (Primary)

1. Introduction

Main conjectures in Iwasawa theory predict that, in various situations, Iwasawa modules are closely related to pp-adic LL-functions. As a significant result, Wiles [15] proved the main conjecture for ideal class groups over totally real fields. The work studied the cyclotomic p\mathbb{Z}_{p}-extensions of totally real fields, and we call the setting “one-variable.” His work was refined by, among others, Ritter-Weiss from the viewpoint of equivariant theory. In fact, Ritter-Weiss [12] proved the equivariant main conjecture for finite abelian extensions of totally real fields. Moreover, in subsequent works they succeeded in proving the equivariant main conjecture even for non-abelian Galois extensions, but we do not discuss non-abelian cases in this paper.

Another important theme in Iwasawa theory is the “two-variable” analogue, that is, study of the unique p2\mathbb{Z}_{p}^{2}-extensions of imaginary quadratic fields. Using the Euler system of elliptic units, Rubin [14] proved the two-variable main conjecture. As for equivariant refinements, Johnson-Leung–Kings [8] proved a formulation of two-variable equivariant main conjecture.

However, in order to formulate the equivariant main conjectures in both one-variable and two-variable settings, we have to suitably modify the Iwasawa modules. As a consequence, it is not clear how to recover precise information about the original Iwasawa modules. There seems to be agreement that this kind of information is afforded by the Fitting ideals of the modules (we only study the initial Fitting ideals in this paper).

In the one-variable situation, Greither-Kurihara [5] [6] developed a method to compute the Fitting ideals of the original Iwasawa modules. See Remark 1.2 for detail and further progress. The main theme of this paper is to develop a two-variable analogue of those one-variable results.

To be more precise, we fix our notation. Let KK be an imaginary quadratic field. We fix a prime number p5p\geq 5 which splits in KK into 𝔭\mathfrak{p} and 𝔭¯\overline{\mathfrak{p}}. We fix an algebraic closure K¯\overline{K} of KK and every algebraic extension will be considered to be contained in K¯\overline{K}. Let K/KK_{\infty}/K be the unique p2\mathbb{Z}_{p}^{2}-extension. Let L/KL/K be a finite abelian extension and put L=KLL_{\infty}=K_{\infty}L. Put 𝒢=Gal(L/K)\mathcal{G}=\operatorname{Gal}(L_{\infty}/K), the Galois group, and =p[[𝒢]]\mathcal{R}=\mathbb{Z}_{p}[[\mathcal{G}]], the Iwasawa algebra.

In general, for a finite extension kk of \mathbb{Q}, let Sp(k)S_{p}(k) be the set of pp-adic primes of kk. If /k\mathcal{F}/k is an algebraic extension, we denote by Sram(/k)S_{\operatorname{ram}}(\mathcal{F}/k) the set of finite places of kk which are ramified in /k\mathcal{F}/k. For example, we have Sram(L/K)=Sram(L/K)Sp(K)S_{\operatorname{ram}}(L_{\infty}/K)=S_{\operatorname{ram}}(L/K)\cup S_{p}(K) and Sp(K)={𝔭,𝔭¯}S_{p}(K)=\{\mathfrak{p},\overline{\mathfrak{p}}\}.

1.1. Σ0\Sigma_{0}-ramified Iwasawa module

Let Σ\Sigma be a finite set of finite places of KK which contains Sram(L/K)S_{\operatorname{ram}}(L_{\infty}/K). Put Σ0=Σ{𝔭¯}\Sigma_{0}=\Sigma\setminus\{\overline{\mathfrak{p}}\}. As the first object of study, we consider the Σ0\Sigma_{0}-ramified Iwasawa module XΣ0(L)X_{\Sigma_{0}}(L_{\infty}), which is defined as the Galois group of the maximal abelian pp-extension of LL_{\infty} which is unramified outside Σ0\Sigma_{0}. It is known that XΣ0(L)X_{\Sigma_{0}}(L_{\infty}) is a finitely generated torsion \mathcal{R}-module.

The first goal of this paper is to compute its initial Fitting ideal Fitt(XΣ0(L))\operatorname{Fitt}_{\mathcal{R}}(X_{\Sigma_{0}}(L_{\infty})). A significant progress toward this problem was made in a previous paper [9] of the author. Let Fitt[n]\operatorname{Fitt}_{\mathcal{R}}^{[n]} denote the nn-th shift of Fitt\operatorname{Fitt}_{\mathcal{R}}, which was introduced in [9]; see Theorem 2.1 for the definition. Then it is shown in [9, Theorem 5.16] that the ideals Fitt(XΣ0(L))\operatorname{Fitt}_{\mathcal{R}}(X_{\Sigma_{0}}(L_{\infty})) and Fitt[2](p)\operatorname{Fitt}_{\mathcal{R}}^{[2]}(\mathbb{Z}_{p}) differ only by an invertible ideal. Moreover, the author claimed that the invertible ideal should be described as a certain pp-adic LL-function. Note here that invertible ideals of \mathcal{R} are principal since \mathcal{R} is a product of local rings.

Now we state the first main result in this paper, which asserts that the prediction is true. In Definition 2.14, we will introduce an invertible ideal 𝔏Σ0(L/K)\mathfrak{L}_{\Sigma_{0}}(L_{\infty}/K) of \mathcal{R} which is related to a Katz-type pp-adic LL-function.

Theorem 1.1.

Let Σ\Sigma be a finite set of finite places of KK which contains Sram(L/K)S_{\operatorname{ram}}(L_{\infty}/K) and put Σ0=Σ{𝔭¯}\Sigma_{0}=\Sigma\setminus\{\overline{\mathfrak{p}}\}. Then we have

Fitt(XΣ0(L))=𝔏Σ0(L/K)Fitt[2](p)\operatorname{Fitt}_{\mathcal{R}}(X_{\Sigma_{0}}(L_{\infty}))=\mathfrak{L}_{\Sigma_{0}}(L_{\infty}/K)\operatorname{Fitt}_{\mathcal{R}}^{[2]}(\mathbb{Z}_{p})

as ideals of \mathcal{R}.

The proof of Theorem 1.1 will be outlined just after Theorem 1.3 below.

1.2. SS-ramified Iwasawa module

More generally than XΣ0(L)X_{\Sigma_{0}}(L_{\infty}), we consider the SS-ramified Iwasawa module XS(L)X_{S}(L_{\infty}) for any finite set SS of finite places of KK such that 𝔭S\mathfrak{p}\in S and 𝔭¯S\overline{\mathfrak{p}}\not\in S. In particular, we are concerned with the minimal case S={𝔭}S=\{\mathfrak{p}\}. Although X{𝔭}(L)X_{\{\mathfrak{p}\}}(L_{\infty}) looks more fundamental than XΣ0(L)X_{\Sigma_{0}}(L_{\infty}), the structure of X{𝔭}(L)X_{\{\mathfrak{p}\}}(L_{\infty}) is more complicated from our perspective.

Remark 1.2.

Let us recall the analogue in the one-variable setting. We consider a finite abelian extension k/kk^{\prime}/k of totally real fields and the cyclotomic p\mathbb{Z}_{p}-extension kk^{\prime}_{\infty} of kk^{\prime}.

Let Σ\Sigma be a finite set of finite places of kk which contains Sram(k/k)=Sram(k/k)Sp(k)S_{\operatorname{ram}}(k^{\prime}_{\infty}/k)=S_{\operatorname{ram}}(k^{\prime}/k)\cup S_{p}(k). Then the Fitting ideal of XΣ(k)X_{\Sigma}(k^{\prime}_{\infty}) is described in [5] and [6], complemented by [7]. The author [9] gave an interpretation of the results [5], [6] using Fitt[2](p)\operatorname{Fitt}^{[2]}(\mathbb{Z}_{p}). Our Theorem 1.1 is an analogue of those results.

However, those results do not describe the Fitting ideal of XSp(k)(k)X_{S_{p}(k)}(k^{\prime}_{\infty}) unless accidentally Sram(k/k)=Sp(k)S_{\operatorname{ram}}(k^{\prime}_{\infty}/k)=S_{p}(k). It is a more recent work [4] that describes the Fitting ideal of XSp(k)(k)X_{S_{p}(k)}(k^{\prime}_{\infty}) in general, using Fitt[1]\operatorname{Fitt}^{[1]} of a bit more complicated modules. Our second main result in this paper below is an analogue of this result.

In our two-variable setting, we obtain the following result.

Theorem 1.3.

Let SS be a finite set of finite places of KK such that 𝔭S\mathfrak{p}\in S and 𝔭¯S\overline{\mathfrak{p}}\not\in S. Take a finite set Σ\Sigma of finite places of KK which contains Sram(L/K)SS_{\operatorname{ram}}(L_{\infty}/K)\cup S. Then we have

Fitt(XS(L))=𝔏Σ,S(L/K)Fitt[1](ZΣS0(L/K))\operatorname{Fitt}_{\mathcal{R}}(X_{S}(L_{\infty}))=\mathfrak{L}_{\Sigma,S}(L_{\infty}/K)\operatorname{Fitt}_{\mathcal{R}}^{[1]}(Z_{\Sigma\setminus S}^{0}(L_{\infty}/K))

as ideals of \mathcal{R}.

The definitions of ZΣS0(L/K)Z_{\Sigma\setminus S}^{0}(L_{\infty}/K) and 𝔏Σ,S(L/K)\mathfrak{L}_{\Sigma,S}(L_{\infty}/K) will be given in Section 2. See also Remark 2.11 for the computation of Fitt[1](ZΣS0(L/K))\operatorname{Fitt}_{\mathcal{R}}^{[1]}(Z_{\Sigma\setminus S}^{0}(L_{\infty}/K)).

By Lemma 2.9(1) below and 𝔏Σ0=𝔏Σ,Σ0\mathfrak{L}_{\Sigma_{0}}=\mathfrak{L}_{\Sigma,\Sigma_{0}} by Definition 2.14, it follows that Theorem 1.3 for S=Σ0S=\Sigma_{0} is equivalent to Theorem 1.1. For that reason, in this paper we give only a proof of Theorem 1.3.

Now we outline the proof of Theorem 1.3. The main ingredient is the result by Johnson-Leung–Kings [8], which is mentioned above. However, we have to develop algebraic theory to connect the result [8, Theorem 5.7], which uses determinant modules, and Theorem 1.3. Indeed, in this paper we will show that the notions of determinant modules of complexes and Fitting ideals of modules are essentially equivalent. Then we reduce the proof of Theorem 1.3 to Theorem 5.4 on the determinant of a certain complex CΣ,SC_{\Sigma,S}, and prove Theorem 5.4 via the result of [8]. Here we also need the work by de Shalit [1], since the main result of [8] uses elliptic units instead of pp-adic LL-functions.

1.3. Application to CM elliptic curves

It is known that the Iwasawa modules over imaginary quadratic fields are related to the Selmer groups of elliptic curves with complex multiplication. That fact is used to prove results of Birch–Swinnerton-Dyer type (for example, Rubin [14, §11, §12], de Shalit [1, Chapter IV]). Motivated by those works, we apply the results of the preceding sections to elliptic curves with complex multiplication.

Let EE be an elliptic curve over \mathbb{Q} which has complex multiplication by the ring of integers 𝒪K\mathcal{O}_{K} of KK. Suppose that EE has good reduction at pp; since pp splits in KK, the elliptic curve EE must have ordinary reduction at pp. Similarly as above, let L/KL/K be a finite abelian extension and SS a finite set of finite places of KK such that 𝔭S\mathfrak{p}\in S and 𝔭¯S\overline{\mathfrak{p}}\not\in S. We shall study the 𝔭\mathfrak{p}-torsion part of the SS-imprimitive Selmer group SelS(E/L)[𝔭]\operatorname{Sel}_{S}(E/L)[\mathfrak{p}^{\infty}] (introduced in Definition 6.5).

In order to state the result, put L𝔭=L(E[𝔭])L^{\mathfrak{p}}=L(E[\mathfrak{p}^{\infty}]), which is a one-variable extension of KK. Put 𝔭=p[[Gal(L𝔭/K)]]\mathcal{R}^{\mathfrak{p}}=\mathbb{Z}_{p}[[\operatorname{Gal}(L^{\mathfrak{p}}/K)]] and let πL𝔭/L:𝔭p[Gal(L/K)]\pi_{L^{\mathfrak{p}}/L}:\mathcal{R}^{\mathfrak{p}}\to\mathbb{Z}_{p}[\operatorname{Gal}(L/K)] be the projection map. We denote by χE,𝔭\chi_{E,\mathfrak{p}} the character defined by the action of E[𝔭]E[\mathfrak{p}^{\infty}]:

χE,𝔭:Gal(L𝔭/K)Aut(E[𝔭])p×.\chi_{E,\mathfrak{p}}:\operatorname{Gal}(L^{\mathfrak{p}}/K)\to\operatorname{Aut}(E[\mathfrak{p}^{\infty}])\simeq\mathbb{Z}_{p}^{\times}.

Then χE,𝔭\chi_{E,\mathfrak{p}} induces a twisting algebra isomorphism 𝔭𝔭\mathcal{R}^{\mathfrak{p}}\to\mathcal{R}^{\mathfrak{p}}, which we denote by χE,𝔭~\widetilde{\chi_{E,\mathfrak{p}}}. We denote by ()(-)^{\vee} the Pontryagin dual.

Theorem 1.4.

Let Σ\Sigma be a finite set of finite places of KK which contains Sram(L/K)SS_{\operatorname{ram}}(L_{\infty}/K)\cup S. Then we have

Fittp[Gal(L/K)](SelS(E/L)[𝔭])=πL𝔭/LχE,𝔭~(𝔏Σ,S(L𝔭/K)Fitt𝔭[1](ZΣS0(L𝔭/K)))\operatorname{Fitt}_{\mathbb{Z}_{p}[\operatorname{Gal}(L/K)]}(\operatorname{Sel}_{S}(E/L)[\mathfrak{p}^{\infty}]^{\vee})=\pi_{L^{\mathfrak{p}}/L}\circ\widetilde{\chi_{E,\mathfrak{p}}}\left(\mathfrak{L}_{\Sigma,S}(L^{\mathfrak{p}}/K)\operatorname{Fitt}_{\mathcal{R}^{\mathfrak{p}}}^{[1]}(Z_{\Sigma\setminus S}^{0}(L^{\mathfrak{p}}/K))\right)

as ideals of p[Gal(L/K)]\mathbb{Z}_{p}[\operatorname{Gal}(L/K)].

The definitions of ZΣS0(L𝔭/K)Z_{\Sigma\setminus S}^{0}(L^{\mathfrak{p}}/K) and 𝔏Σ,S(L𝔭/K)\mathfrak{L}_{\Sigma,S}(L^{\mathfrak{p}}/K) will be given in Section 2. Note that the key ingredient of the proof is Theorem 5.4 rather than Theorem 1.3.

Remark 1.5.

The fractional ideal Fitt𝔭[1](ZΣS0(L𝔭/K))\operatorname{Fitt}^{[1]}_{\mathcal{R}^{\mathfrak{p}}}(Z_{\Sigma\setminus S}^{0}(L^{\mathfrak{p}}/K)) is not contained in 𝔭\mathcal{R}^{\mathfrak{p}} in general, while the product with 𝔏Σ,S(L𝔭/K)\mathfrak{L}_{\Sigma,S}(L^{\mathfrak{p}}/K) is contained in 𝔭\mathcal{R}^{\mathfrak{p}}. In other (quite rough) words, Fitt𝔭[1](ZΣS0(L𝔭/K))\operatorname{Fitt}^{[1]}_{\mathcal{R}^{\mathfrak{p}}}(Z_{\Sigma\setminus S}^{0}(L^{\mathfrak{p}}/K)) has poles, but there are canceled by the zeros of 𝔏Σ,S(L𝔭/K)\mathfrak{L}_{\Sigma,S}(L^{\mathfrak{p}}/K). For that reason, the right hand side of the formula in Theorem 1.4 cannot be decomposed as the product of two ideals of p[Gal(L/K)]\mathbb{Z}_{p}[\operatorname{Gal}(L/K)].

1.4. Outline of this paper

The rest of this paper is organized as follows. In Section 2, in order to complete the statements of the main theorems, we give precise definitions of several objects like Fitt[n]\operatorname{Fitt}^{[n]}. In Section 3, we show the general relation between determinant modules and Fitting ideals. In Section 4, we review properties of various arithmetic complexes in derived categories. In Section 5, we prove Theorem 1.3 in the way we already outlined. In Section 6, we deduce Theorem 1.4 from Theorem 1.3.

2. Definitions and preliminaries

In this section, we give the definitions and basic properties of the ingredients in the statements of the main theorems in Section 1.

2.1. Shifts of Fitt\operatorname{Fitt}

In this subsection, we review the results of [9] on shifts of Fitting invariants.

Though we can deal with more general commutative rings, for the sake of simplicity, we only consider the following situation. Let GG be a profinite abelian group and consider the completed group ring R=p[[G]]R=\mathbb{Z}_{p}[[G]]. Suppose that GG has an open subgroup GG^{\prime} which is isomorphic to pd\mathbb{Z}_{p}^{d} for some d0d\geq 0. Put R=p[[G]]R^{\prime}=\mathbb{Z}_{p}[[G^{\prime}]], which is isomorphic to the ring of formal power series of dd variables over p\mathbb{Z}_{p}. Note that the choice of GG^{\prime} is auxiliary and the following argument does not depend on GG^{\prime}.

An RR-module is said to be torsion (resp. pseudo-null) if it is torsion (resp. pseudo-null) as an RR^{\prime}-module. For an RR-module XX, we denote by pdR(X)\operatorname{pd}_{R}(X) the projective dimension of XX over RR. As already mentioned, any invertible ideal of RR is principal.

Theorem 2.1 ( [9, Theorem 2.6]).

For each finitely generated torsion RR-module XX and an integer n0n\geq 0, we define a fractional ideal FittR[n](X)\operatorname{Fitt}_{R}^{[n]}(X) as follows. Take an exact sequence

0YP1PnX00\to Y\to P_{1}\to\dots\to P_{n}\to X\to 0

of finitely generated torsion RR-modules such that pdR(Pi)1\operatorname{pd}_{R}(P_{i})\leq 1 for 1in1\leq i\leq n. Then we define

FittR[n](X)=(i=1nFittR(Pi)(1)i)FittR(Y).\operatorname{Fitt}_{R}^{[n]}(X)=\left(\prod_{i=1}^{n}\operatorname{Fitt}_{R}(P_{i})^{(-1)^{i}}\right)\operatorname{Fitt}_{R}(Y).

Then this is well-defined, that is, independent from the choice of the resolution.

We also use the following variant.

Theorem 2.2 ([9, Theorem 3.20, Corollary 3.21]).

For each finitely generated torsion RR-module XX and every integer nn, we have a fractional ideal FittRn(X)\operatorname{Fitt}_{R}^{\langle n\rangle}(X) satisfying the following properties.

(1) If XX satisfies pdR(X)1\operatorname{pd}_{R^{\prime}}(X)\leq 1, then we have FittR0(X)=FittR(X)\operatorname{Fitt}_{R}^{\langle 0\rangle}(X)=\operatorname{Fitt}_{R}(X).

(2) If pdR(X)<\operatorname{pd}_{R}(X)<\infty, then FittRn(X)\operatorname{Fitt}_{R}^{\langle n\rangle}(X) is an invertible ideal for any nn. Moreover, we have FittRn(X)=FittR0(X)(1)n\operatorname{Fitt}_{R}^{\langle n\rangle}(X)=\operatorname{Fitt}_{R}^{\langle 0\rangle}(X)^{(-1)^{n}}.

(3) Let 0YQ1QdX00\to Y\to Q_{1}\to\dots\to Q_{d}\to X\to 0 be an exact sequence of finitely generated torsion RR-modules. Suppose pdR(Qi)<\operatorname{pd}_{R}(Q_{i})<\infty for 1id1\leq i\leq d. Then we have

FittRn(X)=(i=1dFittRnd+i(Qi))FittRnd(Y)\operatorname{Fitt}_{R}^{\langle n\rangle}(X)=\left(\prod_{i=1}^{d}\operatorname{Fitt}_{R}^{\langle n-d+i\rangle}(Q_{i})\right)\operatorname{Fitt}_{R}^{\langle n-d\rangle}(Y)

for any nn.

The role of Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle} in this paper is auxiliary compared to Fitt[n]\operatorname{Fitt}^{[n]}_{\mathcal{R}}. An advantage is that Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle} behaves better with respect to exact sequences. A disadvantage is that we do not have Fitt0(X)=Fitt(X)\operatorname{Fitt}_{\mathcal{R}}^{\langle 0\rangle}(X)=\operatorname{Fitt}_{\mathcal{R}}(X) in general, while we always have Fitt[0](X)=Fitt(X)\operatorname{Fitt}^{[0]}_{\mathcal{R}}(X)=\operatorname{Fitt}_{\mathcal{R}}(X). We have a sufficient condition for Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle} and Fitt[n]\operatorname{Fitt}^{[n]}_{\mathcal{R}} to coincide:

Lemma 2.3 ([9, Remark 3.25]).

Let nn be non-negative. Then the equality

FittRn(X)=FittR[n](X)\operatorname{Fitt}_{R}^{\langle n\rangle}(X)=\operatorname{Fitt}_{R}^{[n]}(X)

holds if pdR(X)n+1\operatorname{pd}_{R^{\prime}}(X)\leq n+1.

We record a simple proposition.

Proposition 2.4.

Let QQ be a pseudo-null RR-module such that pdR(Q)<\operatorname{pd}_{R}(Q)<\infty. Then we have FittR0(Q)=R\operatorname{Fitt}_{R}^{\langle 0\rangle}(Q)=R.

Proof.

By pdR(Q)<\operatorname{pd}_{R}(Q)<\infty, there exists an exact sequence

0PdP2P1Q00\to P_{d}\to\dots\to P_{2}\to P_{1}\to Q\to 0

of finitely generated torsion RR-modules with pdR(Pi)1\operatorname{pd}_{R}(P_{i})\leq 1. For any prime ideal 𝔮\mathfrak{q} of RR of height 1, since Q𝔮=0Q_{\mathfrak{q}}=0, we have an exact sequence

0(Pd)𝔮(P2)𝔮(P1)𝔮0.0\to(P_{d})_{\mathfrak{q}}\to\dots\to(P_{2})_{\mathfrak{q}}\to(P_{1})_{\mathfrak{q}}\to 0.

It follows that

(1idFittR(Pi)(1)i)R𝔮=1idFittR𝔮((Pi)𝔮)(1)i=R𝔮.\left(\prod_{1\leq i\leq d}\operatorname{Fitt}_{R}(P_{i})^{(-1)^{i}}\right)R_{\mathfrak{q}}=\prod_{1\leq i\leq d}\operatorname{Fitt}_{R_{\mathfrak{q}}}((P_{i})_{\mathfrak{q}})^{(-1)^{i}}=R_{\mathfrak{q}}.

Then Lemma 2.5 below implies

1idFittR(Pi)(1)i=R.\prod_{1\leq i\leq d}\operatorname{Fitt}_{R}(P_{i})^{(-1)^{i}}=R.

By the properties of Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle}, the left hand side equals to FittR0(Q)\operatorname{Fitt}_{R}^{\langle 0\rangle}(Q). ∎

Lemma 2.5.

Let I,JI,J be invertible ideals of RR. Suppose that IR𝔮=JR𝔮IR_{\mathfrak{q}}=JR_{\mathfrak{q}} holds for every height one prime ideal 𝔮\mathfrak{q}. Then we have I=JI=J.

Proof.

This lemma is more or less well-known, but we give a proof for convenience. Consider the natural injective map I/(IJ)R/JI/(I\cap J)\hookrightarrow R/J. By assumption, the module I/(IJ)I/(I\cap J) is pseudo-null, while R/JR/J does not contain non-trivial pseudo-null submodules. Hence IJI\subset J. By symmetry, we conclude that I=JI=J holds. ∎

2.2. Modules Z0Z^{0}

Let us return to the setting in Section 1. We define various \mathcal{R}-modules in the same way as in [4, Subsection 1.1].

Definition 2.6.

Let \mathcal{F} be an abelian extension of KK. For each finite place vv of KK, let Dv(/K)D_{v}(\mathcal{F}/K) be the decomposition group of /K\mathcal{F}/K at vv and put

Zv(/K)=p[[Gal(/K)/Dv(/K)]].Z_{v}(\mathcal{F}/K)=\mathbb{Z}_{p}[[\operatorname{Gal}(\mathcal{F}/K)/D_{v}(\mathcal{F}/K)]].

We regard Zv(/K)Z_{v}(\mathcal{F}/K) as a (cyclic) p[[Gal(/K)]]\mathbb{Z}_{p}[[\operatorname{Gal}(\mathcal{F}/K)]]-module.

For any finite set AA of finite places of KK, put

ZA(/K)=vAZv(/K).Z_{A}(\mathcal{F}/K)=\bigoplus_{v\in A}Z_{v}(\mathcal{F}/K).

When AA\neq\emptyset, we define ZA0(/K)Z_{A}^{0}(\mathcal{F}/K) as the kernel of the augmentation map ZA(/K)pZ_{A}(\mathcal{F}/K)\to\mathbb{Z}_{p}. Then we have an exact sequence

0ZA0(/K)ZA(/K)p0.0\to Z_{A}^{0}(\mathcal{F}/K)\to Z_{A}(\mathcal{F}/K)\to\mathbb{Z}_{p}\to 0.

These are also regarded as p[[Gal(/K)]]\mathbb{Z}_{p}[[\operatorname{Gal}(\mathcal{F}/K)]]-modules.

Remark 2.7.

Suppose =L\mathcal{F}=L_{\infty}, which is a two-variable extension of KK.

If vv is outside pp, then Zv(L/K)Z_{v}(L_{\infty}/K) is torsion but not pseudo-null as an \mathcal{R}-module.

On the other hand, suppose vv is one of 𝔭,𝔭¯\mathfrak{p},\overline{\mathfrak{p}}. Then it is well-known that vv splits finitely in L/KL_{\infty}/K, so Zv(L/K)Z_{v}(L_{\infty}/K) is a pseudo-null \mathcal{R}-module. By the local class field theory, Dv(L/K)D_{v}(L_{\infty}/K) is a quotient of the profinite completion of Kv×p×K_{v}^{\times}\simeq\mathbb{Q}_{p}^{\times}. It follows that Dv(L/K)D_{v}(L_{\infty}/K) is pp-torsion-free (see also [9, Lemma 5.14]). Therefore, we have pd(Zv(L/K))<\operatorname{pd}_{\mathcal{R}}(Z_{v}(L_{\infty}/K))<\infty. In particular, Proposition 2.4 shows that

(2.1) Fitt0(Zv(L/K))=.\operatorname{Fitt}_{\mathcal{R}}^{\langle 0\rangle}(Z_{v}(L_{\infty}/K))=\mathcal{R}.
Remark 2.8.

Suppose =L𝔭=L(E[𝔭])\mathcal{F}=L^{\mathfrak{p}}=L(E[\mathfrak{p}^{\infty}]), which is a one-variable extension of KK, as in Subsection 1.3. Then every finite place vv splits finitely in L𝔭L^{\mathfrak{p}}, so Zv(L𝔭/K)Z_{v}(L^{\mathfrak{p}}/K) is torsion but not pseudo-null as an 𝔭\mathcal{R}^{\mathfrak{p}}-module.

Next we show a lemma on the Fitt[1]\operatorname{Fitt}^{[1]} in the right hand side of Theorem 1.3. The first assertion enables us to deduce Theorem 1.1 from Theorem 1.3.

Lemma 2.9.

The following are true.

(1) In the case where S=Σ0S=\Sigma_{0}, we have

Fitt[1](Z{𝔭}0(L/K))=Fitt[2](p).\operatorname{Fitt}^{[1]}_{\mathcal{R}}(Z_{\{\mathfrak{p}\}}^{0}(L_{\infty}/K))=\operatorname{Fitt}^{[2]}_{\mathcal{R}}(\mathbb{Z}_{p}).

(2) In the case where SΣ0S\subsetneqq\Sigma_{0}, we have

Fitt[1](ZΣS0(L/K))=Fitt[1](ZΣ0S0(L/K)).\operatorname{Fitt}^{[1]}_{\mathcal{R}}(Z_{\Sigma\setminus S}^{0}(L_{\infty}/K))=\operatorname{Fitt}^{[1]}_{\mathcal{R}}(Z_{\Sigma_{0}\setminus S}^{0}(L_{\infty}/K)).
Proof.

(1) We have an exact sequence

0Z{𝔭}0(L/K)Z{𝔭}(L/K)p00\to Z_{\{\mathfrak{p}\}}^{0}(L_{\infty}/K)\to Z_{\{\mathfrak{p}\}}(L_{\infty}/K)\to\mathbb{Z}_{p}\to 0

of \mathcal{R}-modules. Therefore, (2.1) and the properties of Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle} show

Fitt2(p)=Fitt1(Z{𝔭}0(L/K)).\operatorname{Fitt}_{\mathcal{R}}^{\langle 2\rangle}(\mathbb{Z}_{p})=\operatorname{Fitt}_{\mathcal{R}}^{\langle 1\rangle}(Z_{\{\mathfrak{p}\}}^{0}(L_{\infty}/K)).

By Lemma 2.3, this equality says

Fitt[2](p)=Fitt[1](Z{𝔭}0(L/K)).\operatorname{Fitt}^{[2]}_{\mathcal{R}}(\mathbb{Z}_{p})=\operatorname{Fitt}^{[1]}_{\mathcal{R}}(Z_{\{\mathfrak{p}\}}^{0}(L_{\infty}/K)).

(2) We have an exact sequence

0ZΣ0S0(L/K)ZΣS0(L/K)Z{𝔭}(L/K)0.0\to Z_{\Sigma_{0}\setminus S}^{0}(L_{\infty}/K)\to Z_{\Sigma\setminus S}^{0}(L_{\infty}/K)\to Z_{\{\mathfrak{p}\}}(L_{\infty}/K)\to 0.

Similarly as in (1), the assertion follows from (2.1) and the properties of Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle}, Fitt[n]\operatorname{Fitt}^{[n]}_{\mathcal{R}}. ∎

Remark 2.10.

Lemma 2.9(2) does not play a practical role in this paper, but it clarifies the analogy with the one-variable setting in Remark 1.2. In the one-variable setting, the Fitting ideal of XSp(k)(k)X_{S_{p}(k)}(k^{\prime}_{\infty}) is described in [4] by Fitt[1]\operatorname{Fitt}^{[1]} of Z0Z^{0} at non pp-adic primes. In our two-variable setting, Theorem 1.3 and Lemma 2.9(2) show that the analogy holds for X{𝔭}(L)X_{\{\mathfrak{p}\}}(L_{\infty}).

Remark 2.11.

In [9, Section 4.3], we illustrated how to compute Fitt[2](p)\operatorname{Fitt}^{[2]}_{\mathcal{R}}(\mathbb{Z}_{p}) explicitly. The computation is possible in principle, though that gets more complicated when the pp-rank of Gal(L/K)\operatorname{Gal}(L_{\infty}/K_{\infty}) gets larger.

On the other hand, it seems quite hard to compute Fitt[1](ZΣ0S0(L/K))\operatorname{Fitt}^{[1]}_{\mathcal{R}}(Z_{\Sigma_{0}\setminus S}^{0}(L_{\infty}/K)) when SΣ0S\subsetneqq\Sigma_{0}, because the decomposition fields of vΣ0Sv\in\Sigma_{0}\setminus S can be diverse one-variable extensions of KK in LL_{\infty}. This is one feature in the two-variable setting; in the one-variable setting in Remark 1.2, the decomposition fields are at any rate finite extensions of kk.

2.3. pp-adic LL-functions

As we will recall later (see the proof of Theorem 5.10), the results of de Shalit [1] involve a base change from p\mathbb{Z}_{p} to pur\mathbb{Z}_{p}^{\operatorname{ur}}. Here, pur\mathbb{Z}_{p}^{\operatorname{ur}} is the ring of integers of the completion pur\mathbb{Q}_{p}^{\operatorname{ur}} of the maximal unramified extension of p\mathbb{Q}_{p}. We will freely use the following lemma that fractional ideals of Iwasawa algebras are characterized by their base changes to pur\mathbb{Z}_{p}^{\operatorname{ur}}.

Lemma 2.12.

Let GG be a profinite group as in Subsection 2.1. Put R=p[[G]]R=\mathbb{Z}_{p}[[G]] and Rur=pur[[G]]R^{\operatorname{ur}}=\mathbb{Z}_{p}^{\operatorname{ur}}[[G]]. Note that each fractional ideal II of RR yields a fractional ideal IRurIR^{\operatorname{ur}} of RurR^{\operatorname{ur}}. Then, for fractional ideals II and JJ of RR, we have IRur=JRurIR^{\operatorname{ur}}=JR^{\operatorname{ur}} if and only if I=JI=J.

Proof.

This lemma is a special case of the theory of faithfully flat descent. ∎

Now we introduce pp-adic LL-functions. See [1, Theorem II.4.14] for more information.

At first we consider the following specific situation associated to a nonzero integral ideal 𝔣\mathfrak{f} of KK which is prime to pp. Put L𝔣=K(𝔣p)L_{\mathfrak{f}}=K(\mathfrak{f}p), the ray class field of KK modulo 𝔣p\mathfrak{f}p, so L𝔣,=K(𝔣p)L_{\mathfrak{f},\infty}=K(\mathfrak{f}p^{\infty}). We take Σ𝔣\Sigma_{\mathfrak{f}} as the set of prime divisors of 𝔣p\mathfrak{f}p. Put 𝒢𝔣=Gal(L𝔣,/K)\mathcal{G}_{\mathfrak{f}}=\operatorname{Gal}(L_{\mathfrak{f},\infty}/K), 𝔣=p[[𝒢𝔣]]\mathcal{R}_{\mathfrak{f}}=\mathbb{Z}_{p}[[\mathcal{G}_{\mathfrak{f}}]], and 𝔣ur=pur[[𝒢𝔣]]\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}=\mathbb{Z}_{p}^{\operatorname{ur}}[[\mathcal{G}_{\mathfrak{f}}]].

Theorem 2.13 ([1, Theorem II.4.14, Corollary II.6.7]).

There exists an element μ𝔣𝔣ur\mu_{\mathfrak{f}}\in\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}} (which is denoted by μ(𝔣𝔭¯)\mu(\mathfrak{f}\overline{\mathfrak{p}}^{\infty}) in [1]) satisfying the following. Let ε\varepsilon be any grossencharacter of conductor dividing 𝔣p\mathfrak{f}p^{\infty} and of infinity type (k,j)(k,j) with k>0k>0 and j0j\leq 0. Then we have

(2.2) Ωpjkε(μ𝔣)=Ωjk(dK2π)jG(ε)(1ε(𝔭)p)L^Σ𝔣{𝔭}(ε1,0),\Omega_{p}^{j-k}\cdot\varepsilon(\mu_{\mathfrak{f}})=\Omega^{j-k}\cdot\left(\frac{\sqrt{d_{K}}}{2\pi}\right)^{j}\cdot G(\varepsilon)\cdot\left(1-\frac{\varepsilon(\mathfrak{p})}{p}\right)\widehat{L}_{\Sigma_{\mathfrak{f}}\setminus\{\mathfrak{p}\}}(\varepsilon^{-1},0),

where Ω\Omega and Ωp\Omega_{p} are complex and pp-adic periods, dK-d_{K} is the discriminant of KK, G(ε)G(\varepsilon) is “like Gauss sum” (in the words of [1]), and L^Σ𝔣{𝔭}\widehat{L}_{\Sigma_{\mathfrak{f}}\setminus\{\mathfrak{p}\}} is the completed LL-function without Euler factors at the places in Σ𝔣{𝔭}\Sigma_{\mathfrak{f}}\setminus\{\mathfrak{p}\}.

The crucial property of μ𝔣\mu_{\mathfrak{f}} is that it comes from elliptic units; see Theorem 5.10.

Now, returning to the general situation, we introduce pp-adic LL-functions by similar formulas to μ𝔣\mu_{\mathfrak{f}}. Let ur=pur[[𝒢]]\mathcal{R}^{\operatorname{ur}}=\mathbb{Z}_{p}^{\operatorname{ur}}[[\mathcal{G}]] be the completed group ring of 𝒢\mathcal{G} over pur\mathbb{Z}_{p}^{\operatorname{ur}}. Note that, as a convention of this paper, 𝔏\mathfrak{L} denotes invertible ideals of Iwasawa algebras, while \mathcal{L} denotes elements.

Definition 2.14.

(1) We define an element Σ,S(L/K)Frac(ur)\mathcal{L}_{\Sigma,S}(L_{\infty}/K)\in\operatorname{Frac}(\mathcal{R}^{\operatorname{ur}}) by the following interpolation properties. With the same notation as in Theorem 2.13, for a grossencharacter ε\varepsilon which factors 𝒢=Gal(L/K)\mathcal{G}=\operatorname{Gal}(L_{\infty}/K), we have

(2.3) Ωpjkε(Σ,S(L/K))\displaystyle\Omega_{p}^{j-k}\cdot\varepsilon(\mathcal{L}_{\Sigma,S}(L_{\infty}/K))
(2.4) =Ωjk(dK2π)jG(ε)(1ε(𝔭)p)L^Σ{𝔭}(ε1,0)×(vS{𝔭}1ε(v)N(v)11ε(v)),\displaystyle\qquad=\Omega^{j-k}\cdot\left(\frac{\sqrt{d_{K}}}{2\pi}\right)^{j}\cdot G(\varepsilon)\cdot\left(1-\frac{\varepsilon(\mathfrak{p})}{p}\right)\widehat{L}_{\Sigma\setminus\{\mathfrak{p}\}}(\varepsilon^{-1},0)\times\left(\prod_{v\in S\setminus\{\mathfrak{p}\}}\frac{1-\varepsilon(v)N(v)^{-1}}{1-\varepsilon(v)}\right),

where in the last product vv runs over places in S{𝔭}S\setminus\{\mathfrak{p}\} which are prime to the conductor of ε\varepsilon.

(2) We define an invertible ideal 𝔏Σ,S(L/K)\mathfrak{L}_{\Sigma,S}(L_{\infty}/K) of \mathcal{R} by requiring

𝔏Σ,S(L/K)ur=Σ,S(L/K)ur\mathfrak{L}_{\Sigma,S}(L_{\infty}/K)\mathcal{R}^{\operatorname{ur}}=\mathcal{L}_{\Sigma,S}(L_{\infty}/K)\mathcal{R}^{\operatorname{ur}}

as invertible ideals of ur\mathcal{R}^{\operatorname{ur}} (see Remark 2.15(2) below for the existence; note also that, assuming the existence, we have the uniqueness by Lemma 2.12). We put 𝔏Σ0(L/K)=𝔏Σ,Σ0(L/K)\mathfrak{L}_{\Sigma_{0}}(L_{\infty}/K)=\mathfrak{L}_{\Sigma,\Sigma_{0}}(L_{\infty}/K).

Remark 2.15.

We give remarks on the existences of \mathcal{L} and 𝔏\mathfrak{L} in Definition 2.14.

(1) The existence of Σ𝔣,{𝔭}(L𝔣,/K)\mathcal{L}_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}(L_{\mathfrak{f},\infty}/K) follows immediately from Theorem 2.13, since it is equal to μ𝔣\mu_{\mathfrak{f}}. By taking the image under the natural map, for general L/KL/K, the existence of Σ𝔣,{𝔭}(L/K)\mathcal{L}_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}(L_{\infty}/K) follows, where 𝔣\mathfrak{f} is the prime-to-pp component of the conductor of L/KL/K. Then the existence of Σ,S(L/K)\mathcal{L}_{\Sigma,S}(L_{\infty}/K) for general Σ,S\Sigma,S follows from the computation in Lemma 5.7 below (see (5.6) and (5.7)).

(2) The existence of 𝔏Σ,S(L/K)\mathfrak{L}_{\Sigma,S}(L_{\infty}/K) is not obvious at all. We will prove the existence by the relation with the elliptic units, rather than by directly investigating the interpolation properties. More concretely, the existence of 𝔏Σ𝔣,{𝔭}(L𝔣,/K)\mathfrak{L}_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}(L_{\mathfrak{f},\infty}/K) follows from Corollary 5.11, and the general case follows by using the formulas corresponding to (5.6) and (5.7).

Finally we give the definition of one-variable ideals of pp-adic LL-functions.

Definition 2.16.

Let L¯/L\overline{L_{\infty}}/L be any p\mathbb{Z}_{p}-extension which is contained in the p2\mathbb{Z}_{p}^{2}-extension L/LL_{\infty}/L. Put ¯=p[[Gal(L¯/K)]]\overline{\mathcal{R}}=\mathbb{Z}_{p}[[\operatorname{Gal}(\overline{L_{\infty}}/K)]]. We define the invertible ideal 𝔏Σ,S(L¯/K)\mathfrak{L}_{\Sigma,S}(\overline{L_{\infty}}/K) of ¯\overline{\mathcal{R}} as the natural image of 𝔏Σ,S(L/K)\mathfrak{L}_{\Sigma,S}(L_{\infty}/K).

For the well-definedness, see Corollary 6.2. By replacing LL by L(E[𝔭])L(E[\mathfrak{p}]) in Definition 2.16, the invertible ideal 𝔏Σ,S(L𝔭/K)\mathfrak{L}_{\Sigma,S}(L^{\mathfrak{p}}/K) of 𝔭\mathcal{R}^{\mathfrak{p}}, which appear in Theorem 1.4, is defined.

3. Determinant modules and Fitting ideals

In this section, we give algebraic preliminaries required for the proof of Theorem 1.3.

Let R=p[[G]]R=\mathbb{Z}_{p}[[G]] be as in Subsection 2.1. Let R\mathcal{I}_{R} denote the commutative group of invertible ideals of RR. Our main purpose in this section is to establish the following (the notation will be explained later).

Theorem 3.1.

We have a diagram

(3.1) K0(𝒫R)\textstyle{K_{0}(\mathcal{P}_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FittR\scriptstyle{\operatorname{Fitt}_{R}}K0(𝒬R)\textstyle{K_{0}(\mathcal{Q}_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}K0(Dtorperf(R))\textstyle{K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}DetR\scriptstyle{\operatorname{Det}_{R}}R\textstyle{\mathcal{I}_{R}}

which is anti-commutative, meaning that

DetRφ=FittR\operatorname{Det}_{R}\circ\varphi=-\operatorname{Fitt}_{R}

(in the additive notation). Moreover, all maps in the diagram (3.1) are isomorphic.

This result might be more or less known to experts, but we give a proof for completeness.

3.1. Fitting ideals FittR\operatorname{Fitt}_{R}

Following the notations in [9], we let 𝒫R\mathcal{P}_{R} (resp. 𝒬R\mathcal{Q}_{R}) be the exact category consisting of finitely generated torsion RR-modules PP (resp. QQ) such that pdR(P)1\operatorname{pd}_{R}(P)\leq 1 (resp. pdR(Q)<\operatorname{pd}_{R}(Q)<\infty).

For an (essentially small) exact category 𝒞\mathcal{C} like 𝒫R\mathcal{P}_{R} and 𝒬R\mathcal{Q}_{R}, we denote by K0(𝒞)K_{0}(\mathcal{C}) its Grothendieck group. By definition, K0(𝒞)K_{0}(\mathcal{C}) has the following presentation by generators and relations: the generators are [X][X] for objects X𝒞X\in\mathcal{C} and the relations are [X]=[X]+[X′′][X]=[X^{\prime}]+[X^{\prime\prime}] for exact sequences 0XXX′′00\to X^{\prime}\to X\to X^{\prime\prime}\to 0 in 𝒞\mathcal{C}.

Theorem 3.2 (Resolution theorem).

The natural group homomorphism K0(𝒫R)K0(𝒬R)K_{0}(\mathcal{P}_{R})\to K_{0}(\mathcal{Q}_{R}) induced by the inclusion functor from 𝒫R\mathcal{P}_{R} to 𝒬R\mathcal{Q}_{R} is an isomorphism.

Proof.

See [13, Theorem 3.1.13], for example. ∎

Proposition 3.3.

FittR\operatorname{Fitt}_{R} induces a group isomorphism FittR:K0(𝒫R)R\operatorname{Fitt}_{R}:K_{0}(\mathcal{P}_{R})\to\mathcal{I}_{R}.

Proof.

See [9, Proposition 2.7] for the well-definedness and [9, Remark 2.8] for the injectivity. To show the surjectivity, take any IRI\in\mathcal{I}_{R}. We can take a non-zero-divisor fRf\in R such that fIRfI\subset R. Since any invertible ideals are projective, we have R/fI𝒫RR/fI\in\mathcal{P}_{R}. Then FittR\operatorname{Fitt}_{R} sends the element [R/fI][R/fR]K0(𝒫R)[R/fI]-[R/fR]\in K_{0}(\mathcal{P}_{R}) to II. ∎

3.2. Determinant DetR\operatorname{Det}_{R}

Recall that a triangulated category 𝒞\mathcal{C} is an additive category equipped with a translation functor 𝒞𝒞\mathcal{C}\to\mathcal{C}, denoted by XX[1]X\mapsto X[1], and a notion of (distinguished) triangles

XXX′′X[1](or, XXX′′ for short)X^{\prime}\to X\to X^{\prime\prime}\to X^{\prime}[1]\qquad\text{(or, $X^{\prime}\to X\to X^{\prime\prime}\to$ for short)}

satisfying a couple of axioms.

For an (essentially small) triangulated category 𝒞\mathcal{C}, we denote by K0(𝒞)K_{0}(\mathcal{C}) its Grothendieck group. By definition, K0(𝒞)K_{0}(\mathcal{C}) has the following presentation by generators and relations: the generators are [X][X] for objects X𝒞X\in\mathcal{C} and the relations are [X]=[X]+[X′′][X]=[X^{\prime}]+[X^{\prime\prime}] for triangles XXX′′X^{\prime}\to X\to X^{\prime\prime}\to in 𝒞\mathcal{C}.

We briefly introduce several categories arising from cochain complexes.

Definition 3.4.

Let Chb(R)Ch^{\operatorname{b}}(R) be the abelian category of bounded cochain complexes of RR-modules. A complex FChb(R)F^{\bullet}\in Ch^{\operatorname{b}}(R) is said to be perfect if each FiF^{i} is finitely generated and projective. Let Chperf(R)Ch^{\operatorname{perf}}(R) be the category of perfect complexes of RR-modules. Moreover, let Chtorperf(R)Ch^{\operatorname{perf}}_{\operatorname{tor}}(R) be its subcategory consisting of those with torsion cohomology groups Hi(F)H^{i}(F^{\bullet}).

These categories Chb(R),Chperf(R)Ch^{\operatorname{b}}(R),Ch^{\operatorname{perf}}(R), and Chtorperf(R)Ch^{\operatorname{perf}}_{\operatorname{tor}}(R) are equipped with natural translation functors. Let Db(R)D^{\operatorname{b}}(R), Dperf(R)D^{\operatorname{perf}}(R) and Dtorperf(R)D^{\operatorname{perf}}_{\operatorname{tor}}(R) be the derived categories of Chb(R)Ch^{\operatorname{b}}(R), Chperf(R)Ch^{\operatorname{perf}}(R) and Chtorperf(R)Ch^{\operatorname{perf}}_{\operatorname{tor}}(R), respectively. Then these derived categories are triangulated categories.

Now we introduce determinant modules. We refer to [10] for the detailed construction. One can also refer to [4, Subsection 3.1].

For a finitely generated projective RR-module FF, letting rank(F)\operatorname{rank}(F) denote the (locally constant) rank of FF, we define the determinant of FF by

DetR(F)=Rrank(F)F.\operatorname{Det}_{R}(F)=\bigwedge_{R}^{\operatorname{rank}(F)}F.

Moreover, we denote its inverse by

DetR1(F)=HomR(DetR(F),R).\operatorname{Det}_{R}^{-1}(F)=\operatorname{Hom}_{R}(\operatorname{Det}_{R}(F),R).

More precisely, we should introduce the grade, but we omit it for simplicity.

For each complex FChperf(R)F^{\bullet}\in Ch^{\operatorname{perf}}(R), we define its determinant by

DetR(F)=iDetR(1)i(Fi).\operatorname{Det}_{R}(F^{\bullet})=\bigotimes_{i\in\mathbb{Z}}\operatorname{Det}_{R}^{(-1)^{i}}(F^{i}).

Similarly, we denote by DetR1(F)\operatorname{Det}_{R}^{-1}(F^{\bullet}) its inverse.

Suppose FChtorperf(R)F^{\bullet}\in Ch^{\operatorname{perf}}_{\operatorname{tor}}(R). Since Frac(R)RF\operatorname{Frac}(R)\otimes_{R}F^{\bullet} is acyclic, we have a natural isomorphism DetFrac(R)(Frac(R)RF)Frac(R)\operatorname{Det}_{\operatorname{Frac}(R)}(\operatorname{Frac}(R)\otimes_{R}F^{\bullet})\simeq\operatorname{Frac}(R). Therefore, we have a natural injective map

DetR(F)DetFrac(R)(Frac(R)RF)Frac(R).\operatorname{Det}_{R}(F^{\bullet})\hookrightarrow\operatorname{Det}_{\operatorname{Frac}(R)}(\operatorname{Frac}(R)\otimes_{R}F^{\bullet})\simeq\operatorname{Frac}(R).

From now on, we identify DetR(F)\operatorname{Det}_{R}(F^{\bullet}) with its image in Frac(R)\operatorname{Frac}(R). Therefore, DetR(F)\operatorname{Det}_{R}(F^{\bullet}) is an invertible ideal of RR.

Lemma 3.5.

DetR\operatorname{Det}_{R} induces a group homomorphism DetR:K0(Dtorperf(R))R\operatorname{Det}_{R}:K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(R))\to\mathcal{I}_{R}.

Proof.

This is a standard fact. ∎

3.3. Homomorphism φ\varphi

We construct the homomorphism φ\varphi in the diagram (3.1).

Proposition 3.6.

For each Q𝒬RQ\in\mathcal{Q}_{R}, take a projective resolution of QQ, that is, a perfect complex FQChtorperf(R)F_{Q}^{\bullet}\in Ch^{\operatorname{perf}}_{\operatorname{tor}}(R) with FQi=0F_{Q}^{i}=0 for i1i\geq 1 and a quasi-isomorphism FQQ[0]F_{Q}^{\bullet}\to Q[0]. Then [Q][FQ][Q]\mapsto[F_{Q}^{\bullet}] gives a well-defined surjective homomorphism φ:K0(𝒬R)K0(Dtorperf(R))\varphi:K_{0}(\mathcal{Q}_{R})\to K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(R)).

Proof.

It is a basic fact in homological algebra that two projective resolutions of the same module are homotopic to each other. Moreover, for an exact sequence 0QQQ′′00\to Q^{\prime}\to Q\to Q^{\prime\prime}\to 0 in 𝒬R\mathcal{Q}_{R}, by the horseshoe lemma, we can take projective resolutions so that an exact sequence 0FQFQFQ′′00\to F_{Q^{\prime}}^{\bullet}\to F_{Q}^{\bullet}\to F_{Q^{\prime\prime}}^{\bullet}\to 0 exists. Therefore, we have a well-defined homomorphism φ:K0(𝒬R)K0(Dtorperf(R))\varphi:K_{0}(\mathcal{Q}_{R})\to K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(R)).

We prove the surjectivity. For FDtorperf(R)F^{\bullet}\in D^{\operatorname{perf}}_{\operatorname{tor}}(R), define d(F)\operatorname{d}(F^{\bullet}) by d(F)=\operatorname{d}(F^{\bullet})=-\infty if FF^{\bullet} is acyclic, and

d(F)=max{iHi(F)0}min{iHi(F)0}0\operatorname{d}(F^{\bullet})=\max\{i\in\mathbb{Z}\mid H^{i}(F^{\bullet})\neq 0\}-\min\{i\in\mathbb{Z}\mid H^{i}(F^{\bullet})\neq 0\}\geq 0

otherwise. We shall show that [F]Im(φ)[F^{\bullet}]\in\operatorname{Im}(\varphi) by induction on d(F)\operatorname{d}(F^{\bullet}). If FF^{\bullet} is acyclic, then [F]=0[F^{\bullet}]=0 and we have nothing to do. Therefore, we may assume that FF^{\bullet} is not acyclic. Since [F[n]]=(1)n[F][F^{\bullet}[n]]=(-1)^{n}[F^{\bullet}] for nn\in\mathbb{Z}, we may assume that H0(F)0H^{0}(F^{\bullet})\neq 0 and Hi(F)=0H^{i}(F^{\bullet})=0 for i1i\geq 1. Moreover, by truncation, we may assume that Fi=0F^{i}=0 for i1i\geq 1.

Suppose d(F)=0\operatorname{d}(F^{\bullet})=0. Then the complexes FF^{\bullet} and H0(F)[0]H^{0}(F^{\bullet})[0] are quasi-isomorphic. By the definition of φ\varphi, this shows that [F]=φ([H0(F)])Im(φ)[F^{\bullet}]=\varphi([H^{0}(F^{\bullet})])\in\operatorname{Im}(\varphi).

Suppose d(F)1\operatorname{d}(F^{\bullet})\geq 1. Since the cohomology H0(F)H^{0}(F^{\bullet}) is torsion, we can take a non-zero-divisor fRf\in R which annihilates it. By the projectivity of F0F^{0}, there exists a dotted arrow below which makes a commutative diagram

F:\textstyle{F^{\bullet}:}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F2\textstyle{F^{-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F1\textstyle{F^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F0\textstyle{F^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}F1:\textstyle{F_{1}^{\bullet}:}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fF0\textstyle{fF^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F0\textstyle{F^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

This morphism F1FF_{1}^{\bullet}\to F^{\bullet} in Dtorperf(R)D^{\operatorname{perf}}_{\operatorname{tor}}(R) gives an object F2F_{2}^{\bullet} of Dtorperf(R)D^{\operatorname{perf}}_{\operatorname{tor}}(R) which fits in a triangle F1FF2F_{1}^{\bullet}\to F^{\bullet}\to F_{2}^{\bullet}\to. We have d(F1)0\operatorname{d}(F_{1}^{\bullet})\leq 0 and H0(F1)H0(F)H^{0}(F_{1}^{\bullet})\to H^{0}(F^{\bullet}) is surjective by construction. Therefore, by the induced long exact sequence, we can see that d(F2)<d(F)\operatorname{d}(F_{2}^{\bullet})<\operatorname{d}(F^{\bullet}). By the induction hypothesis, we obtain

[F]=[F1]+[F2]Im(φ).[F^{\bullet}]=[F_{1}^{\bullet}]+[F_{2}^{\bullet}]\in\operatorname{Im}(\varphi).

This completes the proof of the surjectivity of φ\varphi. ∎

Proposition 3.7.

The diagram (3.1) is anti-commutative.

Proof.

For any P𝒫RP\in\mathcal{P}_{R}, we can take a free resolution 0RaRaP00\to R^{a}\overset{h}{\to}R^{a}\to P\to 0 of PP. Then, by definition, we have

φ([P])=[0RaRa0]\varphi([P])=[\cdots\to 0\to R^{a}\overset{h}{\to}R^{a}\to 0\to\cdots]

which concentrates at the degrees 1,0-1,0. Now the assertion FittR(P)1=DetR(φ([P]))\operatorname{Fitt}_{R}(P)^{-1}=\operatorname{Det}_{R}(\varphi([P])) follows from a standard computation as in [4, Lemma 3.8], for example. ∎

Now Theorem 3.1 follows from Theorem 3.2, Proposition 3.3, Lemma 3.5, Proposition 3.6, and Proposition 3.7.

Remark 3.8.

By Theorem 2.2, we can complement Theorem 3.1 as

(3.2) K0(𝒫R)\textstyle{K_{0}(\mathcal{P}_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FittR\scriptstyle{\operatorname{Fitt}_{R}}K0(𝒬R)\textstyle{K_{0}(\mathcal{Q}_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}FittR0\scriptstyle{\operatorname{Fitt}_{R}^{\langle 0\rangle}}K0(Dtorperf(R))\textstyle{K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(R))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}DetR\scriptstyle{\operatorname{Det}_{R}}R\textstyle{\mathcal{I}_{R}}

where all maps are isomorphic, the left triangle is commutative, and the right triangle is anti-commutative.

4. Arithmetic complexes

In this section, we review facts on Galois cohomology complexes (this section does not have novelty). We follow the notations in [4], and refer to Nekovář [11] for detail.

Keep the notation of Section 1. We denote by KΣK_{\Sigma} the maximal algebraic extension of KK unramified outside Σ\Sigma. Let p(1)=limmμpm\mathbb{Z}_{p}(1)=\varprojlim_{m}\mu_{p^{m}} be the Tate module. We set

𝕋=p(1)p,\mathbb{T}=\mathbb{Z}_{p}(1)\otimes_{\mathbb{Z}_{p}}\mathcal{R},

which is a free \mathcal{R}-module of rank 11. We equip 𝕋\mathbb{T} with a Gal(K¯/K)\operatorname{Gal}(\overline{K}/K)-action, where the action on the second component \mathcal{R} is the inverse of the natural group homomorphism κ:Gal(K¯/K)Gal(L/K)×\kappa:\operatorname{Gal}(\overline{K}/K)\twoheadrightarrow\operatorname{Gal}(L_{\infty}/K)\hookrightarrow\mathcal{R}^{\times}. By the Shapiro lemma, we have isomorphisms such as

(4.1) Hi(KΣ/K,𝕋)limKHi(KΣ/K,p(1)),\displaystyle H^{i}(K_{\Sigma}/K,\mathbb{T})\simeq\varprojlim_{K^{\prime}}H^{i}(K_{\Sigma}/K^{\prime},\mathbb{Z}_{p}(1)),
(4.2) Hi(KΣ/K,𝕋(1))Hi(KΣ/L,p/p),\displaystyle H^{i}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))\simeq H^{i}(K_{\Sigma}/L_{\infty},\mathbb{Q}_{p}/\mathbb{Z}_{p}),

where KK^{\prime} runs over finite extensions of KK in LL_{\infty} and the projective limit is taken with respect to the corestriction maps.

By the cochain complex construction (see [11, (3.4.1)]), we obtain complexes like

Γ(KΣ/K,𝕋),Γ(KΣ/K,𝕋(1)),\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}),\qquad\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee},

where ()(-)^{\vee} denotes the Pontryagin dual (also for complexes), and the local counterparts of them. We summarize properties of these complexes.

Proposition 4.1.

(1) The complexes

Γ(KΣ/K,𝕋),Γ(KΣ/K,𝕋(1)),\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}),\qquad\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee},

and

Γ(Kv,𝕋),Γ(Kv,𝕋(1))\mathcal{R}\Gamma(K_{v},\mathbb{T}),\qquad\mathcal{R}\Gamma(K_{v},\mathbb{T}^{\vee}(1))^{\vee}

for any finite place vv of KK, are perfect. That is, these complexes are contained in Dperf()D^{\operatorname{perf}}(\mathcal{R}).

(2) We have a natural isomorphism

Γ(Kv,𝕋)Γ(Kv,𝕋(1))[2]\mathcal{R}\Gamma(K_{v},\mathbb{T})\simeq\mathcal{R}\Gamma(K_{v},\mathbb{T}^{\vee}(1))^{\vee}[-2]

for any finite place vv of KK.

(3) We have a triangle

(4.3) Γ(KΣ/K,𝕋)vΣΓ(Kv,𝕋)Γ(KΣ/K,𝕋(1))[2]\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T})\to\bigoplus_{v\in\Sigma}\mathcal{R}\Gamma(K_{v},\mathbb{T})\to\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}[-2]\to

in Dperf()D^{\operatorname{perf}}(\mathcal{R}).

Proof.

(1) For Γ(KΣ/K,𝕋)\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}) and Γ(Kv,𝕋)\mathcal{R}\Gamma(K_{v},\mathbb{T}), see [11, Proposition (4.2.9)]. The others follow from (2) and (3) below.

(2) This is the local Tate duality [11, Proposition (5.2.4)].

(3) This is the Poitou-Tate duality [11, Proposition (5.4.3)]. ∎

Recall that, in our case, the weak Leopoldt conjecture H2(KΣ/K,𝕋(1))=0H^{2}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))=0 has been proved. Then the long exact sequence associated to (4.3) is

(4.4) 0\displaystyle 0 H1(KΣ/K,𝕋)vΣH1(Kv,𝕋)H1(KΣ/K,𝕋(1))\displaystyle\to H^{1}(K_{\Sigma}/K,\mathbb{T})\to\bigoplus_{v\in\Sigma}H^{1}(K_{v},\mathbb{T})\to H^{1}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}
(4.5) H2(KΣ/K,𝕋)vΣH2(Kv,𝕋)H0(KΣ/K,𝕋(1))0.\displaystyle\to H^{2}(K_{\Sigma}/K,\mathbb{T})\to\bigoplus_{v\in\Sigma}H^{2}(K_{v},\mathbb{T})\to H^{0}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}\to 0.

By using (4.1), this sequence (4.4) is regarded as the projective limit of the usual Poitou-Tate long exact sequences.

For a finite place vv of KK, let 𝒢v𝒢\mathcal{G}_{v}\subset\mathcal{G} be the decomposition group of vv in L/KL_{\infty}/K. In the notation in Definition 2.6, we have 𝒢v=Dv(L/K)\mathcal{G}_{v}=D_{v}(L_{\infty}/K). Put

Zv(L/K)=p[[𝒢/𝒢v]]Z_{v}(L_{\infty}/K)=\mathbb{Z}_{p}[[\mathcal{G}/\mathcal{G}_{v}]]

as in Definition 2.6.

We summarize well-known descriptions of the cohomology groups in (4.4), using (4.1).

Lemma 4.2.

(1) We have

Hi(KΣ/K,𝕋(1)){p(i=0)XΣ(L)(i=1)0(i0,1).H^{i}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}\simeq\begin{cases}\mathbb{Z}_{p}&(i=0)\\ X_{\Sigma}(L_{\infty})&(i=1)\\ 0&(i\neq 0,1).\end{cases}

(2) For any finite place vv of KK, we have a natural isomorphism

H2(Kv,𝕋)Zv(L/K).H^{2}(K_{v},\mathbb{T})\simeq Z_{v}(L_{\infty}/K).

(3) We have natural isomorphisms

H1(KΣ/K,𝕋)limK((𝒪K,Σ×))H^{1}(K_{\Sigma}/K,\mathbb{T})\simeq\varprojlim_{K^{\prime}}((\mathcal{O}_{K^{\prime},\Sigma}^{\times})^{\wedge})

and

H1(Kv,𝕋)limK(((KKKv)×))H^{1}(K_{v},\mathbb{T})\simeq\varprojlim_{K^{\prime}}(((K^{\prime}\otimes_{K}K_{v})^{\times})^{\wedge})

for any finite place vv, where ()(-)^{\wedge} denotes the pp-adic completion, KK^{\prime} runs over finite extensions of KK in LL_{\infty}, 𝒪K,Σ\mathcal{O}_{K^{\prime},\Sigma} is the ring of Σ\Sigma-integers of KK^{\prime}, and the inverse limit is taken with respect to the norm maps.

The following is a special phenomenon in our setting. It is essentially [9, Lemma 5.14].

Lemma 4.3.

If vpv\mid p, then pd(H1(Kv,𝕋))<\operatorname{pd}_{\mathcal{R}}(H^{1}(K_{v},\mathbb{T}))<\infty and pd(H2(Kv,𝕋))<\operatorname{pd}_{\mathcal{R}}(H^{2}(K_{v},\mathbb{T}))<\infty.

Proof.

The assertion for H2H^{2} follows from Remark 2.7 and Lemma 4.2(2). Then the assertion for H1H^{1} follows since the complex is perfect. ∎

5. Fitting ideals of Iwasawa modules

In this section, we prove Theorem 1.3. Let SS and Σ\Sigma be as in Theorem 1.3. For readability, we omit L/KL_{\infty}/K from the notation when no confusion can occur; for example, XS=XS(L)X_{S}=X_{S}(L_{\infty}), ZΣS0=ZΣS0(L/K)Z_{\Sigma\setminus S}^{0}=Z_{\Sigma\setminus S}^{0}(L_{\infty}/K), and 𝔏Σ,S=𝔏Σ,S(L/K)\mathfrak{L}_{\Sigma,S}=\mathfrak{L}_{\Sigma,S}(L_{\infty}/K).

5.1. Complex CΣ,SC_{\Sigma,S}

In this subsection, we define and study a complex CΣ,SC_{\Sigma,S} which will play an important role in the proof of Theorem 1.3. The idea behind the definition is the same as [4] in the one-variable case.

Definition 5.1.

Using the second morphism in (4.3), we construct CΣ,S=CΣ,S(L/K)C_{\Sigma,S}=C_{\Sigma,S}(L_{\infty}/K) which fits in a triangle

(5.1) CΣ,SvΣSΓ(Kv,𝕋)Γ(KΣ/K,𝕋(1))[2].C_{\Sigma,S}\to\bigoplus_{v\in\Sigma\setminus S}\mathcal{R}\Gamma(K_{v},\mathbb{T})\to\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}[-2]\to.

Note that, in the direct sum, vv also takes the value 𝔭¯\overline{\mathfrak{p}}.

By the triangles (4.3) and (5.1), the complex CΣ,SC_{\Sigma,S} also fits in the following triangle

(5.2) CΣ,SΓ(KΣ/K,𝕋)vSΓ(Kv,𝕋).C_{\Sigma,S}\to\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T})\to\bigoplus_{v\in S}\mathcal{R}\Gamma(K_{v},\mathbb{T})\to.
Proposition 5.2.

The complex CΣ,SC_{\Sigma,S} is in Dtorperf()D^{\operatorname{perf}}_{\operatorname{tor}}(\mathcal{R}). We have Hi(CΣ,S)=0H^{i}(C_{\Sigma,S})=0 unless i=2i=2, and we have an exact sequence

(5.3) 0XSH2(CΣ,S)ZΣS00.0\to X_{S}\to H^{2}(C_{\Sigma,S})\to Z_{\Sigma\setminus S}^{0}\to 0.
Proof.

By Proposition 4.1(1), the complex CΣ,SC_{\Sigma,S} is in Dperf()D^{\operatorname{perf}}(\mathcal{R}). The triangle (5.1) induces a long exact sequence

(5.4) 0\displaystyle 0 H1(CΣ,S)vΣSH1(Kv,𝕋)H1(KΣ/K,𝕋(1))\displaystyle\to H^{1}(C_{\Sigma,S})\to\bigoplus_{v\in\Sigma\setminus S}H^{1}(K_{v},\mathbb{T})\to H^{1}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}
(5.5) H2(CΣ,S)vΣSH2(Kv,𝕋)H0(KΣ/K,𝕋(1))H3(CΣ,S)0.\displaystyle\to H^{2}(C_{\Sigma,S})\to\bigoplus_{v\in\Sigma\setminus S}H^{2}(K_{v},\mathbb{T})\to H^{0}(K_{\Sigma}/K,\mathbb{T}^{\vee}(1))^{\vee}\to H^{3}(C_{\Sigma,S})\to 0.

Using the validity of the 𝔭¯\overline{\mathfrak{p}}-adic Leopoldt conjecture, we have an exact sequence

0vΣSH1(Kv,𝕋)XΣXS0.0\to\bigoplus_{v\in\Sigma\setminus S}H^{1}(K_{v},\mathbb{T})\to X_{\Sigma}\to X_{S}\to 0.

Then by the descriptions in Lemma 4.2, we obtain Hi(CΣ,S)=0H^{i}(C_{\Sigma,S})=0 for i2i\neq 2 and the exact sequence (5.3). Finally, (5.3) shows that H2(CΣ,S)H^{2}(C_{\Sigma,S}) is torsion, namely CΣ,SC_{\Sigma,S} is in Dtorperf()D^{\operatorname{perf}}_{\operatorname{tor}}(\mathcal{R}). ∎

Corollary 5.3.

We have

Fitt(XS)=Det1(CΣ,S)Fitt[1](ZΣS0).\operatorname{Fitt}_{\mathcal{R}}(X_{S})=\operatorname{Det}_{\mathcal{R}}^{-1}(C_{\Sigma,S})\operatorname{Fitt}_{\mathcal{R}}^{[1]}(Z_{\Sigma\setminus S}^{0}).
Proof.

By the properties of Fittn\operatorname{Fitt}_{\mathcal{R}}^{\langle n\rangle}, the exact sequence (5.3) shows

Fitt0(XS)=Fitt0(H2(CΣ,S))Fitt1(ZΣS0).\operatorname{Fitt}_{\mathcal{R}}^{\langle 0\rangle}(X_{S})=\operatorname{Fitt}_{\mathcal{R}}^{\langle 0\rangle}(H^{2}(C_{\Sigma,S}))\operatorname{Fitt}_{\mathcal{R}}^{\langle 1\rangle}(Z_{\Sigma\setminus S}^{0}).

We observe the following.

  • Fitt0(XS)=Fitt(XS)\operatorname{Fitt}_{\mathcal{R}}^{\langle 0\rangle}(X_{S})=\operatorname{Fitt}_{\mathcal{R}}(X_{S}) by pdΛ(XS)1\operatorname{pd}_{\Lambda}(X_{S})\leq 1 (cf. [9, Proposition 5.15]), where Λ=p[[Gal(L/L)]]\Lambda=\mathbb{Z}_{p}[[\operatorname{Gal}(L_{\infty}/L)]] plays the role of RR^{\prime} in Subsection 2.1.

  • Fitt0(H2(CΣ,S))=Det1(CΣ,S)\operatorname{Fitt}_{\mathcal{R}}^{\langle 0\rangle}(H^{2}(C_{\Sigma,S}))=\operatorname{Det}_{\mathcal{R}}^{-1}(C_{\Sigma,S}) by Theorem 3.1 (actually by Remark 3.8).

  • Fitt1(ZΣS0)=Fitt[1](ZΣS0)\operatorname{Fitt}_{\mathcal{R}}^{\langle 1\rangle}(Z_{\Sigma\setminus S}^{0})=\operatorname{Fitt}_{\mathcal{R}}^{[1]}(Z_{\Sigma\setminus S}^{0}) by Lemma 2.3.

Therefore, the corollary follows. ∎

By Corollary 5.3, the proof of Theorem 1.3 reduces to showing the following.

Theorem 5.4.

We have

Det1(CΣ,S)=𝔏Σ,S.\operatorname{Det}_{\mathcal{R}}^{-1}(C_{\Sigma,S})=\mathfrak{L}_{\Sigma,S}.

In the rest of this section, we prove Theorem 5.4.

5.2. Reduction to special cases

In this subsection, by computing local factors, we reduce the proof of Theorem 5.4 to special cases.

We recall the description of the local factor Det(Γ(Kv,𝕋))\operatorname{Det}_{\mathcal{R}}(\mathcal{R}\Gamma(K_{v},\mathbb{T})). For each finite place vv of KK outside pp, let 𝒯v𝒢\mathcal{T}_{v}\subset\mathcal{G} be the inertia subgroup and σv𝒢/𝒯v\sigma_{v}\in\mathcal{G}/\mathcal{T}_{v} the Frobenius automorphism.

Proposition 5.5 ([4, Proposition 3.13]).

For every finite place vv of KK outside pp, there exists a unique element fvFrac()×f_{v}\in\operatorname{Frac}(\mathcal{R})^{\times} satisfying the following.

(i) We have

Det(Γ(Kv,𝕋))=(fv).\operatorname{Det}_{\mathcal{R}}(\mathcal{R}\Gamma(K_{v},\mathbb{T}))=(f_{v}).

(ii) For any continuous character ε:𝒢p¯×\varepsilon:\mathcal{G}\to\overline{\mathbb{Q}_{p}}^{\times} which is nontrivial on 𝒢v\mathcal{G}_{v}, we have

ε(fv)={1ε(σv)N(v)11ε(σv)if ε is unramified at v;1if ε is ramified at v.\varepsilon(f_{v})=\begin{cases}\frac{1-\varepsilon(\sigma_{v})N(v)^{-1}}{1-\varepsilon(\sigma_{v})}&\text{if $\varepsilon$ is unramified at $v$;}\\ 1&\text{if $\varepsilon$ is ramified at $v$.}\end{cases}
Proof.

This is proved in [4]. Though [4] treats the one-variable case, this proposition is essentially a local statement and indeed we find fvf_{v} in Frac(p[[𝒢v]])\operatorname{Frac}(\mathbb{Z}_{p}[[\mathcal{G}_{v}]]). ∎

Let vv be a finite place of KK outside pp which is unramified in L/KL/K. We denote by KvurK_{v}^{\operatorname{ur}} the maximal unramified extension of KvK_{v}. Then the absolute Galois group of KvurK_{v}^{\operatorname{ur}} acts on 𝕋\mathbb{T} trivially. We define a complex Γ/f(Kv,𝕋)\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T}) by postulating a triangle (cf. [11, (7.1.2)])

Γ(Kvur/Kv,𝕋)InfΓ(Kv,𝕋)Γ/f(Kv,𝕋).\mathcal{R}\Gamma(K_{v}^{\operatorname{ur}}/K_{v},\mathbb{T})\overset{\operatorname{Inf}}{\to}\mathcal{R}\Gamma(K_{v},\mathbb{T})\to\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T})\to.
Proposition 5.6.

For every finite place vv of KK outside pp which is unramified in L/KL/K, we have

Det(Γ/f(Kv,𝕋))=(1σv1)1.\operatorname{Det}_{\mathcal{R}}(\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T}))=(1-\sigma_{v}^{-1})^{-1}.
Proof.

The cohomology groups of Γ/f(Kv,𝕋)\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T}) vanish, except for

H2(Γ/f(Kv,𝕋))Zv/(1σv)H^{2}(\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T}))\simeq Z_{v}\simeq\mathcal{R}/(1-\sigma_{v})

as in Lemma 4.2(2). Thus the assertion follows from Theorem 3.1. ∎

By applying the local computations in Propositions 5.5 and 5.6, we show the following.

Lemma 5.7.

The assertion of Theorem 5.4 does not depend on the choice of Σ\Sigma and SS.

Proof.

First we show the independency from SS. On the algebraic side, by comparing the definitions in Definition 5.1, we obtain

[CΣ,S]=vS{𝔭}[Γ(Kv,𝕋)]+[CΣ,{𝔭}][C_{\Sigma,S}]=-\sum_{v\in S\setminus\{\mathfrak{p}\}}[\mathcal{R}\Gamma(K_{v},\mathbb{T})]+[C_{\Sigma,\{\mathfrak{p}\}}]

in K0(Dtorperf())K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(\mathcal{R})). On the analytic side, by Definition 2.14, we have

(5.6) Σ,S=(vS{𝔭}fv)Σ,{𝔭}\mathcal{L}_{\Sigma,S}=\left(\prod_{v\in S\setminus\{\mathfrak{p}\}}f_{v}\right)\mathcal{L}_{\Sigma,\{\mathfrak{p}\}}

as invertible ideals of \mathcal{R}, where fvf_{v} is as in Proposition 5.5. In particular, the similar relation holds for the ideals 𝔏Σ,S\mathfrak{L}_{\Sigma,S} and 𝔏Σ,{𝔭}\mathfrak{L}_{\Sigma,\{\mathfrak{p}\}}. Therefore, by Proposition 5.5, the assertion for SS is equivalent to that for {𝔭}\{\mathfrak{p}\}.

Next we show the independency from Σ\Sigma. Let Σ\Sigma^{\prime} be a finite set of finite places of KK which contains Σ\Sigma. Then we have a triangle

Γ(KΣ/K,𝕋)Γ(KΣ/K,𝕋)vΣΣΓ/f(Kv,𝕋)\mathcal{R}\Gamma(K_{\Sigma}/K,\mathbb{T})\to\mathcal{R}\Gamma(K_{\Sigma^{\prime}}/K,\mathbb{T})\to\bigoplus_{v\in\Sigma^{\prime}\setminus\Sigma}\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T})\to

by [11, Proposition (7.8.8)]. Combining with the triangles (5.2) for Σ\Sigma and Σ\Sigma^{\prime} with S={𝔭}S=\{\mathfrak{p}\}, we have

[CΣ,{𝔭}]=vΣΣ[Γ/f(Kv,𝕋)]+[CΣ,{𝔭}].[C_{\Sigma^{\prime},\{\mathfrak{p}\}}]=\sum_{v\in\Sigma^{\prime}\setminus\Sigma}[\mathcal{R}\Gamma_{/f}(K_{v},\mathbb{T})]+[C_{\Sigma,\{\mathfrak{p}\}}].

On the analytic side, by Definition 2.14, we have

(5.7) Σ,{𝔭}=(vΣΣ(1σv1))Σ,{𝔭},\mathcal{L}_{\Sigma^{\prime},\{\mathfrak{p}\}}=\left(\prod_{v\in\Sigma^{\prime}\setminus\Sigma}(1-\sigma_{v}^{-1})\right)\mathcal{L}_{\Sigma,\{\mathfrak{p}\}},

and the similar formula for 𝔏Σ,{𝔭}\mathfrak{L}_{\Sigma^{\prime},\{\mathfrak{p}\}} and 𝔏Σ,{𝔭}\mathfrak{L}_{\Sigma,\{\mathfrak{p}\}}. Therefore, by Proposition 5.6, the independency follows. ∎

Lemma 5.8.

Let L/KL^{\prime}_{\infty}/K be an abelian extension which is a finite extension of LL_{\infty}. Then Theorem 5.4 for L/KL^{\prime}_{\infty}/K implies Theorem 5.4 for L/KL_{\infty}/K.

Proof.

By Lemma 5.7, we may assume that the same Σ\Sigma and SS are chosen for both L/KL_{\infty}^{\prime}/K and L/KL_{\infty}/K. We put =p[[Gal(L/K)]]\mathcal{R}^{\prime}=\mathbb{Z}_{p}[[\operatorname{Gal}(L^{\prime}_{\infty}/K)]]. The canonical map \mathcal{R}^{\prime}\to\mathcal{R} induces a map Frac()Frac()\operatorname{Frac}(\mathcal{R}^{\prime})\to\operatorname{Frac}(\mathcal{R}), which we denote by πL/L\pi_{L^{\prime}_{\infty}/L_{\infty}}. By [2, Proposition 1.6.5(3)], we see that CΣ,S(L/K)CΣ,S(L/K)C_{\Sigma,S}(L^{\prime}_{\infty}/K)\otimes_{\mathcal{R}^{\prime}}\mathcal{R}\simeq C_{\Sigma,S}(L_{\infty}/K). This implies that

πL/L(Det1(CΣ,S(L/K)))=Det1(CΣ,S(L/K))\pi_{L^{\prime}_{\infty}/L_{\infty}}(\operatorname{Det}_{\mathcal{R}^{\prime}}^{-1}(C_{\Sigma,S}(L^{\prime}_{\infty}/K)))=\operatorname{Det}_{\mathcal{R}}^{-1}(C_{\Sigma,S}(L_{\infty}/K))

as invertible ideals of \mathcal{R}. On the other hand, it is directly shown by the interpolation property that

πL/L(𝔏Σ,S(L/K))=𝔏Σ,S(L/K).\pi_{L^{\prime}_{\infty}/L_{\infty}}(\mathfrak{L}_{\Sigma,S}(L^{\prime}_{\infty}/K))=\mathfrak{L}_{\Sigma,S}(L_{\infty}/K).

Thus the lemma follows. ∎

5.3. Elliptic units, equivariant main conjecture, and pp-adic LL-function

By Lemmas 5.7 and 5.8, in order to prove Theorem 5.4, we may focus on the following situation:

L=L𝔣=K(𝔣p),Σ=Σ𝔣,S={𝔭}L=L_{\mathfrak{f}}=K(\mathfrak{f}p),\qquad\Sigma=\Sigma_{\mathfrak{f}},\qquad S=\{\mathfrak{p}\}

for a fixed nonzero integral ideal 𝔣\mathfrak{f} of KK which is prime to pp, where the notation is introduced just before Theorem 2.13. We also recall that 𝒢𝔣=Gal(L𝔣,/K)\mathcal{G}_{\mathfrak{f}}=\operatorname{Gal}(L_{\mathfrak{f},\infty}/K) and 𝔣=p[[𝒢𝔣]]\mathcal{R}_{\mathfrak{f}}=\mathbb{Z}_{p}[[\mathcal{G}_{\mathfrak{f}}]]. Let 𝕋𝔣\mathbb{T}_{\mathfrak{f}} be the associated Galois representation of Gal(K¯/K)\operatorname{Gal}(\overline{K}/K) over 𝔣\mathcal{R}_{\mathfrak{f}}.

As in [8, pages 100–101], let ζ(𝔣)Frac(𝔣)𝔣H1(KΣ𝔣/K,𝕋𝔣)\zeta(\mathfrak{f})\in\operatorname{Frac}(\mathcal{R}_{\mathfrak{f}})\otimes_{\mathcal{R}_{\mathfrak{f}}}H^{1}(K_{\Sigma_{\mathfrak{f}}}/K,\mathbb{T}_{\mathfrak{f}}) be the element constructed by the elliptic units, where we use the identification in Lemma 4.2(3). Let Δ𝔣\Delta_{\mathfrak{f}} be the torsion subgroup of 𝒢𝔣\mathcal{G}_{\mathfrak{f}}. Fix a splitting of 𝒢𝔣𝒢𝔣/Δ𝔣p2\mathcal{G}_{\mathfrak{f}}\twoheadrightarrow\mathcal{G}_{\mathfrak{f}}/\Delta_{\mathfrak{f}}\simeq\mathbb{Z}_{p}^{2}, and we put 𝔣=Ker(𝔣p[Δ𝔣])\mathscr{I}_{\mathfrak{f}}=\operatorname{Ker}(\mathcal{R}_{\mathfrak{f}}\twoheadrightarrow\mathbb{Z}_{p}[\Delta_{\mathfrak{f}}]). The denominator of ζ(𝔣)\zeta({\mathfrak{f}}) is quite small; in fact, we have

𝔣:=𝔣ζ(𝔣)H1(KΣ𝔣/K,𝕋𝔣).\mathcal{E}_{\mathfrak{f}}:=\mathscr{I}_{\mathfrak{f}}\zeta(\mathfrak{f})\subset H^{1}(K_{\Sigma_{\mathfrak{f}}}/K,\mathbb{T}_{\mathfrak{f}}).

Moreover, we know that H1(KΣ𝔣/K,𝕋𝔣)/𝔣H^{1}(K_{\Sigma_{\mathfrak{f}}}/K,\mathbb{T}_{\mathfrak{f}})/\mathcal{E}_{\mathfrak{f}} is torsion ([8, Theorem 5.7]) and pd𝔣(𝔣)<\operatorname{pd}_{\mathcal{R}_{\mathfrak{f}}}(\mathcal{E}_{\mathfrak{f}})<\infty.

We define complexes DΣ𝔣,𝔣gl,D𝔭,𝔣locD_{\Sigma_{\mathfrak{f}},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{gl}},D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}} in Dperf(𝔣)D^{\operatorname{perf}}(\mathcal{R}_{\mathfrak{f}}) which admit triangles

𝔣[1]Γ(KΣ𝔣/K,𝕋𝔣)DΣ𝔣,𝔣gl\mathcal{E}_{\mathfrak{f}}[-1]\to\mathcal{R}\Gamma(K_{\Sigma_{\mathfrak{f}}}/K,\mathbb{T}_{\mathfrak{f}})\to D_{\Sigma_{\mathfrak{f}},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{gl}}\to

and

𝔣[1]Γ(K𝔭,𝕋𝔣)D𝔭,𝔣loc.\mathcal{E}_{\mathfrak{f}}[-1]\to\mathcal{R}\Gamma(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})\to D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}}\to.

Then (5.2) induces a triangle

(5.8) CΣ𝔣,{𝔭}DΣ𝔣,𝔣glD𝔭,𝔣loc.C_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}\to D_{\Sigma_{\mathfrak{f}},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{gl}}\to D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}}\to.

By construction, these complexes live in Dtorperf(𝔣)D^{\operatorname{perf}}_{\operatorname{tor}}(\mathcal{R}_{\mathfrak{f}}). Hence we obtain

(5.9) [CΣ𝔣,{𝔭}]=[D𝔭,𝔣loc][DΣ𝔣,𝔣gl]-[C_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}]=[D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}}]-[D_{\Sigma_{\mathfrak{f}},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{gl}}]

in K0(Dtorperf(𝔣))K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(\mathcal{R}_{\mathfrak{f}})).

The global contribution in (5.9) is exactly what the equivariant main conjecture [8] describes.

Theorem 5.9 ([8, Theorem 5.7 and Corollary 5.12]).

We have

Det𝔣(DΣ𝔣,𝔣gl)=𝔣.\operatorname{Det}_{\mathcal{R}_{\mathfrak{f}}}(D_{\Sigma_{\mathfrak{f}},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{gl}})=\mathcal{R}_{\mathfrak{f}}.

In other words (thanks to Theorem 3.1), we have [DΣ𝔣,𝔣gl]=0[D_{\Sigma_{\mathfrak{f}},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{gl}}]=0 in K0(Dtorperf(𝔣))K_{0}(D^{\operatorname{perf}}_{\operatorname{tor}}(\mathcal{R}_{\mathfrak{f}})).

For the local contribution in (5.9), we first observe the connection between elliptic units and the pp-adic LL-functions.

Theorem 5.10.

We have

Fitt𝔣0(H1(K𝔭,𝕋𝔣)/𝔣)=𝔏Σ𝔣,{𝔭}.\operatorname{Fitt}_{\mathcal{R}_{\mathfrak{f}}}^{\langle 0\rangle}(H^{1}(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})/\mathcal{E}_{\mathfrak{f}})=\mathfrak{L}_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}.
Proof.

By [1, Proposition III.1.3], we have an exact sequence of 𝔣ur\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}-modules

0pur^pH1(K𝔭,𝕋𝔣)𝑖𝔣urpurpZ𝔭(L𝔣,/K)(1)0,0\to\mathbb{Z}_{p}^{\operatorname{ur}}\widehat{\otimes}_{\mathbb{Z}_{p}}H^{1}(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})\overset{i}{\to}\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}\to\mathbb{Z}_{p}^{\operatorname{ur}}\otimes_{\mathbb{Z}_{p}}Z_{\mathfrak{p}}(L_{\mathfrak{f},\infty}/K)(1)\to 0,

where ii is constructed via Coleman power series. Moreover, by (the proof of) [1, Theorem II. 4.14], we have i(ζ(𝔣))=12μ𝔣i(\zeta(\mathfrak{f}))=12\mu_{\mathfrak{f}}. Note that the coefficient 1212 comes from the final paragraph of the proof of [1, Theorem II. 4,12], but it does not matter since we are assuming p5p\geq 5.

When we are concerned with Fitt𝔣0\operatorname{Fitt}_{\mathcal{R}_{\mathfrak{f}}}^{\langle 0\rangle}, by Proposition 2.4, we can ignore the pseudo-null modules Z𝔭(L𝔣,/K)(1)Z_{\mathfrak{p}}(L_{\mathfrak{f},\infty}/K)(1) and 𝔣/𝔣p[Δ𝔣]\mathcal{R}_{\mathfrak{f}}/\mathscr{I}_{\mathfrak{f}}\simeq\mathbb{Z}_{p}[\Delta_{\mathfrak{f}}]. Hence we obtain

Fitt𝔣0(H1(K𝔭,𝕋𝔣)/𝔣)𝔣ur=Fitt𝔣ur(𝔣ur/i(ζ(𝔣)))=μ𝔣𝔣ur=Σ𝔣,{𝔭}𝔣ur,\operatorname{Fitt}_{\mathcal{R}_{\mathfrak{f}}}^{\langle 0\rangle}(H^{1}(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})/\mathcal{E}_{\mathfrak{f}})\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}=\operatorname{Fitt}_{\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}}(\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}/i(\zeta(\mathfrak{f})))=\mu_{\mathfrak{f}}\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}}=\mathcal{L}_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}\mathcal{R}^{\operatorname{ur}}_{\mathfrak{f}},

where the final equation is by definition (see Remark 2.15(1)). By Definition 2.14, this completes the proof. ∎

Corollary 5.11.

We have

Det𝔣(D𝔭,𝔣loc)=𝔏Σ𝔣,{𝔭}.\operatorname{Det}_{\mathcal{R}_{\mathfrak{f}}}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})=\mathfrak{L}_{\Sigma_{\mathfrak{f}},\{\mathfrak{p}\}}.
Proof.

By the definition of D𝔭,𝔣locD_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}}, we have

(5.10) H1(D𝔭,𝔣loc)H1(K𝔭,𝕋𝔣)/𝔣,\displaystyle H^{1}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})\simeq H^{1}(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})/\mathcal{E}_{\mathfrak{f}},
(5.11) H2(D𝔭,𝔣loc)H2(K𝔭,𝕋𝔣)Z𝔭(L𝔣,/K),\displaystyle H^{2}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})\simeq H^{2}(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})\simeq Z_{\mathfrak{p}}(L_{\mathfrak{f},\infty}/K),

and the other cohomology groups are zero. By Remark 2.7, we have pd𝔣(H2(D𝔭,𝔣loc))<\operatorname{pd}_{\mathcal{R}_{\mathfrak{f}}}(H^{2}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}}))<\infty, so

Det𝔣(D𝔭,𝔣loc)=Det𝔣(H1(D𝔭,𝔣loc)[1])Det𝔣(H2(D𝔭,𝔣loc)[2]).\operatorname{Det}_{\mathcal{R}_{\mathfrak{f}}}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})=\operatorname{Det}_{\mathcal{R}_{\mathfrak{f}}}\left(H^{1}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})[-1]\right)\operatorname{Det}_{\mathcal{R}_{\mathfrak{f}}}\left(H^{2}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})[-2]\right).

Applying Theorem 3.1 and the equation (2.1), we obtain

Det𝔣(D𝔭,𝔣loc)=Fitt𝔣0(H1(K𝔭,𝕋𝔣)/𝔣).\operatorname{Det}_{\mathcal{R}_{\mathfrak{f}}}(D_{\mathfrak{p},\mathcal{E}_{\mathfrak{f}}}^{\operatorname{loc}})=\operatorname{Fitt}_{\mathcal{R}_{\mathfrak{f}}}^{\langle 0\rangle}(H^{1}(K_{\mathfrak{p}},\mathbb{T}_{\mathfrak{f}})/\mathcal{E}_{\mathfrak{f}}).

Hence Theorem 5.10 implies the corollary. ∎

Now (5.9), Theorem 5.9, and Corollary 5.11 complete the proof of Theorem 5.4. This also completes the proofs of Theorems 1.1 and 1.3.

6. Application to CM elliptic curves

In this section, we prove Theorem 1.4 by using Theorem 5.4. We use the same notation as in Theorem 1.4.

Here we outline the proof of Theorem 1.4. For simplicity, assume L(E[𝔭])=LL(E[\mathfrak{p}])=L in this outline. Then L𝔭=L(E[𝔭])L^{\mathfrak{p}}=L(E[\mathfrak{p}^{\infty}]) is a p\mathbb{Z}_{p}-extension of LL contained in LL_{\infty}.

  • (i)

    Subsection 6.1 is a descent part from XS(L)X_{S}(L_{\infty}) to XS(L𝔭)X_{S}(L^{\mathfrak{p}}). More precisely, from Theorem 5.4 on the complex CΣ,S(L/K)C_{\Sigma,S}(L_{\infty}/K), we determine the ideal

    Fitt𝔭(XS(L𝔭)).\operatorname{Fitt}_{\mathcal{R}^{\mathfrak{p}}}(X_{S}(L^{\mathfrak{p}})).
  • (ii)

    In Subsection 6.2, we connect XS(L𝔭)X_{S}(L^{\mathfrak{p}}) and SelS(E/L𝔭)[𝔭]\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]. More precisely, we show

    SelS(E/L𝔭)[𝔭]Hom(XS(L𝔭),E[𝔭]).\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]\simeq\operatorname{Hom}(X_{S}(L^{\mathfrak{p}}),E[\mathfrak{p}^{\infty}]).
  • (iii)

    Subsection 6.3 is a descent part from SelS(E/L𝔭)[𝔭]\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}] to SelS(E/L)[𝔭]\operatorname{Sel}_{S}(E/L)[\mathfrak{p}^{\infty}]. Indeed, we observe an exact control theorem

    SelS(E/L)[𝔭]SelS(E/L𝔭)[𝔭]Gal(L𝔭/L).\operatorname{Sel}_{S}(E/L)[\mathfrak{p}^{\infty}]\overset{\sim}{\to}\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]^{\operatorname{Gal}(L^{\mathfrak{p}}/L)}.

In Subsection 6.4, we deduce Theorem 1.4 from these results (i), (ii), and (iii).

6.1. Specialization to one-variable

This subsection does not concern an elliptic curve and can deal with general p\mathbb{Z}_{p}-extensions.

As in Definition 2.16, let L¯/L\overline{L_{\infty}}/L be any p\mathbb{Z}_{p}-extension contained in LL_{\infty}. Put ¯=p[[Gal(L¯/K)]]\overline{\mathcal{R}}=\mathbb{Z}_{p}[[\operatorname{Gal}(\overline{L_{\infty}}/K)]]. Let 𝕋¯=p(1)p¯\overline{\mathbb{T}}=\mathbb{Z}_{p}(1)\otimes_{\mathbb{Z}_{p}}\overline{\mathcal{R}} be the associated Galois representation of Gal(K¯/K)\operatorname{Gal}(\overline{K}/K) over ¯\overline{\mathcal{R}}.

Using the perfect complex CΣ,S=CΣ,S(L/K)C_{\Sigma,S}=C_{\Sigma,S}(L_{\infty}/K) in Definition 5.1, we define a perfect complex CΣ,S¯=CΣ,S(L¯/K)\overline{C_{\Sigma,S}}=C_{\Sigma,S}(\overline{L_{\infty}}/K) by

CΣ,S¯=CΣ,S𝕃¯.\overline{C_{\Sigma,S}}=C_{\Sigma,S}\otimes^{\mathbb{L}}_{\mathcal{R}}\overline{\mathcal{R}}.

Then by [2, Proposition 1.6.5(3)], the triangle (5.1) yields a triangle

CΣ,S¯vΣSΓ(Kv,𝕋¯)Γ(KΣ/K,𝕋¯(1))[2].\overline{C_{\Sigma,S}}\to\bigoplus_{v\in\Sigma\setminus S}\mathcal{R}\Gamma(K_{v},\overline{\mathbb{T}})\to\mathcal{R}\Gamma(K_{\Sigma}/K,\overline{\mathbb{T}}^{\vee}(1))^{\vee}[-2]\to.

Exactly as in Proposition 5.2, we obtain the following.

Proposition 6.1.

The complex CΣ,S¯\overline{C_{\Sigma,S}} is in Dtorperf(¯)D^{\operatorname{perf}}_{\operatorname{tor}}(\overline{\mathcal{R}}). We have Hi(CΣ,S¯)=0H^{i}(\overline{C_{\Sigma,S}})=0 unless i=2i=2, and we have an exact sequence

(6.1) 0XS(L¯)H2(CΣ,S¯)ZΣS0(L¯/K)0.0\to X_{S}(\overline{L_{\infty}})\to H^{2}(\overline{C_{\Sigma,S}})\to Z_{\Sigma\setminus S}^{0}(\overline{L_{\infty}}/K)\to 0.

By Theorem 5.4, we deduce the following.

Corollary 6.2.

We have

Fitt¯(XS(L¯))=𝔏Σ,S(L¯/K)Fitt¯[1](ZΣS0(L¯/K)).\operatorname{Fitt}_{\overline{\mathcal{R}}}(X_{S}(\overline{L_{\infty}}))=\mathfrak{L}_{\Sigma,S}(\overline{L_{\infty}}/K)\operatorname{Fitt}_{\overline{\mathcal{R}}}^{[1]}(Z_{\Sigma\setminus S}^{0}(\overline{L_{\infty}}/K)).
Proof.

By Theorem 5.4 and the first assertion in Proposition 6.1, the image 𝔏Σ,S(L¯/K)\mathfrak{L}_{\Sigma,S}(\overline{L_{\infty}}/K) of 𝔏Σ,S(L/K)\mathfrak{L}_{\Sigma,S}(L_{\infty}/K) in Frac(¯)\operatorname{Frac}(\overline{\mathcal{R}}) is indeed a well-defined invertible ideal, and we have

Det¯1(CΣ,S¯)=𝔏Σ,S(L¯/K).\operatorname{Det}_{\overline{\mathcal{R}}}^{-1}(\overline{C_{\Sigma,S}})=\mathfrak{L}_{\Sigma,S}(\overline{L_{\infty}}/K).

The rest of the proof is exactly similar to Corollary 5.3. ∎

Remark 6.3.

While Corollary 6.2 is analogous to Corollary 5.3, we do not have an analogue of Lemma 2.9 for L¯/K\overline{L_{\infty}}/K. Indeed, as in Remark 2.8, the module Z𝔭(L¯/K)Z_{\mathfrak{p}}(\overline{L_{\infty}}/K) is not pseudo-null. What is even worse is that we do not have pd¯(Z𝔭(L¯/K))<\operatorname{pd}_{\overline{\mathcal{R}}}(Z_{\mathfrak{p}}(\overline{L_{\infty}}/K))<\infty in general. Thus the analogue of (2.1) does not hold.

Remark 6.4.

It seems impossible to deduce Corollary 6.2 directly from Theorem 1.3 because we do not have an exact control theorem between XS(L)X_{S}(L_{\infty}) and XS(L¯)X_{S}(\overline{L_{\infty}}). Remark 6.3 also implies that the descent is hard on the right hand sides.

6.2. Iwasawa modules and Selmer groups

First we define the Selmer groups. Recall that EE has two commutative actions by 𝒪K\mathcal{O}_{K} and by the absolute Galois group of KK. In particular, we have a decomposition

E[p]=E[𝔭]E[𝔭¯]E[p^{\infty}]=E[\mathfrak{p}^{\infty}]\oplus E[\overline{\mathfrak{p}}^{\infty}]

as a Galois representation. We will be particularly interested in E[𝔭]E[\mathfrak{p}^{\infty}].

Definition 6.5.

For any abelian extension \mathcal{F} of KK, we define the SS-imprimitive Selmer group SelS(E/)[𝔭]\operatorname{Sel}_{S}(E/\mathcal{F})[\mathfrak{p}^{\infty}] as the kernel of the localization maps

H1(,E[𝔭])vSH1(KKv,E[𝔭]),H^{1}(\mathcal{F},E[\mathfrak{p}^{\infty}])\to\prod_{v\not\in S}H^{1}(\mathcal{F}\otimes_{K}K_{v},E[\mathfrak{p}^{\infty}]),

where vv runs over finite places of KK outside SS (note that v=𝔭¯v=\overline{\mathfrak{p}} is allowed). Then SelS(E/)[𝔭]\operatorname{Sel}_{S}(E/\mathcal{F})[\mathfrak{p}^{\infty}] is a discrete p[[Gal(/K)]]\mathbb{Z}_{p}[[\operatorname{Gal}(\mathcal{F}/K)]]-module.

Consider L𝔭=L(E[𝔭])L^{\mathfrak{p}}=L(E[\mathfrak{p}^{\infty}]), which is a p\mathbb{Z}_{p}-extension of L(E[𝔭])L(E[\mathfrak{p}]). Here the extension L(E[𝔭])/KL(E[\mathfrak{p}])/K is abelian and the degree [L(E[𝔭]):L][L(E[\mathfrak{p}]):L] is prime to pp.

Proposition 6.6.

We have a canonical isomorphism

SelS(E/L𝔭)[𝔭]Hom(XS(L𝔭),E[𝔭]).\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]\simeq\operatorname{Hom}(X_{S}(L^{\mathfrak{p}}),E[\mathfrak{p}^{\infty}]).
Proof.

We know that every finite place v𝔭v\neq\mathfrak{p} of KK has an infinite residue field extension in L𝔭/KL^{\mathfrak{p}}/K. Hence we have an exact sequence

0Hom(XS(L𝔭),p/p)H1(L𝔭,p/p)vSH1(L𝔭KKv,p/p).0\to\operatorname{Hom}(X_{S}(L^{\mathfrak{p}}),\mathbb{Q}_{p}/\mathbb{Z}_{p})\to H^{1}(L^{\mathfrak{p}},\mathbb{Q}_{p}/\mathbb{Z}_{p})\to\prod_{v\not\in S}H^{1}(L^{\mathfrak{p}}\otimes_{K}K_{v},\mathbb{Q}_{p}/\mathbb{Z}_{p}).

Since the action of the absolute Galois group of L𝔭L^{\mathfrak{p}} on E[𝔭]E[\mathfrak{p}^{\infty}] is trivial, by twisting, we obtain the assertion. ∎

6.3. Exact control theorem

Proposition 6.7.

We have a canonical isomorphism

SelS(E/L)[𝔭]SelS(E/L𝔭)[𝔭]Gal(L𝔭/L).\operatorname{Sel}_{S}(E/L)[\mathfrak{p}^{\infty}]\overset{\sim}{\to}\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]^{\operatorname{Gal}(L^{\mathfrak{p}}/L)}.
Proof.

We follow a standard proof of control theorems (see [3], for example). Put Γ=Gal(L𝔭/L)\Gamma=\operatorname{Gal}(L^{\mathfrak{p}}/L). Since we have a natural injective map ΓAut(E[𝔭])p×\Gamma\hookrightarrow\operatorname{Aut}(E[\mathfrak{p}^{\infty}])\simeq\mathbb{Z}_{p}^{\times}, the group Γ\Gamma is pro-cyclic.

Consider the commutative diagram with exact rows

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SelS(E/L)[𝔭]\textstyle{\operatorname{Sel}_{S}(E/L)[\mathfrak{p}^{\infty}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(L,E[𝔭])\textstyle{H^{1}(L,E[\mathfrak{p}^{\infty}])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vSH1(LKKv,E[𝔭])\textstyle{\prod_{v\not\in S}H^{1}(L\otimes_{K}K_{v},E[\mathfrak{p}^{\infty}])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SelS(E/L𝔭)[𝔭]Γ\textstyle{\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(L𝔭,E[𝔭])Γ\textstyle{H^{1}(L^{\mathfrak{p}},E[\mathfrak{p}^{\infty}])^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}vSH1(L𝔭KKv,E[𝔭])Γ\textstyle{\prod_{v\not\in S}H^{1}(L^{\mathfrak{p}}\otimes_{K}K_{v},E[\mathfrak{p}^{\infty}])^{\Gamma}}

Thus it is enough to show that both the middle and the right vertical arrows are isomorphic.

First we deal with the middle arrow. By the inflation-restriction exact sequence, it is enough to show

Hi(Γ,E[𝔭])=0H^{i}(\Gamma,E[\mathfrak{p}^{\infty}])=0

for i=1,2i=1,2. Since the pp-cohomological dimension of Γ\Gamma is 11, we have H2(Γ,E[𝔭])=0H^{2}(\Gamma,E[\mathfrak{p}^{\infty}])=0. We use an exact sequence

0H0(Γ,E[𝔭])E[𝔭]γ1E[𝔭]H1(Γ,E[𝔭])0,0\to H^{0}(\Gamma,E[\mathfrak{p}^{\infty}])\to E[\mathfrak{p}^{\infty}]\overset{\gamma-1}{\to}E[\mathfrak{p}^{\infty}]\to H^{1}(\Gamma,E[\mathfrak{p}^{\infty}])\to 0,

where γ\gamma is a topological generator of Γ\Gamma. Since H0(Γ,E[𝔭])=E(L)[𝔭]H^{0}(\Gamma,E[\mathfrak{p}^{\infty}])=E(L)[\mathfrak{p}^{\infty}] is finite, this sequence shows that H1(Γ,E[𝔭])=0H^{1}(\Gamma,E[\mathfrak{p}^{\infty}])=0.

Second we deal with the right arrow. Let ww be a finite place of L𝔭L^{\mathfrak{p}} which does not lie above {𝔭}\{\mathfrak{p}\}. Then it is enough to show that the restriction map

H1(Lw,E[𝔭])H1((L𝔭)w,E[𝔭])ΓwH^{1}(L_{w},E[\mathfrak{p}^{\infty}])\to H^{1}((L^{\mathfrak{p}})_{w},E[\mathfrak{p}^{\infty}])^{\Gamma_{w}}

is isomorphic, where Γw=Gal((L𝔭)w/Lw)\Gamma_{w}=\operatorname{Gal}((L^{\mathfrak{p}})_{w}/L_{w}). This can be proved in a similar way to the global case above. ∎

6.4. Proof of Theorem 1.4

Recall that χE,𝔭\chi_{E,\mathfrak{p}} denotes the character defined by E[𝔭]E[\mathfrak{p}^{\infty}]. By Corollary 6.2 for the extension L𝔭/KL^{\mathfrak{p}}/K and Proposition 6.6, we obtain

(6.2) Fitt𝔭(SelS(E/L𝔭)[𝔭])\displaystyle\operatorname{Fitt}_{\mathcal{R}^{\mathfrak{p}}}(\operatorname{Sel}_{S}(E/L^{\mathfrak{p}})[\mathfrak{p}^{\infty}]^{\vee}) =χE,𝔭~(Fitt𝔭(XS(L𝔭)))\displaystyle=\widetilde{\chi_{E,\mathfrak{p}}}\left(\operatorname{Fitt}_{\mathcal{R}^{\mathfrak{p}}}(X_{S}(L^{\mathfrak{p}}))\right)
(6.3) =χE,𝔭~(𝔏Σ,S(L𝔭/K)Fitt𝔭[1](ZΣS0(L𝔭/K))).\displaystyle=\widetilde{\chi_{E,\mathfrak{p}}}\left(\mathfrak{L}_{\Sigma,S}(L^{\mathfrak{p}}/K)\operatorname{Fitt}^{[1]}_{\mathcal{R}^{\mathfrak{p}}}(Z_{\Sigma\setminus S}^{0}(L^{\mathfrak{p}}/K))\right).

Combining this with Proposition 6.7 and the functoriality of the Fitting ideals, we obtain Theorem 1.4.

Acknowledgments

I would like to express my gratitude to Takeshi Tsuji and to Masato Kurihara for their support during the research. This research was supported by JSPS KAKENHI Grant Number 17J04650, by JSPS KAKENHI Grant Number 19J00763, and by the Program for Leading Graduate Schools (FMSP) at the University of Tokyo.

References

  • [1] E. de Shalit. Iwasawa theory of elliptic curves with complex multiplication, volume 3 of Perspectives in Mathematics. Academic Press, Inc., Boston, MA, 1987.
  • [2] T. Fukaya and K. Kato. A formulation of conjectures on pp-adic zeta functions in noncommutative Iwasawa theory. In Proceedings of the St. Petersburg Mathematical Society. Vol. XII, volume 219 of Amer. Math. Soc. Transl. Ser. 2, pages 1–85. Amer. Math. Soc., Providence, RI, 2006.
  • [3] R. Greenberg. Iwasawa theory for elliptic curves. In Arithmetic theory of elliptic curves (Cetraro, 1997), volume 1716 of Lecture Notes in Math., pages 51–144. Springer, Berlin, 1999.
  • [4] C. Greither, T. Kataoka, and M. Kurihara. Fitting ideals of pp-ramified iwasawa modules over totally real fields. arXiv:2006.05667, 2020.
  • [5] C. Greither and M. Kurihara. Tate sequences and Fitting ideals of Iwasawa modules. Algebra i Analiz, 27(6):117–149, 2015.
  • [6] C. Greither and M. Kurihara. Fitting ideals of Iwasawa modules and of the dual of class groups. Tokyo J. Math., 39(3):619–642, 2017.
  • [7] C. Greither, M. Kurihara, and H. Tokio. The second syzygy of the trivial gg-module, and an equivariant main conjecture. to appear in the proceedings of Iwasawa 2017, Tokyo, 2020.
  • [8] J. Johnson-Leung and G. Kings. On the equivariant main conjecture for imaginary quadratic fields. J. Reine Angew. Math., 653:75–114, 2011.
  • [9] T. Kataoka. Fitting invariants in equivariant Iwasawa theory. to appear in the proceedings of Iwasawa 2017, Tokyo, 2020.
  • [10] F. F. Knudsen and D. Mumford. The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand., 39(1):19–55, 1976.
  • [11] J. Nekovář. Selmer complexes. Astérisque, 310:viii+559, 2006.
  • [12] J. Ritter and A. Weiss. Toward equivariant Iwasawa theory. Manuscripta Math., 109(2):131–146, 2002.
  • [13] J. Rosenberg. Algebraic KK-theory and its applications, volume 147 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
  • [14] K. Rubin. The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math., 103(1):25–68, 1991.
  • [15] A. Wiles. The Iwasawa conjecture for totally real fields. Ann. of Math. (2), 131(3):493–540, 1990.