This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

First Moments of Some Hecke LL-functions of Prime Moduli

Peng Gao and Liangyi Zhao
Abstract.

We study the first moments of central values of Hecke LL-functions associated with quadratic, cubic and quartic symbols to prime moduli. This also enables us to obtain results on first moments of central values of certain families of cubic and quartic Dirichlet LL-functions of prime moduli.

Mathematics Subject Classification (2010): 11M06, 11M41

Keywords: Hecke characters, Hecke LL-functions, mean values

1. Introduction

Moments of LL-functions can be used to address the non-vanishing of the central values of LL-functions, an issue that attracts much attention in the literature due to significant arithmetic information carried by these central values. For example, the central values of quadratic Dirichlet LL-functions are related to class numbers of imaginary quadratic fields ([iwakow, p. 514]), so that a considerable amount of investigations have been done on moments of this family of LL-functions.

In [Jutila], M. Jutila initiated the study on the first and second moments central values of the family of quadratic LL-functions and used his result to show that there are infinitely many LL-functions in this family with non-vanishing central values. The error terms in Jutila’s result was subsequently improved in [DoHo, MPY, ViTa] for the first moment and [sound1, Sono] for the second moment. A valid asymptotic formula for the third moment of central values of the family of quadratic Dirichlet LL-functions was first established by K. Soundararajan in [sound1] and the error term for a smoothed version was later improved by M. P. Young in [Young2]. Recently, Q. Shen obtained a valid asymptotic formula in [Shen] for the fourth moment of central values of the same family of LL-functions under the Generalized Riemann Hypothesis (GRH).

Due to its relation to the Birch and Swinnerton-Dyer conjecture, the family of quadratic twists of a modular form is another important family. The mean value of that family has been studied in [BFH, Iwan1, Munshi, MM, Petrow1]. Assuming GRH, the second moment of the family was computed by K. Soundararajan and M. P. Young in [S&Y].

In addition to the above mentioned families, much work has been done on moments of Hecke LL-functions associated with various families of characters of a fixed order. In [Luo], W. Luo studied the first two moments of cubic Hecke LL-functions in (ω)\mathbb{Q}(\omega), where ω=1+3i2\omega=\frac{-1+\sqrt{3}i}{2} is a primitive cubic root of unity. The analogue case for cubic Dirichlet LL-functions was obtained by S. Baier and M. P. Young in [B&Y]. We refer the reader to the articles [FaHL, GHP, FHL, Diac, G&Zhao1] for related results in this area.

All the above mentioned results have the common feature that the set of conductors of each family of LL-functions considered has a positive density in the ring of integers in their respective number fields. Keeping in mind that the set of rational primes is a sparse set (a subset of density zero in the set of rational integers), it is then interesting to consider the case when the set of conductors of a family forms a sparse set. In fact, a weighted first moment of central values of the family of quadratic Dirichlet LL-functions of prime conductors has already been studied by Jutila in [Jutila], the same paper in which he obtained the first two moments of the same family of LL-functions when the set of conductors of the family has a positive density. A weighted second moment of central values of the family of quadratic Dirichlet LL-functions of prime conductors was recently computed by S. Baluyot and K. Pratt in [BP] assuming GRH.

Motivated by the above results of Jutila, we study, in this paper, the first moments of a few families of LL-functions with prime moduli assuming GRH. Our first result is an analogue of Jutila’s result on quadratic Hecke LL-functions. Let KK be a number field of class number one, 𝒪K\mathcal{O}_{K} be its ring of integers and UKU_{K} the group of units in 𝒪K\mathcal{O}_{K}. We shall denote ϖ\varpi for a prime number in 𝒪K\mathcal{O}_{K}, by which we mean that the ideal (ϖ)(\varpi) generated by ϖ\varpi is a prime ideal. We write N(k),Tr(k)N(k),\mathrm{Tr}(k) for the norm and trace of any kKk\in K. We further denote χ\chi for a Hecke character of KK and we say that χ\chi is of trivial infinite type if its component at infinite places of KK is trivial. We write L(s,χ)L(s,\chi) for the LL-function associated to χ\chi and ζK(s)\zeta_{K}(s) for the Dedekind zeta function of KK and ζ(s)\zeta(s) for the Riemann zeta function. We also use Λ(n)\Lambda(n) for the von Mangoldt function on 𝒪K\mathcal{O}_{K} given by

Λ(n)={logN(ϖ)n=ϖk,ϖ prime,k1,0otherwise.\displaystyle\Lambda(n)=\begin{cases}\log N(\varpi)\qquad&n=\varpi^{k},\text{$\varpi$ prime},k\geq 1,\\ 0\qquad&\text{otherwise}.\end{cases}

In the remainder of this section, we let K=(ω)K=\mathbb{Q}(\omega) or (i)\mathbb{Q}(i). Let χϖ\chi_{\varpi} be a quadratic Hecke symbol defined in Section 2.1 and it is shown there that χϖ\chi_{\varpi} is a Hecke character of trivial infinite type when ϖ1(mod36),ϖ[ω]\varpi\equiv 1\pmod{36},\varpi\in\mathbb{Z}[\omega] or ϖ1(mod16),ϖ[i]\varpi\equiv 1\pmod{16},\varpi\in\mathbb{Z}[i]. For the corresponding families of Hecke LL-functions, we have the following

Theorem 1.1.

Suppose that GRH is true. Let Φ\Phi be a compactly supported smooth Schwartz class function. For yy\rightarrow\infty and any ε>0\varepsilon>0, we have

(1.1) ϖL(12,χϖ)Λ(ϖ)Φ(N(ϖ)y)=AKΦ^(0)ylogy+BKΦ^(0)y+O(y3/4+ε),\displaystyle\sideset{}{{}^{*}}{\sum}_{\varpi}L\left(\frac{1}{2},\chi_{\varpi}\right)\Lambda(\varpi)\Phi\left(\frac{N(\varpi)}{y}\right)=A_{K}\hat{\Phi}(0)y\log y+B_{K}\hat{\Phi}(0)y+O\left(y^{3/4+\varepsilon}\right),

where K=(i)K=\mathbb{Q}(i) or (ω)\mathbb{Q}(\omega), \sum^{*} indicates that the sum runs over prime elements of [ω]\mathbb{Z}[\omega] congruent to 1(mod36)1\pmod{36} if K=(ω)K=\mathbb{Q}(\omega), or prime elements of [i]\mathbb{Z}[i] congruent to 1(mod16)1\pmod{16} if K=(i)K=\mathbb{Q}(i), χϖ\chi_{\varpi} is the corresponding quadratic symbol, BKB_{K} is a constant depending on KK and Φ\Phi, and

(1.2) A(ω)=(1+3)π1296,A(i)=(2+2)π512,Φ^(0)=12Φ(x)dx.\displaystyle A_{\mathbb{Q}(\omega)}=\frac{(1+\sqrt{3})\pi}{1296},\quad A_{\mathbb{Q}(i)}=\frac{(2+\sqrt{2})\pi}{512},\quad\hat{\Phi}(0)=\int\limits_{1}^{2}\Phi(x)\mathrm{d}x.

The proof of Theorem 1.1 is given in Section 3. As we are summing over primes, we cannot apply the Poisson summation (due to K. Soundararajan in [sound1]) to deal with these sums. Thus our treatment here is similar to that of Jutila in [Jutila], except that we use the assumption on GRH to get better error terms.

Let χj,ϖ,j=3\chi_{j,\varpi},j=3, 44 be a cubic or quartic Hecke symbol defined in Section 2.1. It is shown there that χ3,ϖ\chi_{3,\varpi} is a Hecke character of trivial infinite type when ϖ1(mod9),ϖ[ω]\varpi\equiv 1\pmod{9},\varpi\in\mathbb{Z}[\omega] and χ4,ϖ\chi_{4,\varpi} is a Hecke character of trivial infinite type when ϖ1(mod16),ϖ[i]\varpi\equiv 1\pmod{16},\varpi\in\mathbb{Z}[i]. Our next result deals with the associated cubic or quartic Hecke LL-functions.

Theorem 1.2.

Suppose that GRH is true. Let Φ\Phi be a compactly supported smooth Schwartz class function. For yy\rightarrow\infty and any ε>0\varepsilon>0, we have

ϖL(12,χj,ϖ)Λ(ϖ)Φ(N(ϖ)y)=CKΦ^(0)y+O(y39/40+ε),\displaystyle\sideset{}{{}^{*}}{\sum}_{\varpi}L\left(\frac{1}{2},\chi_{j,\varpi}\right)\Lambda(\varpi)\Phi\left(\frac{N(\varpi)}{y}\right)=C_{K}\hat{\Phi}(0)y+O\left(y^{39/40+\varepsilon}\right),

where K=(i)K=\mathbb{Q}(i) or (ω)\mathbb{Q}(\omega), Φ^(0)\hat{\Phi}(0) is given in (1.2), \sum^{*} indicates that the sum runs over prime elements of [ω]\mathbb{Z}[\omega] congruent to 1(mod9)1\pmod{9} if K=(ω)K=\mathbb{Q}(\omega), or prime elements of [i]\mathbb{Z}[i] congruent to 1(mod16)1\pmod{16} if K=(i)K=\mathbb{Q}(i), χj,ϖ\chi_{j,\varpi} is the corresponding cubic symbol or quartic symbol with j=3j=3 when K=(ω)K=\mathbb{Q}(\omega) and j=4j=4 when K=(i)K=\mathbb{Q}(i), and

(1.3) C(ω)=33127(31)ζ(ω)(32),C(i)=3(2+2)128ζ(i)(4).\displaystyle C_{\mathbb{Q}(\omega)}=\frac{3\sqrt{3}-1}{27(\sqrt{3}-1)}\zeta_{\mathbb{Q}(\omega)}\left(\frac{3}{2}\right),\quad C_{\mathbb{Q}(i)}=\frac{3(2+\sqrt{2})}{128}\zeta_{\mathbb{Q}(i)}(4).

The proof of Theorem 1.2 is given in Section 4 and our approach is analogous to that used by W. Luo in [Luo]. In particular, we make crucial use (see Lemma 2.5 below) of a result of S. J. Patterson in [P] on estimations of certain Gauss sums over primes to control the error term.

Let χ\chi be a Dirichlet character modulo qq and χ0\chi_{0} the principal character modulo qq and we shall say that the order of χ\chi is jj\in\mathbb{N} if χj=χ0\chi^{j}=\chi_{0} but χiχ0\chi^{i}\neq\chi_{0} for all 1i<j1\leq i<j. We denote the order of χ\chi by ord(χ)\text{ord}(\chi). By Lemma 2.2 below, we see that each cubic or quartic symbol χj,ϖ\chi_{j,\varpi}, j=3j=3, 44 gives rise to a corresponding Dirichlet character of order 33 or 44 modulo N(ϖ)N(\varpi). One can consider the first moments of these LL-functions and our result is

Theorem 1.3.

Suppose that GRH is true. Let j=3,4j=3,4 and Φ\Phi be a compactly supported smooth Schwartz class function. For QQ\rightarrow\infty and any ε>0\varepsilon>0, we have

pχmodpord(χ)=jL(12,χ)Λ(p)Φ(pQ)=\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}p\end{subarray}}\;\sum_{\begin{subarray}{c}\chi\bmod{p}\\ \text{ord}(\chi)=j\end{subarray}}L\left(\frac{1}{2},\chi\right)\Lambda(p)\Phi\left(\frac{p}{Q}\right)= DjΦ^(0)Q+O(Q39/40+ε),\displaystyle D_{j}\hat{\Phi}(0)Q+O\left(Q^{39/40+\varepsilon}\right),

where Φ^(0)\hat{\Phi}(0) is given in (1.2), \sum^{*} indicates that the sum runs over prime numbers pp of \mathbb{Z} such that p=N(ϖ)p=N(\varpi) with ϖ1mod9,ϖ[ω]\varpi\equiv 1\bmod{9},\varpi\in\mathbb{Z}[\omega] when j=3j=3 or ϖ1mod16,ϖ[i]\varpi\equiv 1\bmod{16},\varpi\in\mathbb{Z}[i] when j=4j=4, and

(1.4) D3=33127(31)ζ(32),D4=3(2+2)128ζ(2).\displaystyle D_{3}=\frac{3\sqrt{3}-1}{27(\sqrt{3}-1)}\zeta\left(\frac{3}{2}\right),\quad D_{4}=\frac{3(2+\sqrt{2})}{128}\zeta(2).

The proof of Theorem 1.3 is similar to that of Theorem 1.2 and will be given in Section 5.

2. Preliminaries

In this section, we include some auxiliary results needed in the proofs of our theorems.

2.1. Residue symbols and Gauss sums

Recall from Section 1 that we set KK be a number field of class number one. Let nn\in\mathbb{N} with n2n\geq 2 and μn(K)={ζK×:ζn=1}\mu_{n}(K)=\{\zeta\in K^{\times}:\zeta^{n}=1\} and suppose that μn(K)\mu_{n}(K) has nn elements. Note that the discriminant of xn1x^{n}-1 is divisible only by the primes dividing nn in 𝒪K\mathcal{O}_{K}. It follows that for any prime ϖ𝒪K,(ϖ,n)=1\varpi\in\mathcal{O}_{K},(\varpi,n)=1, we have a bijective map

ζζ(modϖ):μn(K)μn(𝒪K/ϖ)={ζ(𝒪K/ϖ)×:ζn=1}.\displaystyle\zeta\mapsto\zeta\pmod{\varpi}:\mu_{n}(K)\rightarrow\mu_{n}(\mathcal{O}_{K}/\varpi)=\{\zeta\in(\mathcal{O}_{K}/\varpi)^{\times}:\zeta^{n}=1\}.

For such ϖ\varpi, we define the nn-th power residue symbol (ϖ)n,K\left(\frac{\cdot}{\varpi}\right)_{n,K} in KK such that (aϖ)n,Ka(N(ϖ)1)/n(modϖ)\left(\frac{a}{\varpi}\right)_{n,K}\equiv a^{(N(\varpi)-1)/n}\pmod{\varpi} with (aϖ)n,Kμn(K)\left(\frac{a}{\varpi}\right)_{n,K}\in\mu_{n}(K) for any a𝒪Ka\in\mathcal{O}_{K}, (a,ϖ)=1(a,\varpi)=1. When ϖ|a\varpi|a, we define (aϖ)n,K=0\left(\frac{a}{\varpi}\right)_{n,K}=0. Then these symbols can be extended to any composite cc with (NK(c),n)=1(N_{K}(c),n)=1 multiplicatively. We further define (c)n,K=1\left(\frac{\cdot}{c}\right)_{n,K}=1 when cUKc\in U_{K}.

In the remainder of this section, we shall let K=(ω)K=\mathbb{Q}(\omega) with ω=exp(2πi/3)\omega=\exp(2\pi i/3) or K=(i)K=\mathbb{Q}(i) unless otherwise specified. It is well-known that both fields have class number one and 𝒪K=[ω]\mathcal{O}_{K}=\mathbb{Z}[\omega], [i]\mathbb{Z}[i], respectively. We use δK\delta_{K} and DKD_{K} for the different and discriminant of KK, respectively. In particular, we fix δ(ω)=3\delta_{\mathbb{Q}(\omega)}=\sqrt{-3}, δ(i)=2i\delta_{\mathbb{Q}(i)}=2i, D(ω)=3D_{\mathbb{Q}(\omega)}=-3, D(i)=4D_{\mathbb{Q}(i)}=-4. We shall reserve the symbol ()3\left(\frac{\cdot}{\cdot}\right)_{3} for the cubic residue symbol ()3,(ω)\left(\frac{\cdot}{\cdot}\right)_{3,\mathbb{Q}(\omega)} and ()4\left(\frac{\cdot}{\cdot}\right)_{4} for the quartic residue symbol ()4,(i)\left(\frac{\cdot}{\cdot}\right)_{4,\mathbb{Q}(i)} in this paper and we define χ3,a=(a)3\chi_{3,a}=\left(\frac{\cdot}{a}\right)_{3} for any a[ω]a\in\mathbb{Z}[\omega], χ4,a=(a)4\chi_{4,a}=\left(\frac{\cdot}{a}\right)_{4} for any a[i]a\in\mathbb{Z}[i]. We shall also write χa=(a)2,K\chi_{a}=\left(\frac{\cdot}{a}\right)_{2,K} for any a𝒪Ka\in\mathcal{O}_{K} when there is no confusion about KK from the context.

Recall that every ideal in [ω]\mathbb{Z}[\omega] co-prime to 33 has a unique generator congruent to 11 modulo 33 (see [BEW, Proposition 8.1.4]) and every ideal in [i]\mathbb{Z}[i] co-prime to 22 has a unique generator congruent to 11 modulo (1+i)3(1+i)^{3} (see the paragraph above Lemma 8.2.1 in [BEW])). These generators are called primary. An element n=a+bωn=a+b\omega in [ω]\mathbb{Z}[\omega] is congruent to 1(mod3)1\pmod{3} if and only if a1(mod3)a\equiv 1\pmod{3}, and b0(mod3)b\equiv 0\pmod{3} (see the discussions before [I&R, Proposition 9.3.5]).

We refer the reader to [G&Zhao2019-1, Section 2.2] for the quadratic, cubic and quartic reciprocity laws as well as the supplementary laws are applicable to the above quadratic, cubic and quartic symbols. We only point out here that the quadratic symbol (c)2,(ω)\left(\frac{\cdot}{c}\right)_{2,\mathbb{Q}(\omega)} is trivial on units for any c1(mod36),c[ω]c\equiv 1\pmod{36},c\in\mathbb{Z}[\omega] so that for any square-free cc, χc\chi_{c} can be regarded as a primitive character of the ray class group h(c)h_{(c)}. Here we recall that for any number field KK of class number one and any cKc\in K, the ray class group h(c)h_{(c)} is defined to be I(c)/P(c)I_{(c)}/P_{(c)}, where I(c)={𝒜I:(𝒜,(c))=1}I_{(c)}=\{\mathcal{A}\in I:(\mathcal{A},(c))=1\} and P(c)={(a)P:a1(modc)}P_{(c)}=\{(a)\in P:a\equiv 1\pmod{c}\} with II and PP denoting the group of fractional ideals in KK and the subgroup of principal ideals, respectively. Moreover, the cubic symbol (c)3\left(\frac{\cdot}{c}\right)_{3} is trivial on units for any c1(mod9),c[ω]c\equiv 1\pmod{9},c\in\mathbb{Z}[\omega] so that for any square-free cc, χ3,c\chi_{3,c} can be regarded as a primitive character of the ray class group h(c)h_{(c)}. We also note that the supplement laws to the cubic reciprocity law [Lemmermeyer, Theorem 7.12] imply that

(2.1) (2c)2,(ω)=(1ωc)2,(ω)=1,c1(mod36),(1ωc)3=1,c1(mod9).\displaystyle\left(\frac{2}{c}\right)_{2,\mathbb{Q}(\omega)}=\left(\frac{1-\omega}{c}\right)_{2,\mathbb{Q}(\omega)}=1,\quad c\equiv 1\pmod{36},\quad\left(\frac{1-\omega}{c}\right)_{3}=1,\quad c\equiv 1\pmod{9}.

Similarly, (c)2,(i)\left(\frac{\cdot}{c}\right)_{2,\mathbb{Q}(i)} and (c)4\left(\frac{\cdot}{c}\right)_{4} are trivial on units and 1+i1+i for any c1(mod16),c[i]c\equiv 1\pmod{16},c\in\mathbb{Z}[i], so that for any square-free cc, χc\chi_{c} and χ4,c\chi_{4,c} can be regarded as a primitive character of the ray class group h(c)h_{(c)}.

We note that if ϖ\varpi is a prime such that N(ϖ)N(\varpi) is a rational prime, then restricting χ3,ϖ\chi_{3,\varpi} or χ4,ϖ\chi_{4,\varpi} on rational integers gives rise to cubic or quartic Dirichlet characters, we shall say that these Dirichlet characters are induced by χ3,ϖ\chi_{3,\varpi} or χ4,ϖ\chi_{4,\varpi}. We have the following classification of primitive cubic and quartic Dirichlet characters of prime conductors, which is a special case of the one given in [G&Zhao6, Lemma 2.2].

Lemma 2.2.

The primitive cubic Dirichlet characters of prime conductor pp co-prime to 33 are induced by χ3,ϖ\chi_{3,\varpi} for some prime ϖ[ω]\varpi\in\mathbb{Z}[\omega] such that N(ϖ)=pN(\varpi)=p. The primitive quartic Dirichlet characters of prime conductor pp co-prime to 22 are induced by χ4,ϖ\chi_{4,\varpi} for some prime ϖ[i]\varpi\in\mathbb{Z}[i] such that N(ϖ)=pN(\varpi)=p.

In particular, the above Lemma implies that cubic Dirichlet characters of prime conductor pp exist if and only if p1(mod3)p\equiv 1\pmod{3}, in which case there are two such characters induced by χ3,ϖ\chi_{3,\varpi} or χ3,ϖ¯\chi_{3,\overline{\varpi}}, where ϖ\varpi is a prime in [ω]\mathbb{Z}[\omega] such that N(ϖ)=pN(\varpi)=p. Also, quartic Dirichlet characters of prime conductor pp exist if and only if p1(mod4)p\equiv 1\pmod{4}, in which case there are two such characters induced by χ4,ϖ\chi_{4,\varpi} or χ4,ϖ¯\chi_{4,\overline{\varpi}}, where ϖ\varpi is a prime in [i]\mathbb{Z}[i] such that N(ϖ)=pN(\varpi)=p.

Now we set e(x)=exp(2πix)e(x)=\exp(2\pi ix) and let χ\chi be a Dirichlet character of modulus nn. For any rr\in\mathbb{Z}, we define the Gauss sum τ(r,χ)\tau(r,\chi) as follows:

τ(r,χ)=xmodnχ(x)e(rx).\displaystyle\tau(r,\chi)=\sum_{x\bmod{n}}\chi(x)e(rx).

We also define τ(χ)=τ(1,χ)\tau(\chi)=\tau(1,\chi).

We further define e~K(k)=e(Tr(k/δK))\widetilde{e}_{K}(k)=e(\mathrm{Tr}(k/\delta_{K})) for any kKk\in K and we write e~ω(z)\widetilde{e}_{\omega}(z) for e~(ω)(k)\widetilde{e}_{\mathbb{Q}(\omega)}(k) and e~i(z)\widetilde{e}_{i}(z) for e~(i)(k)\widetilde{e}_{\mathbb{Q}(i)}(k). For any n,r𝒪K,(n,2)=1n,r\in\mathcal{O}_{K},(n,2)=1, we define

g2(r,n)=xmodn(xn)2,Ke~K(rxn).\displaystyle g_{2}(r,n)=\sum_{x\bmod{n}}\left(\frac{x}{n}\right)_{2,K}\widetilde{e}_{K}\left(\frac{rx}{n}\right).

We define g3(r,n)g_{3}(r,n) for r,n𝒪(ω),(n,3)=1r,n\in\mathcal{O}_{\mathbb{Q}(\omega)},(n,3)=1 and g4(r,n)g_{4}(r,n) for r,n𝒪(i),(n,2)=1r,n\in\mathcal{O}_{\mathbb{Q}(i)},(n,2)=1 similarly, replacing 22 in the above expression by 33 or 44 respectively. We shall write gi(n)g_{i}(n) for gi(1,n)g_{i}(1,n) in what follows for i=2i=2, 33 and 44.

If χ\chi is induced by χ3,ϖ\chi_{3,\varpi} or χ4,ϖ\chi_{4,\varpi} for a primary ϖ\varpi, then it is shown in [G&Zhao6, Section 2.2] that

τ(r,χ)\displaystyle\tau(r,\chi) ={(3ϖ)¯3g3(r,ϖ)=(ω(1ω)ϖ)¯3g3(r,ϖ)if χ is induced by χ3,ϖ,(iϖ)¯4(1)((ϖ)21)/8g4(r,ϖ)if χ is induced by χ4,ϖ.\displaystyle=\begin{cases}\displaystyle\overline{\left(\frac{\sqrt{-3}}{\varpi}\right)}_{3}g_{3}(r,\varpi)=\overline{\left(\frac{\omega(1-\omega)}{\varpi}\right)}_{3}g_{3}(r,\varpi)\qquad&\text{if $\chi$ is induced by $\chi_{3,\varpi}$},\\ \\ \displaystyle\overline{\left(\frac{-i}{\varpi}\right)}_{4}(-1)^{(\Re(\varpi)^{2}-1)/8}g_{4}(r,\varpi)\qquad&\text{if $\chi$ is induced by $\chi_{4,\varpi}$}.\end{cases}

We apply the above relations to the case when ϖ1(mod9)\varpi\equiv 1\pmod{9} or ϖ1(mod16)\varpi\equiv 1\pmod{16}, by noting (2.1) and that χ3,ϖ\chi_{3,\varpi} and χ4,ϖ\chi_{4,\varpi} are trivial on the units for these ϖ\varpi to arrive at

(2.2) τ(r,χ)\displaystyle\tau(r,\chi) ={g3(r,ϖ)if ϖ1(mod9),g4(r,ϖ)if ϖ1(mod16).\displaystyle=\begin{cases}g_{3}(r,\varpi)\qquad&\text{if $\varpi\equiv 1\pmod{9}$},\\ g_{4}(r,\varpi)\qquad&\text{if $\varpi\equiv 1\pmod{16}$}.\end{cases}

2.3. The approximate functional equation

Let K=(i)K=\mathbb{Q}(i) or (ω)\mathbb{Q}(\omega) and χ\chi be a primitive Hecke character (modm)\pmod{m} of trivial infinite type defined on 𝒪K\mathcal{O}_{K}. As shown by E. Hecke, L(s,χ)L(s,\chi) admits analytic continuation to an entire function and satisfies the functional equation ([iwakow, Theorem 3.8])

(2.3) Λ(s,χ)=W(χ)(N(m))1/2Λ(1s,χ¯),\displaystyle\Lambda(s,\chi)=W(\chi)(N(m))^{-1/2}\Lambda(1-s,\overline{\chi}),

where |W(χ)|=(N(m))1/2|W(\chi)|=(N(m))^{1/2} and

Λ(s,χ)=(|DK|N(m))s/2(2π)sΓ(s)L(s,χ).\displaystyle\Lambda(s,\chi)=(|D_{K}|N(m))^{s/2}(2\pi)^{-s}\Gamma(s)L(s,\chi).

We recall from [G&Zhao2019-1, Section 2.4] that for any x>1x>1, we have the following approximate functional equation for L(1/2+it,χ)L(1/2+it,\chi):

(2.4) L(12+it,χ)=0𝒜𝒪Kχ(𝒜)N(𝒜)1/2+itVt(2πN(𝒜)x)+W(χ)N(m)1/2((2π)2|Dk|N(m))itΓ(1/2it)Γ(1/2+it)0𝒜𝒪Kχ¯(𝒜)N(𝒜)1/2itVt(2πN(𝒜)x|DK|N(m)),\begin{split}L\left(\frac{1}{2}+it,\chi\right)=\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}&\frac{\chi(\mathcal{A})}{N(\mathcal{A})^{1/2+it}}V_{t}\left(\frac{2\pi N(\mathcal{A})}{x}\right)\\ &+\frac{W(\chi)}{N(m)^{1/2}}\left(\frac{(2\pi)^{2}}{|D_{k}|N(m)}\right)^{it}\frac{\Gamma(1/2-it)}{\Gamma(1/2+it)}\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\overline{\chi}(\mathcal{A})}{N(\mathcal{A})^{1/2-it}}V_{-t}\left(\frac{2\pi N(\mathcal{A})x}{|D_{K}|N(m)}\right),\end{split}

where

(2.5) Vt(x)=12πi(2)Γ(s+1/2+it)Γ(1/2+it)xssds.\displaystyle V_{t}\left(x\right)=\frac{1}{2\pi i}\int\limits\limits_{(2)}\frac{\Gamma(s+1/2+it)}{\Gamma(1/2+it)}\frac{x^{-s}}{s}\ \mathrm{d}s.

Similarly, let χ\chi be a primitive Dirichlet character χ\chi of conductor qq such that χ(1)=1\chi(-1)=1 and let AA and BB be positive real numbers such that AB=qAB=q, we recall the following approximate functional equation for Dirichlet LL-functions given in [iwakow, Theorem 5.3]:

(2.6) L(12,χ)=m=1χ(m)m1/2W(mA)+τ(χ)q1/2m=1χ¯(m)m1/2W(mB),whereW(x)=12πi(2)πs/2Γ(1/4+s/2)Γ(1/4)xsdss.\displaystyle L\left(\frac{1}{2},\chi\right)=\sum_{m=1}^{\infty}\frac{\chi(m)}{m^{1/2}}W\left(\frac{m}{A}\right)+\frac{\tau(\chi)}{q^{1/2}}\sum_{m=1}^{\infty}\frac{\overline{\chi}(m)}{m^{1/2}}W\left(\frac{m}{B}\right),\;\mbox{where}\;W(x)=\frac{1}{2\pi i}\int\limits_{(2)}\pi^{-s/2}\frac{\Gamma\left(1/4+s/2\right)}{\Gamma\left(1/4\right)}x^{-s}\frac{\mathrm{d}s}{s}.

We write VV for V0V_{0} and note that (see [sound1, Lemma 2.1]) both V(x)V(x) and W(x)W(x) are real-valued and smooth on [0,)[0,\infty) such that for the jj-th derivative of V(x)V(x) and W(x)W(x),

(2.7) V(x),W(x)=1+O(x1/2ε)for 0<x<1andV(j)(x),W(j)(x)=O(ex)forx>0,j0.V\left(x\right),W(x)=1+O(x^{1/2-\varepsilon})\;\mbox{for}\;0<x<1\quad\mbox{and}\quad V^{(j)}\left(x\right),W^{(j)}\left(x\right)=O(e^{-x})\;\mbox{for}\;x>0,j\geq 0.

When χ\chi is a quadratic Hecke character, we have χ=χ¯\chi=\overline{\chi} so that by setting x=1/2x=1/2 in (2.3), we deduce that

W(χ)=N(m)1/2.\displaystyle W(\chi)=N(m)^{1/2}.

It follows from this and (2.4) by setting x=(|DK|N(m))1/2x=(|D_{K}|N(m))^{1/2} that

(2.8) L(12,χ)=20𝒜𝒪Kχc(𝒜)N(𝒜)1/2V(2πN(𝒜)(|DK|N(m))1/2).L\left(\frac{1}{2},\chi\right)=2\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\chi_{c}(\mathcal{A})}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})}{(|D_{K}|N(m))^{1/2}}\right).

2.4. Estimation of certain Gauss sums

In the proof of Theorem 1.2 and 1.3, we need a result of S. J. Patterson in [P] to estimate certain Gauss sums over primes. We state the result in the following

Lemma 2.5.

Let ω\omega denote a prime in [ω]\mathbb{Z}[\omega] or [i]\mathbb{Z}[i]. Let ψ\psi be any ray class character (mod9)\pmod{9} in [ω]\mathbb{Z}[\omega] or any ray class character (mod16)\pmod{16} in [i]\mathbb{Z}[i]. For x>1x>1 we have for any (a,3)=1(a,3)=1, a[ω]a\in\mathbb{Z}[\omega] and any (b,2)=1(b,2)=1, b[i]b\in\mathbb{Z}[i],

ϖ1(mod9)N(ϖ)x(aϖ)¯3ψ(ϖ)g3(ϖ)Λ(ϖ)N(ϖ)xε(N(a)1/8x27/32+x11/20),ϖ1(mod(1+i)3)N(ϖ)x(bϖ)¯4ψ(ϖ)g4(ϖ)Λ(ϖ)N(ϖ)xε(N(b)1/10x11/10+N(b)1/8+εx11/8+x11/20).\displaystyle\begin{split}\sum_{\begin{subarray}{c}\varpi\equiv 1\pmod{9}\\ N(\varpi)\leq x\end{subarray}}\overline{\left(\frac{a}{\varpi}\right)}_{3}\frac{\psi(\varpi)g_{3}(\varpi)\Lambda(\varpi)}{\sqrt{N(\varpi)}}\ll&x^{\varepsilon}(N(a)^{1/8}x^{27/32}+x^{1-1/20}),\\ \sum_{\begin{subarray}{c}\varpi\equiv 1\pmod{(1+i)^{3}}\\ N(\varpi)\leq x\end{subarray}}\overline{\left(\frac{b}{\varpi}\right)}_{4}\frac{\psi(\varpi)g_{4}(\varpi)\Lambda(\varpi)}{\sqrt{N(\varpi)}}\ll&x^{\varepsilon}(N(b)^{1/10}x^{1-1/10}+N(b)^{1/8+\varepsilon}x^{1-1/8}+x^{1-1/20}).\end{split}
Proof.

The second estimation follows from the estimation of E(x;k,l)E(x;k,l) given in the end of Section 4.1 of [G&Zhao4] by setting k=bk=b, l=1l=1 there and by noting that a further twist of each term in the sum in E(x;k,l)E(x;k,l) by ψ\psi will not affect the bound. The first estimation can be obtained similarly by using the (with the notations being those used in [G&Zhao4]) bounds

ψ\displaystyle\psi N(d)12(32(s)+ε)N(b)34n112n(s)+2ε(1+|s|2)Card(k)12(n1)(32(s)+ε),\displaystyle\ll N(d)^{\frac{1}{2}(\frac{3}{2}-\Re(s)+\varepsilon)}N(b)^{\frac{3}{4}n-1-\frac{1}{2}n\Re(s)+2\varepsilon}(1+|s|^{2})^{\text{Card}\sum_{\infty}(k)\cdot\frac{1}{2}(n-1)(\frac{3}{2}-\Re(s)+\varepsilon)},
Ress=1+1/3ψ\displaystyle\text{Res}_{s=1+1/3}\psi N(d)16N(b)1\displaystyle\ll N(d)^{-\frac{1}{6}}N(b)^{-1}

in the proof of [G&Zhao4, Lemma 4.2] (the second estimation above being a consequence of [P, Lemma, p. 200]), and following the arguments there. ∎

3. Proof of Theorem 1.1

As the proofs for K=(ω)K=\mathbb{Q}(\omega) and (i)\mathbb{Q}(i) are similar, we will only give the proof for the case K=(ω)K=\mathbb{Q}(\omega) here. We shall hence fix K=(ω)K=\mathbb{Q}(\omega) throughout the proof. We apply (2.8) and arrive at

(3.1) ϖ1mod36L(12,χϖ)Λ(ϖ)Φ(N(ϖ)y)=2ϖ1mod360𝒜OKχϖ(𝒜)Λ(ϖ)N(𝒜)1/2V(2πN(𝒜)(3N(ϖ))1/2)Φ(N(ϖ)y)=M+O(y3/4+ε),\displaystyle\begin{split}\sum_{\varpi\equiv 1\bmod{36}}L\left(\frac{1}{2},\chi_{\varpi}\right)\Lambda(\varpi)\Phi\left(\frac{N(\varpi)}{y}\right)=&2\sum_{\varpi\equiv 1\bmod{36}}\ \sum_{0\neq\mathcal{A}\subset O_{K}}\frac{\chi_{\varpi}(\mathcal{A})\Lambda(\varpi)}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})}{(3N(\varpi))^{1/2}}\right)\Phi\left(\frac{N(\varpi)}{y}\right)\\ =&M+O\left(y^{3/4+\varepsilon}\right),\end{split}

where

(3.2) M=2c1mod360𝒜OKχc(𝒜)Λ(c)N(𝒜)1/2V(2πN(𝒜)(3N(c))1/2)Φ(N(c)y).\displaystyle M=2\sum_{c\equiv 1\bmod{36}}\ \sum_{0\neq\mathcal{A}\subset O_{K}}\frac{\chi_{c}(\mathcal{A})\Lambda(c)}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})}{(3N(c))^{1/2}}\right)\Phi\left(\frac{N(c)}{y}\right).

Here the first summation in the defintion of MM runs over all elements c[ω]c\in\mathbb{Z}[\omega] and the last equality in (3.1) follows from the rapid decay of Φ\Phi and VV given in (2.7) so that the contribution from the higher prime power is

N(ϖk)y1+εk20𝒜OKN(𝒜)N(ϖk)1/2+ε1N(𝒜)1/2y3/4+ε.\displaystyle\ll\sum_{\begin{subarray}{c}N(\varpi^{k})\ll y^{1+\varepsilon}\\ k\geq 2\end{subarray}}\sum_{\begin{subarray}{c}0\neq\mathcal{A}\subset O_{K}\\ N(\mathcal{A})\ll N(\varpi^{k})^{1/2+\varepsilon}\end{subarray}}\frac{1}{N(\mathcal{A})^{1/2}}\ll y^{3/4+\varepsilon}.

For (a,6)=1(a,6)=1, we define a Hecke character χ(a)(mod36a)\chi^{(a)}\pmod{36a} such that for any ideal (c)(c) co-prime to 66, with cc being the unique primary generator of (c)(c), χ(a)((c))\chi^{(a)}((c)) is defined as χ(a)((c))=(ac)\chi^{(a)}((c))=\left(\frac{a}{c}\right). One checks easily that χ(a)\chi^{(a)} is a Hecke character (mod36a)\pmod{36a} of trivial infinite type. By an abuse of notation, we shall also write χ(a)(c)\chi^{(a)}(c) for χ(a)((c))\chi^{(a)}((c)). In particular, we have χc(a)=χ(a)(c)\chi_{c}(a)=\chi^{(a)}(c). Note that any integral non-zero ideal 𝒜\mathcal{A} in [ω]\mathbb{Z}[\omega] has a unique generator 2r1(1ω)r2a2^{r_{1}}(1-\omega)^{r_{2}}a, with r1,r2,r1,r20,a[ω]r_{1},r_{2}\in\mathbb{Z},r_{1},r_{2}\geq 0,a\in\mathbb{Z}[\omega], (a,2)=1,a1(mod3)(a,2)=1,a\equiv 1\pmod{3}, it follows from this and our discussions above that χc(𝒜)=χ(a)(c)\chi_{c}(\mathcal{A})=\chi^{(a)}(c). Thus we have

M=2r1,r20(a,2)=1a1mod312r13r2/2N(a)1/2M(r,a),M=2\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ (a,2)=1\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)^{1/2}}M(r,a),

where

M(r,a)=c1mod36χ(a)(c)Λ(c)V(π22r1+13r21/2N(a)N(c)1/2)Φ(N(c)y).M(r,a)=\sum_{c\equiv 1\bmod{36}}\chi^{(a)}(c)\Lambda(c)V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1/2}N(a)}{N(c)^{1/2}}\right)\Phi\left(\frac{N(c)}{y}\right).

We set

f~(s)=0V(π22r1+13r21/2N(a)(xy)1/2)Φ(x)xs1dx.\displaystyle\tilde{f}(s)=\int\limits^{\infty}_{0}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1/2}N(a)}{(xy)^{1/2}}\right)\Phi(x)x^{s-1}\mathrm{d}x.

Integration by parts and using (2.7) shows that f~(s)\tilde{f}(s) is a function satisfying the bound for all (s)>0\Re(s)>0, and E>0E>0,

(3.3) f~(s)(1+|s|)E(1+22r1+13r21/2N(a)y1/2)E.\displaystyle\tilde{f}(s)\ll(1+|s|)^{-E}\left(1+\frac{2^{2r_{1}+1}3^{r_{2}-1/2}N(a)}{y^{1/2}}\right)^{-E}.

We now apply Mellin inversion to see that

(3.4) M(r,a)=c1mod36χ(a)(c)Λ(c)12πi(2)(yN(c))sf~(s)ds=12πi(2)f~(s)ysc1mod36χ(a)(c)Λ(c)N(c)sds=1#h(36)ψmod3612πi(2)f~(s)ys(L(s,ψχ(a))L(s,ψχ(a)))ds.\displaystyle\begin{split}M(r,a)=&\sum_{\begin{subarray}{c}c\equiv 1\bmod{36}\end{subarray}}\chi^{(a)}(c)\Lambda(c)\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{y}{N(c)}\right)^{s}\tilde{f}(s)\ \mathrm{d}s\\ =&\frac{1}{2\pi i}\int\limits_{(2)}\tilde{f}(s)y^{s}\sum_{\begin{subarray}{c}c\equiv 1\bmod{36}\end{subarray}}\frac{\chi^{(a)}(c)\Lambda(c)}{N(c)^{s}}\mathrm{d}s=\frac{1}{\#h_{(36)}}\sum_{\psi\bmod{36}}\frac{1}{2\pi i}\int\limits\limits_{(2)}\tilde{f}(s)y^{s}\left(-\frac{L^{\prime}(s,\psi\chi^{(a)})}{L(s,\psi\chi^{(a)})}\right)\mathrm{d}s.\end{split}

where the last equality above follows from using the ray class characters to detect the condition that c1mod36c\equiv 1\bmod{36} with ψ\psi running over all ray class characters (mod36)\pmod{36}.

We shift the contour of integration to 1/2+ε1/2+\varepsilon in the last integral of (3.4) to evaluate MM. By doing so, we encounter a pole at s=1s=1 of L(s,ψχ(a))/L(s,ψχ(a))L^{\prime}(s,\psi\chi^{(a)})/L(s,\psi\chi^{(a)}) when ψχ(a)\psi\chi^{(a)} is principal, mindful of our assumption of GRH. We set M0M_{0} to be the contribution to MM of these residues, and M1M_{1} to be the remainder.

We treat M1M_{1} by bounding everything by absolute values and use (3.3) to get that for any E>0E>0,

(3.5) M1y1/2+εψmod36r1,r20(a,2)=1a1mod312r13r2/2N(a)1/2(1+22r1+13r21/2N(a)y1/2)E|L(1/2+it,ψχ(a))L(1/2+it,ψχ(a))|(1+|t|)Edt.\displaystyle M_{1}\ll y^{1/2+\varepsilon}\sum_{\psi\bmod{36}}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ (a,2)=1\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)^{1/2}}\left(1+\frac{2^{2r_{1}+1}3^{r_{2}-1/2}N(a)}{y^{1/2}}\right)^{-E}\int\limits^{\infty}_{-\infty}\left|\frac{L^{\prime}\left(1/2+it,\psi\chi^{(a)}\right)}{L\left(1/2+it,\psi\chi^{(a)}\right)}\right|(1+|t|)^{-E}\mathrm{d}t.

Note that it follows from [iwakow, Theorem 5. 17] that

L(1/2+it,ψχ(a))L(1/2+it,ψχ(a))(log(N(a)(1+|s|)))1+ε.\displaystyle\frac{L^{\prime}\left(1/2+it,\psi\chi^{(a)}\right)}{L\left(1/2+it,\psi\chi^{(a)}\right)}\ll(\log(N(a)(1+|s|)))^{1+\varepsilon}.

Applying this in (3.5) and note that we can restrict the sum over r1r_{1}, r1r_{1}, aa to be 22r1+13r21/2N(a)y1/2+ε2^{2r_{1}+1}3^{r_{2}-1/2}N(a)\leq y^{1/2+\varepsilon}, we immediately deduce that

(3.6) M1y3/4+ε.\displaystyle M_{1}\ll y^{3/4+\varepsilon}.

To determine M0M_{0}, we note that ψχ(a)\psi\chi^{(a)} is principal if and only if both ψ\psi and χ(a)\chi^{(a)} are principal. Hence aa must be a square. We denote ψ0\psi_{0} for the principal ray class character (mod36)\pmod{36}. Then we have

L(s,ψ0χ(a2))=ζ(ω)(s)(ϖ)|(6a)(1N(ϖ)s).\displaystyle L(s,\psi_{0}\chi^{(a^{2})})=\zeta_{\mathbb{Q}(\omega)}(s)\prod_{(\varpi)|(6a)}\left(1-N(\varpi)^{-s}\right).

Since ζ(ω)(s)\zeta_{\mathbb{Q}(\omega)}(s) has a simple pole at s=1s=1, it follows that

M0\displaystyle M_{0} =2y#h(36)r1,r20(a,2)=1a1mod312r13r2/2N(a)f~(1)\displaystyle=\frac{2y}{\#h_{(36)}}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\\ (a,2)=1\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}N(a)}\tilde{f}(1)
=2y#h(36)r1,r2012r13r2/2Φ(x)(a,2)=1a1mod31N(a)V(π22r1+13r21/2N(a)2(xy)1/2)dx.\displaystyle=\frac{2y}{\#h_{(36)}}\sum_{\begin{subarray}{c}r_{1},r_{2}\geq 0\end{subarray}}\frac{1}{2^{r_{1}}3^{r_{2}/2}}\int\limits_{\mathbb{R}}\Phi(x)\sum_{\begin{subarray}{c}(a,2)=1\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{N(a)}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1/2}N(a)^{2}}{(xy)^{1/2}}\right)\mathrm{d}x.

Now, we apply the definition of VV given in (2.5) corresponding to t=0t=0 there to see that

(3.7) (a,2)=1a1mod31N(a)V(π22r1+13r21/2N(a)2(xy)1/2)=12πi(2)Γ(s+1/2)Γ(1/2)((xy)1/2π22r1+13r21/2)sζK(1+2s)(𝔭|6(1N(𝔭)(1+2s)))dss.\displaystyle\begin{split}&\sum_{\begin{subarray}{c}(a,2)=1\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{N(a)}V\left(\frac{\pi 2^{2r_{1}+1}3^{r_{2}-1/2}N(a)^{2}}{(xy)^{1/2}}\right)\\ =&\frac{1}{2\pi i}\int\limits\limits_{(2)}\frac{\Gamma(s+1/2)}{\Gamma(1/2)}\Big{(}\frac{(xy)^{1/2}}{\pi 2^{2r_{1}+1}3^{r_{2}-1/2}}\Big{)}^{s}\zeta_{K}(1+2s)\left(\prod_{\mathfrak{p}|6}\left(1-N(\mathfrak{p})^{-(1+2s)}\right)\right)\ \frac{\mathrm{d}s}{s}.\end{split}

Here and in what follows, we denote 𝔭\mathfrak{p} for prime ideals in 𝒪K\mathcal{O}_{K}.

By shifting the line of integration in (3.7) to (s)=1/4+ε\Re(s)=-1/4+\varepsilon, we encounter a double pole at s=0s=0 with residue being (by taking note that the residue of ζK(s)\zeta_{K}(s) at s=1s=1 is 3π/9\sqrt{3}\pi/9)

π123log(xy)1/2π22r1+13r21/2+B\displaystyle\displaystyle\frac{\pi}{12\sqrt{3}}\log\frac{(xy)^{1/2}}{\pi 2^{2r_{1}+1}3^{r_{2}-1/2}}+B

for some constant BB. Now, the convexity bound for ζK(s)\zeta_{K}(s) (see [iwakow, Exercise 3, p. 100]) implies that for (s)=1/4+ε\Re(s)=-1/4+\varepsilon,

ζK(1+2s)(1+|s|2)1/4+ε.\displaystyle\zeta_{K}(1+2s)\ll\left(1+|s|^{2}\right)^{1/4+\varepsilon}.

It follows from this that the integral over the line (s)=1/4+ε\Re(s)=-1/4+\varepsilon gives a contribution of O(y3/4+ε)O(y^{3/4+\varepsilon}) to M0M_{0}. We thus conclude by noting that #h(36)=108\#h_{(36)}=108 and a straightforward calculation that

(3.8) M0=(1+3)π1296Φ^(0)ylogy+B(ω)y+O(y3/4+ε),\displaystyle M_{0}=\frac{(1+\sqrt{3})\pi}{1296}\hat{\Phi}(0)y\log y+B_{\mathbb{Q}(\omega)}y+O\left(y^{3/4+\varepsilon}\right),

for some constant B(ω)B_{\mathbb{Q}(\omega)}, which is the same constant B(ω)B_{\mathbb{Q}(\omega)} appearing in (1.1).

Combining (3.1), (3.6) and (3.8), the proof of Theorem 1.1 is now complete.

4. Proof of Theorem 1.2

Once again the proofs for K=(ω)K=\mathbb{Q}(\omega) and (i)\mathbb{Q}(i) are similar. So we shall fix K=(ω)K=\mathbb{Q}(\omega) throughout this section to give a proof for this case only. Starting with the approximate functional equation (2.4), and similar to the derivation of (3.1), we have

(4.1) ϖ1mod9L(12,χ3,ϖ)Λ(ϖ)Φ(N(ϖ)y)=ϖ1mod90𝒜𝒪Kχ3,ϖ(𝒜)Λ(ϖ)N(𝒜)1/2V(2πxN(𝒜))Φ(N(ϖ)y)+ϖ1mod9W(χ3,ϖ)N(ϖ)1/20𝒜𝒪Kχ¯3,ϖ(𝒜)Λ(ϖ)N(𝒜)1/2V(2πN(𝒜)x|DK|N(ϖ))Φ(N(ϖ)y)=c1mod90𝒜𝒪Kχ3,c(𝒜)Λ(c)N(𝒜)1/2V(2πxN(𝒜))Φ(N(c)y)+ϖ1mod9W(χ3,ϖ)N(ϖ)1/20𝒜𝒪Kχ¯3,ϖ(𝒜)Λ(ϖ)N(𝒜)1/2V(2πN(𝒜)x|DK|N(ϖ))Φ(N(ϖ)y)+O(y1/2+εx1/2+ε):=1+2+O(y1/2+εx1/2+ε),\displaystyle\begin{split}&\sum_{\varpi\equiv 1\bmod{9}}L\left(\frac{1}{2},\chi_{3,\varpi}\right)\Lambda(\varpi)\Phi\left(\frac{N(\varpi)}{y}\right)\\ =&\sum_{\varpi\equiv 1\bmod{9}}\ \sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\chi_{3,\varpi}(\mathcal{A})\Lambda(\varpi)}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi}{x}N(\mathcal{A})\right)\Phi\left(\frac{N(\varpi)}{y}\right)\\ &\hskip 56.9055pt+\sum_{\varpi\equiv 1\bmod{9}}\frac{W(\chi_{3,\varpi})}{N(\varpi)^{1/2}}\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\overline{\chi}_{3,\varpi}(\mathcal{A})\Lambda(\varpi)}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})x}{|D_{K}|N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{y}\right)\\ =&\sum_{c\equiv 1\bmod{9}}\ \sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\chi_{3,c}(\mathcal{A})\Lambda(c)}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi}{x}N(\mathcal{A})\right)\Phi\left(\frac{N(c)}{y}\right)\\ &\hskip 56.9055pt+\sum_{\varpi\equiv 1\bmod{9}}\frac{W(\chi_{3,\varpi})}{N(\varpi)^{1/2}}\sum_{0\neq\mathcal{A}\subset\mathcal{O}_{K}}\frac{\overline{\chi}_{3,\varpi}(\mathcal{A})\Lambda(\varpi)}{N(\mathcal{A})^{1/2}}V\left(\frac{2\pi N(\mathcal{A})x}{|D_{K}|N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{y}\right)+O\left(y^{1/2+\varepsilon}x^{1/2+\varepsilon}\right)\\ :=&{\sum}_{1}+{\sum}_{2}+O\left(y^{1/2+\varepsilon}x^{1/2+\varepsilon}\right),\end{split}

where x>1x>1 is to be chosen later and the summation in 1{\sum}_{1} is over all elements c[ω]c\in\mathbb{Z}[\omega].

Similar to our discussions in Section 3, we can write any integral non-zero ideal 𝒜\mathcal{A} in [ω]\mathbb{Z}[\omega] as 𝒜=((1ω)ra)\mathcal{A}=((1-\omega)^{r}a), with r,r0,a[ω]r\in\mathbb{Z},r\geq 0,a\in\mathbb{Z}[\omega], a1(mod3)a\equiv 1\pmod{3}. For (a,3)=1(a,3)=1, we define a Hecke character χ3(a)(mod9a)\chi^{(a)}_{3}\pmod{9a} such that for any ideal (c)(c) co-prime to 33, with cc being the unique primary generator of (c)(c), χ3(a)((c))\chi^{(a)}_{3}((c)) is defined as χ3(a)((c))=(ac)3\chi^{(a)}_{3}((c))=\left(\frac{a}{c}\right)_{3}. One checks easily that χ3(a)\chi^{(a)}_{3} is a Hecke character (mod9a)\pmod{9a} of trivial infinite type. By an abuse of notation, we shall also write χ3(a)(c)\chi^{(a)}_{3}(c) for χ3(a)((c))\chi^{(a)}_{3}((c)). It follows from this and our discussions above that χ3,c(𝒜)=χ3(a)(c)\chi_{3,c}(\mathcal{A})=\chi^{(a)}_{3}(c) for c1mod9c\equiv 1\bmod{9}. By further noting that W(χ3,ϖ)=g3(ϖ)W(\chi_{3,\varpi})=g_{3}(\varpi) by [iwakow, (3.86)], we thus obtain

1=\displaystyle{\sum}_{1}= r0a1mod313r/2N(a)1/2V(2π3rN(a)x)M3(r,a),\displaystyle\sum_{\begin{subarray}{c}r\geq 0\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{3^{r/2}N(a)^{1/2}}V\left(\frac{2\pi 3^{r}N(a)}{x}\right)M_{3}(r,a),
2=\displaystyle{\sum}_{2}= r0a1mod313r/2N(a)1/2ϖ1mod9g3(ϖ)χ¯3(a)(ϖ)Λ(ϖ)N(ϖ)1/2V(2π3rN(a)x|DK|N(ϖ))Φ(N(ϖ)y),\displaystyle\sum_{\begin{subarray}{c}r\geq 0\\ a\equiv 1\bmod 3\end{subarray}}\frac{1}{3^{r/2}N(a)^{1/2}}\sum_{\varpi\equiv 1\bmod{9}}\frac{g_{3}(\varpi)\overline{\chi}^{(a)}_{3}(\varpi)\Lambda(\varpi)}{N(\varpi)^{1/2}}V\left(\frac{2\pi 3^{r}N(a)x}{|D_{K}|N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{y}\right),

where

M3(r,a)=c1mod9χ3(a)(c)Λ(c)Φ(N(c)y).M_{3}(r,a)=\sum_{c\equiv 1\bmod{9}}\chi^{(a)}_{3}(c)\Lambda(c)\Phi\left(\frac{N(c)}{y}\right).

We treat 2{\sum}_{2} by using the ray class characters to detect the condition that c1mod9c\equiv 1\bmod{9} and then applying Lemma 2.5 and partial summation to see that (note that we can assume N(ϖ)y1+εN(\varpi)\ll y^{1+\varepsilon} and 3rN(a)xy1+ε3^{r}N(a)x\ll y^{1+\varepsilon} in view of the exponential decay of the test functions)

ϖ1mod9\displaystyle\sum_{\varpi\equiv 1\bmod{9}} g3(ϖ)χ¯3(a)(ϖ)Λ(ϖ)N(ϖ)1/2V(2π3rN(a)x|DK|N(ϖ))Φ(N(ϖ)y)\displaystyle\frac{g_{3}(\varpi)\overline{\chi}^{(a)}_{3}(\varpi)\Lambda(\varpi)}{N(\varpi)^{1/2}}V\left(\frac{2\pi 3^{r}N(a)x}{|D_{K}|N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{y}\right)
=\displaystyle= ψmod9ϖ1mod3ψ(ϖ)g3(ϖ)χ¯3(a)(ϖ)Λ(ϖ)N(ϖ)1/2V(2π3rN(a)x|DK|N(ϖ))Φ(N(ϖ)y)\displaystyle\sum_{\psi\bmod{9}}\ \sum_{\varpi\equiv 1\bmod{3}}\frac{\psi(\varpi)g_{3}(\varpi)\overline{\chi}^{(a)}_{3}(\varpi)\Lambda(\varpi)}{N(\varpi)^{1/2}}V\left(\frac{2\pi 3^{r}N(a)x}{|D_{K}|N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{y}\right)
\displaystyle\ll 1y1+εV(2π3rN(a)x|DK|u)Φ(uy)dO(uε(N(a)1/8u27/32+u11/20))N(a)1/8y27/32+ε+y11/20+ε,\displaystyle\int\limits^{y^{1+\varepsilon}}_{1}V\left(\frac{2\pi 3^{r}N(a)x}{|D_{K}|u}\right)\Phi\left(\frac{u}{y}\right)\mathrm{d}O\left(u^{\varepsilon}\left(N(a)^{1/8}u^{27/32}+u^{1-1/20}\right)\right)\ll N(a)^{1/8}y^{27/32+\varepsilon}+y^{1-1/20+\varepsilon},

where ψ\psi runs over all ray class characters (mod9)\pmod{9}.

It follows that

(4.2) 23rN(a)xy1+ε13r/2N(a)1/2(N(a)1/8y27/32+ε+y11/20+ε)y27/32+ε(yx)1/2+1/8+y11/20+ε(yx)1/2.\displaystyle{\sum}_{2}\ll\sum_{\begin{subarray}{c}3^{r}N(a)x\ll y^{1+\varepsilon}\end{subarray}}\frac{1}{3^{r/2}N(a)^{1/2}}\left(N(a)^{1/8}y^{27/32+\varepsilon}+y^{1-1/20+\varepsilon}\right)\ll y^{27/32+\varepsilon}\left(\frac{y}{x}\right)^{1/2+1/8}+y^{1-1/20+\varepsilon}\left(\frac{y}{x}\right)^{1/2}.

To treat 1\sum_{1}, we apply Mellin inversion to see that

M3(r,a)=12πi(2)Φ~(s)ysc1mod16χ4(a)(c)Λ(c)N(c)sds,whereΦ~(s)=0Φ(x)xs1dx.M_{3}(r,a)=\frac{1}{2\pi i}\int\limits_{(2)}\widetilde{\Phi}(s)y^{s}\sum_{c\equiv 1\bmod{16}}\frac{\chi^{(a)}_{4}(c)\Lambda(c)}{N(c)^{s}}\mathrm{d}s,\quad\mbox{where}\quad\widetilde{\Phi}(s)=\int\limits^{\infty}_{0}\Phi(x)x^{s-1}\mathrm{d}x.

We note here that integration by parts shows that Φ~(s)\widetilde{\Phi}(s) satisfies the following bound for all (s)>0\Re(s)>0, and E1>0E_{1}>0,

Φ~(s)(1+|s|)E1.\displaystyle\widetilde{\Phi}(s)\ll(1+|s|)^{-E_{1}}.

We now use the ray class characters again to detect the condition that c1mod9c\equiv 1\bmod{9}, getting

(4.3) M3(r,a)=1#h(9)ψmod912πi(2)Φ~(s)ys(L(s,ψχ3(a))L(s,ψχ3(a)))ds,\displaystyle\begin{split}M_{3}(r,a)=\frac{1}{\#h_{(9)}}\sum_{\psi\bmod{9}}\frac{1}{2\pi i}\int\limits\limits_{(2)}\widetilde{\Phi}(s)y^{s}\left(-\frac{L^{\prime}(s,\psi\chi^{(a)}_{3})}{L(s,\psi\chi^{(a)}_{3})}\right)\mathrm{d}s,\end{split}

where ψ\psi runs over all ray class characters (mod9)\pmod{9}, #h(9)=9\#h_{(9)}=9.

We estimate 1\sum_{1} by shifting the contour of integration in (4.3) to the line (s)=1/2+ε\Re(s)=1/2+\varepsilon. We encounter poles at s=1s=1 when ψχ3(a)\psi\chi^{(a)}_{3} is principal and we set M0,3M_{0,3} to be the contribution to 1\sum_{1} of these residues, and M1,3M_{1,3} to be the remainder. To treatment of M1,3M_{1,3} can be done similar to that of M1M_{1} in Section 3, and we have

(4.4) M1,3y1/2+εx1/2+ε.\displaystyle M_{1,3}\ll y^{1/2+\varepsilon}x^{1/2+\varepsilon}.

We now determine M0,3M_{0,3} by noting that ψχ3(a)\psi\chi^{(a)}_{3} is principal if and only if both ψ\psi and χ3(a)\chi^{(a)}_{3} are principal. Hence aa must be a cubic. Similar to the treatment in Section 3, we denote ψ0\psi_{0} for the principal ray class character (mod9)\pmod{9} to see that

M0,3\displaystyle M_{0,3} =y#h(9)Φ^(0)r0a1mod313r/2N(a)3/2V(2π3r/2N(a)3x).\displaystyle=\frac{y}{\#h_{(9)}}\hat{\Phi}(0)\sum_{\begin{subarray}{c}r\geq 0\\ a\equiv 1\bmod{3}\end{subarray}}\frac{1}{3^{r/2}N(a)^{3/2}}V\left(\frac{2\pi 3^{r/2}N(a)^{3}}{x}\right).

We now apply (2.7) to see that

r0a1mod3\displaystyle\sum_{\begin{subarray}{c}r\geq 0\\ a\equiv 1\bmod{3}\end{subarray}} 13r/2N(a)3/2V(2π3rN(a)3x)\displaystyle\frac{1}{3^{r/2}N(a)^{3/2}}V\left(\frac{2\pi 3^{r}N(a)^{3}}{x}\right)
=\displaystyle= r0a1mod32π3rN(a)3x13r/2N(a)3/2(1+(2π3rN(a)3x)1/2ε)+r0a1mod32π3rN(a)3>x13r/2N(a)3/2(x2π3rN(a)3)\displaystyle\sum_{\begin{subarray}{c}r\geq 0\\ a\equiv 1\bmod{3}\\ 2\pi 3^{r}N(a)^{3}\leq x\end{subarray}}\frac{1}{3^{r/2}N(a)^{3/2}}\left(1+\left(\frac{2\pi 3^{r}N(a)^{3}}{x}\right)^{1/2-\varepsilon}\right)+\sum_{\begin{subarray}{c}r\geq 0\\ a\equiv 1\bmod{3}\\ 2\pi 3^{r}N(a)^{3}>x\end{subarray}}\frac{1}{3^{r/2}N(a)^{3/2}}\left(\frac{x}{2\pi 3^{r}N(a)^{3}}\right)
=\displaystyle= 331333ζ(ω)(32)+O(1x1/6).\displaystyle\frac{3\sqrt{3}-1}{3\sqrt{3}-3}\zeta_{\mathbb{Q}(\omega)}\left(\frac{3}{2}\right)+O\left(\frac{1}{x^{1/6}}\right).

We then conclude that by a straightforward calculation that

(4.5) M0,3=C(ω)Φ^(0)y+O(yx1/6),\displaystyle M_{0,3}=C_{\mathbb{Q}(\omega)}\hat{\Phi}(0)y+O(yx^{-1/6}),

where C(ω)C_{\mathbb{Q}(\omega)} is given in (1.3).

By combining the estimations given in (4.1), (4.2), (4.4) and (4.5), we obtain that

ϖ1mod9L(12,χ3,ϖ)\displaystyle\sum_{\varpi\equiv 1\bmod{9}}L\left(\frac{1}{2},\chi_{3,\varpi}\right) Λ(ϖ)Φ(N(ϖ)y)\displaystyle\Lambda(\varpi)\Phi\left(\frac{N(\varpi)}{y}\right)
=\displaystyle= C(ω)y+O(yx1/6+y1/2+εx1/2+ε+y27/32+ε(yx)1/2+1/8+y11/20+ε(yx)1/2).\displaystyle C_{\mathbb{Q}(\omega)}y+O\left(yx^{-1/6}+y^{1/2+\varepsilon}x^{1/2+\varepsilon}+y^{27/32+\varepsilon}\left(\frac{y}{x}\right)^{1/2+1/8}+y^{1-1/20+\varepsilon}\left(\frac{y}{x}\right)^{1/2}\right).

The assertion of Theorem 1.2 now follows from this by setting x=y19/20x=y^{19/20}.

5. Proof of Theorem 1.3

As the proof of Theorem 1.3 is similar to that of Theorem 1.2, we shall only give a sketch of the proof for the case j=3j=3. We let

=p=N(ϖ)ϖ1mod9χmodpχ3=χ0,χχ0L(1/2,χ)Λ(p)Φ(pQ).\mathcal{M}=\sum_{\begin{subarray}{c}p=N(\varpi)\\ \varpi\equiv 1\bmod{9}\end{subarray}}\;\sum_{\begin{subarray}{c}\chi\bmod{p}\\ \chi^{3}=\chi_{0},\chi\neq\chi_{0}\end{subarray}}L(1/2,\chi)\Lambda(p)\Phi\left(\frac{p}{Q}\right).

Applying the approximate functional equation (2.6) with ApB=pA_{p}B=p, we obtain =1+2\mathcal{M}=\mathcal{M}_{1}+\mathcal{M}_{2}, where

1\displaystyle\mathcal{M}_{1} =p=N(ϖ)ϖ1mod9χmodpχ3=χ0,χχ0m=1χ(m)Λ(p)mW(mx)Φ(pQ),\displaystyle=\sum_{\begin{subarray}{c}p=N(\varpi)\\ \varpi\equiv 1\bmod{9}\end{subarray}}\;\sum_{\begin{subarray}{c}\chi\bmod{p}\\ \chi^{3}=\chi_{0},\chi\neq\chi_{0}\end{subarray}}\sum_{m=1}^{\infty}\frac{\chi(m)\Lambda(p)}{\sqrt{m}}W\left(\frac{m}{x}\right)\Phi\left(\frac{p}{Q}\right),
2\displaystyle\mathcal{M}_{2} =p=N(ϖ)ϖ1mod9χmodpχ3=χ0,χχ0τ(χ)q1/2m=1χ¯(m)Λ(p)mW(xmp)Φ(pQ),\displaystyle=\sum_{\begin{subarray}{c}p=N(\varpi)\\ \varpi\equiv 1\bmod{9}\end{subarray}}\;\sum_{\begin{subarray}{c}\chi\bmod{p}\\ \chi^{3}=\chi_{0},\chi\neq\chi_{0}\end{subarray}}\frac{\tau(\chi)}{q^{1/2}}\sum_{m=1}^{\infty}\frac{\overline{\chi}(m)\Lambda(p)}{\sqrt{m}}W\left(\frac{xm}{p}\right)\Phi\left(\frac{p}{Q}\right),

for some x>1x>1 to be specified later.

It follows from Lemma 2.2 and (2.2) that we have

1\displaystyle\mathcal{M}_{1} =ϖ1mod9m=1χ3,ϖ(m)Λ(ϖ)mW(mx)Φ(N(ϖ)Q),\displaystyle=\sum_{\begin{subarray}{c}\varpi\equiv 1\bmod 9\end{subarray}}\ \sum_{m=1}^{\infty}\frac{\chi_{3,\varpi}(m)\Lambda(\varpi)}{\sqrt{m}}W\left(\frac{m}{x}\right)\Phi\left(\frac{N(\varpi)}{Q}\right),
2\displaystyle\mathcal{M}_{2} =ϖ1mod9g3(ϖ)N(ϖ)1/2m=1χ¯3,ϖ(m)Λ(ϖ)mW(xmN(ϖ))Φ(N(ϖ)Q).\displaystyle=\sum_{\begin{subarray}{c}\varpi\equiv 1\bmod 9\end{subarray}}\frac{g_{3}(\varpi)}{N(\varpi)^{1/2}}\sum_{m=1}^{\infty}\frac{\overline{\chi}_{3,\varpi}(m)\Lambda(\varpi)}{\sqrt{m}}W\left(\frac{xm}{N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{Q}\right).

We argue as in Section 3 to see that

(5.1) 1\displaystyle\mathcal{M}_{1} =c1mod9m=1χ3,c(m)Λ(c)mW(mx)Φ(N(c)Q)+O(Q1/2+εx1/2+ε)=:1+O(Q1/2+εx1/2+ε).\displaystyle=\sum_{\begin{subarray}{c}c\equiv 1\bmod 9\end{subarray}}\ \sum_{m=1}^{\infty}\frac{\chi_{3,c}(m)\Lambda(c)}{\sqrt{m}}W\left(\frac{m}{x}\right)\Phi\left(\frac{N(c)}{Q}\right)+O\left(Q^{1/2+\varepsilon}x^{1/2+\varepsilon}\right)=:\mathcal{M}^{\prime}_{1}+O\left(Q^{1/2+\varepsilon}x^{1/2+\varepsilon}\right).

Let the Hecke character χ3(a)(mod9a)\chi^{(a)}_{3}\pmod{9a} be defined as in Section 3 for (a,3)=1,a[ω](a,3)=1,a\in\mathbb{Z}[\omega]. Similar to our discussions in Section 3, on writing every positive mm\in\mathbb{Z} as m=3rmm=3^{r}m^{\prime}, with r,r0,m,(m,3)=1r\in\mathbb{Z},r\geq 0,m^{\prime}\in\mathbb{Z},(m^{\prime},3)=1, we see that χ3,c(m)=χ3(m)(c)\chi_{3,c}(m)=\chi^{(m^{\prime})}_{3}(c). It follows that

1=\displaystyle\mathcal{M}^{\prime}_{1}= r0(m,3)=1,m>013r/2mW(3rmx)1(r,m),\displaystyle\sum_{\begin{subarray}{c}r\geq 0\\ (m,3)=1,m>0\end{subarray}}\frac{1}{3^{r/2}\sqrt{m}}W\left(\frac{3^{r}m}{x}\right)\mathcal{M}_{1}(r,m),
2=\displaystyle\mathcal{M}_{2}= r0(m,3)=1,m>013r/2mϖ1mod9g3(ϖ)χ¯3(m)(ϖ)Λ(ϖ)N(ϖ)1/2W(3rmxN(ϖ))Φ(N(ϖ)Q),\displaystyle\sum_{\begin{subarray}{c}r\geq 0\\ (m,3)=1,m>0\end{subarray}}\frac{1}{3^{r/2}\sqrt{m}}\sum_{\begin{subarray}{c}\varpi\equiv 1\bmod 9\end{subarray}}\frac{g_{3}(\varpi)\overline{\chi}^{(m)}_{3}(\varpi)\Lambda(\varpi)}{N(\varpi)^{1/2}}W\left(\frac{3^{r}mx}{N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{Q}\right),

where

1(r,m)=c1mod9χ3(m)(c)Λ(c)Φ(N(c)Q).\mathcal{M}_{1}(r,m)=\sum_{c\equiv 1\bmod{9}}\chi^{(m)}_{3}(c)\Lambda(c)\Phi\left(\frac{N(c)}{Q}\right).

We apply Mellin inversion and shift the contour of integration to find that

(5.2) 1=D3Q+O(Qx1/6+Q1/2+εx1/2+ε),\displaystyle\mathcal{M}^{\prime}_{1}=D_{3}Q+O\left(Qx^{-1/6}+Q^{1/2+\varepsilon}x^{1/2+\varepsilon}\right),

where D3D_{3} is given as in (1.4).

We treat 2\mathcal{M}_{2} by using the ray class characters to detect the condition that c1mod9c\equiv 1\bmod{9} and then applying Lemma 2.5 and partial summation to see that

ϖ1mod9g3(ϖ)χ¯3(m)(ϖ)Λ(ϖ)N(ϖ)1/2W(3rmxN(ϖ))Φ(N(ϖ)Q)N(m)1/8Q27/32+ε+Q11/20+ε.\displaystyle\sum_{\begin{subarray}{c}\varpi\equiv 1\bmod 9\end{subarray}}\frac{g_{3}(\varpi)\overline{\chi}^{(m)}_{3}(\varpi)\Lambda(\varpi)}{N(\varpi)^{1/2}}W\left(\frac{3^{r}mx}{N(\varpi)}\right)\Phi\left(\frac{N(\varpi)}{Q}\right)\ll N(m)^{1/8}Q^{27/32+\varepsilon}+Q^{1-1/20+\varepsilon}.

We then deduce from this via partial summation that

(5.3) 2Q27/32+ε(Qx)1/2+1/4+Q11/20+ε(Qx)1/2.\displaystyle\begin{split}\mathcal{M}_{2}\ll Q^{27/32+\varepsilon}\left(\frac{Q}{x}\right)^{1/2+1/4}+Q^{1-1/20+\varepsilon}\left(\frac{Q}{x}\right)^{1/2}.\end{split}

By combining the estimations given in (5.1), (5.2) and (5.3), we obtain that

p=N(ϖ)ϖ1mod9χmodpχ3=χ0,χχ0\displaystyle\sum_{\begin{subarray}{c}p=N(\varpi)\\ \varpi\equiv 1\bmod{9}\end{subarray}}\;\sum_{\begin{subarray}{c}\chi\bmod{p}\\ \chi^{3}=\chi_{0},\chi\neq\chi_{0}\end{subarray}} L(1/2,χ)Λ(p)Φ(pQ)\displaystyle L(1/2,\chi)\Lambda(p)\Phi\left(\frac{p}{Q}\right)
=\displaystyle= D3Q+O(Qx1/6+Q1/2+εx1/2+ε+Q27/32+ε(Qx)1/2+1/4+Q11/20+ε(Qx)1/2).\displaystyle D_{3}Q+O\left(Qx^{-1/6}+Q^{1/2+\varepsilon}x^{1/2+\varepsilon}+Q^{27/32+\varepsilon}\left(\frac{Q}{x}\right)^{1/2+1/4}+Q^{1-1/20+\varepsilon}\left(\frac{Q}{x}\right)^{1/2}\right).

The assertion of Theorem 1.3 for i=3i=3 now follows from this by setting x=Q19/20x=Q^{19/20}.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the FRG grant PS43707 at UNSW.

References

School of Mathematical Sciences School of Mathematics and Statistics
Beihang University University of New South Wales
Beijing 100191 China Sydney NSW 2052 Australia
Email: [email protected] Email: [email protected]