This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Finite elements for divdiv-conforming symmetric tensors

Long Chen Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA [email protected]  and  Xuehai Huang School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China [email protected]
Abstract.

Two types of finite element spaces on triangles are constructed for div-div conforming symmetric tensors. Besides the normal-normal continuity, the stress tensor is continuous at vertices and another trace involving combination of derivatives of stress is identified. Polynomial complex, finite element complex, and Hilbert complex are presented and a commuting diagram between them is given. The constructed div-div conforming elements are exploited to discretize the mixed formulation of the biharmonic equation. Optimal order and superconvergence error analysis is provided. By rotation, finite elements for rot-rot conforming symmetric strain are also obtained.

The first author was supported by NSF DMS-1913080.
The second author was supported by the National Natural Science Foundation of China Project 11771338 and the Fundamental Research Funds for the Central Universities 2019110066.

1. Introduction

In this paper, we shall construct finite element spaces of symmetric stress tensor conforming to the div𝐝𝐢𝐯\operatorname{div}\boldsymbol{\operatorname{div}} operator and also present the Hilbert complex for finite element spaces.

Let Ω\Omega be a bounded polygon in 2\mathbb{R}^{2}. In [5], we have found the Hilbert complexes and the commutative diagram

𝑹𝑻𝑯1(Ω;2)𝑰hsym𝐜𝐮𝐫𝐥𝑯1(div𝐝𝐢𝐯,Ω;𝕊)𝚷hdiv𝐝𝐢𝐯H1(Ω)Qh0𝑹𝑻𝒮hsym𝐜𝐮𝐫𝐥𝒱h(div𝐝𝐢𝐯)h𝒫h0,\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.4514pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-10.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.72917pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 57.38335pt\raise-19.97887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\boldsymbol{I}_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.38335pt\raise-30.12444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 77.32777pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.31529pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 104.31529pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{-1}(\mathrm{div}\boldsymbol{\mathrm{div}},\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 141.71117pt\raise-19.97887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\boldsymbol{\Pi}_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 141.71117pt\raise-30.12444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 178.57924pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\mathrm{div}\boldsymbol{\mathrm{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 203.10704pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 203.10704pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces H^{-1}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 220.50287pt\raise-19.97887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{Q_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 220.50287pt\raise-30.12444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 240.95078pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 261.8987pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 261.8987pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-10.4514pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.96944pt\raise-34.93407pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 49.99232pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 49.99232pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 84.55974pt\raise-33.84665pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 133.34792pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 133.34792pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{V}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 164.70467pt\raise-33.45775pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(\mathrm{div}\boldsymbol{\mathrm{div}})_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 212.48685pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 212.48685pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{P}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 240.95078pt\raise-39.95775pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 261.8987pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 261.8987pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array},

where 𝑹𝑻\boldsymbol{RT} is the lowest order Raviart-Thomas element on Ω\Omega [24], 𝒮h\mathcal{S}_{h} is the vector Lagrange element of degree k+1k+1, 𝒱h\mathcal{V}_{h} is the Hellan-Herrmann-Johnson (HHJ) (cf. [14, 15, 19]) element of degree kk, and 𝒫h\mathcal{P}_{h} is the scalar Lagrange space of degree k+1k+1 based on a shape regular triangulation 𝒯h\mathcal{T}_{h} of Ω\Omega. Details on the spaces and interpolation operators can be found in [5, Section 2.2]. The negative Sobolev space

𝑯1(div𝐝𝐢𝐯,Ω;𝕊):={𝝉𝑳2(Ω;𝕊):div𝐝𝐢𝐯𝝉H1(Ω)}\boldsymbol{H}^{-1}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}):=\{\boldsymbol{\tau}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}):\operatorname{div}\mathbf{div}\boldsymbol{\tau}\in H^{-1}(\Omega)\}

with squared norm 𝝉𝑯1(div𝐝𝐢𝐯)2:=𝝉02+div𝐝𝐢𝐯𝝉12\|\boldsymbol{\tau}\|_{\boldsymbol{H}^{-1}(\operatorname{div}\boldsymbol{\operatorname{div}})}^{2}:=\|\boldsymbol{\tau}\|_{0}^{2}+\|\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}\|_{-1}^{2}, where 𝕊\mathbb{S} is the space of all symmetric 2×22\times 2 tensor. We refer to [25, 21, 22, 20, 6, 23] for details on the space 𝑯1(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}^{-1}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}). It is very difficult to construct 𝑯1(divdiv)\boldsymbol{H}^{-1}(\operatorname{div}\operatorname{div})-conforming but 𝑯(div)\boldsymbol{H}(\operatorname{div})-nonconforming symmetric tensor, cf. [25, Remark 3.33], [21, Remark 2.1] and [22, page 108]. Alternatively, with the help of the physical quantities normal bending moment, twisting moment and effective transverse shear force, hybridized mixed methods can be employed to discretize the mixed formulation of the Kirchhoff-Love plate bending problem, such as the hybridized discontinuous Galerkin method in [17] and the discontinuous Petrov-Galerkin method in [11].

A more natural Sobolev space for div𝐝𝐢𝐯\operatorname{div}\boldsymbol{\operatorname{div}} operator is

𝑯(div𝐝𝐢𝐯,Ω;𝕊):={𝝉𝑳2(Ω;𝕊):div𝐝𝐢𝐯𝝉L2(Ω)}\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}):=\{\boldsymbol{\tau}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}):\operatorname{div}\mathbf{div}\boldsymbol{\tau}\in L^{2}(\Omega)\}

with squared norm 𝝉𝑯(div𝐝𝐢𝐯)2:=𝝉02+div𝐝𝐢𝐯𝝉02\|\boldsymbol{\tau}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}^{2}:=\|\boldsymbol{\tau}\|_{0}^{2}+\|\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}\|_{0}^{2}. The corresponding Hilbert complex is

(1) 𝑹𝑻\autorightarrow𝑯1(Ω;2)\autorightarrowsym𝐜𝐮𝐫𝐥𝑯(div𝐝𝐢𝐯,Ω;𝕊)\autorightarrowdiv𝐝𝐢𝐯L2(Ω)\autorightarrow0.\leavevmode\resizebox{422.77661pt}{}{$\boldsymbol{RT}\autorightarrow{$\subset$}{}\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{2})\autorightarrow{$\operatorname{sym}\boldsymbol{\operatorname{curl}}$}{}\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S})\autorightarrow{$\operatorname{div}\boldsymbol{\operatorname{div}}$}{}L^{2}(\Omega)\autorightarrow{}{}0$}.

Conforming finite element spaces for 𝑯1(Ω;2)\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{2}) are relatively easy to construct and the natural finite element space for L2(Ω)L^{2}(\Omega) is discontinuous polynomial spaces. The following question arises quite naturally: can we construct conforming finite element spaces for 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) such that the complex (1) is preserved in the discrete case? The purpose of this paper is to give a positive answer. We will answer this question by constructing two types of finite element spaces on triangles which resembles the RT and BDM spaces for 𝑯(𝐝𝐢𝐯,Ω)\boldsymbol{H}(\boldsymbol{\operatorname{div}},\Omega) [3] in the vector case. Furthermore we shall construct the following commuting diagram

𝑹𝑻𝑯1(Ω;2)𝑰hsym𝐜𝐮𝐫𝐥𝑯(div𝐝𝐢𝐯,Ω;𝕊)𝚷hdiv𝐝𝐢𝐯L2(Ω)Qh0𝑹𝑻𝑽+1sym𝐜𝐮𝐫𝐥𝚺,kdiv𝐝𝐢𝐯𝒬h0,\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.4514pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-10.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.72917pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 57.38335pt\raise-20.2511pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\boldsymbol{I}_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.38335pt\raise-30.66888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 77.32777pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.31529pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 104.31529pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 139.37784pt\raise-20.2511pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\boldsymbol{\Pi}_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 139.37784pt\raise-30.66888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 173.91258pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 198.44038pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 198.44038pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces L^{2}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 213.74318pt\raise-20.2511pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{Q_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 213.74318pt\raise-30.66888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 233.14458pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 253.04597pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 253.04597pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-10.4514pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.30902pt\raise-35.47852pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 45.61111pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 45.61111pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{V}_{\ell+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 83.39307pt\raise-34.3911pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 129.27644pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 129.27644pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\Sigma}_{\ell,k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 164.0327pt\raise-35.07164pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 205.24104pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 205.24104pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{Q}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 233.14458pt\raise-40.5022pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 253.04597pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 253.04597pt\raise-40.5022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array},

where the domain of the interpolation operators are smoother subspaces of the spaces in the top complex. Details of spaces and operators can be found in Sections 2 and 3, respectively.

We give a glimpse on the conforming space of stress. Let KK be a triangle. The set of edges of KK is denoted by (K)\mathcal{E}(K) and the vertices by 𝒱(K)\mathcal{V}(K). The shape function space is simply k(K;𝕊)\mathbb{P}_{k}(K;\mathbb{S}). The degree of freedom are given by

𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(𝒏𝝉𝒏,q)e\displaystyle(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},q)_{e} qk2(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-2}(e),e\in\mathcal{E}(K),
(t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,q)e\displaystyle(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{e} qk1(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-1}(e),e\in\mathcal{E}(K),
(𝝉,𝝇)K\displaystyle(\boldsymbol{\tau},\boldsymbol{\varsigma})_{K} 𝝇2k2(K)sym(𝒙k2(K;2)).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\nabla^{2}\mathbb{P}_{k-2}(K)\oplus\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(K;\mathbb{R}^{2})).

By rotation, we obtain conforming finite elements for 𝑯(rot𝐫𝐨𝐭,Ω;𝕊)\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}},\Omega;\mathbb{S}) with the shape functions being polynomials. The conforming finite element strain complex and the corresponding commutative diagram are also constructed. Some lower-order 𝑯(rot𝐫𝐨𝐭)\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}})-conforming finite elements are advanced in [7], whose shape functions are piecewise polynomials based on the Clough-Tocher split of the triangle.

Then the 𝑯(div𝐝𝐢𝐯)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})-conforming finite elements are exploited to discretize the mixed formulation of the biharmonic equation. The discrete inf-sup condition follows from the commutative diagram for the div\operatorname{div}-div\operatorname{div} complex, and we derive the optimal convergence of the mixed finite element methods. Furthermore, the discrete inf-sup condition based on mesh-dependent norms is established, by which we acquire a third or fourth order higher superconvergence of |Qhuuh|2,h|Q_{h}u-u_{h}|_{2,h} than the optimal one. With the help of this superconvergence, a new superconvergent discrete deflection is devised by postprocessing. Hybridization is also provided for the easy of implementation.

The rest of this paper is organized as follows. In Section 2, we present the Green’s identity for div-div operator and analyze the trace of the Sobolev space 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}). In Section 3, the conforming finite elements for 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) and 𝑯(rot𝐫𝐨𝐭,Ω;𝕊)\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}},\Omega;\mathbb{S}), the finite element div-div complex and the finite element strain complex are constructed. Mixed finite element methods for the biharmonic equation are developed and analyzed in Section 4.

2. Div-div Conforming Symmetric Tensor Space

In this section, we shall study the Sobolev space 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) for div-div operator. We first present a Green’s identity based on which we can characterize the trace of 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) on polygons and give a sufficient continuity condition for a piecewise smooth function to be in 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}).

2.1. Notation

Denote the space of all 2×22\times 2 matrix by 𝕄\mathbb{M}, all symmetric 2×22\times 2 matrix by 𝕊\mathbb{S}, and all skew-symmetric 2×22\times 2 matrix by 𝕂\mathbb{K}. Given a bounded domain G2G\subset\mathbb{R}^{2} and a non-negative integer mm, let Hm(G)H^{m}(G) be the usual Sobolev space of functions on GG, and 𝑯m(G;𝕏)\boldsymbol{H}^{m}(G;\mathbb{X}) be the usual Sobolev space of functions taking values in the finite-dimensional vector space 𝕏\mathbb{X} for 𝕏\mathbb{X} being 𝕄\mathbb{M}, 𝕊\mathbb{S}, 𝕂\mathbb{K} or 2\mathbb{R}^{2}. The corresponding norm and semi-norm are denoted respectively by m,G\|\cdot\|_{m,G} and ||m,G|\cdot|_{m,G}. If GG is Ω\Omega, we abbreviate them by m\|\cdot\|_{m} and ||m|\cdot|_{m}, respectively. Let H0m(G)H_{0}^{m}(G) be the closure of C0(G)C_{0}^{\infty}(G) with respect to the norm m,G\|\cdot\|_{m,G}. m(G)\mathbb{P}_{m}(G) stands for the set of all polynomials in GG with the total degree no more than mm, and m(G;𝕏)\mathbb{P}_{m}(G;\mathbb{X}) denotes the tensor or vector version. Let QmGQ_{m}^{G} be the L2L^{2}-orthogonal projection operator onto m(G)\mathbb{P}_{m}(G). For GG being a polygon, denote by (G)\mathcal{E}(G) the set of all edges of GG, i(G)\mathcal{E}^{i}(G) the set of all interior edges of GG and 𝒱(G)\mathcal{V}(G) the set of all vertices of GG.

Let {𝒯h}h>0\{\mathcal{T}_{h}\}_{h>0} be a regular family of polygonal meshes of Ω\Omega. Our finite element spaces are constructed for triangles but some results, e.g., traces and Green’s formulae etc, hold for general polygons. For each element K𝒯hK\in\mathcal{T}_{h}, denote by 𝒏K=(n1,n2)\boldsymbol{n}_{K}=(n_{1},n_{2})^{\intercal} the unit outward normal to K\partial K and write 𝒕K:=(t1,t2)=(n2,n1)\boldsymbol{t}_{K}:=(t_{1},t_{2})^{\intercal}=(-n_{2},n_{1})^{\intercal}, a unit vector tangent to K\partial K. Without causing any confusion, we will abbreviate 𝒏K\boldsymbol{n}_{K} and 𝒕K\boldsymbol{t}_{K} as 𝒏\boldsymbol{n} and 𝒕\boldsymbol{t} respectively for simplicity. Let h\mathcal{E}_{h}, hi\mathcal{E}^{i}_{h}, 𝒱h\mathcal{V}_{h} and 𝒱hi\mathcal{V}^{i}_{h} be the union of all edges, interior edges, vertices and interior vertices of the partition 𝒯h\mathcal{T}_{h}, respectively. For any ehe\in\mathcal{E}_{h}, fix a unit normal vector 𝒏e:=(n1,n2)\boldsymbol{n}_{e}:=(n_{1},n_{2})^{\intercal} and a unit tangent vector 𝒕e:=(n2,n1)\boldsymbol{t}_{e}:=(-n_{2},n_{1})^{\intercal}.

For a column vector function ϕ=(ϕ1,ϕ2)\boldsymbol{\phi}=(\phi_{1},\phi_{2})^{\intercal}, differential operators for scalar functions will be applied row-wise to produce a matrix function. Similarly for a matrix function, differential operators for vector functions are applied row-wise. For a scalar function ϕ\phi, curlϕ:=(x2ϕ,x1ϕ)\operatorname{curl}\phi:=(\partial_{x_{2}}\phi,-\partial_{x_{1}}\phi)^{\intercal} with 𝒙=(x1,x2)\boldsymbol{x}=(x_{1},x_{2})^{\intercal} and for a vector function 𝒗\boldsymbol{v}, 𝐜𝐮𝐫𝐥\boldsymbol{\operatorname{curl}} is applied row-wise and the result 𝐜𝐮𝐫𝐥𝒗\boldsymbol{\operatorname{curl}}\,\boldsymbol{v} is a matrix, whose symmetric part is denoted by sym𝐜𝐮𝐫𝐥\operatorname{sym}\boldsymbol{\operatorname{curl}}. That is sym𝐜𝐮𝐫𝐥𝒗:=(𝐜𝐮𝐫𝐥𝒗+(𝐜𝐮𝐫𝐥𝒗))/2\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v}:=(\boldsymbol{\operatorname{curl}}\,\boldsymbol{v}+(\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})^{\intercal})/2.

2.2. Green’s identity

We start from the Green’s identity for smooth functions but on polygons.

Lemma 2.1 (Green’s identity).

Let KK be a polygon, and let 𝛕𝒞2(K;𝕊)\boldsymbol{\tau}\in\mathcal{C}^{2}(K;\mathbb{S}) and vH2(K)v\in H^{2}(K). Then we have

(div𝐝𝐢𝐯𝝉,v)K\displaystyle(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{K} =(𝝉,2v)Ke(K)δesigne,δ(𝒕𝝉𝒏)(δ)v(δ)\displaystyle=(\boldsymbol{\tau},\nabla^{2}v)_{K}-\sum_{e\in\mathcal{E}(K)}\sum_{\delta\in\partial e}\operatorname{sign}_{e,\delta}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})(\delta)v(\delta)
(2) e(K)[(𝒏𝝉𝒏,nv)e(t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,v)e],\displaystyle\quad-\sum_{e\in\mathcal{E}(K)}\left[(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},\partial_{n}v)_{e}-(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{e}\right],

where

signe,δ:={1, if δ is the end point of e,1, if δ is the start point of e.\operatorname{sign}_{e,\delta}:=\begin{cases}1,&\textrm{ if }\delta\textrm{ is the end point of }e,\\ -1,&\textrm{ if }\delta\textrm{ is the start point of }e.\end{cases}
Proof.

We start from the standard integration by parts

(div𝐝𝐢𝐯𝝉,v)K=(𝐝𝐢𝐯𝝉,v)K+e(K)(𝒏𝐝𝐢𝐯𝝉,v)e=(𝝉,2v)Ke(K)(𝝉𝒏,v)e+e(K)(𝒏𝐝𝐢𝐯𝝉,v)e.\displaystyle\begin{aligned} (\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{K}&=-(\boldsymbol{\operatorname{div}}\boldsymbol{\tau},\nabla v)_{K}+\sum_{e\in\mathcal{E}(K)}(\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{e}\\ &=\left(\boldsymbol{\tau},\nabla^{2}v\right)_{K}-\sum_{e\in\mathcal{E}(K)}(\boldsymbol{\tau}\boldsymbol{n},\nabla v)_{e}+\sum_{e\in\mathcal{E}(K)}(\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{e}.\end{aligned}

Now we expand (𝝉𝒏,v)e=(𝒏𝝉𝒏,nv)e+(𝒕𝝉𝒏,tv)e(\boldsymbol{\tau}\boldsymbol{n},\nabla v)_{e}=(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},\partial_{n}v)_{e}+(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},\partial_{t}v)_{e} and apply integration by parts on each edge to the second term

(𝒕𝝉𝒏,tv)e=δesigne,δ(𝒕𝝉𝒏)(δ)v(δ)(t(𝒕𝝉𝒏),v)e(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},\partial_{t}v)_{e}=\sum_{\delta\in\partial e}\operatorname{sign}_{e,\delta}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})(\delta)v(\delta)-(\partial_{t}\left(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n}\right),v)_{e}

to finish the proof. ∎

In the context of elastic mechanics [10], 𝒏𝝉𝒏\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n} and t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau} are called normal bending moment and effective transverse shear force respectively for 𝝉\boldsymbol{\tau} being a moment.

For a scalar function ϕ\phi, due to the rotation relation, 𝒏curlϕ=𝒕gradϕ=tϕ\boldsymbol{n}^{\intercal}\operatorname{curl}\phi=\boldsymbol{t}^{\intercal}\operatorname{grad}\phi=\partial_{t}\phi and 𝒕curlϕ=𝒏gradϕ=nϕ\boldsymbol{t}^{\intercal}\operatorname{curl}\phi=-\boldsymbol{n}^{\intercal}\operatorname{grad}\phi=-\partial_{n}\phi. For vector and matrix functions, we have the following relations.

Lemma 2.2.

When 𝛕=sym𝐜𝐮𝐫𝐥𝐯\boldsymbol{\tau}=\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v}, we have the following identities

(3) 𝒏𝝉𝒏\displaystyle\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n} =𝒏t𝒗,\displaystyle=\boldsymbol{n}^{\intercal}\partial_{t}\boldsymbol{v},
(4) t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉\displaystyle\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau} =t(𝒕t𝒗).\displaystyle=\partial_{t}(\boldsymbol{t}^{\intercal}\partial_{t}\boldsymbol{v}).
Proof.

The first one is a straight forward calculation using (𝐜𝐮𝐫𝐥𝒗)𝒏=t𝒗(\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})\boldsymbol{n}=\partial_{t}\boldsymbol{v}. We now focus on the second one. Since 𝐝𝐢𝐯𝐜𝐮𝐫𝐥𝒗=0\boldsymbol{\operatorname{div}}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v}=0, we have

𝒏𝐝𝐢𝐯𝝉=12𝒏𝐝𝐢𝐯(𝐜𝐮𝐫𝐥𝒗)=12𝒏curldiv𝒗=12tdiv𝒗.\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=\frac{1}{2}\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}(\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})^{\intercal}=\frac{1}{2}\boldsymbol{n}^{\intercal}\operatorname{curl}\operatorname{div}\boldsymbol{v}=\frac{1}{2}\partial_{t}\operatorname{div}\boldsymbol{v}.

As div𝒗=trace(𝒗)\operatorname{div}\boldsymbol{v}={\rm trace}(\boldsymbol{\nabla}\boldsymbol{v}) is invariant to the rotation, we can write it as

div𝒗=𝒕𝒗𝒕+𝒏𝒗𝒏=𝒕t𝒗+𝒏n𝒗.\operatorname{div}\boldsymbol{v}=\boldsymbol{t}^{\intercal}\boldsymbol{\nabla}\boldsymbol{v}\boldsymbol{t}+\boldsymbol{n}^{\intercal}\boldsymbol{\nabla}\boldsymbol{v}\boldsymbol{n}=\boldsymbol{t}^{\intercal}\partial_{t}\boldsymbol{v}+\boldsymbol{n}^{\intercal}\partial_{n}\boldsymbol{v}.

Then

t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉=12t[𝒕t𝒗𝒏n𝒗+div𝒗]=t(𝒕t𝒗),\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=\frac{1}{2}\partial_{t}[\boldsymbol{t}^{\intercal}\partial_{t}\boldsymbol{v}-\boldsymbol{n}^{\intercal}\partial_{n}\boldsymbol{v}+\operatorname{div}\boldsymbol{v}]=\partial_{t}(\boldsymbol{t}^{\intercal}\partial_{t}\boldsymbol{v}),

i.e. (4) holds. ∎

2.3. Traces

Next we recall the trace of the space 𝑯(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}) on the boundary of polygon KK. Detailed proofs of the following trace operators can be found in [1, Theorem 2.2] for 2-D domains and [12, Lemma 3.2] for both 2-D and 3-D domains. The normal-normal trace of 𝑯(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}) can be also found in [25, 22].

Define trace space

Hn,01/2(K)\displaystyle H_{n,0}^{1/2}(\partial K) :={nv|K:vH2(K)H01(K)}\displaystyle:=\{\partial_{n}v|_{\partial K}:v\in H^{2}(K)\cap H_{0}^{1}(K)\}
={gL2(K):g|eH001/2(e)e(K)}\displaystyle\;=\{g\in L^{2}(\partial K):g|_{e}\in H_{00}^{1/2}(e)\;\;\forall\leavevmode\nobreak\ e\in\mathcal{E}(K)\}

with norm

gHn,01/2(K):=infvH2(K)H01(K)nv=gv2.\|g\|_{H_{n,0}^{1/2}(\partial K)}:=\inf_{v\in H^{2}(K)\cap H_{0}^{1}(K)\atop\partial_{n}v=g}\|v\|_{2}.

Let Hn1/2(K):=(Hn,01/2(K))H_{n}^{-1/2}(\partial K):=(H_{n,0}^{1/2}(\partial K))^{\prime}. Note that for a 2D polygon KK, and vH2(K)H01(K)v\in H^{2}(K)\cap H_{0}^{1}(K), the normal derivative nv|eH001/2(e)\partial_{n}v|_{e}\in H_{00}^{1/2}(e) for boundary edge eKe\in\partial K can be derived from the compatible condition for traces on polygonal domains [13, Theorem 1.5.2.8].

Lemma 2.3.

For any 𝛕𝐇(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}), it holds

𝒏𝝉𝒏Hn1/2(K)𝝉𝑯(div𝐝𝐢𝐯).\|\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n}\|_{H_{n}^{-1/2}(\partial K)}\lesssim\|\boldsymbol{\tau}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}.

Conversely, for any gHn1/2(K)g\in H_{n}^{-1/2}(\partial K), there exists some 𝛕𝐇(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}) such that

𝒏𝝉𝒏|K=g,𝝉𝑯(div𝐝𝐢𝐯)gHn1/2(K).\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n}|_{\partial K}=g,\quad\|\boldsymbol{\tau}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}\lesssim\|g\|_{H_{n}^{-1/2}(\partial K)}.

The hidden constants depend only the shape of the domain KK.

We then consider another part of the trace involving combination of derivatives. Define trace space

He,03/2(K)\displaystyle H_{e,0}^{3/2}(\partial K) :={v|K:vH2(K),nv|K=0,v(δ)=0 for each vertex δ𝒱(K)}\displaystyle:=\{v|_{\partial K}:v\in H^{2}(K),\partial_{n}v|_{\partial K}=0,v(\delta)=0\textrm{ for each vertex }\delta\in\mathcal{V}(K)\}

with norm

gHe,03/2(K):=infvH2(K)nv=0,v=gv2.\|g\|_{H_{e,0}^{3/2}(\partial K)}:=\inf_{v\in H^{2}(K)\atop\partial_{n}v=0,v=g}\|v\|_{2}.

Let He3/2(K):=(He,03/2(K))H_{e}^{-3/2}(\partial K):=(H_{e,0}^{3/2}(\partial K))^{\prime}. Note that since we consider polygon domains, we explicitly impose the condition v(δ)=0v(\delta)=0 for each vertex of the polygon.

Lemma 2.4.

For any 𝛕𝐇(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}), it holds

(5) t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉He3/2(K)𝝉𝑯(div𝐝𝐢𝐯).\|\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}\|_{H_{e}^{-3/2}(\partial K)}\lesssim\|\boldsymbol{\tau}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}.

Conversely, for any gHe3/2(K)g\in H_{e}^{-3/2}(\partial K), there exists some 𝛕𝐇(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}) such that

(6) t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉=g,𝝉𝑯(div𝐝𝐢𝐯)gHe3/2(K).\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=g,\quad\|\boldsymbol{\tau}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}\lesssim\|g\|_{H_{e}^{-3/2}(\partial K)}.

The hidden constants depend only the shape of the domain KK.

2.4. Continuity across the boundary

We then present a sufficient continuity condition for piecewise smoothing functions to be in 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}). Recall that 𝒯h\mathcal{T}_{h} is a shape regular polygonal mesh of Ω\Omega.

Lemma 2.5.

Let 𝛕𝐋2(Ω;𝕊)\boldsymbol{\tau}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}) such that

  1. (i)

    𝝉|K𝑯(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{\tau}|_{K}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}) for each polygon K𝒯hK\in\mathcal{T}_{h};

  2. (ii)

    (𝒏𝝉𝒏)|eL2(e)(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})|_{e}\in L^{2}(e) is single-valued for each ehie\in\mathcal{E}_{h}^{i};

  3. (iii)

    (te(𝒕𝝉𝒏)+𝒏e𝐝𝐢𝐯𝝉)|eL2(e)(\partial_{t_{e}}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}_{e}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau})|_{e}\in L^{2}(e) is single-valued for each ehie\in\mathcal{E}_{h}^{i};

  4. (iv)

    𝝉(δ)\boldsymbol{\tau}(\delta) is single-valued for each δ𝒱hi\delta\in\mathcal{V}_{h}^{i},

then 𝛕𝐇(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}).

Proof.

For any vC0(Ω)v\in C_{0}^{\infty}(\Omega), it follows from the Green’s identity (2) that

(𝝉,2v)\displaystyle(\boldsymbol{\tau},\nabla^{2}v) =K𝒯h(div𝐝𝐢𝐯𝝉,v)K+K𝒯hei(K)δeΩsigne,δ(𝒕𝝉𝒏)(δ)v(δ)\displaystyle=\sum_{K\in\mathcal{T}_{h}}(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{K}+\sum_{K\in\mathcal{T}_{h}}\sum_{e\in\mathcal{E}^{i}(K)}\sum_{\delta\in\partial e\cap\Omega}\operatorname{sign}_{e,\delta}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})(\delta)v(\delta)
+K𝒯hei(K)[(𝒏𝝉𝒏,nv)e(t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,v)e].\displaystyle\quad+\sum_{K\in\mathcal{T}_{h}}\sum_{e\in\mathcal{E}^{i}(K)}\left[(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},\partial_{n}v)_{e}-(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{e}\right].

As each interior edge is repeated twice in the summation with opposite orientation and the trace of τ\tau and vertex value τ\tau is single valued, we get

div𝐝𝐢𝐯𝝉,v=K𝒯h(div𝐝𝐢𝐯𝝉,v)K,\langle\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v\rangle=\sum_{K\in\mathcal{T}_{h}}(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},v)_{K},

which ends the proof. ∎

Besides the continuity of the trace, we also impose the continuity of stress at vertices which is a sufficient but not necessary condition for functions in 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}). For example, by the complex (1) and Lemma 2.2, for 𝝉=sym𝐜𝐮𝐫𝐥𝒗\boldsymbol{\tau}=\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v} with 𝒗\boldsymbol{v} being a Lagrange element function, 𝝉𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) but is not continuous at vertices. Physically, 𝒕𝝉𝒏\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n} represents the torsional moment which may have jump at vertices; see [10, §3.4] and [18, §3.4]. Sufficient and necessary conditions are presented in [12, Proposition 3.6].

The continuity of stress at vertices is crucial for us to construct 𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) conforming element in the classical triple [9], which resembles the 𝑯(𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{H}(\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) conforming Hu-Zhang element for linear elasticity [16].

3. Conforming finite element spaces and complex

In this section we construct conforming finite element spaces for H(div𝐝𝐢𝐯,Ω;𝕊)H(\operatorname{div}{\boldsymbol{\operatorname{div}}},\Omega;\mathbb{S}) on triangles. We first present two polynomial complexes and reveal some decompositions of polynomial tensor and vector spaces. Then we construct the finite element space and prove the unisolvence. We further link standard finite element spaces to construct finite element div-div complex. Finally we extend the construction to the strain complex.

3.1. Polynomial complexes

In this subsection, we shall consider polynomial spaces on a simply connected domain DD. Without loss of generality, we assume (0,0)D(0,0)\in D.

Lemma 3.1.

The polynomial complex

(7) 𝑹𝑻\autorightarrowk+1(D;2)\autorightarrowsym𝐜𝐮𝐫𝐥k(D;𝕊)\autorightarrowdiv𝐝𝐢𝐯k2(D)\autorightarrow0\boldsymbol{RT}\autorightarrow{\subset}{}\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\autorightarrow{\operatorname{sym}\boldsymbol{\operatorname{curl}}}{}\mathbb{P}_{k}(D;\mathbb{S})\autorightarrow{\operatorname{div}\boldsymbol{\operatorname{div}}}{}\mathbb{P}_{k-2}(D)\autorightarrow{}{}0

is exact.

Proof.

For any skew-symmetric 𝝉𝒞2(D;𝕂)\boldsymbol{\tau}\in\mathcal{C}^{2}(D;\mathbb{K}), it can be written as 𝝉=(0ϕϕ0)\boldsymbol{\tau}=\begin{pmatrix}0&\phi\\ -\phi&0\end{pmatrix}, then we have div𝐝𝐢𝐯𝝉=divcurlϕ=0\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=\operatorname{div}\operatorname{curl}\phi=0. Hence

div𝐝𝐢𝐯sym𝐜𝐮𝐫𝐥k+1(D;2)=div𝐝𝐢𝐯𝐜𝐮𝐫𝐥k+1(D;2)=0,\operatorname{div}\boldsymbol{\operatorname{div}}\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\mathbb{P}_{k+1}(D;\mathbb{R}^{2})=\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\operatorname{curl}}\,\mathbb{P}_{k+1}(D;\mathbb{R}^{2})=0,
div𝐝𝐢𝐯k(D;𝕊)=div𝐝𝐢𝐯k(D;𝕄)=Pk2(D).\operatorname{div}\boldsymbol{\operatorname{div}}\,\mathbb{P}_{k}(D;\mathbb{S})=\operatorname{div}\boldsymbol{\operatorname{div}}\,\mathbb{P}_{k}(D;\mathbb{M})=P_{k-2}(D).

Furthermore by direct calculation

dimk(D;𝕊)=dimsym𝐜𝐮𝐫𝐥k+1(D;2)+dimk2(D),\dim\mathbb{P}_{k}(D;\mathbb{S})=\dim\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\mathbb{P}_{k+1}(D;\mathbb{R}^{2})+\dim\mathbb{P}_{k-2}(D),

thus the complex (7) is exact. ∎

Define operator 𝝅RT:𝒞1(D;2)𝑹𝑻\boldsymbol{\pi}_{RT}:\mathcal{C}^{1}(D;\mathbb{R}^{2})\to\boldsymbol{RT} as

𝝅RT𝒗:=𝒗(0,0)+12(div𝒗)(0,0)𝒙.\boldsymbol{\pi}_{RT}\boldsymbol{v}:=\boldsymbol{v}(0,0)+\frac{1}{2}(\operatorname{div}\boldsymbol{v})(0,0)\boldsymbol{x}.

The following complex is the generalization of the Koszul complex for vector functions. For linear elasticity, it can be constructed based on Poincaré operators found in [8]. Here we give a straightforward proof.

Lemma 3.2.

The polynomial complex

(8) 0\autorightarrowk2(D)\autorightarrow𝒙𝒙k(D;𝕊)\autorightarrow𝒙k+1(D;2)\autorightarrow𝝅RT𝑹𝑻\autorightarrow00\autorightarrow{\subset}{}\mathbb{P}_{k-2}(D)\autorightarrow{\boldsymbol{x}\boldsymbol{x}^{\intercal}}{}\mathbb{P}_{k}(D;\mathbb{S})\autorightarrow{\boldsymbol{x}^{\perp}}{}\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\autorightarrow{\boldsymbol{\pi}_{RT}}{}\boldsymbol{RT}\autorightarrow{}{}0

is exact.

Proof.

Since (𝒙𝒙)𝒙=𝟎(\boldsymbol{x}\boldsymbol{x}^{\intercal})\boldsymbol{x}^{\perp}=\boldsymbol{0} and 𝝅RT(𝝉𝒙)=𝟎\boldsymbol{\pi}_{RT}(\boldsymbol{\tau}\boldsymbol{x}^{\perp})=\boldsymbol{0} for any 𝝉k(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(D;\mathbb{S}), thus (8) is a complex. For any 𝝉k(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(D;\mathbb{S}) satisfying 𝝉𝒙=𝟎\boldsymbol{\tau}\boldsymbol{x}^{\perp}=\boldsymbol{0}, there exists 𝒗k1(D;2)\boldsymbol{v}\in\mathbb{P}_{k-1}(D;\mathbb{R}^{2}) such that 𝝉=𝒗𝒙\boldsymbol{\tau}=\boldsymbol{v}\boldsymbol{x}^{\intercal}. By the symmetry of 𝝉\boldsymbol{\tau},

𝒙(𝒗𝒙)=(𝒙𝒗)𝒙=(𝒗𝒙)𝒙=𝒗𝒙𝒙=𝟎,\boldsymbol{x}(\boldsymbol{v}^{\intercal}\boldsymbol{x}^{\perp})=(\boldsymbol{x}\boldsymbol{v}^{\intercal})\boldsymbol{x}^{\perp}=(\boldsymbol{v}\boldsymbol{x}^{\intercal})^{\intercal}\boldsymbol{x}^{\perp}=\boldsymbol{v}\boldsymbol{x}^{\intercal}\boldsymbol{x}^{\perp}=\boldsymbol{0},

which indicates 𝒗𝒙=0\boldsymbol{v}^{\intercal}\boldsymbol{x}^{\perp}=0. Thus there exists qk2(D)q\in\mathbb{P}_{k-2}(D) satisfying 𝒗=q𝒙\boldsymbol{v}=q\boldsymbol{x}. Hence 𝝉=q𝒙𝒙\boldsymbol{\tau}=q\boldsymbol{x}\boldsymbol{x}^{\intercal}.

Next we show k+1(D;2)ker(𝝅RT)=k(D;𝕊)𝒙\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\cap\ker(\boldsymbol{\pi}_{RT})=\mathbb{P}_{k}(D;\mathbb{S})\boldsymbol{x}^{\perp}. For any 𝒗k+1(D;2)ker(𝝅RT)\boldsymbol{v}\in\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\cap\ker(\boldsymbol{\pi}_{RT}), since 𝒗(0,0)=𝟎\boldsymbol{v}(0,0)=\boldsymbol{0}, there exist 𝝉1k(D;𝕊)\boldsymbol{\tau}_{1}\in\mathbb{P}_{k}(D;\mathbb{S}) and qk(D)q\in\mathbb{P}_{k}(D) such that

𝒗=𝝉1𝒙+(0qq0)𝒙=𝝉1𝒙+q𝒙.\boldsymbol{v}=\boldsymbol{\tau}_{1}\boldsymbol{x}^{\perp}+\begin{pmatrix}0&-q\\ q&0\end{pmatrix}\boldsymbol{x}^{\perp}=\boldsymbol{\tau}_{1}\boldsymbol{x}^{\perp}+q\boldsymbol{x}.

Noting that 𝝅RT(𝝉1𝒙)=𝟎\boldsymbol{\pi}_{RT}(\boldsymbol{\tau}_{1}\boldsymbol{x}^{\perp})=\boldsymbol{0}, we also have 𝝅RT(q𝒙)=𝟎\boldsymbol{\pi}_{RT}(q\boldsymbol{x})=\boldsymbol{0}. This means

(div(q𝒙))(0,0)=0, i.e. q(0,0)=0.(\operatorname{div}(q\boldsymbol{x}))(0,0)=0,\quad\textrm{ i.e. }\quad q(0,0)=0.

Thus there exists 𝒒1k1(D;2)\boldsymbol{q}_{1}\in\mathbb{P}_{k-1}(D;\mathbb{R}^{2}) such that q=𝒒1𝒙q=\boldsymbol{q}_{1}^{\intercal}\boldsymbol{x}^{\perp}. Now take 𝝉=𝝉1+2sym(𝒙𝒒1)k(D;𝕊)\boldsymbol{\tau}=\boldsymbol{\tau}_{1}+2\operatorname{sym}(\boldsymbol{x}\boldsymbol{q}_{1}^{\intercal})\in\mathbb{P}_{k}(D;\mathbb{S}), then

𝝉𝒙=𝝉1𝒙+(𝒙𝒒1+𝒒1𝒙)𝒙=𝝉1𝒙+𝒙q=𝒗.\boldsymbol{\tau}\boldsymbol{x}^{\perp}=\boldsymbol{\tau}_{1}\boldsymbol{x}^{\perp}+(\boldsymbol{x}\boldsymbol{q}_{1}^{\intercal}+\boldsymbol{q}_{1}\boldsymbol{x}^{\intercal})\boldsymbol{x}^{\perp}=\boldsymbol{\tau}_{1}\boldsymbol{x}^{\perp}+\boldsymbol{x}q=\boldsymbol{v}.

Hence k+1(D;2)ker(𝝅RT)=k(D;𝕊)𝒙\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\cap\ker(\boldsymbol{\pi}_{RT})=\mathbb{P}_{k}(D;\mathbb{S})\boldsymbol{x}^{\perp} holds.

Apparently the operator 𝝅RT:k+1(D;2)𝑹𝑻\boldsymbol{\pi}_{RT}:\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\to\boldsymbol{RT} is surjective as

𝝅RT𝒗=𝒗𝒗𝑹𝑻.\boldsymbol{\pi}_{RT}\boldsymbol{v}=\boldsymbol{v}\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{RT}.

Those two complexes (7) and (8) are connected as

(9) 𝑹𝑻k+1(D;2)sym𝐜𝐮𝐫𝐥𝒙k(D;𝕊)div𝐝𝐢𝐯𝒙k2(D)𝒙𝒙0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.4514pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\crcr}}}\ignorespaces{\hbox{\kern-10.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.72917pt\raise 6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 34.4514pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k+1}(D;\mathbb{R}^{2})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 89.34575pt\raise 7.83328pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 116.33327pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.45107pt\raise-6.22913pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 10.4514pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 116.33327pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k}(D;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 161.92622pt\raise 7.15274pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 186.45403pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 97.77737pt\raise-6.92357pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.20139pt\hbox{$\scriptstyle{\boldsymbol{x}^{\bot}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 92.33327pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 186.45403pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k-2}(D)\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 237.9081pt\raise 1.72218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 252.9081pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 166.34222pt\raise-6.65968pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9375pt\hbox{$\scriptstyle{\boldsymbol{x}\boldsymbol{x}^{\intercal}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 162.45403pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 252.9081pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 235.18587pt\raise-6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\supset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 228.9081pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

Unlike the Koszul complex for vectors functions, we do not have the identity property applied to homogenous polynomials. Fortunately decomposition of polynomial spaces using Koszul and differential operators still holds.

First of all, we have the decomposition

k+1(D;2)=k(D;𝕊)𝒙𝑹𝑻.\mathbb{P}_{k+1}(D;\mathbb{R}^{2})=\mathbb{P}_{k}(D;\mathbb{S})\boldsymbol{x}^{\perp}\oplus\boldsymbol{RT}.

Let

k(D;𝕊):=sym𝐜𝐮𝐫𝐥k+1(D;2),k(D;𝕊):=𝒙𝒙k2(D).\mathbb{C}_{k}(D;\mathbb{S}):=\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\mathbb{P}_{k+1}(D;\mathbb{R}^{2}),\quad\mathbb{C}_{k}^{\oplus}(D;\mathbb{S}):=\boldsymbol{x}\boldsymbol{x}^{\intercal}\mathbb{P}_{k-2}(D).

The dimensions are

dimk(D;𝕊)=k2+5k+3,dimk(D;𝕊)=12k(k1).\dim\mathbb{C}_{k}(D;\mathbb{S})=k^{2}+5k+3,\quad\dim\mathbb{C}_{k}^{\oplus}(D;\mathbb{S})=\frac{1}{2}k(k-1).

The following decomposition for the polynomial symmetric tensor is indispensable for our construction of div-div conforming finite elements.

Lemma 3.3.

It holds

k(D;𝕊)=k(D;𝕊)k(D;𝕊).\mathbb{P}_{k}(D;\mathbb{S})=\mathbb{C}_{k}(D;\mathbb{S})\oplus\mathbb{C}_{k}^{\oplus}(D;\mathbb{S}).

And div𝐝𝐢𝐯:k(D;𝕊)k2(D;2)\operatorname{div}\boldsymbol{\operatorname{div}}:\mathbb{C}_{k}^{\oplus}(D;\mathbb{S})\to\mathbb{P}_{k-2}(D;\mathbb{R}^{2}) is a bijection.

Proof.

Assume qk2(D)q\in\mathbb{P}_{k-2}(D) satisfies 𝒙𝒙qk(D;𝕊)\boldsymbol{x}\boldsymbol{x}^{\intercal}q\in\mathbb{C}_{k}(D;\mathbb{S}), which means

div𝐝𝐢𝐯(𝒙𝒙q)=0.\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{x}\boldsymbol{x}^{\intercal}q)=0.

Since 𝐝𝐢𝐯(𝒙𝒙q)=(div(𝒙q)+q)𝒙\boldsymbol{\operatorname{div}}(\boldsymbol{x}\boldsymbol{x}^{\intercal}q)=(\operatorname{div}(\boldsymbol{x}q)+q)\boldsymbol{x}, we get

div(𝒙q)+q=0.\operatorname{div}(\boldsymbol{x}q)+q=0.

Then

div((x1+x2)𝒙q)=(x1+x2)(div(𝒙q)+q)=0,\operatorname{div}((x_{1}+x_{2})\boldsymbol{x}q)=(x_{1}+x_{2})(\operatorname{div}(\boldsymbol{x}q)+q)=0,

which indicates q=0q=0. Hence k(D;𝕊)k(D;𝕊)=𝟎\mathbb{C}_{k}(D;\mathbb{S})\cap\mathbb{C}_{k}^{\oplus}(D;\mathbb{S})=\boldsymbol{0}. Therefore we obtain the decomposition by the fact dimk(D;𝕊)=dimk(D;𝕊)+dimk(D;𝕊)\dim\mathbb{P}_{k}(D;\mathbb{S})=\dim\mathbb{C}_{k}(D;\mathbb{S})+\dim\mathbb{C}_{k}^{\oplus}(D;\mathbb{S}).

To prove the second result, we shall show a stronger result

(10) div𝐝𝐢𝐯(𝒙𝒙q)=(k+3)(k+2)q,qk(D).\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{x}\boldsymbol{x}^{\intercal}q)=(k+3)(k+2)q,\quad q\in\mathbb{H}_{k}(D).

By Euler’s formula for homogenous polynomial, we obtain div(𝒙q)=(𝒙)q+2q=(k+2)q\operatorname{div}(\boldsymbol{x}q)=(\boldsymbol{x}\cdot\nabla)q+2q=(k+2)q. Then 𝐝𝐢𝐯(𝒙𝒙q)=(div(𝒙q)+q)𝒙=(k+3)q𝒙.\boldsymbol{\operatorname{div}}(\boldsymbol{x}\boldsymbol{x}^{\intercal}q)=(\operatorname{div}(\boldsymbol{x}q)+q)\boldsymbol{x}=(k+3)q\boldsymbol{x}. Computing div\operatorname{div} again and using div(𝒙q)=(k+2)q\operatorname{div}(\boldsymbol{x}q)=(k+2)q, we obtain (10). ∎

Remark 3.4.

For a vector 𝐱=(x1,x2)\boldsymbol{x}=(x_{1},x_{2}), introduce the rotation 𝐱=(x2,x1)\boldsymbol{x}^{\perp}=(x_{2},-x_{1}). For the linear elasticity, we have the decomposition

k(D;𝕊)=𝔼k(D;𝕊)𝔼k(D;𝕊),\mathbb{P}_{k}(D;\mathbb{S})=\mathbb{E}_{k}(D;\mathbb{S})\oplus\mathbb{E}_{k}^{\oplus}(D;\mathbb{S}),

where, with 𝐝𝐞𝐟\boldsymbol{\operatorname{def}} being the symmetric gradient operator,

𝔼k(D;𝕊):=𝐝𝐞𝐟k+1(D;2),𝔼k(D;𝕊):=𝒙(𝒙)k2(D).\mathbb{E}_{k}(D;\mathbb{S}):=\boldsymbol{\operatorname{def}}\,\mathbb{P}_{k+1}(D;\mathbb{R}^{2}),\quad\mathbb{E}_{k}^{\oplus}(D;\mathbb{S}):=\boldsymbol{x}^{\perp}(\boldsymbol{x}^{\perp})^{\intercal}\mathbb{P}_{k-2}(D).

It is easy to see that The polynomial complex

(11) 1(D)\autorightarrowk+1(D)\autorightarrow2k1(D;𝕊)\autorightarrow𝐫𝐨𝐭k2(D;2)\autorightarrow0\mathbb{P}_{1}(D)\autorightarrow{\subset}{}\mathbb{P}_{k+1}(D)\autorightarrow{\nabla^{2}}{}\mathbb{P}_{k-1}(D;\mathbb{S})\autorightarrow{\boldsymbol{\operatorname*{rot}}}{}\mathbb{P}_{k-2}(D;\mathbb{R}^{2})\autorightarrow{}{}0

is exact, which the dual complex of the polynomial complex (7).

Define operator π1:𝒞1(D)1(D)\pi_{1}:\mathcal{C}^{1}(D)\to\mathbb{P}_{1}(D) as

π1v:=v(0,0)+𝒙(v)(0,0).\pi_{1}v:=v(0,0)+\boldsymbol{x}^{\intercal}(\nabla v)(0,0).
Lemma 3.5.

The polynomial complex

(12)

𝟎\autorightarrowk2(D;2)\autorightarrowsym(𝒙𝒗)k1(D;𝕊)\autorightarrow𝒙𝝉𝒙k+1(D)\autorightarrowπ11(D)\autorightarrow0\boldsymbol{0}\autorightarrow{$\subset$}{}\mathbb{P}_{k-2}(D;\mathbb{R}^{2})\autorightarrow{$\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\boldsymbol{v})$}{}\mathbb{P}_{k-1}(D;\mathbb{S})\autorightarrow{$\boldsymbol{x}^{\intercal}\boldsymbol{\tau}\boldsymbol{x}$}{}\mathbb{P}_{k+1}(D)\autorightarrow{$\pi_{1}$}{}\mathbb{P}_{1}(D)\autorightarrow{}{}0

is exact.

Proof.

It is easy to check that 𝒙k1(D;𝕊)𝒙=k+1(D)ker(π1)\boldsymbol{x}^{\intercal}\mathbb{P}_{k-1}(D;\mathbb{S})\boldsymbol{x}=\mathbb{P}_{k+1}(D)\cap\ker(\pi_{1}), and

dim𝒙k1(D;𝕊)𝒙=dimk+1(D)3=12(k2+5k).\dim\boldsymbol{x}^{\intercal}\mathbb{P}_{k-1}(D;\mathbb{S})\boldsymbol{x}=\dim\mathbb{P}_{k+1}(D)-3=\frac{1}{2}(k^{2}+5k).

Noting that

dimsym(𝒙k2(D;2))=dimk2(D;2)=k2k,\dim\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2}))=\dim\mathbb{P}_{k-2}(D;\mathbb{R}^{2})=k^{2}-k,

we get

dimsym(𝒙k2(D;2))+dim𝒙k1(D;𝕊)𝒙=dimk1(D;𝕊).\dim\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2}))+\dim\boldsymbol{x}^{\intercal}\mathbb{P}_{k-1}(D;\mathbb{S})\boldsymbol{x}=\dim\mathbb{P}_{k-1}(D;\mathbb{S}).

Hence the complex (12) is exact. ∎

Lemma 3.6.

It holds

(13) k1(D;𝕊)=2k+1(D)sym(𝒙k2(D;2)).\mathbb{P}_{k-1}(D;\mathbb{S})=\nabla^{2}\mathbb{P}_{k+1}(D)\oplus\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2})).

And 𝐫𝐨𝐭:sym(𝐱k2(D;2))k2(D;2)\boldsymbol{\operatorname*{rot}}:\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2}))\to\mathbb{P}_{k-2}(D;\mathbb{R}^{2}) is a bijection.

Proof.

Due to the fact

dimk1(D;𝕊)=dim2k+1(D)+dimsym(𝒙k2(D;2)),\dim\mathbb{P}_{k-1}(D;\mathbb{S})=\dim\nabla^{2}\mathbb{P}_{k+1}(D)+\dim\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2})),

it is sufficient to prove 2k+1(D)sym(𝒙k2(D;2))=𝟎\nabla^{2}\mathbb{P}_{k+1}(D)\cap\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2}))=\boldsymbol{0} for (13). For any qk+1(D)q\in\mathbb{P}_{k+1}(D) satisfying 2qsym(𝒙k2(D;2))\nabla^{2}q\in\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2})), it holds

(𝒙)2q=𝒙(2q)𝒙=0.(\boldsymbol{x}\cdot\nabla)^{2}q=\boldsymbol{x}^{\intercal}(\nabla^{2}q)\boldsymbol{x}=0.

Hence q1(D)q\in\mathbb{P}_{1}(D), which yields the decomposition (13).

On the other hand, it follows from the direct sum of (13) that 𝐫𝐨𝐭:sym(𝒙k2(D;2))k2(D;2)\boldsymbol{\operatorname*{rot}}:\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2}))\to\mathbb{P}_{k-2}(D;\mathbb{R}^{2}) is injective. Furthermore, we get from the complex (11) that

𝐫𝐨𝐭sym(𝒙k2(D;2))=𝐫𝐨𝐭k1(D;𝕊)=k2(D;2).\boldsymbol{\operatorname*{rot}}\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{k-2}(D;\mathbb{R}^{2}))=\boldsymbol{\operatorname*{rot}}\mathbb{P}_{k-1}(D;\mathbb{S})=\mathbb{P}_{k-2}(D;\mathbb{R}^{2}).

This ends the proof. ∎

3.2. Finite element spaces for symmetric tensors

Let KK be a triangle, and bKb_{K} be the cubic bubble function, i.e., bK3(K)H01(K)b_{K}\in\mathbb{P}_{3}(K)\cap H_{0}^{1}(K). Take the space of shape functions

𝚺,k(K):=(K;𝕊)k(K;𝕊)\boldsymbol{\Sigma}_{\ell,k}(K):=\mathbb{C}_{\ell}(K;\mathbb{S})\oplus\mathbb{C}_{k}^{\oplus}(K;\mathbb{S})

with k3k\geq 3 and k1\ell\geq k-1. By Lemma 3.3, we have

min{,k}(K;𝕊)𝚺,k(K)max{,k}(K;𝕊) and 𝚺k,k(K)=k(K;𝕊).\mathbb{P}_{\min\{\ell,k\}}(K;\mathbb{S})\subseteq\boldsymbol{\Sigma}_{\ell,k}(K)\subseteq\mathbb{P}_{\max\{\ell,k\}}(K;\mathbb{S})\quad\textrm{ and }\quad\boldsymbol{\Sigma}_{k,k}(K)=\mathbb{P}_{k}(K;\mathbb{S}).

The most interesting cases are =k1\ell=k-1 and =k\ell=k which correspond to RT and BDM H(div)H(\operatorname{div})-conforming elements for the vector functions, respectively.

The degrees of freedom are given by

(14) 𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(15) (𝒏𝝉𝒏,q)e\displaystyle(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},q)_{e} q2(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\ell-2}(e),e\in\mathcal{E}(K),
(16) (t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,q)e\displaystyle(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{e} q1(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\ell-1}(e),e\in\mathcal{E}(K),
(17) (𝝉,𝝇)K\displaystyle(\boldsymbol{\tau},\boldsymbol{\varsigma})_{K} 𝝇2k2(K)sym(𝒙2(K;2)).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\nabla^{2}\mathbb{P}_{k-2}(K)\oplus\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2})).

Before we prove the unisolvence, we give some characterization of space of shape functions.

Lemma 3.7.

For any 𝛕𝚺,k(K)\boldsymbol{\tau}\in\boldsymbol{\Sigma}_{\ell,k}(K), we have

  1. (1)

    𝝉𝒙+1(K;2)\boldsymbol{\tau}\boldsymbol{x}^{\perp}\in\mathbb{P}_{\ell+1}(K;\mathbb{R}^{2})

  2. (2)

    𝒏𝝉𝒏|e(e)e(K)\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n}|_{e}\in\mathbb{P}_{\ell}(e)\quad\forall\leavevmode\nobreak\ e\in\mathcal{E}(K)

  3. (3)

    (t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉)|e1(e)e(K)(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau})|_{e}\in\mathbb{P}_{\ell-1}(e)\quad\forall\leavevmode\nobreak\ e\in\mathcal{E}(K).

Proof.

(1) is a direct consequence of the Koszul complex (8). Take any 𝝉=𝒙𝒙qk(K;𝕊)\boldsymbol{\tau}=\boldsymbol{x}\boldsymbol{x}^{\intercal}q\in\mathbb{C}_{k}^{\oplus}(K;\mathbb{S}) with qk2(K)q\in\mathbb{P}_{k-2}(K). Since 𝒏𝒙\boldsymbol{n}^{\intercal}\boldsymbol{x} is constant on each edge of KK,

𝒏𝝉𝒏|e=(𝒏𝒙)2qk2(e),\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n}|_{e}=(\boldsymbol{n}^{\intercal}\boldsymbol{x})^{2}q\in\mathbb{P}_{k-2}(e),
(t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉)|e=𝒏𝒙(t(𝒕𝒙q)+div(𝒙q)+q)k2(e).(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau})|_{e}=\boldsymbol{n}^{\intercal}\boldsymbol{x}(\partial_{t}\left(\boldsymbol{t}^{\intercal}\boldsymbol{x}q)+\operatorname{div}(\boldsymbol{x}q)+q\right)\in\mathbb{P}_{k-2}(e).

Thus the results (2) and (3) hold from the requirement k1\ell\geq k-1. ∎

We now prove the unisolvence as follows.

Lemma 3.8.

The degrees of freedom (14)-(17) are unisolvent for 𝚺,k(K)\boldsymbol{\Sigma}_{\ell,k}(K).

Proof.

We first count the number of the degrees of freedom (14)-(17) and the dimension of the space, i.e., dim𝚺,k(K)\dim\boldsymbol{\Sigma}_{\ell,k}(K). Both of them are

2+5+3+12k(k1).\ell^{2}+5\ell+3+\frac{1}{2}k(k-1).

Then suppose all the degrees of freedom (14)-(17) applied to 𝝉\boldsymbol{\tau} vanish. We are going to prove the function 𝝉=0\boldsymbol{\tau}=0.

Step 1. Trace is vanished. By the vanishing degrees of freedom (14)-(16) and (2)-(3) in Lemma 3.7, we get (𝒏𝝉𝒏)|K=0(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})|_{\partial K}=0 and (t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉)|K=0(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau})|_{\partial K}=0.

Step 2. Divdiv is vanished. For any qk2(K)q\in\mathbb{P}_{k-2}(K), it holds from the Green’s identity (2) that

(div𝐝𝐢𝐯𝝉,q)K\displaystyle(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{K} =(𝝉,2q)Ke(K)δesigne,δ(𝒕𝝉𝒏)(δ)q(δ)\displaystyle=(\boldsymbol{\tau},\nabla^{2}q)_{K}-\sum_{e\in\mathcal{E}(K)}\sum_{\delta\in\partial e}\operatorname{sign}_{e,\delta}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})(\delta)q(\delta)
e(K)[(𝒏𝝉𝒏,nq)e(t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,q)e].\displaystyle\quad-\sum_{e\in\mathcal{E}(K)}\left[(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},\partial_{n}q)_{e}-(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{e}\right].

Since the trace is zero, 𝝉\boldsymbol{\tau} is zero at vertices, and (𝝉,2q)K=0(\boldsymbol{\tau},\nabla^{2}q)_{K}=0 from (17), we conclude div𝐝𝐢𝐯𝝉=0\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=0.

Step 3. Kernel of divdiv is vanished. Thus by the polynomial complex (7), there exists 𝒗+1(K;2)/𝑹𝑻\boldsymbol{v}\in\mathbb{P}_{\ell+1}(K;\mathbb{R}^{2})/\boldsymbol{RT} such that

𝝉=sym𝐜𝐮𝐫𝐥𝒗 and Q0e(𝒏𝒗)=0e(K).\boldsymbol{\tau}=\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v}\quad\textrm{ and }\quad Q_{0}^{e}(\boldsymbol{n}^{\intercal}\boldsymbol{v})=0\quad\forall\leavevmode\nobreak\ e\in\mathcal{E}(K).

Here we can take Q0e(𝒏𝒗)=0Q_{0}^{e}(\boldsymbol{n}^{\intercal}\boldsymbol{v})=0 thanks to the degree of freedom of the lowest order Raviart-Thomas element [24]. We will prove 𝒗=0\boldsymbol{v}=0 by similar procedure.

By Lemma 2.2, the fact (𝒏𝝉𝒏)|K=0(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})|_{\partial K}=0 implies

t(𝒏𝒗)|K=(𝒏𝝉𝒏)|K=0.\partial_{t}(\boldsymbol{n}^{\intercal}\boldsymbol{v})|_{\partial K}=(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})|_{\partial K}=0.

Hence 𝒏𝒗|K=0\boldsymbol{n}^{\intercal}\boldsymbol{v}|_{\partial K}=0. This also means 𝒗(δ)=𝟎\boldsymbol{v}(\delta)=\boldsymbol{0} for each δ𝒱(K)\delta\in\mathcal{V}(K).

Again by Lemma 2.2, since

t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉=t(𝒕t𝒗)\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=\partial_{t}(\boldsymbol{t}^{\intercal}\partial_{t}\boldsymbol{v})

and (t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉)|K=0(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau})|_{\partial K}=0, we acquire

tt(𝒕𝒗)|K=0.\partial_{tt}(\boldsymbol{t}^{\intercal}\boldsymbol{v})|_{\partial K}=0.

That is 𝒕𝒗|e1(e)\boldsymbol{t}^{\intercal}\boldsymbol{v}|_{e}\in\mathbb{P}_{1}(e) on each edge e(K)e\in\mathcal{E}(K). Noting that 𝒗(δ)=𝟎\boldsymbol{v}(\delta)=\boldsymbol{0} for each δ𝒱(K)\delta\in\mathcal{V}(K), we get 𝒕𝒗|K=0\boldsymbol{t}^{\intercal}\boldsymbol{v}|_{\partial K}=0 and consequently 𝒗|K=𝟎\boldsymbol{v}|_{\partial K}=\boldsymbol{0}, i.e.,

𝒗=bKψ2,for some ψ22(K;2).\boldsymbol{v}=b_{K}\psi_{\ell-2},\quad\text{for some }\psi_{\ell-2}\in\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2}).

We then use the fact rot:sym(𝒙2(K;2))2(K;2)\operatorname*{rot}:\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2}))\to\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2}) is bijection, cf. Lemma 3.6, to find ϕ2\phi_{\ell-2} s.t. rot(sym𝒙ϕ2)=ψ2\operatorname*{rot}(\operatorname{sym}\boldsymbol{x}^{\perp}\otimes\phi_{\ell-2})=\psi_{\ell-2}.

Finally we finish the proof by choosing 𝝇=sym(𝒙ϕ2)\boldsymbol{\varsigma}=\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\phi_{\ell-2}) in (17). The fact

(𝝉,𝝇)K=(sym𝐜𝐮𝐫𝐥bKψ2,sym(𝒙ϕ2))K=(bKψ2,ψ2)K=0(\boldsymbol{\tau},\boldsymbol{\varsigma})_{K}=(\operatorname{sym}\boldsymbol{\operatorname{curl}}b_{K}\psi_{\ell-2},\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\phi_{\ell-2}))_{K}=(b_{K}\psi_{\ell-2},\psi_{\ell-2})_{K}=0

will imply ψ2=0\psi_{\ell-2}=0 and consequently 𝒗=0,𝝉=0\boldsymbol{v}=0,\boldsymbol{\tau}=0. ∎

3.3. Finite element div\operatorname{div}-div\operatorname{div} complex

Recall the div\operatorname{div}-div\operatorname{div} Hilbert complexes with different regularity

(18) 𝑹𝑻\autorightarrow𝑯1(K;2)\autorightarrowsym𝐜𝐮𝐫𝐥𝑯(div𝐝𝐢𝐯,K;𝕊)\autorightarrowdiv𝐝𝐢𝐯L2(K)\autorightarrow0,\leavevmode\resizebox{422.77661pt}{}{$\boldsymbol{RT}\autorightarrow{$\subset$}{}\boldsymbol{H}^{1}(K;\mathbb{R}^{2})\autorightarrow{$\operatorname{sym}\boldsymbol{\operatorname{curl}}$}{}\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S})\autorightarrow{$\operatorname{div}\boldsymbol{\operatorname{div}}$}{}L^{2}(K)\autorightarrow{}{}0$},
(19) 𝑹𝑻\autorightarrow𝑯3(K;2)\autorightarrowsym𝐜𝐮𝐫𝐥𝑯2(K;𝕊)\autorightarrowdiv𝐝𝐢𝐯L2(K)\autorightarrow0.\boldsymbol{RT}\autorightarrow{\subset}{}\boldsymbol{H}^{3}(K;\mathbb{R}^{2})\autorightarrow{\operatorname{sym}\boldsymbol{\operatorname{curl}}}{}\boldsymbol{H}^{2}(K;\mathbb{S})\autorightarrow{\operatorname{div}\boldsymbol{\operatorname{div}}}{}L^{2}(K)\autorightarrow{}{}0.

Both complexes (18) and (19) are exact; see [6].

We have constructed finite element spaces for 𝑯(div𝐝𝐢𝐯,K;𝕊)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},K;\mathbb{S}). Now we define a vectorial H1H^{1}-conforming finite element. Let 𝑽+1(K):=+1(K;2)\boldsymbol{V}_{\ell+1}(K):=\mathbb{P}_{\ell+1}(K;\mathbb{R}^{2}) with 2\ell\geq 2. The local degrees of freedom are given by

(20) 𝒗(δ),𝒗(δ)\displaystyle\boldsymbol{v}(\delta),\nabla\boldsymbol{v}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(21) (𝒗,𝒒)e\displaystyle(\boldsymbol{v},\boldsymbol{q})_{e} 𝒒3(e;2),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{\ell-3}(e;\mathbb{R}^{2}),e\in\mathcal{E}(K),
(22) (𝒗,𝒒)K\displaystyle(\boldsymbol{v},\boldsymbol{q})_{K} 𝒒2(K;2).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2}).

This finite element is just the vectorial Hermite element [4, 9].

Lemma 3.9.

For any triangle KK, both the polynomial complexes

(23) 𝑹𝑻\autorightarrow𝑽+1(K)\autorightarrowsym𝐜𝐮𝐫𝐥𝚺,k(K)\autorightarrowdiv𝐝𝐢𝐯k2(K)\autorightarrow0\boldsymbol{RT}\autorightarrow{\subset}{}\boldsymbol{V}_{\ell+1}(K)\autorightarrow{\operatorname{sym}\boldsymbol{\operatorname{curl}}}{}\boldsymbol{\Sigma}_{\ell,k}(K)\autorightarrow{\operatorname{div}\boldsymbol{\operatorname{div}}}{}\mathbb{P}_{k-2}(K)\autorightarrow{}{}0

and

(24) 𝟎\autorightarrow𝑽̊+1(K)\autorightarrowsym𝐜𝐮𝐫𝐥𝚺̊,k(K)\autorightarrowdiv𝐝𝐢𝐯̊k2(K)\autorightarrow0\boldsymbol{0}\autorightarrow{\subset}{}\mathring{\boldsymbol{V}}_{\ell+1}(K)\autorightarrow{\operatorname{sym}\boldsymbol{\operatorname{curl}}}{}\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K)\autorightarrow{\operatorname{div}\boldsymbol{\operatorname{div}}}{}\mathring{\mathbb{P}}_{k-2}(K)\autorightarrow{}{}0

are exact, where

𝑽̊+1(K)\displaystyle\mathring{\boldsymbol{V}}_{\ell+1}(K) :={𝒗𝑽+1(K):all degrees of freedom (20)(21) vanish},\displaystyle:=\{\boldsymbol{v}\in\boldsymbol{V}_{\ell+1}(K):\textrm{all degrees of freedom }\eqref{HermitfemVdof1}-\eqref{HermitfemVdof2}\textrm{ vanish}\},
𝚺̊,k(K)\displaystyle\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K) :={𝝉𝚺,k(K):all degrees of freedom (14)(16) vanish},\displaystyle:=\{\boldsymbol{\tau}\in\boldsymbol{\Sigma}_{\ell,k}(K):\textrm{all degrees of freedom }\eqref{Hdivdivfemdof1}-\eqref{Hdivdivfemdof3}\textrm{ vanish}\},
̊k2(K)\displaystyle\mathring{\mathbb{P}}_{k-2}(K) :=k2(K)/1(K).\displaystyle:=\mathbb{P}_{k-2}(K)/\mathbb{P}_{1}(K).
Proof.

The exactness of the complex (23) follows from the exactness of the complex (7) and Lemma 3.3.

By the proof of Lemma 3.8, we have 𝚺̊,k(K)ker(div𝐝𝐢𝐯)=sym𝐜𝐮𝐫𝐥𝑽̊+1(K)\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K)\cap\ker(\operatorname{div}\boldsymbol{\operatorname{div}})=\operatorname{sym}\boldsymbol{\operatorname{curl}}\mathring{\boldsymbol{V}}_{\ell+1}(K). This also means

dimdiv𝐝𝐢𝐯𝚺̊,k(K)=dim𝚺̊,k(K)dim𝑽̊+1(K)=12k(k1)3=dim̊k2(K).\dim\operatorname{div}\boldsymbol{\operatorname{div}}\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K)=\dim\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K)-\dim\mathring{\boldsymbol{V}}_{\ell+1}(K)=\frac{1}{2}k(k-1)-3=\dim\mathring{\mathbb{P}}_{k-2}(K).

Due to the Green’s identity (2), we get div𝐝𝐢𝐯𝚺̊,k(K)̊k2(K)\operatorname{div}\boldsymbol{\operatorname{div}}\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K)\subseteq\mathring{\mathbb{P}}_{k-2}(K), which ends the proof. ∎

To show the commutative diagram for the polynomial complex (23), we introduce 𝚷K:𝑯2(K;𝕊)𝚺,k(K)\boldsymbol{\Pi}_{K}:\boldsymbol{H}^{2}(K;\mathbb{S})\to\boldsymbol{\Sigma}_{\ell,k}(K) be the nodal interpolation operator based on the degrees of freedom (14)-(17). We have 𝚷K𝝉=𝝉\boldsymbol{\Pi}_{K}\boldsymbol{\tau}=\boldsymbol{\tau} for any 𝝉min{,k}(K;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{\min\{\ell,k\}}(K;\mathbb{S}), and

(25) 𝝉𝚷K𝝉0,K+hK|𝝉𝚷K𝝉|1,K+hK2|𝝉𝚷K𝝉|2,KhKs|𝝉|s,K\|\boldsymbol{\tau}-\boldsymbol{\Pi}_{K}\boldsymbol{\tau}\|_{0,K}+h_{K}|\boldsymbol{\tau}-\boldsymbol{\Pi}_{K}\boldsymbol{\tau}|_{1,K}+h_{K}^{2}|\boldsymbol{\tau}-\boldsymbol{\Pi}_{K}\boldsymbol{\tau}|_{2,K}\lesssim h_{K}^{s}|\boldsymbol{\tau}|_{s,K}

for any 𝝉𝑯s(K;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}^{s}(K;\mathbb{S}) with 2smin{,k}+12\leq s\leq\min\{\ell,k\}+1. It follows from the Green’s identity (2) that

(26) div𝐝𝐢𝐯(𝚷K𝝉)=Qk2Kdiv𝐝𝐢𝐯𝝉𝝉𝑯2(K;𝕊).\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\Pi}_{K}\boldsymbol{\tau})=Q_{k-2}^{K}\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}\quad\forall\leavevmode\nobreak\ \boldsymbol{\tau}\in\boldsymbol{H}^{2}(K;\mathbb{S}).

Let 𝑰~K:𝑯3(K;2)𝑽+1(K)\widetilde{\boldsymbol{I}}_{K}:\boldsymbol{H}^{3}(K;\mathbb{R}^{2})\to\boldsymbol{V}_{\ell+1}(K) be the nodal interpolation operator based on the degrees of freedom (20)-(22). We have 𝑰~K𝒒=𝒒\widetilde{\boldsymbol{I}}_{K}\boldsymbol{q}=\boldsymbol{q} for any 𝒒+1(K;2)\boldsymbol{q}\in\mathbb{P}_{\ell+1}(K;\mathbb{R}^{2}), and

(27) 𝒗𝑰~K𝒗0,K+hK|𝒗𝑰~K𝒗|1,KhKs|𝒗|s,K𝒗𝑯s(K;2)\|\boldsymbol{v}-\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v}\|_{0,K}+h_{K}|\boldsymbol{v}-\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v}|_{1,K}\lesssim h_{K}^{s}|\boldsymbol{v}|_{s,K}\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{H}^{s}(K;\mathbb{R}^{2})

with 3s+23\leq s\leq\ell+2. Then we define 𝑰K:𝑯3(K;2)𝑽+1(K)\boldsymbol{I}_{K}:\boldsymbol{H}^{3}(K;\mathbb{R}^{2})\to\boldsymbol{V}_{\ell+1}(K) by modifying 𝑰~K\widetilde{\boldsymbol{I}}_{K}. By (3) and (4), clearly we have 𝚷K(sym𝐜𝐮𝐫𝐥𝒗)sym𝐜𝐮𝐫𝐥(𝑰~K𝒗)𝚺̊,k(K)\boldsymbol{\Pi}_{K}(\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})-\operatorname{sym}\boldsymbol{\operatorname{curl}}(\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v})\in\mathring{\boldsymbol{\Sigma}}_{\ell,k}(K) for any 𝒗𝑯3(K;2)\boldsymbol{v}\in\boldsymbol{H}^{3}(K;\mathbb{R}^{2}). And it holds from (26) that

div𝐝𝐢𝐯(𝚷K(sym𝐜𝐮𝐫𝐥𝒗)sym𝐜𝐮𝐫𝐥(𝑰~K𝒗))=0.\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\Pi}_{K}(\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})-\operatorname{sym}\boldsymbol{\operatorname{curl}}(\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v}))=0.

Thus using the complex (24), there exists 𝒗~𝑽̊+1(K)\widetilde{\boldsymbol{v}}\in\mathring{\boldsymbol{V}}_{\ell+1}(K) satisfying

sym𝐜𝐮𝐫𝐥𝒗~=𝚷K(sym𝐜𝐮𝐫𝐥𝒗)sym𝐜𝐮𝐫𝐥(𝑰~K𝒗),\operatorname{sym}\boldsymbol{\operatorname{curl}}\widetilde{\boldsymbol{v}}=\boldsymbol{\Pi}_{K}(\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})-\operatorname{sym}\boldsymbol{\operatorname{curl}}(\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v}),
𝒗~0,KhK𝚷K(sym𝐜𝐮𝐫𝐥𝒗)sym𝐜𝐮𝐫𝐥(𝑰~K𝒗)0,K.\|\widetilde{\boldsymbol{v}}\|_{0,K}\lesssim h_{K}\|\boldsymbol{\Pi}_{K}(\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})-\operatorname{sym}\boldsymbol{\operatorname{curl}}(\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v})\|_{0,K}.

Let 𝑰K𝒗:=𝑰~K𝒗+𝒗~\boldsymbol{I}_{K}\boldsymbol{v}:=\widetilde{\boldsymbol{I}}_{K}\boldsymbol{v}+\widetilde{\boldsymbol{v}}. Apparently 𝑰K𝒒=𝒒\boldsymbol{I}_{K}\boldsymbol{q}=\boldsymbol{q} for any 𝒒+1(K;2)\boldsymbol{q}\in\mathbb{P}_{\ell+1}(K;\mathbb{R}^{2}), and

(28) sym𝐜𝐮𝐫𝐥(𝑰K𝒗)=𝚷K(sym𝐜𝐮𝐫𝐥𝒗)𝒗𝑯3(K;2).\operatorname{sym}\boldsymbol{\operatorname{curl}}(\boldsymbol{I}_{K}\boldsymbol{v})=\boldsymbol{\Pi}_{K}(\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{H}^{3}(K;\mathbb{R}^{2}).

It follows from (27) and (25) that

(29) 𝒗𝑰K𝒗0,K+hK|𝒗𝑰K𝒗|1,KhKs|𝒗|s,K𝒗𝑯s(K;2).\|\boldsymbol{v}-\boldsymbol{I}_{K}\boldsymbol{v}\|_{0,K}+h_{K}|\boldsymbol{v}-\boldsymbol{I}_{K}\boldsymbol{v}|_{1,K}\lesssim h_{K}^{s}|\boldsymbol{v}|_{s,K}\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{H}^{s}(K;\mathbb{R}^{2}).

with 3s+23\leq s\leq\ell+2.

In summary, we have the following commutative diagram for the local finite element complex (23)

𝑹𝑻𝑯3(K;2)𝑰Ksym𝐜𝐮𝐫𝐥𝑯2(K;𝕊)𝚷Kdiv𝐝𝐢𝐯L2(K)QK0𝑹𝑻𝑽+1(K)sym𝐜𝐮𝐫𝐥𝚺,k(K)div𝐝𝐢𝐯k2(K)0\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.4514pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-10.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.72917pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{3}(K;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 58.3764pt\raise-20.41777pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\boldsymbol{I}_{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 58.3764pt\raise-30.33554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 79.31389pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 106.3014pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 106.3014pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{2}(K;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 127.92363pt\raise-20.41777pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\boldsymbol{\Pi}_{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 127.92363pt\raise-30.33554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 150.25763pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 176.02501pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 176.02501pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces L^{2}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 192.32086pt\raise-20.41777pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{Q_{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 192.32086pt\raise-30.33554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 213.45836pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 235.09587pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 235.09587pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-10.4514pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.55902pt\raise-35.81186pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 38.1111pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 38.1111pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{V}_{\ell+1}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 78.16249pt\raise-34.72444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 109.32918pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 109.32918pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\Sigma}_{\ell,k}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 147.59444pt\raise-35.40498pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 173.54585pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 173.54585pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k-2}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 213.45836pt\raise-40.83554pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 235.09587pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 235.09587pt\raise-40.83554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}

with QK:=Qk2KQ_{K}:=Q_{k-2}^{K}.

We then glue local finite element spaces to get global conforming spaces. Define

𝑽h:={𝒗h𝑯1(Ω;2):\displaystyle\boldsymbol{V}_{h}:=\{\boldsymbol{v}_{h}\in\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{2}): 𝒗h|K+1(K;2) for each K𝒯h,\displaystyle\,\boldsymbol{v}_{h}|_{K}\in\mathbb{P}_{\ell+1}(K;\mathbb{R}^{2})\textrm{ for each }K\in\mathcal{T}_{h},
all the degrees of freedom (20)(21) are single-valued},\displaystyle\textrm{ all the degrees of freedom }\eqref{HermitfemVdof1}-\eqref{HermitfemVdof2}\textrm{ are single-valued}\},
𝚺h:={𝝉h𝑳2(Ω;𝕊):\displaystyle\boldsymbol{\Sigma}_{h}:=\{\boldsymbol{\tau}_{h}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}): 𝝉h|K𝚺,k(K) for each K𝒯h,\displaystyle\,\boldsymbol{\tau}_{h}|_{K}\in\boldsymbol{\Sigma}_{\ell,k}(K)\textrm{ for each }K\in\mathcal{T}_{h},
all the degrees of freedom (14)(16) are single-valued},\displaystyle\textrm{ all the degrees of freedom }\eqref{Hdivdivfemdof1}-\eqref{Hdivdivfemdof3}\textrm{ are single-valued}\},
𝒬h:=k2(𝒯h)={qhL2(Ω):qh|Kk2(K) for each K𝒯h}.\mathcal{Q}_{h}:=\mathbb{P}_{k-2}(\mathcal{T}_{h})=\{q_{h}\in L^{2}(\Omega):q_{h}|_{K}\in\mathbb{P}_{k-2}(K)\textrm{ for each }K\in\mathcal{T}_{h}\}.

Due to Lemma 2.5, the finite element space 𝚺h𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{\Sigma}_{h}\subset\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}). Let 𝑰h:𝑯3(Ω;𝕊)𝑽h\boldsymbol{I}_{h}:\boldsymbol{H}^{3}(\Omega;\mathbb{S})\to\boldsymbol{V}_{h}, 𝚷h:𝑯2(Ω;𝕊)𝚺h\boldsymbol{\Pi}_{h}:\boldsymbol{H}^{2}(\Omega;\mathbb{S})\to\boldsymbol{\Sigma}_{h} and Qhm:L2(Ω)m(𝒯h)Q_{h}^{m}:L^{2}(\Omega)\to\mathbb{P}_{m}(\mathcal{T}_{h}) be defined by (𝑰h𝒗)|K:=𝑰K(𝒗|K)(\boldsymbol{I}_{h}\boldsymbol{v})|_{K}:=\boldsymbol{I}_{K}(\boldsymbol{v}|_{K}), (𝚷h𝝉)|K:=𝚷K(𝝉|K)(\boldsymbol{\Pi}_{h}\boldsymbol{\tau})|_{K}:=\boldsymbol{\Pi}_{K}(\boldsymbol{\tau}|_{K}) and (Qhmq)|K:=QmK(q|K)(Q_{h}^{m}q)|_{K}:=Q_{m}^{K}(q|_{K}) for each K𝒯hK\in\mathcal{T}_{h}, respectively. When the degree is clear from the context, we will simply write the L2L^{2}-projection Qhk2Q_{h}^{k-2} as QhQ_{h}.

As direct results of (26) and (28), we have

(30) div𝐝𝐢𝐯(𝚷h𝝉)=Qhdiv𝐝𝐢𝐯𝝉𝝉𝑯2(Ω;𝕊),\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\Pi}_{h}\boldsymbol{\tau})=Q_{h}\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}\quad\forall\leavevmode\nobreak\ \boldsymbol{\tau}\in\boldsymbol{H}^{2}(\Omega;\mathbb{S}),
(31) sym𝐜𝐮𝐫𝐥(𝑰h𝒗)=𝚷h(sym𝐜𝐮𝐫𝐥𝒗)𝒗𝑯3(Ω;2).\operatorname{sym}\boldsymbol{\operatorname{curl}}(\boldsymbol{I}_{h}\boldsymbol{v})=\boldsymbol{\Pi}_{h}(\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{v})\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{H}^{3}(\Omega;\mathbb{R}^{2}).
Lemma 3.10.

The finite element complex

(32) 𝑹𝑻\autorightarrow𝑽h\autorightarrowsym𝐜𝐮𝐫𝐥𝚺h\autorightarrowdiv𝐝𝐢𝐯𝒬h\autorightarrow0\boldsymbol{RT}\autorightarrow{\subset}{}\boldsymbol{V}_{h}\autorightarrow{\operatorname{sym}\boldsymbol{\operatorname{curl}}}{}\boldsymbol{\Sigma}_{h}\autorightarrow{\operatorname{div}\boldsymbol{\operatorname{div}}}{}\mathcal{Q}_{h}\autorightarrow{}{}0

is exact. Moreover, we have the commutative diagram

(33) 𝑹𝑻𝑯3(Ω;2)𝑰hsym𝐜𝐮𝐫𝐥𝑯2(Ω;𝕊)𝚷hdiv𝐝𝐢𝐯L2(Ω)Qh0𝑹𝑻𝑽hsym𝐜𝐮𝐫𝐥𝚺hdiv𝐝𝐢𝐯𝒬h0.\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.4514pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-10.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.72917pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{3}(\Omega;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 57.38335pt\raise-19.97887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\boldsymbol{I}_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.38335pt\raise-30.12444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 77.32777pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.31529pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 104.31529pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{2}(\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 124.94447pt\raise-19.97887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{\boldsymbol{\Pi}_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 124.94447pt\raise-30.12444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 145.04585pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 169.57365pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 169.57365pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces L^{2}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 184.87645pt\raise-19.97887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{Q_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 184.87645pt\raise-30.12444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 204.27785pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 224.17924pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 224.17924pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-10.4514pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 23.87463pt\raise-34.93407pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 48.74232pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.74232pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{V}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 76.17639pt\raise-33.84665pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}\boldsymbol{\operatorname{curl}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 116.72012pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 116.72012pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\Sigma}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 142.38266pt\raise-34.52719pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}\boldsymbol{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 176.37431pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 176.37431pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{Q}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 204.27785pt\raise-39.95775pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 224.17924pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 224.17924pt\raise-39.95775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}.
Proof.

By the complex (19), for any qh𝒬hq_{h}\in\mathcal{Q}_{h}, there exists 𝝉𝑯2(Ω;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}^{2}(\Omega;\mathbb{S}) satisfying div𝐝𝐢𝐯𝝉=qh\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=q_{h}. Then it follows from (30) that

div𝐝𝐢𝐯(𝚷h𝝉)=Qhdiv𝐝𝐢𝐯𝝉=qh.\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\Pi}_{h}\boldsymbol{\tau})=Q_{h}\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}=q_{h}.

Hence div𝐝𝐢𝐯𝚺h=𝒬h\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\Sigma}_{h}=\mathcal{Q}_{h}. On the other hand, by counting we get

dim𝚺h=3#𝒱h+(21)#h+(1)#𝒯h+12(k+2)(k3)#𝒯h,\dim\boldsymbol{\Sigma}_{h}=3\#\mathcal{V}_{h}+(2\ell-1)\#\mathcal{E}_{h}+\ell(\ell-1)\#\mathcal{T}_{h}+\frac{1}{2}(k+2)(k-3)\#\mathcal{T}_{h},
dimsym𝐜𝐮𝐫𝐥𝑽h=6#𝒱h+(24)#h+(1)#𝒯h3,\dim\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{V}_{h}=6\#\mathcal{V}_{h}+(2\ell-4)\#\mathcal{E}_{h}+\ell(\ell-1)\#\mathcal{T}_{h}-3,
dimdiv𝐝𝐢𝐯𝚺h=dimk2(𝒯h)=12k(k1)#𝒯h.\dim\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\Sigma}_{h}=\dim\mathbb{P}_{k-2}(\mathcal{T}_{h})=\frac{1}{2}k(k-1)\#\mathcal{T}_{h}.

Here #𝒮\#\mathcal{S} means the number of the elements in the finite set 𝒮\mathcal{S}. It follows from the Euler’s formula #h+1=#𝒱h+#𝒯h\#\mathcal{E}_{h}+1=\#\mathcal{V}_{h}+\#\mathcal{T}_{h} that

dim𝚺h=dimsym𝐜𝐮𝐫𝐥𝑽h+dimdiv𝐝𝐢𝐯𝚺h.\dim\boldsymbol{\Sigma}_{h}=\dim\operatorname{sym}\boldsymbol{\operatorname{curl}}\,\boldsymbol{V}_{h}+\dim\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\Sigma}_{h}.

Therefore the complex (32) is exact.

The commutative diagram (33) follows from (30) and (31). ∎

Remark 3.11.

Using the smoothing procedure [2], the natural interpolations in the commutative diagram (33) can be refined to quasi-interpolations and the top one can be replaced by the complex (18) with minimal regularity.

3.4. Conforming finite element spaces for strain complex

In the application of linear elasticity, the strain complex is more relevant. As the rotated version of (2), we get the Green’s identity

(rot𝐫𝐨𝐭𝝉,v)K\displaystyle(\operatorname*{rot}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau},v)_{K} =(𝝉,𝐜𝐮𝐫𝐥curlv)K+e(K)δesigne,δ(𝒏𝝉𝒕)(δ)v(δ)\displaystyle=(\boldsymbol{\tau},\boldsymbol{\operatorname{curl}}\operatorname{curl}v)_{K}+\sum_{e\in\mathcal{E}(K)}\sum_{\delta\in\partial e}\operatorname{sign}_{e,\delta}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{t})(\delta)v(\delta)
(34) e(K)[(𝒕𝝉𝒕,nv)e+(t(𝒏𝝉𝒕)𝒕𝐫𝐨𝐭𝝉,v)e]\displaystyle\quad-\sum_{e\in\mathcal{E}(K)}\left[(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{t},\partial_{n}v)_{e}+(\partial_{t}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{t})-\boldsymbol{t}^{\intercal}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau},v)_{e}\right]

for any 𝝉𝒞2(K;𝕊)\boldsymbol{\tau}\in\mathcal{C}^{2}(K;\mathbb{S}) and vH2(K)v\in H^{2}(K).

As a result, we have the following characterization of 𝑯(rot𝐫𝐨𝐭,Ω;𝕊)\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}},\Omega;\mathbb{S}).

Lemma 3.12.

Let 𝛕𝐋2(Ω;𝕊)\boldsymbol{\tau}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}) such that

  1. (i)

    𝝉|K𝑯(rot𝐫𝐨𝐭,K;𝕊)\boldsymbol{\tau}|_{K}\in\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}},K;\mathbb{S}) for each K𝒯hK\in\mathcal{T}_{h};

  2. (ii)

    (𝒕𝝉𝒕)|eL2(e)(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{t})|_{e}\in L^{2}(e) is single-valued for each ehie\in\mathcal{E}_{h}^{i};

  3. (iii)

    (te(𝒏𝝉𝒕)+𝒕e𝐫𝐨𝐭𝝉)|eL2(e)(-\partial_{t_{e}}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{t})+\boldsymbol{t}_{e}^{\intercal}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau})|_{e}\in L^{2}(e) is single-valued for each ehie\in\mathcal{E}_{h}^{i};

  4. (iv)

    𝝉(δ)\boldsymbol{\tau}(\delta) is single-valued for each δ𝒱hi\delta\in\mathcal{V}_{h}^{i},

then 𝛕𝐇(rot𝐫𝐨𝐭,Ω;𝕊)\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}},\Omega;\mathbb{S}).

Take the space of shape functions

𝚺,k(K):=𝔼(K;𝕊)𝔼k(K;𝕊)\boldsymbol{\Sigma}_{\ell,k}^{\perp}(K):=\mathbb{E}_{\ell}(K;\mathbb{S})\oplus\mathbb{E}_{k}^{\oplus}(K;\mathbb{S})

with k3k\geq 3 and k1\ell\geq k-1, where recall that the spaces 𝔼(K;𝕊),𝔼k(K;𝕊)\mathbb{E}_{\ell}(K;\mathbb{S}),\mathbb{E}_{k}^{\oplus}(K;\mathbb{S}) are introduced in Remark 3.4. The local degrees of freedom are given by

(35) 𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(36) (𝒕𝝉𝒕,q)e\displaystyle(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{t},q)_{e} q2(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\ell-2}(e),e\in\mathcal{E}(K),
(37) (t(𝒏𝝉𝒕)+𝒕𝐫𝐨𝐭𝝉,q)e\displaystyle(-\partial_{t}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{t})+\boldsymbol{t}^{\intercal}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau},q)_{e} q1(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\ell-1}(e),e\in\mathcal{E}(K),
(38) (𝝉,𝝇)K\displaystyle(\boldsymbol{\tau},\boldsymbol{\varsigma})_{K} 𝝇𝐜𝐮𝐫𝐥curlk2(K)sym(𝒙2(K;2)).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\boldsymbol{\operatorname{curl}}\operatorname{curl}\,\mathbb{P}_{k-2}(K)\oplus\operatorname{sym}(\boldsymbol{x}\otimes\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2})).

The degrees of freedom (35)-(38) are unisolvent for 𝚺,k(K)\boldsymbol{\Sigma}_{\ell,k}^{\perp}(K).

Let 𝔸:=(0110)\mathbb{A}:=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}, then

𝒕=𝔸𝒏,curlϕ=𝔸gradϕ,rot𝒗=div(𝔸𝒗),𝐫𝐨𝐭𝝉=𝔸𝐝𝐢𝐯(𝔸𝝉𝔸),\boldsymbol{t}=\mathbb{A}\boldsymbol{n},\quad\operatorname{curl}\phi=\mathbb{A}^{\intercal}\operatorname{grad}\phi,\quad\operatorname*{rot}\boldsymbol{v}=\operatorname{div}(\mathbb{A}^{\intercal}\boldsymbol{v}),\quad\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau}=\mathbb{A}\boldsymbol{\operatorname{div}}(\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A}),
rot𝐫𝐨𝐭𝝉=div𝐝𝐢𝐯(𝔸𝝉𝔸),𝐜𝐮𝐫𝐥curlv=𝔸2v𝔸,𝐝𝐞𝐟𝒗=𝔸sym𝐜𝐮𝐫𝐥(𝔸𝒗)𝔸,\operatorname*{rot}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau}=\operatorname{div}\boldsymbol{\operatorname{div}}(\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A}),\;\;\boldsymbol{\operatorname{curl}}\operatorname{curl}v=\mathbb{A}^{\intercal}\nabla^{2}v\mathbb{A},\;\;\boldsymbol{\operatorname{def}}\boldsymbol{v}=\mathbb{A}\operatorname{sym}\boldsymbol{\operatorname{curl}}(\mathbb{A}^{\intercal}\boldsymbol{v})\mathbb{A}^{\intercal},
t(𝒏𝝉𝒕)+𝒕𝐫𝐨𝐭𝝉=t(𝒕𝔸𝝉𝔸𝒏)+𝒏𝐝𝐢𝐯(𝔸𝝉𝔸)-\partial_{t}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{t})+\boldsymbol{t}^{\intercal}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau}=\partial_{t}(\boldsymbol{t}^{\intercal}\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}(\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A})

for sufficiently smooth scalar field ϕ\phi, vectorial field 𝒗\boldsymbol{v} and tensorial field 𝝉\boldsymbol{\tau}. Moreover, we have

𝒙=𝔸𝒙,𝔼(K;𝕊)=𝔸(K;𝕊)𝔸,𝔼k(K;𝕊)=𝔸k(K;𝕊)𝔸.\boldsymbol{x}^{\perp}=\mathbb{A}^{\intercal}\boldsymbol{x},\quad\mathbb{E}_{\ell}(K;\mathbb{S})=\mathbb{A}^{\intercal}\mathbb{C}_{\ell}(K;\mathbb{S})\mathbb{A},\quad\mathbb{E}_{k}^{\oplus}(K;\mathbb{S})=\mathbb{A}^{\intercal}\mathbb{C}_{k}^{\oplus}(K;\mathbb{S})\mathbb{A}.

Then the exactness of the complex (23) implies that the local finite element strain complex

(39) 𝑹𝑴\autorightarrow𝑽+1(K)\autorightarrow𝐝𝐞𝐟𝚺,k(K)\autorightarrowrot𝐫𝐨𝐭k2(K)\autorightarrow0\boldsymbol{RM}\autorightarrow{\subset}{}\boldsymbol{V}_{\ell+1}(K)\autorightarrow{\boldsymbol{\operatorname{def}}}{}\boldsymbol{\Sigma}_{\ell,k}^{\perp}(K)\autorightarrow{\operatorname*{rot}\boldsymbol{\operatorname*{rot}}}{}\mathbb{P}_{k-2}(K)\autorightarrow{}{}0

is exact.

Define interpolation operators 𝚷K:𝑯2(K;𝕊)𝚺,k(K)\boldsymbol{\Pi}_{K}^{\perp}:\boldsymbol{H}^{2}(K;\mathbb{S})\to\boldsymbol{\Sigma}_{\ell,k}^{\perp}(K) and 𝑰K:𝑯3(K;2)𝑽+1(K)\boldsymbol{I}_{K}^{\perp}:\boldsymbol{H}^{3}(K;\mathbb{R}^{2})\to\boldsymbol{V}_{\ell+1}(K) as

𝚷K𝝉:=𝔸(𝚷K(𝔸𝝉𝔸))𝔸𝝉𝑯2(K;𝕊),\boldsymbol{\Pi}_{K}^{\perp}\boldsymbol{\tau}:=\mathbb{A}(\boldsymbol{\Pi}_{K}(\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A}))\mathbb{A}^{\intercal}\quad\forall\leavevmode\nobreak\ \boldsymbol{\tau}\in\boldsymbol{H}^{2}(K;\mathbb{S}),
𝑰K𝒗:=𝔸𝑰K(𝔸𝒗)𝒗𝑯3(K;2).\boldsymbol{I}_{K}^{\perp}\boldsymbol{v}:=\mathbb{A}\boldsymbol{I}_{K}(\mathbb{A}^{\intercal}\boldsymbol{v})\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{H}^{3}(K;\mathbb{R}^{2}).

It follows from (26) and (28) that

rot𝐫𝐨𝐭𝚷K𝝉=div𝐝𝐢𝐯(𝚷K(𝔸𝝉𝔸))=Qk2Kdiv𝐝𝐢𝐯(𝔸𝝉𝔸)=Qk2Krot𝐫𝐨𝐭𝝉,\operatorname*{rot}\boldsymbol{\operatorname*{rot}}\boldsymbol{\Pi}_{K}^{\perp}\boldsymbol{\tau}=\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\Pi}_{K}(\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A}))=Q_{k-2}^{K}\operatorname{div}\boldsymbol{\operatorname{div}}(\mathbb{A}^{\intercal}\boldsymbol{\tau}\mathbb{A})=Q_{k-2}^{K}\operatorname*{rot}\boldsymbol{\operatorname*{rot}}\boldsymbol{\tau},
𝐝𝐞𝐟(𝑰K𝒗)\displaystyle\boldsymbol{\operatorname{def}}(\boldsymbol{I}_{K}^{\perp}\boldsymbol{v}) =𝔸symcurl(𝔸𝑰K𝒗)𝔸=𝔸symcurl(𝑰K(𝔸𝒗))𝔸\displaystyle=\mathbb{A}\operatorname{sym}\operatorname{curl}(\mathbb{A}^{\intercal}\boldsymbol{I}_{K}^{\perp}\boldsymbol{v})\mathbb{A}^{\intercal}=\mathbb{A}\operatorname{sym}\operatorname{curl}(\boldsymbol{I}_{K}(\mathbb{A}^{\intercal}\boldsymbol{v}))\mathbb{A}^{\intercal}
=𝔸𝚷K(sym𝐜𝐮𝐫𝐥(𝔸𝒗))𝔸=𝔸𝚷K(𝔸(𝐝𝐞𝐟𝒗)𝔸)𝔸=𝚷K(𝐝𝐞𝐟𝒗).\displaystyle=\mathbb{A}\boldsymbol{\Pi}_{K}(\operatorname{sym}\boldsymbol{\operatorname{curl}}(\mathbb{A}^{\intercal}\boldsymbol{v}))\mathbb{A}^{\intercal}=\mathbb{A}\boldsymbol{\Pi}_{K}(\mathbb{A}^{\intercal}(\boldsymbol{\operatorname{def}}\boldsymbol{v})\mathbb{A})\mathbb{A}^{\intercal}=\boldsymbol{\Pi}_{K}^{\perp}(\boldsymbol{\operatorname{def}}\boldsymbol{v}).

Therefore we have the following commutative diagram for the local finite element complex (39)

𝑹𝑴𝑯3(K;2)𝑰K𝐝𝐞𝐟𝑯2(K;𝕊)𝚷Krot𝐫𝐨𝐭L2(K)QK0𝑹𝑴𝑽+1(K)𝐝𝐞𝐟𝚺,k(K)rot𝐫𝐨𝐭k2(K)0.\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.2309pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-12.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RM}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.50867pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{3}(K;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.1559pt\raise-20.74109pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.40833pt\hbox{$\scriptstyle{\boldsymbol{I}_{K}^{\perp}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 60.1559pt\raise-30.9822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 88.51144pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\boldsymbol{\operatorname{def}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 108.0809pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 108.0809pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{2}(K;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 129.70313pt\raise-20.74109pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.40833pt\hbox{$\scriptstyle{\boldsymbol{\Pi}_{K}^{\perp}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 129.70313pt\raise-29.68889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 149.10103pt\raise 5.15279pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15279pt\hbox{$\scriptstyle{\operatorname*{rot}\boldsymbol{\operatorname*{rot}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 177.8045pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 177.8045pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces L^{2}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 194.10036pt\raise-20.74109pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{Q_{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 194.10036pt\raise-30.9822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 215.23785pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 236.87537pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 236.87537pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-12.2309pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RM}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 20.33852pt\raise-36.45851pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.8906pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.8906pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{V}_{\ell+1}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 87.36005pt\raise-36.05164pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\boldsymbol{\operatorname{def}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 111.10867pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 111.10867pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\Sigma}_{\ell,k}^{\perp}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 146.43784pt\raise-36.3294pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15279pt\hbox{$\scriptstyle{\operatorname*{rot}\boldsymbol{\operatorname*{rot}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 175.32535pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 175.32535pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k-2}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 215.23785pt\raise-41.4822pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 236.87537pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 236.87537pt\raise-41.4822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}.

Define

𝚺h:={𝝉h𝑳2(Ω;𝕊):\displaystyle\boldsymbol{\Sigma}_{h}^{\perp}:=\{\boldsymbol{\tau}_{h}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}): 𝝉h|K𝚺,k(K) for each K𝒯h, all the degrees of\displaystyle\,\boldsymbol{\tau}_{h}|_{K}\in\boldsymbol{\Sigma}_{\ell,k}^{\perp}(K)\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the degrees of }
 freedom (35)(37) are single-valued}.\displaystyle\qquad\qquad\qquad\;\textrm{ freedom }\eqref{Hrotrotfemdof1}-\eqref{Hrotrotfemdof3}\textrm{ are single-valued}\}.

Thanks to Lemma 3.12, the finite element space 𝚺h𝑯(rot𝐫𝐨𝐭,Ω;𝕊)\boldsymbol{\Sigma}_{h}^{\perp}\subset\boldsymbol{H}(\operatorname*{rot}\boldsymbol{\operatorname*{rot}},\Omega;\mathbb{S}). Let 𝑰h:𝑯3(Ω;𝕊)𝑽h\boldsymbol{I}_{h}^{\perp}:\boldsymbol{H}^{3}(\Omega;\mathbb{S})\to\boldsymbol{V}_{h} and 𝚷h:𝑯2(Ω;𝕊)𝚺h\boldsymbol{\Pi}_{h}^{\perp}:\boldsymbol{H}^{2}(\Omega;\mathbb{S})\to\boldsymbol{\Sigma}_{h}^{\perp} be defined by (𝑰h𝒗)|K:=𝑰K(𝒗|K)(\boldsymbol{I}_{h}^{\perp}\boldsymbol{v})|_{K}:=\boldsymbol{I}_{K}^{\perp}(\boldsymbol{v}|_{K}) and (𝚷h𝝉)|K:=𝚷K(𝝉|K)(\boldsymbol{\Pi}_{h}^{\perp}\boldsymbol{\tau})|_{K}:=\boldsymbol{\Pi}_{K}^{\perp}(\boldsymbol{\tau}|_{K}), respectively. Similarly as the commutative diagram (33), we have the commutative diagram

𝑹𝑴𝑯3(Ω;2)𝑰h𝐝𝐞𝐟𝑯2(Ω;𝕊)𝚷hrot𝐫𝐨𝐭L2(Ω)Qh0𝑹𝑴𝑽h𝐝𝐞𝐟𝚺hrot𝐫𝐨𝐭𝒬h0.\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.2309pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-12.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RM}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.50867pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{3}(\Omega;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 59.16284pt\raise-20.46887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39722pt\hbox{$\scriptstyle{\boldsymbol{I}_{h}^{\perp}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 59.16284pt\raise-31.10443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 86.52533pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\boldsymbol{\operatorname{def}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 106.09479pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 106.09479pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{H}^{2}(\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 126.72397pt\raise-20.46887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39722pt\hbox{$\scriptstyle{\boldsymbol{\Pi}_{h}^{\perp}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 126.72397pt\raise-29.14444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 143.88925pt\raise 5.15279pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15279pt\hbox{$\scriptstyle{\operatorname*{rot}\boldsymbol{\operatorname*{rot}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 171.35315pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 171.35315pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces L^{2}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 186.65594pt\raise-20.46887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.69722pt\hbox{$\scriptstyle{Q_{h}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 186.65594pt\raise-31.10443pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 206.05734pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 225.95874pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 225.95874pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-12.2309pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RM}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 25.65413pt\raise-35.91406pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 50.52182pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.52182pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{V}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 85.37395pt\raise-35.50719pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\boldsymbol{\operatorname{def}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 118.49962pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 118.49962pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\Sigma}_{h}^{\perp}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 141.22606pt\raise-35.78496pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15279pt\hbox{$\scriptstyle{\operatorname*{rot}\boldsymbol{\operatorname*{rot}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 178.15381pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 178.15381pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{Q}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 206.05734pt\raise-40.93774pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 225.95874pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 225.95874pt\raise-40.93774pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}.

4. Mixed finite element methods for biharmonic equation

In this section we will apply the 𝑯(div𝐝𝐢𝐯)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})-conforming finite element pair (𝚺h,𝒬h)(\boldsymbol{\Sigma}_{h},\mathcal{Q}_{h}) to solve the biharmonic equation

(40) {Δ2u=f in Ω,u=nu=0 on Ω,\begin{cases}\quad\;\;\,\Delta^{2}u=-f&\textrm{ in }\Omega,\\ u=\partial_{n}u=0&\textrm{ on }\partial\Omega,\end{cases}

where fL2(Ω)f\in L^{2}(\Omega). A mixed formulation of the biharmonic equation (40) is to find 𝝈𝑯(div𝐝𝐢𝐯,Ω;𝕊)\boldsymbol{\sigma}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}) and uL2(Ω)u\in L^{2}(\Omega) such that

(41) (𝝈,𝝉)+(div𝐝𝐢𝐯𝝉,u)\displaystyle(\boldsymbol{\sigma},\boldsymbol{\tau})+(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},u) =0𝝉𝑯(div𝐝𝐢𝐯,Ω;𝕊),\displaystyle=0\quad\quad\quad\;\;\forall\leavevmode\nobreak\ \boldsymbol{\tau}\in\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S}),
(42) (div𝐝𝐢𝐯𝝈,v)\displaystyle(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\sigma},v) =(f,v)vL2(Ω).\displaystyle=(f,v)\quad\;\;\;\forall\leavevmode\nobreak\ v\in L^{2}(\Omega).

Note that Dirichlet-type boundary of uu is imposed as natural condition in the mixed formulation.

4.1. Mixed finite element methods

Employing the finite element spaces 𝚺h×𝒬h\boldsymbol{\Sigma}_{h}\times\mathcal{Q}_{h} to discretize 𝑯(div𝐝𝐢𝐯,Ω;𝕊)×L2(Ω)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}},\Omega;\mathbb{S})\times L^{2}(\Omega), we propose the following discrete methods for the mixed formulation (41)-(42): find 𝝈h𝚺h\boldsymbol{\sigma}_{h}\in\boldsymbol{\Sigma}_{h} and uh𝒬hu_{h}\in\mathcal{Q}_{h} such that

(43) (𝝈h,𝝉h)+(div𝐝𝐢𝐯𝝉h,uh)\displaystyle(\boldsymbol{\sigma}_{h},\boldsymbol{\tau}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},u_{h}) =0𝝉h𝚺h,\displaystyle=0\quad\quad\quad\;\;\forall\leavevmode\nobreak\ \boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h},
(44) (div𝐝𝐢𝐯𝝈h,vh)\displaystyle(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\sigma}_{h},v_{h}) =(f,vh)vh𝒬h.\displaystyle=(f,v_{h})\quad\;\forall\leavevmode\nobreak\ v_{h}\in\mathcal{Q}_{h}.

As a result of (30) and (25), we have the inf-sup condition

vh0sup𝝉h𝚺h(div𝐝𝐢𝐯𝝉h,vh)𝝉h𝑯(div𝐝𝐢𝐯).\|v_{h}\|_{0}\lesssim\sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}}\frac{(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},v_{h})}{\|\boldsymbol{\tau}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}}.

By the Babuška-Brezzi theory [3], the following stability result holds

(45) 𝝈~h𝑯(div𝐝𝐢𝐯)+u~h0sup𝝉h𝚺hvh𝒬h(𝝈~h,𝝉h)+(div𝐝𝐢𝐯𝝉h,u~h)+(div𝐝𝐢𝐯𝝈~h,vh)𝝉h𝑯(div𝐝𝐢𝐯)+vh0\|\widetilde{\boldsymbol{\sigma}}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}+\|\widetilde{u}_{h}\|_{0}\lesssim\sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}\atop v_{h}\in\mathcal{Q}_{h}}\frac{(\widetilde{\boldsymbol{\sigma}}_{h},\boldsymbol{\tau}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},\widetilde{u}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\widetilde{\boldsymbol{\sigma}}_{h},v_{h})}{\|\boldsymbol{\tau}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}+\|v_{h}\|_{0}}

for any 𝝈~h𝚺h\widetilde{\boldsymbol{\sigma}}_{h}\in\boldsymbol{\Sigma}_{h} and u~h𝒬h\widetilde{u}_{h}\in\mathcal{Q}_{h}. Hence the mixed finite element method (43)-(44) is well-posed.

Theorem 4.1.

Let 𝛔h𝚺h\boldsymbol{\sigma}_{h}\in\boldsymbol{\Sigma}_{h} and uh𝒬hu_{h}\in\mathcal{Q}_{h} be the solution of the mixed finite element methods (43)-(44). Assume 𝛔𝐇min{,k}+1(Ω;𝕊)\boldsymbol{\sigma}\in\boldsymbol{H}^{\min\{\ell,k\}+1}(\Omega;\mathbb{S}), uHk1(Ω)u\in H^{k-1}(\Omega) and fHk1(Ω)f\in H^{k-1}(\Omega). Then

(46) 𝝈𝝈h0+Qhuuh0hmin{,k}+1|𝝈|min{,k}+1,\displaystyle\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{0}+\|Q_{h}u-u_{h}\|_{0}\lesssim h^{\min\{\ell,k\}+1}|\boldsymbol{\sigma}|_{\min\{\ell,k\}+1},
(47) uuh0hmin{,k}+1|𝝈|min{,k}+1+hk1|u|k1,\displaystyle\|u-u_{h}\|_{0}\lesssim h^{\min\{\ell,k\}+1}|\boldsymbol{\sigma}|_{\min\{\ell,k\}+1}+h^{k-1}|u|_{k-1},
(48) 𝝈𝝈h𝑯(div𝐝𝐢𝐯)hmin{,k}+1|𝝈|min{,k}+1+hk1|f|k1.\displaystyle\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}\lesssim h^{\min\{\ell,k\}+1}|\boldsymbol{\sigma}|_{\min\{\ell,k\}+1}+h^{k-1}|f|_{k-1}.
Proof.

Subtracting (43)-(44) from (41)-(42), it follows

(𝝈𝝈h,𝝉h)+(div𝐝𝐢𝐯𝝉h,uuh)+(div𝐝𝐢𝐯(𝝈𝝈h),vh)=0,(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h},\boldsymbol{\tau}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},u-u_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}),v_{h})=0,

which combined with (30) yields

(49) (𝝈𝝈h,𝝉h)+(div𝐝𝐢𝐯𝝉h,Qhuuh)+(div𝐝𝐢𝐯(𝚷h𝝈𝝈h),vh)=0.(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h},\boldsymbol{\tau}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},Q_{h}u-u_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}(\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}),v_{h})=0.

Taking 𝝈~h=𝚷h𝝈𝝈h\widetilde{\boldsymbol{\sigma}}_{h}=\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h} and u~h=Qhuuh\widetilde{u}_{h}=Q_{h}u-u_{h} in (45), we get

𝚷h𝝈𝝈h𝑯(div𝐝𝐢𝐯)+Qhuuh0\displaystyle\|\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}+\|Q_{h}u-u_{h}\|_{0} sup𝝉h𝚺hvh𝒬h(𝚷h𝝈𝝈,𝝉h)𝝉h𝑯(div𝐝𝐢𝐯)+vh0\displaystyle\lesssim\sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}\atop v_{h}\in\mathcal{Q}_{h}}\frac{(\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma},\boldsymbol{\tau}_{h})}{\|\boldsymbol{\tau}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}+\|v_{h}\|_{0}}
𝚷h𝝈𝝈0.\displaystyle\leq\|\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}\|_{0}.

Hence we have

𝝈𝝈h0+Qhuuh0𝝈𝚷h𝝈0,\displaystyle\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{0}+\|Q_{h}u-u_{h}\|_{0}\lesssim\|\boldsymbol{\sigma}-\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}\|_{0},
uuh0𝝈𝚷h𝝈0+uQhu0,\displaystyle\|u-u_{h}\|_{0}\lesssim\|\boldsymbol{\sigma}-\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}\|_{0}+\|u-Q_{h}u\|_{0},
𝝈𝝈h𝑯(div𝐝𝐢𝐯)𝝈𝚷h𝝈𝑯(div𝐝𝐢𝐯).\displaystyle\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}\lesssim\|\boldsymbol{\sigma}-\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}\|_{\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}})}.

Finally we conclude (46), (47) and (48) from (25). ∎

If we are interested in the approximation of stress in 𝑯(div𝐝𝐢𝐯)\boldsymbol{H}(\operatorname{div}\boldsymbol{\operatorname{div}}) norm, it is more economic to chose =k1\ell=k-1. If instead the L2L^{2}-norm is of concern, =k\ell=k is a better choice to achieve higher accuracy.

The estimate of Qhuuh0\|Q_{h}u-u_{h}\|_{0} in (46) is superconvergent and can be used to postprocess to get a high order approximation of displacement.

4.2. Superconvergence of displacement in mesh-dependent norm

Equip the space

H2(𝒯h):={vL2(Ω):v|KH2(K) for each K𝒯h}H^{2}(\mathcal{T}_{h}):=\{v\in L^{2}(\Omega):v|_{K}\in H^{2}(K)\textrm{ for each }K\in\mathcal{T}_{h}\}

with squared mesh-dependent norm

|v|2,h2:=K𝒯h|v|2,K2+eh(he3v0,e2+he1nev0,e2),|v|_{2,h}^{2}:=\sum_{K\in\mathcal{T}_{h}}|v|_{2,K}^{2}+\sum_{e\in\mathcal{E}_{h}}\left(h_{e}^{-3}\|\llbracket v\rrbracket\|_{0,e}^{2}+h_{e}^{-1}\|\llbracket\partial_{n_{e}}v\rrbracket\|_{0,e}^{2}\right),

where v\llbracket v\rrbracket and nev\llbracket\partial_{n_{e}}v\rrbracket are jumps of vv and nev\partial_{n_{e}}v across ee for ehie\in\mathcal{E}_{h}^{i}, and v=v\llbracket v\rrbracket=v and nev=nev\llbracket\partial_{n_{e}}v\rrbracket=\partial_{n_{e}}v for eh\hie\in\mathcal{E}_{h}\backslash\mathcal{E}_{h}^{i}.

Lemma 4.2.

It holds the inf-sup condition

(50) |vh|2,hsup𝝉h𝚺h(div𝐝𝐢𝐯𝝉h,vh)𝝉h0vh𝒬h.|v_{h}|_{2,h}\lesssim\sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}}\frac{(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},v_{h})}{\|\boldsymbol{\tau}_{h}\|_{0}}\quad\forall\leavevmode\nobreak\ v_{h}\in\mathcal{Q}_{h}.
Proof.

Let 𝝉h𝚺h\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h} be determined by

𝝉h(δ)\displaystyle\boldsymbol{\tau}_{h}(\delta) =0δ𝒱h,\displaystyle=0\qquad\qquad\quad\;\;\;\forall\leavevmode\nobreak\ \delta\in\mathcal{V}_{h},
Q2e(𝒏𝝉h𝒏)\displaystyle Q_{\ell-2}^{e}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}_{h}\boldsymbol{n}) =he1nevheh,\displaystyle=-h_{e}^{-1}\llbracket\partial_{n_{e}}v_{h}\rrbracket\;\;\forall\leavevmode\nobreak\ e\in\mathcal{E}_{h},
te(𝒕𝝉h𝒏)+𝒏e𝐝𝐢𝐯𝝉h\displaystyle\partial_{t_{e}}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}_{h}\boldsymbol{n})+\boldsymbol{n}_{e}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h} =he3vheh,\displaystyle=h_{e}^{-3}\llbracket v_{h}\rrbracket\qquad\;\;\;\forall\leavevmode\nobreak\ e\in\mathcal{E}_{h},
(𝝉h,𝝇)K\displaystyle(\boldsymbol{\tau}_{h},\boldsymbol{\varsigma})_{K} =(2vh,𝝇)K𝝇2k2(K),\displaystyle=(\nabla^{2}v_{h},\boldsymbol{\varsigma})_{K}\quad\;\;\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\nabla^{2}\mathbb{P}_{k-2}(K),
(𝝉h,𝝇)K\displaystyle(\boldsymbol{\tau}_{h},\boldsymbol{\varsigma})_{K} =0𝝇sym(𝒙2(K;2))\displaystyle=0\qquad\qquad\quad\;\;\;\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2}))

for each K𝒯hK\in\mathcal{T}_{h}. Due to the scaling argument, it holds

𝝉h0|v|2,h.\|\boldsymbol{\tau}_{h}\|_{0}\lesssim|v|_{2,h}.

And we get from (2) that

(div𝐝𝐢𝐯𝝉h,vh)=|v|2,h2.(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},v_{h})=|v|_{2,h}^{2}.

Hence the inf-sup condition (50) follows. ∎

An immediate result of the inf-sup condition (50) is the stability result

(51) 𝝈~h0+|u~h|2,hsup𝝉h𝚺hvh𝒬h(𝝈~h,𝝉h)+(div𝐝𝐢𝐯𝝉h,u~h)+(div𝐝𝐢𝐯𝝈~h,vh)𝝉h0+|vh|2,h\|\widetilde{\boldsymbol{\sigma}}_{h}\|_{0}+|\widetilde{u}_{h}|_{2,h}\lesssim\sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}\atop v_{h}\in\mathcal{Q}_{h}}\frac{(\widetilde{\boldsymbol{\sigma}}_{h},\boldsymbol{\tau}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},\widetilde{u}_{h})+(\operatorname{div}\boldsymbol{\operatorname{div}}\widetilde{\boldsymbol{\sigma}}_{h},v_{h})}{\|\boldsymbol{\tau}_{h}\|_{0}+|v_{h}|_{2,h}}

for any 𝝈~h𝚺h\widetilde{\boldsymbol{\sigma}}_{h}\in\boldsymbol{\Sigma}_{h} and u~h𝒬h\widetilde{u}_{h}\in\mathcal{Q}_{h}.

Theorem 4.3.

Let 𝛔h𝚺h\boldsymbol{\sigma}_{h}\in\boldsymbol{\Sigma}_{h} and uh𝒬hu_{h}\in\mathcal{Q}_{h} be the solution of the mixed finite element methods (43)-(44). Assume 𝛔𝐇min{,k}+1(Ω;𝕊)\boldsymbol{\sigma}\in\boldsymbol{H}^{\min\{\ell,k\}+1}(\Omega;\mathbb{S}). Then

(52) |Qhuuh|2,hhmin{,k}+1|𝝈|min{,k}+1.|Q_{h}u-u_{h}|_{2,h}\lesssim h^{\min\{\ell,k\}+1}|\boldsymbol{\sigma}|_{\min\{\ell,k\}+1}.
Proof.

Taking 𝝈~h=𝚷h𝝈𝝈h\widetilde{\boldsymbol{\sigma}}_{h}=\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h} and u~h=Qhuuh\widetilde{u}_{h}=Q_{h}u-u_{h} in (51), we get from (49) that

𝚷h𝝈𝝈h0+|Qhuuh|2,hsup𝝉h𝚺hvh𝒬h(𝚷h𝝈𝝈,𝝉h)𝝉h0+|vh|2,h𝚷h𝝈𝝈0,\|\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{0}+|Q_{h}u-u_{h}|_{2,h}\lesssim\sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}\atop v_{h}\in\mathcal{Q}_{h}}\frac{(\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma},\boldsymbol{\tau}_{h})}{\|\boldsymbol{\tau}_{h}\|_{0}+|v_{h}|_{2,h}}\leq\|\boldsymbol{\Pi}_{h}\boldsymbol{\sigma}-\boldsymbol{\sigma}\|_{0},

which gives (52). ∎

The estimate of |Qhuuh|2,h|Q_{h}u-u_{h}|_{2,h} in (52) is superconvergent, which is min{k,0}+4\min\{\ell-k,0\}+4 order higher than the optimal one and will be used to get a high order approximation of displacement by postprocessing.

4.3. Postprocessing

Define uhmin{,k}+2(𝒯h)u_{h}^{\ast}\in\mathbb{P}_{\min\{\ell,k\}+2}(\mathcal{T}_{h}) as follows: for each K𝒯hK\in\mathcal{T}_{h},

(2uh,2q)K\displaystyle(\nabla^{2}u_{h}^{\ast},\nabla^{2}q)_{K} =(𝝈h,2q)Kqmin{,k}+2(𝒯h),\displaystyle=-(\boldsymbol{\sigma}_{h},\nabla^{2}q)_{K}\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\min\{\ell,k\}+2}(\mathcal{T}_{h}),
(uh,q)K\displaystyle(u_{h}^{\ast},q)_{K} =(uh,q)Kq1(𝒯h).\displaystyle=(u_{h},q)_{K}\qquad\quad\;\forall\leavevmode\nobreak\ q\in\mathbb{P}_{1}(\mathcal{T}_{h}).

Namely we compute the projection of 𝝈h\boldsymbol{\sigma}_{h} in H2H^{2} semi-inner product and use uhu_{h} to impose the constraint. Recall that k3k\geq 3 and k1\ell\geq k-1. Thus uhk2(𝒯h)u_{h}\in\mathbb{P}_{k-2}(\mathcal{T}_{h}) and the local H2H^{2}-projection is well-defined.

Theorem 4.4.

Let 𝛔h𝚺h\boldsymbol{\sigma}_{h}\in\boldsymbol{\Sigma}_{h} and uh𝒬hu_{h}\in\mathcal{Q}_{h} be the solution of the mixed finite element methods (43)-(44). Assume uHmin{,k}+3(Ω)u\in H^{\min\{\ell,k\}+3}(\Omega). Then

(53) |uuh|2,hhmin{,k}+1|u|min{,k}+3.|u-u_{h}^{\ast}|_{2,h}\lesssim h^{\min\{\ell,k\}+1}|u|_{\min\{\ell,k\}+3}.
Proof.

Let z=(IQh1)(Qhmin{,k}+2uuh)z=(I-Q_{h}^{1})(Q_{h}^{\min\{\ell,k\}+2}u-u_{h}^{\ast}). By the definition of uhu_{h}^{\ast}, it follows

2z0,K2\displaystyle\|\nabla^{2}z\|_{0,K}^{2} =(2(Qmin{,k}+2Kuu),2z)K+(2(uuh),2z)K\displaystyle=(\nabla^{2}(Q_{\min\{\ell,k\}+2}^{K}u-u),\nabla^{2}z)_{K}+(\nabla^{2}(u-u_{h}^{\ast}),\nabla^{2}z)_{K}
=(2(Qmin{,k}+2Kuu),2z)K+(𝝈h𝝈,2z)K,\displaystyle=(\nabla^{2}(Q_{\min\{\ell,k\}+2}^{K}u-u),\nabla^{2}z)_{K}+(\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma},\nabla^{2}z)_{K},

which implies

(54) |z|2,h2K𝒯h|uQhmin{,k}+2u|2,K2+𝝈𝝈h02.|z|_{2,h}^{2}\lesssim\sum_{K\in\mathcal{T}_{h}}|u-Q_{h}^{\min\{\ell,k\}+2}u|_{2,K}^{2}+\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{0}^{2}.

Since Qh1(Qhmin{,k}+2uuh)=Qh1(Qhk2uuh)Q_{h}^{1}(Q_{h}^{\min\{\ell,k\}+2}u-u_{h}^{\ast})=Q_{h}^{1}(Q_{h}^{k-2}u-u_{h}) and

|(IQh1)(Qhk2uuh)|2,h2K𝒯h|Qhk2uuh|2,K2,|(I-Q_{h}^{1})(Q_{h}^{k-2}u-u_{h})|_{2,h}^{2}\lesssim\sum_{K\in\mathcal{T}_{h}}|Q_{h}^{k-2}u-u_{h}|_{2,K}^{2},

we get

(55) |Qh1(Qhmin{,k}+2uuh)|2,h|Qh1(Qhk2uuh)|2,h|Qhk2uuh|2,h.|Q_{h}^{1}(Q_{h}^{\min\{\ell,k\}+2}u-u_{h}^{\ast})|_{2,h}\lesssim|Q_{h}^{1}(Q_{h}^{k-2}u-u_{h})|_{2,h}\lesssim|Q_{h}^{k-2}u-u_{h}|_{2,h}.

Combining (54) and (55) gives

|Qhmin{,k}+2uuh|2,h|uQhmin{,k}+2u|2,h+𝝈𝝈h0+|Qhk2uuh|2,h.|Q_{h}^{\min\{\ell,k\}+2}u-u_{h}^{\ast}|_{2,h}\leq|u-Q_{h}^{\min\{\ell,k\}+2}u|_{2,h}+\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{0}+|Q_{h}^{k-2}u-u_{h}|_{2,h}.

Finally (53) follows from (46) and (52). ∎

4.4. Hybridization

In this subsection we consider a partial hybridization of the mixed finite element methods (43)-(44) by relaxing the continuity of the effective transverse shear force. To this end, let

𝚺~h:={𝝉h𝑳2(Ω;𝕊):\displaystyle\widetilde{\boldsymbol{\Sigma}}_{h}:=\{\boldsymbol{\tau}_{h}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}): 𝝉h|K𝚺,k(K) for each K𝒯h,\displaystyle\,\boldsymbol{\tau}_{h}|_{K}\in\boldsymbol{\Sigma}_{\ell,k}(K)\textrm{ for each }K\in\mathcal{T}_{h},
all the degrees of freedom (14)(15) are single-valued},\displaystyle\textrm{ all the degrees of freedom }\eqref{Hdivdivfemdof1}-\eqref{Hdivdivfemdof2}\textrm{ are single-valued}\},
Λh:={μhL2(h):\displaystyle\Lambda_{h}:=\{\mu_{h}\in L^{2}(\mathcal{E}_{h}): μh|e1(e) for each ehi,\displaystyle\,\mu_{h}|_{e}\in\mathbb{P}_{\ell-1}(e)\textrm{ for each }e\in\mathcal{E}_{h}^{i},
and μh|e=0 for each eh\hi}.\displaystyle\,\textrm{and }\mu_{h}|_{e}=0\textrm{ for each }e\in\mathcal{E}_{h}\backslash\mathcal{E}_{h}^{i}\}.
Lemma 4.5.

Let 𝛔h𝚺h\boldsymbol{\sigma}_{h}\in\boldsymbol{\Sigma}_{h} and uh𝒬hu_{h}\in\mathcal{Q}_{h} be the solution of the mixed finite element methods (43)-(44). Let (𝛔~h,u~h,λh)𝚺~h×𝒬h×Λh(\widetilde{\boldsymbol{\sigma}}_{h},\widetilde{u}_{h},\lambda_{h})\in\widetilde{\boldsymbol{\Sigma}}_{h}\times\mathcal{Q}_{h}\times\Lambda_{h} satisfy the partial hybridized mixed finite methods

(56) (𝝈~h,𝝉h)+bh(𝝉h,u~h,λh)\displaystyle(\widetilde{\boldsymbol{\sigma}}_{h},\boldsymbol{\tau}_{h})+b_{h}(\boldsymbol{\tau}_{h},\widetilde{u}_{h},\lambda_{h}) =0𝝉h𝚺~h,\displaystyle=0\quad\quad\quad\;\;\forall\leavevmode\nobreak\ \boldsymbol{\tau}_{h}\in\widetilde{\boldsymbol{\Sigma}}_{h},
(57) bh(𝝈~h,vh,μh)\displaystyle b_{h}(\widetilde{\boldsymbol{\sigma}}_{h},v_{h},\mu_{h}) =(f,vh)vh𝒬h,μhΛh,\displaystyle=(f,v_{h})\quad\;\forall\leavevmode\nobreak\ v_{h}\in\mathcal{Q}_{h},\;\mu_{h}\in\Lambda_{h},

where

bh(𝝉h,vh,μh):=K𝒯h(div𝐝𝐢𝐯𝝉h,vh)KK𝒯h(t(𝒕𝝉h𝒏)+𝒏𝐝𝐢𝐯𝝉h,μh)K.b_{h}(\boldsymbol{\tau}_{h},v_{h},\mu_{h}):=\sum_{K\in\mathcal{T}_{h}}(\operatorname{div}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},v_{h})_{K}-\sum_{K\in\mathcal{T}_{h}}(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}_{h}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},\mu_{h})_{\partial K}.

Then 𝛔~h=𝛔h\widetilde{\boldsymbol{\sigma}}_{h}=\boldsymbol{\sigma}_{h} and u~h=uh\widetilde{u}_{h}=u_{h}.

Proof.

First show the unisolvence of the discrete methods (56)-(57). Assume ff is zero. Due to (57) with vh=0v_{h}=0, we get 𝝈~h𝚺h\widetilde{\boldsymbol{\sigma}}_{h}\in\boldsymbol{\Sigma}_{h}. Hence (𝝈~h,u~h)𝚺h×𝒬h(\widetilde{\boldsymbol{\sigma}}_{h},\widetilde{u}_{h})\in\boldsymbol{\Sigma}_{h}\times\mathcal{Q}_{h} satisfies the mixed finite element methods (43)-(44) with f=0f=0. Then 𝝈~h=𝟎\widetilde{\boldsymbol{\sigma}}_{h}=\boldsymbol{0} and u~h=0\widetilde{u}_{h}=0 follows from the unisolvence of the mixed methods (43)-(44). Thus (56) becomes

K𝒯h(t(𝒕𝝉h𝒏)+𝒏𝐝𝐢𝐯𝝉h,λh)K=0𝝉h𝚺h.\sum_{K\in\mathcal{T}_{h}}(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}_{h}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h},\lambda_{h})_{\partial K}=0\quad\forall\leavevmode\nobreak\ \boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}.

Now taking 𝝉h𝚺h\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h} such that

𝝉h(δ)\displaystyle\boldsymbol{\tau}_{h}(\delta) =0δ𝒱h,\displaystyle=0\quad\;\forall\leavevmode\nobreak\ \delta\in\mathcal{V}_{h},
Q2e(𝒏𝝉h𝒏)\displaystyle Q_{\ell-2}^{e}(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}_{h}\boldsymbol{n}) =0eh,\displaystyle=0\;\;\;\;\;\forall\leavevmode\nobreak\ e\in\mathcal{E}_{h},
te(𝒕𝝉h𝒏)+𝒏e𝐝𝐢𝐯𝝉h\displaystyle\partial_{t_{e}}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}_{h}\boldsymbol{n})+\boldsymbol{n}_{e}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau}_{h} =λheh,\displaystyle=\lambda_{h}\;\;\,\forall\leavevmode\nobreak\ e\in\mathcal{E}_{h},
(𝝉h,𝝇)K\displaystyle(\boldsymbol{\tau}_{h},\boldsymbol{\varsigma})_{K} =0𝝇2k2(K)sym(𝒙2(K;2))\displaystyle=0\quad\;\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\nabla^{2}\mathbb{P}_{k-2}(K)\oplus\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2}))

for each K𝒯hK\in\mathcal{T}_{h}, we acquire λh=0\lambda_{h}=0.

For general fL2(Ω)f\in L^{2}(\Omega), it also follows from (57) that 𝝈~h𝚺h\widetilde{\boldsymbol{\sigma}}_{h}\in\boldsymbol{\Sigma}_{h}. And then (𝝈~h,u~h)𝚺h×𝒬h(\widetilde{\boldsymbol{\sigma}}_{h},\widetilde{u}_{h})\in\boldsymbol{\Sigma}_{h}\times\mathcal{Q}_{h} satisfies the mixed finite element methods (43)-(44). Thus 𝝈~h=𝝈h\widetilde{\boldsymbol{\sigma}}_{h}=\boldsymbol{\sigma}_{h} and u~h=uh\widetilde{u}_{h}=u_{h}. ∎

The space of shape functions for 𝚺~h\widetilde{\boldsymbol{\Sigma}}_{h} is still 𝚺,k(K)\boldsymbol{\Sigma}_{\ell,k}(K). The local degrees of freedom are

𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(𝒏𝝉𝒏,q)e\displaystyle(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},q)_{e} q2(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\ell-2}(e),e\in\mathcal{E}(K),
(t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,q)e\displaystyle(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{e} q1(e),e̊(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{\ell-1}(e),e\in\mathring{\mathcal{E}}(K),
(𝝉,𝝇)K\displaystyle(\boldsymbol{\tau},\boldsymbol{\varsigma})_{K} 𝝇2k2(K)sym(𝒙2(K;2)).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\nabla^{2}\mathbb{P}_{k-2}(K)\oplus\operatorname{sym}(\boldsymbol{x}^{\perp}\otimes\mathbb{P}_{\ell-2}(K;\mathbb{R}^{2})).

Here notation e̊(K)e\in\mathring{\mathcal{E}}(K) means (t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,q)e(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{e} are the interior degrees of freedom, i.e., (t(𝒕𝝉𝒏)+𝒏𝐝𝐢𝐯𝝉,q)e(\partial_{t}(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n})+\boldsymbol{n}^{\intercal}\boldsymbol{\operatorname{div}}\boldsymbol{\tau},q)_{e} are double-valued on each edge ehie\in\mathcal{E}_{h}^{i}.

When =k\ell=k, we can take the following degrees of freedom

𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(𝒏𝝉𝒏,q)e\displaystyle(\boldsymbol{n}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},q)_{e} qk2(e),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-2}(e),e\in\mathcal{E}(K),
(𝒕𝝉𝒏,q)e,(𝒕𝝉𝒕,q)e\displaystyle(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{n},q)_{e},\;(\boldsymbol{t}^{\intercal}\boldsymbol{\tau}\boldsymbol{t},q)_{e} qk2(e),e̊(K),\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-2}(e),e\in\mathring{\mathcal{E}}(K),
(𝝉,𝝇)K\displaystyle(\boldsymbol{\tau},\boldsymbol{\varsigma})_{K} 𝝇k3(K;𝕊).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{\varsigma}\in\mathbb{P}_{k-3}(K;\mathbb{S}).

These are exactly the tensor version of the local degrees of freedom for the Lagrange element. Therefore we can adopt the standard Lagrange element basis to implement the hybridized mixed finite element methods (56)-(57).

References

  • [1] M. Amara, D. Capatina-Papaghiuc, and A. Chatti. Bending moment mixed method for the kirchhoff–love plate model. SIAM J. Numer. Anal., 40(5):1632–1649, 2002.
  • [2] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numer., 15:1–155, 2006.
  • [3] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications. Springer, Heidelberg, 2013.
  • [4] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Springer, New York, third edition, 2008.
  • [5] L. Chen, J. Hu, and X. Huang. Multigrid Methods for Hellan-Herrmann-Johnson Mixed Method of Kirchhoff Plate Bending Problems. Journal of Scientific Computing, 76:673–696, 2018.
  • [6] L. Chen and X. Huang. Decoupling of mixed methods based on generalized Helmholtz decompositions. SIAM J. Numer. Anal., 56(5):2796–2825, 2018.
  • [7] S. H. Christiansen and K. Hu. Finite element systems for vector bundles: elasticity and curvature. arXiv:1906.09128, 2019.
  • [8] S. H. Christiansen, K. Hu, and E. Sande. Poincaré path integrals for elasticity. J. Math. Pures Appl., 135:83–102, 2020.
  • [9] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, 1978.
  • [10] K. Feng and Z.-C. Shi. Mathematical theory of elastic structures. Springer-Verlag, Berlin, 1996.
  • [11] T. Führer and N. Heuer. Fully discrete dpg methods for the Kirchhoff–Love plate bending model. Comput. Methods Appl. Mech. Engrg., 343:550–571, 2019.
  • [12] T. Führer, N. Heuer, and A. Niemi. An ultraweak formulation of the Kirchhoff–Love plate bending model and dpg approximation. Math. Comp., 88(318):1587–1619, 2019.
  • [13] P. Grisvard. Elliptic problems in nonsmooth domains. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
  • [14] K. Hellan. Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavia, Civil Engineering Series, 46, 1967.
  • [15] L. R. Herrmann. Finite element bending analysis for plates. Journal of the Engineering Mechanics Division, 93(EM5):49–83, 1967.
  • [16] J. Hu and S. Zhang. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math., 58(2):297–307, 2015.
  • [17] J. Huang and X. Huang. A hybridizable discontinuous Galerkin method for Kirchhoff plates. J. Sci. Comput., 78(1):290–320, 2019.
  • [18] J. Huang, Z. Shi, and Y. Xu. Some studies on mathematical models for general elastic multi-structures. Sci. China Ser. A, 48(7):986–1007, 2005.
  • [19] C. Johnson. On the convergence of a mixed finite-element method for plate bending problems. Numer. Math., 21:43–62, 1973.
  • [20] W. Krendl, K. Rafetseder, and W. Zulehner. A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method. Electron. Trans. Numer. Anal., 45:257–282, 2016.
  • [21] A. Pechstein and J. Schöberl. Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci., 21(8):1761–1782, 2011.
  • [22] A. S. Pechstein and J. Schöberl. An analysis of the TDNNS method using natural norms. Numer. Math., 139(1):93–120, 2018.
  • [23] K. Rafetseder and W. Zulehner. A decomposition result for Kirchhoff plate bending problems and a new discretization approach. SIAM J. Numer. Anal., 56(3):1961–1986, 2018.
  • [24] P.-A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order elliptic problems. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pages 292–315. Lecture Notes in Math., Vol. 606. Springer, Berlin, 1977.
  • [25] A. Sinwel. A New Family of Mixed Finite Elements for Elasticity. PhD thesis, Johannes Kepler University Linz, 2009.