This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fitchean Ignorance and First-order Ignorance:
A Neighborhood Look

Jie Fan
Institute of Philosophy, Chinese Academy of Sciences;
School of Humanities, University of Chinese Academy of Sciences
[email protected]
Abstract

In a seminal work [15], Fine classifies several forms of ignorance, among which are Fitchean ignorance, first-order ignorance, Rumsfeld ignorance, and second-order ignorance. It is shown that there is interesting relationship among some of them, which includes that in 𝐒𝟒{\bf S4}, all higher-order ignorance are reduced to second-order ignorance. This is thought of as a bad consequence by some researchers. It is then natural to ask how to avoid this consequence. We deal with this issue in a much more general framework. In detail, we treat the forms of Fitchean ignorance and first-order ignorance as primitive modalities and study them as first-class citizens under neighborhood semantics, in which Rumsfeld ignorance and second-order ignorance are definable. The main contributions include model-theoretical results such as expressivity and frame definability, and axiomatizations. Last but not least, by updating the neighborhood models via the intersection semantics, we extend the results to the dynamic case of public announcements, which gives us some applications to successful formulas.

Keywords: Fitchean ignorance, first-order ignorance, contingency, accident, unknown truths, expressivity, frame definability, axiomatizations, intersection semantics, successful formulas

1 Introduction

Ignorance has been a hotly discussed theme in epistemology and many other fields since Socrates, who professed ignorance in e.g. the Apology [1]. Just as there has been no consensus on the definition of knowledge, there has been no consensus on the definition of ignorance. Instead, there has been at least three views in the literature: the standard view, the new view, and the logical view.111The terminology ‘the standard view’ is introduced in [25], ‘the new view’ is from [29], whereas the term ‘the logical view’ comes from [5]. The standard view thinks that ignorance is merely the negation of propositional knowledge, the new view thinks that ignorance is the lack of true belief,222For the discussion on the standard and new view, see [20] and references therein. whereas the logical view thinks that ignorance means neither knowing nor knowing not [34, 35, 33, 13, 14, 27].333To the best of our knowledge, the first to evidently investigate ignorance from the logical view is [34] — also see its extended journal version [35], which though includes an unsound transitive axiomatization, as shown in [14, pp. 102–103].

Recently there has been a flurry of research on ignorance. Various forms of ignorance are proposed in the literature, such as pluralistic ignorance [26, 2, 30], circumscriptive ignorance [18], chronological ignorance [32], factive ignorance [19], relative ignorance [16], disjunctive ignorance [10]. In a seminal paper [15], instead of discussing the definition of ignorance, Fine classifies several forms of ignorance, among which are ‘ignorance of (the fact that)’ (also called ‘Fitchean ignorance’ there), ‘first-order ignorance (whether)’, ‘Rumsfeld ignorance’ and ‘second-order ignorance’. One is ignorant of (the fact that) φ\varphi, if φ\varphi is the case but one does not know it. One is (first-order) ignorant whether φ\varphi, if one neither knows φ\varphi nor knows its negation. One is Rumsfeld ignorant of φ\varphi, if one is ignorant of the fact that one is ignorant whether φ\varphi. One is second-order ignorant whether φ\varphi, if one is ignorant whether one is ignorant whether φ\varphi.

As Fine [15] shows, there is interesting relationship among some of the forms. For instance, within the context of the system 𝐒𝟒{\bf S4}, second-order ignorance implies first-order ignorance; second-order ignorance implies Rumsfeld ignorance, and vice versa; one does not know one is Rumsfeld ignorant; one does not know one is second-order ignorant. However, all these results are based on the context of 𝐒𝟒{\bf S4}. It is then natural to ask what relationship among these forms there is in other contexts, based on the following reasons: firstly, although knowledge is usually based on 𝐒𝟒{\bf S4} (for instance in [17]), ignorance is not — it is argued on the new view that ignorance is not not-knowing (e.g. [29]); secondly, in the first explicitly logical studies on ignorance [34, 35], the semantic condition is arbitrary, without any restriction; moreover, in 𝐒𝟒{\bf S4}, all higher-order ignorance are reduced to second-order ignorance — this is called the black hole of ignorance in [15] and a quite problematic phenomenon in [3, p. 1060].

One may easily check that the latter two forms are definable with the former two ones. It is the former two forms that are our focus here.444Fitchean ignorance and first-order ignorance correspond to important metaphysical concepts — accident (or ‘accidental truths’) and contingency, respectively. For the history of the bimodal logic of contingency and accident and the importance of the two metaphysical concepts, we refer to [7] and the reference therein. It is important to distinguish these two forms. For instance, the Fitchean ignorance satisfies the so-called Factivity Principle (that is, if an agent is ignorant of φ\varphi then φ\varphi is true), but the first-order ignorance does not.555In a recent work [3, p. 7], the authors seem to think that ignorance has only one form, and say that ignorance should satisfy Factivity Principle since knowledge does. Moreover, since the operators of the two forms and their duals are not normal, the logic of Fitchean ignorance and first-order ignorance is not normal. As is well known, neighborhood semantics has been a standard semantics tool for non-normal modal logics since its introduction in 1970 [24, 31, 4, 28]. In the current paper, we will investigate the logical properties of the two forms of ignorance and their relationship under the neighborhood semantics. As we will show, there is interesting relationship among first-order ignorance, second-order ignorance, and Rumsfeld ignorance. For example, under any condition, Rumsfeld ignorance implies first-order ignorance, and second-order ignorance plus first-order ignorance implies Rumsfeld ignorance, whereas under the condition (c)(c), Rumsfeld ignorance implies second-order ignorance, and thus Rumsfeld ignorance amounts to second-order ignorance plus first-order ignorance. However, similar to the case for relational semantics [7], the situation may become quite involved if we study the two notions in a unified framework under the neighborhood semantics. For instance, we will be confronted with a difficulty in axiomatizing the bimodal logic, since we have only one neighborhood function to deal with two modal operators uniformly, which makes it hard to find suitable interaction axioms.

The remainder of the paper is organized as follows. After briefly reviewing the syntax and the neighborhood semantics of the bimodal logic of Fitchean ignorance and first-order ignorance and also some related logics (Sec. 2), we compare the relative expressivity (Sec. 3) and investigate the frame definability of the bimodal logic (Sec. 4). We axiomatize the bimodal logic over various classes of neighborhood frames (Sec. 5). By updating the neighborhood models via the intersection semantics, we find suitable reduction axioms and thus reduce the public announcements operators to the bimodal logic, which gives us good applications to successful formulas (Sec. 6), where, as we shall show, any combination of pp, ¬p\neg p, ¬p{\neg\bullet}p, and ¬p{\neg\nabla}p via conjunction (or, via disjunction) is successful under the intersection semantics. Finally, we conclude with some future work in Sec. 7.

2 Syntax and Neighborhood Semantics

This section introduces the languages and their neighborhood semantics involved in this paper.

Fix a nonempty set P of propositional variables, and let pPp\in\textbf{P}. In what follows, ()\mathcal{L}(\Box) is the language of standard epistemic logic, ()\mathcal{L}(\nabla) is the language of the logic of (first-order) ignorance, ()\mathcal{L}(\bullet) is the language of the logic of Fitchean ignorance666()\mathcal{L}(\bullet) is also called ‘the logic of essence and accident’ or ‘the logic of unknown truths’, see e.g. [23, 33]., and (,)\mathcal{L}(\nabla,\bullet) is the language of the bimodal logic of Fitchean ignorance and first-order ignorance. We will mainly focus on (,)\mathcal{L}(\nabla,\bullet). For the sake of simplicity, we only exhibit the single-agent languages, but all our results also apply to multi-agent cases.

Definition 1 (Languages).
()φ::=p¬φφφφ()φ::=p¬φφφφ()φ::=p¬φφφφ(,)φ::=p¬φφφφφ\begin{array}[]{llll}\mathcal{L}(\Box)&\varphi&::=&p\mid\neg\varphi\mid\varphi\land\varphi\mid\Box\varphi\\ \mathcal{L}(\nabla)&\varphi&::=&p\mid\neg\varphi\mid\varphi\land\varphi\mid\nabla\varphi\\ \mathcal{L}(\bullet)&\varphi&::=&p\mid\neg\varphi\mid\varphi\land\varphi\mid\bullet\varphi\\ \mathcal{L}(\nabla,\bullet)&\varphi&::=&p\mid\neg\varphi\mid\varphi\land\varphi\mid\nabla\varphi\mid\bullet\varphi\\ \end{array}

φ\Box\varphi is read “one knows that φ\varphi”, φ\nabla\varphi is read “one is (first-order) ignorant whether φ\varphi”, and φ\bullet\varphi is read “one is ignorant of (the fact that) φ\varphi”, or “φ\varphi is an unknown truth”. In the metaphysical setting, φ\nabla\varphi and φ\bullet\varphi are read, respectively, “it is contingent that φ\varphi” and “it is accidental that φ\varphi”. Among other connectives, φ\Diamond\varphi, Δφ\Delta\varphi, and φ\circ\varphi abbreviate, respectively, ¬¬φ\neg\Box\neg\varphi, ¬φ{\neg\nabla}\varphi, and ¬φ{\neg\bullet}\varphi, read “it is epistemically possible that φ\varphi”, “ one knows whether φ\varphi”, and “one is non-ignorant of φ\varphi”.

Note that the forms of ‘Rumsfeld ignorance (of φ\varphi)’ and ‘second-ignorance (whether φ\varphi)’ can be defined as, respectively, φ\bullet\nabla\varphi and φ\nabla\nabla\varphi.

The above languages are interpreted over neighborhood models.

Definition 2 (Neighborhood structures).

A (neighborhood) model is a triple =S,N,V\mathcal{M}=\langle S,N,V\rangle, where SS is a nonempty set of states (also called ‘points’ or ‘possible worlds’, NN is a neighborhood function from SS to 𝒫(𝒫(S))\mathcal{P}(\mathcal{P}(S)), and VV is a valuation function. A (neighborhood) frame is a model without a valuation; in this case, we say that the model is based on the frame. A pointed model is a pair of a model with a point in it. Given an sSs\in S, an element of N(s)N(s) is called ‘a neighborhood of ss’.

The following list of neighborhood properties come from [12, Def. 3].

Definition 3 (Neighborhood properties).

Let =S,N\mathcal{F}=\langle S,N\rangle be a frame, and \mathcal{M} be a model based on \mathcal{F}. Let sSs\in S and X,YSX,Y\subseteq S. We define various neighborhood properties as follows.

  • (n)(n): N(s)N(s) contains the unit, if SN(s)S\in N(s).

  • (r)(r): N(s)N(s) contains its core, if N(s)N(s)\bigcap N(s)\in N(s).

  • (i)(i): N(s)N(s) is closed under intersections, if X,YN(s)X,Y\in N(s) implies XYN(s)X\cap Y\in N(s).

  • (s)(s): N(s)N(s) is supplemented, or closed under supersets, if XN(s)X\in N(s) and XYSX\subseteq Y\subseteq S implies YN(s)Y\in N(s).

  • (c)(c): N(s)N(s) is closed under complements, if XN(s)X\in N(s) implies S\XN(s)S\backslash X\in N(s).777The property (c)(c) provides a new perspective for ()\mathcal{L}(\nabla), see [6] for details.

  • (d)(d): XN(s)X\in N(s) implies S\XN(s)S\backslash X\notin N(s).

  • (t)(t): XN(s)X\in N(s) implies sXs\in X.

  • (b)(b): sXs\in X implies {uSS\XN(u)}N(s)\{u\in S\mid S\backslash X\notin N(u)\}\in N(s).

  • (4)(4): XN(s)X\in N(s) implies {uSXN(u)}N(s)\{u\in S\mid X\in N(u)\}\in N(s).

  • (5)(5): XN(s)X\notin N(s) implies {uSXN(u)}N(s)\{u\in S\mid X\notin N(u)\}\in N(s).

The function NN possesses such a property, if for all sSs\in S, N(s)N(s) has the property. \mathcal{F} (and \mathcal{M}) has a property, if NN has. In particular, we say that \mathcal{F} (and \mathcal{M}) is monotone, if NN has (s)(s). \mathcal{F} (and \mathcal{M}) is a quasi-filter, if NN has (i)(i) and (s)(s); \mathcal{F} (and \mathcal{M}) is a filter, if NN has also (n)(n).

Also, in what follows, we will use n\mathbb{C}_{n} to denote the class of (n)(n)-models, and similarly for r\mathbb{C}_{r}, etc. We use all\mathbb{C}_{\text{all}} for the class of all neighborhood models.

Definition 4 (Semantics).

Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be a model. Given a pointed model (,s)(\mathcal{M},s), the truth condition of formulas is defined recursively as follows:

,spsV(p),s¬φ,sφ,sφψ,sφ and ,sψ,sφφN(s),sφφN(s) and S\φN(s),sφ,sφ and φN(s)\begin{array}[]{|lll|}\hline\cr\mathcal{M},s\vDash p&\iff&s\in V(p)\\ \mathcal{M},s\vDash\neg\varphi&\iff&\mathcal{M},s\nvDash\varphi\\ \mathcal{M},s\vDash\varphi\land\psi&\iff&\mathcal{M},s\vDash\varphi\text{ and }\mathcal{M},s\vDash\psi\\ \mathcal{M},s\vDash\Box\varphi&\iff&\varphi^{\mathcal{M}}\in N(s)\\ \mathcal{M},s\vDash\nabla\varphi&\iff&\varphi^{\mathcal{M}}\notin N(s)\text{ and }S\backslash\varphi^{\mathcal{M}}\notin N(s)\\ \mathcal{M},s\vDash\bullet\varphi&\iff&\mathcal{M},s\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\notin N(s)\\ \hline\cr\end{array}

where φ\varphi^{\mathcal{M}} denotes the truth set of φ\varphi in \mathcal{M}, in symbols, φ={sS,sφ}\varphi^{\mathcal{M}}=\{s\in S\mid\mathcal{M},s\vDash\varphi\}; given a set XSX\subseteq S, S\XS\backslash X denotes the complement of XX with respect to SS.

We say that φ\varphi is true in (,s)(\mathcal{M},s), if ,sφ\mathcal{M},s\vDash\varphi; we say that φ\varphi is valid on a model \mathcal{M}, notation: φ\mathcal{M}\vDash\varphi, if for all ss in \mathcal{M}, we have ,sφ\mathcal{M},s\vDash\varphi; we say that φ\varphi is valid on a frame \mathcal{F}, notation: φ\mathcal{F}\vDash\varphi, if for all \mathcal{M} based on \mathcal{F}, we have φ\mathcal{M}\vDash\varphi; we say that φ\varphi is valid over a class 𝔽\mathbb{F} of frames, notation: 𝔽φ\mathbb{F}\vDash\varphi, if for all \mathcal{F} in 𝔽\mathbb{F}, we have φ\mathcal{F}\vDash\varphi; we say that φ\varphi is satisfiable over the class 𝔽\mathbb{F}, if 𝔽¬φ\mathbb{F}\nvDash\neg\varphi. Similar notions go to a set of formulas.

For the sake of reference, we also list the semantics of the aforementioned defined modalities as follows:

,sφS\φN(s),sΔφφN(s) or S\φN(s),sφ,sφ implies φN(s).\begin{array}[]{lll}\mathcal{M},s\vDash\Diamond\varphi&\iff&S\backslash\varphi^{\mathcal{M}}\notin N(s)\\ \mathcal{M},s\vDash\Delta\varphi&\iff&\varphi^{\mathcal{M}}\in N(s)\text{ or }S\backslash\varphi^{\mathcal{M}}\in N(s)\\ \mathcal{M},s\vDash\circ\varphi&\iff&\mathcal{M},s\vDash\varphi\text{ implies }\varphi^{\mathcal{M}}\in N(s).\\ &\end{array}

3 Expressivity

In this section, we compare the relative expressivity of (,)\mathcal{L}(\nabla,\bullet) and other languages introduced before, over various classes of neighborhood models. Some expressivity results over the class of relational models have been obtained in [7] and [9].

To make our presentation self-contained, we introduce some necessary technical terms.

Definition 5.

Let 1\mathcal{L}_{1} and 2\mathcal{L}_{2} be two languages that are interpreted on the same class of models \mathbb{C}, where \mathbb{C} ranges over classes of models which are models for 1\mathcal{L}_{1} and for 2\mathcal{L}_{2}.

  • 2\mathcal{L}_{2} is at least as expressive as 1\mathcal{L}_{1} over \mathbb{C}, notation: 12[]\mathcal{L}_{1}\preceq\mathcal{L}_{2}[\mathbb{C}], if for all φ1\varphi\in\mathcal{L}_{1}, there exists ψ2\psi\in\mathcal{L}_{2} such that for all \mathcal{M}\in\mathbb{C} and all ss in \mathcal{M}, we have that ,sφ\mathcal{M},s\vDash\varphi iff ,sψ\mathcal{M},s\vDash\psi.

  • 1\mathcal{L}_{1} and 2\mathcal{L}_{2} are equally expressive over \mathbb{C}, notation: 12[]\mathcal{L}_{1}\equiv\mathcal{L}_{2}[\mathbb{C}], if 12[]\mathcal{L}_{1}\preceq\mathcal{L}_{2}[\mathbb{C}] and 21[]\mathcal{L}_{2}\preceq\mathcal{L}_{1}[\mathbb{C}].

  • 1\mathcal{L}_{1} is less expressive than 2\mathcal{L}_{2} over \mathbb{C}, notation: 12[]\mathcal{L}_{1}\prec\mathcal{L}_{2}[\mathbb{C}], if 12[]\mathcal{L}_{1}\preceq\mathcal{L}_{2}[\mathbb{C}] but 21[]\mathcal{L}_{2}\not\preceq\mathcal{L}_{1}[\mathbb{C}].

  • 1\mathcal{L}_{1} and 2\mathcal{L}_{2} are incomparable in expressivity over \mathbb{C}, notation: 12[]\mathcal{L}_{1}\asymp\mathcal{L}_{2}[\mathbb{C}], if 12[]\mathcal{L}_{1}\not\preceq\mathcal{L}_{2}[\mathbb{C}] and 21[]\mathcal{L}_{2}\not\preceq\mathcal{L}_{1}[\mathbb{C}].

It turns out that over the class of (c)(c)-models and the class of (t)(t)-models, ()\mathcal{L}(\nabla) is at least as expressive as ()\mathcal{L}(\bullet) (Prop. 10 and Prop. 11), whereas ()\mathcal{L}(\nabla) is not at least as expressive as ()\mathcal{L}(\bullet) over the class of models possessing either of other eight neighborhood properties (Prop. 6-Prop. 8).

Proposition 6.

()()[]\mathcal{L}(\bullet)\not\preceq\mathcal{L}(\nabla)[\mathbb{C}], where {all,r,i,s,d}\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{d}\}.

Proof.

Consider the following models, which comes from [12, Prop. 2]. An arrow from a state xx to a set XX means that XX is a neighborhood of xx (Idem for other arrows).

{t}\textstyle{\{t\}}{s,t}\textstyle{\{s,t\}}s:p\textstyle{s:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t:\neg p}\textstyle{\mathcal{M}}            {t}\textstyle{\{t^{\prime}\}}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}s:p\textstyle{s^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:p\textstyle{t^{\prime}:p}\textstyle{\mathcal{M}^{\prime}}

It has been shown in [12, Prop. 2] that both \mathcal{M} and \mathcal{M}^{\prime} satisfy (r)(r), (i)(i), (s)(s) and (d)(d), and (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) cannot be distinguished by ()\mathcal{L}(\nabla).

However, both pointed models can be distinguished by an ()\mathcal{L}(\bullet). To see this, note that p={s}p^{\mathcal{M}}=\{s\} and {s}N(s)\{s\}\notin N(s), and thus ,sp\mathcal{M},s\vDash\bullet p, whereas ,sp\mathcal{M}^{\prime},s^{\prime}\nvDash\bullet p, as p={s,t}N(s)p^{\mathcal{M}^{\prime}}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(s^{\prime}). ∎

Proposition 7.

()()[]\mathcal{L}(\bullet)\not\preceq\mathcal{L}(\nabla)[\mathbb{C}], where {n,b}\mathbb{C}\in\{\mathbb{C}_{n},\mathbb{C}_{b}\}.

Proof.

Consider the following models, which comes from [12, Prop. 3]:

\textstyle{\emptyset}{s}\textstyle{\{s\}}s:p\textstyle{s:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s,t\}}t:¬p\textstyle{t:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{t}\textstyle{\{t\}}\textstyle{\mathcal{M}}            \textstyle{\emptyset}{s}\textstyle{\{s^{\prime}\}}s:p\textstyle{s^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}t:p\textstyle{t^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{t}\textstyle{\{t^{\prime}\}}\textstyle{\mathcal{M}^{\prime}}

It has been shown in [12, Prop. 3] that both \mathcal{M} and \mathcal{M}^{\prime} satisfy (n)(n) and (b)(b), and (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) cannot be distinguished by ()\mathcal{L}(\nabla).

However, both pointed models can be distinguished by an ()\mathcal{L}(\bullet). To see this, note that p={s}p^{\mathcal{M}}=\{s\} and {s}N(s)\{s\}\notin N(s), and thus ,sp\mathcal{M},s\vDash\bullet p, whereas ,sp\mathcal{M}^{\prime},s^{\prime}\nvDash\bullet p, as p={s,t}N(s)p^{\mathcal{M}^{\prime}}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(s^{\prime}). ∎

Proposition 8.

()()[]\mathcal{L}(\bullet)\not\preceq\mathcal{L}(\nabla)[\mathbb{C}], where {4,5}\mathbb{C}\in\{\mathbb{C}_{4},\mathbb{C}_{5}\}.

Proof.

Consider the following models, which is a revision of the figures in [12, Prop. 4]:

\textstyle{\emptyset}{s}\textstyle{\{s\}}{t}\textstyle{\{t\}}{s,t}\textstyle{\{s,t\}}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}{s}\textstyle{\{s^{\prime}\}}{t}\textstyle{\{t^{\prime}\}}\textstyle{\emptyset}s:¬p\textstyle{s:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s:¬p\textstyle{s^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{M}}\textstyle{\mathcal{M}^{\prime}}

Firstly, \mathcal{M} and \mathcal{M}^{\prime} satisfy (4)(4) and (5)(5). In what follows we only show the claim for \mathcal{M}; the proof for the case \mathcal{M}^{\prime} is analogous.

  • -

    For (4)(4): Suppose that XN(s)X\in N(s). Then X=X=\emptyset or X={s}X=\{s\}. Notice that {uXN(u)}={s}N(s)\{u\mid X\in N(u)\}=\{s\}\in N(s). Similarly, we can demonstrate that (4)(4) holds for N(t)N(t).

  • -

    For (5)(5): Assume that XN(s)X\notin N(s). Then X={t}X=\{t\} or X={s,t}X=\{s,t\}. Notice that {uXN(u)}={s}N(s)\{u\mid X\notin N(u)\}=\{s\}\in N(s). A similar argument goes for N(t)N(t).

Secondly, (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) cannot be distinguished by ()\mathcal{L}(\nabla), that is to say, for all φ()\varphi\in\mathcal{L}(\nabla), we have that ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi. The proof goes by induction on φ\varphi, where the only nontrivial case is φ\nabla\varphi. By semantics, we have the following equivalences:

,sφφN(s) and (¬φ)N(s)φ{,{s}} and (¬φ){,{s}}φ and φ{s} and (¬φ) and (¬φ){s}φ and φ{s} and φ{s,t} and φ{t}false\begin{array}[]{ll}&\mathcal{M},s\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}}\notin N(s)\text{ and }(\neg\varphi)^{\mathcal{M}}\notin N(s)\\ \iff&\varphi^{\mathcal{M}}\notin\{\emptyset,\{s\}\}\text{ and }(\neg\varphi)^{\mathcal{M}}\notin\{\emptyset,\{s\}\}\\ \iff&\varphi^{\mathcal{M}}\neq\emptyset\text{ and }\varphi^{\mathcal{M}}\neq\{s\}\text{ and }(\neg\varphi)^{\mathcal{M}}\neq\emptyset\text{ and }(\neg\varphi)^{\mathcal{M}}\neq\{s\}\\ \iff&\varphi^{\mathcal{M}}\neq\emptyset\text{ and }\varphi^{\mathcal{M}}\neq\{s\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\text{ and }\varphi^{\mathcal{M}}\neq\{t\}\\ \iff&\text{false}\\ \end{array}
,sφφN(s) and (¬φ)N(s)φ{{s,t},{s}} and (¬φ){{s,t},{s}}φ{s,t} and φ{s} and (¬φ){s,t} and (¬φ){s}φ{s,t} and φ{s} and φ and φ{t}false\begin{array}[]{ll}&\mathcal{M}^{\prime},s^{\prime}\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\text{ and }(\neg\varphi)^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin\{\{s^{\prime},t^{\prime}\},\{s^{\prime}\}\}\text{ and }(\neg\varphi)^{\mathcal{M}^{\prime}}\notin\{\{s^{\prime},t^{\prime}\},\{s^{\prime}\}\}\\ \iff&\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }(\neg\varphi)^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }(\neg\varphi)^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\\ \iff&\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\emptyset\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{t^{\prime}\}\\ \iff&\text{false}\\ \end{array}

In either case, the penultimate line of the proof merely states that φ\varphi cannot be interpreted on the related model: its denotation is not one of all possible subsets of the domain. We conclude that ,sφ\mathcal{M},s\vDash\nabla\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\nabla\varphi.

Finally, we show that (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) can be distinguished by ()\mathcal{L}(\bullet). To see this, note that (¬p)={s,t}N(s)(\neg p)^{\mathcal{M}}=\{s,t\}\notin N(s), and thus ,s¬p\mathcal{M},s\vDash\bullet\neg p. However, since (¬p)={s,t}N(s)(\neg p)^{\mathcal{M}^{\prime}}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(s^{\prime}), we have ,s¬p\mathcal{M},s\nvDash\bullet\neg p. ∎

Remark 9.

The reader may ask whether the figure in [12, Prop. 4] (as below) applies to the above proposition.

\textstyle{\emptyset}{s,t}\textstyle{\{s,t\}}{s}\textstyle{\{s\}}{t}\textstyle{\{t\}}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}{s}\textstyle{\{s^{\prime}\}}{t}\textstyle{\{t^{\prime}\}}\textstyle{\emptyset}s:¬p\textstyle{s:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s:¬p\textstyle{s^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{M}}\textstyle{\mathcal{M}^{\prime}}

The answer is negative. This is because the pointed models (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) in this figure cannot be distinguished by ()\mathcal{L}(\bullet) either. To see this, note that ,sφ\mathcal{M},s\vDash\bullet\varphi iff ,sφ\mathcal{M},s\vDash\varphi and φN(s)\varphi^{\mathcal{M}}\notin N(s), which by the construction of N(s)N(s) implies that sφs\in\varphi^{\mathcal{M}} and φ{s}\varphi^{\mathcal{M}}\neq\{s\} and φ{s,t}\varphi^{\mathcal{M}}\neq\{s,t\}, which is impossible. It then follows that ,sφ\mathcal{M},s\nvDash\bullet\varphi. A similar argument can show that ,sφ\mathcal{M}^{\prime},s^{\prime}\nvDash\bullet\varphi. Therefore, ,sφ\mathcal{M},s\vDash\bullet\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\bullet\varphi.

Proposition 10.

()()[c]\mathcal{L}(\bullet)\preceq\mathcal{L}(\nabla)[\mathbb{C}_{c}].

Proof.

It suffices to show that φ(φφ)\bullet\varphi\leftrightarrow(\varphi\land\nabla\varphi) is valid over the class of (c)(c)-models. Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be a (c)(c)-model and sSs\in S. Suppose that ,sφ\mathcal{M},s\vDash\bullet\varphi, it remains only to prove that ,sφφ\mathcal{M},s\vDash\varphi\land\nabla\varphi. By supposition, we have ,sφ\mathcal{M},s\vDash\varphi and φN(s)\varphi^{\mathcal{M}}\notin N(s). We have also S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s): otherwise, by (c)(c), S\(S\φ)N(s)S\backslash(S\backslash\varphi^{\mathcal{M}})\in N(s), that is, φN(s)\varphi^{\mathcal{M}}\in N(s): a contradiction. Thus ,sφ\mathcal{M},s\vDash\nabla\varphi, and therefore ,sφφ\mathcal{M},s\vDash\varphi\land\nabla\varphi. The converse is clear from the semantics. ∎

Proposition 11.

()()[t]\mathcal{L}(\bullet)\preceq\mathcal{L}(\nabla)[\mathbb{C}_{t}].

Proof.

It suffices to show that φ(φφ)\bullet\varphi\leftrightarrow(\varphi\land\nabla\varphi) over the class of (t)(t)-models. The proof is almost the same as that in Prop. 10, except that S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s) (that is, (¬φ)N(s)(\neg\varphi)^{\mathcal{M}}\notin N(s)) is obtained from ,sφ\mathcal{M},s\vDash\varphi and the property (t)(t). ∎

Conversely, on the class of (c)(c)-models and the class of (t)(t)-models, ()\mathcal{L}(\bullet) is at least as expressive as ()\mathcal{L}(\nabla) (Prop. 15 and Prop. 16), whereas on the class of models possessing either of other eight neighborhood properties, ()\mathcal{L}(\bullet) is not at least as expressive as ()\mathcal{L}(\nabla) (Prop. 12-Prop. 14). As a corollary, on the class of (c)(c)-models and the class of (t)(t)-models, ()\mathcal{L}(\nabla), ()\mathcal{L}(\bullet), and (,)\mathcal{L}(\nabla,\bullet) are equally expressive, whereas over the class of models possessing the eight neighborhood properties in question, ()\mathcal{L}(\nabla) and ()\mathcal{L}(\bullet) are both less expressive than (,)\mathcal{L}(\nabla,\bullet) (Coro. 17).

Proposition 12.

()()[]\mathcal{L}(\nabla)\not\preceq\mathcal{L}(\bullet)[\mathbb{C}], where {all,n,r,i,s,d,b}\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{n},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{d},\mathbb{C}_{b}\}.

Proof.

Consider the following models:

{t}\textstyle{\{t^{\prime}\}}\textstyle{\mathcal{M}}s:¬p\textstyle{s:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s,t\}}t:p\textstyle{t:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{M}^{\prime}}s:¬p\textstyle{s^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}t:p\textstyle{t^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

It is straightforward to check that both \mathcal{M} and \mathcal{M}^{\prime} satisfy (n)(n), (r)(r), (i)(i), (s)(s), and (d)(d). In what follows, we show that \mathcal{M} and \mathcal{M}^{\prime} both have the property (b)(b).

  • -

    For \mathcal{M}: suppose that sXs\in X. Then X={s}X=\{s\} or X={s,t}X=\{s,t\}. This implies that {uS\XN(u)}={s,t}N(s)\{u\mid S\backslash X\notin N(u)\}=\{s,t\}\in N(s). Similarly, we can show that (b)(b) holds for N(t)N(t).

  • -

    For \mathcal{M}^{\prime}: assume that sXs^{\prime}\in X. Then X={s}X=\{s^{\prime}\} or X={s,t}X=\{s^{\prime},t^{\prime}\}. If X={s}X=\{s^{\prime}\}, then {uS\XN(u)}={t}N(s)\{u\mid S^{\prime}\backslash X\notin N^{\prime}(u)\}=\{t^{\prime}\}\in N^{\prime}(s^{\prime}); if X={s,t}X=\{s^{\prime},t^{\prime}\}, then {uS\XN(u)}={s,t}N(s)\{u\mid S^{\prime}\backslash X\notin N^{\prime}(u)\}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(s^{\prime}). Now assume that tXt^{\prime}\in X. Then X={t}X=\{t^{\prime}\} or X={s,t}X=\{s^{\prime},t^{\prime}\}. If X={t}X=\{t^{\prime}\}, then {uS\XN(u)}={s,t}N(t)\{u\mid S^{\prime}\backslash X\notin N^{\prime}(u)\}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(t^{\prime}); if X={s,t}X=\{s^{\prime},t^{\prime}\}, we can also show that {uS\XN(u)}={s,t}N(t)\{u\mid S^{\prime}\backslash X\notin N^{\prime}(u)\}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(t^{\prime}).

Moreover, (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) cannot be distinguished by ()\mathcal{L}(\bullet). Here we use the notion of \bullet-morphisms introduced in [11, Def. 4.1].888Recall that the notion of \bullet-morphisms is defined as follows. Let =S,N,V\mathcal{M}=\langle S,N,V\rangle and =S,N,V\mathcal{M}^{\prime}=\langle S^{\prime},N^{\prime},V^{\prime}\rangle be neighborhood models. A function f:SSf:S\to S^{\prime} is a \bullet-morphism from \mathcal{M} to \mathcal{M}^{\prime}, if for all sSs\in S, (Var) sV(p)s\in V(p) iff f(s)V(p)f(s)\in V^{\prime}(p) for all pPp\in\textbf{P}, (\bullet-Mor) for all XSX^{\prime}\subseteq S^{\prime}, [sf1[X] and f1[X]N(s)][f(s)X and XN(f(s))][s\in f^{-1}[X^{\prime}]\text{ and }f^{-1}[X^{\prime}]\notin N(s)]\Longleftrightarrow[f(s)\in X^{\prime}\text{ and }X^{\prime}\notin N^{\prime}(f(s))]. It is then demonstrated in [11, Prop. 4.1] that the formulas of ()\mathcal{L}(\bullet) are invariant under \bullet-morphisms. In details, let \mathcal{M} and \mathcal{M}^{\prime} be neighborhood models, and let ff be a \bullet-morphism from \mathcal{M} to \mathcal{M}^{\prime}. Then for all sSs\in S, for all φ()\varphi\in\mathcal{L}(\bullet), we have that ,sφ\mathcal{M},s\vDash\varphi iff ,f(s)φ\mathcal{M}^{\prime},f(s)\vDash\varphi. Define a function f:SSf:S\to S^{\prime} such that f(s)=sf(s)=s^{\prime} and f(t)=tf(t)=t^{\prime}. We prove that ff is a \bullet-morphism from \mathcal{M} to \mathcal{M}^{\prime}. The condition (Var) follows directly from the valuations. For the condition (\bullet-Mor), we first prove that it holds for ss: assume that sf1[X]s\in f^{-1}[X^{\prime}] and f1[X]N(s)f^{-1}[X^{\prime}]\notin N(s), then it must be that X={s}X^{\prime}=\{s^{\prime}\}. Then we have f(s)=sXf(s)=s^{\prime}\in X^{\prime} and XN(f(s))X^{\prime}\notin N^{\prime}(f(s)). The converse is similar. In a similar way, we can show that (\bullet-Mor) also holds for tt. Then by [11, Prop. 4.1] (see also fn. 8), we have ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi for all φ()\varphi\in\mathcal{L}(\bullet).

However, these pointed models can be distinguished by ()\mathcal{L}(\nabla). This is because ,sp\mathcal{M},s\vDash\nabla p (as p={t}N(s)p^{\mathcal{M}}=\{t\}\notin N(s) and (¬p)={s}N(s)(\neg p)^{\mathcal{M}}=\{s\}\notin N(s)) and ,sp\mathcal{M}^{\prime},s^{\prime}\nvDash\nabla p (as p={t}N(s)p^{\mathcal{M}^{\prime}}=\{t^{\prime}\}\in N^{\prime}(s^{\prime})). ∎

Proposition 13.

()()[4]\mathcal{L}(\nabla)\not\preceq\mathcal{L}(\bullet)[\mathbb{C}_{4}].

Proof.

Consider the following models:

{t}\textstyle{\{t\}}{t}\textstyle{\{t^{\prime}\}}\textstyle{\mathcal{M}}s:¬p\textstyle{s:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s,t\}}t:p\textstyle{t:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{M}^{\prime}}s:¬p\textstyle{s^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}t:p\textstyle{t^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

Firstly, both \mathcal{M} and \mathcal{M}^{\prime} have (4)(4).

  • -

    For \mathcal{M}: Suppose that XN(s)X\in N(s). Then X={s,t}X=\{s,t\}, and so {uXN(u)}={s,t}N(s)\{u\mid X\in N(u)\}=\{s,t\}\in N(s). Now assume that XN(t)X\in N(t). Then X={t}X=\{t\} or X={s,t}X=\{s,t\}. If X={t}X=\{t\}, then {uXN(u)}={t}N(t)\{u\mid X\in N(u)\}=\{t\}\in N(t); if X={s,t}X=\{s,t\}, then {uXN(u)}={s,t}N(t)\{u\mid X\in N(u)\}=\{s,t\}\in N(t).

  • -

    For \mathcal{M}^{\prime}: Suppose that XN(s)X\in N^{\prime}(s^{\prime}). Then X={t}X=\{t^{\prime}\} or X={s,t}X=\{s^{\prime},t^{\prime}\}. Either case implies that {uXN(u)}={s,t}N(s)\{u\mid X\in N^{\prime}(u)\}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(s^{\prime}). Now assume that XN(t)X\in N^{\prime}(t^{\prime}). Then X={t}X=\{t^{\prime}\} or X={s,t}X=\{s^{\prime},t^{\prime}\}. Again, either case implies that {uXN(u)}={s,t}N(t)\{u\mid X\in N^{\prime}(u)\}=\{s^{\prime},t^{\prime}\}\in N^{\prime}(t^{\prime}).

Secondly, similar to the proof of the corresponding part in Prop. 12, we can show that (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) cannot be distinguished by ()\mathcal{L}(\bullet).

It remains only to show that (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) can be distinguished by ()\mathcal{L}(\nabla). The proof for this is analogous to that in Prop. 12. ∎

Proposition 14.

()()[5]\mathcal{L}(\nabla)\not\preceq\mathcal{L}(\bullet)[\mathbb{C}_{5}].

Proof.

Consider the following models:

{s}\textstyle{\{s\}}{t}\textstyle{\{t\}}{s}\textstyle{\{s^{\prime}\}}{t}\textstyle{\{t^{\prime}\}}\textstyle{\mathcal{M}}s:p\textstyle{s:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\emptyset}t:p\textstyle{t:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s,t\}}\textstyle{\mathcal{M}^{\prime}}s:p\textstyle{s^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\emptyset}t:p\textstyle{t^{\prime}:p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}

Firstly, both \mathcal{M} and \mathcal{M}^{\prime} possess the property (5)(5). Since for all XS={s,t}X\subseteq S=\{s,t\}, XN(t)X\in N(t), the property (5)(5) is possessed vacuously by N(t)N(t) Similarly, (5)(5) is also possessed vacuously by N(t)N^{\prime}(t^{\prime}). It remains only to show that both N(s)N(s) and N(s)N^{\prime}(s^{\prime}) have (5)(5).

  • -

    For N(s)N(s): suppose that XN(s)X\notin N(s), then X=X=\emptyset or X={s,t}X=\{s,t\}. Either case implies that {uSXN(u)}={s}N(s)\{u\in S\mid X\notin N(u)\}=\{s\}\in N(s).

  • -

    For N(s)N^{\prime}(s^{\prime}): assume that XN(s)X\notin N^{\prime}(s^{\prime}), then X={s,t}X=\{s^{\prime},t^{\prime}\}. This follows that {uSXN(u)}={s}N(s)\{u\in S^{\prime}\mid X\notin N^{\prime}(u)\}=\{s^{\prime}\}\in N^{\prime}(s^{\prime}).

Secondly, (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s) cannot be distinguished by ()\mathcal{L}(\bullet). Again, this can be shown as the corresponding part in Prop. 12.

Finally, (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) can be distinguished by ()\mathcal{L}(\nabla). On one hand, p={s,t}N(s)p^{\mathcal{M}}=\{s,t\}\notin N(s) and S\p=N(s)S\backslash p^{\mathcal{M}}=\emptyset\notin N(s), thus ,sp\mathcal{M},s\vDash\nabla p. On the other hand, S\p=N(s)S^{\prime}\backslash p^{\mathcal{M}^{\prime}}=\emptyset\in N^{\prime}(s^{\prime}), thus ,sp\mathcal{M}^{\prime},s^{\prime}\nvDash\nabla p. ∎

Proposition 15.

()()[c]\mathcal{L}(\nabla)\preceq\mathcal{L}(\bullet)[\mathbb{C}_{c}].

Proof.

We claim that over the class of (c)(c)-models, φφ¬φ\vDash\nabla\varphi\leftrightarrow\bullet\varphi\vee{\bullet\neg}\varphi.

First, we show that φφ¬φ\vDash\nabla\varphi\to\bullet\varphi\vee{\bullet\neg}\varphi.

Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be any model and sSs\in S. Suppose that ,sφ\mathcal{M},s\vDash\nabla\varphi. Then φN(s)\varphi^{\mathcal{M}}\notin N(s) and S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s), that is, (¬φ)N(s)(\neg\varphi)^{\mathcal{M}}\notin N(s). We have either ,sφ\mathcal{M},s\vDash\varphi or ,s¬φ\mathcal{M},s\vDash\neg\varphi. If ,sφ\mathcal{M},s\vDash\varphi, since φN(s)\varphi^{\mathcal{M}}\notin N(s), we infer that ,sφ\mathcal{M},s\vDash\bullet\varphi; if ,s¬φ\mathcal{M},s\vDash\neg\varphi, since (¬φ)N(s)(\neg\varphi)^{\mathcal{M}}\notin N(s), we derive that ,s¬φ\mathcal{M},s\vDash{\bullet\neg}\varphi. Therefore, ,sφ¬φ\mathcal{M},s\vDash\bullet\varphi\vee{\bullet\neg}\varphi. Since (,s)(\mathcal{M},s) is arbitrary, this establishes the validity of φφ¬φ\nabla\varphi\to\bullet\varphi\vee{\bullet\neg}\varphi.

Conversely, we prove that over the class of (c)(c)-models, φ¬φφ\vDash\bullet\varphi\vee{\bullet\neg}\varphi\to\nabla\varphi.

Suppose that =S,N,V\mathcal{M}=\langle S,N,V\rangle be a (c)(c)-model and sSs\in S. Assume that ,sφ¬φ\mathcal{M},s\vDash\bullet\varphi\vee{\bullet\neg}\varphi. Then ,sφ\mathcal{M},s\vDash\bullet\varphi or ,s¬φ\mathcal{M},s\vDash{\bullet\neg}\varphi. If ,sφ\mathcal{M},s\vDash\bullet\varphi, then φN(s)\varphi^{\mathcal{M}}\notin N(s). By (c)(c), we have S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s), so ,sφ\mathcal{M},s\vDash\nabla\varphi. If ,s¬φ\mathcal{M},s\vDash{\bullet\neg}\varphi, then (¬φ)N(s)(\neg\varphi)^{\mathcal{M}}\notin N(s), namely S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s). By (c)(c) again, we obtain φN(s)\varphi^{\mathcal{M}}\notin N(s), and thus ,sφ\mathcal{M},s\vDash\nabla\varphi. Therefore, ,sφ\mathcal{M},s\vDash\nabla\varphi. ∎

Proposition 16.

()()[t]\mathcal{L}(\nabla)\preceq\mathcal{L}(\bullet)[\mathbb{C}_{t}].

Proof.

We claim that over the class of (t)(t)-models, φφ¬φ\vDash\nabla\varphi\leftrightarrow\bullet\varphi\vee\bullet\neg\varphi. The proof is almost the same as that in Prop. 15, except that in the proof of the validity of φ¬φφ\bullet\varphi\vee\bullet\neg\varphi\to\nabla\varphi, ,sφ\mathcal{M},s\vDash\nabla\varphi is obtained as follows: if ,sφ\mathcal{M},s\vDash\bullet\varphi, then ,sφ\mathcal{M},s\vDash\varphi and φN(s)\varphi^{\mathcal{M}}\notin N(s), thus ,s¬φ\mathcal{M},s\nvDash\neg\varphi, namely s(¬φ)s\notin(\neg\varphi)^{\mathcal{M}}, and then by (t)(t), we infer that (¬φ)N(s)(\neg\varphi)^{\mathcal{M}}\notin N(s), namely S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s), so ,sφ\mathcal{M},s\vDash\nabla\varphi; similarly, we can show that if ,s¬φ\mathcal{M},s\vDash\bullet\neg\varphi then ,sφ\mathcal{M},s\vDash\nabla\varphi. ∎

With the above results in mind, we have the following result, which extends the expressivity results over Kripke models in [7].

Corollary 17.

Where {all,n,r,i,s,d,b,4,5}\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{n},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{d},\mathbb{C}_{b},\mathbb{C}_{4},\mathbb{C}_{5}\}, ()()[]\mathcal{L}(\nabla)\asymp\mathcal{L}(\bullet)[\mathbb{C}], and 𝕃(,)[]\mathcal{L}\prec\mathbb{L}(\nabla,\bullet)[\mathbb{C}], where {(),()}\mathcal{L}\in\{\mathcal{L}(\nabla),\mathcal{L}(\bullet)\}. Where {c,t}\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}, 12[]\mathcal{L}_{1}\equiv\mathcal{L}_{2}[\mathbb{C}], where 1,2{(),(),(,)}\mathcal{L}_{1},\mathcal{L}_{2}\in\{\mathcal{L}(\nabla),\mathcal{L}(\bullet),\mathcal{L}(\nabla,\bullet)\}.

Moreover, over the class of (c)(c)-models and the class of (t)(t)-models, (,)\mathcal{L}(\nabla,\bullet) and ()\mathcal{L}(\Box) are equally expressive (Prop. 20), whereas over the class of models possessing either of other eight neighborhood properties except for (d)(d), (,)\mathcal{L}(\nabla,\bullet) is less expressive than ()\mathcal{L}(\Box) (Prop. 18 and Prop. 19).

Proposition 18.

(,)()[]\mathcal{L}(\nabla,\bullet)\prec\mathcal{L}(\Box)[\mathbb{C}], where {all,r,i,4,5}\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{4},\mathbb{C}_{5}\}.

Proof.

Use Remark 9 and [12, Prop. 4]. ∎

Proposition 19.

(,)()[]\mathcal{L}(\nabla,\bullet)\prec\mathcal{L}(\Box)[\mathbb{C}], where {n,s,b}\mathbb{C}\in\{\mathbb{C}_{n},\mathbb{C}_{s},\mathbb{C}_{b}\}.

Proof.

Consider the following models =S,N,V\mathcal{M}=\langle S,N,V\rangle and =S,N,V\mathcal{M}^{\prime}=\langle S^{\prime},N^{\prime},V^{\prime}\rangle, where S={s,t}S=\{s,t\} and S={s,t}S^{\prime}=\{s^{\prime},t^{\prime}\}.

\textstyle{\emptyset}{s,t}\textstyle{\{s,t\}}{s}\textstyle{\{s\}}{t}\textstyle{\{t\}}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}{s}\textstyle{\{s^{\prime}\}}{t}\textstyle{\{t^{\prime}\}}\textstyle{\emptyset}s:¬p\textstyle{s:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s:¬p\textstyle{s^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t:¬p\textstyle{t^{\prime}:\neg p\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{M}}\textstyle{\mathcal{M}^{\prime}}

It should be straightforward to check that both \mathcal{M} and \mathcal{M}^{\prime} possess (n)(n) and (s)(s). Moreover, both models also possess (b)(b), shown as follows. Since for all XSX\subseteq S, we have XN(s)X\in N(s), one may easily see that N(s)N(s) has (b)(b). Similarly, we can show that N(t)N^{\prime}(t^{\prime}) has (b)(b). Besides,

  • -

    N(t)N(t) has (b)(b): suppose that tXt\in X, then X={t}X=\{t\} or X={s,t}X=\{s,t\}. The first case implies {uSS\XN(u)}={uS{s}N(u)}={t}N(t)\{u\in S\mid S\backslash X\notin N(u)\}=\{u\in S\mid\{s\}\notin N(u)\}=\{t\}\in N(t), and the second case implies that {uSS\XN(u)}={uSN(u)}={t}N(t)\{u\in S\mid S\backslash X\notin N(u)\}=\{u\in S\mid\emptyset\notin N(u)\}=\{t\}\in N(t), as desired.

  • -

    N(s)N^{\prime}(s^{\prime}) has (b)(b): assume that sXs^{\prime}\in X, then X={s}X=\{s^{\prime}\} or X={s,t}X=\{s^{\prime},t^{\prime}\}. The first case entails that {uSS\XN(u)}={uS{t}N(u)}={s}N(s)\{u\in S^{\prime}\mid S^{\prime}\backslash X\notin N^{\prime}(u)\}=\{u\in S^{\prime}\mid\{t^{\prime}\}\notin N^{\prime}(u)\}=\{s^{\prime}\}\in N^{\prime}(s^{\prime}), and the second case entails that {uSS\XN(u)}={uSN(u)}={s}N(s)\{u\in S^{\prime}\mid S^{\prime}\backslash X\notin N^{\prime}(u)\}=\{u\in S^{\prime}\mid\emptyset\notin N^{\prime}(u)\}=\{s^{\prime}\}\in N^{\prime}(s^{\prime}), as desired.

Next, we show (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) cannot be distinguished by (,)\mathcal{L}(\nabla,\bullet). That is, for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), we have ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi. The proof proceeds by induction on φ\varphi, where the nontrivial cases are φ\nabla\varphi and φ\bullet\varphi. The proof for the case φ\bullet\varphi is shown as in Remark 9. For the case φ\nabla\varphi, we have the following equivalences.

,sφφN(s) and S\φN(s)φ and φ{s,t} and φ{s} and φ{t}false\begin{array}[]{ll}&\mathcal{M},s\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}}\notin N(s)\text{ and }S\backslash\varphi^{\mathcal{M}}\notin N(s)\\ \iff&\varphi^{\mathcal{M}}\neq\emptyset\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\text{ and }\varphi^{\mathcal{M}}\neq\{s\}\text{ and }\varphi^{\mathcal{M}}\neq\{t\}\\ \iff&\text{false}\\ \end{array}
,sφφN(s) and S\φN(s)φ{{s,t},{s}} and S\φ{{s,t},{s}}φ{s,t} and φ{s} and φ and φ{t}false\begin{array}[]{ll}&\mathcal{M}^{\prime},s^{\prime}\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\text{ and }S^{\prime}\backslash\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin\{\{s^{\prime},t^{\prime}\},\{s^{\prime}\}\}\text{ and }S\backslash\varphi^{\mathcal{M}^{\prime}}\notin\{\{s^{\prime},t^{\prime}\},\{s^{\prime}\}\}\\ \iff&\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\emptyset\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{t^{\prime}\}\\ \iff&\text{false}\\ \end{array}

In either case, the penultimate line of the equivalences states that φ\varphi cannot be interpreted on the related model: its denotation is not one of all possible subsets of the domain. We therefore conclude that ,sφ\mathcal{M},s\vDash\nabla\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\nabla\varphi.

Finally, (,s)(\mathcal{M},s) and (,s)(\mathcal{M}^{\prime},s^{\prime}) can be distinguished by ()\mathcal{L}(\Diamond). To see this, note that p=N(s)p^{\mathcal{M}}=\emptyset\in N(s), thus ,sp\mathcal{M},s\vDash\Box p; however, p=N(s)p^{\mathcal{M}^{\prime}}=\emptyset\notin N^{\prime}(s^{\prime}), and thus ,sp\mathcal{M}^{\prime},s^{\prime}\nvDash\Box p. ∎

Proposition 20.

(,)()[]\mathcal{L}(\nabla,\bullet)\equiv\mathcal{L}(\Box)[\mathbb{C}], where {c,t}\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}.

Proof.

Straightforward from (,)𝕃()[]\mathcal{L}(\nabla,\bullet)\equiv\mathbb{L}(\nabla)[\mathbb{C}] (see Coro. 17) and ()()[]\mathcal{L}(\nabla)\equiv\mathcal{L}(\Box)[\mathbb{C}] [12, Prop. 5, Prop. 6], where {c,t}\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}. ∎

We do not know whether (,)\mathcal{L}(\nabla,\bullet) is less expressive than ()\mathcal{L}(\Box) over the class of (d)(d)-models. We conjecture the answer is positive. We leave it for future work.

We summarize the results in this section as follows.

()()[], where {all,n,r,i,s,d,b,4,5}(Coro.17)()()[], where {c,t}(Coro.17)()(,)[], where {all,n,r,i,s,d,b,4,5}(Coro.17)()(,)[], where {all,n,r,i,s,d,b,4,5}(Coro.17)()(,)[], where {c,t}(Coro.17)()(,)[], where {c,t}(Coro.17)(,)()[], where {all,n,r,i,s,b,4,5}(Props.18,19)(,)()[], where {c,t}(Coro.20)\begin{array}[]{ll}\mathcal{L}(\nabla)\asymp\mathcal{L}(\bullet)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{n},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{d},\mathbb{C}_{b},\mathbb{C}_{4},\mathbb{C}_{5}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{coro.exp-nabla-bullet-nablabullet})\\ \mathcal{L}(\nabla)\equiv\mathcal{L}(\bullet)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{coro.exp-nabla-bullet-nablabullet})\\ \mathcal{L}(\nabla)\prec\mathcal{L}(\nabla,\bullet)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{n},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{d},\mathbb{C}_{b},\mathbb{C}_{4},\mathbb{C}_{5}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{coro.exp-nabla-bullet-nablabullet})\\ \mathcal{L}(\bullet)\prec\mathcal{L}(\nabla,\bullet)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{n},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{d},\mathbb{C}_{b},\mathbb{C}_{4},\mathbb{C}_{5}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{coro.exp-nabla-bullet-nablabullet})\\ \mathcal{L}(\nabla)\equiv\mathcal{L}(\nabla,\bullet)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{coro.exp-nabla-bullet-nablabullet})\\ \mathcal{L}(\bullet)\equiv\mathcal{L}(\nabla,\bullet)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{coro.exp-nabla-bullet-nablabullet})\\ \mathcal{L}(\nabla,\bullet)\prec\mathcal{L}(\Box)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{\text{all}},\mathbb{C}_{n},\mathbb{C}_{r},\mathbb{C}_{i},\mathbb{C}_{s},\mathbb{C}_{b},\mathbb{C}_{4},\mathbb{C}_{5}\}&(\text{Props.}\leavevmode\nobreak\ \ref{prop.exp-nablabullet-diamond-ri45},\ref{prop.exp-nablabullet-diamond-nsb})\\ \mathcal{L}(\nabla,\bullet)\equiv\mathcal{L}(\Box)[\mathbb{C}],\text{ where }\mathbb{C}\in\{\mathbb{C}_{c},\mathbb{C}_{t}\}&(\text{Coro.}\leavevmode\nobreak\ \ref{prop.nablabullet-diamond-ct})\\ \end{array}

4 Frame Definability

We have shown in the previous section that (,)\mathcal{L}(\nabla,\bullet) is more expressive than ()\mathcal{L}(\nabla) and ()\mathcal{L}(\bullet) (at the level of models). It may then be natural to ask whether a similar situation holds at the level of frames. Recall that it is shown in [12, Prop. 7] that all frame properties in Def. 3, in particular (n)(n), are undefinable in ()\mathcal{L}(\nabla). In what follows, we shall show that all frame properties in question except for (n)(n) are undefinable in (,)\mathcal{L}(\nabla,\bullet), thus (,)\mathcal{L}(\nabla,\bullet) is also more expressive than ()\mathcal{L}(\nabla) and ()\mathcal{L}(\bullet) at the level of frames. First, we need some related notion.

Definition 21.

Let Γ\Gamma be a set of (,)\mathcal{L}(\nabla,\bullet)-formulas, and PP a neighborhood property. We say that Γ\Gamma defines PP, if for all frames \mathcal{F}, \mathcal{F} has PP if and only if Γ\mathcal{F}\vDash\Gamma. If Γ\Gamma is a singleton, say {φ}\{\varphi\}, we will write φ\mathcal{F}\vDash\varphi rather than {φ}\mathcal{F}\vDash\{\varphi\}. We say that PP is definable in (,)\mathcal{L}(\nabla,\bullet), if there exists a set of (,)\mathcal{L}(\nabla,\bullet)-formulas that defines it.

Proposition 22.

The frame property (n)(n) is definable in (,)\mathcal{L}(\nabla,\bullet).

Proof.

[11] has shown that (n)(n) is defined in ()\mathcal{L}(\bullet), by \circ\top. Therefore, (n)(n) is also definable in (,)\mathcal{L}(\nabla,\bullet), by \circ\top. ∎

Proposition 23.

The frame properties (r)(r), (i)(i), (c)(c), (d)(d), (t)(t) and (b)(b) are undefinable in (,)\mathcal{L}(\nabla,\bullet).

Proof.

Consider the following frames 1=S1,N1\mathcal{F}_{1}=\langle S_{1},N_{1}\rangle, 2=S2,N2\mathcal{F}_{2}=\langle S_{2},N_{2}\rangle, and 3=S3,N3\mathcal{F}_{3}=\langle S_{3},N_{3}\rangle999This come from [12, Prop. 7].:

{s1}\textstyle{\{s_{1}\}}s1\textstyle{s_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{\mathcal{F}_{1}}      {s2}\textstyle{\{s_{2}\}}s2\textstyle{s_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\emptyset}2\textstyle{\mathcal{F}_{2}}      {s3,t3}\textstyle{\{s_{3},t_{3}\}}s3\textstyle{s_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s3}\textstyle{\{s_{3}\}}t3\textstyle{t_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{t3}\textstyle{\{t_{3}\}}3\textstyle{\mathcal{F}_{3}}

It has been observed in [12, Prop. 7] that 1\mathcal{F}_{1} satisfies (d)(d) and (t)(t) but 2\mathcal{F}_{2} does not. Also, it is straightforward to check that 2\mathcal{F}_{2} satisfies (c)(c) but 1\mathcal{F}_{1} does not. Moreover, 2\mathcal{F}_{2} satisfies (r)(r), (i)(i) and (b)(b), whereas 3\mathcal{F}_{3} does not. To see 3\mathcal{F}_{3} does not satisfy (b)(b), note that s3{s3}s_{3}\in\{s_{3}\} but {uS3{t3}N3(u)}=N3(s3)\{u\in S_{3}\mid\{t_{3}\}\notin N_{3}(u)\}=\emptyset\notin N_{3}(s_{3}). In what follows, we show that for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), 1φ\mathcal{F}_{1}\vDash\varphi iff 2φ\mathcal{F}_{2}\vDash\varphi iff 3φ\mathcal{F}_{3}\vDash\varphi.

Suppose that 1φ\mathcal{F}_{1}\nvDash\varphi. Then there exists 1=1,V1\mathcal{M}_{1}=\langle\mathcal{F}_{1},V_{1}\rangle such that 1,s1φ\mathcal{M}_{1},s_{1}\nvDash\varphi. Define a valuation V2V_{2} on 2\mathcal{F}_{2} as s2V2(p)s_{2}\in V_{2}(p) iff s1V1(p)s_{1}\in V_{1}(p) for all pPp\in\textbf{P}. By induction on φ\varphi, we show that ()(\ast): 1,s1φ\mathcal{M}_{1},s_{1}\vDash\varphi iff 2,s2φ\mathcal{M}_{2},s_{2}\vDash\varphi, where 2=2,V2\mathcal{M}_{2}=\langle\mathcal{F}_{2},V_{2}\rangle. The nontrivial cases are φ\nabla\varphi and φ\bullet\varphi. The case φ\nabla\varphi can be shown as in [12, Prop. 7]. For the case φ\bullet\varphi, notice that 1,s1φ\mathcal{M}_{1},s_{1}\vDash\bullet\varphi iff (1,s1φ\mathcal{M}_{1},s_{1}\vDash\varphi and φ1N1(s1)\varphi^{\mathcal{M}_{1}}\notin N_{1}(s_{1})) iff (1,s1φ\mathcal{M}_{1},s_{1}\vDash\varphi and φ1{s1}\varphi^{\mathcal{M}_{1}}\neq\{s_{1}\}), where the last one is a contradiction, and thus 1,s1φ\mathcal{M}_{1},s_{1}\nvDash\bullet\varphi; a similar argument gives us 2,s2φ\mathcal{M}_{2},s_{2}\nvDash\bullet\varphi. We have thus proved ()(\ast). This entails that 2,s2φ\mathcal{M}_{2},s_{2}\nvDash\varphi, and thus 2φ\mathcal{F}_{2}\nvDash\varphi. The converse is similar. Therefore, 1φ\mathcal{F}_{1}\vDash\varphi iff 2φ\mathcal{F}_{2}\vDash\varphi.

It remains only to show that 2φ\mathcal{F}_{2}\vDash\varphi iff 3φ\mathcal{F}_{3}\vDash\varphi. Assume that 2φ\mathcal{F}_{2}\nvDash\varphi. Then there exists 2=2,V2\mathcal{M}_{2}=\langle\mathcal{F}_{2},V_{2}\rangle such that 2,s2φ\mathcal{M}_{2},s_{2}\nvDash\varphi. Define a valuation V3V_{3} on 3\mathcal{F}_{3} such that s3V3(p)s_{3}\in V_{3}(p) iff s2V2(p)s_{2}\in V_{2}(p) for all pPp\in\textbf{P}. By induction on φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), we show that ()(\ast\ast): 2,s2φ\mathcal{M}_{2},s_{2}\vDash\varphi iff 3,s3φ\mathcal{M}_{3},s_{3}\vDash\varphi, where 3=3,V3\mathcal{M}_{3}=\langle\mathcal{F}_{3},V_{3}\rangle. The nontrivial cases are φ\nabla\varphi and φ\bullet\varphi. Again, the case φ\nabla\varphi can be shown as in [12, Prop. 7]. For the case φ\bullet\varphi, just note that 3,s3φ\mathcal{M}_{3},s_{3}\vDash\bullet\varphi iff (3,s3φ\mathcal{M}_{3},s_{3}\vDash\varphi and φ3N3(s3)\varphi^{\mathcal{M}_{3}}\notin N_{3}(s_{3})) iff (3,s3φ\mathcal{M}_{3},s_{3}\vDash\varphi and φ3{s3}\varphi^{\mathcal{M}_{3}}\neq\{s_{3}\} and φ3{t3}\varphi^{\mathcal{M}_{3}}\neq\{t_{3}\} and φ3{s3,t3}\varphi^{\mathcal{M}_{3}}\neq\{s_{3},t_{3}\}) iff false. Thus ()(\ast\ast) holds. This implies that 3,s3φ\mathcal{M}_{3},s_{3}\nvDash\varphi, and then 3φ\mathcal{F}_{3}\nvDash\varphi. The converse is analogous. Therefore, 2φ\mathcal{F}_{2}\vDash\varphi iff 3φ\mathcal{F}_{3}\vDash\varphi.

If (r)(r) were to be defined by a set of (,)\mathcal{L}(\nabla,\bullet)-formulas, say Σ\Sigma, then as 2\mathcal{F}_{2} satisfies (r)(r), we have 2Σ\mathcal{F}_{2}\vDash\Sigma. Then we should also have 3Σ\mathcal{F}_{3}\vDash\Sigma, which means that 3\mathcal{F}_{3} has (r)(r): a contradiction. Therefore, (r)(r) is undefinable in (,)\mathcal{L}(\nabla,\bullet). Similarly, we can show other frame properties in question are undefinable in (,)\mathcal{L}(\nabla,\bullet). ∎

Proposition 24.

The frame properties (s)(s) and (4)(4) are undefinable in (,)\mathcal{L}(\nabla,\bullet).

Proof.

Consider the following frames =S,N\mathcal{F}=\langle S,N\rangle and =S,N\mathcal{F}^{\prime}=\langle S^{\prime},N^{\prime}\rangle, where S={s,t}S=\{s,t\} and S={s,t}S^{\prime}=\{s^{\prime},t^{\prime}\}:

{s,t}\textstyle{\{s,t\}}s\textstyle{s\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t\textstyle{t\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s}\textstyle{\{s\}}\textstyle{\mathcal{F}}      {s,t}\textstyle{\{s^{\prime},t^{\prime}\}}\textstyle{\emptyset}s\textstyle{s^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t\textstyle{t^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s}\textstyle{\{s^{\prime}\}}\textstyle{\mathcal{F}}

Firstly, one may easily see that \mathcal{F} has (s)(s). Also, \mathcal{F} has (4)(4). Suppose that XN(s)X\in N(s), to show that {uSXN(u)}N(s)\{u\in S\mid X\in N(u)\}\in N(s). By supposition, X={s}X=\{s\} or X={s,t}X=\{s,t\}. Either case implies that {uSXN(u)}={s,t}N(s)\{u\in S\mid X\in N(u)\}=\{s,t\}\in N(s). Thus N(s)N(s) has (4)(4). A similar argument applies to showing that N(t)N(t) has (4)(4).

Secondly, \mathcal{F}^{\prime} does not have (s)(s), since N(t)\emptyset\in N^{\prime}(t^{\prime}) and {t}\emptyset\subseteq\{t^{\prime}\} but {t}N(t)\{t^{\prime}\}\notin N^{\prime}(t^{\prime}). Moreover, \mathcal{F}^{\prime} does not have (4)(4). This is because, for instance, N(t)\emptyset\in N^{\prime}(t^{\prime}) but {uSN(u)}={t}N(t)\{u\in S^{\prime}\mid\emptyset\in N^{\prime}(u)\}=\{t^{\prime}\}\notin N^{\prime}(t^{\prime}).

Thirdly, for all ψ(,)\psi\in\mathcal{L}(\nabla,\bullet), we have that ψ\mathcal{F}\vDash\psi iff ψ\mathcal{F}^{\prime}\vDash\psi. Suppose that ψ\mathcal{F}\nvDash\psi. Then there exists =,V\mathcal{M}=\langle\mathcal{F},V\rangle and xSx\in S such that ,xψ\mathcal{M},x\nvDash\psi. Define VV^{\prime} to be a valuation on \mathcal{F}^{\prime} such that sV(p)s\in V(p) iff sV(p)s^{\prime}\in V^{\prime}(p), and tV(p)t\in V(p) iff tV(p)t^{\prime}\in V^{\prime}(p). In what follows, we show ()(\ast): for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi, and ,tφ\mathcal{M},t\vDash\varphi iff ,tφ\mathcal{M}^{\prime},t^{\prime}\vDash\varphi, where =,N\mathcal{M}^{\prime}=\langle\mathcal{F}^{\prime},N^{\prime}\rangle. We proceed by induction on φ\varphi, where the nontrivial cases are φ\nabla\varphi and φ\bullet\varphi.

For the case φ\nabla\varphi, we have the following equivalences.

,sφφN(s) and S\φN(s)φ{{s},{s,t}} and S\φ{{s},{s,t}}φ{s} and φ{s,t} and φ{t} and φ\begin{array}[]{ll}&\mathcal{M},s\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}}\notin N(s)\text{ and }S\backslash\varphi^{\mathcal{M}}\notin N(s)\\ \iff&\varphi^{\mathcal{M}}\notin\{\{s\},\{s,t\}\}\text{ and }S\backslash\varphi^{\mathcal{M}}\notin\{\{s\},\{s,t\}\}\\ \iff&\varphi^{\mathcal{M}}\neq\{s\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\text{ and }\varphi^{\mathcal{M}}\neq\{t\}\text{ and }\varphi^{\mathcal{M}}\neq\emptyset\\ \end{array}
,sφφN(s) and S\φN(s)φ{{s},{s,t}} and S\φ{{s},{s,t}}φ{s} and φ{s,t} and φ{t} and φ\begin{array}[]{ll}&\mathcal{M}^{\prime},s^{\prime}\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\text{ and }S^{\prime}\backslash\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin\{\{s^{\prime}\},\{s^{\prime},t^{\prime}\}\}\text{ and }S^{\prime}\backslash\varphi^{\mathcal{M}^{\prime}}\notin\{\{s^{\prime}\},\{s^{\prime},t^{\prime}\}\}\\ \iff&\varphi^{\mathcal{M}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\emptyset\\ \end{array}

In each case, the last line of the above proofs states that φ\varphi cannot be interpreted on the related models, which is impossible. Thus ,sφ\mathcal{M},s\nvDash\nabla\varphi and ,sφ\mathcal{M}^{\prime},s^{\prime}\nvDash\nabla\varphi. Analogously, we can show that ,tφ\mathcal{M},t\nvDash\nabla\varphi and ,tφ\mathcal{M}^{\prime},t^{\prime}\nvDash\nabla\varphi.

For the case φ\bullet\varphi, we have the following equivalences.

,sφ,sφ and φN(s),sφ and φ{s} and φ{s,t}false\begin{array}[]{ll}&\mathcal{M},s\vDash\bullet\varphi\\ \iff&\mathcal{M},s\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\notin N(s)\\ \iff&\mathcal{M},s\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\neq\{s\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\\ \iff&\text{false}\\ \end{array}
,sφ,sφ and φN(s),sφ and φ{s} and φ{s,t}false\begin{array}[]{ll}&\mathcal{M}^{\prime},s^{\prime}\vDash\bullet\varphi\\ \iff&\mathcal{M}^{\prime},s^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\\ \iff&\mathcal{M}^{\prime},s^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\\ \iff&\text{false}\\ \end{array}

This shows that ,sφ\mathcal{M},s\vDash\bullet\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\bullet\varphi. Therefore, ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet).

,tφ,tφ and φN(t),tφ and φ{s} and φ{s,t},tφ and ,sφIH,tφ and ,sφ,tφ and φ{s} and φ{s,t} and φ,tφ and φN(t),tφ\begin{array}[]{ll}&\mathcal{M},t\vDash\bullet\varphi\\ \iff&\mathcal{M},t\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\notin N(t)\\ \iff&\mathcal{M},t\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\neq\{s\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\\ \iff&\mathcal{M},t\vDash\varphi\text{ and }\mathcal{M},s\nvDash\varphi\\ \stackrel{{\scriptstyle\text{IH}}}{{\iff}}&\mathcal{M}^{\prime},t^{\prime}\vDash\varphi\text{ and }\mathcal{M}^{\prime},s^{\prime}\nvDash\varphi\\ \iff&\mathcal{M}^{\prime},t^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\emptyset\\ \iff&\mathcal{M}^{\prime},t^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(t^{\prime})\\ \iff&\mathcal{M}^{\prime},t^{\prime}\vDash\bullet\varphi\\ \end{array}

This gives us that ,tφ\mathcal{M},t\vDash\varphi iff ,tφ\mathcal{M}^{\prime},t^{\prime}\vDash\varphi for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet). We have now completed the proof of ()(\ast).

If (s)(s) were to be defined by a set of (,)\mathcal{L}(\nabla,\bullet)-formulas, say Γ\Gamma, then as \mathcal{F} has (s)(s), we would have Γ\mathcal{F}\vDash\Gamma, thus we should also have Γ\mathcal{F}^{\prime}\vDash\Gamma, that is, \mathcal{F}^{\prime} has (s)(s): a contradiction. Therefore, (s)(s) is not definable in (,)\mathcal{L}(\nabla,\bullet). Similarly, we can obtain the undefinability of (4)(4) in (,)\mathcal{L}(\nabla,\bullet). ∎

Proposition 25.

The frame property (5)(5) is undefinable in (,)\mathcal{L}(\nabla,\bullet).

Proof.

Consider the following frames =S,N\mathcal{F}=\langle S,N\rangle and =S,N\mathcal{F}^{\prime}=\langle S^{\prime},N^{\prime}\rangle, where S={s,t}S=\{s,t\} and S={s,t}S^{\prime}=\{s^{\prime},t^{\prime}\}:

{s,t}\textstyle{\{s,t\}}s\textstyle{s\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t\textstyle{t\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{t}\textstyle{\{t\}}\textstyle{\mathcal{F}}      {t}\textstyle{\{t^{\prime}\}}\textstyle{\emptyset}s\textstyle{s^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s,t}\textstyle{\{s^{\prime},t^{\prime}\}}t\textstyle{t^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}{s}\textstyle{\{s^{\prime}\}}\textstyle{\mathcal{F}^{\prime}}

Firstly, \mathcal{F} has (5)(5). Suppose that XN(s)X\notin N(s), to prove that {uSXN(u)}N(s)\{u\in S\mid X\notin N(u)\}\in N(s). By supposition, X=X=\emptyset or X={s}X=\{s\}. Either case implies that {uSXN(u)}={s,t}N(s)\{u\in S\mid X\notin N(u)\}=\{s,t\}\in N(s). Thus N(s)N(s) has (5)(5). A similar argument shows that N(t)N(t) has (5)(5).

Secondly, \mathcal{F}^{\prime} does not (5)(5). For instance, N(s)\emptyset\notin N^{\prime}(s^{\prime}) and {uSN(u)}={s}N(s)\{u\in S^{\prime}\mid\emptyset\notin N^{\prime}(u)\}=\{s^{\prime}\}\notin N^{\prime}(s^{\prime}).

Thirdly, for all ψ(,)\psi\in\mathcal{L}(\nabla,\bullet), we have that ψ\mathcal{F}\vDash\psi iff ψ\mathcal{F}^{\prime}\vDash\psi. Suppose that ψ\mathcal{F}\nvDash\psi. Then there exists =,V\mathcal{M}=\langle\mathcal{F},V\rangle and xSx\in S such that ,xψ\mathcal{M},x\nvDash\psi. Define VV^{\prime} to be a valuation on \mathcal{F}^{\prime} such that sV(p)s\in V(p) iff sV(p)s^{\prime}\in V^{\prime}(p), and tV(p)t\in V(p) iff tV(p)t^{\prime}\in V^{\prime}(p). In what follows, we show ()(\ast\ast): for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi, and ,tφ\mathcal{M},t\vDash\varphi iff ,tφ\mathcal{M}^{\prime},t^{\prime}\vDash\varphi, where =,N\mathcal{M}^{\prime}=\langle\mathcal{F}^{\prime},N^{\prime}\rangle. We proceed by induction on φ\varphi, where the nontrivial cases are φ\nabla\varphi and φ\bullet\varphi.

For the case φ\nabla\varphi, we have the following equivalences.

,sφφN(s) and S\φN(s)φ{{t},{s,t}} and S\φ{{t},{s,t}}φ{t} and φ{s,t} and φ{s} and φ\begin{array}[]{ll}&\mathcal{M},s\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}}\notin N(s)\text{ and }S\backslash\varphi^{\mathcal{M}}\notin N(s)\\ \iff&\varphi^{\mathcal{M}}\notin\{\{t\},\{s,t\}\}\text{ and }S\backslash\varphi^{\mathcal{M}}\notin\{\{t\},\{s,t\}\}\\ \iff&\varphi^{\mathcal{M}}\neq\{t\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\text{ and }\varphi^{\mathcal{M}}\neq\{s\}\text{ and }\varphi^{\mathcal{M}}\neq\emptyset\\ \end{array}
,sφφN(s) and S\φN(s)φ{{t},{s,t}} and S\φ{{t},{s,t}}φ{t} and φ{s,t} and φ{s} and φ\begin{array}[]{ll}&\mathcal{M}^{\prime},s^{\prime}\vDash\nabla\varphi\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\text{ and }S^{\prime}\backslash\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\\ \iff&\varphi^{\mathcal{M}^{\prime}}\notin\{\{t^{\prime}\},\{s^{\prime},t^{\prime}\}\}\text{ and }S^{\prime}\backslash\varphi^{\mathcal{M}^{\prime}}\notin\{\{t^{\prime}\},\{s^{\prime},t^{\prime}\}\}\\ \iff&\varphi^{\mathcal{M}^{\prime}}\neq\{t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\emptyset\\ \end{array}

In each case, the last line of the above proofs states that φ\varphi cannot be interpreted on the related models, which is impossible. Thus ,sφ\mathcal{M},s\nvDash\nabla\varphi and ,sφ\mathcal{M}^{\prime},s^{\prime}\nvDash\nabla\varphi. Analogously, we can show that ,tφ\mathcal{M},t\nvDash\nabla\varphi and ,tφ\mathcal{M}^{\prime},t^{\prime}\nvDash\nabla\varphi.

For the case φ\bullet\varphi, we have the following equivalences.

,tφ,tφ and φN(t),tφ and φ{t} and φ{s,t}false\begin{array}[]{ll}&\mathcal{M},t\vDash\bullet\varphi\\ \iff&\mathcal{M},t\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\notin N(t)\\ \iff&\mathcal{M},t\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\neq\{t\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\\ \iff&\text{false}\\ \end{array}
,tφ,tφ and φN(t),tφ and φ and φ{s} and φ{t} and φ{s,t}false\begin{array}[]{ll}&\mathcal{M}^{\prime},t^{\prime}\vDash\bullet\varphi\\ \iff&\mathcal{M}^{\prime},t^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(t^{\prime})\\ \iff&\mathcal{M}^{\prime},t^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\emptyset\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\\ \iff&\text{false}\\ \end{array}

Thus ,tφ\mathcal{M},t\vDash\bullet\varphi iff ,tφ\mathcal{M}^{\prime},t^{\prime}\vDash\bullet\varphi. Therefore, ,tφ\mathcal{M},t\vDash\varphi iff ,tφ\mathcal{M}^{\prime},t^{\prime}\vDash\varphi for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet).

,sφ,sφ and φN(s),sφ and φ{t} and φ{s,t},sφ and ,tφIH,sφ and ,tφ,sφ and φ{t} and φ{s,t},sφ and φN(s),sφ\begin{array}[]{ll}&\mathcal{M},s\vDash\bullet\varphi\\ \iff&\mathcal{M},s\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\notin N(s)\\ \iff&\mathcal{M},s\vDash\varphi\text{ and }\varphi^{\mathcal{M}}\neq\{t\}\text{ and }\varphi^{\mathcal{M}}\neq\{s,t\}\\ \iff&\mathcal{M},s\vDash\varphi\text{ and }\mathcal{M},t\nvDash\varphi\\ \stackrel{{\scriptstyle\text{IH}}}{{\iff}}&\mathcal{M}^{\prime},s^{\prime}\vDash\varphi\text{ and }\mathcal{M}^{\prime},t^{\prime}\nvDash\varphi\\ \iff&\mathcal{M}^{\prime},s^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{t^{\prime}\}\text{ and }\varphi^{\mathcal{M}^{\prime}}\neq\{s^{\prime},t^{\prime}\}\\ \iff&\mathcal{M}^{\prime},s^{\prime}\vDash\varphi\text{ and }\varphi^{\mathcal{M}^{\prime}}\notin N^{\prime}(s^{\prime})\\ \iff&\mathcal{M}^{\prime},s^{\prime}\vDash\bullet\varphi\\ \end{array}

Therefore, ,sφ\mathcal{M},s\vDash\varphi iff ,sφ\mathcal{M}^{\prime},s^{\prime}\vDash\varphi for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet). This completes the proof of ()(\ast\ast).

If (5)(5) were to be defined by a set of (,)\mathcal{L}(\nabla,\bullet)-formulas, say Γ\Gamma, then as \mathcal{F} has (5)(5), we would have Γ\mathcal{F}\vDash\Gamma, thus we should also have Γ\mathcal{F}^{\prime}\vDash\Gamma, that is, \mathcal{F}^{\prime} has (5)(5): a contradiction. Therefore, (5)(5) is not definable in (,)\mathcal{L}(\nabla,\bullet). ∎

5 Axiomatizations

In this section, we axiomatize (,)\mathcal{L}(\nabla,\bullet) over various classes of neighborhood frames.

5.1 Classical logic

5.1.1 Proof system and Soundness

Definition 26.

The classical logic of (,)\mathcal{L}(\nabla,\bullet), denoted 𝐄{\bf E^{\nabla\bullet}}, consists of the following axioms and inference rules:

TAUTall instances of tautologiesE1φ¬φE2φφE3φφ¬φMPφ,φψψREφψφψREφψφψ\begin{array}[]{ll}\text{TAUT}&\text{all instances of tautologies}\\ \text{E1}&\nabla\varphi\leftrightarrow\nabla\neg\varphi\\ \text{E2}&\bullet\varphi\to\varphi\\ \text{E3}&\nabla\varphi\to\bullet\varphi\vee\bullet\neg\varphi\\ \text{MP}&\dfrac{\varphi,\varphi\to\psi}{\psi}\\ \text{RE}\nabla&\dfrac{\varphi\leftrightarrow\psi}{\nabla\varphi\leftrightarrow\nabla\psi}\\ \text{RE}\bullet&\dfrac{\varphi\leftrightarrow\psi}{\bullet\varphi\leftrightarrow\bullet\psi}\\ \end{array}

Intuitively, E1 says that one is (first-order) ignorant whether a proposition holds if and only if one is ignorant whether its negation holds; E2 says that one is (Fitchean) ignorant of the fact that φ\varphi only if it is the case that φ\varphi; E3 describes the relationship between Fitchean ignorance and first-order ignorance: if one is ignorant whether φ\varphi, then either one is ignorant of the fact that φ\varphi or one is ignorant of the fact that φ\varphi is not the case; RE\text{RE}\nabla and RE\text{RE}\bullet concerns the replacement of equivalences for first-order ignorance and Fitchean ignorance, respectively.

It is straightforward by axiom E2 that φφ\bullet\nabla\varphi\to\nabla\varphi is provable in 𝐄{\bf E^{\nabla\bullet}}, which says that under any condition, Rumsfeld ignorance implies first-order ignorance.

The following result states how to derive Fitchean ignorance, which means that if one is ignorant whether a true proposition holds, then one is ignorant of the proposition. It will be used in several places below (for instance, Lemma 31, Lemma 34, and Prop. 40).

Proposition 27.

φφφ\vdash\nabla\varphi\land\varphi\to\bullet\varphi. Equivalently, φφΔφ\vdash\circ\varphi\land\varphi\to\Delta\varphi.

Proof.

We have the following proof sequence:

(i)φφ¬φE3(ii)¬φ¬φE2(iii)φφ¬φ(i),(ii)(iv)φφφ(iii)\begin{array}[]{lll}(i)&\nabla\varphi\to\bullet\varphi\vee\bullet\neg\varphi&\text{E3}\\ (ii)&\bullet\neg\varphi\to\neg\varphi&\text{E2}\\ (iii)&\nabla\varphi\to\bullet\varphi\vee\neg\varphi&(i),(ii)\\ (iv)&\nabla\varphi\land\varphi\to\bullet\varphi&(iii)\\ \end{array}

As a corollary, we have φφφ\vdash\nabla\nabla\varphi\land\nabla\varphi\to\bullet\nabla\varphi, and thus φφφ\vdash\nabla\nabla\varphi\land\nabla\varphi\to\bullet\nabla\varphi. This means, in Fine [15] terms, second-order ignorance plus first-order ignorance implies Rumsfeld ignorance. On one hand, this is not noticed in Fine [15]; on the other hand, this plus the transitivity entails that second-order ignorance implies Rumsfeld ignorance, a result in the paper in question.

The following result indicates how to derive a proposition from Fitchean ignorance.

Proposition 28.

(φψφ)φ\vdash\bullet(\circ\varphi\vee\psi\to\varphi)\to\varphi

Proof.

We have the following proof sequence.

(1)(φψφ)(φψφ)E2(2)(φψφ)(φφ)TAUT(3)(φψφ)(φφ)(1),(2)(4)φφE2(5)(φψφ)φ(3),(4)\begin{array}[]{lll}(1)&\bullet(\circ\varphi\vee\psi\to\varphi)\to(\circ\varphi\vee\psi\to\varphi)&\text{E2}\\ (2)&(\circ\varphi\vee\psi\to\varphi)\to(\circ\varphi\to\varphi)&\text{TAUT}\\ (3)&\bullet(\circ\varphi\vee\psi\to\varphi)\to(\circ\varphi\to\varphi)&(1),(2)\\ (4)&\bullet\varphi\to\varphi&\text{E2}\\ (5)&\bullet(\circ\varphi\vee\psi\to\varphi)\to\varphi&(3),(4)\\ \end{array}

Proposition 29.

𝐄{\bf E^{\nabla\bullet}} is sound with respect to the class of all (neighborhood) frames.

Proof.

It suffices to show the validity of axiom E3. This has been shown in the proof of Prop. 15. ∎

5.1.2 Completeness

Definition 30.

The canonical model for 𝐄{\bf E^{\nabla\bullet}} is c=Sc,Nc,Vc\mathcal{M}^{c}=\langle S^{c},N^{c},V^{c}\rangle, where

  • -

    Sc={ss is a maximal consistent set for 𝐄}S^{c}=\{s\mid s\text{ is a maximal consistent set for }{\bf E^{\nabla\bullet}}\},

  • -

    Nc(s)={|φ|φΔφs}N^{c}(s)=\{|\varphi|\mid\circ\varphi\land\Delta\varphi\in s\},

  • -

    Vc(p)={sScps}V^{c}(p)=\{s\in S^{c}\mid p\in s\}.

Lemma 31.

For all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), for all sScs\in S^{c}, we have

c,sφφs.\mathcal{M}^{c},s\vDash\varphi\iff\varphi\in s.

That is, |φ|=φc|\varphi|=\varphi^{\mathcal{M}^{c}}.

Proof.

By induction on φ\varphi. The nontrivial cases are φ\nabla\varphi and φ\bullet\varphi.

For case φ\nabla\varphi:

First, suppose that φs\nabla\varphi\in s, to show that c,sφ\mathcal{M}^{c},s\vDash\nabla\varphi. By supposition, we have Δφs\Delta\varphi\notin s. Then by definition of NcN^{c}, we infer that |φ|Nc(s)|\varphi|\notin N^{c}(s). By supposition again and axiom E1, we have ¬φs\nabla\neg\varphi\in s, and thus Δ¬φs\Delta\neg\varphi\notin s, and hence |¬φ|Nc(s)|\neg\varphi|\notin N^{c}(s), that is, Sc\|φ|Nc(s)S^{c}\backslash|\varphi|\notin N^{c}(s). By induction hypothesis, we have φcNc(s)\varphi^{\mathcal{M}^{c}}\notin N^{c}(s) and Sc\φcNc(s)S^{c}\backslash\varphi^{\mathcal{M}^{c}}\notin N^{c}(s). Therefore, c,sφ\mathcal{M}^{c},s\vDash\nabla\varphi.

Conversely, assume that φs\nabla\varphi\notin s (that is, ¬φs\nabla\neg\varphi\notin s), to show that c,sφ\mathcal{M}^{c},s\nvDash\nabla\varphi. By assumption, Δφs\Delta\varphi\in s and Δ¬φs\Delta\neg\varphi\in s. Since sScs\in S^{c}, we have either φs\varphi\in s or ¬φs\neg\varphi\in s. If φs\varphi\in s, then by axiom E2, ¬φs\circ\neg\varphi\in s, and then |¬φ|Nc(s)|\neg\varphi|\in N^{c}(s), viz. Sc\|φ|Nc(s)S^{c}\backslash|\varphi|\in N^{c}(s), which by induction hypothesis implies that Sc\φcNc(s)S^{c}\backslash\varphi^{\mathcal{M}^{c}}\in N^{c}(s). If ¬φs\neg\varphi\in s, then again by axiom E2, φs\circ\varphi\in s, thus |φ|Nc(s)|\varphi|\in N^{c}(s), which by induction hypothesis entails that φcNc(s)\varphi^{\mathcal{M}^{c}}\in N^{c}(s). We have now shown that either φcNc(s)\varphi^{\mathcal{M}^{c}}\in N^{c}(s) or Sc\φcNc(s)S^{c}\backslash\varphi^{\mathcal{M}^{c}}\in N^{c}(s), and we therefore conclude that c,sφ\mathcal{M}^{c},s\nvDash\nabla\varphi.

For case φ\bullet\varphi:

First, suppose that φs\bullet\varphi\in s, to show that c,sφ\mathcal{M}^{c},s\vDash\bullet\varphi. By supposition and axiom E2, we have φs\varphi\in s. By induction hypothesis, c,sφ\mathcal{M}^{c},s\vDash\varphi. By supposition and definition of NcN^{c}, we infer that |φ|Nc(s)|\varphi|\notin N^{c}(s), which by induction means that φcNc(s)\varphi^{\mathcal{M}^{c}}\notin N^{c}(s). Therefore, c,sφ\mathcal{M}^{c},s\vDash\bullet\varphi.

Conversely, assume that φs\bullet\varphi\notin s, to demonstrate that c,sφ\mathcal{M}^{c},s\nvDash\bullet\varphi. By assumption, φs\circ\varphi\in s. If c,sφ\mathcal{M}^{c},s\nvDash\varphi, it is obvious that c,sφ\mathcal{M}^{c},s\nvDash\bullet\varphi. Otherwise, by induction hypothesis, we have φs\varphi\in s, then φφs\circ\varphi\land\varphi\in s. By Prop. 27, Δφs\Delta\varphi\in s, and thus |φ|Nc(s)|\varphi|\in N^{c}(s), by induction we obtain φcNc(s)\varphi^{\mathcal{M}^{c}}\in N^{c}(s), and therefore we have also c,sφ\mathcal{M}^{c},s\nvDash\bullet\varphi. ∎

It is then a standard exercise to show the following.

Theorem 32.

𝐄{\bf E^{\nabla\bullet}} is sound and strongly complete with respect to the class of all neighborhood frames.

5.2 Extensions

5.2.1 𝐄𝐜{\bf E_{c}^{\nabla\bullet}}

Define 𝐄𝐜{\bf E_{c}^{\nabla\bullet}} be the smallest extension of 𝐄{\bf E^{\nabla\bullet}} with the following axiom, denoted E4:

φφ.\bullet\varphi\to\nabla\varphi.

Intuitively, E4 says that Fitchean ignorance implies first-order ignorance.

From E4 we can easily prove Δφφ\Delta\varphi\to\circ\varphi. This turns the canonical model for 𝐄{\bf E^{\nabla\bullet}} (Def. 30) into the following simpler one.

Definition 33.

The canonical model for 𝐄𝐜{\bf E_{c}^{\nabla\bullet}} is a triple c=Sc,Nc,Vc\mathcal{M}^{c}=\langle S^{c},N^{c},V^{c}\rangle, where

  • Sc={ss is a maximal consistent set for 𝐄𝐜}S^{c}=\{s\mid s\text{ is a maximal consistent set for }{\bf E_{c}^{\nabla\bullet}}\}

  • Nc(s)={|φ|Δφs}N^{c}(s)=\{|\varphi|\mid\Delta\varphi\in s\}

  • Vc(p)={sScps}V^{c}(p)=\{s\in S^{c}\mid p\in s\}.

Lemma 34.

For all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), for all sScs\in S^{c}, we have

c,sφφs.\mathcal{M}^{c},s\vDash\varphi\iff\varphi\in s.

That is, |φ|=φc|\varphi|=\varphi^{\mathcal{M}^{c}}.

Proof.

By induction on φ\varphi. The nontrivial cases are φ\nabla\varphi and φ\bullet\varphi. The case φ\nabla\varphi has been shown in [12, Lemma 1]. It suffices to show the case φ\bullet\varphi.

Suppose that φs\bullet\varphi\in s. Then by axiom E2, we have φs\varphi\in s; by axiom E4, we derive that φs\nabla\varphi\in s, and thus Δφs\Delta\varphi\notin s. This follows that |φ|Nc(s)|\varphi|\notin N^{c}(s). By induction hypothesis, c,sφ\mathcal{M}^{c},s\vDash\varphi and φcNc(s)\varphi^{\mathcal{M}^{c}}\notin N^{c}(s). Therefore, c,sφ\mathcal{M}^{c},s\vDash\bullet\varphi.

Conversely, assume that φs\bullet\varphi\notin s, to show that c,sφ\mathcal{M}^{c},s\nvDash\bullet\varphi, which by induction hypothesis amounts to showing that φs\varphi\notin s or |φ|Nc(s)|\varphi|\in N^{c}(s). For this, suppose that φs\varphi\in s, this plus the assumption implies that φφs\circ\varphi\land\varphi\in s. Then by Prop. 27, Δφs\Delta\varphi\in s, and therefore |φ|Nc(s)|\varphi|\in N^{c}(s). ∎

Proposition 35.

c\mathcal{M}^{c} possesses the property (c)(c).

Proof.

Refer to [12, Thm. 2]. ∎

Now it is a standard exercise to show the following.

Theorem 36.

𝐄𝐜{\bf E_{c}^{\nabla\bullet}} is sound and strongly complete with respect to the class of (c)(c)-frames.

In the neighborhood context (c)(c), there is some relationship between Rumsfeld ignorance, second-order ignorance and first-order ignorance. The following is immediate from the axiom E4.

Proposition 37.

φφ\bullet\nabla\varphi\to\nabla\nabla\varphi is provable in 𝐄𝐜{\bf E^{\nabla\bullet}_{c}}.

This says that under the condition (c)(c), Rumsfeld ignorance implies second-order ignorance.

Combined with an instance of the axiom E2 (φφ\bullet\nabla\varphi\to\nabla\varphi) and φφφ\vdash\nabla\nabla\varphi\land\nabla\varphi\to\bullet\nabla\varphi (see the remark after Prop. 27), it follows that within the neighborhood context (c)(c), Rumsfeld ignorance amounts to second-order ignorance plus first-order ignorance, and thus Rumsfeld ignorance is definable in terms of first-order ignorance.

5.2.2 𝐄𝐍{\bf EN^{\nabla\bullet}}

Let 𝐄𝐍=𝐄+{\bf EN^{\nabla\bullet}}={\bf E^{\nabla\bullet}}+\circ\top. From \circ\top and Prop. 27 it follows that Δ\Delta\top is derivable in 𝐄𝐍{\bf EN^{\nabla\bullet}}.

Theorem 38.

𝐄𝐍{\bf EN^{\nabla\bullet}} is sound and strongly complete with respect to the class of all (n)(n)-frames.

Proof.

For soundness, by Prop. 29, it remains only to show the validity of \circ\top over the class of (n)(n)-frames. The validity of \circ\top can be found in Prop. 22.

For completeness, define the canonical model c\mathcal{M}^{c} w.r.t. 𝐄𝐍{\bf EN^{\nabla\bullet}} as in Def. 30. By Thm. 32, it suffices to show that c\mathcal{M}^{c} possesses (n)(n). By the construction of 𝐄𝐍{\bf EN^{\nabla\bullet}}, for all sScs\in S^{c}, we have Δs\circ\top\land\Delta\top\in s, and thus ||Nc(s)|\top|\in N^{c}(s), that is, ScNc(s)S^{c}\in N^{c}(s), as desired. ∎

5.2.3 Monotone logic

Let 𝐌{\bf M^{\nabla\bullet}} be the extension of 𝐄{\bf E^{\nabla\bullet}} plus the following extra axioms:

M1(φψ)(¬φχ)φM2(φψ)(¬φχ)φM3(φψ)(¬φχ)φM4φφΔ(φψ)(φψ)\begin{array}[]{ll}\text{M1}&\nabla(\varphi\vee\psi)\land\nabla(\neg\varphi\vee\chi)\to\nabla\varphi\\ \text{M2}&\bullet(\varphi\vee\psi)\land\bullet(\neg\varphi\vee\chi)\to\nabla\varphi\\ \text{M3}&\bullet(\varphi\vee\psi)\land\nabla(\neg\varphi\vee\chi)\to\nabla\varphi\\ \text{M4}&\circ\varphi\land\varphi\to\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\\ \end{array}

Prop. 39 and Prop. 40 tells us how to derive Δ\Delta\top and \circ\top in 𝐌{\bf M^{\nabla\bullet}}, respectively. They will used in Section 6.

Proposition 39.

ΔφΔ\Delta\varphi\to\Delta\top is provable in 𝐌{\bf M^{\nabla\bullet}}.

Proof.

We have the following proof sequence in 𝐌{\bf M^{\nabla\bullet}}.

(1)(φ)(¬φ)φM1(2)φTAUT(3)(φ)(2),RE(4)¬φTAUT(5)(¬φ)(4),RE(6)φ(1),(3),(5)(7)ΔφΔ(6),Def. Δ\begin{array}[]{lll}(1)&\nabla(\varphi\vee\top)\land\nabla(\neg\varphi\vee\top)\to\nabla\varphi&\text{M1}\\ (2)&\top\leftrightarrow\varphi\vee\top&\text{TAUT}\\ (3)&\nabla\top\leftrightarrow\nabla(\varphi\vee\top)&(2),\text{RE}\nabla\\ (4)&\top\leftrightarrow\neg\varphi\vee\top&\text{TAUT}\\ (5)&\nabla\top\leftrightarrow\nabla(\neg\varphi\vee\top)&(4),\text{RE}\nabla\\ (6)&\nabla\top\to\nabla\varphi&(1),(3),(5)\\ (7)&\Delta\varphi\to\Delta\top&(6),\text{Def.\leavevmode\nobreak\ }\Delta\\ \end{array}

In the above proof, φ\nabla\top\to\nabla\varphi says that if one is ignorant about whether \top holds, then one is ignorant about whether everything holds.

Proposition 40.

φφ\varphi\land\circ\varphi\to\circ\top is provable in 𝐌{\bf M^{\nabla\bullet}}.

Proof.

We have the following proof sequence in 𝐌{\bf M^{\nabla\bullet}}.

(1)(φ)TAUT(2)(φ)(1),RE(3)(¬φ)TAUT(4)(¬φ)(3),RE(5)(φ)(¬φ)φM2(6)φ(2),(4),(5)(7)Δφ(6),Def. Δ,Def. (8)φφΔφProp. 27(9)φφ(7),(8)\begin{array}[]{lll}(1)&(\varphi\vee\top)\leftrightarrow\top&\text{TAUT}\\ (2)&\bullet(\varphi\vee\top)\leftrightarrow\bullet\top&(1),\text{RE}\bullet\\ (3)&(\neg\varphi\vee\top)\leftrightarrow\top&\text{TAUT}\\ (4)&\bullet(\neg\varphi\vee\top)\leftrightarrow\bullet\top&(3),\text{RE}\bullet\\ (5)&\bullet(\varphi\vee\top)\land\bullet(\neg\varphi\vee\top)\to\nabla\varphi&\text{M2}\\ (6)&\bullet\top\to\nabla\varphi&(2),(4),(5)\\ (7)&\Delta\varphi\to\circ\top&(6),\text{Def.\leavevmode\nobreak\ }\Delta,\text{Def.\leavevmode\nobreak\ }\circ\\ (8)&\varphi\land\circ\varphi\to\Delta\varphi&\text{Prop.\leavevmode\nobreak\ }\ref{prop.circimpliesdelta}\\ (9)&\varphi\land\circ\varphi\to\circ\top&(7),(8)\\ \end{array}

Proposition 41.

𝐌{\bf M^{\nabla\bullet}} is sound with respect to the class of all (s)(s)-frames.

Proof.

By soundness of 𝐄{\bf E^{\nabla\bullet}} (Prop. 29), it suffices to show the validity of the extra axioms. Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be an arbitrary (s)(s)-model and sSs\in S.

For M1: suppose that ,s(φψ)(¬φχ)\mathcal{M},s\vDash\nabla(\varphi\vee\psi)\land\nabla(\neg\varphi\vee\chi). Then (φψ)N(s)(\varphi\vee\psi)^{\mathcal{M}}\notin N(s) and (¬φχ)N(s)(\neg\varphi\vee\chi)^{\mathcal{M}}\notin N(s), that is, φψN(s)\varphi^{\mathcal{M}}\cup\psi^{\mathcal{M}}\notin N(s) and (¬φ)χN(s)(\neg\varphi)^{\mathcal{M}}\cup\chi^{\mathcal{M}}\notin N(s). Since φφψ\varphi^{\mathcal{M}}\subseteq\varphi^{\mathcal{M}}\cup\psi^{\mathcal{M}} and N(s)N(s) is closed under supersets, we must have φN(s)\varphi^{\mathcal{M}}\notin N(s). Similarly, we can show that (¬φ)N(s)(\neg\varphi)^{\mathcal{M}}\notin N(s). Therefore, ,sφ\mathcal{M},s\vDash\nabla\varphi, as desired. Similarly, we can show the validity of M2 and M3.

For M4: assume that ,sφφ\mathcal{M},s\vDash\circ\varphi\land\varphi. Then φN(s)\varphi^{\mathcal{M}}\in N(s). Since φφψ=(φψ)\varphi^{\mathcal{M}}\subseteq\varphi^{\mathcal{M}}\cup\psi^{\mathcal{M}}=(\varphi\vee\psi)^{\mathcal{M}}, by the property (s)(s), we have (φψ)N(s)(\varphi\vee\psi)^{\mathcal{M}}\in N(s), and therefore ,sΔ(φψ)(φψ)\mathcal{M},s\vDash\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi). ∎

Definition 42.

Let Λ\Lambda be an extension of 𝐌{\bf M^{\nabla\bullet}}. A triple Λ=SΛ,NΛ,VΛ\mathcal{M}^{\Lambda}=\langle S^{\Lambda},N^{\Lambda},V^{\Lambda}\rangle is a canonical neighborhood model for Λ\Lambda if

  • SΛ={ss is a maximal consistent set for Λ}S^{\Lambda}=\{s\mid s\text{ is a maximal consistent set for }\Lambda\},

  • |φ|NΛ(s)|\varphi|\in N^{\Lambda}(s) iff Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi,

  • VΛ(p)=|p|={sSΛps}V^{\Lambda}(p)=|p|=\{s\in S^{\Lambda}\mid p\in s\}.

We need to show that NΛN^{\Lambda} is well defined.

Proposition 43.

Let sSΛs\in S^{\Lambda} as defined in Def. 42. If |φ|=|φ||\varphi|=|\varphi^{\prime}|, then Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi iff Δ(φψ)(φψ)s\Delta(\varphi^{\prime}\vee\psi)\land\circ(\varphi^{\prime}\vee\psi)\in s for all ψ\psi.

Proof.

Suppose that |φ|=|φ||\varphi|=|\varphi^{\prime}|, then φφ\vdash\varphi\leftrightarrow\varphi^{\prime}, and thus φψφψ\vdash\varphi\vee\psi\leftrightarrow\varphi^{\prime}\vee\psi. By RE\text{RE}\nabla, RE\text{RE}\bullet, Def. Δ\text{Def.\leavevmode\nobreak\ }\Delta and Def. \text{Def.\leavevmode\nobreak\ }\circ, we infer that Δ(φψ)Δ(φψ)\vdash\Delta(\varphi\vee\psi)\leftrightarrow\Delta(\varphi^{\prime}\vee\psi) and (φψ)(φψ)\vdash\circ(\varphi\vee\psi)\leftrightarrow\circ(\varphi^{\prime}\vee\psi), and hence Δ(φψ)(φψ)Δ(φψ)(φψ)\vdash\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\leftrightarrow\Delta(\varphi^{\prime}\vee\psi)\land\circ(\varphi^{\prime}\vee\psi). Therefore, Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi iff Δ(φψ)(φψ)s\Delta(\varphi^{\prime}\vee\psi)\land\circ(\varphi^{\prime}\vee\psi)\in s for all ψ\psi. ∎

Lemma 44.

Let Λ=SΛ,NΛ,VΛ\mathcal{M}^{\Lambda}=\langle S^{\Lambda},N^{\Lambda},V^{\Lambda}\rangle be an arbitrary canonical neighborhood model for any system Λ\Lambda extending 𝐌{\bf M^{\nabla\bullet}}. Then for all sSΛs\in S^{\Lambda}, for all φ(,)\varphi\in\mathcal{L}(\nabla,\bullet), we have

Λ,sφφs.\mathcal{M}^{\Lambda},s\vDash\varphi\iff\varphi\in s.

That is, φΛ=|φ|\varphi^{\mathcal{M}^{\Lambda}}=|\varphi|.

Proof.

By induction on φ\varphi. The nontrivial cases are φ\nabla\varphi and φ\bullet\varphi.

For case φ\nabla\varphi:

Suppose that Λ,sφ\mathcal{M}^{\Lambda},s\nvDash\nabla\varphi, to show that φs\nabla\varphi\notin s. By supposition and induction hypothesis, |φ|NΛ(s)|\varphi|\in N^{\Lambda}(s) or S\|φ|NΛ(s)S\backslash|\varphi|\in N^{\Lambda}(s) (that is, |¬φ|NΛ(s)|\neg\varphi|\in N^{\Lambda}(s)). If |φ|NΛ(s)|\varphi|\in N^{\Lambda}(s), then Δ(φψ)s\Delta(\varphi\vee\psi)\in s for all ψ\psi. By letting ψ=\psi=\bot, then Δφs\Delta\varphi\in s, and thus φs\nabla\varphi\notin s. If |¬φ|NΛ(s)|\neg\varphi|\in N^{\Lambda}(s), with a similar argument we can show that Δ¬φs\Delta\neg\varphi\in s, that is, Δφs\Delta\varphi\in s, and we also have φs\nabla\varphi\notin s.

Conversely, assume that Λ,sφ\mathcal{M}^{\Lambda},s\vDash\nabla\varphi, to prove that φs\nabla\varphi\in s. By assumption and induction hypothesis, |φ|NΛ(s)|\varphi|\notin N^{\Lambda}(s) and S\|φ|NΛ(s)S\backslash|\varphi|\notin N^{\Lambda}(s), that is, |¬φ|NΛ(s)|\neg\varphi|\notin N^{\Lambda}(s). Then Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\notin s for some ψ\psi, and Δ(¬φχ)(¬φχ)s\Delta(\neg\varphi\vee\chi)\land\circ(\neg\varphi\vee\chi)\notin s for some χ\chi. We consider the following cases.

  • -

    Δ(φψ)s\Delta(\varphi\vee\psi)\notin s and Δ(¬φχ)s\Delta(\neg\varphi\vee\chi)\notin s. That is, (φψ)s\nabla(\varphi\vee\psi)\in s and (¬φχ)s\nabla(\neg\varphi\vee\chi)\in s. Then by axiom M1, we infer that φs\nabla\varphi\in s.

  • -

    Δ(φψ)s\Delta(\varphi\vee\psi)\notin s and (¬φχ)s\circ(\neg\varphi\vee\chi)\notin s. That is, (φψ)s\nabla(\varphi\vee\psi)\in s and (¬φχ)s\bullet(\neg\varphi\vee\chi)\in s. By axiom M3, ¬φs\nabla\neg\varphi\in s, that is, φs\nabla\varphi\in s.

  • -

    (φψ)s\circ(\varphi\vee\psi)\notin s and Δ(¬φχ)s\Delta(\neg\varphi\vee\chi)\notin s. That is, (φψ)s\bullet(\varphi\vee\psi)\in s and (¬φχ)s\nabla(\neg\varphi\vee\chi)\in s. Then by axiom M3, we derive that φs\nabla\varphi\in s.

  • -

    (φψ)s\circ(\varphi\vee\psi)\notin s and (¬φχ)s\circ(\neg\varphi\vee\chi)\notin s. That is, (φψ)s\bullet(\varphi\vee\psi)\in s and (¬φχ)s\bullet(\neg\varphi\vee\chi)\in s. By axiom M2, we obtain that φs\nabla\varphi\in s.

Either case implies that φs\nabla\varphi\in s, as desired.

For case φ\bullet\varphi.

Suppose that φs\bullet\varphi\in s, to show that Λ,sφ\mathcal{M}^{\Lambda},s\vDash\bullet\varphi. By supposition and axiom E2, we obtain φs\varphi\in s, which by induction hypothesis means that Λ,sφ\mathcal{M}^{\Lambda},s\vDash\varphi. We have also |φ|NΛ(s)|\varphi|\notin N^{\Lambda}(s): otherwise, by definition of NΛN^{\Lambda}, we should have (φψ)s\circ(\varphi\vee\psi)\in s for all ψ\psi, which then implies that φs\circ\varphi\in s (by letting ψ=\psi=\bot), a contradiction. Then by induction hypothesis, φΛNΛ(s)\varphi^{\mathcal{M}^{\Lambda}}\notin N^{\Lambda}(s). Therefore, Λ,sφ\mathcal{M}^{\Lambda},s\vDash\bullet\varphi.

Conversely, assume that φs\bullet\varphi\notin s (that is, φs\circ\varphi\in s), to prove that Λ,sφ\mathcal{M}^{\Lambda},s\nvDash\bullet\varphi. For this, suppose that Λ,sφ\mathcal{M}^{\Lambda},s\vDash\varphi, by induction hypothesis, we have φs\varphi\in s, and then φφs\circ\varphi\land\varphi\in s. By axiom M4, Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi. By definition of NΛN^{\Lambda}, we derive that |φ|NΛ(s)|\varphi|\in N^{\Lambda}(s). Then by induction hypothesis again, we conclude that φΛNΛ(s)\varphi^{\mathcal{M}^{\Lambda}}\in N^{\Lambda}(s). Therefore, Λ,sφ\mathcal{M}^{\Lambda},s\nvDash\bullet\varphi, as desired. ∎

Given an extension Λ\Lambda of 𝐌{\bf M^{\nabla\bullet}}, the minimal canonical neighborhood model for Λ\Lambda, denoted 0Λ=SΛ,N0Λ,VΛ\mathcal{M}^{\Lambda}_{0}=\langle S^{\Lambda},N^{\Lambda}_{0},V^{\Lambda}\rangle, is defined such that N0Λ(s)={|φ|Δ(φψ)(φψ)s for all ψ}N^{\Lambda}_{0}(s)=\{|\varphi|\mid\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s\text{ for all }\psi\}. Note that 0Λ\mathcal{M}^{\Lambda}_{0} is not necessarily supplemented. Therefore, we define a notion of supplementation, which comes from [4].

Definition 45.

Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be a neighborhood model. The supplementation of \mathcal{M}, denoted +\mathcal{M}^{+}, is a triple S,N+,V\langle S,N^{+},V\rangle, in which for every sSs\in S, N+(s)N^{+}(s) is the superset closure of N(s)N(s); namely, for each sSs\in S,

N+(s)={XSYX for some YN(s)}.N^{+}(s)=\{X\subseteq S\mid Y\subseteq X\text{ for some }Y\in N(s)\}.

One may easily show that +\mathcal{M}^{+} is supplemented, that is, +\mathcal{M}^{+} possesses (s)(s). Also, N(s)N+(s)N(s)\subseteq N^{+}(s). Moreover, the properties of being closed under intersections and containing the unit are closed under the supplementation.

Proposition 46.

Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be a neighborhood model and +\mathcal{M}^{+} be its supplementation. If \mathcal{M} possesses (i)(i), then so does +\mathcal{M}^{+}; if \mathcal{M} possesses (n)(n), then so does +\mathcal{M}^{+}.

In what follows, we will use (0Λ)+(\mathcal{M}^{\Lambda}_{0})^{+} to denote the supplementation of 0Λ\mathcal{M}^{\Lambda}_{0}, namely (0Λ)+=SΛ,(N0Λ)+,VΛ(\mathcal{M}^{\Lambda}_{0})^{+}=\langle S^{\Lambda},(N^{\Lambda}_{0})^{+},V^{\Lambda}\rangle, where Λ\Lambda extends 𝐌{\bf M^{\nabla\bullet}}. By the definition of supplementation, (0Λ)+(\mathcal{M}^{\Lambda}_{0})^{+} is an (s)(s)-model. To show the completeness of 𝐌{\bf M^{\nabla\bullet}} over the class of (s)(s)-frames, by Lemma 44, it remains only to show that (0Λ)+(\mathcal{M}^{\Lambda}_{0})^{+} is a canonical neighborhood model for Λ\Lambda.

Lemma 47.

Let Λ\Lambda extends 𝐌{\bf M^{\nabla\bullet}}. For every sSΛs\in S^{\Lambda}, we have

|φ|(N0Λ)+(s)Δ(φψ)(φψ)s for all ψ.|\varphi|\in(N^{\Lambda}_{0})^{+}(s)\iff\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s\text{ for all }\psi.
Proof.

Right-to-Left: Immediate by the definition of N0ΛN^{\Lambda}_{0} and the fact that N0Λ(s)(N0Λ)+(s)N^{\Lambda}_{0}(s)\subseteq(N^{\Lambda}_{0})^{+}(s).

Left-to-Right: Suppose that |φ|(N0Λ)+(s)|\varphi|\in(N^{\Lambda}_{0})^{+}(s), to prove that Δ(φψ)(φψ)s for all ψ.\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s\text{ for all }\psi. By supposition, X|φ|X\subseteq|\varphi| for some XN0Λ(s)X\in N^{\Lambda}_{0}(s). Then there must be a χ\chi such that X=|χ|X=|\chi|, and thus Δ(χψ)(χψ)s\Delta(\chi\vee\psi)\land\circ(\chi\vee\psi)\in s for all ψ\psi, and hence Δ(χφψ)(χφψ)s\Delta(\chi\vee\varphi\vee\psi)\land\circ(\chi\vee\varphi\vee\psi)\in s. From |χ||φ||\chi|\subseteq|\varphi|, it follows that χφ\vdash\chi\to\varphi, and then χφψφψ\vdash\chi\vee\varphi\vee\psi\leftrightarrow\varphi\vee\psi, and thus Δ(χφψ)Δ(φψ)\vdash\Delta(\chi\vee\varphi\vee\psi)\leftrightarrow\Delta(\varphi\vee\psi) and (χφψ)(φψ)\vdash\circ(\chi\vee\varphi\vee\psi)\leftrightarrow\circ(\varphi\vee\psi) by RE\text{RE}\nabla, RE\text{RE}\bullet, Def. Δ\text{Def.\leavevmode\nobreak\ }\Delta and Def. \text{Def.\leavevmode\nobreak\ }\circ. Therefore, Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi. ∎

Based on the previous analysis, we have the following.

Theorem 48.

𝐌{\bf M^{\nabla\bullet}} is sound and strongly complete with respect to the class of all (s)(s)-frames.

We conclude this part with some results which will be used in Section 6. The following result states that if one is ignorant of the fact that either φ\varphi holds or one is ignorant whether φ\varphi holds, then one is either ignorant of the fact that φ\varphi or ignorant whether φ\varphi holds.

Proposition 49.

(φφ)(φφ)\bullet(\varphi\vee\nabla\varphi)\to(\bullet\varphi\vee\nabla\varphi) is provable in 𝐌{\bf M^{\nabla\bullet}}.101010In fact, we can show a stronger result: (φψ)φψ\bullet(\varphi\vee\nabla\psi)\to\bullet\varphi\vee\nabla\psi is provable in 𝐌{\bf M^{\nabla\bullet}}. But we do not need such a strong result below.

Proof.

By Thm. 48, it suffices to show the formula is valid over the class of (s)(s)-frames. Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be an (s)(s)-model and sSs\in S.

Suppose, for reductio, that ,s(φφ)\mathcal{M},s\vDash\bullet(\varphi\vee\nabla\varphi) and ,sφφ\mathcal{M},s\nvDash\bullet\varphi\vee\nabla\varphi. From the former, it follows that ,sφφ\mathcal{M},s\vDash\varphi\vee\nabla\varphi and (φφ)N(s)(\varphi\vee\nabla\varphi)^{\mathcal{M}}\notin N(s); from the latter, it follows that ,sφ\mathcal{M},s\nvDash\bullet\varphi and ,sφ\mathcal{M},s\nvDash\nabla\varphi. This implies that ,sφ\mathcal{M},s\vDash\varphi, which plus ,sφ\mathcal{M},s\nvDash\bullet\varphi gives us φN(s)\varphi^{\mathcal{M}}\in N(s). Since φ(φφ)\varphi^{\mathcal{M}}\subseteq(\varphi\vee\nabla\varphi)^{\mathcal{M}}, by (s)(s), we conclude that (φφ)N(s)(\varphi\vee\nabla\varphi)^{\mathcal{M}}\in N(s): a contradiction, as desired. ∎

The following result says that if one is ignorant of the fact that either non-ignorance of φ\varphi or non-ignorance whether φ\varphi holds implies that φ\varphi, then one is ignorant of the fact that φ\varphi.

Proposition 50.

(φΔφφ)φ\bullet(\circ\varphi\vee\Delta\varphi\to\varphi)\to\bullet\varphi is provable in 𝐌{\bf M^{\nabla\bullet}}.

Proof.

By Thm. 48, it remains only to prove that the formula is valid over the class of (s)(s)-frames. Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be an (s)(s)-model and sSs\in S.

Assume, for reductio, that ,s(φΔφφ)\mathcal{M},s\vDash\bullet(\circ\varphi\vee\Delta\varphi\to\varphi) and ,sφ\mathcal{M},s\nvDash\bullet\varphi. The former implies ,sφΔφφ\mathcal{M},s\vDash\circ\varphi\vee\Delta\varphi\to\varphi and (φΔφφ)N(s)(\circ\varphi\vee\Delta\varphi\to\varphi)^{\mathcal{M}}\notin N(s); the latter entails that ,sφ\mathcal{M},s\vDash\circ\varphi. Then ,sφ\mathcal{M},s\vDash\varphi, and thus φN(s)\varphi^{\mathcal{M}}\in N(s). One may easily verify that φ(φΔφφ)\varphi^{\mathcal{M}}\subseteq(\circ\varphi\vee\Delta\varphi\to\varphi)^{\mathcal{M}}. Then by (s)(s), we conclude that (φΔφφ)N(s)(\circ\varphi\vee\Delta\varphi\to\varphi)^{\mathcal{M}}\in N(s): a contradiction. ∎

5.2.4 Regular logic

Define 𝐑:=𝐌+R1+R2{\bf R^{\nabla\bullet}}:={\bf M^{\nabla\bullet}}+\text{R1}+\text{R2}, where

R1ΔφΔψΔ(φψ)R2φψ(φψ)\begin{array}[]{ll}\text{R1}&\Delta\varphi\land\Delta\psi\to\Delta(\varphi\land\psi)\\ \text{R2}&\circ\varphi\land\circ\psi\to\circ(\varphi\land\psi)\\ \end{array}
Proposition 51.

𝐑{\bf R^{\nabla\bullet}} is sound with respect to the class of quasi-filters.

Proof.

By soundness of 𝐌{\bf M^{\nabla\bullet}}, it remains to prove the validity of R1 and R2. The validity of R1 has been shown in [8, Prop. 3(iv)], and the validity of R2 has been shown in [11, Thm. 5.2]. ∎

Proposition 52.

Let Λ\Lambda extends 𝐑{\bf R^{\nabla\bullet}}. Then the minimal canonical model 0Λ\mathcal{M}^{\Lambda}_{0} has the property (i)(i). As a corollary, its supplementation is a quasi-filter.

Proof.

Suppose that X,YN0Λ(s)X,Y\in N^{\Lambda}_{0}(s), to show that XYN0Λ(s)X\cap Y\in N^{\Lambda}_{0}(s). By supposition, there exist φ\varphi and χ\chi such that X=|φ|X=|\varphi| and Y=|χ|Y=|\chi|, and then Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi, and Δ(χψ)(χψ)s\Delta(\chi\vee\psi)\land\circ(\chi\vee\psi)\in s for all ψ\psi. By axioms R1 and R2, we can obtain that Δ((φχ)ψ)((φχ)ψ)s\Delta((\varphi\land\chi)\vee\psi)\land\circ((\varphi\land\chi)\vee\psi)\in s for all ψ\psi, which implies that |φχ|N0Λ(s)|\varphi\land\chi|\in N^{\Lambda}_{0}(s), that is, XYN0Λ(s)X\cap Y\in N^{\Lambda}_{0}(s). ∎

Theorem 53.

𝐑{\bf R^{\nabla\bullet}} is sound and strongly complete with respect to the class of quasi-filters.

5.2.5 𝐊{\bf K^{\nabla\bullet}}

Define 𝐊:=𝐑+{\bf K^{\nabla\bullet}}:={\bf R^{\nabla\bullet}}+\circ\top.

Again, like the case of 𝐄𝐍{\bf EN^{\nabla\bullet}}(Sec. 5.2.2), Δ\Delta\top is derivable from \circ\top and Prop. 27. This hints us that the inference rule R1 in [7, Def. 12] is actually dispensable. (Fact 13 therein is derivable from axiom A1 and axiom A6. Then by R2, we have φ\vdash\varphi implies φφ\vdash\circ\varphi\land\varphi, and then Δφ\vdash\Delta\varphi. Thus we derive R1 there.)

Theorem 54.

𝐊{\bf K^{\nabla\bullet}} is sound and strongly complete with respect to the class of filters.

Proof.

For soundness, by Prop. 51, it suffices to show the validity of \circ\top over the class of filters. This follows immediately from Prop. 22.

For completeness, define 0Λ\mathcal{M}^{\Lambda}_{0} as before w.r.t. 𝐊{\bf K^{\nabla\bullet}}. By Prop. 52 and Prop. 46, it remains only to show that N0Λ(s)N^{\Lambda}_{0}(s) possesses (n)(n). By \circ\top and the derivable formula Δ\Delta\top, we have \vdash\circ\top and Δ\vdash\Delta\top. Then by (ψ)\vdash(\top\vee\psi)\leftrightarrow\top, RE\text{RE}\nabla, RE\text{RE}\bullet, Def. Δ\text{Def.\leavevmode\nobreak\ }\Delta and Def. \text{Def.\leavevmode\nobreak\ }\circ, we infer that for all sSΛs\in S^{\Lambda}, Δ(ψ)(ψ)s\Delta(\top\vee\psi)\land\circ(\top\vee\psi)\in s for all ψ\psi, and thus ||NΛ(s)|\top|\in N^{\Lambda}(s), that is, SN0Λ(s)S\in N^{\Lambda}_{0}(s), as desired. ∎

Inspired by the definition of NΛN^{\Lambda}, one may define the canonical relation for the extensions of 𝐊{\bf K^{\nabla\bullet}} as follows:

sRNtsR^{N}t iff for all φ\varphi, if Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi, then φt\varphi\in t.

Recall that the original definition of canonical relation given in [7, Def. 18] is as follows:

sRKtsR^{K}t iff there exists δ\delta such that (a)(a) δs\bullet\delta\in s, and (b)(b) for all φ\varphi, if Δφ(¬δφ)s\Delta\varphi\land\circ(\neg\delta\to\varphi)\in s, then φt\varphi\in t.

One may ask what the relationship between RNR^{N} and RKR^{K} is. As we shall see, they are equal to each other. Before this, we need some preparation.

Proposition 55.

δΔφ(¬δφ)Δ(φψ)(φχ)\vdash\bullet\delta\land\Delta\varphi\land\circ(\neg\delta\to\varphi)\to\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\chi)

Proof.

By Thm. 54, it remains only to show that this formula is valid over the class of filters.

Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be a filter and sSs\in S. Suppose that ,sδΔφ(¬δφ)\mathcal{M},s\vDash\bullet\delta\land\Delta\varphi\land\circ(\neg\delta\to\varphi), to show ,sΔ(φψ)(φχ)\mathcal{M},s\vDash\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\chi). By ,sδ\mathcal{M},s\vDash\bullet\delta, we have ,sδ\mathcal{M},s\vDash\delta and δN(s)\delta^{\mathcal{M}}\notin N(s). By ,sΔφ\mathcal{M},s\vDash\Delta\varphi, we infer that φN(s)\varphi^{\mathcal{M}}\in N(s) or S\φN(s)S\backslash\varphi^{\mathcal{M}}\in N(s). Since ,sδ\mathcal{M},s\vDash\delta, we derive that ,s¬δφ\mathcal{M},s\vdash\neg\delta\to\varphi. Then by ,s(¬δφ)\mathcal{M},s\vDash\circ(\neg\delta\to\varphi), we get (¬δφ)N(s)(\neg\delta\to\varphi)^{\mathcal{M}}\in N(s), that is, δφN(s)\delta^{\mathcal{M}}\cup\varphi^{\mathcal{M}}\in N(s). If S\φN(s)S\backslash\varphi^{\mathcal{M}}\in N(s), then as N(s)N(s) has the property (i)(i), (δφ)(S\φ)N(s)(\delta^{\mathcal{M}}\cup\varphi^{\mathcal{M}})\cap(S\backslash\varphi^{\mathcal{M}})\in N(s), viz. δ(S\φ)N(s)\delta^{\mathcal{M}}\cap(S\backslash\varphi^{\mathcal{M}})\in N(s). Since N(s)N(s) possesses the property (s)(s) and δ(S\φ)δ\delta^{\mathcal{M}}\cap(S\backslash\varphi^{\mathcal{M}})\subseteq\delta^{\mathcal{M}}, it follows that δN(s)\delta^{\mathcal{M}}\in N(s): a contradiction. This entails that S\φN(s)S\backslash\varphi^{\mathcal{M}}\notin N(s), and thus φN(s)\varphi^{\mathcal{M}}\in N(s). Note that φφψ=(φψ)\varphi^{\mathcal{M}}\subseteq\varphi^{\mathcal{M}}\cup\psi^{\mathcal{M}}=(\varphi\vee\psi)^{\mathcal{M}} and φφχ=(φχ)\varphi^{\mathcal{M}}\subseteq\varphi^{\mathcal{M}}\cup\chi^{\mathcal{M}}=(\varphi\vee\chi)^{\mathcal{M}}. Using (s)(s) again, we conclude that (φψ)N(s)(\varphi\vee\psi)^{\mathcal{M}}\in N(s) and (φχ)N(s)(\varphi\vee\chi)^{\mathcal{M}}\in N(s), and therefore ,sΔ(φψ)(φχ)\mathcal{M},s\vDash\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\chi), as desired. ∎

Proposition 56.

Let Λ\Lambda be an extension of 𝐊{\bf K^{\nabla\bullet}}. Then for all s,tSΛs,t\in S^{\Lambda}, sRNtsR^{N}t iff sRKtsR^{K}t.

Proof.

Suppose that sRNtsR^{N}t, to show that sRKtsR^{K}t. By supposition, for all φ\varphi, if Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi, then φt\varphi\in t. Letting φ=\varphi=\bot, we can infer that Δψψs\Delta\psi\land\circ\psi\notin s for some ψ\psi. If Δψs\Delta\psi\notin s, that is, ψs\nabla\psi\in s, then by axiom E3, we derive that ψs\bullet\psi\in s or ¬ψs\bullet\neg\psi\in s. If ψs\circ\psi\notin s, then we have ψs\bullet\psi\in s. Either case implies that δs\bullet\delta\in s for some δ\delta. Now suppose for any φ\varphi^{\prime} that Δφ(¬δφ)s\Delta\varphi^{\prime}\land\circ(\neg\delta\to\varphi^{\prime})\in s. By Prop. 55, we infer that Δ(φχ)(φχ)s\Delta(\varphi^{\prime}\vee\chi)\land\circ(\varphi^{\prime}\vee\chi)\in s for all χ\chi. Then by supposition again, we conclude that φt\varphi^{\prime}\in t. Therefore, sRKtsR^{K}t.

Conversely, assume that sRKtsR^{K}t, then there exists δ\delta such that (a)(a) δs\bullet\delta\in s, and (b)(b) for all φ\varphi, if Δφ(¬δφ)s\Delta\varphi\land\circ(\neg\delta\to\varphi)\in s, then φt\varphi\in t. It remains to prove that sRNtsR^{N}t. For this, suppose for any φ\varphi that Δ(φψ)(φψ)s\Delta(\varphi\vee\psi)\land\circ(\varphi\vee\psi)\in s for all ψ\psi. By letting ψ=\psi=\bot, we obtain that Δφs\Delta\varphi\in s; by letting ψ=δ\psi=\delta, we infer that (¬δφ)s\circ(\neg\delta\to\varphi)\in s. Thus Δφ(¬δφ)s\Delta\varphi\land\circ(\neg\delta\to\varphi)\in s. Then by (b)(b), we conclude that φt\varphi\in t, and therefore sRNtsR^{N}t, as desired. ∎

6 Updating neighborhood models

In this section, we extend the previous results to the dynamic case of public announcements. Syntactically, we add the constructor [φ]φ[\varphi]\varphi into the previous languages ()\mathcal{L}(\nabla), ()\mathcal{L}(\bullet) and (,)\mathcal{L}(\nabla,\bullet), and denote the obtained extensions by (,[])\mathcal{L}(\nabla,[\cdot]), (,[])\mathcal{L}(\bullet,[\cdot]), (,,[])\mathcal{L}(\nabla,\bullet,[\cdot]), respectively. [ψ]φ[\psi]\varphi is read “after every truthfully public announcement of ψ\psi, φ\varphi holds”. Also, as usual, ψφ\langle\psi\rangle\varphi abbreviates ¬[ψ]¬φ\neg[\psi]\neg\varphi. Semantically, we adopt the intersection semantics in the literature (e.g. [37, 21, 22]). In detail, given a monotone neighborhood model =S,N,V\mathcal{M}=\langle S,N,V\rangle and a state sSs\in S,

,s[ψ]φ,sψ implies ψ,sφ\begin{array}[]{lll}\mathcal{M},s\vDash[\psi]\varphi&\iff&\mathcal{M},s\vDash\psi\text{ implies }\mathcal{M}^{\cap\psi},s\vDash\varphi\\ \end{array}

where ψ\mathcal{M}^{\cap\psi} is the intersection submodel ψ\mathcal{M}^{\cap\psi^{\mathcal{M}}}, and the notion of intersection submodels is defined as below.

Definition 57.

[21, Def. 3] Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be a monotone model, and XX a nonempty subset of SS. Define the intersection model X=X,NX,VX\mathcal{M}^{\cap X}=\langle X,N^{\cap X},V^{X}\rangle induced from XX in the following.

  • for every sXs\in X, NX={YY=PX for some PN(s)}N^{\cap X}=\{Y\mid Y=P\cap X\text{ for some }P\in N(s)\},

  • VX(p)=V(p)XV^{X}(p)=V(p)\cap X.

Proposition 58.

[21, Prop. 2] The neighborhood property (s)(s) is preserved under taking the intersection submodel. That is, if \mathcal{M} is a monotone neighborhood model with the domain SS, then for any nonempty subset XX of SS, the intersection submodel X\mathcal{M}^{\cap X} is also monotone.

The following lists the reduction axioms of (,,[])\mathcal{L}(\nabla,\bullet,[\cdot]) and its sublanguages (,[])\mathcal{L}(\nabla,[\cdot]) and (,[])\mathcal{L}(\bullet,[\cdot]) under the intersection semantics.

AP[ψ]p(ψp)AN[ψ]¬φ(ψ¬[ψ]φ)AC[ψ](φχ)([ψ]φ[ψ]χ)AA[ψ][χ]φ[ψ[ψ]χ]φA[ψ]φ(ψ[ψ]φ[ψ]¬φ)A[ψ]φ(ψ[ψ]φ)\begin{array}[]{ll}\text{AP}&[\psi]p\leftrightarrow(\psi\to p)\\ \text{AN}&[\psi]\neg\varphi\leftrightarrow(\psi\to\neg[\psi]\varphi)\\ \text{AC}&[\psi](\varphi\land\chi)\leftrightarrow([\psi]\varphi\land[\psi]\chi)\\ \text{AA}&[\psi][\chi]\varphi\leftrightarrow[\psi\land[\psi]\chi]\varphi\\ \text{A}\nabla&[\psi]\nabla\varphi\leftrightarrow(\psi\to\nabla[\psi]\varphi\land\nabla[\psi]\neg\varphi)\\ \text{A}\bullet&{[\psi]\bullet}\varphi\leftrightarrow(\psi\to\bullet[\psi]\varphi)\\ \end{array}

The following reduction axioms are derivable from the above reduction axioms.

AΔ[ψ]Δφ(ψΔ[ψ]φΔ[ψ]¬φ)A[ψ]φ(ψ[ψ]φ)\begin{array}[]{ll}\text{A}\Delta&[\psi]\Delta\varphi\leftrightarrow(\psi\to\Delta[\psi]\varphi\vee\Delta[\psi]\neg\varphi)\\ \text{A}\circ&[\psi]{\circ\varphi}\leftrightarrow(\psi\to\circ[\psi]\varphi)\\ \end{array}
Theorem 59.

Let Λ\Lambda be a system of ()\mathcal{L}(\nabla) (resp. ()\mathcal{L}(\bullet), (,)\mathcal{L}(\nabla,\bullet)). If Λ\Lambda is sound and strongly complete with respect to the class of monotone neighborhood frames, then so is Λ\Lambda plus AP, AN, AC, AA and A\text{A}\nabla (resp. plus AP, AN, AC, AA and A\text{A}\bullet, plus AP, AN, AC, AA, A\text{A}\nabla and A\text{A}\bullet) under intersection semantics.

Proof.

The validity of axioms AP, AN, AC, AA can be found in [21, Thm. 1][22, Thm. 2, Thm. 3] and [37, Prop. 3.1]. The validity of A\text{A}\bullet has been shown in [11], where the axiom is named AInt\texttt{A}{\bullet\texttt{Int}}. The validity of A\text{A}\nabla is shown as follows. Let =S,N,V\mathcal{M}=\langle S,N,V\rangle be an (s)(s)-model and sSs\in S.

To begin with, suppose that ,s[ψ]φ\mathcal{M},s\vDash[\psi]\nabla\varphi and ,sψ\mathcal{M},s\vDash\psi, to show that ,s[ψ]φ[ψ]¬φ\mathcal{M},s\vDash\nabla[\psi]\varphi\land\nabla[\psi]\neg\varphi. By supposition, we have ψ,sφ\mathcal{M}^{\cap\psi},s\vDash\nabla\varphi, which implies φψNψ(s)\varphi^{\mathcal{M}^{\cap\psi}}\notin N^{\cap\psi}(s) and ψ\φψNψ(s)\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}\notin N^{\cap\psi}(s).

We claim that ,s[ψ]φ\mathcal{M},s\vDash\nabla[\psi]\varphi, that is, ([ψ]φ)N(s)([\psi]\varphi)^{\mathcal{M}}\notin N(s) and S\([ψ]φ)N(s)S\backslash([\psi]\varphi)^{\mathcal{M}}\notin N(s). If ([ψ]φ)N(s)([\psi]\varphi)^{\mathcal{M}}\in N(s), then ([ψ]φ)ψNψ(s)([\psi]\varphi)^{\mathcal{M}}\cap\psi^{\mathcal{M}}\in N^{\cap\psi}(s). As ([ψ]φ)ψφψ([\psi]\varphi)^{\mathcal{M}}\cap\psi^{\mathcal{M}}\subseteq\varphi^{\mathcal{M}^{\cap\psi}}, by (s)(s), we have φψNψ(s)\varphi^{\mathcal{M}^{\cap\psi}}\in N^{\cap\psi}(s): a contradiction. If S\([ψ]φ)N(s)S\backslash([\psi]\varphi)^{\mathcal{M}}\in N(s), then (S\([ψ]φ))ψNψ(s)(S\backslash([\psi]\varphi)^{\mathcal{M}})\cap\psi^{\mathcal{M}}\in N^{\cap\psi}(s). Note that (S\([ψ]φ))ψψ\φψ(S\backslash([\psi]\varphi)^{\mathcal{M}})\cap\psi^{\mathcal{M}}\subseteq\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}: for any x(S\([ψ]φ))ψx\in(S\backslash([\psi]\varphi)^{\mathcal{M}})\cap\psi^{\mathcal{M}}, x([ψ]φ)x\notin([\psi]\varphi)^{\mathcal{M}}, thus xψx\in\psi^{\mathcal{M}} and xφψx\notin\varphi^{\mathcal{M}^{\cap\psi}}, and hence xψ\φψx\in\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}. By (s)(s) again, ψ\φψNψ(s)\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}\in N^{\cap\psi}(s): a contradiction again.

We also claim that ,s[ψ]¬φ\mathcal{M},s\vDash\nabla[\psi]\neg\varphi, that is, ([ψ]¬φ)N(s)([\psi]\neg\varphi)^{\mathcal{M}}\notin N(s) and S\([ψ]¬φ)N(s)S\backslash([\psi]\neg\varphi)^{\mathcal{M}}\notin N(s). If ([ψ]¬φ)N(s)([\psi]\neg\varphi)^{\mathcal{M}}\in N(s), then ([ψ]¬φ)ψNψ(s)([\psi]\neg\varphi)^{\mathcal{M}}\cap\psi^{\mathcal{M}}\in N^{\cap\psi}(s). As ([ψ]¬φ)ψψ\φψ([\psi]\neg\varphi)^{\mathcal{M}}\cap\psi^{\mathcal{M}}\subseteq\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}, we infer by (s)(s) that ψ\φψNψ(s)\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}\in N^{\cap\psi}(s): a contradiction. If S\([ψ]¬φ)N(s)S\backslash([\psi]\neg\varphi)^{\mathcal{M}}\in N(s), then (S\([ψ]¬φ))ψNψ(s)(S\backslash([\psi]\neg\varphi)^{\mathcal{M}})\cap\psi^{\mathcal{M}}\in N^{\cap\psi}(s). Since (S\([ψ]¬φ))ψφψ(S\backslash([\psi]\neg\varphi)^{\mathcal{M}})\cap\psi^{\mathcal{M}}\subseteq\varphi^{\mathcal{M}^{\cap\psi}}, by (s)(s) again, we derive that φψNψ(s)\varphi^{\mathcal{M}^{\cap\psi}}\in N^{\cap\psi}(s): a contradiction again.

Conversely, assume that ,sψ[ψ]φ[ψ]¬φ\mathcal{M},s\vDash\psi\to\nabla[\psi]\varphi\land\nabla[\psi]\neg\varphi, to prove that ,s[ψ]φ\mathcal{M},s\vDash[\psi]\nabla\varphi. For this, we suppose that ,sψ\mathcal{M},s\vDash\psi, it remains only to show that ψ,sφ\mathcal{M}^{\cap\psi},s\vDash\nabla\varphi, that is, φψNψ(s)\varphi^{\mathcal{M}^{\cap\psi}}\notin N^{\cap\psi}(s) and ψ\φψNψ(s)\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}\notin N^{\cap\psi}(s). By assumption and supposition, we obtain ,s[ψ]φ[ψ]¬φ\mathcal{M},s\vDash\nabla[\psi]\varphi\land\nabla[\psi]\neg\varphi. This follows that ([ψ]φ)N(s)([\psi]\varphi)^{\mathcal{M}}\notin N(s) and S\([ψ]φ)N(s)S\backslash([\psi]\varphi)^{\mathcal{M}}\notin N(s), and ([ψ]¬φ)N(s)([\psi]\neg\varphi)^{\mathcal{M}}\notin N(s) and S\([ψ]¬φ)N(s)S\backslash([\psi]\neg\varphi)^{\mathcal{M}}\notin N(s).

We claim that φψNψ(s)\varphi^{\mathcal{M}^{\cap\psi}}\notin N^{\cap\psi}(s). Otherwise, that is, φψNψ(s)\varphi^{\mathcal{M}^{\cap\psi}}\in N^{\cap\psi}(s), we have φψ=Pψ\varphi^{\mathcal{M}^{\cap\psi}}=P\cap\psi^{\mathcal{M}} for some PN(s)P\in N(s). This implies that P([ψ]φ)P\subseteq([\psi]\varphi)^{\mathcal{M}}: for any xPx\in P, we would have x([ψ]φ)x\in([\psi]\varphi)^{\mathcal{M}}, since if xψx\in\psi^{\mathcal{M}}, then xPψ=φψx\in P\cap\psi^{\mathcal{M}}=\varphi^{\mathcal{M}^{\cap\psi}}. By (s)(s), ([ψ]φ)N(s)([\psi]\varphi)^{\mathcal{M}}\in N(s): a contradiction.

We also claim that ψ\φψNψ(s)\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}\notin N^{\cap\psi}(s). Otherwise, that is, ψ\φψNψ(s)\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}\in N^{\cap\psi}(s), we infer that ψ\φψ=Pψ\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}=P\cap\psi^{\mathcal{M}} for some PN(s)P\in N(s). It then follows that P([ψ]¬φ)P\subseteq([\psi]\neg\varphi)^{\mathcal{M}}: for any xPx\in P, we have x([ψ]¬φ)x\in([\psi]\neg\varphi)^{\mathcal{M}}, since if xψx\in\psi^{\mathcal{M}}, then x=Pψ=ψ\φψx=P\cap\psi^{\mathcal{M}}=\psi^{\mathcal{M}}\backslash\varphi^{\mathcal{M}^{\cap\psi}}, and so x(¬φ)ψx\in(\neg\varphi)^{\mathcal{M}^{\cap\psi}}. By (s)(s) again, ([ψ]¬φ)N(s)([\psi]\neg\varphi)^{\mathcal{M}}\in N(s): a contradiction, as desired. ∎

For the sake of reference, we use 𝐌[]{\bf M^{\nabla\bullet[\cdot]}} to denote the extension of 𝐌{\bf M^{\nabla\bullet}} with all the above reduction axioms. By dropping A\text{A}\bullet from 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}, we obtain the system 𝐌[]{\bf M^{\nabla[\cdot]}}; by dropping A\text{A}\nabla from 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}, we obtain the system 𝐌[]{\bf M^{\bullet[\cdot]}}.

In what follows, we will focus on some successful formulas in our languages. A formula is said to be successful, if it still holds after being announced; in symbols, [φ]φ\vDash[\varphi]\varphi. Recall that ¬p\neg{\bullet p} is shown to be successful under the relational semantics in [7, Prop. 39] and under the intersection semantics in [11, Prop. 6.5]. We will follow this line of research and say much more. As we shall show, any combination of pp, ¬p\neg p, ¬p{\neg\bullet}p, and ¬p\neg\nabla p via conjunction (or, via disjunction) is successful under the intersection semantics.111111It is shown in [7, Prop. 38] that under Kripke semantics, p\bullet p is self-refuting and ¬p\neg{\bullet p} is successful.

To begin with, we show that, provably, any combination of pp, ¬p\neg p, ¬p{\neg\bullet}p, and ¬p\neg\nabla p via conjunction is successful under the intersection semantics.

Proposition 60.

pp is successful under the intersection semantics. That is, [p]p[p]p is provable in 𝐌[]{\bf M^{\bullet[\cdot]}}.

Proof.

Straightforward by AP. ∎

Proposition 61.

¬p\neg p is successful under the intersection semantics. That is, [¬p]¬p[\neg p]\neg p is provable in 𝐌[]{\bf M^{\bullet[\cdot]}}.

Proof.

Straightforward by AN and AP. ∎

Proposition 62.

¬p{\neg\bullet}p is successful under the intersection semantics. That is, [¬p]¬p[{\neg\bullet}p]{\neg\bullet}p is provable in 𝐌[]{\bf M^{\bullet[\cdot]}}.

Proof.

Refer to [11, Prop. 6.5]. ∎

Proposition 63.

¬p\neg\nabla p is successful under the intersection semantics. That is, [¬p]¬p[\neg\nabla p]\neg\nabla p is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla[\cdot]}}.

[¬p]¬p(¬p¬[¬p]p)AN(¬p¬(¬p[¬p]p[¬p]¬p)A(¬p¬((¬pp)(¬p¬(¬pp))))AP,AN((¬pp)(¬p¬p)p)TAUT,RE((pp)(¬pp)p)TAUT,REM1\begin{array}[]{lll}&[\neg\nabla p]\neg\nabla p\\ \leftrightarrow&(\neg\nabla p\to\neg[\neg\nabla p]\nabla p)&\text{AN}\\ \leftrightarrow&(\neg\nabla p\to\neg(\neg\nabla p\to\nabla[\neg\nabla p]p\land\nabla[\neg\nabla p]\neg p)&\text{A}\nabla\\ \leftrightarrow&(\neg\nabla p\to\neg(\nabla(\neg\nabla p\to p)\land\nabla(\neg\nabla p\to\neg(\neg\nabla p\to p))))&\text{AP},\text{AN}\\ \leftrightarrow&(\nabla(\neg\nabla p\to p)\land\nabla(\neg\nabla p\to\neg p)\to\nabla p)&\text{TAUT},\text{RE}\nabla\\ \leftrightarrow&(\nabla(p\vee\nabla p)\land\nabla(\neg p\vee\nabla p)\to\nabla p)&\text{TAUT},\text{RE}\nabla\\ \leftrightarrow&\top&\text{M1}\\ \end{array}

Therefore, [¬p]¬p[\neg\nabla p]\neg\nabla p is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}. ∎

Intuitively, [¬p]¬p[\neg\nabla p]\neg\nabla p means that “after being told that one is not ignorant whether pp, one is still not ignorant whether pp.” In other words, one’s non-ignorance about a fact cannot be altered by being announced.

Proposition 64.

p¬pp\land\neg p is successful under the intersection semantics.

Proof.

Note that p¬pp\land\neg p is equivalent to \bot, and \bot is successful. ∎

Proposition 65.

p¬pp\land{\neg\bullet}p is successful under the intersection semantics. That is, [p¬p](p¬p)[p\land{\neg\bullet}p](p\land{\neg\bullet}p) is provable in 𝐌[]{\bf M^{\bullet[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\bullet[\cdot]}}.

[p¬p](p¬p)([p¬p]p[p¬p]¬p)AC(p¬pp)(p¬p¬[p¬p]p)AP,AN(p¬p¬(p¬p[p¬p]p)A(p¬p¬[p¬p]p)TAUT(p¬p¬(p¬pp))AP(p¬p¬)TAUT,RE(pp)Def. Prop. 40\begin{array}[]{lll}&[p\land{\neg\bullet}p](p\land{\neg\bullet}p)&\\ \leftrightarrow&([p\land{\neg\bullet}p]p\land[p\land{\neg\bullet}p]{\neg\bullet}p)&\text{AC}\\ \leftrightarrow&(p\land{\neg\bullet}p\to p)\land(p\land{\neg\bullet}p\to\neg[p\land{\neg\bullet}p]{\bullet}p)&\text{AP},\text{AN}\\ \leftrightarrow&(p\land{\neg\bullet}p\to\neg(p\land{\neg\bullet}p\to{\bullet[p\land{\neg\bullet}p]}p)&\text{A}\bullet\\ \leftrightarrow&(p\land{\neg\bullet}p\to{\neg\bullet}[p\land{\neg\bullet}p]p)&\text{TAUT}\\ \leftrightarrow&(p\land{\neg\bullet}p\to{\neg\bullet}(p\land{\neg\bullet}p\to p))&\text{AP}\\ \leftrightarrow&(p\land{\neg\bullet}p\to{\neg\bullet}\top)&\text{TAUT},\text{RE}\bullet\\ \leftrightarrow&(p\land\circ p\to\circ\top)&\text{Def.\leavevmode\nobreak\ }\circ\\ \leftrightarrow&\top&\text{Prop.\leavevmode\nobreak\ }\ref{prop.impliescirctop}\\ \end{array}

Therefore, [p¬p](p¬p)[p\land{\neg\bullet}p](p\land{\neg\bullet}p) is provable in 𝐌[]{\bf M^{\bullet[\cdot]}}. ∎

Proposition 66.

p¬pp\land\neg\nabla p is successful under the intersection semantics. That is, [p¬p](p¬p)[p\land\neg\nabla p](p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla[\cdot]}}.

[p¬p](p¬p)([p¬p]p[p¬p]¬p)AC(p¬pp)(p¬p¬[p¬p]p)AP,AN(p¬p¬(p¬p[p¬p]p[p¬p]¬p))A(p¬p¬([p¬p]p[p¬p]¬p))TAUT(p¬p¬([p¬p]¬p))AP,RE(p¬p¬¬(p¬p¬p))AN,AP,RE(pΔpΔΔ(pΔp¬p))Def. Δ\begin{array}[]{lll}&[p\land\neg\nabla p](p\land\neg\nabla p)&\\ \leftrightarrow&([p\land\neg\nabla p]p\land[p\land\neg\nabla p]\neg\nabla p)&\text{AC}\\ \leftrightarrow&(p\land\neg\nabla p\to p)\land(p\land\neg\nabla p\to\neg[p\land\neg\nabla p]\nabla p)&\text{AP},\text{AN}\\ \leftrightarrow&(p\land\neg\nabla p\to\neg(p\land\neg\nabla p\to\nabla[p\land\neg\nabla p]p\land\nabla[p\land\neg\nabla p]\neg p))&\text{A}\nabla\\ \leftrightarrow&(p\land\neg\nabla p\to\neg(\nabla[p\land\neg\nabla p]p\land\nabla[p\land\neg\nabla p]\neg p))&\text{TAUT}\\ \leftrightarrow&(p\land\neg\nabla p\to\neg(\nabla\top\land\nabla[p\land\neg\nabla p]\neg p))&\text{AP},\text{RE}\nabla\\ \leftrightarrow&(p\land\neg\nabla p\to\neg\nabla\top\vee\neg\nabla(p\land\neg\nabla p\to\neg p))&\text{AN},\text{AP},\text{RE}\nabla\\ \leftrightarrow&(p\land\Delta p\to\Delta\top\vee\Delta(p\land\Delta p\to\neg p))&\text{Def.\leavevmode\nobreak\ }\Delta\\ \end{array}

By Prop. 39, ΔpΔ\Delta p\to\Delta\top is provable in 𝐌{\bf M^{\nabla}}, so is the last formula in the above proof sequence, and thus [p¬p](p¬p)[p\land\neg\nabla p](p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}. ∎

Proposition 67.

¬p¬p\neg p\land{\neg\bullet}p is successful under the intersection semantics.

Proof.

By E2, ¬p¬p\neg p\land{\neg\bullet}p is equivalent to ¬p\neg p. And we have already known from Prop. 61 that ¬p\neg p is successful. ∎

Proposition 68.

¬p¬p\neg p\land\neg\nabla p is successful under the intersection semantics. That is, [¬p¬p](¬p¬p)[\neg p\land\neg\nabla p](\neg p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla[\cdot]}}.

[¬p¬p](¬p¬p)[¬p¬p]¬p[¬p¬p]¬pAC(¬p¬p¬p)(¬p¬p¬[¬p¬p]p)AN,AP(¬p¬p¬[¬p¬p]p)TAUT(¬p¬p¬([¬p¬p]p[¬p¬p]¬p)A(¬pΔpΔ(¬pΔpp)Δ)AP,AN,REProp. 39\begin{array}[]{lll}&[\neg p\land\neg\nabla p](\neg p\land\neg\nabla p)&\\ \leftrightarrow&[\neg p\land\neg\nabla p]\neg p\land[\neg p\land\neg\nabla p]\neg\nabla p&\text{AC}\\ \leftrightarrow&(\neg p\land\neg\nabla p\to\neg p)\land(\neg p\land\neg\nabla p\to\neg[\neg p\land\neg\nabla p]\nabla p)&\text{AN},\text{AP}\\ \leftrightarrow&(\neg p\land\neg\nabla p\to\neg[\neg p\land\neg\nabla p]\nabla p)&\text{TAUT}\\ \leftrightarrow&(\neg p\land\neg\nabla p\to\neg(\nabla[\neg p\land\neg\nabla p]p\land\nabla[\neg p\land\neg\nabla p]\neg p)&\text{A}\nabla\\ \leftrightarrow&(\neg p\land\Delta p\to\Delta(\neg p\land\Delta p\to p)\vee\Delta\top)&\text{AP},\text{AN},\text{RE}\nabla\\ \leftrightarrow&\top&\text{Prop.\leavevmode\nobreak\ }\ref{prop.impliesdeltatop}\\ \end{array}

Therefore, [¬p¬p](¬p¬p)[\neg p\land\neg\nabla p](\neg p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}. ∎

We have seen that both ¬p{\neg\bullet}p and ¬p\neg\nabla p are successful. One natural question would be whether their conjunction, viz. ¬p¬p{\neg\bullet}p\land\neg\nabla p, is successful. Note that this does not obviously hold, since for instance, both pp and ¬Kp\neg Kp are successful, whereas p¬Kpp\land\neg Kp is not, see e.g. [36, Example 4.34].

Proposition 69.

¬p¬p{\neg\bullet}p\land\neg\nabla p is successful under the intersection semantics. That is, [¬p¬p](¬p¬p)[{\neg\bullet}p\land\neg\nabla p]({\neg\bullet}p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

Proof.

By AC, [¬p¬p](¬p¬p)([¬p¬p]¬p[¬p¬p]¬p)[{\neg\bullet}p\land\neg\nabla p]({\neg\bullet}p\land\neg\nabla p)\leftrightarrow([{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p\land[{\neg\bullet}p\land\neg\nabla p]\neg\nabla p). We show that both [¬p¬p]¬p[{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p and [¬p¬p]¬p[{\neg\bullet}p\land\neg\nabla p]\neg\nabla p are provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

[¬p¬p]¬p(¬p¬p¬[¬p¬p]p)AN(¬p¬p¬(¬p¬p[¬p¬p]p)A(¬p¬p¬[¬p¬p]p)TAUT(¬p¬p¬(¬p¬pp))AP,RE((¬p¬pp)(pp))TAUT((ppp)(pp))TAUT,RE((pp)(pp))E2,REProp. 49\begin{array}[]{lll}&[{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p&\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to\neg[{\neg\bullet}p\land\neg\nabla p]{\bullet p})&\text{AN}\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to\neg({\neg\bullet}p\land\neg\nabla p\to\bullet[{\neg\bullet}p\land\neg\nabla p]p)&\text{A}\bullet\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to{\neg\bullet}[{\neg\bullet}p\land\neg\nabla p]p)&\text{TAUT}\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to{\neg\bullet}({\neg\bullet}p\land\neg\nabla p\to p))&\text{AP},\text{RE}\bullet\\ \leftrightarrow&(\bullet({\neg\bullet}p\land\neg\nabla p\to p)\to(\bullet p\vee\nabla p))&\text{TAUT}\\ \leftrightarrow&(\bullet({\bullet}p\lor\nabla p\vee p)\to(\bullet p\vee\nabla p))&\text{TAUT},\text{RE}\bullet\\ \leftrightarrow&(\bullet(p\vee\nabla p)\to(\bullet p\vee\nabla p))&\text{E2},\text{RE}\bullet\\ \leftrightarrow&\top&\text{Prop.\leavevmode\nobreak\ }\ref{prop.useful}\\ \end{array}
[¬p¬p]¬p(¬p¬p¬[¬p¬p]p)AN(¬p¬p¬(¬p¬p[¬p¬p]p[¬p¬p]¬p))A(¬p¬p¬([¬p¬p]p[¬p¬p]¬p))TAUT(¬p¬p¬((¬p¬pp)(¬p¬p¬p))AP,AN((ppp)(¬ppp)(pp))TAUT,REM1\begin{array}[]{lll}&[{\neg\bullet}p\land\neg\nabla p]\neg\nabla p&\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to\neg[{\neg\bullet}p\land\neg\nabla p]{\nabla p})&\text{AN}\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to\neg({\neg\bullet}p\land\neg\nabla p\to\nabla[{\neg\bullet}p\land\neg\nabla p]p\land&\\ &\nabla[{\neg\bullet}p\land\neg\nabla p]\neg p))&\text{A}\nabla\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to\neg(\nabla[{\neg\bullet}p\land\neg\nabla p]p\land\nabla[{\neg\bullet}p\land\neg\nabla p]\neg p))&\text{TAUT}\\ \leftrightarrow&({\neg\bullet}p\land\neg\nabla p\to\neg(\nabla({\neg\bullet}p\land\neg\nabla p\to p)\land\nabla({\neg\bullet}p\land\neg\nabla p\to\neg p))&\text{AP},\text{AN}\\ \leftrightarrow&(\nabla(p\vee\bullet p\vee\nabla p)\land\nabla(\neg p\vee\bullet p\lor\nabla p)\to(\nabla p\vee\bullet p))&\text{TAUT},\text{RE}\bullet\\ \leftrightarrow&\top&\text{M1}\\ \end{array}

Thus both [¬p¬p]¬p[{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p and [¬p¬p]¬p[{\neg\bullet}p\land\neg\nabla p]\neg\nabla p are provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}. Therefore, [¬p¬p](¬p¬p)[{\neg\bullet}p\land\neg\nabla p]({\neg\bullet}p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}. ∎

Intuitively, [¬p¬p](¬p¬p)[{\neg\bullet}p\land\neg\nabla p]({\neg\bullet}p\land\neg\nabla p) says that after being told that one is neither ignorant whether nor ignorant of pp, one is still neither ignorant whether nor ignorant of pp. In short, one’s non-ignorance whether and non-ignorance of a fact cannot be altered by being announced.

The following two propositions can be shown as in Prop. 64.

Proposition 70.

p¬p¬pp\land\neg p\land{\neg\bullet}p is successful under the intersection semantics.

Proposition 71.

p¬p¬pp\land\neg p\land\neg\nabla p is successful under the intersection semantics.

Proposition 72.

p¬p¬pp\land{\neg\bullet}p\land\neg\nabla p is successful under the intersection semantics. That is, [p¬p¬p](p¬p¬p)[p\land{\neg\bullet}p\land\neg\nabla p](p\land{\neg\bullet}p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

Proof.

By AC, [p¬p¬p](p¬p¬p)([p¬p¬p]p[p¬p¬p]¬p[p¬p¬p]¬p)[p\land{\neg\bullet}p\land\neg\nabla p](p\land{\neg\bullet}p\land\neg\nabla p)\leftrightarrow([p\land{\neg\bullet}p\land\neg\nabla p]p\land[p\land{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p\land[p\land{\neg\bullet}p\land\neg\nabla p]\neg\nabla p). One may easily verify that [p¬p¬p]p[p\land{\neg\bullet}p\land\neg\nabla p]p is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}. It remains only to show that both [p¬p¬p]¬p[p\land{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p and [p¬p¬p]¬p[p\land{\neg\bullet}p\land\neg\nabla p]\neg\nabla p are provable in the system in question.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

[p¬p¬p]¬p(p¬p¬p¬[p¬p¬p]p)AN(p¬p¬p¬[p¬p¬p]p)A(p¬p¬p¬)AP,RE(ppΔp)Def. ,Def. Δ\begin{array}[]{lll}&[p\land{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p&\\ \leftrightarrow&(p\land{\neg\bullet}p\land\neg\nabla p\to\neg[p\land{\neg\bullet}p\land\neg\nabla p]{\bullet p})&\text{AN}\\ \leftrightarrow&(p\land{\neg\bullet}p\land\neg\nabla p\to{\neg\bullet}[p\land{\neg\bullet}p\land\neg\nabla p]p)&\text{A}\bullet\\ \leftrightarrow&(p\land{\neg\bullet}p\land\neg\nabla p\to{\neg\bullet}\top)&\text{AP},\text{RE}\bullet\\ \leftrightarrow&(p\land\circ p\land\Delta p\to\circ\top)&\text{Def.\leavevmode\nobreak\ }\circ,\text{Def.\leavevmode\nobreak\ }\Delta\\ \end{array}

By Prop. 40, ppp\land\circ p\to\circ\top is provable in 𝐌{\bf M^{\bullet}}, so is the last formula in the above proof sequence, and thus [p¬p¬p]¬p[p\land{\neg\bullet}p\land\neg\nabla p]{\neg\bullet}p is provable in 𝐌[]{\bf M^{\nabla{\bullet[\cdot]}}}.

Also, we have the following proof sequence in 𝐌[]{\bf M^{\nabla{\bullet[\cdot]}}}.

[p¬p¬p]¬p(p¬p¬p¬[p¬p¬p]p)AN(p¬p¬p¬([p¬p¬p]p[p¬p¬p]¬p))A(ppΔpΔ[p¬p¬p]pΔ[p¬p¬p]¬p)Def. ,Def. Δ(ppΔpΔΔ[p¬p¬p]¬p)AP,RE\begin{array}[]{lll}&[p\land{\neg\bullet}p\land\neg\nabla p]\neg\nabla p&\\ \leftrightarrow&(p\land{\neg\bullet}p\land\neg\nabla p\to\neg[p\land{\neg\bullet}p\land\neg\nabla p]\nabla p)&\text{AN}\\ \leftrightarrow&(p\land{\neg\bullet}p\land\neg\nabla p\to\neg(\nabla[p\land{\neg\bullet}p\land\neg\nabla p]p\land\nabla[p\land{\neg\bullet}p\land\neg\nabla p]\neg p))&\text{A}\nabla\\ \leftrightarrow&(p\land{\circ}p\land\Delta p\to\Delta[p\land{\neg\bullet}p\land\neg\nabla p]p\lor\Delta[p\land{\neg\bullet}p\land\neg\nabla p]\neg p)&\text{Def.\leavevmode\nobreak\ }\circ,\text{Def.\leavevmode\nobreak\ }\Delta\\ \leftrightarrow&(p\land{\circ}p\land\Delta p\to\Delta\top\lor\Delta[p\land{\neg\bullet}p\land\neg\nabla p]\neg p)&\text{AP},\text{RE}\nabla\\ \end{array}

By Prop. 39, ΔpΔ\Delta p\to\Delta\top is provable in 𝐌{\bf M^{\nabla}}, thus the last formula in the above proof sequence is provable in 𝐌{\bf M^{\nabla\bullet}}. Therefore, [p¬p¬p]¬p[p\land{\neg\bullet}p\land\neg\nabla p]\neg\nabla p is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

According to the previous analysis, [p¬p¬p](p¬p¬p)[p\land{\neg\bullet}p\land\neg\nabla p](p\land{\neg\bullet}p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}. ∎

Proposition 73.

¬p¬p¬p\neg p\land{\neg\bullet}p\land\neg\nabla p is successful under the intersection semantics. That is, [¬p¬p¬p](¬p¬p¬p)[\neg p\land{\neg\bullet}p\land\neg\nabla p](\neg p\land{\neg\bullet}p\land\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

Proof.

By the proof of Prop. 67, ¬p¬p¬p\neg p\land{\neg\bullet}p\land\neg\nabla p is equivalent to ¬p¬p\neg p\land\neg\nabla p. And we have already shown in Prop. 68 that ¬p¬p\neg p\land\neg\nabla p is successful under the intersection semantics. ∎

Proposition 74.

p¬p¬p¬pp\land\neg p\land{\neg\bullet}p\land\neg\nabla p is successful under the intersection semantics.

Proof.

The proof is similar to that of Prop. 64. ∎

Now we demonstrate that any combination of pp, ¬p\neg p, ¬p{\neg\bullet}p, and ¬p\neg\nabla p via disjunction is successful under the intersection semantics. First, one may show that [ψ](φχ)([ψ]φ[ψ]χ)[\psi](\varphi\vee\chi)\leftrightarrow([\psi]\varphi\vee[\psi]\chi) is provable from the above reduction axioms. For the sake of reference, we denote it AD.

Proposition 75.

p¬pp\vee\neg p is successful under the intersection semantics.

Proof.

Note that p¬pp\vee\neg p is equivalent to \top, and \top is successful. ∎

Proposition 76.

p¬pp\vee{\neg\bullet}p is successful under the intersection semantics. That is, [p¬p](p¬p)[p\vee{\neg\bullet}p](p\vee{\neg\bullet}p) is provable in 𝐌[]{\bf M^{\bullet[\cdot]}}.

Proof.

Just note that p¬pp\vee{\neg\bullet}p is equivalent to pp\bullet p\to p, which by E2 is equivalent to \top. And \top is successful. ∎

Proposition 77.

p¬pp\vee\neg\nabla p is successful under the intersection semantics. That is, [p¬p](p¬p)[p\vee\neg\nabla p](p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla[\cdot]}}.

[p¬p](p¬p)([p¬p]p[p¬p]¬p)AD(p¬pp)(p¬p¬[p¬p]p)AP,AN(p¬pp)(p¬p¬([p¬p]p[p¬p]¬p))A(p¬pp)(p¬p¬((p¬pp)(p¬p¬p)))AP,AN(p¬pp¬((p¬pp)(p¬p¬p)))TAUT(¬p(p¬(p¬p))(¬p¬(p¬p))¬pp)TAUT,REM1\begin{array}[]{lll}&[p\vee\neg\nabla p](p\vee\neg\nabla p)&\\ \leftrightarrow&([p\vee\neg\nabla p]p\vee[p\vee\neg\nabla p]\neg\nabla p)&\text{AD}\\ \leftrightarrow&(p\vee\neg\nabla p\to p)\vee(p\vee\neg\nabla p\to\neg[p\vee\neg\nabla p]\nabla p)&\text{AP},\text{AN}\\ \leftrightarrow&(p\vee\neg\nabla p\to p)\vee(p\vee\neg\nabla p\to\neg(\nabla[p\vee\neg\nabla p]p\land\nabla[p\vee\neg\nabla p]\neg p))&\text{A}\nabla\\ \leftrightarrow&(p\vee\neg\nabla p\to p)\vee(p\vee\neg\nabla p\to\neg(\nabla(p\vee\neg\nabla p\to p)\land\nabla(p\vee\neg\nabla p\to\neg p)))&\text{AP},\text{AN}\\ \leftrightarrow&(p\vee\neg\nabla p\to p\vee\neg(\nabla(p\vee\neg\nabla p\to p)\land\nabla(p\vee\neg\nabla p\to\neg p)))&\text{TAUT}\\ \leftrightarrow&(\neg p\land\nabla(p\vee\neg(p\vee\neg\nabla p))\land\nabla(\neg p\vee\neg(p\vee\neg\nabla p))\to\neg p\land\nabla p)&\text{TAUT},\text{RE}\nabla\\ \leftrightarrow&\top&\text{M1}\\ \end{array}

Therefore, [p¬p](p¬p)[p\vee\neg\nabla p](p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}. ∎

Proposition 78.

¬p¬p\neg p\vee{\neg\bullet}p is successful under the intersection semantics.

Proof.

By E2, ¬p¬p\neg p\vee{\neg\bullet}p is equivalent to ¬p{\neg\bullet}p, and Prop. 62 has shown that ¬p{\neg\bullet}p is successful under the intersection semantics. ∎

Proposition 79.

¬p¬p\neg p\vee\neg\nabla p is successful under the intersection semantics. That is, [¬p¬p](¬p¬p)[\neg p\vee\neg\nabla p](\neg p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla[\cdot]}}.

[¬p¬p](¬p¬p)[¬p¬p]¬p[¬p¬p]¬pAD(¬p¬p¬p)(¬p¬p¬[¬p¬p]p)AN,AP(¬p¬p¬p)(¬p¬p¬([¬p¬p]p[¬p¬p]¬p))A(¬p¬p¬p)(¬p¬p¬((¬p¬pp)(¬p¬p¬p)))AP,AN(¬p¬p¬p¬((¬p¬pp)(¬p¬p¬p)))TAUTp(p¬(¬p¬p))(¬p¬(¬p¬p))ppTAUTM1\begin{array}[]{lll}&[\neg p\vee\neg\nabla p](\neg p\vee\neg\nabla p)&\\ \leftrightarrow&[\neg p\vee\neg\nabla p]\neg p\vee[\neg p\vee\neg\nabla p]\neg\nabla p&\text{AD}\\ \leftrightarrow&(\neg p\vee\neg\nabla p\to\neg p)\vee(\neg p\vee\neg\nabla p\to\neg[\neg p\vee\neg\nabla p]\nabla p)&\text{AN},\text{AP}\\ \leftrightarrow&(\neg p\vee\neg\nabla p\to\neg p)\vee(\neg p\vee\neg\nabla p\to\neg(\nabla[\neg p\vee\neg\nabla p]p\land\nabla[\neg p\vee\neg\nabla p]\neg p))&\text{A}\nabla\\ \leftrightarrow&(\neg p\vee\neg\nabla p\to\neg p)\vee(\neg p\vee\neg\nabla p\to\neg(\nabla(\neg p\vee\neg\nabla p\to p)\land\nabla(\neg p\vee\neg\nabla p\to\neg p)))&\text{AP},\text{AN}\\ \leftrightarrow&(\neg p\vee\neg\nabla p\to\neg p\vee\neg(\nabla(\neg p\vee\neg\nabla p\to p)\land\nabla(\neg p\vee\neg\nabla p\to\neg p)))&\text{TAUT}\\ \leftrightarrow&p\land\nabla(p\vee\neg(\neg p\vee\neg\nabla p))\land\nabla(\neg p\vee\neg(\neg p\vee\neg\nabla p))\to p\land\nabla p&\text{TAUT}\\ \leftrightarrow&\top&\text{M1}\\ \end{array}

Therefore, [¬p¬p](¬p¬p)[\neg p\vee\neg\nabla p](\neg p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla[\cdot]}}. ∎

Proposition 80.

¬p¬p{\neg\bullet}p\vee\neg\nabla p is successful under the intersection semantics. That is, [¬p¬p](¬p¬p)[{\neg\bullet}p\vee\neg\nabla p]({\neg\bullet}p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

Proof.

We have the following proof sequence in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

[¬p¬p](¬p¬p)([¬p¬p]¬p[¬p¬p]¬p)AD(¬p¬p¬[¬p¬p]p)(¬p¬p¬[¬p¬p]p)AN(¬p¬p¬[¬p¬p]p)(¬p¬p¬([¬p¬p]p[¬p¬p]¬p))A,A(¬p¬p¬(¬p¬pp))(¬p¬p¬((¬p¬pp)(¬p¬p¬p)))AP,AN(¬p¬p¬(¬p¬pp)¬((¬p¬pp)(¬p¬p¬p)))TAUT(¬p¬pp)(¬p¬pp)(¬p¬p¬p)ppTAUT(pΔpp)(pΔpp)(pΔp¬p)ppDef. ,Def. Δ\begin{array}[]{lll}&[{\neg\bullet}p\vee\neg\nabla p]({\neg\bullet}p\vee\neg\nabla p)&\\ \leftrightarrow&([{\neg\bullet}p\vee\neg\nabla p]{\neg\bullet}p\vee[{\neg\bullet}p\vee\neg\nabla p]{\neg\nabla}p)&\text{AD}\\ \leftrightarrow&({\neg\bullet}p\vee\neg\nabla p\to\neg[{\neg\bullet}p\vee\neg\nabla p]{\bullet}p)\vee&\\ &({\neg\bullet}p\vee\neg\nabla p\to\neg[{\neg\bullet}p\vee\neg\nabla p]{\nabla}p)&\text{AN}\\ \leftrightarrow&({\neg\bullet}p\vee\neg\nabla p\to{\neg\bullet}[{\neg\bullet}p\vee\neg\nabla p]p)\vee&\\ &({\neg\bullet}p\vee\neg\nabla p\to\neg({\nabla}[{\neg\bullet}p\vee\neg\nabla p]p\land&\\ &{\nabla}[{\neg\bullet}p\vee\neg\nabla p]\neg p))&\text{A}\bullet,\text{A}\nabla\\ \leftrightarrow&({\neg\bullet}p\vee\neg\nabla p\to{\neg\bullet}({\neg\bullet}p\vee\neg\nabla p\to p))\vee\\ &({\neg\bullet}p\vee\neg\nabla p\to\neg({\nabla}({\neg\bullet}p\vee\neg\nabla p\to p)\land&\\ &{\nabla}({\neg\bullet}p\vee\neg\nabla p\to\neg p)))&\text{AP},\text{AN}\\ \leftrightarrow&({\neg\bullet}p\vee\neg\nabla p\to{\neg\bullet}({\neg\bullet}p\vee\neg\nabla p\to p)\vee&\\ &\neg({\nabla}({\neg\bullet}p\vee\neg\nabla p\to p)\land{\nabla}({\neg\bullet}p\vee\neg\nabla p\to\neg p)))&\text{TAUT}\\ \leftrightarrow&{\bullet}({\neg\bullet}p\vee\neg\nabla p\to p)\land{\nabla}({\neg\bullet}p\vee\neg\nabla p\to p)\land&\\ &{\nabla}({\neg\bullet}p\vee\neg\nabla p\to\neg p)\to\bullet p\land\nabla p&\text{TAUT}\\ \leftrightarrow&\bullet(\circ p\vee\Delta p\to p)\land\nabla(\circ p\vee\Delta p\to p)\land&\\ &\nabla(\circ p\vee\Delta p\to\neg p)\to\bullet p\land\nabla p&\text{Def.\leavevmode\nobreak\ }\circ,\text{Def.\leavevmode\nobreak\ }\Delta\\ \end{array}

By Prop. 50, (pΔpp)p\bullet(\circ p\vee\Delta p\to p)\to\bullet p is provable in 𝐌{\bf M^{\nabla\bullet}}; by axiom M1 and RE\text{RE}\nabla, we can show the provability of (pΔpp)(pΔp¬p)p\nabla(\circ p\vee\Delta p\to p)\land\nabla(\circ p\vee\Delta p\to\neg p)\to\nabla p in 𝐌{\bf M^{\nabla\bullet}}. Therefore, [¬p¬p](¬p¬p)[{\neg\bullet}p\vee\neg\nabla p]({\neg\bullet}p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}. ∎

Intuitively, [¬p¬p](¬p¬p)[{\neg\bullet}p\vee\neg\nabla p]({\neg\bullet}p\vee\neg\nabla p) says that one’s either non-ignorance of or non-ignorance whether a fact cannot be altered by being announced: after being told that one is either not ignorant of or not ignorant whether pp, one is still either not ignorant of or not ignorant whether pp.

Next two propositions are shown as in Prop. 75.

Proposition 81.

p¬p¬pp\vee\neg p\vee{\neg\bullet}p is successful under the intersection semantics.

Proposition 82.

p¬p¬pp\vee\neg p\vee{\neg\nabla}p is successful under the intersection semantics.

Proposition 83.

p¬p¬pp\vee{\neg\bullet}p\vee\neg\nabla p is successful under the intersection semantics. That is, [p¬p¬p](p¬p¬p)[p\vee{\neg\bullet}p\vee\neg\nabla p](p\vee{\neg\bullet}p\vee\neg\nabla p) is provable in 𝐌[]{\bf M^{\nabla\bullet[\cdot]}}.

Proof.

By the proof of Prop. 76, p¬pp\vee{\neg\bullet}p is equivalent to \top, so is p¬p¬pp\vee{\neg\bullet}p\vee\neg\nabla p. And \top is successful. ∎

Proposition 84.

¬p¬p¬p\neg p\vee{\neg\bullet}p\vee\neg\nabla p is successful under the intersection semantics.

Proof.

By E2, ¬p¬p¬p\neg p\vee{\neg\bullet}p\vee\neg\nabla p is equivalent to ¬p¬p{\neg\bullet}p\vee\neg\nabla p, and we have shown in Prop. 80 that ¬p¬p{\neg\bullet}p\vee\neg\nabla p is successful under the intersection semantics. ∎

Proposition 85.

p¬p¬p¬pp\vee\neg p\vee{\neg\bullet}p\vee\neg\nabla p is successful under the intersection semantics.

Proof.

The proof is similar to that of Prop. 75. ∎

7 Conclusion and Future work

In this paper, we investigated the bimodal logic of Fitchean ignorance and first-order ignorance (,)\mathcal{L}(\nabla,\bullet) under the neighborhood semantics. We compared the relative expressivity between (,)\mathcal{L}(\nabla,\bullet) and the logic of (first-order) ignorance ()\mathcal{L}(\nabla) and the logic of Fitchean ignorance ()\mathcal{L}(\bullet), and between (,)\mathcal{L}(\nabla,\bullet) and standard epistemic logic ()\mathcal{L}(\Diamond). It turns out that over the class of models possessing (c)(c) or (t)(t), all of these logics are equally expressive, whereas over the class of models possessing either of other eight neighborhood properties, (,)\mathcal{L}(\nabla,\bullet) is more expressive than both ()\mathcal{L}(\nabla) and ()\mathcal{L}(\bullet), and over the class of models possessing either of eight neighborhood properties except for (d)(d), (,)\mathcal{L}(\nabla,\bullet) is less expressive than ()\mathcal{L}(\Diamond). We explored the frame definability of the bimodal logic, which turns out that all ten frame properties except for (n)(n) are undefinable in (,)\mathcal{L}(\nabla,\bullet). We axiomatized the bimodal logic over various classes of neighborhood frames, which among other results includes the classical logic, the monotone logic, and the regular logic. Last but not least, by updating the neighborhood models via the intersection semantics, we found suitable reduction axioms and thus reduced the public announcement operators to the bimodal logic. This gives us good applications to successful formulas, since as we have shown, any combination of pp, ¬p\neg p, ¬p{\neg\bullet}p and ¬p\neg\nabla p via conjunction (or, via disjunction) is successful under the intersection semantics. We also partly answers open questions raised in [9, 11].

For future work, we hope to know whether (,)\mathcal{L}(\nabla,\bullet) is less expressive than ()\mathcal{L}(\Diamond) over the class of (d)(d)-models. We conjecture the answer is positive, but the model constructions seems hard, where the desired models both needs at least three points. Moreover, as we have seen, the proofs of the expressivity and frame definability results involve nontrivial (if not highly nontrivial) constructions of neighborhood models and frames, we thus also hope to find the bisimulation notion for (,)\mathcal{L}(\nabla,\bullet) under the neighborhood semantics.

References

  • [1] R. Bett. Socratic ignorance. In Donald R. Morrison, editor, The Cambridge Companion to Socrates, pages 215–236. Cambridge University Press, 2011.
  • [2] J. C. Bjerring, J. U. Hansen, and N. J. L. L. Pedersen. On the rationality of pluralistic ignorance. Synthese, 191(11):2445–2470, 2014.
  • [3] S. Bonzio, V. Fano, P. Graziani, and M. Pra Baldi. A logical modeling of severe ignorance. Journal of Philosophical Logic, 52:1053–1080, 2023.
  • [4] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
  • [5] J. Fan. Removing your ignorance by announcing group ignorance: A group announcement logic for ignorance. Studies in Logic, 9(4):4–33, 2016.
  • [6] J. Fan. Neighborhood contingency logic: A new perspective. Studies in Logic, 11(4):37–55, 2018.
  • [7] J. Fan. Bimodal logics with contingency and accident. Journal of Philosophical Logic, 48:425–445, 2019.
  • [8] J. Fan. A family of neighborhood contingency logics. Notre Dame Journal of Formal Logic, 60(4):683–699, 2019.
  • [9] J. Fan. Bimodal logic with contingency and accident: Bisimulation and axiomatizations. Logica Universalis, 2021. https://doi.org/10.1007/s11787-021-00270-9.
  • [10] J. Fan. A logic for disjunctive ignorance. Journal of Philosophical Logic, 2021. https://doi.org/10.1007/s10992-021-09599-4.
  • [11] J. Fan. Unknown truths and false beliefs: Completeness and expressivity results for the neighborhood semantics. Studia Logica, 110:1–45, 2022. https://doi.org/10.1007/s11225-021-09950-5.
  • [12] J. Fan and H. van Ditmarsch. Neighborhood contingency logic. In M. Banerjee and S. Krishna, editors, Logic and Its Application, volume 8923 of Lecture Notes in Computer Science, pages 88–99. Springer, 2015.
  • [13] J. Fan, Y. Wang, and H. van Ditmarsch. Almost necessary. In Advances in Modal Logic, volume 10, pages 178–196, 2014.
  • [14] J. Fan, Y. Wang, and H. van Ditmarsch. Contingency and knowing whether. The Review of Symbolic Logic, 8(1):75–107, 2015.
  • [15] K. Fine. Ignorance of ignorance. Synthese, 195:4031–4045, 2018. https://doi.org/10.1007/s11229-017-1406-z.
  • [16] V. Goranko. On relative ignorance. Filosofiska Notiser, 8(1):119–140, 2021.
  • [17] J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, NY, 1962.
  • [18] K. Konolige. Circumscriptive ignorance. In AAAI, pages 202–204, 1982.
  • [19] E. Kubyshkina and M. Petrolo. A logic for factive ignorance. Synthese, pages 1–12, 2019.
  • [20] P. Le Morvan and R. Peels. The nature of ignorance: Two views. In R. Peels and M. Blaauw, editors, The epistemic dimensions of ignorance. Cambridge: Cambridge University Press, 2016.
  • [21] M. Ma and K. Sano. How to update neighborhood models. In International Workshop on Logic, Rationality and Interaction, pages 204–217. Springer, 2013.
  • [22] M. Ma and K. Sano. How to update neighbourhood models. Journal of Logic and Computation, 28(8):1781–1804, December 2018. https://doi.org/10.1093/logcom/exv026.
  • [23] J. Marcos. Logics of essence and accident. Bulletin of the Section of Logic, 34(1):43–56, 2005.
  • [24] R. Montague. Universal grammar. Theoria, 36:373–398, 1970.
  • [25] P. Le Morvan. On ignorance: A reply to Peels. Philosophia, 39(2):335–344, 2011.
  • [26] Hubert J O’Gorman and Stephen L Garry. Pluralistic ignorance — a replication and extension. Public Opinion Quarterly, 40(4):449–458, 1976.
  • [27] E. J. Olsson and C. Proietti. Explicating ignorance and doubt: A possible worlds approach. The Epistemic Dimensions of Ignorance, 2015.
  • [28] E. Pacuit. Neighborhood semantics for modal logic. Springer, 2017.
  • [29] R. Peels. Ignorance is Lack of True Belief: A Rejoinder to Le Morvan. Philosophia, 39(2):344–355, 2011.
  • [30] C. Proietti and E. J. Olsson. A ddl approach to pluralistic ignorance and collective belief. Journal of Philosophical Logic, 43(2):499–515, 2014.
  • [31] D. Scott. Advice on modal logic. Philosophical Problems in Logic: Some Recent Developments, pages 143–173, 1970.
  • [32] Y. Shoham. Chronological ignorance. In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 389–393, 1986.
  • [33] C. Steinsvold. A note on logics of ignorance and borders. Notre Dame Journal of Formal Logic, 49(4):385–392, 2008.
  • [34] W. van der Hoek and A. Lomuscio. Ignore at your peril - towards a logic for ignorance. In Proc. of 2nd AAMAS, pages 1148–1149. ACM, 2003.
  • [35] W. van der Hoek and A. Lomuscio. A logic for ignorance. Electronic Notes in Theoretical Computer Science, 85(2):117–133, 2004.
  • [36] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic, volume 337 of Synthese Library. Springer, 2007.
  • [37] J. Zvesper. Playing with information. PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, 2010.