This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

First simultaneous measurement of 𝚵𝟎\Xi^{0} and 𝚵¯𝟎\bar{\Xi}^{0} asymmetry parameters in 𝝍(𝟑𝟔𝟖𝟔)\psi(3686) decay

M. Ablikim1, M. N. Achasov13,b, P. Adlarson73, R. Aliberti34, A. Amoroso72A,72C, M. R. An38, Q. An69,56, Y. Bai55, O. Bakina35, I. Balossino29A, Y. Ban45,g, V. Batozskaya1,43, K. Begzsuren31, N. Berger34, M. Bertani28A, D. Bettoni29A, F. Bianchi72A,72C, E. Bianco72A,72C, J. Bloms66, A. Bortone72A,72C, I. Boyko35, R. A. Briere5, A. Brueggemann66, H. Cai74, X. Cai1,56, A. Calcaterra28A, G. F. Cao1,61, N. Cao1,61, S. A. Cetin60A, J. F. Chang1,56, T. T. Chang75, W. L. Chang1,61, G. R. Che42, G. Chelkov35,a, C. Chen42, Chao Chen53, G. Chen1, H. S. Chen1,61, M. L. Chen1,56,61, S. J. Chen41, S. M. Chen59, T. Chen1,61, X. R. Chen30,61, X. T. Chen1,61, Y. B. Chen1,56, Y. Q. Chen33, Z. J. Chen25,h, W. S. Cheng72C, S. K. Choi10A, X. Chu42, G. Cibinetto29A, S. C. Coen4, F. Cossio72C, J. J. Cui48, H. L. Dai1,56, J. P. Dai77, A. Dbeyssi19, R.  E. de Boer4, D. Dedovich35, Z. Y. Deng1, A. Denig34, I. Denysenko35, M. Destefanis72A,72C, F. De Mori72A,72C, B. Ding64,1, X. X. Ding45,g, Y. Ding33, Y. Ding39, J. Dong1,56, L. Y. Dong1,61, M. Y. Dong1,56,61, X. Dong74, S. X. Du79, Z. H. Duan41, P. Egorov35,a, Y. L. Fan74, J. Fang1,56, S. S. Fang1,61, W. X. Fang1, Y. Fang1, R. Farinelli29A, L. Fava72B,72C, F. Feldbauer4, G. Felici28A, C. Q. Feng69,56, J. H. Feng57, K Fischer67, M. Fritsch4, C. Fritzsch66, C. D. Fu1, Y. W. Fu1, H. Gao61, Y. N. Gao45,g, Yang Gao69,56, S. Garbolino72C, I. Garzia29A,29B, P. T. Ge74, Z. W. Ge41, C. Geng57, E. M. Gersabeck65, A Gilman67, K. Goetzen14, L. Gong39, W. X. Gong1,56, W. Gradl34, S. Gramigna29A,29B, M. Greco72A,72C, M. H. Gu1,56, Y. T. Gu16, C. Y Guan1,61, Z. L. Guan22, A. Q. Guo30,61, L. B. Guo40, R. P. Guo47, Y. P. Guo12,f, A. Guskov35,a, X. T. Hou,1,61, W. Y. Han38, X. Q. Hao20, F. A. Harris63, K. K. He53, K. L. He1,61, F. H. Heinsius4, C. H. Heinz34, Y. K. Heng1,56,61, C. Herold58, T. Holtmann4, P. C. Hong12,f, G. Y. Hou1,61, Y. R. Hou61, Z. L. Hou1, H. M. Hu1,61, J. F. Hu54,i, T. Hu1,56,61, Y. Hu1, G. S. Huang69,56, K. X. Huang57, L. Q. Huang30,61, X. T. Huang48, Y. P. Huang1, T. Hussain71, N Hüsken27,34, W. Imoehl27, M. Irshad69,56, J. Jackson27, S. Jaeger4, S. Janchiv31, J. H. Jeong10A, Q. Ji1, Q. P. Ji20, X. B. Ji1,61, X. L. Ji1,56, Y. Y. Ji48, Z. K. Jia69,56, P. C. Jiang45,g, S. S. Jiang38, T. J. Jiang17, X. S. Jiang1,56,61, Y. Jiang61, J. B. Jiao48, Z. Jiao23, S. Jin41, Y. Jin64, M. Q. Jing1,61, T. Johansson73, X. Kui1, S. Kabana32, N. Kalantar-Nayestanaki62, X. L. Kang9, X. S. Kang39, R. Kappert62, M. Kavatsyuk62, B. C. Ke79, A. Khoukaz66, R. Kiuchi1, R. Kliemt14, L. Koch36, O. B. Kolcu60A, B. Kopf4, M. Kuessner4, A. Kupsc43,73, W. Kühn36, J. J. Lane65, J. S. Lange36, P.  Larin19, A. Lavania26, L. Lavezzi72A,72C, T. T. Lei69,k, Z. H. Lei69,56, H. Leithoff34, M. Lellmann34, T. Lenz34, C. Li42, C. Li46, C. H. Li38, Cheng Li69,56, D. M. Li79, F. Li1,56, G. Li1, H. Li69,56, H. B. Li1,61, H. J. Li20, H. N. Li54,i, Hui Li42, J. R. Li59, J. S. Li57, J. W. Li48, Ke Li1, L. J Li1,61, L. K. Li1, Lei Li3, M. H. Li42, P. R. Li37,j,k, S. X. Li12, T.  Li48, W. D. Li1,61, W. G. Li1, X. H. Li69,56, X. L. Li48, Xiaoyu Li1,61, Y. G. Li45,g, Z. J. Li57, Z. X. Li16, Z. Y. Li57, C. Liang41, H. Liang69,56, H. Liang1,61, H. Liang33, Y. F. Liang52, Y. T. Liang30,61, G. R. Liao15, L. Z. Liao48, J. Libby26, A.  Limphirat58, D. X. Lin30,61, T. Lin1, B. J. Liu1, B. X. Liu74, C. Liu33, C. X. Liu1, D.  Liu19,69, F. H. Liu51, Fang Liu1, Feng Liu6, G. M. Liu54,i, H. Liu37,j,k, H. B. Liu16, H. M. Liu1,61, Huanhuan Liu1, Huihui Liu21, J. B. Liu69,56, J. L. Liu70, J. Y. Liu1,61, K. Liu1, K. Y. Liu39, Ke Liu22, L. Liu69,56, L. C. Liu42, Lu Liu42, M. H. Liu12,f, P. L. Liu1, Q. Liu61, S. B. Liu69,56, T. Liu12,f, W. K. Liu42, W. M. Liu69,56, X. Liu37,j,k, Y. Liu37,j,k, Y. B. Liu42, Z. A. Liu1,56,61, Z. Q. Liu48, X. C. Lou1,56,61, F. X. Lu57, H. J. Lu23, J. G. Lu1,56, X. L. Lu1, Y. Lu7, Y. P. Lu1,56, Z. H. Lu1,61, C. L. Luo40, M. X. Luo78, T. Luo12,f, X. L. Luo1,56, X. R. Lyu61, Y. F. Lyu42, F. C. Ma39, H. L. Ma1, J. L. Ma1,61, L. L. Ma48, M. M. Ma1,61, Q. M. Ma1, R. Q. Ma1,61, R. T. Ma61, X. Y. Ma1,56, Y. Ma45,g, F. E. Maas19, M. Maggiora72A,72C, S. Maldaner4, S. Malde67, A. Mangoni28B, Y. J. Mao45,g, Z. P. Mao1, S. Marcello72A,72C, Z. X. Meng64, J. G. Messchendorp14,62, G. Mezzadri29A, H. Miao1,61, T. J. Min41, R. E. Mitchell27, X. H. Mo1,56,61, N. Yu. Muchnoi13,b, Y. Nefedov35, F. Nerling19,d, I. B. Nikolaev13,b, Z. Ning1,56, S. Nisar11,l, Y. Niu 48, S. L. Olsen61, Q. Ouyang1,56,61, S. Pacetti28B,28C, X. Pan53, Y. Pan55, A.  Pathak33, Y. P. Pei69,56, M. Pelizaeus4, H. P. Peng69,56, K. Peters14,d, J. L. Ping40, R. G. Ping1,61, S. Plura34, S. Pogodin35, V. Prasad32, F. Z. Qi1, H. Qi69,56, H. R. Qi59, M. Qi41, T. Y. Qi12,f, S. Qian1,56, W. B. Qian61, C. F. Qiao61, J. J. Qin70, L. Q. Qin15, X. P. Qin12,f, X. S. Qin48, Z. H. Qin1,56, J. F. Qiu1, S. Q. Qu59, C. F. Redmer34, K. J. Ren38, A. Rivetti72C, V. Rodin62, M. Rolo72C, G. Rong1,61, Ch. Rosner19, S. N. Ruan42, N. Salone43, A. Sarantsev35,c, Y. Schelhaas34, K. Schoenning73, M. Scodeggio29A,29B, K. Y. Shan12,f, W. Shan24, X. Y. Shan69,56, J. F. Shangguan53, L. G. Shao1,61, M. Shao69,56, C. P. Shen12,f, H. F. Shen1,61, W. H. Shen61, X. Y. Shen1,61, B. A. Shi61, H. C. Shi69,56, J. L. Shi12, J. Y. Shi1, Q. Q. Shi53, R. S. Shi1,61, X. Shi1,56, J. J. Song20, T. Z. Song57, W. M. Song33,1, Y.  J. Song12, Y. X. Song45,g, S. Sosio72A,72C, S. Spataro72A,72C, F. Stieler34, Y. J. Su61, G. B. Sun74, G. X. Sun1, H. Sun61, H. K. Sun1, J. F. Sun20, K. Sun59, L. Sun74, S. S. Sun1,61, T. Sun1,61, W. Y. Sun33, Y. Sun9, Y. J. Sun69,56, Y. Z. Sun1, Z. T. Sun48, Y. X. Tan69,56, C. J. Tang52, G. Y. Tang1, J. Tang57, Y. A. Tang74, L. Y Tao70, Q. T. Tao25,h, M. Tat67, J. X. Teng69,56, V. Thoren73, W. H. Tian57, W. H. Tian50, Y. Tian30,61, Z. F. Tian74, I. Uman60B, B. Wang1, B. L. Wang61, Bo Wang69,56, C. W. Wang41, D. Y. Wang45,g, F. Wang70, H. J. Wang37,j,k, H. P. Wang1,61, K. Wang1,56, L. L. Wang1, M. Wang48, Meng Wang1,61, S. Wang12,f, S. Wang37,j,k, T.  Wang12,f, T. J. Wang42, W.  Wang70, W. Wang57, W. H. Wang74, W. P. Wang69,56, X. Wang45,g, X. F. Wang37,j,k, X. J. Wang38, X. L. Wang12,f, Y. Wang59, Y. D. Wang44, Y. F. Wang1,56,61, Y. H. Wang46, Y. N. Wang44, Y. Q. Wang1, Yaqian Wang18,1, Yi Wang59, Z. Wang1,56, Z. L.  Wang70, Z. Y. Wang1,61, Ziyi Wang61, D. Wei68, D. H. Wei15, F. Weidner66, S. P. Wen1, C. W. Wenzel4, U. Wiedner4, G. Wilkinson67, M. Wolke73, L. Wollenberg4, C. Wu38, J. F. Wu1,61, L. H. Wu1, L. J. Wu1,61, X. Wu12,f, X. H. Wu33, Y. Wu69, Y. J Wu30, Z. Wu1,56, L. Xia69,56, X. M. Xian38, T. Xiang45,g, D. Xiao37,j,k, G. Y. Xiao41, H. Xiao12,f, S. Y. Xiao1, Y.  L. Xiao12,f, Z. J. Xiao40, C. Xie41, X. H. Xie45,g, Y. Xie48, Y. G. Xie1,56, Y. H. Xie6, Z. P. Xie69,56, T. Y. Xing1,61, C. F. Xu1,61, C. J. Xu57, G. F. Xu1, H. Y. Xu64, Q. J. Xu17, W. L. Xu64, X. P. Xu53, Y. C. Xu76, Z. P. Xu41, F. Yan12,f, L. Yan12,f, W. B. Yan69,56, W. C. Yan79, X. Q Yan1, H. J. Yang49,e, H. L. Yang33, H. X. Yang1, Tao Yang1, Y. Yang12,f, Y. F. Yang42, Y. X. Yang1,61, Yifan Yang1,61, Z. W. Yang37,j,k, M. Ye1,56, M. H. Ye8, J. H. Yin1, Z. Y. You57, B. X. Yu1,56,61, C. X. Yu42, G. Yu1,61, T. Yu70, X. D. Yu45,g, C. Z. Yuan1,61, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,61, Z. Y. Yuan57, C. X. Yue38, A. A. Zafar71, F. R. Zeng48, X. Zeng12,f, Y. Zeng25,h, Y. J. Zeng1,61, X. Y. Zhai33, Y. H. Zhan57, A. Q. Zhang1,61, B. L. Zhang1,61, B. X. Zhang1, D. H. Zhang42, G. Y. Zhang20, H. Zhang69, H. H. Zhang57, H. H. Zhang33, H. Q. Zhang1,56,61, H. Y. Zhang1,56, J. J. Zhang50, J. L. Zhang75, J. Q. Zhang40, J. W. Zhang1,56,61, J. X. Zhang37,j,k, J. Y. Zhang1, J. Z. Zhang1,61, Jiawei Zhang1,61, L. M. Zhang59, L. Q. Zhang57, Lei Zhang41, P. Zhang1, Q. Y.  Zhang38,79, Shuihan Zhang1,61, Shulei Zhang25,h, X. D. Zhang44, X. M. Zhang1, X. Y. Zhang53, X. Y. Zhang48, Y. Zhang67, Y.  T. Zhang79, Y. H. Zhang1,56, Yan Zhang69,56, Yao Zhang1, Z. H. Zhang1, Z. L. Zhang33, Z. Y. Zhang74, Z. Y. Zhang42, G. Zhao1, J. Zhao38, J. Y. Zhao1,61, J. Z. Zhao1,56, Lei Zhao69,56, Ling Zhao1, M. G. Zhao42, S. J. Zhao79, Y. B. Zhao1,56, Y. X. Zhao30,61, Z. G. Zhao69,56, A. Zhemchugov35,a, B. Zheng70, J. P. Zheng1,56, W. J. Zheng1,61, Y. H. Zheng61, B. Zhong40, X. Zhong57, H.  Zhou48, L. P. Zhou1,61, X. Zhou74, X. K. Zhou6, X. R. Zhou69,56, X. Y. Zhou38, Y. Z. Zhou12,f, J. Zhu42, K. Zhu1, K. J. Zhu1,56,61, L. Zhu33, L. X. Zhu61, S. H. Zhu68, S. Q. Zhu41, T. J. Zhu12,f, W. J. Zhu12,f, Y. C. Zhu69,56, Z. A. Zhu1,61, J. H. Zou1, J. Zu69,56
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
14 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
15 Guangxi Normal University, Guilin 541004, People’s Republic of China
16 Guangxi University, Nanning 530004, People’s Republic of China
17 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
18 Hebei University, Baoding 071002, People’s Republic of China
19 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
20 Henan Normal University, Xinxiang 453007, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
31 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
32 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
33 Jilin University, Changchun 130012, People’s Republic of China
34 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
35 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
36 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
37 Lanzhou University, Lanzhou 730000, People’s Republic of China
38 Liaoning Normal University, Dalian 116029, People’s Republic of China
39 Liaoning University, Shenyang 110036, People’s Republic of China
40 Nanjing Normal University, Nanjing 210023, People’s Republic of China
41 Nanjing University, Nanjing 210093, People’s Republic of China
42 Nankai University, Tianjin 300071, People’s Republic of China
43 National Centre for Nuclear Research, Warsaw 02-093, Poland
44 North China Electric Power University, Beijing 102206, People’s Republic of China
45 Peking University, Beijing 100871, People’s Republic of China
46 Qufu Normal University, Qufu 273165, People’s Republic of China
47 Shandong Normal University, Jinan 250014, People’s Republic of China
48 Shandong University, Jinan 250100, People’s Republic of China
49 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
50 Shanxi Normal University, Linfen 041004, People’s Republic of China
51 Shanxi University, Taiyuan 030006, People’s Republic of China
52 Sichuan University, Chengdu 610064, People’s Republic of China
53 Soochow University, Suzhou 215006, People’s Republic of China
54 South China Normal University, Guangzhou 510006, People’s Republic of China
55 Southeast University, Nanjing 211100, People’s Republic of China
56 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
57 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
58 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
59 Tsinghua University, Beijing 100084, People’s Republic of China
60 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
61 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
62 University of Groningen, NL-9747 AA Groningen, The Netherlands
63 University of Hawaii, Honolulu, Hawaii 96822, USA
64 University of Jinan, Jinan 250022, People’s Republic of China
65 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
66 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
67 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
68 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
69 University of Science and Technology of China, Hefei 230026, People’s Republic of China
70 University of South China, Hengyang 421001, People’s Republic of China
71 University of the Punjab, Lahore-54590, Pakistan
72 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
73 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
74 Wuhan University, Wuhan 430072, People’s Republic of China
75 Xinyang Normal University, Xinyang 464000, People’s Republic of China
76 Yantai University, Yantai 264005, People’s Republic of China
77 Yunnan University, Kunming 650500, People’s Republic of China
78 Zhejiang University, Hangzhou 310027, People’s Republic of China
79 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory for Quantum Theory and Applications of the MoE, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi , Pakistan
(February 13, 2025)
Abstract

The Ξ0\Xi^{0} asymmetry parameters are measured using entangled quantum Ξ0\Xi^{0}-Ξ¯0\bar{\Xi}^{0} pairs from a sample of (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at BEPCII. The relative phase between the transition amplitudes of the Ξ0Ξ¯0\Xi^{0}\bar{\Xi}^{0} helicity states is measured to be ΔΦ=0.050±0.150±0.020\Delta\Phi=-0.050\pm 0.150\pm 0.020 rad, which implies that there is no obvious polarization at the current level of statistics. The decay parameters of the Ξ0\Xi^{0} hyperon (αΞ0,αΞ¯0,ϕΞ0,ϕΞ¯0)(\alpha_{\Xi^{0}},\alpha_{\bar{\Xi}^{0}},\phi_{\Xi^{0}},\phi_{\bar{\Xi}^{0}}) and the angular distribution parameter (αψ(3686))(\alpha_{\psi(3686)}) and ΔΦ\Delta\Phi are measured simultaneously for the first time. In addition, the CPCP asymmetry observables are determined to be ACPΞ0=(αΞ0+αΞ¯0)/(αΞ0αΞ¯0)A^{\Xi^{0}}_{CP}=(\alpha_{\Xi^{0}}+\alpha_{\bar{\Xi}^{0}})/(\alpha_{\Xi^{0}}-\alpha_{\bar{\Xi}^{0}}) =0.007=-0.007 ±\pm 0.082 ±\pm 0.025 and ΔϕCPΞ0=(ϕΞ0+ϕΞ¯0)/2\Delta\phi^{\Xi^{0}}_{CP}=(\phi_{\Xi^{0}}+\phi_{\bar{\Xi}^{0}})/2 =0.079=-0.079 ±\pm 0.082 ±\pm 0.010 rad, which are consistent with CPCP conservation.

The universe began with the Big Bang, where it is commonly assumed that matter and antimatter were created in equal amounts. However, at present, only traces of antimatter can be seen. CPCP violation (CPV) is one of the necessary conditions to possibly explain this asymmetry CPsource . The existence of CPV in the decays of K0K^{0}, B0B^{0}, and D0D^{0} mesons KCP ; BCP1 ; BCP2 ; DCP , as well as in neutrino oscillations νl\nu_{l} nuCP , are firmly established. However, these CPV effects are too small to explain the large matter-antimatter asymmetry in the universe.

Recently, a technique to test CPV in the hyperon sector has been developed by simultaneously analyzing the spin polarization and the asymmetry parameters of the entangled hyperon-antihyperon pairs produced in the decays of the J/ψJ/\psi, ψ(3686)\psi(3686), and ψ(3770)\psi(3770) mesons at the BESIII experiment xghe . For cascade hyperon decays, the angular distribution of the daughter hyperon is proportional to (1+αH𝑷H𝒏^)(1+\alpha_{H}\boldsymbol{P}_{H}\cdot\hat{\boldsymbol{n}}), where αH\alpha_{H} is the hyperon decay parameter, 𝑷H\boldsymbol{P}_{H} and 𝒏^\hat{\boldsymbol{n}} are the hyperon polarization and the unit vector in the direction of the daughter hyperon momentum, respectively, both in the hyperon rest frame. The CPCP asymmetry is defined as ACP=(αH+αH¯)/(αHαH¯)A_{CP}=(\alpha_{H}+\alpha_{\bar{H}})/(\alpha_{H}-\alpha_{\bar{H}}), where the parameters αH\alpha_{H} and αH¯\alpha_{\bar{H}} are CPCP odd, and a nonzero ACPA_{CP} indicates CPV. In the Standard Model (SM), a tiny ACPA_{CP} value of 104\sim 10^{-4} 10m4 is predicted in the hyperon sector. Therefore, a test of CPV in hyperon decays is sensitive to possible sources of CPV from physics beyond the SM theory ; Liu:2023xhg . At present, BESIII has performed CPV tests in the decays of Λ\Lambda Lambda ; 3773Lambda ; zhangjianyu , Σ+\Sigma^{+} Sigmap , and Ξ\Xi^{-} Patrik ; zhangjingxu hyperons, where for Ξ\Xi^{-} hyperons, the most precise asymmetry parameter measurement was reported in J/ψJ/\psi decay. BESIII has also performed the first determination of the weak phase of the Ξ\Xi^{-} hyperon using entangled ΞΞ¯+\Xi^{-}\bar{\Xi}^{+} pairs Patrik . However, CPV in Ξ0\Xi^{0} hyperon decays has not so far been searched for, the asymmetry parameter αΞ0\alpha_{\Xi^{0}} in the decay Ξ0Λπ0\Xi^{0}\to\Lambda\pi^{0} has not been measured directly, only the product αΛαΞ0\alpha_{\Lambda}\cdot\alpha_{\Xi^{0}} has been reported product1 ; product2 , and the weak decay phase ϕΞ0\phi_{\Xi^{0}} was measured with large uncertainty HBC1 ; HBC2 ; HBC3 .

The process of e+eψ(3686)Ξ0Ξ¯0π0π0ΛΛ¯e^{+}e^{-}\to\psi(3686)\to\Xi^{0}\bar{\Xi}^{0}\to\pi^{0}\pi^{0}\Lambda\bar{\Lambda} with Λpπ\Lambda\to p\pi^{-} can be fully described by the vector 𝝃=(θΞ,θΛ,φΛ,θΛ¯,φΛ¯,θp,φp,θp¯,φp¯)\boldsymbol{\xi}=(\theta_{\Xi},\theta_{\Lambda},\varphi_{\Lambda},\theta_{\bar{\Lambda}},\varphi_{\bar{\Lambda}},\theta_{p},\varphi_{p},\theta_{\bar{p}},\varphi_{\bar{p}}), where the coordinate systems and angles are shown in Fig. LABEL:xyz with the same convention as Refs. Patrik and zhangjingxu . The cascade Ξ\Xi and Λ\Lambda polarization vector, 𝑷Ξ\boldsymbol{P}_{\Xi} and 𝑷Λ\boldsymbol{P}_{\Lambda}, are related as 𝑷Λ=αΞ0𝒛^Ξ0+βΞ0(𝑷Ξ0×𝒛^Ξ0)+γΞ0[𝒛^Ξ0×(𝑷Ξ0×𝒛^Ξ0)]\boldsymbol{P}_{\Lambda}=\alpha_{\Xi^{0}}\hat{\boldsymbol{z}}_{\Xi^{0}}+\beta_{\Xi^{0}}(\boldsymbol{P}_{\Xi^{0}}\times\hat{\boldsymbol{z}}_{\Xi^{0}})+\gamma_{\Xi^{0}}[\hat{\boldsymbol{z}}_{\Xi^{0}}\times(\boldsymbol{P}_{\Xi^{0}}\times\hat{\boldsymbol{z}}_{\Xi^{0}})], where αΞ0\alpha_{\Xi^{0}}, βΞ0\beta_{\Xi^{0}}, and γΞ0\gamma_{\Xi^{0}} are defined in Ref. LeeYang and 𝒛^Ξ0\hat{\boldsymbol{z}}_{\Xi^{0}} is the unit vector in the direction of the Ξ\Xi momentum. The joint angular distribution function is described by formula

𝒲=𝒲(𝝃,𝛀)=μ,ν¯=03μ=03ν¯=03Cμν¯aμμΞaμ0Λaνν¯Ξ¯aν¯0Λ¯,\mathscr{W}=\mathscr{W}(\boldsymbol{\xi},\boldsymbol{\Omega})=\sum^{3}_{\mu,\bar{\nu}=0}\sum^{3}_{\mu^{\prime}=0}\sum^{3}_{\bar{\nu}^{\prime}=0}C_{\mu\bar{\nu}}a^{\Xi}_{\mu\mu^{\prime}}a^{\Lambda}_{\mu^{\prime}0}a^{\bar{\Xi}}_{\nu\bar{\nu}^{\prime}}a^{\bar{\Lambda}}_{\bar{\nu}^{\prime}0}, (1)

where CμνC_{\mu\nu} is the production spin density matrix, aμνa_{\mu\nu} is the joint decay amplitude, and 𝛀=(αψ(3686),ΔΦ,αΞ0,ϕΞ0,αΛ,αΛ¯,αΞ¯0,ϕΞ¯0)\boldsymbol{\Omega}=(\alpha_{\psi(3686)},\Delta\Phi,\alpha_{\Xi^{0}},\phi_{\Xi^{0}},\alpha_{\Lambda},\alpha_{\bar{\Lambda}},\alpha_{\bar{\Xi}^{0}},\phi_{\bar{\Xi}^{0}}) is the set of decay parameters. The definitions of CμνC_{\mu\nu} and aμνa_{\mu\nu} may be found in Ref. formula .

Refer to caption
FIG. 1: Depiction of the axes orientation used in the analysis of the Ξ0\Xi^{0} decay parameters. In the e+ee^{+}e^{-} rest frame, the 𝒛^\hat{\boldsymbol{z}} axis is along the e+e^{+} direction, and 𝒛^Ξ0\hat{\boldsymbol{z}}_{\Xi^{0}} is along the Ξ0\Xi^{0} momentum direction. In the Ξ0\Xi^{0} rest frame, the polar axis direction is 𝒛^Ξ0\hat{\boldsymbol{z}}_{\Xi^{0}}, 𝒚^Ξ0\hat{\boldsymbol{y}}_{\Xi^{0}} is along 𝒛^×𝒛^Ξ0\hat{\boldsymbol{z}}\times\hat{\boldsymbol{z}}_{\Xi^{0}} and 𝒛^Λ\hat{\boldsymbol{z}}_{\Lambda} is along the Λ\Lambda momentum direction. For the Λ\Lambda rest frame, the polar axis direction is 𝒛^Λ\hat{\boldsymbol{z}}_{\Lambda} and 𝒚^Λ\hat{\boldsymbol{y}}_{\Lambda} is along 𝒛^Ξ0×𝒛^Λ\hat{\boldsymbol{z}}_{\Xi^{0}}\times\hat{\boldsymbol{z}}_{\Lambda}. The vector 𝑷^Ξ0×𝒛^Λ\hat{\boldsymbol{P}}_{\Xi^{0}}\times\hat{\boldsymbol{z}}_{\Lambda} is along the 𝒚^Λ\hat{\boldsymbol{y}}_{\Lambda} axis. The definition for the Ξ¯0\bar{\Xi}^{0} is analogous, with the 𝒛^Ξ¯0\hat{\boldsymbol{z}}_{\bar{\Xi}^{0}} axis against the 𝒛^Ξ0\hat{\boldsymbol{z}}_{\Xi^{0}} direction.

CPV is searched for with an amplitude, ACPA_{CP}, and a phase, ΔϕCP\Delta\phi_{CP}, defined as

ACPΞ0\displaystyle A_{CP}^{\Xi^{0}} =αΞ0+αΞ¯0αΞ0αΞ¯0,\displaystyle=\frac{\alpha_{\Xi^{0}}+\alpha_{\bar{\Xi}^{0}}}{\alpha_{\Xi^{0}}-\alpha_{\bar{\Xi}^{0}}}, (2)
ΔϕCPΞ0\displaystyle\Delta\phi_{CP}^{\Xi^{0}} =12(ϕΞ0+ϕΞ¯0).\displaystyle=\frac{1}{2}\left(\phi_{\Xi^{0}}+\phi_{\bar{\Xi}^{0}}\right).

The polarization observable PyP_{y} is defined as follows polarization ,

Py=1αψ(3686)2sin2θΞsinΔΦ2(1+αψ(3686)cos2θΞ),P_{y}=\frac{\sqrt{1-\alpha_{\psi(3686)}^{2}}\sin 2\theta_{\Xi}\sin\Delta\Phi}{2(1+\alpha_{\psi(3686)}\cos^{2}\theta_{\Xi})}, (3)

which is dependent on the transverse polarization parameter ΔΦ\Delta\Phi.

In this paper, we present the first simultaneous measurement of the Ξ0\Xi^{0} asymmetry parameters using entangled Ξ0\Xi^{0}-Ξ¯0\bar{\Xi}^{0} pairs from (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} ψ(3686)\psi(3686) decays psip collected with the BESIII detector BESIII . In addition, a study of the transverse polarization in ψ(3686)Ξ0Ξ¯0\psi(3686)\to\Xi^{0}\bar{\Xi}^{0} and a test of CPV in Ξ0\Xi^{0} hyperon decays are performed.

Candidate ψ(3686)Ξ0Ξ¯0\psi(3686)\to\Xi^{0}\bar{\Xi}^{0} events are selected by fully reconstructing the subsequent decays Ξ0π0Λ\Xi^{0}\to\pi^{0}\Lambda, Λpπ\Lambda\to p\pi^{-} and π0γγ\pi^{0}\to\gamma\gamma (as well as the charge conjugate final states for Ξ¯\bar{\Xi} and Λ¯\bar{\Lambda} decays). Potential background contributions are studied with an inclusive Monte Carlo (MC) simulation sample of ψ(3686)\psi(3686) decays TopoAna , and an exclusive simulation of the signal process with 5×1065\times 10^{6} events is generated with a phase space model for normalization. The production of the ψ(3686)\psi(3686) resonance for both MC samples is simulated with the kkmc generator kkmc1 ; kkmc2 , and the subsequent decays are processed by evtgen evtgen1 ; evtgen2 . Additionally for the inclusive MC sample, the branching fractions of cascade decays are fixed according to the Particle Data Group (PDG) PDG2022 . All the remaining unmeasured decay modes are generated with lundcharm lundcharm1 ; lundcharm2 . The response of the BESIII detector is modeled with MC simulations using a framework based on geant4 geant41 ; geant42 .

Candidate events are required to contain at least four charged particles (two positive and two negative) and at least four photons. Charged particles are reconstructed as tracks within the multilayer drift chamber (MDC). Only tracks fully contained in the acceptance region of the MDC, |cosθ|<0.93|\cos\theta|<0.93 (with θ\theta defined with respect to the zz-axis, which is the symmetry axis of the MDC), are kept for the analysis. Because of the momentum separation in the two body decay, the momenta of (anti-)proton and charged pion candidates are required to be greater and less than 0.5 GeV/cc, respectively.

Λ\Lambda(Λ¯\bar{\Lambda}) candidates are reconstructed as pπp\pi^{-} (p¯π+\bar{p}\pi^{+}) pairs that satisfy a vertex fit. The four-track combination that minimizes (MpπmΛ)2+(Mp¯π+mΛ)2\sqrt{(M_{p\pi^{-}}-m_{\Lambda})^{2}+(M_{\bar{p}\pi^{+}}-m_{\Lambda})^{2}} is selected, where Mpπ(Mp¯π+)M_{p\pi^{-}}(M_{\bar{p}\pi^{+}}) is the invariant mass of the pπ(p¯π+)p\pi^{-}(\bar{p}\pi^{+}) pair and mΛm_{\Lambda} is the Λ\Lambda mass from the PDG PDG2022 . To further suppress non-Λ\Lambda background, the Λ\Lambda decay length is required to be greater than zero, where negative decay lengths are caused by the detector resolution and background contributions.

Photon candidates are reconstructed from isolated showers in the electromagnetic calorimeter (EMC). The energy deposited in the nearby time of flight (TOF) counter is included to improve the reconstruction efficiency and energy resolution. The shower energies are required to be greater than 25 MeV in the EMC barrel region (|cosθ|<0.8|\cos\theta|<0.8), or greater than 50 MeV in the EMC end-cap region (0.86<|cosθ|<0.920.86<|\cos\theta|<0.92). In order to reject electronic noise and energy deposits unrelated to the event start time, the EMC shower time, measured with respect to the collision signal, is required to satisfy 0<t<7000<t<700 ns.

To further suppress background from soft π0\pi^{0}s and radiated photon events and to improve the mass resolution, a six-constraint (6C) kinematic fit is applied to all possible γγγγΛΛ¯\gamma\gamma\gamma\gamma\Lambda\bar{\Lambda} combinations by imposing energy-momentum conservation and constraining the masses of the two pairs of photons from the π0\pi^{0} mesons to the π0\pi^{0} mass. The Ξ0\Xi^{0} and Ξ¯0\bar{\Xi}^{0} candidates are then reconstructed as the π0Λ\pi^{0}\Lambda and π0Λ¯\pi^{0}\bar{\Lambda} combinations that minimize the discriminant δ=(Mπ0ΛmΞ0)2+(Mπ0Λ¯mΞ0)2\delta=\sqrt{(M_{\pi^{0}\Lambda}-m_{\Xi^{0}})^{2}+(M_{\pi^{0}\bar{\Lambda}}-m_{\Xi^{0}})^{2}} from all π0Λ(π0Λ¯)\pi^{0}\Lambda(\pi^{0}\bar{\Lambda}) combinations, where Mπ0Λ(Mπ0Λ¯)M_{\pi^{0}\Lambda}(M_{\pi^{0}\bar{\Lambda}}) is the invariant mass of the π0Λ(π0Λ¯)\pi^{0}\Lambda(\pi^{0}\bar{\Lambda}) system and mΞ0m_{\Xi^{0}} is the Ξ0\Xi^{0} mass from the PDG PDG2022 . Finally, background contributions from the ψ(3686)π0π0J/ψ\psi(3686)\to\pi^{0}\pi^{0}J/\psi process are rejected by requiring the recoil mass of π0π0\pi^{0}\pi^{0} combinations to be at least 2020 MeV/c2c^{2} away from the nominal J/ψJ/\psi mass PDG2022 . Figure LABEL:box shows the distribution of Mπ0ΛM_{\pi^{0}\Lambda} versus Mπ0Λ¯M_{\pi^{0}\bar{\Lambda}} for candidate events selected in data. A clear signal around the Ξ0(Ξ¯0)\Xi^{0}(\bar{\Xi}^{0}) mass is observed. Signal events are required to simultaneously satisfy |Mπ0ΛmΞ0|<15|M_{\pi^{0}\Lambda}-m_{\Xi^{0}}|<15 MeV/c2c^{2} and |Mπ0Λ¯mΞ0|<15|M_{\pi^{0}\bar{\Lambda}}-m_{\Xi^{0}}|<15 MeV/c2c^{2} (region marked as S\rm{S} in Fig. LABEL:box). Most of the background contributions arise from ψ(3686)\psi(3686) decays that do not contain a Ξ0Ξ¯0\Xi^{0}\bar{\Xi}^{0} pair, such as ψ(3686)π0π0ΛΛ¯\psi(3686)\to\pi^{0}\pi^{0}\Lambda\bar{\Lambda}. The background yield is evaluated by the mean of the three sideband regions Bi{\rm B}_{i} (with i=1,2,3i=1,2,3) depicted in Fig. LABEL:box. The sideband regions have the same size as the signal region, but are centered on the following values of (Mπ0Λ,Mπ0Λ¯)=(1.27,1.27)(M_{\pi^{0}\Lambda},M_{\pi^{0}\bar{\Lambda}})=(1.27,1.27), (1.36,1.27)(1.36,1.27), and (1.27,1.36)(1.27,1.36) GeV/c2c^{2}. The sideband region B4\rm{B}_{4} is not suitable for background evaluation as it is close to the ψ(3686)Σ(1385)0Σ¯(1385)0\psi(3686)\to\Sigma(1385)^{0}\bar{\Sigma}(1385)^{0} region and would lead to an overestimation of the signal contamination. In the signal region N=1934N=1934 events are counted with an expected background contribution of 23±523\pm 5 events, resulting in a 1.21.2% contamination level. The signal contamination can, therefore, be considered as negligible in the following analysis.

Refer to caption
FIG. 2: The scatter plot of Mπ0ΛM_{\pi^{0}\Lambda} versus Mπ0Λ¯M_{\pi^{0}\bar{\Lambda}} of the candidate events selected from data, where the red box S shows the signal region, the blue boxes B1{\rm B_{1}}, B2{\rm B_{2}}, and B3{\rm B_{3}} denote the selected sideband regions, and the magenta box B4{\rm B_{4}} is close to the Σ(1385)0Σ¯(1385)0\Sigma(1385)^{0}\bar{\Sigma}(1385)^{0} signal and is not used.

To determine the set of 𝛀\boldsymbol{\Omega} parameters, an unbinned maximum likelihood fit (MLL fit) is performed, where the decay parameters αΛ\alpha_{\Lambda} and αΛ¯\alpha_{\bar{\Lambda}} are fixed to 0.754 Lambda assuming CPCP conservation in Λ\Lambda and Λ¯\bar{\Lambda} decays. In the fit, the likelihood function \mathscr{L} is given by

=i=1N𝒲(𝝃i,𝛀)ϵ(𝝃i)𝒩(𝛀),\mathscr{L}=\prod^{N}_{i=1}\frac{\mathscr{W}(\boldsymbol{\xi}_{i},\boldsymbol{\Omega})\epsilon(\boldsymbol{\xi}_{i})}{\mathscr{N}(\boldsymbol{\Omega})}, (4)

where the joint angular distribution 𝒲\mathscr{W} is defined in Eq. (1), NN is the number of data events, ϵ=NsurviveMC/NtotalMC\epsilon=N_{\rm survive}^{\rm MC}/N_{\rm total}^{\rm MC} is the detection efficiency, and 𝒩(𝛀)=𝒲(𝝃i,𝛀)ϵ(𝝃i)d𝝃i\mathscr{N}(\boldsymbol{\Omega})=\int\mathscr{W}(\boldsymbol{\xi}_{i},\boldsymbol{\Omega})\epsilon(\boldsymbol{\xi}_{i})\text{d}\boldsymbol{\xi}_{i} is the normalization factor. Since the low background level has a negligible effect, we do not include a background term in the fit, and the parameters are determined by minimizing the function S=lnS=-\ln\mathscr{L}. The fit results are reported in Table 1.

TABLE 1: Numerical results of parameters, where the first uncertainty is statistical and the second is systematic.
Param. This work BESIII preXi0 PDG PDG2022
αψ(3686)\alpha_{\psi(3686)} 0. 665±0.086±0.081665\pm 0.086\pm 0.081 0. 650±0.090±0.140650\pm 0.090\pm 0.140 \cdots
ΔΦ\Delta\Phi -0. 050±0.150±0.020050\pm 0.150\pm 0.020 \cdots \cdots
αΞ0\alpha_{\Xi^{0}} 0-0. 358±0.042±0.013358\pm 0.042\pm 0.013 \cdots 0-0. 356±0.011356\pm 0.011
ϕΞ0\phi_{\Xi^{0}} 0. 027±0.117±0.011027\pm 0.117\pm 0.011 \cdots 0. 366±0.209366\pm 0.209
αΞ¯0\alpha_{\bar{\Xi}^{0}} 0. 363±0.042±0.013363\pm 0.042\pm 0.013 \cdots \cdots
ϕΞ¯0\phi_{\bar{\Xi}^{0}} 0-0. 185±0.116±0.017185\pm 0.116\pm 0.017 \cdots \cdots
ACPΞA_{CP}^{\Xi} 0-0. 007±0.082±0.025007\pm 0.082\pm 0.025 \cdots \cdots
ΔϕCPΞ\Delta\phi_{CP}^{\Xi} 0-0. 079±0.082±0.010079\pm 0.082\pm 0.010 \cdots -

Systematic uncertainties arise from the difference of detection efficiencies between data and simulations (tracking, π0\pi^{0} and Ξ0(Ξ¯0)\Xi^{0}(\bar{\Xi}^{0}) reconstruction, 6C kinematic fit, π0π0J/ψ\pi^{0}\pi^{0}J/\psi background veto) as well as from the sideband technique, background from the continuum process e+eΞ0Ξ¯0e^{+}e^{-}\to\Xi^{0}\bar{\Xi}^{0}, the uncertainties of the Λpπ\Lambda\to p\pi^{-} decay parameters and the MLL fit method as listed in Table 2. Correction factors for tracking and π0\pi^{0} reconstruction efficiency differences between data and simulations are evaluated on a control sample of ψ(3686)Ξ0Ξ¯0\psi(3686)\to\Xi^{0}\bar{\Xi}^{0} events, where one of the hyperon is fully reconstructed and one of the charged particles (pp, p¯\bar{p}, π+\pi^{+} and π\pi^{-}) or the π0\pi^{0} from the second is not considered. The uncertainties arising from the correction procedure are evaluated by mean of 100 variation of the correction factors, following a Gaussian distribution with the nominal value as mean and the statistical uncertainty as width. The difference between the nominal results of the decay parameters and the mean values of those obtained through the variations is regarded as systematic uncertainty. The correction to the Ξ0\Xi^{0}reconstruction efficiency differences is evaluated as in Ref. preXi0 ; BESIII:2016ssr ; BESIII:2019dve ; BESIII:2019cuv ; BESIII:2021aer ; BESIII:2020ktn ; BESIII:2021gca ; BESIII:2021ccp ; BESIII:2022mfx , and the same procedure is applied to estimate the systematic uncertainty. The 6C kinematic fit is sensitive to differences in the momentum resolution of the charged tracks between data and simulations. Corrections to the helix parameters of charged tracks are evaluated and applied in the measurement, and the difference between the spin polarization parameters obtained with and without the corrections is considered as the systematic uncertainty. The systematic uncertainty from vetoing ψ(3686)π0π0J/ψ\psi(3686)\to\pi^{0}\pi^{0}J/\psi background is estimated by varying the range of the mass window requirement by 5 MeV/c2c^{2}. The largest difference is taken as the uncertainty. The uncertainties related to background contributions (sideband evaluation and continuum process) are evaluated by introducing a background term to the MLL function SS=ln+lnBKGS\to S^{\prime}=-\ln\mathscr{L}+\ln\mathscr{L}_{\rm{BKG}}. The difference in the fit results is taken as the uncertainty. The possible bias introduced by the Λpπ\Lambda\to p\pi^{-} decay parameters are estimated by changing aΛa_{\Lambda} and aΛ¯a_{\bar{\Lambda}} values reported in Ref. Lambda by ±1σ\pm 1\sigma. The largest variation with respect to the central value is considered as the systematic uncertainty. To validate the fit procedures, an input-output check based on 300 pseudo-experiments is performed with the helicity amplitude formula Eq. (1). The polarization and the asymmetry decay parameters measured in this analysis are used as input in the formula. The number of events in each generated MC sample is 5000, and the check is performed independently 300 times. The difference between the input and output Gaussian fit values is taken as the systematic uncertainty caused by the fit method. Assuming all sources to be independent, the total systematic uncertainties in the measurement of αΞ¯0\alpha_{\bar{\Xi}^{0}}, ΔΦ\Delta\Phi and the decay asymmetry parameters via analyzing for ψ(3686)Ξ0Ξ¯0\psi(3686)\to\Xi^{0}\bar{\Xi}^{0} are determined as the sum in quadrature of the mentioned sources.

TABLE 2: Systematic uncertainties of the measured parameters.
Source αψ(3686)\alpha_{\psi(3686)} ΔΦ\Delta\Phi αΞ0\alpha_{\Xi^{0}} ϕΞ0\phi_{\Xi^{0}} αΞ¯0\alpha_{\bar{\Xi}^{0}} ϕΞ¯0\phi_{\bar{\Xi}^{0}}
Tracking efficiency 0.0670.067 0.0030.003 0.0030.003 0.0040.004 0.0020.002 0.0040.004
π0\pi^{0} reconstruction 0.0320.032 0.0010.001 0.0010.001 0.0020.002 0.0010.001 0.0000.000
Ξ0\Xi^{0} reconstruction 0.0240.024 0.0030.003 0.0010.001 0.0010.001 0.0000.000 0.0010.001
6C kinematic fit 0.0060.006 0.0030.003 0.0010.001 0.0010.001 0.0000.000 0.0010.001
π0π0J/ψ\pi^{0}\pi^{0}J/\psi background veto 0.0160.016 0.0170.017 0.0090.009 0.0040.004 0.0070.007 0.0130.013
Sideband subtraction 0.0110.011 0.0000.000 0.0040.004 0.0060.006 0.0020.002 0.0020.002
Continuum process 0.0110.011 0.0000.000 0.0040.004 0.0060.006 0.0020.002 0.0030.003
Λ\Lambda decay parameter 0.0010.001 0.0060.006 0.0060.006 0.0040.004 0.0050.005 0.0000.000
Fit method 0.0080.008 0.0090.009 0.0030.003 0.0020.002 0.0080.008 0.0100.010
Total 0.0810.081 0.0200.020 0.0130.013 0.0110.011 0.0130.013 0.0170.017

In summary, based on a data sample of (448.1±2.9)×106(448.1\pm 2.9)\times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector, the Ξ0\Xi^{0} asymmetry parameters are measured with high precision using entangled quantum Ξ0\Xi^{0}-Ξ¯0\bar{\Xi}^{0} pairs. The numerical results are summarized in Table 1. The polarization signal related with Eq. (3) is shown in Fig. 3. The value of αψ(3686)\alpha_{\psi(3686)} is measured to be 0.665±0.086±0.0810.665\pm 0.086\pm 0.081, which is consistent with the previous BESIII measurement preXi0 , and ΔΦ=0.050±0.150±0.020\Delta\Phi=-0.050\pm 0.150\pm 0.020 rad is measured for the first time and is significantly different from the one for Ξ\Xi^{-} reported in Refs. Patrik ; zhangjingxu . The relative phase that is approximately zero implies an insignificant transverse polarization, which differs from the polarization observed in Λ\Lambda decays from J/ψJ/\psi decays, Σ+\Sigma^{+} decays from both J/ψJ/\psi and ψ(3686)\psi(3686) decays, and Ξ\Xi^{-} decays from both J/ψJ/\psi and ψ(3686)\psi(3686) decays Lambda ; Sigmap ; Patrik ; zhangjingxu . The asymmetry parameters αΞ\alpha_{\Xi} and αΞ¯\alpha_{\bar{\Xi}} are determined simultaneously for the first time. Previously only the product of αΛαΞ0\alpha_{\Lambda}\cdot\alpha_{\Xi^{0}} product1 ; product2 was reported. The parameter ϕΞ0\phi_{\Xi^{0}} is measured more precisely compared with the value reported by the HBC group almost half a century ago HBC1 ; HBC2 ; HBC3 . In addition, the Ξ0\Xi^{0} hyperon CPCP asymmetry parameters ACPΞA_{CP}^{\Xi}, ΔϕCPΞ\Delta\phi_{CP}^{\Xi}, as summarized in Table 1, indicate no CPV effect at the current level of accuracy. It is expected that the test of CPV will reach sensitivities comparable to the SM prediction when a large data sample will be available at BESIII newdata , the upcoming PANDA experiment at FAIR panda , and the proposed Super Tau-Charm Factory projects in China and Russia superTC ; STCF .

Refer to caption
FIG. 3: Distribution of the polarization observable PyP_{y} versus cosθΞ\cos\theta_{\Xi}, dots with error bars represent experimental data, and the red line denotes the global fit result.

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 12075107, 12247101, 11635010, 11735014, 11835012, 11905236, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12047501, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12225509; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF) under Contract No. 160355; The Royal Society, UK under Contract No. DH160214; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

References