This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Present Address: Department of Physics, Arizona State University, Tempe, AZ 85281

Fitting for the energy levels of hydrogen

David M. Jacobs [email protected] Physics Department, Norwich University, Northfield, Vermont 05663, USA Physics Department, Case Western Reserve University, Cleveland, Ohio 44106, USA    Marko Horbatsch [email protected] Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3
Abstract

Atomic hydrogen energy levels calculated to high precision are required to assist experimental researchers working on spectroscopy in the pursuit of testing quantum electrodynamics (QED) and probing for physics beyond the Standard Model. There are two important parts to the problem of computing these levels: an accurate evaluation of contributions from QED and using an accurate value for the proton charge radius as an input. Recent progress on QED corrections to the fine structure, as well as increasing evidence that a proton charge radius in the range of 0.84 fm is favored over the previously adopted larger value in the 0.88 fm range, has advanced the field, yet several state-of-the-art measurements remain in contradiction with this smaller value. Motivated by on-going and future work in this area, we present here a simple parameterization for the energy levels of hydrogen at the level of hyperfine structure using the so-called relativistic Ritz approach. The fitting of a finite sample of QED-generated levels at low to intermediate principal quantum number, nn, gives a generally applicable formula for all values of nn for each distinct angular momentum channel, given in this work up to orbital angular momentum number =30\ell=30. We also provide a simple linear parameterization for the shift in hydrogen energy levels as a function of the proton radius, providing a useful cross check for extant and future measured energy intervals.

I Introduction

Precision measurements of atoms are used for metrological purposes and testing the theory of quantum electrodynamics (QED). This is of current interest also in the context of beyond-the-Standard-Model phenomena, as they could manifest themselves in atomic spectroscopy [1]. The theory of bound-state QED is sufficiently mature that the dominant uncertainty in its predictions for the levels of hydrogen and deuterium is due to the nuclear radius. The proton radius puzzle first appeared in 2010 [2] when muonic hydrogen measurements indicated that rpr_{p} is 4% smaller than had been previously determined, a value near 0.880.88 fm [3]. Over the last decade or so, more scattering and spectroscopic experiments have been performed that suggest a value of rpr_{p} closer to 0.840.84 fm [4]. However, discrepancies remain, such as the results of Fleurbaey et al. [5] and Brandt et al. [6], that indicate a value of rpr_{p} larger than 0.840.84 fm with substantial statistical significance. Thus, the puzzle is not entirely solved; more measurements are planned in the near future, including that of the 1S1/24S1/21S_{1/2}\to 4S_{1/2} interval [7].

The bound-state QED predictions for the energy levels of hydrogen involve a combination of long analytic expressions and numerical results that are cumbersome to use; see, e.g., [8]. Our goal here is to provide a fitting formula that reproduces the bound-state QED predictions for those energy levels to sufficiently high accuracy that bound-state QED need not be used directly. To this end, we use the so-called relativistic Ritz approach, which is a long-distance effective theory describing the bound states of two-particle systems whose binding potential is dominated by the Coulomb interaction [9]. In that effective theory, the energy levels of atomic hydrogen were shown to be

Ec2=me2+mp2+2memp1+(αn)2(me+mp),\frac{E}{c^{2}}=\sqrt{m_{e}^{2}+m_{p}^{2}+\frac{2m_{e}m_{p}}{\sqrt{1+\left(\frac{\alpha}{n_{\star}}\right)^{2}}}}-\Big{(}m_{e}+m_{p}\Big{)}\,, (1)

where α\alpha is the fine-structure constant and the effective quantum number

n=nδ.n_{\star}=n-\delta\,. (2)

The quantum defect, δ\delta, itself depends on the principal quantum number, nn, and accounts for interactions that are shorter in range than the Coulomb interaction; it also depends on the orbital, total electronic, and total system quantum numbers, \ell, jj, and ff, respectively.

To make the numerical analyses more efficient, we Taylor expand equation (1) in small α\alpha up to eighth order111There is no ninth order term so this is sufficient for the accuracy required here. Furthermore, the highest computed QED terms have so far not been computed at higher precision than this [8]. and factor out the Rydberg frequency,

cRmeα2c22h,cR_{\infty}\equiv\frac{m_{e}\alpha^{2}c^{2}}{2h}\,, (3)

allowing us to write

Eh=cR(A2n2+A4n4+A6n6+A8n8),\frac{E}{h}=cR_{\infty}\left(\frac{A_{2}}{n_{\star}^{2}}+\frac{A_{4}}{n_{\star}^{4}}+\frac{A_{6}}{n_{\star}^{6}}+\frac{A_{8}}{n_{\star}^{8}}\right)\,, (4)

where the A2k=𝒪(α2k2)A_{2k}={\cal O}\!\left(\alpha^{2k-2}\right). For the value of the fine-structure constant we use

α1=137.035 999 166(15),\alpha^{-1}=137.035\,999\,166(15)\,, (5)

derived from a recent measurement of the electron g-factor [10]. Together with the mass ratio

mpme=1 836.152 673 349(71),\frac{m_{p}}{m_{e}}=1\,836.152\,673\,349(71)\,, (6)

inferred from spectroscopy of HD+\text{HD}^{+} [11]222This value is consistent with that of Ref. [12]. Both values reported in Refs. [11] and [12] rely on the proton-to-deuteron mass ratio obtained by Fink and Myers [13]., this allows us to determine the constants

A2\displaystyle A_{2} =\displaystyle= 0.999 455 679 424 739(21)\displaystyle-0.999\,455\,679\,424\,739(21) (7)
A4\displaystyle A_{4} =\displaystyle= 3.990 953 7921(87)×105\displaystyle 3.990\,953\,7921(87)\times 10^{-5} (8)
A6\displaystyle A_{6} =\displaystyle= 1.770 774×109\displaystyle-1.770\,774\times 10^{-9} (9)
A8\displaystyle A_{8} =\displaystyle= 8.25×1014.\displaystyle 8.25\times 10^{-14}\,. (10)

There are uncertainties in A6A_{6} and A8A_{8}; however, they are irrelevant at the level of accuracy needed here.

The simplest Ritz-like expansion is posited for the quantum defect, namely a series expansion in terms of the energy eigenvalues, which are assumed to be small relative to some high-energy scale, Λ\Lambda:

δ=δ0+λ1EΛ+λ2(EΛ)2+,\delta=\delta_{0}+\lambda_{1}\frac{E}{\Lambda}+\lambda_{2}\left(\frac{E}{\Lambda}\right)^{2}+\dots\,, (11)

where δ0\delta_{0} and the λi\lambda_{i} are dimensionless coefficients. However, because in this form EE depends implicitly on δ\delta, it is impractical to use for most theoretical or empirical applications. A modified ansatz written as a series in inverse powers of (nδ0)(n-\delta_{0}) is asymptotically (nn\to\infty) equivalent to (11) and is significantly easier to use for data fitting. Analyzing the large-nn behavior of (4) with (11), it may be verified that

δ=δ0+δ2(nδ0)2+δ4(nδ0)4+2δ22(nδ0)5+δ6(nδ0)6+6δ2δ4(nδ0)7+δ8(nδ0)8+4δ42+8δ2δ6(nδ0)9+δ10(nδ0)10+40δ24+10δ4δ6+10δ2δ8(nδ0)11+δ12(nδ0)12+296δ23δ4+6δ62+12δ4δ8+12δ2δ10(nδ0)13+,\delta=\delta_{0}+\frac{\delta_{2}}{\left(n-\delta_{0}\right)^{2}}+\frac{\delta_{4}}{\left(n-\delta_{0}\right)^{4}}+\frac{2\delta_{2}^{2}}{\left(n-\delta_{0}\right)^{5}}+\frac{\delta_{6}}{\left(n-\delta_{0}\right)^{6}}+\frac{6\delta_{2}\delta_{4}}{\left(n-\delta_{0}\right)^{7}}+\frac{\delta_{8}}{\left(n-\delta_{0}\right)^{8}}+\frac{4\delta_{4}^{2}+8\delta_{2}\delta_{6}}{\left(n-\delta_{0}\right)^{9}}\\ +\frac{\delta_{10}}{\left(n-\delta_{0}\right)^{10}}+\frac{-40\delta_{2}^{4}+10\delta_{4}\delta_{6}+10\delta_{2}\delta_{8}}{\left(n-\delta_{0}\right)^{11}}+\frac{\delta_{12}}{\left(n-\delta_{0}\right)^{12}}+\frac{-296\delta_{2}^{3}\delta_{4}+6\delta_{6}^{2}+12\delta_{4}\delta_{8}+12\delta_{2}\delta_{10}}{\left(n-\delta_{0}\right)^{13}}+\dots\,, (12)

where the δi\delta_{i} are free parameters. As shown in the following section, δ0\delta_{0} is small (of order α2\alpha^{2}) and thus 1/(nδ0)1/(n-\delta_{0}) is small for n>1n>1, but we find that the modified defect expansion (12) satisfactorily reproduces energy levels even for n=1n=1 with the inclusion of a sufficient number of δi\delta_{i}.

A truncation of equation (12) is required for any application and we specify the order of the analysis by the highest inverse power of (nδ0)(n-\delta_{0}) included. Actually, truncations made at each successive inverse odd power includes one additional defect parameter. Because there is no 1-1st or 3-3rd term, including terms through (nδ0)1(n-\delta_{0})^{-1} requires only δ0\delta_{0} and is considered lowest order (LO), whereas including terms through (nδ0)3(n-\delta_{0})^{-3} requires both δ0\delta_{0} and δ2\delta_{2} and is considered next-to-lowest order (NLO). At higher orders we use the abbreviation NkLO, where k+1k+1 is equal to the number of defect parameters needed. For practical purposes, as shown below, the largest expansion is needed for SS-states, where we truncate at the level N6LO, thereby including defect parameters up to δ12\delta_{12}. For higher angular momentum eigenstates fewer terms are required to reach the same level of accuracy.

As outlined below, we use a limited number of precisely calculated energy levels of hydrogen employing the most up-to-date bound-state QED calculations [8], and fit them with equation (4) using the defect formula in equation (12). We determine the necessary δi\delta_{i} to reproduce all theoretical energy levels to within their uncertainties and demonstrate the power of our fits by testing our results against higher-nn calculated energies. Because some energies can be predicted with a relative precision that is better than 101310^{-13}, to ensure this level of reproducibility, the parameters A2A_{2} through A8A_{8} are given to an absolute precision of 101510^{-15} and, likewise, we report our fit values of the δi\delta_{i} to the same level of precision.

II Theoretical inputs, uncertainties, and shifts due to the proton radius

According to bound-state QED, the theoretical energy levels of hydrogen can be written as the sum of a gross level structure, fine-structure (FS), and hyperfine-structure (HFS) contribution,

Enjf=cRn2mpmp+me+Enj(FS)+Enjf(HFS),E_{n\ell jf}=-\frac{cR_{\infty}}{n^{2}}\frac{m_{p}}{m_{p}+m_{e}}+E_{n\ell j}^{(\text{FS})}+E_{n\ell jf}^{(\text{HFS})}\,, (13)

where we have chosen units in which Planck’s constant, h=1h=1. The electron’s reduced Compton wavelength, muon-to-electron mass ratio, proton g-factor, and electron magnetic-moment anomaly taken from CODATA-18 [8] are

λ̄e\displaystyle\lambdabar_{e} =\displaystyle= 3.861 592 6796(12)×1013m\displaystyle 3.861\,592\,6796(12)\times 10^{-13}\,\text{m} (14)
mμme\displaystyle\frac{m_{\mu}}{m_{e}} =\displaystyle= 206.768 2830(46)\displaystyle 206.768\,2830(46) (15)
gp\displaystyle g_{p} =\displaystyle= 5.585 694 6893(16)\displaystyle 5.585\,694\,6893(16) (16)
ae\displaystyle a_{e} =\displaystyle= 1.159 652 181 28(18)×103.\displaystyle 1.159\,652\,181\,28(18)\times 10^{-3}\,. (17)

We also use the proton radius inferred from the muonic hydrogen spectroscopy of Antognini et al. 2013 [14],

rp=0.840 87(39)fm.r_{p}=0.840\,87(39)\,\text{fm}\,. (18)

Following the procedure described in [15], the measured 1S1/21S_{1/2} [16] and 2S1/22S_{1/2} [17] hyperfine intervals may be used to the determine Enjf(HFS)E_{n\ell jf}^{(\text{HFS})} to sufficient accuracy such that cRcR_{\infty} may be determined using the measured 1S1/2(f=1)2S1/2(f=1)1S^{(f=1)}_{1/2}\to 2S^{(f=1)}_{1/2} interval from [18]; this completely specifies the theory.

The theoretical uncertainty in the energy levels is dominated by the uncertainty in Enj(FS)E_{n\ell j}^{(\text{FS})}, which affects the levels directly through Enj(FS)E_{n\ell j}^{(\text{FS})} itself and also indirectly through the determination of cRcR_{\infty}. There are 5 uncertainties relevant to Enj(FS)E_{n\ell j}^{(\text{FS})} at the level of precision needed in this work. Four of these are QED uncertainties taken directly from CODATA-18 [8]: the uncertainty in the two-photon correction term B60B_{60} yields δ,0(0.94kHz)/n3\delta_{\ell,0}\left(0.94\,\text{kHz}\right)/n^{3} (a reduction by about 50% compared to CODATA-14); the uncertainty in the three-photon correction term C50C_{50} yields δ,0(0.96kHz)/n3\delta_{\ell,0}\left(0.96\,\text{kHz}\right)/n^{3}; nuclear polarizability uncertainty yields δ,0(0.39kHz)/n3\delta_{\ell,0}\left(0.39\,\text{kHz}\right)/n^{3}; and a radiative recoil uncertainty yields δ,0(0.74kHz)/n3\delta_{\ell,0}\left(0.74\,\text{kHz}\right)/n^{3}.

In addition to the QED uncertainties mentioned above, there is an error in Enj(FS)E_{n\ell j}^{(\text{FS})} due to the proton radius (18) which amounts to δ,0(1.03kHz)/n3\delta_{\ell,0}\left(1.03\,\text{kHz}\right)/n^{3}. Adding all of these errors in quadrature, the overall uncertainty in the fine-structure correction is

δ(Enj(FS))=(1.9kHz)n3δ,0,\delta(E_{n\ell j}^{(\text{FS})})=\frac{\left(1.9\,\text{kHz}\right)}{n^{3}}\delta_{\ell,0}\,, (19)

and it follows that

cR=3 289 84 960 249.1(2.2)kHz,cR_{\infty}=3\,289\,84\,960\,249.1(2.2)\,\text{kHz}\,, (20)

a shift upward of 0.2 kHz compared to the result reported in [15], but well within the uncertainty computed therein. Accounting for the correlated uncertainties in the QED predictions and determination of cRcR_{\infty}, the theoretical uncertainty on any given level is

δ(Enjf)=|1.9kHzn3δ,02.2kHzn2|,\delta(E_{n\ell jf})=\left\lvert\frac{1.9\,\text{kHz}}{n^{3}}\delta_{\ell,0}-\frac{2.2\,\text{kHz}}{n^{2}}\right\rvert\,, (21)

and is therefore below 0.60.6 kHz for all levels.

Lastly, given the potential issue of a remaining proton radius puzzle, we consider the possible systematic implications of a shift away from the value quoted in equation (18). Defining the proton radius shift,

Δrp=rp0.840 87fm,\Delta r_{p}=r_{p}-0.840\,87\,\text{fm}\,, (22)

it follows that the Rydberg frequency shifts by

Δ(cR)rp=3.1kHz(Δrp0.001fm),\Delta\left(cR_{\infty}\right)_{r_{p}}=3.1\,\text{kHz}\left(\frac{\Delta r_{p}}{0.001\,\text{fm}}\right)\,, (23)

and the energy levels shift by

Δ(Enjf)rp=(2.6kHzn3δ,03.1kHzn2)(Δrp0.001fm).\Delta\left(E_{n\ell jf}\right)_{r_{p}}=\left(\frac{2.6\,\text{kHz}}{n^{3}}\delta_{\ell,0}-\frac{3.1\,\text{kHz}}{n^{2}}\right)\left(\frac{\Delta r_{p}}{0.001\,\text{fm}}\right)\,. (24)

Equations (23) and (24) will be utilized below to cross check our results against a selection of experimental results.

III Fitting to theoretical levels of hydrogen

III.1 Overview

For a given orbital angular momentum value, \ell, we generate values of EnjfE_{n\ell jf} using (13), following the same procedure described in Ref. [15] with updated theoretical inputs from Ref. [8]. Values of Bethe logarithms are taken from Refs. [19] and [20]; however, many levels require numerically-computed QED terms, such as B60(nj)B_{60}(n\ell_{j}), which have not been computed (or made publicly available) for all values of nn, \ell, and jj. Therefore, we fit the available values of such terms with simple formulas in terms of inverse powers of nn and interpolate or extrapolate to obtain the needed terms. Our conservative estimates for the interpolation/extrapolation error is far below the theoretical (QED) error.

We compute energy levels from nmin=+1n_{\text{min}}=\ell+1 up to nmax=max(15,+1)n_{\text{max}}=\max{\left(15,\ell+1\right)}, fit them with equation (4) using the defect formula in equation (12), and weight each data point by the inverse square of the theoretical uncertainty given in (21). The fit order, i.e. the number of necessary defect parameters (δi\delta_{i}), is increased until the difference between the fit value and the QED value from (13) falls below the QED error given in equation (21). Some example fits for a subset of =0\ell=0 and =1\ell=1 states are shown in Figures 1 and 2, which show the absolute differences between the relativistic Ritz and QED predictions; differences that do not appear in the figures are below 1Hz1\,\text{Hz}. For these states, we have used QED-predicted levels up to nmax=15n_{\text{max}}=15 for the fits, so all n>15n>15 values represent a true test of the model against QED.

Refer to caption
Figure 1: Absolute differences between fit values of the energy levels from equation (4) and QED theory from equation (13) for Sj=1/2(f=1)S^{(f=1)}_{j=1/2} states. The N4LO\rm N^{4}LO, N5LO\rm N^{5}LO, and N6LO\rm N^{6}LO fit differences are indicated by solid circles, squares, and diamonds, respectively, while the QED theory error is indicated with solid triangles.
Refer to caption
Figure 2: Same as in Figure 1 but for Pj=3/2(f=1)P^{(f=1)}_{j=3/2}.
Refer to caption
Figure 3: Analogous to Figure 1 but for =14\ell=14, j=29/2j=29/2, and f=15f=15. Open diamonds indicate differences for the LO\rm LO fit, while solid triangles indicate the QED theory error. Notably, only one QED-predicted level (n=15n=15) was used to fit for δ0\delta_{0}.

Summarizing the findings presented in Figs. 1 and 2 we make the following observations: The number of fit parameters required, i.e., the order of the expansion in (12) depends on the angular momentum value \ell. This is related physically to the fact that states with >0\ell>0 have a centrifugal barrier preventing the electron from getting close to the proton. For SS-states the complete model as written out in (12) is required, and with increasing integer values of \ell the required order tends to decrease until =9\ell=9, beyond which only δ0\delta_{0} is needed. This trend is partially demonstrated in Fig. 1, where =0\ell=0 and the N6LO\rm N^{6}LO model provides an adequate fit, while in Fig. 2 (=1\ell=1) the N5LO\rm N^{5}LO model is shown to provide sufficient accuracy. In either case, the low-nn levels are reproduced with such precision (<1<1 Hz) that they do not appear in the figures.

The full set of fit parameters for =0\ell=0 and =1\ell=1 states is shown in Table 1, and Tables 5 - 8 in Appendix A present fit parameters for states from =2\ell=2 to =30\ell=30. The number of fit parameters for each combination of ,j\ell,j, and ff never exceeds the number of energy values used for each fit. In fact, for states with 14\ell\geq 14 we have only used one QED-predicted level to fit for the one defect parameter (δ0\delta_{0}) required and have verified our model predictions up to at least n=30n=30; see Fig. 3 for an example in which =14\ell=14. This points to the efficiency of the relativistic Ritz family of models.

   \ell~{}  jj  ff δi\delta_{i} Value/105/10^{-5}
0 12\frac{1}{2} 0 δ0\delta_{0} 2.550 210 06112.550\,210\,0611
δ2\delta_{2} 0.008 375 56210.008\,375\,5621
δ4\delta_{4} 0.031 662 6562-0.031\,662\,6562
δ6\delta_{6} 0.271 465 66390.271\,465\,6639
δ8\delta_{8} 1.493 445 3489-1.493\,445\,3489
δ10\delta_{10} 3.605 726 00793.605\,726\,0079
δ12\delta_{12} 2.356 090 4800-2.356\,090\,4800
0 12\frac{1}{2} 11 δ0\delta_{0} 2.528 610 16672.528\,610\,1667
δ2\delta_{2} 0.008 375 36870.008\,375\,3687
δ4\delta_{4} 0.031 651 9458-0.031\,651\,9458
δ6\delta_{6} 0.271 324 93110.271\,324\,9311
δ8\delta_{8} 1.492 530 9405-1.492\,530\,9405
δ10\delta_{10} 3.603 313 03053.603\,313\,0305
δ12\delta_{12} 2.354 461 9943-2.354\,461\,9943
11 12\frac{1}{2} 0 δ0\delta_{0} 2.669 249 82012.669\,249\,8201
δ2\delta_{2} 0.002 680 79040.002\,680\,7904
δ4\delta_{4} 0.023 483 8927-0.023\,483\,8927
δ6\delta_{6} 0.234 141 16900.234\,141\,1690
δ8\delta_{8} 1.259 283 0776-1.259\,283\,0776
δ10\delta_{10} 2.428 620 81242.428\,620\,8124
11 12\frac{1}{2} 11 δ0\delta_{0} 2.662 051 74482.662\,051\,7448
δ2\delta_{2} 0.002 681 18140.002\,681\,1814
δ4\delta_{4} 0.023 484 0422-0.023\,484\,0422
δ6\delta_{6} 0.234 143 06590.234\,143\,0659
δ8\delta_{8} 1.259 294 3395-1.259\,294\,3395
δ10\delta_{10} 2.428 643 56952.428\,643\,5695
11 32\frac{3}{2} 11 δ0\delta_{0} 1.331 250 52391.331\,250\,5239
δ2\delta_{2} 0.002 680 37580.002\,680\,3758
δ4\delta_{4} 0.023 507 0995-0.023\,507\,0995
δ6\delta_{6} 0.234 315 47760.234\,315\,4776
δ8\delta_{8} 1.259 730 2288-1.259\,730\,2288
δ10\delta_{10} 2.428 830 05682.428\,830\,0568
11 32\frac{3}{2} 22 δ0\delta_{0} 1.328 373 23451.328\,373\,2345
δ2\delta_{2} 0.002 680 43640.002\,680\,4364
δ4\delta_{4} 0.023 507 0852-0.023\,507\,0852
δ6\delta_{6} 0.234 315 30100.234\,315\,3010
δ8\delta_{8} 1.259 729 2077-1.259\,729\,2077
δ10\delta_{10} 2.428 828 05682.428\,828\,0568
Table 1: Relativistic Ritz fitting parameters for =0\ell=0 and =1\ell=1 HFS states of hydrogen. Note that the numbers are small, since they are to be multiplied by 10510^{-5}. For states with 2302\leq\ell\leq 30 see Appendix A.

We observe in Table 1 and Tables 5 - 8 that the behavior of the leading-order defect parameter, δ0\delta_{0}, displays a strong dependence on jj, a weak dependence on \ell, and an even weaker dependence on ff. The scale and variation of δ0\delta_{0} can be understood from the following simplified non-relativistic analysis with fine- and hyperfine structure corrections included. In the me/mp0m_{e}/m_{p}\to 0 limit, we can approximate

Eh\displaystyle\frac{E}{h} \displaystyle\simeq cR(nδ0)2\displaystyle-\frac{cR_{\infty}}{\left(n-\delta_{0}\right)^{2}} (25)
\displaystyle\simeq cR(1n2+2n3δ0),\displaystyle-cR_{\infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{3}}\delta_{0}\right)\,,

where in the second line we have assumed δ0/n1\delta_{0}/n\ll 1, which is verified below. It is well known that fine-structure effects contribute to the energy levels a jj-dependent term that scales333The fine-structure correction that scales as n4n^{-4} is a relativistic kinetic energy correction that is already contained within the relativistic Ritz model – see equation (4). as n3n^{-3},

ΔE(FS)=cRn3α2j+1/2+,\Delta E^{\text{(FS)}}=-\frac{cR_{\infty}}{n^{3}}\frac{\alpha^{2}}{j+1/2}+\dots\,, (26)

so we should expect that

δ0α22j+1.\delta_{0}\simeq\frac{\alpha^{2}}{2j+1}\,. (27)

Hyperfine structure effects contribute to the energy a leading term (see, e.g., [15]) that is approximately

ΔE(HFS){1.42GHz×(f34)n3(=0)0.53GHz×f(f+1)j(j+1)34n3(2+1)j(j+1)(1),\Delta E^{\text{(HFS)}}\simeq\begin{cases}1.42\,\text{GHz}\times\frac{\left(f-\frac{3}{4}\right)}{n^{3}}~{}&(\ell=0)\\ 0.53\,\text{GHz}\times\frac{f(f+1)-j(j+1)-\frac{3}{4}}{n^{3}(2\ell+1)j(j+1)}~{}&(\ell\neq 1)\,,\end{cases} (28)

which means that we should expect deviations in the leading order defect due to HFS effects (at fixed \ell and jj) that are approximately

Δ(δ0)HFS{2.2×107(=0)8.1×108×j2(1).\Delta\left(\delta_{0}\right)_{\text{HFS}}\simeq\begin{cases}2.2\times 10^{-7}~{}~{}&(\ell=0)\\ 8.1\times 10^{-8}\times j^{-2}~{}~{}&(\ell\gg 1)\,.\end{cases} (29)

This accounts for the approximate differences between the δ0\delta_{0} as seen in Table 1 as well as for the rest of the angular momentum channels, up to =30\ell=30, listed in Tables 5 - 8 in Appendix A.

We should, however, point out that the precise values for the defect parameters depend somewhat on which QED-predicted levels are used for the fit. For the states of low-lying \ell we have chosen nmax=15n_{\text{max}}=15, but as an example we reconsider the Sj=1/2(f=0)S^{(f=0)}_{j=1/2} states by fitting to levels up to nmax=16n_{\text{max}}=16. A comparison of the parameters between the nmax=15n_{\text{max}}=15 and nmax=16n_{\text{max}}=16 fits are shown in Table 2. Minor changes in δ0\delta_{0} are observed, but more substantial changes are seen for the higher-order parameters. Nevertheless, either set of parameters could be used to reproduce the QED-predicted energy levels at a comparable level of accuracy.

Parameter nmax=15n_{\text{max}}=15 (×105\times 10^{-5}) nmax=16n_{\text{max}}=16 (×105\times 10^{-5})
δ0\delta_{0} 2.55021006112.5502100611 2.55020998722.5502099872
δ2\delta_{2} 0.00837556210.0083755621 0.00838558690.0083855869
δ4\delta_{4} 0.0316626562-0.0316626562 0.0320835870-0.0320835870
δ6\delta_{6} 0.27146566390.2714656639 0.27866228040.2786622804
δ8\delta_{8} 1.4934453489-1.4934453489 1.5454747300-1.5454747300
δ10\delta_{10} 3.60572600793.6057260079 3.74720376203.7472037620
δ12\delta_{12} 2.3560904800-2.3560904800 2.4523221495-2.4523221495
Table 2: Comparison of fitting parameters for Sj=1/2(f=0)S^{(f=0)}_{j=1/2} states between the nmax=15n_{\text{max}}=15 and nmax=16n_{\text{max}}=16 fit.

Some comments on this procedure are warranted. The defect parameters, δi\delta_{i}, are perhaps best viewed as parameters of a particular fitting function, which is not unique, applied to a particular set of input data, which also is not unique. In fact, there are strong correlations between the parameters; see Table 3 for the correlation matrix between defect parameters for the Sj=1/2(f=0)S^{(f=0)}_{j=1/2} fit. Therefore, these parameters should not be viewed as fundamental, but a given set of them have a practical use in reproducing theoretical energy levels without having to use the QED theory directly. When using these parameters, only the values from a single fit should be used. Furthermore, all reported digits of the parameters up to an absolute precision of 101510^{-15} should conservatively be used to reproduce the levels below the theoretical uncertainty (21).

Table 3: Correlation Matrix for the Sj=1/2(f=0)S^{(f=0)}_{j=1/2} fit.
δ0\delta_{0} δ2\delta_{2} δ4\delta_{4} δ6\delta_{6} δ8\delta_{8} δ10\delta_{10} δ12\delta_{12}
δ0\delta_{0} 1.00000 -0.94504 0.88620 -0.84558 0.82121 -0.80876 0.80445
δ2\delta_{2} -0.94504 1.00000 -0.98466 0.96259 -0.94653 0.93770 -0.93456
δ4\delta_{4} 0.88620 -0.98466 1.00000 -0.99480 0.98747 -0.98274 0.98097
δ6\delta_{6} -0.84558 0.96259 -0.99480 1.00000 -0.99838 0.99641 -0.99557
δ8\delta_{8} 0.82121 -0.94653 0.98747 -0.99838 1.00000 -0.99961 0.99930
δ10\delta_{10} -0.80876 0.93770 -0.98274 0.99641 -0.99961 1.00000 -0.99996
δ12\delta_{12} 0.80445 -0.93456 0.98097 -0.99557 0.99930 -0.99996 1.00000

III.2 Comparison with experiments

As an example application of these fits, in Table 4 we provide a selection of recently measured hydrogen transition frequencies and their corresponding theory predictions using equation (4). Weighting by the number of states, the hyperfine centroid is defined as

Enjcentroid=f(2f+1)Enjff(2f+1)E_{n\ell j}^{\text{centroid}}=\frac{\sum_{f}(2f+1)E_{n\ell jf}}{\sum_{f}(2f+1)} (30)

and the fine-structure centroid is defined as

Encentroid=j(2j+1)Enjcentroidj(2j+1).E_{n\ell}^{\text{centroid}}=\frac{\sum_{j}(2j+1)E_{n\ell j}^{\text{centroid}}}{\sum_{j}(2j+1)}\,. (31)

Following the same rationale leading to equation (21), the theoretical error for any given transition is

δ(ν(niinff))=|1.9kHz(δf,0nf3δi,0ni3)2.2kHz(1nf21ni2)|,\delta(\nu\left(n_{i}\ell_{i}\to n_{f}\ell_{f}\right))=\\ \left\lvert 1.9\,\text{kHz}\left(\frac{\delta_{\ell_{f},0}}{n_{f}^{3}}-\frac{\delta_{\ell_{i},0}}{n_{i}^{3}}\right)-2.2\,\text{kHz}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)\right\rvert\,, (32)

whereas the shift in a transition due to a shift in the proton radius can be easily computed using (24).

In some cases the measurement and theory (columns 2 and 5 of Table 4) disagree. However, the sums of values in columns 5 and 6 are in good agreement with the measured values in column 2, which confirms that these disagreements are still well characterized by shifts in the proton radius.

Interval Measurement [kHz] Inferred rpr_{p} [fm] Ref. This work [kHz] Δ(ν)rp\Delta(\nu)_{r_{p}} [kHz]
ν(1S1/2(f=1)3S1/2(f=1))\nu\left(1S_{1/2}^{(f=1)}\to 3S_{1/2}^{(f=1)}\right) 2 922 742 936 722.4(2.6) 0.877(13)0.877(13) [5] 2 922 742 936 715.3(1)2\,922\,742\,936\,715.3(1) +7.1+7.1
2 922 742 936 716.72(72) 0.8482(38)0.8482(38) [21] 2 922 742 936 715.3(1)2\,922\,742\,936\,715.3(1) +1.4+1.4
ν(2S1/2(f=0)2P1/2(f=1))\nu\left(2S_{1/2}^{(f=0)}\to 2P_{1/2}^{(f=1)}\right) 909 871.7(3.2) 0.833(10)0.833(10) [22] 909 874.1(2)909\,874.1(2) 2.6-2.6
ν(2S4P)FS centroid\nu\left(2S\to 4P\right)_{\text{FS centroid}} 616 520 931 626.8(3.3) 0.8335(95)0.8335(95) [23] 616 520 931 628.6(2)616\,520\,931\,628.6(2) 1.9-1.9
ν(2S1/28D5/2)HFS centroid\nu\left(2S_{1/2}\to 8D_{5/2}\right)_{\text{HFS centroid}} 770 649 561 570.9(2.0) 0.8584(51)0.8584(51) [6] 770 649 561 564.0(3)770\,649\,561\,564.0(3) +6.8+6.8
Table 4: A selection of recently measured frequency (energy) intervals of hydrogen and the proton radius values inferred from them in columns 2 and 3, respectively; in column 5 are the bound-state QED predictions using the fitting formula (4) and defect parameters in Tables 1 and 5, which are based on rp=0.84087(39)fmr_{p}=0.84087(39)\,\text{fm}; in column 6 are the proton radius corrections to column 5 using the proton radius from column 3, according to equation (24).

IV Discussion

Here we have presented a simple fitting formula and parameters, equation (4) and Tables 1, and 5 through 8, that are sufficient to reproduce all hyperfine energy levels of hydrogen up to =30\ell=30. The theoretical uncertainty of any level is given by equation (21) and additional systematic shifts in those levels due to a proton radius that differs from the one determined by Antognini et al. [14] is parameterized in equation (24).

Acknowledgements

We greatly appreciate the initial suggestion of Eric Hessels to pursue this work.

References

  • Safronova et al. [2018] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018), eprint 1710.01833.
  • Pohl et al. [2010] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, et al., Nature 466, 213 (2010).
  • Mohr et al. [2012] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012), URL https://link.aps.org/doi/10.1103/RevModPhys.84.1527.
  • Ubachs [2020] W. Ubachs, Science 370, 1033 (2020).
  • Fleurbaey et al. [2018] H. Fleurbaey, S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F. Biraben, F. Nez, M. Abgrall, and J. Guéna, Physical review letters 120, 183001 (2018).
  • Brandt et al. [2022] A. D. Brandt, S. F. Cooper, C. Rasor, Z. Burkley, A. Matveev, and D. C. Yost, Phys. Rev. Lett. 128, 023001 (2022), eprint 2111.08554.
  • Yzombard et al. [2023] P. Yzombard, S. Thomas, L. Julien, F. Biraben, and F. Nez, The European Physical Journal D 77, 23 (2023).
  • Tiesinga et al. [2021] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 93, 025010 (2021).
  • Jacobs [2022] D. M. Jacobs, Phys. Rev. A 106, 062810 (2022), eprint 2206.02494.
  • Fan et al. [2023] X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, Phys. Rev. Lett. 130, 071801 (2023), URL https://link.aps.org/doi/10.1103/PhysRevLett.130.071801.
  • Patra et al. [2020] S. Patra, M. Germann, J. P. Karr, M. Haidar, L. Hilico, V. I. Korobov, F. M. J. Cozijn, K. S. E. Eikema, W. Ubachs, and J. C. J. Koelemeij, Science 369, 1238 (2020), eprint 2204.10674.
  • Alighanbari et al. [2020] S. Alighanbari, G. Giri, F. L. Constantin, V. Korobov, and S. Schiller, Nature 581, 152 (2020).
  • Fink and Myers [2020] D. J. Fink and E. G. Myers, Physical Review Letters 124, 013001 (2020).
  • Antognini et al. [2013] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, et al., Science 339, 417 (2013).
  • Horbatsch and Hessels [2016] M. Horbatsch and E. A. Hessels, Physical Review A 93, 022513 (2016).
  • Karshenboim [2005] S. G. Karshenboim, Physics reports 422, 1 (2005).
  • Kolachevsky et al. [2009] N. Kolachevsky, A. Matveev, J. Alnis, C. G. Parthey, S. G. Karshenboim, and T. W. Hänsch, Physical Review Letters 102, 213002 (2009).
  • Parthey et al. [2011] C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, et al., Phys.Rev.Lett. 107, 203001 (2011), eprint 1107.3101.
  • Drake and Swainson [1990] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 41, 1243 (1990).
  • Jentschura and Mohr [2005] U. D. Jentschura and P. J. Mohr, Physical Review A 72, 012110 (2005).
  • Grinin et al. [2020] A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl, T. W. Hänsch, and T. Udem, Science 370, 1061 (2020).
  • Bezginov et al. [2019] N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C. Vutha, and E. A. Hessels, Science 365, 1007 (2019).
  • Beyer et al. [2017] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour, D. C. Yost, T. W. Hänsch, N. Kolachevsky, et al., Science 358, 79 (2017).

Appendix A Fit parameters for =2\ell=2 through =30\ell=30

   \ell~{}  jj  ff δi\delta_{i} Value/105/10^{-5}
22 32\frac{3}{2} 11 δ0\delta_{0} 1.332 822 53381.332\,822\,5338
δ2\delta_{2} 0.001 348 07510.001\,348\,0751
δ4\delta_{4} 0.015 166 1825-0.015\,166\,1825
δ6\delta_{6} 0.142 299 30470.142\,299\,3047
δ8\delta_{8} 0.533 020 4369-0.533\,020\,4369
22 32\frac{3}{2} 22 δ0\delta_{0} 1.331 095 40211.331\,095\,4021
δ2\delta_{2} 0.001 348 13690.001\,348\,1369
δ4\delta_{4} 0.015 166 1916-0.015\,166\,1916
δ6\delta_{6} 0.142 299 40350.142\,299\,4035
δ8\delta_{8} 0.533 020 8355-0.533\,020\,8355
22 52\frac{5}{2} 22 δ0\delta_{0} 0.887 597 55440.887\,597\,5544
δ2\delta_{2} 0.001 348 26630.001\,348\,2663
δ4\delta_{4} 0.015 171 2667-0.015\,171\,2667
δ6\delta_{6} 0.142 369 41950.142\,369\,4195
δ8\delta_{8} 0.533 332 7777-0.533\,332\,7777
22 52\frac{5}{2} 33 δ0\delta_{0} 0.886 487 61200.886\,487\,6120
δ2\delta_{2} 0.001 348 29160.001\,348\,2916
δ4\delta_{4} 0.015 171 2659-0.015\,171\,2659
δ6\delta_{6} 0.142 369 41110.142\,369\,4111
δ8\delta_{8} 0.533 332 7469-0.533\,332\,7469
33 52\frac{5}{2} 22 δ0\delta_{0} 0.888 222 96730.888\,222\,9673
δ2\delta_{2} 0.000 781 89220.000\,781\,8922
δ4\delta_{4} 0.008 421 7392-0.008\,421\,7392
δ6\delta_{6} 0.053 242 85850.053\,242\,8585
33 52\frac{5}{2} 33 δ0\delta_{0} 0.887 429 94520.887\,429\,9452
δ2\delta_{2} 0.000 781 91760.000\,781\,9176
δ4\delta_{4} 0.008 421 7409-0.008\,421\,7409
δ6\delta_{6} 0.053 242 87020.053\,242\,8702
33 72\frac{7}{2} 33 δ0\delta_{0} 0.665 695 05010.665\,695\,0501
δ2\delta_{2} 0.000 781 93660.000\,781\,9366
δ4\delta_{4} 0.008 422 7940-0.008\,422\,7940
δ6\delta_{6} 0.053 250 04630.053\,250\,0463
33 72\frac{7}{2} 44 δ0\delta_{0} 0.665 107 75330.665\,107\,7533
δ2\delta_{2} 0.000 781 95050.000\,781\,9505
δ4\delta_{4} 0.008 422 7940-0.008\,422\,7940
δ6\delta_{6} 0.053 250 04640.053\,250\,0464
44 72\frac{7}{2} 33 δ0\delta_{0} 0.666 044 81950.666\,044\,8195
δ2\delta_{2} 0.000 462 11990.000\,462\,1199
δ4\delta_{4} 0.003 176 3090-0.003\,176\,3090
44 72\frac{7}{2} 44 δ0\delta_{0} 0.665 587 94760.665\,587\,9476
δ2\delta_{2} 0.000 462 13380.000\,462\,1338
δ4\delta_{4} 0.003 176 3094-0.003\,176\,3094
44 92\frac{9}{2} 44 δ0\delta_{0} 0.532 550 46000.532\,550\,4600
δ2\delta_{2} 0.000 462 13000.000\,462\,1300
δ4\delta_{4} 0.003 176 5643-0.003\,176\,5643
44 92\frac{9}{2} 55 δ0\delta_{0} 0.532 187 09880.532\,187\,0988
δ2\delta_{2} 0.000 462 13880.000\,462\,1388
δ4\delta_{4} 0.003 176 5643-0.003\,176\,5643
Table 5: Same as Table 1, but for =24\ell=2-4 channels.
   \ell~{}  jj  ff δi\delta_{i} Value/106/10^{-6}
55 92\frac{9}{2} 44 δ0\delta_{0} 5.327 754 7715.327\,754\,771
δ2\delta_{2} 0.003 595 0640.003\,595\,064
δ4\delta_{4} 0.033 558 712-0.033\,558\,712
55 92\frac{9}{2} 55 δ0\delta_{0} 5.324 781 3785.324\,781\,378
δ2\delta_{2} 0.003 595 1520.003\,595\,152
δ4\delta_{4} 0.033 558 714-0.033\,558\,714
55 112\frac{11}{2} 55 δ0\delta_{0} 4.437 876 4184.437\,876\,418
δ2\delta_{2} 0.003 595 1110.003\,595\,111
δ4\delta_{4} 0.033 560 844-0.033\,560\,844
55 112\frac{11}{2} 66 δ0\delta_{0} 4.435 406 5434.435\,406\,543
δ2\delta_{2} 0.003 595 1720.003\,595\,172
δ4\delta_{4} 0.033 560 844-0.033\,560\,844
66 112\frac{11}{2} 55 δ0\delta_{0} 4.439 458 2894.439\,458\,289
δ2\delta_{2} 0.002 004 6140.002\,004\,614
66 112\frac{11}{2} 66 δ0\delta_{0} 4.437 368 1414.437\,368\,141
δ2\delta_{2} 0.002 004 6740.002\,004\,674
66 132\frac{13}{2} 66 δ0\delta_{0} 3.803 869 3693.803\,869\,369
δ2\delta_{2} 0.002 004 5890.002\,004\,589
66 132\frac{13}{2} 77 δ0\delta_{0} 3.802 081 3313.802\,081\,331
δ2\delta_{2} 0.002 004 6340.002\,004\,634
77 132\frac{13}{2} 66 δ0\delta_{0} 3.805 036 1683.805\,036\,168
δ2\delta_{2} 0.001 679 0420.001\,679\,042
77 132\frac{13}{2} 77 δ0\delta_{0} 3.803 486 3743.803\,486\,374
δ2\delta_{2} 0.001 679 0860.001\,679\,086
77 152\frac{15}{2} 77 δ0\delta_{0} 3.328 364 5403.328\,364\,540
δ2\delta_{2} 0.001 679 0190.001\,679\,019
77 152\frac{15}{2} 88 δ0\delta_{0} 3.327 010 2293.327\,010\,229
δ2\delta_{2} 0.001 679 0530.001\,679\,053
88 152\frac{15}{2} 77 δ0\delta_{0} 3.329 264 4563.329\,264\,456
δ2\delta_{2} 0.001 433 6700.001\,433\,670
88 152\frac{15}{2} 88 δ0\delta_{0} 3.328 069 3683.328\,069\,368
δ2\delta_{2} 0.001 433 7040.001\,433\,704
88 172\frac{17}{2} 88 δ0\delta_{0} 2.958 531 3302.958\,531\,330
δ2\delta_{2} 0.001 433 6500.001\,433\,650
88 172\frac{17}{2} 99 δ0\delta_{0} 2.957 469 9922.957\,469\,992
δ2\delta_{2} 0.001 433 6770.001\,433\,677
99 172\frac{17}{2} 88 δ0\delta_{0} 2.959 246 7852.959\,246\,785
δ2\delta_{2} 0.001 242 8390.001\,242\,839
99 172\frac{17}{2} 99 δ0\delta_{0} 2.958 297 0922.958\,297\,092
δ2\delta_{2} 0.001 242 8650.001\,242\,865
99 192\frac{19}{2} 99 δ0\delta_{0} 2.662 667 3152.662\,667\,315
δ2\delta_{2} 0.001 242 8210.001\,242\,821
99 192\frac{19}{2} 1010 δ0\delta_{0} 2.661 813 1582.661\,813\,158
δ2\delta_{2} 0.001 242 8430.001\,242\,843
1010 192\frac{19}{2} 99 δ0\delta_{0} 2.663 256 8922.663\,256\,892
1010 192\frac{19}{2} 1010 δ0\delta_{0} 2.662 484 0282.662\,484\,028
1010 212\frac{21}{2} 1010 δ0\delta_{0} 2.420 605 5092.420\,605\,509
1010 212\frac{21}{2} 1111 δ0\delta_{0} 2.419 903 2592.419\,903\,259
Table 6: Same as Table 1, but for =510\ell=5-10 channels.
  \ell~{}  jj  ff    δ0/106\delta_{0}/10^{-6}
1111 212\frac{21}{2} 1010 2.421 087 6702.421\,087\,670
1111 212\frac{21}{2} 1111 2.420 446 4442.420\,446\,444
1111 232\frac{23}{2} 1111 2.218 881 2552.218\,881\,255
1111 232\frac{23}{2} 1212 2.218 293 6952.218\,293\,695
1212 232\frac{23}{2} 1111 2.219 288 1392.219\,288\,139
1212 232\frac{23}{2} 1212 2.218 747 5512.218\,747\,551
1212 252\frac{25}{2} 1212 2.048 192 5512.048\,192\,551
1212 252\frac{25}{2} 1313 2.047 693 7032.047\,693\,703
1313 252\frac{25}{2} 1212 2.048 540 5212.048\,540\,521
1313 252\frac{25}{2} 1313 2.048 078 6002.048\,078\,600
1313 272\frac{27}{2} 1313 1.901 888 7061.901\,888\,706
1313 272\frac{27}{2} 1414 1.901 459 8901.901\,459\,890
1414 272\frac{27}{2} 1313 1.902 189 7021.902\,189\,702
1414 272\frac{27}{2} 1414 1.901 790 4391.901\,790\,439
1414 292\frac{29}{2} 1414 1.775 092 6051.775\,092\,605
1414 292\frac{29}{2} 1515 1.774 720 0391.774\,720\,039
1515 292\frac{29}{2} 1414 1.775 355 3791.775\,355\,379
1515 292\frac{29}{2} 1515 1.775 006 8331.775\,006\,833
1515 312\frac{31}{2} 1515 1.664 146 2811.664\,146\,281
1515 312\frac{31}{2} 1616 1.663 819 5781.663\,819\,578
1616 312\frac{31}{2} 1515 1.664 377 8411.664\,377\,841
1616 312\frac{31}{2} 1616 1.664 070 9241.664\,070\,924
1616 332\frac{33}{2} 1616 1.566 252 8291.566\,252\,829
1616 332\frac{33}{2} 1717 1.565 964 0111.565\,964\,011
1717 332\frac{33}{2} 1616 1.566 458 4231.566\,458\,423
1717 332\frac{33}{2} 1717 1.566 186 0981.566\,186\,098
1717 352\frac{35}{2} 1717 1.479 236 7081.479\,236\,708
1717 352\frac{35}{2} 1818 1.478 979 5461.478\,979\,546
1818 352\frac{35}{2} 1717 1.479 420 4721.479\,420\,472
1818 352\frac{35}{2} 1818 1.479 177 2011.479\,177\,201
1818 372\frac{37}{2} 1818 1.401 380 3101.401\,380\,310
1818 372\frac{37}{2} 1919 1.401 149 9601.401\,149\,960
1919 372\frac{37}{2} 1818 1.401 545 6351.401\,545\,635
1919 372\frac{37}{2} 1919 1.401 327 0051.401\,327\,005
1919 392\frac{39}{2} 1919 1.331 309 9001.331\,309\,900
1919 392\frac{39}{2} 2020 1.331 102 2231.331\,102\,223
2020 392\frac{39}{2} 1919 1.331 459 2741.331\,459\,274
2020 392\frac{39}{2} 2020 1.331 261 7211.331\,261\,721
2020 412\frac{41}{2} 2020 1.267 912 9241.267\,912\,924
2020 412\frac{41}{2} 2121 1.267 724 7951.267\,724\,795
Table 7: Same as Table 1, but for =1120\ell=11-20 channels.
  \ell~{}  jj  ff    δ0/106\delta_{0}/10^{-6}
2121 412\frac{41}{2} 2020 1.268 048 6161.268\,048\,616
2121 412\frac{41}{2} 2121 1.267 869 2321.267\,869\,232
2121 432\frac{43}{2} 2121 1.210 279 4271.210\,279\,427
2121 432\frac{43}{2} 2222 1.210 108 2101.210\,108\,210
2222 432\frac{43}{2} 2121 1.210 403 2341.210\,403\,234
2222 432\frac{43}{2} 2222 1.210 239 6221.210\,239\,622
2222 452\frac{45}{2} 2222 1.157 657 6341.157\,657\,634
2222 452\frac{45}{2} 2323 1.157 501 1471.157\,501\,147
2323 452\frac{45}{2} 2222 1.157 771 0531.157\,771\,053
2323 452\frac{45}{2} 2323 1.157 621 2201.157\,621\,220
2323 472\frac{47}{2} 2323 1.109 421 0711.109\,421\,071
2323 472\frac{47}{2} 2424 1.109 277 4911.109\,277\,491
2424 472\frac{47}{2} 2323 1.109 525 3561.109\,525\,356
2424 472\frac{47}{2} 2424 1.109 387 6321.109\,387\,632
2424 492\frac{49}{2} 2424 1.065 043 5001.065\,043\,500
2424 492\frac{49}{2} 2525 1.064 911 2941.064\,911\,294
2525 492\frac{49}{2} 2424 1.065 139 7121.065\,139\,712
2525 492\frac{49}{2} 2525 1.065 012 6861.065\,012\,686
2525 512\frac{51}{2} 2525 1.024 079 6461.024\,079\,646
2525 512\frac{51}{2} 2626 1.023 957 5131.023\,957\,513
2626 512\frac{51}{2} 2525 1.024 168 6861.024\,168\,686
2626 512\frac{51}{2} 2626 1.024 051 1591.024\,051\,159
2626 532\frac{53}{2} 2626 0.986 150 1990.986\,150\,199
2626 532\frac{53}{2} 2727 0.986 037 0310.986\,037\,031
2727 532\frac{53}{2} 2626 0.986 232 8410.986\,232\,841
2727 532\frac{53}{2} 2727 0.986 123 7860.986\,123\,786
2727 552\frac{55}{2} 2727 0.950 930 0400.950\,930\,040
2727 552\frac{55}{2} 2828 0.950 824 8840.950\,824\,884
2828 552\frac{55}{2} 2727 0.951 006 9500.951\,006\,950
2828 552\frac{55}{2} 2828 0.950 905 4810.950\,905\,481
2828 572\frac{57}{2} 2828 0.918 138 8930.918\,138\,893
2828 572\frac{57}{2} 2929 0.918 040 9280.918\,040\,928
2929 572\frac{57}{2} 2828 0.918 210 6470.918\,210\,647
2929 572\frac{57}{2} 2929 0.918 116 0000.918\,116\,000
2929 592\frac{59}{2} 2929 0.887 533 8530.887\,533\,853
2929 592\frac{59}{2} 3030 0.887 442 3650.887\,442\,365
3030 592\frac{59}{2} 2929 0.887 600 9530.887\,600\,953
3030 592\frac{59}{2} 3030 0.887 512 4630.887\,512\,463
3030 612\frac{61}{2} 3030 0.858 903 3590.858\,903\,359
3030 612\frac{61}{2} 3131 0.858 817 7270.858\,817\,727
Table 8: Same as Table 1, but for =2130\ell=21-30 channels.