This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Finite 𝒲\mathcal{W}-algebras of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} and Ghost centers

Naoki Genra Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan [email protected]
Abstract.

We prove that the finite 𝒲\mathcal{W}-algebra associated to 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} and its principal nilpotent element is isomorphic to Gorelik’s ghost center of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}, which proves an analog of Kostant’s theorem for 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}.

1. Introduction

A Lie suparalgebra 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} is a finite-dimensional simple Lie superalgebra whose Dynkin diagram is the same as type BnB_{n} except for a unique simple short root, which is replaced by a non-isotropic odd simple root in 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}. The Lie suparalgebra 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} is not a Lie algebra but has similar properties to simple Lie algebras. For example, the category of finite-dimensional 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}-modules is semisimple and we have the Harish-Chandra isomorphism Z​(𝔬​𝔰​𝔭1|2​n)≃ℂ​[π”₯]WZ(\mathfrak{osp}_{1|2n})\simeq\mathbb{C}[\mathfrak{h}]^{W}, where Z​(𝔀)Z(\mathfrak{g}) denotes the center of the universal enveloping algebra U​(𝔀)U(\mathfrak{g}), π”₯\mathfrak{h} is a Cartan subalgebra of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} and WW is the Weyl group. However 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} doesn’t satisfy the Duflo theorem [Duf77], which says that annihilators of Verma modules in U​(𝔀)U(\mathfrak{g}) is generated by its intersections with the center Z​(𝔀)Z(\mathfrak{g}) for simple Lie algebras 𝔀\mathfrak{g}. This problem was founded by Musson [Mus97] and solved by Gorelik and Lantzmann [GL00] by using an extension algebra Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) of Z​(𝔬​𝔰​𝔭1|2​n)Z(\mathfrak{osp}_{1|2n}). More precisely, Gorelik and Lantzmann prove that annihilators of Verma modules in U​(𝔬​𝔰​𝔭1|2​n)U(\mathfrak{osp}_{1|2n}) is generated by its intersections with Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}). The associative algebra Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) is called the ghost center of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} in [Gor00].

For a Lie superalgebra 𝔀\mathfrak{g} with 𝔀1Β―β‰ 0\mathfrak{g}_{\bar{1}}\neq 0, the ghost center Z~​(𝔀)\widetilde{Z}(\mathfrak{g}) is introduced by Gorelik in [Gor00] as the direct sum Z​(𝔀)βŠ•π’œβ€‹(𝔀)Z(\mathfrak{g})\oplus\mathcal{A}(\mathfrak{g}), where π’œβ€‹(𝔀)\mathcal{A}(\mathfrak{g}) is the anticenter defined by π’œβ€‹(𝔀)={a∈U​(𝔀)∣u​aβˆ’(βˆ’1)p​(u)​(p​(a)+1Β―)​a​u=0​for​all​uβˆˆπ”€}\mathcal{A}(\mathfrak{g})=\{a\in U(\mathfrak{g})\mid ua-(-1)^{p(u)(p(a)+\bar{1})}au=0\ \mathrm{for}\ \mathrm{all}\ u\in\mathfrak{g}\}. If 𝔀\mathfrak{g} is a finite-dimensional simple basic classical Lie superalgebra, it is known that Z~​(𝔀)\widetilde{Z}(\mathfrak{g}) coincides with the center of U​(𝔀)0Β―U(\mathfrak{g})_{\bar{0}} and thus is a purely even subalgebra of U​(𝔀)U(\mathfrak{g}). Moreover, if 𝔀=𝔬​𝔰​𝔭1|2​n\mathfrak{g}=\mathfrak{osp}_{1|2n}, there exists T∈U​(𝔀)0Β―T\in U(\mathfrak{g})_{\bar{0}} such that π’œβ€‹(𝔬​𝔰​𝔭1|2​n)=Z​(𝔬​𝔰​𝔭1|2​n)​T\mathcal{A}(\mathfrak{osp}_{1|2n})=Z(\mathfrak{osp}_{1|2n})T by [ABF97, Mus97, GL00]. The element TT is called the Casimir ghost [ABF97] since T2∈Z​(𝔬​𝔰​𝔭1|2​n)T^{2}\in Z(\mathfrak{osp}_{1|2n}). In case 𝔀=𝔬​𝔰​𝔭1|2\mathfrak{g}=\mathfrak{osp}_{1|2}, [Pin90] also suggested that T=4​Qβˆ’4​C+12T=4Q-4C+\frac{1}{2} satisfies T2=4​C+14∈Z​(𝔬​𝔰​𝔭1|2)T^{2}=4C+\frac{1}{4}\in Z(\mathfrak{osp}_{1|2}), where CC is the Casimir element in U​(𝔬​𝔰​𝔭1|2)U(\mathfrak{osp}_{1|2}) and QQ is one in U​(𝔰​𝔩2)U(\mathfrak{sl}_{2}).

The finite 𝒲\mathcal{W}-algebra U​(𝔀,f)U(\mathfrak{g},f) is an associative superalgebra over β„‚\mathbb{C} defined from a simple basic classical Lie superalgebra 𝔀\mathfrak{g} and its even nilpotent element ff [Pre02, Pre07, Kos78, Lyn79, dBT94, RS99, GG02]. If 𝔀\mathfrak{g} is a simple Lie algebra and ff is a principal nilpotent element f𝔭​𝔯​𝔦​𝔫f_{\mathfrak{prin}}, the corresponding finite 𝒲\mathcal{W}-algebra U​(𝔀,fprin)U(\mathfrak{g},f_{\mathrm{prin}}) is isomorphic to the center Z​(𝔀)Z(\mathfrak{g}) of U​(𝔀)U(\mathfrak{g}) by Kostant [Kos78].

The 𝒲\mathcal{W}-algebra 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f) is a vertex superalgebra defined by the Drinfeld-Sokolov reductions associated to 𝔀,f\mathfrak{g},f and level kβˆˆβ„‚k\in\mathbb{C} [FF92, KRW03]. In general, (Ramond-twisted) simple modules of a 12​℀\frac{1}{2}\mathbb{Z}-graded vertex superalgebras VV with a Hamiltonian operator HH are classified by the associated superalgebra named as the (HH-twisted) Zhu algebras of VV. De Sole and Kac shows that the HH-twisted Zhu algebra of 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f) is isomorphic to the finite 𝒲\mathcal{W}-algebra U​(𝔀,f)U(\mathfrak{g},f). In particular, there exists a one-to-one correspondence between simple modules of U​(𝔀,f)U(\mathfrak{g},f) and Ramond-twisted simple positive-energy modules of 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f). If f=fprinf=f_{\mathrm{prin}}, the corresponding 𝒲\mathcal{W}-algebra is called the principal 𝒲\mathcal{W}-algebra of 𝔀\mathfrak{g}, which we denoted by 𝒲k​(𝔀)=𝒲k​(𝔀,fprin)\mathcal{W}^{k}(\mathfrak{g})=\mathcal{W}^{k}(\mathfrak{g},f_{\mathrm{prin}}).

Theorem A (Theorem 6.5).

U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) is isomorphic to Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) as associative algebras.

The finite 𝒲\mathcal{W}-algebra U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) associated to 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} and its principal nilpotent element fprinf_{\mathrm{prin}} is an associative superalgebra with its non-trivial odd part, while the ghost center Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) is not. However, we prove an isomorphism between them. Through the isomorphism in Theorem A, a β„€2\mathbb{Z}_{2}-grading of Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) is inherited from one of U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) so that the even part of Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) is Z​(𝔬​𝔰​𝔭1|2​n)Z(\mathfrak{osp}_{1|2n}) and the odd part is π’œβ€‹(𝔬​𝔰​𝔭1|2​n)\mathcal{A}(\mathfrak{osp}_{1|2n}).

To prove Theorem A, we use the Miura map ΞΌ\mu and its injectivity and relationship with the Harish-Chandra homomorphism of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}. See Section 4 for the definition of ΞΌ\mu. The map ΞΌ\mu was originally introduced in [Lyn79]. The injectivity of ΞΌ\mu was only known for non-super cases, but has been recently proved by [Nak20] for super cases. As a corollary of Theorem A, it follows that simple positive-energy Ramond-twisted modules of principal 𝒲\mathcal{W}-algebras 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) are classified by simple modules of the ghost center of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}. See also Corollary 6.7. We remark that our definitions of U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) is different from those in some literatures [Pol13, PS13, ZS15]. See Remark 4.4.

The paper is organized as follows. In Sect.2, we introduce HH-twisted Zhu algebras. In Sect.3, we recall the definitions of 𝒲\mathcal{W}-algebras 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f). In Sect.4, we introduce two definitions U​(𝔀,f)IU(\mathfrak{g},f)_{I} and U​(𝔀,f)I​IU(\mathfrak{g},f)_{II} of finite 𝒲\mathcal{W}-algebras and show the equivalence of the definitions, that is, U​(𝔀,f)I≃U​(𝔀,f)I​IU(\mathfrak{g},f)_{I}\simeq U(\mathfrak{g},f)_{II}. The proof is similar to [DDCDS+]. In Sect.5, we recall the principal 𝒲\mathcal{W}-algebras 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}. In Sect.6, we prove Theorem A.

Acknowledgments The author wishes to thank Thomas Creutzig, Tomoyuki Arakawa, Hiroshi Yamauchi and Maria Gorelik for valuable comments and suggestions. Some part of this work was done while he was visiting Instituto de MatemΓ‘tica Pura e Aplicada, Brazil in March and April 2022 and the Centre de Recherches MathαΈΏatiques, UniversitΓ© de MontrΓ©al, Canada in October 2022. He is grateful to those institutes for their hospitality. He is supported by World Premier International Research Center Initiative (WPI), MEXT, Japan and JSPS KAKENHI Grant Number JP21K20317.

2. HH-twisted Zhu algebras

Let VV be a vertex superalgebra. Denote by |0⟩|0\rangle the vacuum vector, by βˆ‚\partial the translation operator, by p​(A)p(A) the parity of A∈VA\in V and by Y​(A,z)=A​(z)=βˆ‘nβˆˆβ„€A(n)​zβˆ’nβˆ’1Y(A,z)=A(z)=\sum_{n\in\mathbb{Z}}A_{(n)}z^{-n-1} the field on VV corresponding to A∈VA\in V. Let

[Aλ​B]=βˆ‘n=0∞λnn!​A(n)​Bβˆˆβ„‚β€‹[Ξ»]βŠ—V\displaystyle[A_{\lambda}B]=\sum_{n=0}^{\infty}\frac{\lambda^{n}}{n!}A_{(n)}B\in\mathbb{C}[\lambda]\otimes V

be the Ξ»\lambda-bracket of AA and BB for A,B∈VA,B\in V. A Hamiltonian operator HH on VV is a semisimple operator on VV satisfying that [H,Y​(A,z)]=zβ€‹βˆ‚zY​(A,z)+Y​(H​(A),z)[H,Y(A,z)]=z\partial_{z}Y(A,z)+Y(H(A),z) for all A∈VA\in V. The eigenvalue of HH is called the conformal weight. If VV is conformal and L​(z)=βˆ‘nβˆˆβ„€Ln​zβˆ’nβˆ’2L(z)=\sum_{n\in\mathbb{Z}}L_{n}z^{-n-2} is the field corresponding to the conformal vector of VV, we may choose H=L0H=L_{0} as the Hamiltonian operator.

Suppose that VV is a 12​℀\frac{1}{2}\mathbb{Z}-graded vertex superalgebra with respect to a Hamiltonian operator HH. Denote by Ξ”A\Delta_{A} the conformal weight of A∈VA\in V. Define the βˆ—*-product and ∘\circ-product of VV by

Aβˆ—B=βˆ‘j=0∞(Ξ”Aj)​A(jβˆ’1)​B,A∘B=βˆ‘j=0∞(Ξ”Aj)​A(jβˆ’2)​B,A,B∈V.\displaystyle A*B=\sum_{j=0}^{\infty}\binom{\Delta_{A}}{j}A_{(j-1)}B,\quad A\circ B=\sum_{j=0}^{\infty}\binom{\Delta_{A}}{j}A_{(j-2)}B,\quad A,B\in V.

Then the quotient space

ZhuH⁑V=V/V∘V\displaystyle\operatorname{Zhu}_{H}V=V/V\circ V

has a structure of associative superalgebra with respect to the product induced from βˆ—*, and is called the HH-twisted Zhu algebra of VV. Here V∘V=Spanℂ⁑{A∘B∣A,B∈V}V\circ V=\operatorname{Span}_{\mathbb{C}}\{A\circ B\mid A,B\in V\}. The vacuum vector |0⟩|0\rangle defines a unit of ZhuH⁑V\operatorname{Zhu}_{H}V. A superspace MM is called a Ramond-twisted VV-module if MM is equipped with a parity-preserving linear map

YM:Mβˆ‹Aβ†’YM​(A,z)=βˆ‘nβˆˆβ„€+Ξ”AA(n)M​zβˆ’nβˆ’1∈(End⁑M)​[[z12,zβˆ’12]]\displaystyle Y_{M}\colon M\ni A\rightarrow Y_{M}(A,z)=\sum_{n\in\mathbb{Z}+\Delta_{A}}A^{M}_{(n)}z^{-n-1}\in(\operatorname{End}M)[\![z^{\frac{1}{2}},z^{-\frac{1}{2}}]\!]

such that (1) for each C∈MC\in M, A(n)M​C=0A^{M}_{(n)}C=0 if n≫0n\gg 0, (2) YM​(|0⟩,z)=idMY_{M}(|0\rangle,z)=\operatorname{id}_{M} and (3) for any A,B∈VA,B\in V, C∈MC\in M, nβˆˆβ„€n\in\mathbb{Z}, mβˆˆβ„€+Ξ”Am\in\mathbb{Z}+\Delta_{A} and β„“βˆˆβ„€+Ξ”B\ell\in\mathbb{Z}+\Delta_{B},

βˆ‘j=0∞(βˆ’1)j​(nj)​(A(m+nβˆ’j)M​B(β„“+j)Mβˆ’(βˆ’1)p​(A)​p​(B)​B(β„“+nβˆ’j)M​A(m+j)M)​C\displaystyle\sum_{j=0}^{\infty}(-1)^{j}\binom{n}{j}\left(A^{M}_{(m+n-j)}B^{M}_{(\ell+j)}-(-1)^{p(A)p(B)}B^{M}_{(\ell+n-j)}A^{M}_{(m+j)}\right)C
=βˆ‘j=0∞(mj)​(A(n+j)​B)(m+β„“βˆ’j)M​C.\displaystyle=\sum_{j=0}^{\infty}\binom{m}{j}\left(A_{(n+j)}B\right)^{M}_{(m+\ell-j)}C.

Hence the Ramond-twisted module is a twisted module of VV for the automorphism e2​π​i​H\mathrm{e}^{2\pi iH}. In particular, MM is just a VV-module if VV is β„€\mathbb{Z}-graded. Define AnMA^{M}_{n} by YM​(A,z)=βˆ‘nβˆˆβ„€AnM​zβˆ’nβˆ’Ξ”AY_{M}(A,z)=\sum_{n\in\mathbb{Z}}A^{M}_{n}z^{-n-\Delta_{A}} for A∈VA\in V. A Ramond-twisted VV-module MM is called positive-energy if MM has an ℝ\mathbb{R}-grading M=⨁jβˆˆβ„MjM=\bigoplus_{j\in\mathbb{R}}M_{j} with M0β‰ 0M_{0}\neq 0 such that AnM​MjβŠ‚Mj+nA^{M}_{n}M_{j}\subset M_{j+n} for all A∈VA\in V, nβˆˆβ„€n\in\mathbb{Z} and jβˆˆβ„j\in\mathbb{R}. Then M0M_{0} is called the top space. By [DSK06, Lemma 2.22], a linear map VΞ“βˆ‹A↦A0M|M0∈End⁑M0V_{\Gamma}\ni A\mapsto A^{M}_{0}|_{M_{0}}\in\operatorname{End}M_{0} induces a homomorphism ZhuH⁑Vβ†’End⁑M0\operatorname{Zhu}_{H}V\rightarrow\operatorname{End}M_{0}. Thus we have a functor M↦M0M\mapsto M_{0} from the category of positive-energy Ramond-twisted VV-modules to the category of β„€2\mathbb{Z}_{2}-graded ZhuH⁑V\operatorname{Zhu}_{H}V-modules. By [DSK06, Theorem 2.30], these functors establish a bijection (up to isomorphisms) between simple positive-energy Ramond-twisted VV-modules and simple β„€2\mathbb{Z}_{2}-graded ZhuH⁑V\operatorname{Zhu}_{H}V-modules.

3. 𝒲\mathcal{W}-algebras

Let 𝔀\mathfrak{g} be a finite-dimensional simple Lie superalgebra with the normalized even supersymmetric invariant bilinear form (β‹…|β‹…)(\cdot|\cdot) and ff be a nilpotent element in the even part of 𝔀\mathfrak{g}. Then there exists a 12​℀\frac{1}{2}\mathbb{Z}-grading on 𝔀\mathfrak{g} that is good for ff. See [KRW03] for the definitions of good gradings and [EK05, Hoy12] for the classifications. Let 𝔀j\mathfrak{g}_{j} be the homogeneous subspace of 𝔀\mathfrak{g} with degree jj. The good grading 𝔀=⨁j∈12​℀𝔀j\mathfrak{g}=\bigoplus_{j\in\frac{1}{2}\mathbb{Z}}\mathfrak{g}_{j} for ff on 𝔀\mathfrak{g} satisfies the following properties:

  1. (1)

    [𝔀i,𝔀j]βŠ‚π”€i+j[\mathfrak{g}_{i},\mathfrak{g}_{j}]\subset\mathfrak{g}_{i+j},

  2. (2)

    fβˆˆπ”€βˆ’1f\in\mathfrak{g}_{-1},

  3. (3)

    ad⁑(f):𝔀j→𝔀jβˆ’1\operatorname{ad}(f)\colon\mathfrak{g}_{j}\rightarrow\mathfrak{g}_{j-1} is injective for jβ‰₯12j\geq\frac{1}{2} and surjective for j≀12j\leq\frac{1}{2},

  4. (4)

    (𝔀i|𝔀j)=0(\mathfrak{g}_{i}|\mathfrak{g}_{j})=0 if i+jβ‰ 0i+j\neq 0,

  5. (5)

    dim𝔀f=dim𝔀0+dim𝔀12\dim\mathfrak{g}^{f}=\dim\mathfrak{g}_{0}+\dim\mathfrak{g}_{\frac{1}{2}}, where 𝔀f\mathfrak{g}^{f} is the centralizer of ff in 𝔀\mathfrak{g}.

Then we can choose a set of simple roots Ξ \Pi of 𝔀\mathfrak{g} for a Cartan subalgebra π”₯βŠ‚π”€0\mathfrak{h}\subset\mathfrak{g}_{0} such that all positive root vectors lie in 𝔀β‰₯0\mathfrak{g}_{\geq 0}. Denote by Ξ”j={Ξ±βˆˆΞ”βˆ£π”€Ξ±βŠ‚π”€j}\Delta_{j}=\{\alpha\in\Delta\mid\mathfrak{g}_{\alpha}\subset\mathfrak{g}_{j}\} and Ξ j=Ξ βˆ©Ξ”j\Pi_{j}=\Pi\cap\Delta_{j} for j∈12​℀j\in\frac{1}{2}\mathbb{Z}. We have Ξ =Ξ 0βŠ”Ξ 12βŠ”Ξ 1\Pi=\Pi_{0}\sqcup\Pi_{\frac{1}{2}}\sqcup\Pi_{1}. Let Ο‡:𝔀→ℂ\chi\colon\mathfrak{g}\rightarrow\mathbb{C} be a linear map defined by χ​(u)=(f|u)\chi(u)=(f|u). Since ad⁑(f):𝔀12β†’π”€βˆ’12\operatorname{ad}(f)\colon\mathfrak{g}_{\frac{1}{2}}\rightarrow\mathfrak{g}_{-\frac{1}{2}} is an isomorphism of vector spaces, the super skew-symmetric bilinear form 𝔀12×𝔀12βˆ‹(u,v)↦χ​([u,v])βˆˆβ„‚\mathfrak{g}_{\frac{1}{2}}\times\mathfrak{g}_{\frac{1}{2}}\ni(u,v)\mapsto\chi([u,v])\in\mathbb{C} is non-degenerate. We fix a root vector uΞ±u_{\alpha} and denote by p​(Ξ±)p(\alpha) the parity of uΞ±u_{\alpha} for Ξ±βˆˆΞ”\alpha\in\Delta.

Let Vk​(𝔀)V^{k}(\mathfrak{g}) be the affine vertex superalgebra associated to 𝔀\mathfrak{g} at level kβˆˆβ„‚k\in\mathbb{C}, which is generated by u​(z)u(z) (uβˆˆπ”€u\in\mathfrak{g}) whose parity is the same as uu, satisfying that

[uλ​v]=[u,v]+k​(u|v)​λ,u,vβˆˆπ”€.\displaystyle[u_{\lambda}v]=[u,v]+k(u|v)\lambda,\quad u,v\in\mathfrak{g}.

Let F​(𝔀12)F(\mathfrak{g}_{\frac{1}{2}}) be the neutral vertex superalgebra associated to 𝔀12\mathfrak{g}_{\frac{1}{2}}, which is strongly generated by ϕα​(z)\phi_{\alpha}(z) (Ξ±βˆˆΞ”12\alpha\in\Delta_{\frac{1}{2}}) whose parity is equal to p​(Ξ±)p(\alpha), satisfying that

[ϕαλ​ϕβ]=χ​(uΞ±,uΞ²),Ξ±,Ξ²βˆˆΞ”12.\displaystyle[{\phi_{\alpha}}_{\lambda}\phi_{\beta}]=\chi(u_{\alpha},u_{\beta}),\quad\alpha,\beta\in\Delta_{\frac{1}{2}}.

Let Fch​(𝔀>0)F^{\mathrm{ch}}(\mathfrak{g}_{>0}) be the charged fermion vertex superalgebra associated to 𝔀>0\mathfrak{g}_{>0}, which is strongly generated by φα​(z),Ο†Ξ±βˆ—β€‹(z)\varphi_{\alpha}(z),\varphi^{*}_{\alpha}(z) (Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0}) whose parities are equal to p​(Ξ±)+1Β―p(\alpha)+\bar{1}, satisfying that

[Ο†Ξ±Ξ»β€‹Ο†Ξ²βˆ—]=δα,Ξ²,[φαλ​φβ]=[Ο†Ξ±βˆ—Ξ»β€‹Ο†Ξ²βˆ—]=0,Ξ±,Ξ²βˆˆΞ”>0.\displaystyle[{\varphi_{\alpha}}_{\lambda}\varphi^{*}_{\beta}]=\delta_{\alpha,\beta},\quad[{\varphi_{\alpha}}_{\lambda}\varphi_{\beta}]=[{\varphi^{*}_{\alpha}}_{\lambda}\varphi^{*}_{\beta}]=0,\quad\alpha,\beta\in\Delta_{>0}.

Let Ck​(𝔀,f)=Vk​(𝔀)βŠ—F​(𝔀12)βŠ—Fch​(𝔀>0)C^{k}(\mathfrak{g},f)=V^{k}(\mathfrak{g})\otimes F(\mathfrak{g}_{\frac{1}{2}})\otimes F^{\mathrm{ch}}(\mathfrak{g}_{>0}) and dd be an odd element in Ck​(𝔀,f)C^{k}(\mathfrak{g},f) defined by

d=\displaystyle d= βˆ‘Ξ±βˆˆΞ”>0(βˆ’1)p​(Ξ±)​uΞ±β€‹Ο†Ξ±βˆ—βˆ’12β€‹βˆ‘Ξ±,Ξ²,Ξ³βˆˆΞ”>0(βˆ’1)p​(Ξ±)​p​(Ξ³)​cΞ±,Ξ²Ξ³:Ο†Ξ³β€‹Ο†Ξ±βˆ—β€‹Ο†Ξ²βˆ—:\displaystyle\sum_{\alpha\in\Delta_{>0}}(-1)^{p(\alpha)}u_{\alpha}\varphi^{*}_{\alpha}-\frac{1}{2}\sum_{\alpha,\beta,\gamma\in\Delta_{>0}}(-1)^{p(\alpha)p(\gamma)}c_{\alpha,\beta}^{\gamma}:\!\varphi_{\gamma}\varphi^{*}_{\alpha}\varphi^{*}_{\beta}\!:
+βˆ‘Ξ±βˆˆΞ”12Ο•Ξ±β€‹Ο†Ξ±βˆ—+βˆ‘Ξ±βˆˆΞ”>0χ​(uΞ±)β€‹Ο†Ξ±βˆ—.\displaystyle+\sum_{\alpha\in\Delta_{\frac{1}{2}}}\phi_{\alpha}\varphi^{*}_{\alpha}+\sum_{\alpha\in\Delta_{>0}}\chi(u_{\alpha})\varphi^{*}_{\alpha}.

Then (Ck​(𝔀,f),d(0))(C^{k}(\mathfrak{g},f),d_{(0)}) defines a cochain complex with respect to the charged degree: charge⁑φα=βˆ’chargeβ‘Ο†Ξ±βˆ—=1\operatorname{charge}\varphi_{\alpha}=-\operatorname{charge}\varphi^{*}_{\alpha}=1 (Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0}) and charge⁑A=0\operatorname{charge}A=0 for all A∈Vk​(𝔀)βŠ—F​(𝔀12)A\in V^{k}(\mathfrak{g})\otimes F(\mathfrak{g}_{\frac{1}{2}}). The (affine) 𝒲\mathcal{W}-algebra 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f) associated to 𝔀\mathfrak{g}, ff at level kk is defined by

𝒲k​(𝔀,f)=H​(Ck​(𝔀,f),d(0)).\displaystyle\mathcal{W}^{k}(\mathfrak{g},f)=H(C^{k}(\mathfrak{g},f),d_{(0)}).

Let Ck​(𝔀,f)+C^{k}(\mathfrak{g},f)_{+} be a subcomplex generated by ϕα​(z)\phi_{\alpha}(z) (Ξ±βˆˆΞ”12\alpha\in\Delta_{\frac{1}{2}}), Ο†Ξ±βˆ—β€‹(z)\varphi^{*}_{\alpha}(z) (Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0}) and

Ju(z)=u(z)+βˆ‘Ξ±,Ξ²βˆˆΞ”>0cΞ²,uΞ±:Ο†Ξ²βˆ—(z)φα(z):,uβˆˆπ”€β‰€0.\displaystyle J^{u}(z)=u(z)+\sum_{\alpha,\beta\in\Delta_{>0}}c_{\beta,u}^{\alpha}:\!\varphi^{*}_{\beta}(z)\varphi_{\alpha}(z)\!:,\quad u\in\mathfrak{g}_{\leq 0}.

Then we have [KW04]

𝒲k​(𝔀,f)=H​(Ck​(𝔀,f),d(0))=H0​(Ck​(𝔀,f)+,d(0)).\displaystyle\mathcal{W}^{k}(\mathfrak{g},f)=H(C^{k}(\mathfrak{g},f),d_{(0)})=H^{0}(C^{k}(\mathfrak{g},f)_{+},d_{(0)}).

Thus, 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f) is a vertex subalgebra of Ck​(𝔀,f)+C^{k}(\mathfrak{g},f)_{+}. Using the fact that

[Juλ​Jv]=J[u,v]+τ​(u|v)​λ,u,vβˆˆπ”€β‰€0\displaystyle[{J^{u}}_{\lambda}J^{v}]=J^{[u,v]}+\tau(u|v)\lambda,\quad u,v\in\mathfrak{g}_{\leq 0}
τ​(u|v)=k​(u|v)+12​κ𝔀​(u|v)βˆ’12​κ𝔀0​(u|v),u,vβˆˆπ”€β‰€0,\displaystyle\tau(u|v)=k(u|v)+\frac{1}{2}\kappa_{\mathfrak{g}}(u|v)-\frac{1}{2}\kappa_{\mathfrak{g}_{0}}(u|v),\quad u,v\in\mathfrak{g}_{\leq 0},

where κ𝔀\kappa_{\mathfrak{g}} denotes the Killing form on 𝔀\mathfrak{g}, it follows that the vertex algebra generated by Ju​(z)J^{u}(z) (uβˆˆπ”€β‰€0)(u\in\mathfrak{g}_{\leq 0}) is isomorphic to the affine vertex superalgebra associated to 𝔀≀0\mathfrak{g}_{\leq 0} and Ο„\tau, which we denote by Vτ​(𝔀≀0)V^{\tau}(\mathfrak{g}_{\leq 0}). Therefore the homogeneous subspace of Ck​(𝔀,f)+C^{k}(\mathfrak{g},f)_{+} with charged degree 0 is isomorphic to Vτ​(𝔀≀0)βŠ—F​(𝔀12)V^{\tau}(\mathfrak{g}_{\leq 0})\otimes F(\mathfrak{g}_{\frac{1}{2}}). The projection 𝔀≀0↠𝔀0\mathfrak{g}_{\leq 0}\twoheadrightarrow\mathfrak{g}_{0} induces a vertex superalgebra surjective homomorphism Vτ​(𝔀≀0)βŠ—F​(𝔀12)β† Vτ​(𝔀0)βŠ—F​(𝔀12)V^{\tau}(\mathfrak{g}_{\leq 0})\otimes F(\mathfrak{g}_{\frac{1}{2}})\twoheadrightarrow V^{\tau}(\mathfrak{g}_{0})\otimes F(\mathfrak{g}_{\frac{1}{2}}) so that we have

Ξ₯:𝒲k​(𝔀,f)β†’Vτ​(𝔀0)βŠ—F​(𝔀12)\displaystyle\Upsilon\colon\mathcal{W}^{k}(\mathfrak{g},f)\rightarrow V^{\tau}(\mathfrak{g}_{0})\otimes F(\mathfrak{g}_{\frac{1}{2}})

by the restriction. The map Ξ₯\Upsilon is called the Miura map and injective thanks to [Fre05, Ara17, Nak20].

4. Finite 𝒲\mathcal{W}-algebras

Recall the definitions of finite 𝒲\mathcal{W}-algebras U​(𝔀,f)U(\mathfrak{g},f), following [DDCDS+]. We introduce two definitions in (4.1), (4.2) denoted by U​(𝔀,f)IU(\mathfrak{g},f)_{I}, U​(𝔀,f)I​IU(\mathfrak{g},f)_{II} respectively and prove the isomorphism U​(𝔀,f)I≃U​(𝔀,f)I​IU(\mathfrak{g},f)_{I}\simeq U(\mathfrak{g},f)_{II} in Theorem 4.2.

Let Ξ¦\Phi be an associative β„‚\mathbb{C}-superalgebra generated by Φα\Phi_{\alpha} (Ξ±βˆˆΞ”12)(\alpha\in\Delta_{\frac{1}{2}}) that has the same parity as uΞ±u_{\alpha}, satisfying that

[Φα,Φβ]=χ​([uΞ±,uΞ²]),Ξ±,Ξ²βˆˆΞ”12.\displaystyle[\Phi_{\alpha},\Phi_{\beta}]=\chi([u_{\alpha},u_{\beta}]),\quad\alpha,\beta\in\Delta_{\frac{1}{2}}.

Here [A,B][A,B] denotes A​Bβˆ’(βˆ’1)p​(A)​p​(B)​B​AAB-(-1)^{p(A)\,p(B)}BA. We extend the definition of Φα\Phi_{\alpha} for all Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0} by Φα=0\Phi_{\alpha}=0 for Ξ±βˆˆΞ”β‰₯1\alpha\in\Delta_{\geq 1}. Let Λ​(𝔀>0)\Lambda(\mathfrak{g}_{>0}) be the Clifford superalgebra associated to 𝔀>0\mathfrak{g}_{>0}, which is an associative β„‚\mathbb{C}-superalgebra generated by ψα,ΟˆΞ±βˆ—\psi_{\alpha},\psi^{*}_{\alpha} (Ξ±βˆˆΞ”>0)(\alpha\in\Delta_{>0}) with the opposite parity to that of uΞ±u_{\alpha}, satisfying that

[ψα,ΟˆΞ²βˆ—]=δα,Ξ²,[ψα,ψβ]=[ΟˆΞ±βˆ—,ΟˆΞ²βˆ—]=0,Ξ±,Ξ²βˆˆΞ”>0.\displaystyle[\psi_{\alpha},\psi^{*}_{\beta}]=\delta_{\alpha,\beta},\quad[\psi_{\alpha},\psi_{\beta}]=[\psi^{*}_{\alpha},\psi^{*}_{\beta}]=0,\quad\alpha,\beta\in\Delta_{>0}.

The Clifford superalgebra Λ​(𝔀>0)\Lambda(\mathfrak{g}_{>0}) has the charged degree defined by deg⁑(ψα)=1=βˆ’deg⁑(ΟˆΞ±βˆ—)\deg(\psi_{\alpha})=1=-\deg(\psi^{*}_{\alpha}) for all Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0}. Set

CI=U​(𝔀)βŠ—Ξ¦βŠ—Ξ›β€‹(𝔀>0),dI=ad⁑(Q),\displaystyle C_{I}=U(\mathfrak{g})\otimes\Phi\otimes\Lambda(\mathfrak{g}_{>0}),\quad d_{I}=\operatorname{ad}(Q),
Q=βˆ‘Ξ±βˆˆΞ”>0(βˆ’1)p​(Ξ±)​XΞ±β€‹ΟˆΞ±βˆ’12β€‹βˆ‘Ξ±,Ξ²,Ξ³βˆˆΞ”>0(βˆ’1)p​(Ξ±)​p​(Ξ³)​cΞ±,Ξ²Ξ³β€‹ΟˆΞ³β€‹ΟˆΞ±βˆ—β€‹ΟˆΞ²βˆ—,\displaystyle Q=\sum_{\alpha\in\Delta_{>0}}(-1)^{p(\alpha)}X_{\alpha}\psi_{\alpha}-\frac{1}{2}\sum_{\alpha,\beta,\gamma\in\Delta_{>0}}(-1)^{p(\alpha)p(\gamma)}c_{\alpha,\beta}^{\gamma}\psi_{\gamma}\psi^{*}_{\alpha}\ \psi^{*}_{\beta},
XΞ±=uΞ±+(βˆ’1)p​(Ξ±)​(Φα+χ​(uΞ±)),Ξ±βˆˆΞ”>0,\displaystyle X_{\alpha}=u_{\alpha}+(-1)^{p(\alpha)}(\Phi_{\alpha}+\chi(u_{\alpha})),\quad\alpha\in\Delta_{>0},

where cΞ±,Ξ²Ξ³c_{\alpha,\beta}^{\gamma} is the structure constant defined by [uΞ±,uΞ²]=βˆ‘Ξ³βˆˆΞ”>0cΞ±,βγ​uΞ³[u_{\alpha},u_{\beta}]=\sum_{\gamma\in\Delta_{>0}}c_{\alpha,\beta}^{\gamma}u_{\gamma}. Then a pair (CI,dI)(C_{I},d_{I}) forms a cochain complex with respect to the charged degree on Λ​(𝔀>0)\Lambda(\mathfrak{g}_{>0}) and the cohomology

U​(𝔀,f)I=Hβˆ™β€‹(CI,dI)\displaystyle U(\mathfrak{g},f)_{I}=H^{\bullet}(C_{I},d_{I}) (4.1)

has a structure of an associative β„‚\mathbb{C}-superalgebra inherited from that of CIC_{I}. Let

ju=u+βˆ‘Ξ±,Ξ²βˆˆΞ”>0cΞ²,uΞ±β€‹ΟˆΞ²βˆ—β€‹ΟˆΞ±,uβˆˆπ”€.\displaystyle j^{u}=u+\sum_{\alpha,\beta\in\Delta_{>0}}c_{\beta,u}^{\alpha}\psi^{*}_{\beta}\ \psi_{\alpha},\quad u\in\mathfrak{g}.

Then

ad⁑(Q)β‹…ΟˆΞ±=juΞ±+(βˆ’1)p​(Ξ±)​(Φα+χ​(uΞ±))=XΞ±+βˆ‘Ξ±,β​Δ>0cΞ²,uΞ±β€‹ΟˆΞ²βˆ—β€‹ΟˆΞ±,Ξ±βˆˆΞ”>0.\displaystyle\operatorname{ad}(Q)\cdot\psi_{\alpha}=j^{u_{\alpha}}+(-1)^{p(\alpha)}(\Phi_{\alpha}+\chi(u_{\alpha}))=X_{\alpha}+\sum_{\alpha,\beta\Delta_{>0}}c_{\beta,u}^{\alpha}\psi^{*}_{\beta}\ \psi_{\alpha},\quad\alpha\in\Delta_{>0}.

Let Cβˆ’C_{-} be the subalgebra of CIC_{I} generated by ψα\psi_{\alpha}, ad⁑(Q)β‹…ΟˆΞ±\operatorname{ad}(Q)\cdot\psi_{\alpha} (Ξ±βˆˆΞ”>0)(\alpha\in\Delta_{>0}) and C+C_{+} be the subalgebra of CIC_{I} generated by juj^{u} (uβˆˆπ”€β‰€0)(u\in\mathfrak{g}_{\leq 0}), Φα\Phi_{\alpha} (Ξ±βˆˆΞ”12)(\alpha\in\Delta_{\frac{1}{2}}) and ΟˆΞ±βˆ—\psi^{*}_{\alpha} (Ξ±βˆˆΞ”>0)(\alpha\in\Delta_{>0}). Then (CΒ±,dI)(C_{\pm},d_{I}) form subcomplexes and CI≃Cβˆ’βŠ—C+C_{I}\simeq C_{-}\otimes C_{+} as vector superspaces. Since H​(Cβˆ’,dI)=β„‚H(C_{-},d_{I})=\mathbb{C}, we have

H​(CI,dI)≃H​(Cβˆ’,dI)βŠ—H​(C+,dI)=H​(C+,dI).\displaystyle H(C_{I},d_{I})\simeq\ H(C_{-},d_{I})\otimes H(C_{+},d_{I})=H(C_{+},d_{I}).

Using the same argument as in [KW04], it follows that Hn​(C+,dI)=0H^{n}(C_{+},d_{I})=0 for nβ‰ 0n\neq 0. Therefore U​(𝔀,f)IU(\mathfrak{g},f)_{I} is a subalgebra of C+0C^{0}_{+}, which is generated by juj^{u} (uβˆˆπ”€β‰€0)(u\in\mathfrak{g}_{\leq 0}) and Φα\Phi_{\alpha} (Ξ±βˆˆΞ”12)(\alpha\in\Delta_{\frac{1}{2}}). Since [ju,jv]=j[u,v][j^{u},j^{v}]=j^{[u,v]} for u,vβˆˆπ”€β‰€0u,v\in\mathfrak{g}_{\leq 0}, there exists an isomorphism C+0≃U​(𝔀≀0)βŠ—Ξ¦C^{0}_{+}\simeq U(\mathfrak{g}_{\leq 0})\otimes\Phi as associative β„‚\mathbb{C}-superalgebras. The projection 𝔀≀0↠𝔀0\mathfrak{g}_{\leq 0}\twoheadrightarrow\mathfrak{g}_{0} induces an associative β„‚\mathbb{C}-superalgebra surjective homomorphism U​(𝔀≀0)βŠ—Ξ¦β† U​(𝔀0)βŠ—Ξ¦U(\mathfrak{g}_{\leq 0})\otimes\Phi\twoheadrightarrow U(\mathfrak{g}_{0})\otimes\Phi so that we have

ΞΌ:U​(𝔀,f)Iβ†’U​(𝔀0)βŠ—Ξ¦\displaystyle\mu\colon U(\mathfrak{g},f)_{I}\rightarrow U(\mathfrak{g}_{0})\otimes\Phi

by the restriction. The map ΞΌ\mu is called the Miura map for the finite 𝒲\mathcal{W}-algebras and injective by [Lyn79, Gen20, Nak20]. Let β„‚βˆ’Ο‡\mathbb{C}_{-\chi} be the one-dimensional 𝔀β‰₯1\mathfrak{g}_{\geq 1}-module defined by 𝔀β‰₯1βˆ‹uβ†¦βˆ’Ο‡β€‹(u)βˆˆβ„‚\mathfrak{g}_{\geq 1}\ni u\mapsto-\chi(u)\in\mathbb{C} and MI​IM_{II} be the induced left 𝔀\mathfrak{g}-module

MI​I=Ind𝔀β‰₯1π”€β‘β„‚βˆ’Ο‡=U​(𝔀)β€‹βŠ—U​(𝔀β‰₯1)β€‹β„‚βˆ’Ο‡β‰ƒU​(𝔀)/Iβˆ’Ο‡,\displaystyle M_{II}=\operatorname{Ind}^{\mathfrak{g}}_{\mathfrak{g}_{\geq 1}}\mathbb{C}_{-\chi}=U(\mathfrak{g})\underset{U(\mathfrak{g}_{\geq 1})}{\otimes}\mathbb{C}_{-\chi}\simeq U(\mathfrak{g})/I_{-\chi},

where Iβˆ’Ο‡I_{-\chi} is a left U​(𝔀)U(\mathfrak{g})-module generated by u+χ​(u)u+\chi(u) for all uβˆˆπ”€β‰₯1u\in\mathfrak{g}_{\geq 1}. Then MI​IM_{II} has a structure of the ad⁑(𝔀>0)\operatorname{ad}(\mathfrak{g}_{>0})-module inherited from that of U​(𝔀)U(\mathfrak{g}). Set the ad⁑(𝔀>0)\operatorname{ad}(\mathfrak{g}_{>0})-invariant subspace

U​(𝔀,f)I​I=(MI​I)ad⁑(𝔀>0).\displaystyle U(\mathfrak{g},f)_{II}=(M_{II})^{\operatorname{ad}(\mathfrak{g}_{>0})}. (4.2)

Then U​(𝔀,f)I​IU(\mathfrak{g},f)_{II} also has a structure of an associative β„‚\mathbb{C}-superalgebra inherited from that of U​(𝔀)U(\mathfrak{g}). We may also define U​(𝔀,f)I​IU(\mathfrak{g},f)_{II} as the Chevalley cohomology H​(𝔀>0,MI​I)H(\mathfrak{g}_{>0},M_{II}) of the left 𝔀>0\mathfrak{g}_{>0}-module MI​IM_{II}:

Lemma 4.1 ([GG02, Nak20]).
H​(𝔀>0,MI​I)=H0​(𝔀>0,MI​I)=(MI​I)ad⁑(𝔀>0).\displaystyle H(\mathfrak{g}_{>0},M_{II})=H^{0}(\mathfrak{g}_{>0},M_{II})=(M_{II})^{\operatorname{ad}(\mathfrak{g}_{>0})}.
Proof.

Though the assertion is proved in [GG02] for Lie algebras 𝔀\mathfrak{g}, the same proof together with [Nak20, Corollary 2.6] applies. ∎

Theorem 4.2 ([DDCDS+, Theorem A.6]).

There exists an isomorphism U​(𝔀,f)I≃U​(𝔀,f)I​IU(\mathfrak{g},f)_{I}\simeq U(\mathfrak{g},f)_{II} as associative β„‚\mathbb{C}-superalgebras.

Proof.

Though the assertion is proved in [DDCDS+] for Lie algebras 𝔀\mathfrak{g}, the same proof applies as follows. Let CI​I=Λ​(𝔀>0)cβŠ—MI​IC_{II}=\Lambda(\mathfrak{g}_{>0})_{c}\otimes M_{II} be the Chevalley cohomology complex of the left 𝔀>0\mathfrak{g}_{>0}-module MI​IM_{II}, where Λ​(𝔀>0)c\Lambda(\mathfrak{g}_{>0})_{c} is the subalgebra of Λ​(𝔀>0)\Lambda(\mathfrak{g}_{>0}) generated by ΟˆΞ±βˆ—\psi^{*}_{\alpha} for all Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0}, and dI​Id_{II} be the derivation of the cochain complex CI​IC_{II}. Let U​(𝔀>0)βˆ’Ο‡=U​(𝔀>0)βŠ—β„‚βˆ’Ο‡U(\mathfrak{g}_{>0})_{-\chi}=U(\mathfrak{g}_{>0})\otimes\mathbb{C}_{-\chi} be a left 𝔀β‰₯1\mathfrak{g}_{\geq 1}-module defined by the diagonal action, where U​(𝔀>0)U(\mathfrak{g}_{>0}) is considered as a left 𝔀β‰₯1\mathfrak{g}_{\geq 1}-module by the left multiplication, and MI​I​IM_{III} be the induced left 𝔀\mathfrak{g}-module

MI​I​I=Ind𝔀β‰₯1𝔀⁑U​(𝔀>0)βˆ’Ο‡=U​(𝔀)β€‹βŠ—U​(𝔀β‰₯1)​U​(𝔀>0)βˆ’Ο‡.\displaystyle M_{III}=\operatorname{Ind}^{\mathfrak{g}}_{\mathfrak{g}_{\geq 1}}U(\mathfrak{g}_{>0})_{-\chi}=U(\mathfrak{g})\underset{U(\mathfrak{g}_{\geq 1})}{\otimes}U(\mathfrak{g}_{>0})_{-\chi}.

Let β„‚Ο‡\mathbb{C}_{\chi} be the one-dimensional 𝔀β‰₯1\mathfrak{g}_{\geq 1}-module defined by 𝔀β‰₯1βˆ‹u↦χ​(u)βˆˆβ„‚\mathfrak{g}_{\geq 1}\ni u\mapsto\chi(u)\in\mathbb{C} and U​(𝔀)Ο‡=U​(𝔀)βŠ—β„‚Ο‡U(\mathfrak{g})_{\chi}=U(\mathfrak{g})\otimes\mathbb{C}_{\chi} be a right 𝔀β‰₯1\mathfrak{g}_{\geq 1}-module defined by the diagonal action, where U​(𝔀)U(\mathfrak{g}) is considered as a right 𝔀β‰₯1\mathfrak{g}_{\geq 1}-module by the right multiplication. Then we have

MI​I​I≃U​(𝔀)Ο‡β€‹βŠ—U​(𝔀β‰₯1)​U​(𝔀>0)\displaystyle M_{III}\simeq U(\mathfrak{g})_{\chi}\underset{U(\mathfrak{g}_{\geq 1})}{\otimes}U(\mathfrak{g}_{>0})

so that MI​I​IM_{III} is a left 𝔀\mathfrak{g}- right 𝔀>0\mathfrak{g}_{>0}-bimodule. Note that there is an isomorphisms Λ​(𝔀>0)≃Λ​(𝔀>0)hβŠ—Ξ›β€‹(𝔀>0)c\Lambda(\mathfrak{g}_{>0})\simeq\Lambda(\mathfrak{g}_{>0})_{h}\otimes\Lambda(\mathfrak{g}_{>0})_{c} of vector superspaces, where Λ​(𝔀>0)h\Lambda(\mathfrak{g}_{>0})_{h} is the subalgebra of Λ​(𝔀>0)\Lambda(\mathfrak{g}_{>0}) generated by ψα\psi_{\alpha} for all Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0}. Let dhd_{h} be the derivation of the Chevalley homology complex MI​I​IβŠ—Ξ›β€‹(𝔀>0)hM_{III}\otimes\Lambda(\mathfrak{g}_{>0})_{h} of the right 𝔀>0\mathfrak{g}_{>0}-module MI​I​IM_{III}. Then MI​I​IβŠ—Ξ›β€‹(𝔀>0)hM_{III}\otimes\Lambda(\mathfrak{g}_{>0})_{h} is clearly a left 𝔀>0\mathfrak{g}_{>0}-module with respect to the adjoint 𝔀>0\mathfrak{g}_{>0}-action. Now, let dΒ―c\overline{d}_{c} be the derivation of the Chevalley cohomology complex Λ​(𝔀>0)cβŠ—MI​I​IβŠ—Ξ›β€‹(𝔀>0)h\Lambda(\mathfrak{g}_{>0})_{c}\otimes M_{III}\otimes\Lambda(\mathfrak{g}_{>0})_{h} of the left 𝔀>0\mathfrak{g}_{>0}-module MI​I​IβŠ—Ξ›β€‹(𝔀>0)hM_{III}\otimes\Lambda(\mathfrak{g}_{>0})_{h}. Then, as in [DDCDS+], we get a new cochain complex (CI​I​I,dI​I​I)(C_{III},d_{III}) defined by

CI​I​I=Λ​(𝔀>0)cβŠ—MI​I​IβŠ—Ξ›β€‹(𝔀>0)h,dI​I​I=dc+(βˆ’1)Ξ΄βˆ’1βŠ—dh,\displaystyle C_{III}=\Lambda(\mathfrak{g}_{>0})_{c}\otimes M_{III}\otimes\Lambda(\mathfrak{g}_{>0})_{h},\quad d_{III}=d_{c}+(-1)^{\delta-1}\otimes d_{h},

where Ξ΄\delta denotes the parity of the part of elements in Λ​(𝔀>0)c\Lambda(\mathfrak{g}_{>0})_{c}. Then it is easy to check that the following linear map

iI​I​Iβ†’I:CI​I​Iβˆ‹ΟˆΞ²1βˆ—β€‹β‹―β€‹ΟˆΞ²iβˆ—βŠ—(v1​⋯​vsβ€‹βŠ—U​(𝔀β‰₯1)​uΞ±1​⋯​uΞ±t)βŠ—ΟˆΞ³1β€‹β‹―β€‹ΟˆΞ³jβ†¦ΟˆΞ²1βˆ—β€‹β‹―β€‹ΟˆΞ²iβˆ—β‹…v1​⋯​vsβ‹…XΞ±1​⋯​XΞ±tβ‹…ΟˆΞ³1β€‹β‹―β€‹ΟˆΞ³j∈CΒ―Ii_{III\rightarrow I}\colon C_{III}\ni\ \psi^{*}_{\beta_{1}}\cdots\psi^{*}_{\beta_{i}}\otimes(v_{1}\cdots v_{s}\underset{U(\mathfrak{g}_{\geq 1})}{\otimes}u_{\alpha_{1}}\cdots u_{\alpha_{t}})\otimes\psi_{\gamma_{1}}\cdots\psi_{\gamma_{j}}\\ \mapsto\ \psi^{*}_{\beta_{1}}\cdots\psi^{*}_{\beta_{i}}\cdot v_{1}\cdots v_{s}\cdot X_{\alpha_{1}}\cdots X_{\alpha_{t}}\cdot\psi_{\gamma_{1}}\cdots\psi_{\gamma_{j}}\in\overline{C}_{I}

with v1,…,vsβˆˆπ”€v_{1},\ldots,v_{s}\in\mathfrak{g}, Ξ±1,…,Ξ±t,Ξ²1,…,Ξ²i,Ξ³1,…,Ξ³jβˆˆΞ”>0\alpha_{1},\ldots,\alpha_{t},\beta_{1},\ldots,\beta_{i},\gamma_{1},\ldots,\gamma_{j}\in\Delta_{>0} is well-defined and induces an isomorphism of complexes (CI​I​I,dI​I​I)β†’(CI,dI)(C_{III},d_{III})\rightarrow(C_{I},d_{I}) since iI​I​Iβ†’I∘dI​I​I=dI∘iI​I​Iβ†’Ii_{III\rightarrow I}\circ d_{III}=d_{I}\circ i_{III\rightarrow I}. Now

Hn​(CI​I​I,dh)\displaystyle H_{n}(C_{III},d_{h}) =Λ​(𝔀>0)cβŠ—Hn​(MI​I​IβŠ—Ξ›β€‹(𝔀>0)h,dh)\displaystyle=\Lambda(\mathfrak{g}_{>0})_{c}\otimes H_{n}\left(M_{III}\otimes\Lambda(\mathfrak{g}_{>0})_{h},d_{h}\right)
=Λ​(𝔀>0)cβŠ—U​(𝔀)Ο‡β€‹βŠ—U​(𝔀β‰₯1)​Hn​(𝔀>0,U​(𝔀>0))\displaystyle=\Lambda(\mathfrak{g}_{>0})_{c}\otimes U(\mathfrak{g})_{\chi}\underset{U(\mathfrak{g}_{\geq 1})}{\otimes}H_{n}(\mathfrak{g}_{>0},U(\mathfrak{g}_{>0}))
=Ξ΄n,0​Λ​(𝔀>0)cβŠ—U​(𝔀)Ο‡β€‹βŠ—U​(𝔀β‰₯1)​ℂ≃δn,0​CI​I.\displaystyle=\delta_{n,0}\ \Lambda(\mathfrak{g}_{>0})_{c}\otimes U(\mathfrak{g})_{\chi}\underset{U(\mathfrak{g}_{\geq 1})}{\otimes}\mathbb{C}\simeq\delta_{n,0}\ C_{II}.

Thus, since dcd_{c} and (βˆ’1)Ξ΄βˆ’1βŠ—dh(-1)^{\delta-1}\otimes d_{h} commute, we have

H​(CI​I​I,dI​I​I)≃H​(H​(CI​I​I,dh),dc)≃H​(CI​I,dI​I).\displaystyle H(C_{III},d_{III})\simeq H(H(C_{III},d_{h}),d_{c})\simeq H(C_{II},d_{II}).

The above argument together with the isomorphism iI​I​Iβ†’Ii_{III\rightarrow I} of complexes shows that (CI,dI)(C_{I},d_{I}) and (CI​I,dI​I)(C_{II},d_{II}) are quasi-isomorphic via the following quasi-isomorphism

iIβ†’I​I:CIβˆ‹ΟˆΞ²1βˆ—β€‹β‹―β€‹ΟˆΞ²iβˆ—β‹…v1​⋯​vsβ‹…XΞ±1​⋯​XΞ±tβ‹…ΟˆΞ³1β€‹β‹―β€‹ΟˆΞ³j↦δt,0​δj,0β€‹ΟˆΞ²1βˆ—β€‹β‹―β€‹ΟˆΞ²iβˆ—β‹…v1​⋯​vs∈CI​I,i_{I\rightarrow II}\colon C_{I}\ni\ \psi^{*}_{\beta_{1}}\cdots\psi^{*}_{\beta_{i}}\cdot v_{1}\cdots v_{s}\cdot X_{\alpha_{1}}\cdots X_{\alpha_{t}}\cdot\psi_{\gamma_{1}}\cdots\psi_{\gamma_{j}}\\ \mapsto\ \delta_{t,0}\delta_{j,0}\ \psi^{*}_{\beta_{1}}\cdots\psi^{*}_{\beta_{i}}\cdot v_{1}\cdots v_{s}\in C_{II}, (4.3)

which preserves the associative superalgebra structures on the cohomologies. ∎

Definition 4.3.

The finite 𝒲\mathcal{W}-algebra U​(𝔀,f)U(\mathfrak{g},f) associated to 𝔀,f\mathfrak{g},f is defined to be the superalgebra U​(𝔀,f)IU(\mathfrak{g},f)_{I}, which is isomorphic to U​(𝔀,f)I​IU(\mathfrak{g},f)_{II} due to Theorem 4.2.

Remark 4.4.

The same results as Theorem 4.2 for Poisson superalgebra versions has been studied in [Suh16]. Also remark that our definitions of the finite 𝒲\mathcal{W}-algebra U​(𝔀,f)U(\mathfrak{g},f) are not necessarily equivalent to the definitions in some literatures [Pol13, PS13, ZS15]. In fact, in case that 𝔀=𝔬​𝔰​𝔭1|2​n\mathfrak{g}=\mathfrak{osp}_{1|2n} and f=fprinf=f_{\mathrm{prin}} its principal nilpotent element, we have dim𝔀12=dim𝔀12,1Β―=1\dim\mathfrak{g}_{\frac{1}{2}}=\dim\mathfrak{g}_{\frac{1}{2},\bar{1}}=1 and thus 𝔀β‰₯1βŠŠπ”€>0\mathfrak{g}_{\geq 1}\subsetneq\mathfrak{g}_{>0}. Then U​(𝔀,f)≃U​(𝔀,f)I​I=(U​(𝔀)/Iβˆ’Ο‡)ad⁑(𝔀>0)U(\mathfrak{g},f)\simeq U(\mathfrak{g},f)_{II}=(U(\mathfrak{g})/I_{-\chi})^{\operatorname{ad}(\mathfrak{g}_{>0})} is a proper subalgebra of (U​(𝔀)/Iβˆ’Ο‡)ad⁑(𝔀β‰₯1)=EndU​(𝔀)⁑U​(𝔀)/Iβˆ’Ο‡(U(\mathfrak{g})/I_{-\chi})^{\operatorname{ad}(\mathfrak{g}_{\geq 1})}=\operatorname{End}_{U(\mathfrak{g})}U(\mathfrak{g})/I_{-\chi}.

The vertex superalgebra Ck​(𝔀,f)C^{k}(\mathfrak{g},f) has a conformal vector Ο‰\omega if kβ‰ βˆ’h∨k\neq-h^{\vee}, which defines the conformal weights on Ck​(𝔀,f)C^{k}(\mathfrak{g},f) by L0L_{0}, where ω​(z)=βˆ‘nβˆˆβ„€Ln​zβˆ’nβˆ’2\omega(z)=\sum_{n\in\mathbb{Z}}L_{n}z^{-n-2}. See [KRW03] for the details. Then H=L0H=L_{0} defines a Hamiltonian operator on Ck​(𝔀,f)C^{k}(\mathfrak{g},f), the vertex subalgebra Ck​(𝔀,f)+C^{k}(\mathfrak{g},f)_{+} and the corresponding 𝒲\mathcal{W}-algebra 𝒲k​(𝔀,f)\mathcal{W}^{k}(\mathfrak{g},f). Moreover the Hamiltonian operator L0L_{0} is well-defined for all kβˆˆβ„‚k\in\mathbb{C}. Recall that ZhuH⁑V\operatorname{Zhu}_{H}V is the HH-twisted Zhu algebra of VV, see Section 2. Let x∈π”₯x\in\mathfrak{h} such that [x,u]=j​u[x,u]=ju for uβˆˆπ”€ju\in\mathfrak{g}_{j}. Then by [Ara17, DSK06],

ZhuH⁑Ck​(𝔀,f)+≃C+,Ju↦ju+τ​(x|u),ϕα↦Φα,Ο†Ξ±βˆ—β†¦ΟˆΞ±βˆ—\displaystyle\operatorname{Zhu}_{H}C^{k}(\mathfrak{g},f)_{+}\simeq C_{+},\quad J^{u}\mapsto j^{u}+\tau(x|u),\ \phi_{\alpha}\mapsto\Phi_{\alpha},\ \varphi_{\alpha}^{*}\mapsto\psi^{*}_{\alpha} (4.4)

for uβˆˆπ”€β‰€0u\in\mathfrak{g}_{\leq 0}, Ξ±βˆˆΞ”>0\alpha\in\Delta_{>0} and ZhuH⁑H0​(Ck​(𝔀,f)+,d(0))≃H0​(C+,dI)\operatorname{Zhu}_{H}H^{0}(C^{k}(\mathfrak{g},f)_{+},d_{(0)})\simeq H^{0}(C_{+},d_{I}) so that

ZhuH⁑𝒲k​(𝔀,f)≃U​(𝔀,f).\displaystyle\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{g},f)\simeq U(\mathfrak{g},f). (4.5)

Let V1,V2V_{1},V_{2} be any 12​℀β‰₯0\frac{1}{2}\mathbb{Z}_{\geq 0}-graded vertex superalgebras with the Hamiltonian operators and g:V1β†’V2g\colon V_{1}\rightarrow V_{2} any vertex superalgebra homomorphism preserving the conformal weights. Since g​(V1∘V1)=g​(V1)∘g​(V1)βŠ‚V2∘V2g(V_{1}\circ V_{1})=g(V_{1})\circ g(V_{1})\subset V_{2}\circ V_{2}, the map gg induces an algebra homomorphism

ZhuH⁑(g):ZhuH⁑V1β†’ZhuH⁑V2.\displaystyle\operatorname{Zhu}_{H}(g)\colon\operatorname{Zhu}_{H}V_{1}\rightarrow\operatorname{Zhu}_{H}V_{2}.

Apply for g=Ξ₯g=\Upsilon. Then we get

ZhuH⁑(Ξ₯)=ΞΌ\displaystyle\operatorname{Zhu}_{H}(\Upsilon)=\mu

by construction.

5. Principal 𝒲\mathcal{W}-algebras of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}

Consider the case that

𝔀=𝔬𝔰𝔭1|2​n={u=(0ytβˆ’xtxabycβˆ’at)βˆˆπ”€π”©1|2​n|a,b,c∈Matℂ⁑(nΓ—n),x,y∈Matℂ⁑(nΓ—1),b=bt,c=ct},\displaystyle\mathfrak{g}=\mathfrak{osp}_{1|2n}=\left\{u=\left(\begin{array}[]{c|cc}0&{}^{t}y&-{}^{t}x\\ \hline\cr x&a&b\\ y&c&-{}^{t}a\end{array}\right)\in\mathfrak{gl}_{1|2n}\mathrel{}\middle|\mathrel{}\begin{array}[]{l}a,b,c\in\operatorname{Mat}_{\mathbb{C}}(n\times n),\\ x,y\in\operatorname{Mat}_{\mathbb{C}}(n\times 1),\\ b={}^{t}b,\ c={}^{t}c\end{array}\right\},

where At{}^{t}A denotes the transpose of AA. Let {ei,j}i,j∈I\{e_{i,j}\}_{i,j\in I} be the standard basis of 𝔀​𝔩1|2​n\mathfrak{gl}_{1|2n} with the index set I={0,1,…,n,βˆ’1,…,βˆ’n}I=\{0,1,\ldots,n,-1,\ldots,-n\} and hi=ei,iβˆ’eβˆ’i,βˆ’ih_{i}=e_{i,i}-e_{-i,-i} (i=1,…,n)(i=1,\ldots,n). Then π”₯=Spanβ„‚{hi}i=1n\mathfrak{h}=\operatorname{Span}_{\mathbb{C}}\{h_{i}\}_{i=1}^{n} is a Cartan subalgebra of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}. Define Ο΅i∈π”₯βˆ—\epsilon_{i}\in\mathfrak{h}^{*} by Ο΅i​(hj)=Ξ΄i,j\epsilon_{i}(h_{j})=\delta_{i,j}. Then Ξ”+={Ο΅i,2​ϡi}i=1nβŠ”{Ο΅iβˆ’Ο΅j,Ο΅i+Ο΅j}1≀i<j≀n\Delta_{+}=\{\epsilon_{i},2\epsilon_{i}\}_{i=1}^{n}\sqcup\{\epsilon_{i}-\epsilon_{j},\epsilon_{i}+\epsilon_{j}\}_{1\leq i<j\leq n} forms a set of positive roots with simple roots Ξ ={Ξ±i}i=1\Pi=\{\alpha_{i}\}_{i=1}, Ξ±i=Ο΅iβˆ’Ο΅i+1\alpha_{i}=\epsilon_{i}-\epsilon_{i+1} (i=1,…,nβˆ’1)(i=1,\ldots,n-1) and Ξ±n=Ο΅n\alpha_{n}=\epsilon_{n}, and Ο΅1,…,Ο΅n\epsilon_{1},\ldots,\epsilon_{n} are the (non-isotropic) odd roots in Ξ”+\Delta_{+}. Set Ξ”βˆ’=βˆ’Ξ”+\Delta_{-}=-\Delta_{+} and (u|v)=βˆ’str⁑(u​v)(u|v)=-\operatorname{str}(uv) for u,vβˆˆπ”¬β€‹π”°β€‹π”­1|2​nu,v\in\mathfrak{osp}_{1|2n}. We may identify π”₯βˆ—\mathfrak{h}^{*} with π”₯\mathfrak{h} through Ξ½:π”₯βˆ—βˆ‹Ξ»β†¦Ξ½β€‹(Ξ»)∈π”₯\nu\colon\mathfrak{h}^{*}\ni\lambda\mapsto\nu(\lambda)\in\mathfrak{h} defined by λ​(h)=(h|ν​(Ξ»))\lambda(h)=(h|\nu(\lambda)) for h∈π”₯h\in\mathfrak{h}, which induces a non-degenerate bilinear form on π”₯βˆ—\mathfrak{h}^{*} by (Ξ»|ΞΌ)=(ν​(Ξ»)|ν​(ΞΌ))(\lambda|\mu)=(\nu(\lambda)|\nu(\mu)) so that (Ο΅i|Ο΅j)=Ξ΄i,j/2(\epsilon_{i}|\epsilon_{j})=\delta_{i,j}/2. Then hih_{i} corresponds to 2​ϡi=2β€‹βˆ‘j=inΞ±j2\epsilon_{i}=2\sum_{j=i}^{n}\alpha_{j} by Ξ½\nu. We have

(Ξ±i|Ξ±i)=1,(Ξ±i|Ξ±i+1)=βˆ’12,i=1,…,nβˆ’1;(Ξ±n|Ξ±n)=12.\displaystyle(\alpha_{i}|\alpha_{i})=1,\quad(\alpha_{i}|\alpha_{i+1})=-\frac{1}{2},\quad i=1,\ldots,n-1;\quad(\alpha_{n}|\alpha_{n})=\frac{1}{2}.

Note that the dual Coxeter number of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} is equal to n+12n+\frac{1}{2}. Let

fprin=βˆ‘i=1nβˆ’1uβˆ’Ξ±i+uβˆ’2​αn\displaystyle f_{\mathrm{prin}}=\sum_{i=1}^{n-1}u_{-\alpha_{i}}+u_{-2\alpha_{n}}

be a principal nilpotent element in the even part of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}, where uΞ±u_{\alpha} denotes some root vector for Ξ±βˆˆΞ”\alpha\in\Delta. Then there exists a unique good grading on 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} such that Ξ 1={Ξ±i}i=1nβˆ’1\Pi_{1}=\{\alpha_{i}\}_{i=1}^{n-1} and Ξ 12={Ξ±n}\Pi_{\frac{1}{2}}=\{\alpha_{n}\}. Thus

𝔀0=π”₯,𝔀>0=𝔫:=β¨Ξ±βˆˆΞ”+𝔀α,𝔀<0=π”«βˆ’:=β¨Ξ±βˆˆΞ”βˆ’π”€Ξ±.\displaystyle\mathfrak{g}_{0}=\mathfrak{h},\ \mathfrak{g}_{>0}=\mathfrak{n}:=\bigoplus_{\alpha\in\Delta_{+}}\mathfrak{g}_{\alpha},\ \mathfrak{g}_{<0}=\mathfrak{n}_{-}:=\bigoplus_{\alpha\in\Delta_{-}}\mathfrak{g}_{\alpha}.

Let

𝒲k​(𝔬​𝔰​𝔭1|2​n):=𝒲k​(𝔬​𝔰​𝔭1|2​n,fprin)\displaystyle\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}):=\mathcal{W}^{k}(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})

be the principal 𝒲\mathcal{W}-algebra of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} at level kk. The Miura map for 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) is

Ξ₯:𝒲k​(𝔬​𝔰​𝔭1|2​n)β†’Ο€βŠ—F,\displaystyle\Upsilon\colon\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\rightarrow\pi\otimes F,

where Ο€\pi is the Heisenberg vertex algebra generated by even fields Ξ±i​(z)\alpha_{i}(z) (i=1,…,n)(i=1,\ldots,n) satisfying that

[Ξ±iλ​αj]=(k+n+12)​(Ξ±i|Ξ±j)​λ,i,j=1,…,n\displaystyle[{\alpha_{i}}_{\lambda}\alpha_{j}]=\left(k+n+\frac{1}{2}\right)(\alpha_{i}|\alpha_{j})\lambda,\quad i,j=1,\ldots,n

and FF is the free fermion vertex superalgebra generated by an odd field ϕ​(z)\phi(z) satisfying that

[ϕλ​ϕ]=1.\displaystyle[\phi_{\lambda}\phi]=1.

By [Gen17, Theorem 6.4], 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) is strongly generated by G,W2,W4,…,W2​nG,W_{2},W_{4},\ldots,W_{2n} for odd GG and even W2,W4,…,W2​nW_{2},W_{4},\ldots,W_{2n} elements of conformal weights n+12n+\frac{1}{2} and 2,4,…,2​n2,4,\ldots,2n such that

Ξ₯(G)(z)=:(2(k+n)βˆ‚+h1(z))β‹―(2(k+n)βˆ‚+hn(z))Ο•(z):,Ξ₯(W2​i)(z)β‰‘βˆ‘1≀j1<β‹―<ji≀n:hj12(z)β‹―hji2(z):(modC2(Ο€βŠ—F)),C2​(Ο€βŠ—F)={A(βˆ’2)​B∣A,BβˆˆΟ€βŠ—F}.\begin{array}[]{ll}&\displaystyle\Upsilon(G)(z)=\ :\!(2(k+n)\partial+h_{1}(z))\cdots(2(k+n)\partial+h_{n}(z))\phi(z)\!:,\\[5.69054pt] &\displaystyle\Upsilon(W_{2i})(z)\equiv\sum_{1\leq j_{1}<\cdots<j_{i}\leq n}:\!h_{j_{1}}^{2}(z)\cdots h_{j_{i}}^{2}(z)\!:\quad\left(\operatorname{mod}\ C_{2}(\pi\otimes F)\right),\\[14.22636pt] &\displaystyle C_{2}(\pi\otimes F)=\{A_{(-2)}B\mid A,B\in\pi\otimes F\}.\end{array} (5.1)

and

[Gλ​G]=W2​n+βˆ‘i=1nβˆ’1Ξ³i​(Ξ»2​iβˆ’1(2​iβˆ’1)!​W2​nβˆ’2​i+1+Ξ»2​i(2​i)!​W2​nβˆ’2​i)+Ξ³n​λ2​n(2​n)!\displaystyle[G_{\lambda}G]=W_{2n}+\sum_{i=1}^{n-1}\gamma_{i}\left(\frac{\lambda^{2i-1}}{(2i-1)!}W_{2n-2i+1}+\frac{\lambda^{2i}}{(2i)!}W_{2n-2i}\right)+\gamma_{n}\frac{\lambda^{2n}}{(2n)!} (5.2)

for some W2​j+1βˆˆπ’²k​(𝔬​𝔰​𝔭1|2​n)W_{2j+1}\in\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}), where

hi​(z)=2β€‹βˆ‘j=inΞ±j​(z),Ξ³i=(βˆ’1)iβ€‹βˆj=1i(2​(2​jβˆ’1)​(k+n)βˆ’1)​(4​j​(k+n)+1),\displaystyle h_{i}(z)=2\sum_{j=i}^{n}\alpha_{j}(z),\quad\gamma_{i}=(-1)^{i}\prod_{j=1}^{i}\left(2(2j-1)(k+n)-1\right)\left(4j(k+n)+1\right),

which satisfy that

[hiλ​hj]=(2​k+2​n+1)​δi,j​λ,i,j=1,…,n.\displaystyle[{h_{i}}_{\lambda}h_{j}]=(2k+2n+1)\delta_{i,j}\lambda,\quad i,j=1,\ldots,n.

If k+n+12β‰ 0k+n+\frac{1}{2}\neq 0,

L=W22​(2​k+2​n+1)\displaystyle L=\frac{W_{2}}{2(2k+2n+1)}

is a unique conformal vector of 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) with the central charge

c​(k)=βˆ’(2​n+1)​(2​(2​nβˆ’1)​(k+n)βˆ’1)​(4​n​(k+n)+1)2​(2​k+2​n+1).\displaystyle c(k)=-\frac{(2n+1)(2(2n-1)(k+n)-1)(4n(k+n)+1)}{2(2k+2n+1)}.

6. Zhu algebras of 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})

By (4.5), we have an isomorphism

ΞΉ1:ZhuH⁑𝒲k​(𝔬​𝔰​𝔭1|2​n)→≃U​(𝔬​𝔰​𝔭1|2​n,fprin).\displaystyle\iota_{1}\colon\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\xrightarrow{\simeq}U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}).

Then ΞΉ1\iota_{1} is induced by (4.4):

ZhuH⁑Ck​(𝔬​𝔰​𝔭1|2​n,fprin)→≃C+,\displaystyle\operatorname{Zhu}_{H}C^{k}(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})\xrightarrow{\simeq}C_{+},
Ju↦ju+(2​k+2​n+1)​(ρ𝔬​𝔰​𝔭|u),ϕα↦Φα,Ο†Ξ±βˆ—β†¦ΟˆΞ±βˆ—,\displaystyle J^{u}\mapsto j^{u}+(2k+2n+1)(\rho_{\mathfrak{osp}}|u),\ \phi_{\alpha}\mapsto\Phi_{\alpha},\ \varphi^{*}_{\alpha}\mapsto\psi^{*}_{\alpha},

where

ρ𝔬​𝔰​𝔭=12β€‹βˆ‘Ξ±βˆˆΞ”+(βˆ’1)p​(Ξ±)​α.\displaystyle\rho_{\mathfrak{osp}}=\frac{1}{2}\sum_{\alpha\in\Delta_{+}}(-1)^{p(\alpha)}\alpha.

Let ℂ​[π”₯βˆ—]=U​(π”₯)\mathbb{C}[\mathfrak{h}^{*}]=U(\mathfrak{h}) and set an isomorphism

ΞΉ2:ZhuHβ‘Ο€βŠ—ZhuH⁑F→≃ℂ​[π”₯βˆ—]βŠ—Ξ¦,\displaystyle\iota_{2}\colon\operatorname{Zhu}_{H}\pi\otimes\operatorname{Zhu}_{H}F\xrightarrow{\simeq}\mathbb{C}[\mathfrak{h}^{*}]\otimes\Phi,
hi↦hi+(2​nβˆ’2​i+1)​(k+n+12),ϕαn↦Φαn.\displaystyle h_{i}\mapsto h_{i}+(2n-2i+1)\left(k+n+\frac{1}{2}\right),\quad\phi_{\alpha_{n}}\mapsto\Phi_{\alpha_{n}}.

Then we have a commutative diagram of Miura maps

ZhuH⁑𝒲k​(𝔬​𝔰​𝔭1|2​n)\textstyle{\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ZhuH⁑(Ξ₯)\scriptstyle{\operatorname{Zhu}_{H}(\Upsilon)}ΞΉ1\scriptstyle{\iota_{1}}ZhuHβ‘Ο€βŠ—ZhuH⁑F\textstyle{\operatorname{Zhu}_{H}\pi\otimes\operatorname{Zhu}_{H}F\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΞΉ2\scriptstyle{\iota_{2}}U​(𝔬​𝔰​𝔭1|2​n,fprin)\textstyle{U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΞΌ\scriptstyle{\mu}ℂ​[π”₯βˆ—]βŠ—Ξ¦.\textstyle{\mathbb{C}[\mathfrak{h}^{*}]\otimes\Phi.}

By [DSK06], ZhuH⁑𝒲k​(𝔬​𝔰​𝔭1|2​n)\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) has a PBW basis generated by G,W2,W4,…,W2​nG,W_{2},W_{4},\ldots,W_{2n}. By abuse of notation, we shall use the same notations for the generators of U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) corresponding to G,W2,W4,…,W2​nG,W_{2},W_{4},\ldots,W_{2n} by ΞΉ1\iota_{1}.

Lemma 6.1.

μ​(G)=(h1+ρ𝔬​𝔰​𝔭​(h1))​(h2+ρ𝔬​𝔰​𝔭​(h2))​⋯​(hn+ρ𝔬​𝔰​𝔭​(hn))βŠ—Ξ¦Ξ±n\mu(G)=\left(h_{1}+\rho_{\mathfrak{osp}}(h_{1})\right)\left(h_{2}+\rho_{\mathfrak{osp}}(h_{2})\right)\cdots\left(h_{n}+\rho_{\mathfrak{osp}}(h_{n})\right)\otimes\Phi_{\alpha_{n}}.

Proof.

We have

Ξ₯​(G)=\displaystyle\Upsilon(G)= :(2(k+n)βˆ‚+h1)β‹―(2(k+n)βˆ‚+hn)Ο•:\displaystyle\ :\!(2(k+n)\partial+h_{1})\cdots(2(k+n)\partial+h_{n})\phi\!:
≑\displaystyle\equiv (βˆ’(2nβˆ’1)(k+n)+h1)βˆ—(βˆ’(2nβˆ’3)(k+n)+h2)βˆ—\displaystyle(-(2n-1)(k+n)+h_{1})*(-(2n-3)(k+n)+h_{2})*
β‹―βˆ—(βˆ’(k+n)+hn)βˆ—Ο•(mod⁑𝒲k​(𝔬​𝔰​𝔭1|2​n)βˆ˜π’²k​(𝔬​𝔰​𝔭1|2​n)).\displaystyle\cdots*(-(k+n)+h_{n})*\phi\quad\left(\operatorname{mod}\ \mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\circ\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\right).

Thus

μ​(G)=\displaystyle\mu(G)= ΞΉ2((βˆ’(2nβˆ’1)(k+n)+h1)βˆ—(βˆ’(2nβˆ’3)(k+n)+h2)βˆ—\displaystyle\iota_{2}\Bigl{(}(-(2n-1)(k+n)+h_{1})*(-(2n-3)(k+n)+h_{2})*
β‹―βˆ—(βˆ’(k+n)+hn)βˆ—Ο•)\displaystyle\quad\cdots*(-(k+n)+h_{n})*\phi\Bigr{)}
=\displaystyle= (h1+nβˆ’1+12)​(h2+nβˆ’2+12)​⋯​(hn+12)βŠ—Ξ¦Ξ±n.\displaystyle\left(h_{1}+n-1+\frac{1}{2}\right)\left(h_{2}+n-2+\frac{1}{2}\right)\cdots\left(h_{n}+\frac{1}{2}\right)\otimes\Phi_{\alpha_{n}}.

Therefore the assertion follows from the fact that ρ𝔬​𝔰​𝔭​(hi)=nβˆ’i+12\rho_{\mathfrak{osp}}(h_{i})=n-i+\frac{1}{2}. ∎

For a basic classical Lie superalgebra 𝔀\mathfrak{g} such that 𝔀1Β―β‰ 0\mathfrak{g}_{\bar{1}}\neq 0, denote by

Z​(𝔀)={z∈U​(𝔀)∣u​zβˆ’(βˆ’1)p​(u)​p​(z)​z​u=0​for​all​uβˆˆπ”€},\displaystyle Z(\mathfrak{g})=\{z\in U(\mathfrak{g})\mid uz-(-1)^{p(u)p(z)}zu=0\ \mathrm{for}\ \mathrm{all}\ u\in\mathfrak{g}\},
π’œβ€‹(𝔀)={a∈U​(𝔀)∣u​aβˆ’(βˆ’1)p​(u)​(p​(a)+1Β―)​a​u=0​for​all​uβˆˆπ”€},\displaystyle\mathcal{A}(\mathfrak{g})=\{a\in U(\mathfrak{g})\mid ua-(-1)^{p(u)(p(a)+\bar{1})}au=0\ \mathrm{for}\ \mathrm{all}\ u\in\mathfrak{g}\},
Z~​(𝔀)=Z​(𝔀)βŠ•π’œβ€‹(𝔀),\displaystyle\widetilde{Z}(\mathfrak{g})=Z(\mathfrak{g})\oplus\mathcal{A}(\mathfrak{g}),

called the center, the anticenter and the ghost center of U​(𝔀)U(\mathfrak{g}), respectively due to [Gor00]. Then the ghost center Z~​(𝔀)\widetilde{Z}(\mathfrak{g}) coincides with the center of U​(𝔀)0Β―U(\mathfrak{g})_{\bar{0}} by [Gor00, Corollary 4.4.4]. In case that 𝔀=𝔬​𝔰​𝔭1|2​n\mathfrak{g}=\mathfrak{osp}_{1|2n}, there exists T∈U​(𝔀)0Β―T\in U(\mathfrak{g})_{\bar{0}} [ABF97, Mus97, GL00] such that

π’œβ€‹(𝔬​𝔰​𝔭1|2​n)=Z​(𝔬​𝔰​𝔭1|2​n)​T,(Οƒβˆ˜Ξ·)​(T)=h1​h2​⋯​hn,\displaystyle\mathcal{A}(\mathfrak{osp}_{1|2n})=Z(\mathfrak{osp}_{1|2n})T,\quad(\sigma\circ\eta)(T)=h_{1}h_{2}\cdots h_{n},

where

Ξ·:U​(𝔬​𝔰​𝔭1|2​n)β† U​(π”₯)=ℂ​[π”₯βˆ—]\displaystyle\eta\colon U(\mathfrak{osp}_{1|2n})\twoheadrightarrow U(\mathfrak{h})=\mathbb{C}[\mathfrak{h}^{*}]

is the projection induced by the decomposition U​(𝔬​𝔰​𝔭1|2​n)β‰ƒπ”«βˆ’β€‹U​(𝔬​𝔰​𝔭1|2​n)βŠ•U​(π”₯)βŠ•U​(𝔬​𝔰​𝔭1|2​n)​𝔫U(\mathfrak{osp}_{1|2n})\simeq\mathfrak{n}_{-}U(\mathfrak{osp}_{1|2n})\oplus U(\mathfrak{h})\oplus U(\mathfrak{osp}_{1|2n})\mathfrak{n} and Οƒ\sigma is an isomorphism defined by

Οƒ:β„‚[π”₯βˆ—]β†’β„‚[π”₯βˆ—],f↦(Οƒ(f):λ↦f(Ξ»βˆ’Οπ”¬β€‹π”°β€‹π”­))\displaystyle\sigma\colon\mathbb{C}[\mathfrak{h}^{*}]\rightarrow\mathbb{C}[\mathfrak{h}^{*}],\quad f\mapsto(\sigma(f)\colon\lambda\mapsto f(\lambda-\rho_{\mathfrak{osp}}))

The element TT is called the Casimir ghost [ABF97] since T2∈Z​(𝔬​𝔰​𝔭1|2​n)T^{2}\in Z(\mathfrak{osp}_{1|2n}) such that (Οƒβˆ˜Ξ·)​(T2)=h12​⋯​hn2(\sigma\circ\eta)(T^{2})=h_{1}^{2}\cdots h_{n}^{2}, and is studied for general 𝔀\mathfrak{g} in [Gor00]. It is well-known [Kac84, Gor04] that the restriction of Οƒβˆ˜Ξ·\sigma\circ\eta to Z​(𝔀)Z(\mathfrak{g}) is injective and maps onto ℂ​[π”₯βˆ—]W\mathbb{C}[\mathfrak{h}^{*}]^{W}, where WW is the Weyl group of 𝔰​𝔭2​n\mathfrak{sp}_{2n}, called the Harish-Chandra homomorphism of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}. Recall that

U​(𝔬​𝔰​𝔭1|2​n,fprin)≃U​(𝔬​𝔰​𝔭1|2​n,fprin)I​I=(U​(𝔬​𝔰​𝔭1|2​n)/Iβˆ’Ο‡)ad⁑𝔫,\displaystyle U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})\simeq U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II}=(U(\mathfrak{osp}_{1|2n})/I_{-\chi})^{\operatorname{ad}\mathfrak{n}},

where Iβˆ’Ο‡I_{-\chi} is a left U​(𝔬​𝔰​𝔭1|2​n)U(\mathfrak{osp}_{1|2n})-module generated by uΞ±+(fprin|uΞ±)u_{\alpha}+(f_{\mathrm{prin}}|u_{\alpha}) for all Ξ±βˆˆΞ”+βˆ–{Ξ±n}\alpha\in\Delta_{+}\setminus\{\alpha_{n}\}. Define the projections q1,q2q_{1},q_{2} by

q1:U​(𝔬​𝔰​𝔭1|2​n)β† U​(𝔬​𝔰​𝔭1|2​n)/Iβˆ’Ο‡,\displaystyle q_{1}\colon U(\mathfrak{osp}_{1|2n})\twoheadrightarrow U(\mathfrak{osp}_{1|2n})/I_{-\chi},
q2:U​(𝔬​𝔰​𝔭1|2​n)/Iβˆ’Ο‡β‰ƒπ”«βˆ’β€‹U​(𝔬​𝔰​𝔭1|2​n)/Iβˆ’Ο‡βŠ•U​(π”₯)βŠ•U​(π”₯)​uΞ±nβ† U​(π”₯)βŠ•U​(π”₯)​uΞ±n\displaystyle q_{2}\colon U(\mathfrak{osp}_{1|2n})/I_{-\chi}\simeq\mathfrak{n}_{-}U(\mathfrak{osp}_{1|2n})/I_{-\chi}\oplus U(\mathfrak{h})\oplus U(\mathfrak{h})u_{\alpha_{n}}\twoheadrightarrow U(\mathfrak{h})\oplus U(\mathfrak{h})u_{\alpha_{n}}

and a linear map q3q_{3} by

q3:U​(π”₯)βŠ•U​(π”₯)​uΞ±n→ℂ​[π”₯βˆ—]βŠ—Ξ¦,(f1,f2β‹…uΞ±n)↦f1βŠ—1+f2βŠ—Ξ¦Ξ±n.\displaystyle q_{3}\colon U(\mathfrak{h})\oplus U(\mathfrak{h})u_{\alpha_{n}}\rightarrow\mathbb{C}[\mathfrak{h}^{*}]\otimes\Phi,\quad(f_{1},\mathrel{}f_{2}\cdot u_{\alpha_{n}})\mapsto f_{1}\otimes 1+f_{2}\otimes\Phi_{\alpha_{n}}.

Then, using the quasi-isomorphism iIβ†’I​Ii_{I\rightarrow II} in (4.3), the Miura map ΞΌ\mu can be identified with the restriction of the composition map q3∘q2q_{3}\circ q_{2} to U​(𝔬​𝔰​𝔭1|2​n,fprin)I​IU(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II} since uΞ±n=XΞ±n+Φαnu_{\alpha_{n}}=X_{\alpha_{n}}+\Phi_{\alpha_{n}}.

Lemma 6.2.

q1​(T​uΞ±n)q_{1}(Tu_{\alpha_{n}}) is the element of U​(𝔬​𝔰​𝔭1|2​n,fprin)I​IU(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II} corresponding to GG.

Proof.

First of all, we show that q1​(T​uΞ±n)∈U​(𝔬​𝔰​𝔭1|2​n,fprin)I​Iq_{1}(Tu_{\alpha_{n}})\in U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II}. It is enough to show that [uΞ±,T​uΞ±n]≑0[u_{\alpha},Tu_{\alpha_{n}}]\equiv 0 (mod.Iβˆ’Ο‡)(\operatorname{mod}.I_{-\chi}) for all Ξ±βˆˆΞ”+\alpha\in\Delta_{+}. Let Ξ”+,iΒ―={Ξ±βˆˆΞ”+∣p​(uΞ±)=iΒ―}\Delta_{+,\bar{i}}=\{\alpha\in\Delta_{+}\mid p(u_{\alpha})=\bar{i}\}. Since [uΞ±,T]=0[u_{\alpha},T]=0 for Ξ±βˆˆΞ”+,0Β―\alpha\in\Delta_{+,\bar{0}}, we have

[uΞ±,TuΞ±n]=T[uΞ±,uΞ±n]≑0(mod.Iβˆ’Ο‡),Ξ±βˆˆΞ”+,0Β―.\displaystyle[u_{\alpha},Tu_{\alpha_{n}}]=T[u_{\alpha},u_{\alpha_{n}}]\equiv 0\quad(\operatorname{mod}.I_{-\chi}),\quad\alpha\in\Delta_{+,\bar{0}}.

Next, for Ξ±βˆˆΞ”+,1Β―βˆ–{Ξ±n}\alpha\in\Delta_{+,\bar{1}}\setminus\{\alpha_{n}\}, since uα​T+T​uΞ±=0u_{\alpha}T+Tu_{\alpha}=0, we also have

[uΞ±,TuΞ±n]=βˆ’T[uΞ±,uΞ±n]+2TuΞ±nuα≑0(mod.Iβˆ’Ο‡),Ξ±βˆˆΞ”+,1Β―βˆ–{Ξ±n}.\displaystyle[u_{\alpha},Tu_{\alpha_{n}}]=-T[u_{\alpha},u_{\alpha_{n}}]+2Tu_{\alpha_{n}}u_{\alpha}\equiv 0\quad(\operatorname{mod}.I_{-\chi}),\quad\alpha\in\Delta_{+,\bar{1}}\setminus\{\alpha_{n}\}.

Finally, in case that Ξ±=Ξ±n\alpha=\alpha_{n},

[uΞ±n,T​uΞ±n]=(uΞ±n​T+T​uΞ±n)​uΞ±n=0.\displaystyle[u_{\alpha_{n}},Tu_{\alpha_{n}}]=(u_{\alpha_{n}}T+Tu_{\alpha_{n}})u_{\alpha_{n}}=0.

Therefore, q1​(T​uΞ±n)q_{1}(Tu_{\alpha_{n}}) belongs to U​(𝔬​𝔰​𝔭1|2​n,fprin)I​IU(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II}. Now ΞΌ=q3∘q2|U​(𝔬​𝔰​𝔭1|2​n,fprin)I​I\mu=q_{3}\circ q_{2}|_{U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II}} and by definition,

((ΟƒβŠ—1)∘μ)​(q1​(T​uΞ±n))\displaystyle((\sigma\otimes 1)\circ\mu)(q_{1}(Tu_{\alpha_{n}})) =((ΟƒβŠ—1)∘q3∘q2∘q1)​(T​uΞ±n)\displaystyle=((\sigma\otimes 1)\circ q_{3}\circ q_{2}\circ q_{1})(Tu_{\alpha_{n}})
=(Οƒβˆ˜Ξ·)​(T)βŠ—Ξ¦Ξ±n=h1​⋯​hnβŠ—Ξ¦Ξ±n.\displaystyle=(\sigma\circ\eta)(T)\otimes\Phi_{\alpha_{n}}=h_{1}\cdots h_{n}\otimes\Phi_{\alpha_{n}}.

By Lemma 6.1, ((ΟƒβŠ—1)∘μ)​(G)=h1​⋯​hnβŠ—Ξ¦Ξ±n((\sigma\otimes 1)\circ\mu)(G)=h_{1}\cdots h_{n}\otimes\Phi_{\alpha_{n}}. Since (ΟƒβŠ—1)∘μ(\sigma\otimes 1)\circ\mu is injective, we have q1​(T​uΞ±n)=Gq_{1}(Tu_{\alpha_{n}})=G. ∎

Theorem 6.3.

U​(𝔬​𝔰​𝔭1|2​n,fprin)0¯≃Z​(𝔬​𝔰​𝔭1|2​n)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{\bar{0}}\simeq Z(\mathfrak{osp}_{1|2n}).

Proof.

Since U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) has a PBW basis generated by GG, W2W_{2}, W4,…,W2​nW_{4},\ldots,W_{2n} and GG is a unique odd generator, U​(𝔬​𝔰​𝔭1|2​n,fprin)0Β―U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{\bar{0}} has a PBW basis generated by W2W_{2}, W4,…,W2​nW_{4},\ldots,W_{2n}. Now Ξ¦\Phi is superalgebra generated by Φαn\Phi_{\alpha_{n}} with the relation 2​Φαn2=χ​(uΞ±n,uΞ±n)2\Phi_{\alpha_{n}}^{2}=\chi(u_{\alpha_{n}},u_{\alpha_{n}}). Thus ΞΌ\mu maps U​(𝔬​𝔰​𝔭1|2​n,fprin)0Β―U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{\bar{0}} to ℂ​[π”₯βˆ—]\mathbb{C}[\mathfrak{h}^{*}]. By (5.1), μ​(W2​i)\mu(W_{2i}) for i=1,…,ni=1,\ldots,n are algebraically independent in ℂ​[π”₯βˆ—]\mathbb{C}[\mathfrak{h}^{*}] with degree 2​i2i (but not necessary homogeneous). Now, by definition, q2∘q1=Ξ·q_{2}\circ q_{1}=\eta on Z​(𝔬​𝔰​𝔭1|2​n)Z(\mathfrak{osp}_{1|2n}). Hence q2∘q1|Z​(𝔬​𝔰​𝔭1|2​n)q_{2}\circ q_{1}|_{Z(\mathfrak{osp}_{1|2n})} is injective. In particular, q1|Z​(𝔬​𝔰​𝔭1|2​n)q_{1}|_{Z(\mathfrak{osp}_{1|2n})} is injective. Clearly, q1​(Z​(𝔬​𝔰​𝔭1|2​n))q_{1}(Z(\mathfrak{osp}_{1|2n})) is ad⁑𝔫\operatorname{ad}\mathfrak{n}-invariant. Thus, U​(𝔬​𝔰​𝔭1|2​n,fprin)≃U​(𝔬​𝔰​𝔭1|2​n,fprin)I​IU(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})\simeq U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II} contains Z​(𝔬​𝔰​𝔭1|2​n)Z(\mathfrak{osp}_{1|2n}) through q1q_{1}. Moreover

μ​(Z​(𝔬​𝔰​𝔭1|2​n))=(q3∘q2∘q1)​(Z​(𝔬​𝔰​𝔭1|2​n))=η​(Z​(𝔬​𝔰​𝔭1|2​n))=Οƒβˆ’1​(ℂ​[π”₯βˆ—]W).\displaystyle\mu(Z(\mathfrak{osp}_{1|2n}))=(q_{3}\circ q_{2}\circ q_{1})(Z(\mathfrak{osp}_{1|2n}))=\eta(Z(\mathfrak{osp}_{1|2n}))=\sigma^{-1}(\mathbb{C}[\mathfrak{h}^{*}]^{W}).

Since ℂ​[π”₯βˆ—]W\mathbb{C}[\mathfrak{h}^{*}]^{W} is a symmetric algebra of h12,…,hn2h_{1}^{2},\ldots,h_{n}^{2}, μ​(Z​(𝔬​𝔰​𝔭1|2​n))\mu(Z(\mathfrak{osp}_{1|2n})) must contain all μ​(W2​i)\mu(W_{2i}) for i=1,…,ni=1,\ldots,n. Therefore

U​(𝔬​𝔰​𝔭1|2​n,fprin)0¯≃Z​(𝔬​𝔰​𝔭1|2​n).\displaystyle U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{\bar{0}}\simeq Z(\mathfrak{osp}_{1|2n}).

This completes the proof. ∎

Corollary 6.4.

(ZhuH⁑𝒲k​(𝔬​𝔰​𝔭1|2​n))0¯≃Z​(𝔬​𝔰​𝔭1|2​n)\left(\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\right)_{\bar{0}}\simeq Z(\mathfrak{osp}_{1|2n}).

Proof.

The assertion is immediate from Theorem 6.3 and the fact that ZhuH⁑𝒲k​(𝔬​𝔰​𝔭1|2​n)\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{osp}_{1|2n}) ≃\simeq U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}). ∎

Consider a linear isomorphism

ΞΎ:Z~​(𝔬​𝔰​𝔭1|2​n)=Z​(𝔬​𝔰​𝔭1|2​n)βŠ•π’œβ€‹(𝔬​𝔰​𝔭1|2​n)→≃Z​(𝔬​𝔰​𝔭1|2​n)βŠ•π’œβ€‹(𝔬​𝔰​𝔭1|2​n)​uΞ±n\displaystyle\xi\colon\widetilde{Z}(\mathfrak{osp}_{1|2n})=Z(\mathfrak{osp}_{1|2n})\oplus\mathcal{A}(\mathfrak{osp}_{1|2n})\xrightarrow{\simeq}Z(\mathfrak{osp}_{1|2n})\oplus\mathcal{A}(\mathfrak{osp}_{1|2n})u_{\alpha_{n}}

defined by ξ​(z,a)=(z,a​uΞ±n)\xi(z,a)=(z,a\,u_{\alpha_{n}}). Then by Lemma 6.2 and the fact that π’œβ€‹(𝔬​𝔰​𝔭1|2​n)=Z​(𝔬​𝔰​𝔭1|2​n)​T\mathcal{A}(\mathfrak{osp}_{1|2n})=Z(\mathfrak{osp}_{1|2n})T, we have (q1∘ξ)​(Z~​(𝔬​𝔰​𝔭1|2​n))βŠ‚U​(𝔬​𝔰​𝔭1|2​n,fprin)I​I(q_{1}\circ\xi)(\widetilde{Z}(\mathfrak{osp}_{1|2n}))\subset U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})_{II}.

Theorem 6.5.

The map q1∘ξ:Z~​(𝔬​𝔰​𝔭1|2​n)β†’U​(𝔬​𝔰​𝔭1|2​n,fprin)q_{1}\circ\xi\colon\widetilde{Z}(\mathfrak{osp}_{1|2n})\rightarrow U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) is an isomorphisms of associative algebras.

Proof.

By definition and Lemma 6.2, (q3∘q2∘q1∘ξ)​(z​T)=(q3∘q2∘q1)​(z​T​uΞ±n)=η​(z)​G(q_{3}\circ q_{2}\circ q_{1}\circ\xi)(zT)=(q_{3}\circ q_{2}\circ q_{1})(zTu_{\alpha_{n}})=\eta(z)G for all z∈Z​(𝔬​𝔰​𝔭1|2​n)z\in Z(\mathfrak{osp}_{1|2n}). Thus, q3∘q2∘q1∘ξ|π’œβ€‹(𝔬​𝔰​𝔭1|2​n)q_{3}\circ q_{2}\circ q_{1}\circ\xi|_{\mathcal{A}(\mathfrak{osp}_{1|2n})} is injective. In particular, q1∘ξ|π’œβ€‹(𝔬​𝔰​𝔭1|2​n)q_{1}\circ\xi|_{\mathcal{A}(\mathfrak{osp}_{1|2n})} is injective. Using the fact that U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) has a PBW basis generated by GG, W2W_{2}, W4,…,W2​nW_{4},\ldots,W_{2n} and Theorem 6.3, it follows that q1∘ξq_{1}\circ\xi is a linear isomorphism. Now, we may suppose that χ​(uΞ±n,uΞ±n)=2\chi(u_{\alpha_{n}},u_{\alpha_{n}})=2. Then Φαn2=1\Phi_{\alpha_{n}}^{2}=1 so that μ​(T2)=Οƒβˆ’1​(h12​⋯​hn2)=μ​(G2)\mu(T^{2})=\sigma^{-1}(h_{1}^{2}\cdots h_{n}^{2})=\mu(G^{2}). Therefore q1∘ξq_{1}\circ\xi defines an isomorphisms of associative algebras. This completes the proof. ∎

Let L​(Ξ»)L(\lambda) be the simple highest weight 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}-module with the highest weight Ξ»\lambda. Then there exists χλ:Z​(𝔬​𝔰​𝔭1|2​n)β†’β„‚\chi_{\lambda}\colon Z(\mathfrak{osp}_{1|2n})\rightarrow\mathbb{C} such that zz acts on χλ​(z)\chi_{\lambda}(z) on L​(Ξ»)L(\lambda) for all z∈Z​(𝔬​𝔰​𝔭1|2​N)z\in Z(\mathfrak{osp}_{1|2N}). The map χλ\chi_{\lambda} is called a central character of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} and is induced by Ξ·\eta and one-dimensional ℂ​[π”₯βˆ—]\mathbb{C}[\mathfrak{h}^{*}]-module β„‚Ξ»\mathbb{C}_{\lambda} defined by f↦f​(Ξ»)f\mapsto f(\lambda). Using the Harish-Chandra homomorphism, it follows that χλ1=χλ2\chi_{\lambda_{1}}=\chi_{\lambda_{2}} if and only if Ξ»2=w​(Ξ»1+ρ𝔬​𝔰​𝔭)βˆ’Οπ”¬β€‹π”°β€‹π”­\lambda_{2}=w(\lambda_{1}+\rho_{\mathfrak{osp}})-\rho_{\mathfrak{osp}} for some w∈Ww\in W. Let

D={λ∈π”₯βˆ—βˆ£βˆΞ±βˆˆΞ”1Β―(Ξ»+ρ𝔬​𝔰​𝔭|Ξ±)=0}.\displaystyle D=\{\lambda\in\mathfrak{h}^{*}\mid\prod_{\alpha\in\Delta_{\bar{1}}}(\lambda+\rho_{\mathfrak{osp}}|\alpha)=0\}.

Denote by Ο‡Ξ»βˆˆD\chi_{\lambda}\in D if λ∈D\lambda\in D. Since w​(Ξ”1Β―)βŠ‚Ξ”1Β―w(\Delta_{\bar{1}})\subset\Delta_{\bar{1}} for all w∈Ww\in W, we have λ∈Dβ‡’w​(Ξ»+ρ𝔬​𝔰​𝔭)βˆ’Οπ”¬β€‹π”°β€‹π”­βˆˆD\lambda\in D\Rightarrow w(\lambda+\rho_{\mathfrak{osp}})-\rho_{\mathfrak{osp}}\in D for any w∈Ww\in W so that Ο‡Ξ»βˆˆD\chi_{\lambda}\in D is well-defined.

From now on, we will identify Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) with U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}) by Theorem 6.5. Then Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n}) is a superalgebra such that Z~​(𝔬​𝔰​𝔭1|2​n)1Β―=π’œβ€‹(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n})_{\bar{1}}=\mathcal{A}(\mathfrak{osp}_{1|2n}). Let EE be a finite-dimensional β„€2\mathbb{Z}_{2}-graded simple Z~​(𝔬​𝔰​𝔭1|2​n)\widetilde{Z}(\mathfrak{osp}_{1|2n})-module. Then Z​(𝔬​𝔰​𝔭1|2​n)Z(\mathfrak{osp}_{1|2n}) acts on EE as χλ\chi_{\lambda} for some λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}. For a non-zero parity-homogeneous element v∈Ev\in E, T​vTv has an opposite parity to vv such that T2​v=χλ​(T2)​vT^{2}v=\chi_{\lambda}(T^{2})v. Recall that the set {h1,…,hn}\{h_{1},\ldots,h_{n}\} is identified with 2​Δ+,1Β―2\Delta_{+,\bar{1}} by π”₯≃π”₯βˆ—\mathfrak{h}\simeq\mathfrak{h}^{*}. Then, using the fact that η​(T2)=Οƒβˆ’1​(h12​⋯​hn2)\eta(T^{2})=\sigma^{-1}(h_{1}^{2}\cdots h_{n}^{2}), it follows that

χλ​(T2)=∏i=1n((Ξ»+ρ𝔬​𝔰​𝔭)​(hi))2=βˆΞ±βˆˆΞ”+,1Β―(Ξ»+ρ𝔬​𝔰​𝔭|2​α)2.\displaystyle\chi_{\lambda}(T^{2})=\prod_{i=1}^{n}\left((\lambda+\rho_{\mathfrak{osp}})(h_{i})\right)^{2}=\prod_{\alpha\in\Delta_{+,\bar{1}}}(\lambda+\rho_{\mathfrak{osp}}|2\alpha)^{2}.

Hence χλ​(T2)=0\chi_{\lambda}(T^{2})=0 if and only if Ο‡Ξ»βˆˆD\chi_{\lambda}\in D. Since EE is simple, E=ℂ​vE=\mathbb{C}v if Ο‡Ξ»βˆˆD\chi_{\lambda}\in D and E=ℂ​vβŠ•β„‚β€‹T​vE=\mathbb{C}v\oplus\mathbb{C}Tv if Ο‡Ξ»βˆ‰D\chi_{\lambda}\notin D, which we denote by EχλE_{\chi_{\lambda}}. Here we identify EχλE_{\chi_{\lambda}} with the parity change of EχλE_{\chi_{\lambda}} if χλ​(T2)=0\chi_{\lambda}(T^{2})=0. Therefore we obtain the following results:

Proposition 6.6.

A finite-dimensional β„€2\mathbb{Z}_{2}-graded simple U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})-module is isomorphic to EχλE_{\chi_{\lambda}} for some λ∈π”₯βˆ—\lambda\in\mathfrak{h}^{*}. In particular, there exists one-to-one correspondence between isomorphism classes (up to the parity change) of finite-dimensional β„€2\mathbb{Z}_{2}-graded simple U​(𝔬​𝔰​𝔭1|2​n,fprin)U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}})-modules and central characters of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n}.

Corollary 6.7.

There exists a bijective correspondence between central characters of 𝔬​𝔰​𝔭1|2​n\mathfrak{osp}_{1|2n} and isomorphism classes (up to the parity change) of simple positive-energy Ramond-twisted 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})-modules with finite-dimensional top spaces.

Proof.

The assertion is immediate from ZhuH⁑𝒲k​(𝔬​𝔰​𝔭1|2​n)≃U​(𝔬​𝔰​𝔭1|2​n,fprin)\operatorname{Zhu}_{H}\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})\simeq U(\mathfrak{osp}_{1|2n},f_{\mathrm{prin}}), Proposition 6.6 and [DSK06, Theorem 2.30] ∎

Corollary 6.7 implies that dimensions of the top spaces EχλE_{\chi_{\lambda}} of simple positive-energy Ramond-twisted 𝒲k​(𝔬​𝔰​𝔭1|2​n)\mathcal{W}^{k}(\mathfrak{osp}_{1|2n})-modules are equal to 22 if and only if (Ξ»+ρ𝔬​𝔰​𝔭|Ξ±)β‰ 0(\lambda+\rho_{\mathfrak{osp}}|\alpha)\neq 0 for all Ξ±βˆˆΞ”1Β―\alpha\in\Delta_{\bar{1}}. We remark that this condition is equivalent to one that the annihilator of the Verma module M​(Ξ»)M(\lambda) is generated by its intersection with the center Z​(𝔬​𝔰​𝔭1|2​n)Z(\mathfrak{osp}_{1|2n}) by [GL99].

References

  • [ABF97] D.Β Arnaudon, M.Β Bauer, and L.Β Frappat. On Casimir’s ghost. Comm. Math. Phys., 187(2):429–439, 1997.
  • [Ara17] Tomoyuki Arakawa. Introduction to W-algebras and their representation theory. In Perspectives in Lie theory, volumeΒ 19 of Springer INdAM Ser., pages 179–250. Springer, Cham, 2017.
  • [dBT94] Jan deΒ Boer and Tjark Tjin. The relation between quantum WW algebras and Lie algebras. Comm. Math. Phys., 160(2):317–332, 1994.
  • [DDCDS+] Alessandro D’Andrea, Corrado DeΒ Concini, Alberto DeΒ Sole, Reimundo Heluani, and VictorΒ G. Kac. Three equivalent definitions of finite WW-algebras. appendix to [DSK06].
  • [DSK06] Alberto DeΒ Sole and VictorΒ G. Kac. Finite vs affine WW-algebras. Jpn. J. Math., 1(1):137–261, 2006.
  • [Duf77] Michel Duflo. Sur la classification des idΓ©aux primitifs dans l’algΓ¨bre enveloppante d’une algΓ¨bre de Lie semi-simple. Ann. of Math. (2), 105(1):107–120, 1977.
  • [EK05] A.Β G. Elashvili and V.Β G. Kac. Classification of good gradings of simple Lie algebras. In Lie groups and invariant theory, volume 213 of Amer. Math. Soc. Transl. Ser. 2, pages 85–104. Amer. Math. Soc., Providence, RI, 2005.
  • [FF92] Boris Feigin and Edward Frenkel. Affine Kac-Moody algebras at the critical level and GelΒ΄fand-DikiΔ­ algebras. In Infinite analysis, Part A, B (Kyoto, 1991), volumeΒ 16 of Adv. Ser. Math. Phys., pages 197–215. World Sci. Publ., River Edge, NJ, 1992.
  • [Fre05] Edward Frenkel. Wakimoto modules, opers and the center at the critical level. Adv. Math., 195(2):297–404, 2005.
  • [Gen17] Naoki Genra. Screening operators for 𝒲\mathcal{W}-algebras. Selecta Math. (N.S.), 23(3):2157–2202, 2017.
  • [Gen20] Naoki Genra. Screening operators and parabolic inductions for affine 𝒲{\mathcal{W}}-algebras. Adv. Math., 369:107179, 62, 2020.
  • [GG02] WeeΒ Liang Gan and Victor Ginzburg. Quantization of Slodowy slices. Int. Math. Res. Not., (5):243–255, 2002.
  • [GL99] Maria Gorelik and Emmanuel Lanzmann. The annihilation theorem for the completely reducible Lie superalgebras. Invent. Math., 137(3):651–680, 1999.
  • [GL00] Maria Gorelik and Emmanuel Lanzmann. The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra osp​(1,2​l){\mathrm{osp}}(1,2l). Adv. Math., 154(2):333–366, 2000.
  • [Gor00] Maria Gorelik. On the ghost centre of Lie superalgebras. Ann. Inst. Fourier (Grenoble), 50(6):1745–1764 (2001), 2000.
  • [Gor04] Maria Gorelik. The Kac construction of the centre of U​(𝔀)U(\mathfrak{g}) for Lie superalgebras. J. Nonlinear Math. Phys., 11(3):325–349, 2004.
  • [Hoy12] Crystal Hoyt. Good gradings of basic Lie superalgebras. Israel J. Math., 192(1):251–280, 2012.
  • [Kac84] VictorΒ G. Kac. Laplace operators of infinite-dimensional Lie algebras and theta functions. Proc. Nat. Acad. Sci. U.S.A., 81(2, , Phys. Sci.):645–647, 1984.
  • [Kos78] Bertram Kostant. On Whittaker vectors and representation theory. Invent. Math., 48(2):101–184, 1978.
  • [KRW03] VictorΒ G. Kac, Shi-Shyr Roan, and Minoru Wakimoto. Quantum reduction for affine superalgebras. Comm. Math. Phys., 241(2-3):307–342, 2003.
  • [KW04] VictorΒ G. Kac and Minoru Wakimoto. Quantum reduction and representation theory of superconformal algebras. Adv. Math., 185(2):400–458, 2004.
  • [Lyn79] ThomasΒ Emile Lynch. GENERALIZED WHITTAKER VECTORS AND REPRESENTATION THEORY. ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)–Massachusetts Institute of Technology.
  • [Mus97] IanΒ M. Musson. On the center of the enveloping algebra of a classical simple Lie superalgebra. J. Algebra, 193(1):75–101, 1997.
  • [Nak20] Shigenori Nakatsuka. On miura maps for WW-superalgebras, 2020, 2005.10472.
  • [Pin90] Georges Pinczon. The enveloping algebra of the Lie superalgebra osp​(1,2){\mathrm{osp}}(1,2). J. Algebra, 132(1):219–242, 1990.
  • [Pol13] Elena Poletaeva. On finite WW-algebras for Lie algebras and superalgebras. SΓ£o Paulo J. Math. Sci., 7(1):1–32, 2013.
  • [Pre02] Alexander Premet. Special transverse slices and their enveloping algebras. Adv. Math., 170(1):1–55, 2002. With an appendix by Serge Skryabin.
  • [Pre07] Alexander Premet. Enveloping algebras of Slodowy slices and the Joseph ideal. J. Eur. Math. Soc. (JEMS), 9(3):487–543, 2007.
  • [PS13] Elena Poletaeva and Vera Serganova. On finite WW-algebras for Lie superalgebras in the regular case. In Lie theory and its applications in physics, volumeΒ 36 of Springer Proc. Math. Stat., pages 487–497. Springer, Tokyo, 2013.
  • [RS99] E.Β Ragoucy and P.Β Sorba. Yangian realisations from finite 𝒲{\mathscr{W}}-algebras. Comm. Math. Phys., 203(3):551–572, 1999.
  • [Suh16] UhiΒ Rinn Suh. Classical affine W-algebras associated to Lie superalgebras. J. Math. Phys., 57(2):021703, 34, 2016.
  • [ZS15] Yang Zeng and Bin Shu. Finite WW-superalgebras for basic Lie superalgebras. J. Algebra, 438:188–234, 2015.