This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Finite element approximation to the non-stationary quasi-geostrophic equation

Dohyun Kim Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China Email: [email protected].    Amiya K. Pani Department of Mathematics, Birla Institute of Technology & Science-Pilani, K.K. Birla Goa Campus, NH 17 B, Zuarinagar Goa-403 726, India. Email: [email protected].    Eun-Jae Park School of Mathematics and Computing (Computational Science & Engineering), Yonsei University, Seoul 03722, Korea. Email: [email protected].
Abstract

In this paper, C1C^{1}-conforming element methods are analyzed for the stream function formulation of a single layer non-stationary quasi-geostrophic equation in the ocean circulation model. In its first part, some new regularity results are derived, which show exponential decay property when the wind shear stress is zero or exponentially decaying. Moreover, when the wind shear stress is independent of time, the existence of an attractor is established. In its second part, finite element methods are applied in the spatial direction and for the resulting semi-discrete scheme, the exponential decay property, and the existence of a discrete attractor are proved. By introducing an intermediate solution of a discrete linearized problem, optimal error estimates are derived. Based on backward-Euler method, a completely discrete scheme is obtained and uniform in time a priori estimates are established. Moreover, the existence of a discrete solution is proved by appealing to a variant of the Brouwer fixed point theorem and then, optimal error estimate is derived. Finally, several computational experiments with benchmark problems are conducted to confirm our theoretical findings.

Key words: Quasi-geostrophic model, Stream function formulation, Fourth-order evolution equation, Nonlinear PDEs, Ocean circulation model, New regularity results, Exponential decay property, Existence of attractor, C1C^{1} conforming elements, Optimal error estimates, Numerical experiments.

1 Introduction

The stream function formulation of one layer non-stationary quasi-geostrophic (QG) equation in a bounded domain Ω2\Omega\subset\mathbb{R}^{2} with boundary Ω\partial\Omega is to find the streamfunction ψ\psi defined in the space time domain Ω×(0,)\Omega\times(0,\infty) such that

tΔψ+νΔ2ψ+J(ψ,Δψ)μxψ=μFin Ω×(0,),-\partial_{t}\Delta\psi+\nu\Delta^{2}\psi+J(\psi,\Delta\psi)-\mu\partial_{x}\psi=\mu F\quad\text{in }\Omega\times(0,\infty), (1.1)

with initial condition

ψ(0)=ψ0 in Ω,\psi(0)=\psi_{0}\text{ in }\Omega, (1.2)

and boundary conditions

ψ=0,𝐧ψ=0 on Ω×(0,).\psi=0,\quad\,\partial_{\mathbf{n}}\psi=0\text{ on }\partial\Omega\times(0,\infty). (1.3)

Here, J(φ,χ)=yφxχxφyχJ(\varphi,\chi)=\partial_{y}\varphi\partial_{x}\chi-\partial_{x}\varphi\partial_{y}\chi, ν\nu is the diffusion coefficient, μ=1/Ro\mu=1/Ro where RoRo is the Rossby number.

The QG equation plays an important role in the study of large scale wind-driven oceanic flow [21, 17, 25]. Despite the simplicity of the QG equation, the QG equation and its linear variants, such as the Munk equation, preserve many of the important features of the underlying oceanic flows, such as the western boundary currents, and the formation of gyres. Earlier in the literature, the problem (1.1) and (1.2) with boundary conditions ψ=0\psi=0 and Δψ=0\Delta\psi=0 or periodic boundary conditions are considered. Those boundary conditions naturally split the problem into two second-order problems. Then, the existence, uniqueness, and existence of an attractor (see, [4, 8, 18, 24]) are studied. However, for the problem with boundary conditions (1.3), their analysis breaks down since the problem cannot be naturally split into two second order problems.

From a numerical point of view, there are several numerical results regarding wind-driven ocean circulation including QGE [7, 9, 26, 6, 13]. In [14, 10, 22, 12, 3], B-spline based finite element methods are investigated, but there remain difficulties for curved domains. In [9], a C1C^{1}-conforming finite element method (FEM) is applied to (1.1) with boundary conditions (1.3) and a priori error estimates are established. Here, while H2H^{2}-error estimate is optimal, the error estimates for H1H^{1}-norm appears to be suboptimal. Recently, the authors in [13] considered a nonconforming Morley finite element method for the stationary QG equation and performed optimal a priori error analysis along with a posteriori error estimation.

In this article, we consider C1C^{1}-conforming FEMs for the non-stationary QG equation with the no-slip boundary condition, ψ=𝐧ψ=0\psi=\,\partial_{\mathbf{n}}\psi=0. The analysis presented here can be applied to any C1C^{1}-FEM, such as the Argyris element, the Bogner-Fox-Schmitt (BFS) element, the Hsieh-Clough-Tocher (HCT) element. While C1C^{1}-conforming elements are relatively complex to implement, their high-order continuity allows simple formulation. With a suitable mapping from the reference element to a physical element, one can efficiently assemble the global matrix, see [16]. Also, compared to nonconforming methods of a similar order [12, 15], C1C^{1}-FEMs typically yield smaller degrees of freedom due to their strong inter-element continuity and they are free from stabilization parameters.

We now briefly summarize the results derived in this article.

  • (i)

    New regularity results are proved which show exponential decay property when the forcing function F=0F=0 or exponentially decaying in time. When nonzero FF is independent of time, the existence of a global attractor is shown.

  • (ii)

    Based on C1C^{1}-conforming FEM to discretize in spatial directions, a semidiscrete problem is derived, uniform estimate in time as tt\mapsto\infty is proved and the existence of a discrete attractor is shown.

  • (iii)

    Using elliptic projection, optimal error estimates in L(Hj),j=0,1L^{\infty}(H^{j}),\;j=0,1 and L(L)L^{\infty}(L^{\infty})-norms are established.

  • (iv)

    Based on the backward Euler method, a completely discrete scheme is derived and existence of a unique discrete solution is proved using an uniform estimate in time of Dirichlet norm. A part from the existence of the discrete attractor, a priori error estimates are derived.

  • (v)

    Finally, some numerical experiments on benchmark problems are conducted and results confirm our theoretical findings.

When either F=0F=0 or FF decays exponentially, it is observed that all the results derived in this paper including error estimates have exponential decay properties.

In a recent related paper [1], authors have discussed C1C^{1}-conforming VEM for the nonstationary Navier-Stokes equations in stream-function vorticity formulation and derived optimal error estimate in H1H^{1} norm under smallness assumption on the data and using fixed point arguments. We remark here that the present analysis can be extended to include VEM with some appropriate modifications.

Throughout this article, we use the standard notation of Lebesgue spaces LpL^{p} and Sobolev spaces Wm,p(Ω)W^{m,p}(\Omega) with their respective norms 0,p\|\cdot\|_{0,p} and m,p\|\cdot\|_{m,p}. Further, when p=2p=2, we apply the standard notation for Hilbert spaces like L2L^{2} and Hm(Ω)H^{m}(\Omega) with, respective, inner-products (,)(\cdot,\cdot) and (,)m(\cdot,\cdot)_{m}, norms \|\cdot\| and m\|\cdot\|_{m}. Moreover, ||m|\cdot|_{m} is denotes by the seminorm. For a Banach space XX with norm X\|\cdot\|_{X}, let Lp(0,;X)L^{p}(0,\infty;X) or simply Lp(X)L^{p}(X) whenever there is no confusion.

The rest of the paper is organized as follows. In the next section, we derive some new regularity results and the existence of an attractor. In Section 3, C1C^{1}-conforming FEMs are introduced. In Section 4, a priori error estimates are derived for L2L^{2}-, H1H^{1}-, and H2H^{2}-norms. Then, the backward Euler method is applied to derive the fully discrete scheme in Section 5 with a priori error estimates in both space and time. Some numerical experiments are provided in Section 6 and concluding remarks are given in Section 7.

2 A priori estimates

The variational formulation that we shall use in this paper is to seek ψ(t)H02(Ω))\psi(t)\in H^{2}_{0}(\Omega)) such that for almost all t>0t>0

(t(ψ),χ)+νa(ψ,χ)+b(ψ;ψ,χ)+μb0(ψ,χ)=μ(F,χ)χH02(Ω)(\partial_{t}(\nabla\psi),\nabla\chi)+\nu a(\psi,\chi)+b(\psi;\psi,\chi)+\mu b_{0}(\psi,\chi)=\mu(F,\chi)\forall\chi\in H^{2}_{0}(\Omega) (2.1)

with ψ(0)=ψ0\psi(0)=\psi_{0}, where the bilinear forms and the trilinear form are

a(v,w)\displaystyle a(v,w) :=(Δv,Δw),b0(v,w):=12[(vx,w)(v,wx)],andb(ψ;v,w):=(Δψ,vywxvxwy).\displaystyle:=(\Delta v,\Delta w),\;\;b_{0}(v,w):=-\frac{1}{2}\left[(v_{x},w)-(v,w_{x})\right],\;{\mbox{and}}\;b(\psi;v,w):=(\Delta\psi,v_{y}w_{x}-v_{x}w_{y}).

This section deals with a priori bounds, estimates of an attractor, and some regularity results of the solution to (2.1).

The trilinear form b(;,)b(\cdot;\cdot,\cdot) satisfies

(i) b(ψ,φ,φ)=0,ΔψL2(Ω),φH1(Ω).\displaystyle b(\psi,\varphi,\varphi)=0,\quad\forall\Delta\psi\in L^{2}(\Omega),\varphi\in H^{1}(\Omega).
(ii) b(ψ;ω,v)=b(ψ;v,ω).\displaystyle b(\psi;\omega,v)=-b(\psi;v,\omega).
(iii) b(ψ;φ,z)M{Δψφ0,4z0,4ΔψL2(Ω),φ,zW1,4(Ω),ΔψΔφΔzΔψ,Δφ,ΔzL2(Ω),φ1,ΔψzφW1,(Ω),ΔψL2(Ω),zH01(Ω).\displaystyle b(\psi;\varphi,z)\leq M\left\{\begin{aligned} &\left\|\Delta\psi\right\|\left\|\nabla\varphi\right\|_{0,4}\left\|\nabla z\right\|_{0,4}&&\forall\Delta\psi\in L^{2}(\Omega),\varphi,z\in W^{1,4}(\Omega),\\ &\left\|\Delta\psi\right\|\left\|\Delta\varphi\right\|\left\|\Delta z\right\|&&\forall\Delta\psi,\Delta\varphi,\Delta z\in L^{2}(\Omega),\\ &\left\|\varphi\right\|_{1,\infty}\left\|\Delta\psi\right\|\left\|\nabla z\right\|&&\forall\varphi\in W^{1,\infty}(\Omega),\Delta\psi\in L^{2}(\Omega),z\in H^{1}_{0}(\Omega).\end{aligned}\right.

Note that for vv or ww in H01(Ω)H^{1}_{0}(\Omega), b0(v,w)=(vx,w)b_{0}(v,w)=-(v_{x},w) and for w=vw=v,  b0(v,v)=0b_{0}(v,v)=0.

The Ladyzhenskaya inequalities in two dimension are given by:

  1. 1.

    For φH01(Ω)\varphi\in H^{1}_{0}(\Omega):

    φ0,4CLφ1/2φ1/2.\left\|\varphi\right\|_{0,4}\leq C_{L}\left\|\varphi\right\|^{1/2}\left\|\nabla\varphi\right\|^{1/2}.
  2. 2.

    For φH02(Ω)\varphi\in H^{2}_{0}(\Omega):

    φ0,4CLφ1/2Δφ1/2.\left\|\nabla\varphi\right\|_{0,4}\leq C_{L}\left\|\nabla\varphi\right\|^{1/2}\left\|\Delta\varphi\right\|^{1/2}.

Since vH01(Ω)v\in H^{1}_{0}(\Omega),

v1λ¯1v,\left\|v\right\|\leq\frac{1}{\sqrt{\bar{\lambda}_{1}}}\left\|\nabla v\right\|,

where λ¯1>0\bar{\lambda}_{1}>0 is the minimum eigenvalue of the eigenvalue problem Δϕ=λ¯ϕ-\Delta\phi=\bar{\lambda}\phi in Ω\Omega with homogeneous Dirichlet boundary condition. Moreover, if vH02(Ω),v\in H^{2}_{0}(\Omega), then

v1λ¯1Δv.\left\|\nabla v\right\|\leq\frac{1}{\sqrt{\bar{\lambda}_{1}}}\left\|\Delta v\right\|. (2.2)

For our subsequent use, we need the following inequality for φH02(Ω)H3(Ω)\varphi\in H^{2}_{0}(\Omega){\cap H^{3}(\Omega)}

Δφ1λ¯1Δφ.\left\|\Delta\varphi\right\|\leq\frac{1}{\sqrt{\bar{\lambda}_{1}}}\left\|\nabla\Delta\varphi\right\|.

Since this proof is nonstandard, we sketch its proof. Note that using integration by parts

Δφ2=(ψ,Δφ)φΔφ1λ¯1ΔφΔφ,\left\|\Delta\varphi\right\|^{2}=-(\nabla\psi,\nabla\Delta\varphi)\leq\left\|\nabla\varphi\right\|\left\|\nabla\Delta\varphi\right\|\leq\frac{1}{\sqrt{\bar{\lambda}_{1}}}\left\|\Delta\varphi\right\|\left\|\nabla\Delta\varphi\right\|,

and the required result follows.

Lemma 2.1.

Assume that ψ0H01(Ω)\psi_{0}\in H^{1}_{0}(\Omega) and FL2(H2)F\in L^{2}(H^{-2}). Then for 0<α<(νλ¯1)/20<\alpha<(\nu\bar{\lambda}_{1})/{2}, the following holds

ψ(t)2+βe2αt0te2αsΔψ(s)2𝑑se2αt(ψ02+μ2ν0te2αsF22𝑑s),\displaystyle\left\|\nabla\psi(t)\right\|^{2}+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\left\|\Delta\psi(s)\right\|^{2}\,ds\leq e^{-2\alpha t}\left(\left\|\nabla\psi_{0}\right\|^{2}+\frac{\mu^{2}}{\nu}\int_{0}^{t}e^{2\alpha s}\left\|F\right\|_{-2}^{2}\,ds\right),

where β=(ν(2α/λ¯1))>0\beta=(\nu-(2\alpha/{\bar{\lambda}_{1}}))>0. Moreover, there holds

ψ(t)2+ν0tΔψ(s)2𝑑sψ02+μ2νFL2(H2)2.\|\nabla\psi(t)\|^{2}+\nu\int_{0}^{t}\|\Delta\psi(s)\|^{2}\,ds\leq\|\nabla\psi_{0}\|^{2}+\frac{\mu^{2}}{\nu}\|F\|_{L^{2}(H^{-2})}^{2}. (2.3)
Proof.

Choose χ=e2αtψ\chi=e^{2\alpha t}\psi in (2.1) and observe that b(;ψ,ψ)=0b(\cdot;\psi,\psi)=0 with b0(ψ,ψ)=0b_{0}(\psi,\psi)=0. Then, we arrive at

12ddt(e2αtψ(t)2)+νe2αtΔψ2\displaystyle\frac{1}{2}\frac{d}{dt}(e^{2\alpha t}\left\|\nabla\psi(t)\right\|^{2})+\nu e^{2\alpha t}\left\|\Delta\psi\right\|^{2} αe2αtψ2e2αtμF2Δψ\displaystyle-\alpha e^{2\alpha t}\left\|\nabla\psi\right\|^{2}\leq e^{2\alpha t}\mu\left\|F\right\|_{-2}\left\|\Delta\psi\right\|
μ22νe2αtF22+ν2e2αtΔψ2.\displaystyle\leq\frac{\mu^{2}}{2\nu}e^{2\alpha t}\left\|F\right\|_{-2}^{2}+\frac{\nu}{2}e^{2\alpha t}\left\|\Delta\psi\right\|^{2}.

A use of (2.2) with kick-back arguments, and then after integration with respect to time as well as multiplying by e2αte^{-2\alpha t} yield the desired result. Finally, (2.3) follows with α=0\alpha=0. ∎

Remark 2.2.

To discuss the dynamics of the problem (1.1)–(1.3), the forcing function FF is considered to be independent of time. Then, one obtains

ψ(t)2+βe2αt0te2αsΔψ(s)2𝑑se2αtψ02+μ22να(1e2αt)F22.\left\|\nabla\psi(t)\right\|^{2}+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\left\|\Delta\psi(s)\right\|^{2}\,ds\leq e^{-2\alpha t}\left\|\nabla\psi_{0}\right\|^{2}+\frac{\mu^{2}}{2\nu\alpha}(1-e^{-2\alpha t})\left\|F\right\|_{-2}^{2}.
Theorem 2.3 (Wellposedness).

Let ψ0H01(Ω)\psi_{0}\in H^{1}_{0}(\Omega) and FL2(0,T;H2(Ω))F\in L^{2}(0,T;H^{-2}(\Omega)). Then, for any T>0T>0, the problem (1.1)–(1.3) admits a unique weak solution ψC0(0,T,H01(Ω))L2(0,T;H02(Ω))H1(0,T;H1(Ω))\psi\in C^{0}(0,T,H^{1}_{0}(\Omega))\cap L^{2}(0,T;H^{2}_{0}(\Omega))\cap H^{1}(0,T;H^{-1}(\Omega)) satisfying

<t(ψ),χ>+νa(ψ,χ)+b(ψ;ψ,χ)+μb0(ψ,χ)=(μF,χ)χH02(Ω), a.e. t(0,T)<\partial_{t}(\nabla\psi),\nabla\chi>+\nu a(\psi,\chi)+b(\psi;\psi,\chi)+\mu b_{0}(\psi,\chi)=(\mu F,\chi)\quad\forall\chi\in H^{2}_{0}(\Omega),\text{ a.e. }t\in(0,T) (2.4)

with ψ(0)=ψ0\psi(0)=\psi_{0}. Moreover, the solution ψ\psi depends continuously on ψ0\psi_{0}.

Bernier [4] has discussed existence of a unique strong solution to problem (1.1) -(1.2) with boundary condition ψ=0\psi=0 and Δψ=0\Delta\psi=0. Using the Faedo-Galerkin method, below, we briefly indicate the proof of Theorem 2.3.

Proof.

Using the Faedo-Galerkin method and the a priori uniform bound as in Lemma 2.1 for the Galerkin approximations, standard weak and weak* compactness arguments with the Aubin-Lions compactness argument, see [2], one easily provides the proof of the existence of a solution. It, therefore, remains to prove the continuous dependence property. Let ψi\psi_{i}, i=1,2i=1,2 be weak solutions of (2.4) with initial data ψi,0H01\psi_{i,0}\in H^{1}_{0}. Setting Φ=ψ1ψ2\Phi=\psi_{1}-\psi_{2}, it follows that Φ\Phi satisfies

(t(Φ),χ)+ν(ΔΦ,Δχ)+μb0(Φ,χ)=b(Φ;ψ1,χ)b(ψ2;Φ,χ).(\partial_{t}(\nabla\Phi),\nabla\chi)+\nu(\Delta\Phi,\Delta\chi)+\mu b_{0}(\Phi,\chi)=-b(\Phi;\psi_{1},\chi)-b(\psi_{2};\Phi,\chi).

Choose χ=Φ\chi=\Phi and notice that b(ψ2;Φ,Φ)=0b(\psi_{2};\Phi,\Phi)=0 with b0(Φ,Φ)=0b_{0}(\Phi,\Phi)=0. With the aid of Lemma 2.1, the Ladyzhenskaya inequality and Young’s inequality: abap/p+bq/qab\leq a^{p}/p+b^{q}/q with p=4/3p=4/3 and q=4q=4, we arrive at

12ddtΦ2+νΔΦ2\displaystyle\frac{1}{2}\frac{d}{dt}\left\|\nabla\Phi\right\|^{2}+\nu\left\|\Delta\Phi\right\|^{2} MΔΦψ10,4Φ0,4\displaystyle\leq M\left\|\Delta\Phi\right\|\left\|\nabla\psi_{1}\right\|_{0,4}\left\|\nabla\Phi\right\|_{0,4}
CL2MΔΦ3/2ψ11/2Δψ11/2Φ1/2\displaystyle\leq C_{L}^{2}M\left\|\Delta\Phi\right\|^{3/2}\left\|\nabla\psi_{1}\right\|^{1/2}\left\|\Delta\psi_{1}\right\|^{1/2}\left\|\nabla\Phi\right\|^{1/2}
3ν4ΔΦ2+Cν3ψ12Δψ12Φ2\displaystyle\leq\frac{3\nu}{4}\left\|\Delta\Phi\right\|^{2}+C\nu^{-3}\left\|\nabla\psi_{1}\right\|^{2}\left\|\Delta\psi_{1}\right\|^{2}\left\|\nabla\Phi\right\|^{2}
3ν4ΔΦ2+Cν3(ψ0,12+μ2νFL2(H2)2)Δψ12Φ2.\displaystyle\leq\frac{3\nu}{4}\left\|\Delta\Phi\right\|^{2}+C\nu^{-3}(\|\nabla\psi_{0,1}\|^{2}+\frac{\mu^{2}}{\nu}\|F\|_{L^{2}(H^{-2})}^{2})\left\|\Delta\psi_{1}\right\|^{2}\|\nabla\Phi\|^{2}.

Integrate with respect to time and use Lemma 2.1 to obtain

Φ2Φ(0)2+C(ψ0,1,FL2(H2),μ2,ν3)0tΔψ12Φ2ds.\left\|\nabla\Phi\right\|^{2}\leq\left\|\nabla\Phi(0)\right\|^{2}+{C(\|\nabla\psi_{0,1},\|F\|_{L^{2}(H^{-2})},\mu^{2},\nu^{-3})}\int_{0}^{t}\left\|\Delta\psi_{1}\right\|^{2}\left\|\nabla\Phi\right\|^{2}\,ds.

An application of Gronwall’s Lemma with the bound from Lemma 2.1 yields

Φ(t)2\displaystyle\left\|\nabla\Phi(t)\right\|^{2} Cexp(C0tΔψ12𝑑s)Φ(0)2\displaystyle\leq C\exp\Big{(}C\int_{0}^{t}\left\|\Delta\psi_{1}\right\|^{2}\,ds\Big{)}\left\|\nabla\Phi(0)\right\|^{2}
CeCTΦ(0)2.\displaystyle\leq Ce^{CT}\left\|\nabla\Phi(0)\right\|^{2}.

where generic constants CC depend on ψ0,1\|\nabla\psi_{0,1}\|, FL2(H2)\|F\|_{L^{2}(H^{-2})}, μ2\mu^{2} and ν3\nu^{-3}. As a consequence, the uniqueness holds and this completes the rest of the proof. ∎

Remark 2.4.

The L’Hospital rule implies

lim supte2αt0te2αsΔψ(s)2𝑑s=12αlim suptΔψ(t)2.\limsup_{t\rightarrow\infty}e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\left\|\Delta\psi(s)\right\|^{2}\,ds=\frac{1}{2\alpha}\limsup_{t\rightarrow\infty}\left\|\Delta\psi(t)\right\|^{2}.

Thus, by taking limit supremum in Remark 2.2 with α=νλ¯1/4\alpha=\nu\bar{\lambda}_{1}/4, we obtain

lim suptΔψ(t)μ22ν2F2.\limsup_{t\rightarrow\infty}\left\|\Delta\psi(t)\right\|\leq\frac{\mu^{2}}{2\nu^{2}}\left\|F\right\|_{-2}.

Moreover, for α=0\alpha=0 and time-independent FF, we obtain

ddtψ(t)2+νΔψ(t)2μ2νF22.\frac{d}{dt}\left\|\nabla\psi(t)\right\|^{2}+\nu\left\|\Delta\psi(t)\right\|^{2}\leq\frac{\mu^{2}}{\nu}\left\|F\right\|_{-2}^{2}.

Integrating both sides from tt to t+T0t+T_{0} for some T0>0T_{0}>0,

ψ(t+T0)2+νtt+T0Δψ2𝑑s\displaystyle\left\|\nabla\psi(t+T_{0})\right\|^{2}+\nu\int_{t}^{t+T_{0}}\left\|\Delta\psi\right\|^{2}\,ds ψ(t)2+T0μ2νF22\displaystyle\leq\left\|\nabla\psi(t)\right\|^{2}+\frac{T_{0}\mu^{2}}{\nu}\left\|F\right\|_{-2}^{2}
ψ02+μ2ανF2+μ2T0νF22\displaystyle\leq\left\|\psi_{0}\right\|^{2}+\frac{\mu^{2}}{\alpha\nu}\left\|F\right\|_{-2}+\frac{\mu^{2}T_{0}}{\nu}\left\|F\right\|_{-2}^{2}
ψ02+μ2ν(1α+T0)F22.\displaystyle\leq\left\|\nabla\psi_{0}\right\|^{2}+\frac{\mu^{2}}{\nu}(\frac{1}{\alpha}+T_{0})\left\|F\right\|_{-2}^{2}.

Hence, dropping the first nonnegative term and then taking limit supremum, we arrive at

νlim supttt+T0Δψ2𝑑sψ02+μ2ν(1α+T0)F22.\nu\limsup_{t\rightarrow\infty}\int_{t}^{t+T_{0}}\left\|\Delta\psi\right\|^{2}\,ds\leq\left\|\nabla\psi_{0}\right\|^{2}+\frac{\mu^{2}}{\nu}(\frac{1}{\alpha}+T_{0})\left\|F\right\|_{-2}^{2}.

2.1 Regularity results.

This subsection focusses on regularity results to be used in our subsequent analysis.

The following lemma which deals with the regularity of the biharmonic problem with Dirichlet data [5] is useful in proving the regularity result of this subsection.

Lemma 2.5 (Regularity of biharmonic equation).

For a polygonal domain Ω\Omega with Lipschitz boundary and given function gHδ(Ω)g\in H^{\delta}(\Omega) with δ[1/2,1)\delta\in[1/2,1), let ΦH02(Ω)\Phi\in H^{2}_{0}(\Omega) solves Δ2Φ=g\Delta^{2}\Phi=g in Ω\Omega, then

ΦH2+δ(Ω)CRgH2+δ(Ω).\|\Phi\|_{H^{2+\delta}(\Omega)}\leq C_{R}\|g\|_{H^{-2+\delta}(\Omega)}.

The above result is also valid for the elliptic index δ=1\delta=1, if, in addition, the domain Ω\Omega is convex.

Moreover, if the domain Ω\Omega is convex with all interior angles less than 126.283126.283^{\circ}, then there holds for δ(1,2]\delta\in(1,2]

ΦH2+δ(Ω)CRgH2+δ(Ω).\|\Phi\|_{H^{2+\delta}(\Omega)}\leq C_{R}\|g\|_{H^{-2+\delta}(\Omega)}.
Theorem 2.6 (Regularity).

Given ψ0H02(Ω)H3(Ω)\psi_{0}\in H^{2}_{0}(\Omega)\cap H^{3}(\Omega) and FH1(Ω)F\in H^{-1}(\Omega), the following estimate holds for all t>0t>0

t(ψm)(t)2+βe2αt0te2αstΔψm(s)2𝑑sC,\|\partial_{t}(\nabla\psi_{m})(t)\|^{2}+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}\Delta{\psi}_{m}(s)\|^{2}\,ds\leq C,

where CC is a positive constant depending on ψ03,F(0)1,FtL2(H2)\|\psi_{0}\|_{3},\|F(0)\|_{-1},\|F_{t}\|_{L^{2}(H^{-2})}, μ\mu and ν\nu.

Proof.

Let {λj}j=1\{\lambda_{j}\}_{j=1}^{\infty} be eigenvalues and {ϕj}j=1\{\phi_{j}\}_{j=1}^{\infty} be corresponding orthonormalized eigenvectors of Δ2ϕ=λϕ\Delta^{2}\phi=\lambda\phi in Ω\Omega with homogeneous Dirichlet boundary conditions. The set of eigenvectors forms a basis in H02H^{2}_{0}, H01H^{1}_{0} and L2L^{2}. Setting Vm=span{ϕ1,,ϕm}¯V_{m}=\overline{\text{span}\{\phi_{1},\cdots,\phi_{m}\}}, define ψm(t):=j=1mαj(t)ϕjVm\psi_{m}(t):=\sum_{j=1}^{m}\alpha_{j}(t)\phi_{j}\in V_{m} as a solution of

(t(ψm),ϕk)+νa(ψm,ϕk)+b(ψm;ψm,ϕk)+μb0(ψm,ϕk)=(μF,ϕk),k=1,,m(\partial_{t}(\nabla\psi_{m}),\nabla\phi_{k})+\nu a(\psi_{m},\phi_{k})+b(\psi_{m};\psi_{m},\phi_{k})+\mu b_{0}(\psi_{m},\phi_{k})=(\mu F,\phi_{k}),\quad k=1,\cdots,m (2.5)

with ψm(0)=j=1m(ψ0,ϕj)ϕj\psi_{m}(0)=\sum_{j=1}^{m}(\psi_{0},\phi_{j})\phi_{j}. Differentiate with respect to time (2.5) and obtain

(tt(ψm),ϕk)+νa(tψm,ϕk)+μb0(tψm,ϕk)\displaystyle(\partial_{tt}(\nabla\psi_{m}),\nabla\phi_{k})+\nu a(\partial_{t}\psi_{m},\phi_{k})+\mu b_{0}(\partial_{t}\psi_{m},\phi_{k}) (2.6)
+b(tψm;ψm,ϕk)+b(ψm;tψm,ϕk)=(μtF,ϕk),k=1,,m.\displaystyle\quad+b(\partial_{t}\psi_{m};\psi_{m},\phi_{k})+b(\psi_{m};\partial_{t}\psi_{m},\phi_{k})=(\mu\partial_{t}F,\phi_{k}),\quad k=1,\cdots,m.

Multiply (2.6) by αk\alpha^{\prime}_{k}, then sum up form from k=1k=1 to mm to arrive at

(tt(ψm),t(ψm))+νa(tψm,tψm)+μb0(tψm,tψm)\displaystyle(\partial_{tt}(\nabla\psi_{m}),\partial_{t}(\nabla\psi_{m}))+\nu a(\partial_{t}\psi_{m},\partial_{t}\psi_{m})+\mu b_{0}(\partial_{t}\psi_{m},\partial_{t}\psi_{m})
+b(tψm;ψm,tψm)+b(ψm;tψm,tψm)=(μtF,tψm).\displaystyle\quad+b(\partial_{t}\psi_{m};\psi_{m},\partial_{t}\psi_{m})+b(\psi_{m};\partial_{t}\psi_{m},\partial_{t}\psi_{m})=(\mu\partial_{t}F,\partial_{t}\psi_{m}).

An application of skew-symmetric property of b(ψm;,)b(\psi_{m};\cdot,\cdot) and b0(,)b_{0}(\cdot,\cdot) yields

12ddtt(ψm)(t)2+νtΔψm(t)2=b(tψm;tψm,ψm)+μ(tF,tψm).\frac{1}{2}\frac{d}{dt}\|\partial_{t}(\nabla\psi_{m})(t)\|^{2}+\nu\|\partial_{t}\Delta\psi_{m}(t)\|^{2}=b(\partial_{t}\psi_{m};\partial_{t}\psi_{m},\psi_{m})+\mu(\partial_{t}F,\partial_{t}\psi_{m}). (2.7)

To estimate the first term on the right hand side of (2.7), a use of the generalized Hölder inequality with the Ladyzhenskaya inequality, boundedness of ψm\|\nabla\psi_{m}\| and the Young’s inequality ab(a/p)+(b/q)ab\leq(a/p)+(b/q) with p=4/3p=4/3, q=4q=4, a=((ν/4)tΔψm)3/2a=\big{(}(\sqrt{\nu/4})\|\partial_{t}\Delta\psi_{m}\|\big{)}^{3/2} and b=((4/ν)tψmψmΔψm)1/2b=\big{(}(\sqrt{4/\nu})\|\partial_{t}\nabla\psi_{m}\|\|\nabla\psi_{m}\|\|\Delta\psi_{m}\|\big{)}^{1/2} show

b(tψm;tψm,ψm)\displaystyle b(\partial_{t}\psi_{m};\partial_{t}\psi_{m},\psi_{m}) MtΔψmtψm0,4ψm0,4\displaystyle\leq M\|\partial_{t}\Delta\psi_{m}\|\|\partial_{t}\nabla\psi_{m}\|_{0,4}\|\nabla\psi_{m}\|_{0,4}
CtΔψm3/2tψm1/2ψm1/2Δψm1/2\displaystyle\leq C\|\partial_{t}\Delta\psi_{m}\|^{3/2}\|\partial_{t}\nabla\psi_{m}\|^{1/2}\|\nabla\psi_{m}\|^{1/2}\|\Delta\psi_{m}\|^{1/2}
CνΔψm2tψm2+ν4tΔψm2.\displaystyle\leq\frac{C}{\nu}\|\Delta\psi_{m}\|^{2}\|\partial_{t}\nabla\psi_{m}\|^{2}+\frac{\nu}{4}\|\partial_{t}\Delta\psi_{m}\|^{2}. (2.8)

Moreover, an application of the Young’s inequality implies

μ(tF,tψm)μ2νtF22+ν4tΔψm2.\mu(\partial_{t}F,\partial_{t}\psi_{m})\leq\frac{\mu^{2}}{\nu}\|\partial_{t}F\|_{-2}^{2}+\frac{\nu}{4}\|\partial_{t}\Delta\psi_{m}\|^{2}.

Substitute (2.1) in (2.7). Then, multiply by e2αte^{2\alpha t} and use kickback arguments to arrive at

ddteαtt(ψm)(t)2\displaystyle\frac{d}{dt}\|e^{\alpha t}\partial_{t}(\nabla{\psi}_{m})(t)\|^{2} +νe2αttΔψm(t)22αe2αtt(ψm)(t)2\displaystyle+\nu e^{2\alpha t}\|\partial_{t}\Delta{\psi}_{m}(t)\|^{2}-2\alpha e^{2\alpha t}\|\partial_{t}(\nabla{\psi}_{m})(t)\|^{2}
2μ2νe2αttF22+CνΔψm(t)2eαtt(ψm)(t)2.\displaystyle\leq\frac{2\mu^{2}}{\nu}e^{2\alpha t}\|{\partial_{t}F}\|_{-2}^{2}+\frac{C}{\nu}\|\Delta\psi_{m}(t)\|^{2}\|e^{\alpha t}\partial_{t}(\nabla\psi_{m})(t)\|^{2}.

By (2.2), v2(1/λ¯1)Δv2\|\nabla v\|^{2}\leq(1/\bar{\lambda}_{1})\|\Delta v\|^{2}, we obtain after integration with respect to time

eαtt(ψm)(t)2+β0te2αstΔψm(s)2𝑑s\displaystyle\|e^{\alpha t}\partial_{t}(\nabla\psi_{m})(t)\|^{2}+\beta\int_{0}^{t}e^{2\alpha s}\|\partial_{t}\Delta{\psi}_{m}(s)\|^{2}\,ds
t(ψm)(0)2+2μ2ν0te2αstF22𝑑s\displaystyle\leq\|\partial_{t}(\nabla\psi_{m})(0)\|^{2}+\frac{2\mu^{2}}{\nu}\int_{0}^{t}e^{2\alpha s}\|{\partial_{t}F}\|_{-2}^{2}\,ds
+Cν0tΔψm(s)2eαtt(ψm)(s)2𝑑s.\displaystyle\quad+\frac{C}{\nu}\int_{0}^{t}\|\Delta\psi_{m}(s)\|^{2}\|e^{\alpha t}\partial_{t}(\nabla\psi_{m})(s)\|^{2}\,ds.

An application of the Gronwall’s Lemma with multiplication by e2αte^{-2\alpha t} shows

t(ψm)(t)2+βe2αt0te2αstΔψm(s)2𝑑s\displaystyle\|\partial_{t}(\nabla\psi_{m})(t)\|^{2}+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}\Delta{\psi}_{m}(s)\|^{2}\,ds (2.9)
(e2αtt(ψm)(0)2+2μ2νtFL2(H2)2)exp(Cν10tΔψm2𝑑s).\displaystyle\quad\leq\Big{(}e^{-2\alpha t}\|\partial_{t}(\nabla\psi_{m})(0)\|^{2}+\frac{2\mu^{2}}{\nu}\|{\partial_{t}F}\|_{L^{2}(H^{-2})}^{2}\Big{)}\exp\Big{(}C\nu^{-1}\int_{0}^{t}\|\Delta\psi_{m}\|^{2}\,ds\Big{)}.

It remains to show the estimate t(ψm)(0)\|\partial_{t}(\nabla\psi_{m})(0)\|, we note using

J(ψm(0),Δψm(0))1CΔψm(0)0,4ψm(0)0,4Cψm(0)32Cψ032\|J(\psi_{m}(0),\Delta\psi_{m}(0))\|_{-1}\leq C\|\Delta\psi_{m}(0)\|_{0,4}\|\nabla\psi_{m}(0)\|_{0,4}\leq C\|\psi_{m}(0)\|^{2}_{3}\leq C\|\psi_{0}\|_{3}^{2}

and

Δ2ψm(0)1Cψm(0)3Cψ03\|\Delta^{2}\psi_{m}(0)\|_{-1}\leq C\|\psi_{m}(0)\|_{3}\leq C\|\psi_{0}\|_{3}

that

t(ψm)(0)\displaystyle\|\partial_{t}(\nabla\psi_{m})(0)\| t(Δψm)(0)1\displaystyle\leq\|\partial_{t}(\Delta\psi_{m})(0)\|_{-1}
νΔ2ψm(0)1+J(ψm,Δψm)(0)1+μ(xψm(0)1+F(0)1)\displaystyle\leq\nu\|\Delta^{2}\psi_{m}(0)\|_{1}+\|J(\psi_{m},\Delta\psi_{m})(0)\|_{-1}+\mu(\|\partial_{x}\psi_{m}(0)\|_{-1}+\|F(0)\|_{-1})
C(νψ03+ψ032+μ(ψ0+F(0)1)).\displaystyle\leq C\Big{(}\nu\|\psi_{0}\|_{3}+\|\psi_{0}\|_{3}^{2}+\mu(\|\nabla\psi_{0}\|+\|F(0)\|_{-1})\Big{)}. (2.10)

A use of (2.3) of Lemma 2.1, which is also valid for the Galerkin approximation to (2.9) with Δψm(0)Δψ0\|\Delta\psi_{m}(0)\|\leq\|\Delta\psi_{0}\| yields

t(ψm)(t)2\displaystyle\|\partial_{t}(\nabla\psi_{m})(t)\|^{2} +βe2αt0te2αstΔψm(s)2𝑑s\displaystyle+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}\Delta{\psi}_{m}(s)\|^{2}\,ds
C(μ,ν,ψ03,F(0)1,FtL2(H2)).\displaystyle\leq C(\mu,\nu,\|\psi_{0}\|_{3},\|F(0)\|_{-1},\|F_{t}\|_{L^{2}(H^{-2})}).

Taking limit as mm\rightarrow\infty, we obtain for all t(0,T0]t\in(0,T_{0}]

t(ψ)(t)2\displaystyle\|\partial_{t}(\nabla\psi)(t)\|^{2} +βe2αt0te2αstΔψ(s)2𝑑s\displaystyle+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}\Delta{\psi}(s)\|^{2}\,ds
C(μ,ν,ψ03,F(0)1,FtL2(H2)).\displaystyle\leq C(\mu,\nu,\|\psi_{0}\|_{3},\|F(0)\|_{-1},\|F_{t}\|_{L^{2}(H^{-2})}).

This concludes the rest of the proof. ∎

Hence forth, the arguments and estimates given in this subsection are formal and these can be justified rigorously following the usual Galerkin type procedure as in Theorem 2.6, and then passing to the limit.

Theorem 2.7.

Let ψ0H2+δ(Ω)H02(Ω)\psi_{0}\in H^{2+\delta}(\Omega)\cap H^{2}_{0}(\Omega) and F,FtL2(H2)F,F_{t}\in L^{2}(H^{-2}) with F(0)H1(Ω)F(0)\in H^{-1}(\Omega). Then, there is a positive constant CC depending on ψ03,FtL2(H2),F(0),μ\|\psi_{0}\|_{3},\|F_{t}\|_{L^{2}(H^{-2})},\|F(0)\|,\mu and ν\nu such that for all t>0t>0 for 1/2<δ11/2<\delta\leq 1

ψ(t)2+δ+e2αt0te2αsψ(s)2+δ2𝑑sC.\|\psi(t)\|_{2+\delta}+e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\psi(s)\|_{2+\delta}^{2}\,ds\leq C.

Moreover, if we further assume that FtL2(Ω),F_{t}\in L^{2}(\Omega), then for 1<δ21<\delta\leq 2

e2αt0te2αsψ(s)2+δ2𝑑sC.e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\psi(s)\|_{2+\delta}^{2}\,ds\leq C. (2.11)
Proof.

Note that from the main equation (1.1) with

νΔ2ψ(t)=g(t):=tΔψJ(ψ,Δψ)+μ(ψx+F),\nu\Delta^{2}\psi(t)=g(t):=\partial_{t}\Delta\psi-J(\psi,\Delta\psi)+\mu(\psi_{x}+F), (2.12)

and elliptic regularity result

νψ(t)2+δνΔ2ψ(t)2+δ\displaystyle\nu\|\psi(t)\|_{2+\delta}\leq\nu\|\Delta^{2}\psi(t)\|_{-2+\delta} tΔψ(t)2+δ+J(ψ,Δψ)2+δ\displaystyle\leq\|\partial_{t}\Delta\psi(t)\|_{{-2+\delta}}+\|J(\psi,\Delta\psi)\|_{{-2+\delta}}
+μ(ψx2+δ+F(t)2+δ)\displaystyle+\mu\Big{(}\|\psi_{x}\|_{{-2+\delta}}+\|F(t)\|_{{-2+\delta}}\Big{)}
Ctψ(t)+J(ψ,Δψ)2+δ+μ(ψ+F(t)2).\displaystyle\leq C\|\partial_{t}\nabla\psi(t)\|+\|J(\psi,\Delta\psi)\|_{{-2+\delta}}+\mu\Big{(}\|\nabla\psi\|+\|F(t)\|_{-2}\Big{)}. (2.13)

In order to estimate the second term on the right hand side of (2.1), recall the definition of JJ. After we use generalized Hölder’s inequality with 1/2+1/p+1/q=11/2+1/p+1/q=1 where p=2/σp=2/\sigma and q=2/(1σ)q=2/(1-\sigma).

|(J(ψ,Δψ),φ)(t)|\displaystyle|(J(\psi,\Delta\psi),\varphi)(t)| =|b(ψ(t);ψ(t),φ)|\displaystyle=|b(\psi(t);\psi(t),\varphi)|
MΔψ(t)ψ(t)1,pφ1,q.\displaystyle\leq M\|\Delta\psi(t)\|\|\psi(t)\|_{1,p}\|\varphi\|_{1,q}.

Finally, the Sobolev imbedding theorem H1LpH^{1}\subset L^{p} and HσLqH^{\sigma}\subset L^{q} shows

|(J(ψ,Δψ,φ)(t))|CΔψ(t)2φH1+σ(Ω).|(J(\psi,\Delta\psi,\varphi)(t))|\leq C\|\Delta\psi(t)\|^{2}\|\varphi\|_{H^{1+\sigma}(\Omega)}.

Note that J(ψ,Δψ)(t)H(1+σ)(Ω)J(\psi,\Delta\psi)(t)\in H^{-(1+\sigma)}(\Omega) and hence, g(t)H2+(1σ)(Ω)g(t)\in H^{-2+(1-\sigma)}(\Omega). Then, from elliptic regularity Lemma 2.5, we obtain ψ(t)H3σ(Ω)\psi(t)\in{H^{3-\sigma}(\Omega)}. Since H3σH^{3-\sigma} with 0<σ<1/20<\sigma<1/2 is continuously embedded in C1(Ω¯)C^{1}(\bar{\Omega}), there holds

|(J(ψ,Δψ),φ)(t)|:=|b(ψ(t);ψ(t),φ)|MΔψ(t)ψ(t)1,φ1.|(J(\psi,\Delta\psi),\varphi)(t)|:=|b(\psi(t);\psi(t),\varphi)|\leq M\|\Delta\psi(t)\|\|\psi(t)\|_{1,\infty}\|\varphi\|_{1}.

This implies J(ψ,Δψ)(t)H1(Ω)J(\psi,\Delta\psi)(t)\in H^{-1}(\Omega). Therefore, g(t)H1(Ω)g(t)\in H^{-1}(\Omega). Now, an application of elliptic regularity Lemma 2.5 shows ψ(t)H3(Ω).\psi(t)\in H^{3}(\Omega).

For the estimate (2.12), a use of the Theorem 2.6 with elliptic regularity yields

βe2αt0tψ(s)2+δ2𝑑s\displaystyle\beta e^{-2\alpha t}\int_{0}^{t}\|\psi(s)\|_{2+\delta}^{2}\,ds Cβe2αt0tΔ2ψ(s)2𝑑s\displaystyle\leq C\beta e^{-2\alpha t}\int_{0}^{t}\|\Delta^{2}\psi(s)\|^{2}\,ds
Ce2αt0t(Δψt(s)2+J(ψ;Δψ)(s)2+μ2ψx2+μ2F2)𝑑s\displaystyle\leq Ce^{-2\alpha t}\int_{0}^{t}\Big{(}\|\Delta\psi_{t}(s)\|^{2}+\|J(\psi;\Delta\psi)(s)\|^{2}+\mu^{2}\|\psi_{x}\|^{2}+\mu^{2}\|F\|^{2}\Big{)}\,ds
C(α,ν,μ,ψ03,FL2(L2),FtL2(H1)).\displaystyle\leq C\big{(}\alpha,\nu,\mu,\|\psi_{0}\|_{3},\|F\|_{L^{2}(L^{2})},\|F_{t}\|_{L^{2}(H^{-1})}\big{)}.

This completes the rest of the proof. ∎

The following theorem focusses on the regularity results which will be needed in our error analysis.

Theorem 2.8.

Let ψ0H4(Ω)H02(Ω)\psi_{0}\in H^{4}(\Omega)\cap H^{2}_{0}(\Omega) and FtL2(H1(Ω)).F_{t}\in L^{2}(H^{-1}(\Omega)). Then there is a positive constant CC depending on ψ04,Ft1,F(0),μ\|\psi_{0}\|_{4},\|F_{t}\|_{-1},\|F(0)\|,\mu and ν\nu such that for all t>0t>0 and for 1<δ21<\delta\leq 2

ν(ψ(t)2+δ+tΔψ(t)2)+e2αt0te2αst2ψ(s)2𝑑sC.\nu\Big{(}\|\psi(t)\|_{2+\delta}+\|\partial_{t}\Delta\psi(t)\|^{2}\Big{)}+e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\nabla\partial_{t}^{2}\psi(s)\|^{2}\,ds\leq C. (2.14)

Moreover, for 1/2<δ11/2<\delta\leq 1

νe2αt0te2αstψ(s)2+δ2𝑑sC.\nu e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}\psi(s)\|^{2}_{2+\delta}\,ds\leq C.
Proof.

Differentiate equation (1.1) with respect to time. After multiplying e2αtt2ψe^{2\alpha t}\partial_{t}^{2}\psi to the both sides and integrate over Ω\Omega, we arrive at

e2αtt2ψ(t)2\displaystyle e^{2\alpha t}\|\partial_{t}^{2}\nabla\psi(t)\|^{2} +ν2ddt(e2αttΔψ(t)2)=αe2αttΔψ(t)2\displaystyle+\frac{\nu}{2}\frac{d}{dt}\Big{(}e^{2\alpha t}\|\partial_{t}\Delta{\psi}(t)\|^{2}\Big{)}=\alpha e^{2\alpha t}\|\partial_{t}\Delta\psi(t)\|^{2}
eαt(b(tψ;ψ,eαtt2ψ)+b(ψ;tψ,eαtt2ψ))\displaystyle-e^{\alpha t}\big{(}b(\partial_{t}\psi;\psi,e^{\alpha t}\partial_{t}^{2}\psi)+b(\psi;\partial_{t}\psi,e^{\alpha t}\partial_{t}^{2}\psi)\big{)}
μb0(eαttψ,eαtt2ψ)+μ(eαttF,eαtt2ψ).\displaystyle-\mu b_{0}(e^{\alpha t}{\partial_{t}\psi},e^{\alpha t}\partial_{t}^{2}\psi)+\mu(e^{\alpha t}\partial_{t}{F},e^{\alpha t}\partial_{t}^{2}\psi). (2.15)

The second term on the right hand side is bounded by

eαt(b(tψ;ψ,eαtt2ψ)+b(ψ;tψ,eαtt2ψ))CtΔψ2ψ32+16e2αtt2ψ(t)2.\displaystyle-e^{\alpha t}\big{(}b(\partial_{t}\psi;\psi,e^{\alpha t}\partial_{t}^{2}\psi)+b(\psi;\partial_{t}\psi,e^{\alpha t}\partial_{t}^{2}\psi)\big{)}\leq C\|\partial_{t}\Delta\psi\|^{2}\|\psi\|^{2}_{3}+\frac{1}{6}e^{2\alpha t}\|\partial_{t}^{2}\nabla\psi(t)\|^{2}. (2.16)

For the last two terms are bounded by

μ(b0(eαttψ,eαtt2ψ)\displaystyle-\mu\Big{(}b_{0}(e^{\alpha t}{\partial_{t}\psi},e^{\alpha t}\partial_{t}^{2}\psi) (eαttF,eαtt2ψ))\displaystyle-(e^{\alpha t}\partial_{t}{F},e^{\alpha t}\partial_{t}^{2}\psi)\Big{)}
3μ2νe2αt(tψ2+tF12)+ν3e2αtt2ψ2.\displaystyle\leq\frac{3\mu^{2}}{\nu}e^{2\alpha t}\big{(}\|\partial_{t}\nabla\psi\|^{2}+\|\partial_{t}F\|^{2}_{-1}\big{)}+\frac{\nu}{3}e^{2\alpha t}\|\partial_{t}^{2}\nabla\psi\|^{2}. (2.17)

On substitution of (2.16) and (2.1) in (2.1) with kick back argument, then integrate with respect to time with Theorems 2.62.7 with Δψt(0)C(ψ04)\|\Delta\psi_{t}(0)\|\leq C(\|\psi_{0}\|_{4}) yields

e2αt0te2αst2ψ(s)2ds+νtΔψ(t)2νtΔψ(02\displaystyle e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}^{2}\nabla\psi(s)\|^{2}\,ds+\nu\|\partial_{t}\Delta{\psi}(t)\|^{2}\leq\nu\|\partial_{t}\Delta\psi(0\|^{2}
+C(α,ν,μ)e2αt0te2αs(tΔψ(s)2(1+ψ32)+tψ2+tF12)𝑑s.\displaystyle\quad+C(\alpha,\nu,\mu)e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\Big{(}\|\partial_{t}\Delta\psi(s)\|^{2}\big{(}1+\|\psi\|^{2}_{3}\big{)}+\|\partial_{t}\nabla\psi\|^{2}+\|\partial_{t}F\|^{2}_{-1}\Big{)}\,ds. (2.18)

As in the proof of Theorem 2.7, using the estimates of the Theorem 2.6, we complete the rest of the proof. ∎

The last theorem of this subsection deals on the regularity results to be used subsequently.

Theorem 2.9.

Let ψ0H4(Ω)H02(Ω)\psi_{0}\in H^{4}(\Omega)\cap H^{2}_{0}(\Omega), FtH1(Ω)F_{t}\in H^{-1}(\Omega), and FttH2(Ω)F_{tt}\in H^{-2}(\Omega). Then there is a positive constant CC depending on ψ04,Ft1,Ftt2,F(0),μ\|\psi_{0}\|_{4},\;\|F_{t}\|_{-1},\;\|F_{tt}\|_{-2},\;\|F(0)\|,\;\mu and ν\nu such that for all t>0t>0 and for 1/2<δ11/2<\delta\leq 1

ντ(t)(tψ(t)2+δ2+t2ψ(t)2)+e2αt0te2αsτ(s)t2Δψ(s)2𝑑sC,\nu\tau(t)\Big{(}\|\partial_{t}\psi(t)\|_{2+\delta}^{2}+\|\partial^{2}_{t}\nabla\psi(t)\|^{2}\Big{)}+e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\tau(s)\|\partial_{t}^{2}\Delta\psi(s)\|^{2}\,ds\leq C, (2.19)

where τ(t)=min{t,1}.\tau(t)=\min\{t,1\}. Moreover, for 1δ21\leq\delta\leq 2

νe2αt0te2αsτ(s)t2ψ(s)2+δ2𝑑sC.\nu e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\tau(s)\|\partial_{t}^{2}\psi(s)\|^{2}_{2+\delta}\,ds\leq C.
Proof.

On differentiating the equation (1.1) with respect to time twice and then forming an inner-product with τ(t)e2αtt2ψ-\tau(t)e^{2\alpha t}\partial^{2}_{t}\psi, using the property (i)(i) of the trilinear form b(;,)b(\cdot;\cdot,\cdot) and property of b0(,)b_{0}(\cdot,\cdot), it now follows that

12ddt(τ(t)e2αtt2ψ(t)2)+ντ(t)e2αtt2Δψ(t)2=(ατ(t)+τ(t))e2αtt2ψ(t)2\displaystyle\frac{1}{2}\frac{d}{dt}\Big{(}\tau(t)e^{2\alpha t}\|\partial_{t}^{2}\nabla\psi(t)\|^{2}\Big{)}+{\nu}\tau(t)e^{2\alpha t}\|\partial_{t}^{2}\Delta{\psi}(t)\|^{2}=(\alpha\tau(t)+\tau^{\prime}(t))e^{2\alpha t}\|\partial_{t}^{2}\nabla\psi(t)\|^{2}
τ(t)eαt(b(t2ψ;ψ,eαtt2ψ)+2b(tψ;tψ,eαtt2ψ))\displaystyle\quad-\tau(t)e^{\alpha t}\big{(}b(\partial_{t}^{2}\psi;\psi,e^{\alpha t}\partial^{2}_{t}\psi)+2b(\partial_{t}\psi;\partial_{t}\psi,e^{\alpha t}\partial^{2}_{t}\psi)\big{)}
+μτ(t)(eαtt2F,eαtt2ψ).\displaystyle\quad+\mu\tau(t)(e^{\alpha t}\partial_{t}^{2}{F},e^{\alpha t}\partial_{t}^{2}\psi).

For the first term on the right hand side of (2.1), note that τ(t)1,\tau(t)\leq 1, and τ1.\tau^{\prime}\leq 1. The second term on the right hand side is bounded by

τ(t)eαt(b(t2ψ;ψ,eαtt2ψ)\displaystyle-\tau(t)e^{\alpha t}\big{(}b(\partial_{t}^{2}\psi;\psi,e^{\alpha t}\partial^{2}_{t}\psi) +2b(tψ;tψ,eαtt2ψ))13τ(t)e2αtt2Δψ(t)2\displaystyle+2b(\partial_{t}\psi;\partial_{t}\psi,e^{\alpha t}\partial^{2}_{t}\psi)\big{)}\leq\frac{1}{3}\tau(t)e^{2\alpha t}\|\partial_{t}^{2}\Delta\psi(t)\|^{2}
+Ce2αt(Δψt2ψ32+t2ψ2+tψ3).\displaystyle+Ce^{2\alpha t}\big{(}\|\Delta\psi_{t}\|^{2}\|\psi\|^{2}_{3}+\|\partial_{t}^{2}\nabla\psi\|^{2}+\|\partial_{t}\psi\|_{3}\big{)}. (2.20)

The third term is bounded by

μτ(t)eαtt2F,eαtt2ψ3μ22ντ(t)e2αtt2F22+ν6τ(t)e2αtt2Δψ2.\displaystyle\mu\tau(t)\left\langle e^{\alpha t}\partial_{t}^{2}{F},e^{\alpha t}\partial_{t}^{2}\psi\right\rangle\leq\frac{3\mu^{2}}{2\nu}\tau(t)e^{2\alpha t}\|\partial_{t}^{2}F\|^{2}_{-2}+\frac{\nu}{6}\tau(t)e^{2\alpha t}\|\partial_{t}^{2}\Delta\psi\|^{2}. (2.21)

On substitution of (2.1) and (2.21) in (2.1), use kick back argument and integration with respect to time with multiplication of e2αte^{-2\alpha t} to obtain

τ(t)t2ψ(t)2\displaystyle\tau(t)\|\partial_{t}^{2}\nabla\psi(t)\|^{2} +e2αtν0tτ(s)e2αst2Δψ(s)2𝑑s2(α+1)e2αt0te2αst2ψ(s)2𝑑s\displaystyle+e^{-2\alpha t}\nu\int_{0}^{t}\tau(s)e^{2\alpha s}\|\partial_{t}^{2}\Delta\psi(s)\|^{2}\,ds\leq 2(\alpha+1)e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}^{2}\nabla\psi(s)\|^{2}\,ds
+C(α,ν,μ)e2αt0te2αs(t2ψ(s)2ψ32+tΔψ2tψ32)𝑑s\displaystyle+C(\alpha,\nu,\mu)e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\Big{(}\|\partial_{t}^{2}\nabla\psi(s)\|^{2}\|\psi\|_{3}^{2}+\|\partial_{t}\Delta\psi\|^{2}\|\partial_{t}\psi\|^{2}_{3}\Big{)}\,ds
+C(μ2ν)e2αt0te2αst2F(s)22𝑑s.\displaystyle+C\big{(}\frac{\mu^{2}}{\nu}\big{)}e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\partial_{t}^{2}F(s)\|^{2}_{-2}\,ds. (2.22)

A use of the estimates in Theorems 2.62.8 completes the proof of the estimate (2.19). Proceed in a similar manner as in the proof of the Theorem 2.7 to complete the rest of the proof. ∎

Remark 2.10.

The results of Theorem 2.9 hold for τ=1\tau=1 under higher regularity on the initial data ψ0\psi_{0}, that is, ψ0H6(Ω)H02(Ω)\psi_{0}\in H^{6}(\Omega)\cap H^{2}_{0}(\Omega) under some compatibility conditions.

Remark 2.11.

If F=0F=0, then the following regularity results hold

ψ(t)2+δ\displaystyle\left\|\psi(t)\right\|_{2+\delta} Ceαt,\displaystyle\leq Ce^{-\alpha t},
0te2αt(tψ(t)2+δ2+ψ(t)2+δ)\displaystyle\int_{0}^{t}e^{2\alpha t}(\left\|\partial_{t}\psi(t)\right\|_{2+\delta}^{2}+\left\|\psi(t)\right\|_{2+\delta}) C.\displaystyle\leq C.

If FF decays exponentially, then also the exponential decay property holds. Moreover, if FL2(0,T;H1(Ω))F\in L^{2}(0,T;H^{-1}(\Omega)) and tFL2(0,T;H2(Ω))\partial_{t}F\in L^{2}(0,T;H^{-2}(\Omega)), then error is bounded for all t>0t>0.

2.2 Absorbing set and global attractor.

This subsection is on the study of the dynamics of the system (1.1)–(1.3) under the assumption that FF is time independent.

Let S(t)S(t) for t0t\geq 0 be the solution operator form which takes ψ0H01(Ω)\psi_{0}\in H^{1}_{0}(\Omega) into ψ(t)\psi(t). This family {S(t)}t0\{S(t)\}_{t\geq 0} forms a semigroup of operators on H01(Ω)H^{1}_{0}(\Omega). Below, we discuss the main result of this subsection.

Lemma 2.12.

With H=H01(Ω),H=H^{1}_{0}(\Omega), there exists ρ0>0\rho_{0}>0 such that the ball BH(0,ρ0B_{H}(0,\rho_{0} is absorbing in HH in the sense that for ρ>0\rho>0, there exists t(ρ)>0t^{\star}(\rho)>0 such that for tt(ρ)t\geq t^{\star}(\rho), S(t)BH(0,ρ)BH(0,ρ0).S(t)B_{H}(0,\rho)\subset B_{H}(0,\rho_{0}).

Proof.

Let ψ0BH(0,ρ0)\psi_{0}\in B_{H}(0,\rho_{0}). Then, from Lemma 2.1, we obtain

ψ(t)2e2αtψ02+μ22ναF22(1e2αt).\left\|\nabla\psi(t)\right\|^{2}\leq e^{-2\alpha t}\left\|\nabla\psi_{0}\right\|^{2}+\frac{\mu^{2}}{2\nu\alpha}\left\|F\right\|_{-2}^{2}(1-e^{-2\alpha t}).

With ρ2=μ2ναF22\rho^{2}=\frac{\mu^{2}}{\nu\alpha}\left\|F\right\|_{-2}^{2}, it follows that

ψ(t)2e2αt(ρ0212ρ2)+12ρ2.\left\|\nabla\psi(t)\right\|^{2}\leq e^{-2\alpha t}(\rho_{0}^{2}-\frac{1}{2}\rho^{2})+\frac{1}{2}\rho^{2}.

Choosing

t1αlog(2ρ02ρ2ρ2)=t(ρ).t\geq\frac{1}{\alpha}\log\left(\frac{2\rho_{0}^{2}-\rho^{2}}{\rho^{2}}\right)=t^{\star}(\rho).

We now obtain ψ(t)2ρ2\left\|\nabla\psi(t)\right\|^{2}\leq\rho^{2}, that is, S(t)BH(0,ρ)BH(0,ρ0)S(t)B_{H}(0,\rho)\subset B_{H}(0,\rho_{0}). For ρ02ρ/2\rho_{0}^{2}\leq\rho/2, the result follows trivially for all t>0t>0. Therefore, BH(0,ρ0)B_{H}(0,\rho_{0}) is an absorbing set in HH. This proves the theorem. ∎

3 Finite element method

In this section, C1C^{1}-conforming FEM is applied to problem (2.1). Then, for the corresponding semi-discrete section, we discuss the existence of a discrete attractor. Let 𝒯h\mathcal{T}_{h} be a shape regular partition of Ω¯\overline{\Omega} where h=maxK𝒯hhKh=\max{K\in\mathcal{T}_{h}}h_{K} with hK=diam(K)h_{K}=\text{diam}(K). A general C1C^{1}-conforming FE space is defined by

ShC1(Ω)𝒫,Sh0={vSh:𝐧v=v=0 on Ω}.S_{h}\subset C^{1}(\Omega)\cap\mathcal{P},\quad S_{h}^{0}=\{v\in S_{h}:\,\partial_{\mathbf{n}}v=v=0\text{ on }\partial\Omega\}.

where 𝒫\mathcal{P} is a piecewise polynomial space. We say ShS_{h} is of degree kk if ShS_{h} consists of piecewise polynomial up to degree k3k\geq 3.

Remark 3.1.

Each of C1C^{1}-finite element space leads to different definition for 𝒯h\mathcal{T}_{h}, 𝒫\mathcal{P}, and kk.

  • When 𝒯h\mathcal{T}_{h} is a triangular partition and 𝒫\mathcal{P} is a piecewise cubic polynomial space over a collection of sub-triangles of 𝒯h\mathcal{T}_{h} with k=3k=3, ShS_{h} is a Hsieh-Clough-Tocher (HCT) element.

  • When 𝒯h\mathcal{T}_{h} is a triangular partition and 𝒫\mathcal{P} is piecewise quintic polynomial space over 𝒯h\mathcal{T}_{h} with k=5k=5, ShS_{h} is an Argyris element.

  • When 𝒯h\mathcal{T}_{h} is a rectangular partition and 𝒫\mathcal{P} is piecewise bi-cubic polynomial space over 𝒯h\mathcal{T}_{h} with k=3k=3, ShS_{h} is a Bogner-Fox-Schmit (BFS) element.

Denote Ih:H02(Ω)Sh0I_{h}:H^{2}_{0}(\Omega)\rightarrow S_{h}^{0} as the interpolation operator with the following property: For vH2+δ(Ω)H02(Ω)v\in H^{2+\delta}(\Omega)\cap H^{2}_{0}(\Omega), there is a positive constant CC, independent of hh, such that for δ>1/2\delta>1/2

vIhvjChmin(k+1,2+δ)jv2+δ,j=0,1,2.\left\|v-I_{h}v\right\|_{j}\leq Ch^{\min(k+1,2+\delta)-j}\left\|v\right\|_{2+\delta},\ j=0,1,2. (3.1)

The semi-discrete problem after applying the C1C^{1}-conforming FEM is to seek ψh(t)Sh0\psi_{h}(t)\in S_{h}^{0} such that

(tψh,χ)+νa(ψh,χ)+b(ψh;ψh,χ)+μb0(ψh,χ)=μ(F,χ)χSh0,t(0,T],(\partial_{t}\nabla\psi_{h},\nabla\chi)+\nu a(\psi_{h},\chi)+b(\psi_{h};\psi_{h},\chi)+\mu b_{0}(\psi_{h},\chi)=\mu(F,\chi)\quad\forall\chi\in S_{h}^{0},\;t\in(0,T], (3.2)

with ψh(0)=ψ0,hSh0\psi_{h}(0)=\psi_{0,h}\in S_{h}^{0} to be defined later. Since Sh0S_{h}^{0} is finite dimensional, (3.2) leads to a system of nonlinear ODEs. As b(;,)b(\cdot;\cdot,\cdot) is locally Lipschitz function, an application of Picard’s theorem yields the existence of a unique local discrete solution ψh(t)\psi_{h}(t) for t(0,th)t\in(0,t_{h}^{\star}) for some th>0t_{h}^{\star}>0. For applying continuation argument so that solution ψh(t)\psi_{h}(t) can be continued for all t(0,T]t\in(0,T], we need to derive an a priori bound on ψh(t)\psi_{h}(t) for all t(0,T]t\in(0,T].

Lemma 3.2 (A priori bound).

Let ψ0,hSh0\psi_{0,h}\in S_{h}^{0} be the initial condition for the discrete problem such that ψ0,hCψ0\left\|\nabla\psi_{0,h}\right\|\leq C\left\|\nabla\psi_{0}\right\|. Then, for all t(0,T]t\in(0,T] and for 0<α<νλ120<\alpha<\frac{\nu\lambda_{1}}{2}, the following estimate holds:

ψh(t)2+βe2αt0te2αtΔψh(s)2𝑑sCe2αtψ02+μ2νFL2(H2)2,\left\|\nabla\psi_{h}(t)\right\|^{2}+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha t}\left\|\Delta\psi_{h}(s)\right\|^{2}\,ds\leq Ce^{-2\alpha t}\left\|\nabla\psi_{0}\right\|^{2}+\frac{\mu^{2}}{\nu}\left\|F\right\|_{L^{2}(H^{-2})}^{2}, (3.3)

where β=(ν2αλ1)>0\beta=(\nu-\frac{2\alpha}{\lambda_{1}})>0. Moreover,

limsuptΔψh(t)μ2νFL2(H2).\displaystyle\mathop{\lim\sup}_{t\rightarrow\infty}\|\Delta\psi_{h}(t)\|\leq\frac{\mu^{2}}{\nu}\|F\|_{L^{2}(H^{-2})}. (3.4)
Proof.

Choose χ=ψh\chi=\psi_{h} in (3.2). Since b(ψh;ψh,ψh)=0b(\psi_{h};\psi_{h},\psi_{h})=0 and b0(ψh,ψh)=0b_{0}(\psi_{h},\psi_{h})=0, multiply e2αte^{2\alpha t} to the both sides to arrive at

ddt(e2αtψh(t)2)+2(ναλ1)e2αtΔψh(t)2μ2νe2αtF22+νΔψh(t)2.\frac{d}{dt}(e^{2\alpha t}\left\|\nabla\psi_{h}(t)\right\|^{2})+2(\nu-\frac{\alpha}{\lambda_{1}})e^{2\alpha t}\left\|\Delta\psi_{h}(t)\right\|^{2}\leq\frac{\mu^{2}}{\nu}e^{2\alpha t}\left\|F\right\|_{-2}^{2}+\nu\left\|\Delta\psi_{h}(t)\right\|^{2}.

Use the kick-back argument and then integrate from 0 to tt and multiply e2αte^{2\alpha t} with the bound of ψ0,h\left\|\nabla\psi_{0,h}\right\| to complete the estimate (3.3).

In order to estimate (3.4), first drop the first term on the left hand side as it is nonnegative and then take the limit superior. An application of L’Hospital rule yields the desired estimate and this concludes the rest of the proof. ∎

When FF is time independent, following the proof of Lemma 3.2, we easily obtain

ψh(t)2+βe2αt0te2αtΔψh(s)2𝑑sCe2αtψ0,h2+μ22ανF22(1e2αt).\left\|\nabla\psi_{h}(t)\right\|^{2}+\beta e^{-2\alpha t}\int_{0}^{t}e^{2\alpha t}\left\|\Delta\psi_{h}(s)\right\|^{2}\,ds\leq Ce^{-2\alpha t}\left\|\nabla\psi_{0,h}\right\|^{2}+\frac{\mu^{2}}{2\alpha\nu}\left\|F\right\|_{-2}^{2}(1-e^{-2\alpha t}).

Therefore following the continuous case, we derive the following result on the existence of a discrete absorbing set.

Corollary 3.3.

There exists a bounded absorbing ball Bρ(0)={vhSh0:vhρ}B_{\rho}(0)=\{v_{h}\in S_{h}^{0}:\left\|\nabla v_{h}\right\|\leq\rho\} where ρ\rho is given by ρ2=μ2ανF22\rho^{2}=\frac{\mu^{2}}{\alpha\nu}\left\|F\right\|_{-2}^{2}.

For the semi-discrete solution, assume that the following estimate hold:

e2αt0te2αst2ψh(s)2𝑑sC.e^{-2\alpha t}\int_{0}^{t}e^{2\alpha s}\|\nabla\partial_{t}^{2}\psi_{h}(s)\|^{2}\,ds\leq C.

This proof will be on the lines of the regularity results proved for the continuous problem, and it involves an introduction of discrete biharmonic operator with analysis quite tedious, therefore, we refrain from giving a proof of it.

4 Error estimates for the semi-discrete problem.

This section focusses on optimal error estimates in L(H1)L^{\infty}(H^{1})-norm, for the semi-discrete problem (3.2).

4.1 Elliptic projection.

In order to obtain optimal order of convergence, we split the total error ψψh\psi-\psi_{h} as

ψψh=(ψψ~h)(ψhψ~h)=:ηζ\psi-\psi_{h}=(\psi-\widetilde{\psi}_{h})-(\psi_{h}-\widetilde{\psi}_{h})=:\eta-\zeta

where ψ~hSh0\widetilde{\psi}_{h}\in S_{h}^{0} is an elliptic projection, which is defined as follows: Given ψ\psi, find ψ~hSh0\widetilde{\psi}_{h}\in S_{h}^{0} satisfying

A(ψ;ψψ~h,χ)=0χSh0A(\psi;\psi-\widetilde{\psi}_{h},\chi)=0\quad\forall\chi\in S_{h}^{0} (4.1)

where A(;φ,χ)A(\cdot;\varphi,\chi) is a linearized operator given by

A(ψ;φ,χ)=ν(Δφ,Δχ)+b(ψ;φ,χ)+b(φ;ψ,χ)+μb0(φ,χ)+λ(φ,χ)A(\psi;\varphi,\chi)=\nu(\Delta\varphi,\Delta\chi)+b(\psi;\varphi,\chi)+b(\varphi;\psi,\chi)+\mu b_{0}(\varphi,\chi)+\lambda(\nabla\varphi,\nabla\chi)

for a large positive λ\lambda to be defined later. Note that A(;,)A(\cdot;\cdot,\cdot) satisfies boundedness

|A(ψ;φ,w)|M|ψ|2|φ|2|w|2ψ,φ,wH02(Ω)|A(\psi;\varphi,w)|\leq M|\psi|_{2}|\varphi|_{2}|w|_{2}\quad\forall\psi,\varphi,w\in H^{2}_{0}(\Omega) (4.2)

and coercive with sufficiently large λ>0\lambda>0. For φH02(Ω)\varphi\in H^{2}_{0}(\Omega), we have

A(ψ;φ,φ)\displaystyle A(\psi;\varphi,\varphi) =ν|φ|22+b(φ;ψ,φ)+λφ2\displaystyle=\nu|\varphi|_{2}^{2}+b(\varphi;\psi,\varphi)+\lambda\left\|\nabla\varphi\right\|^{2}
ν|φ|22Mψ1,|φ|2φ+λφ2\displaystyle\geq\nu|\varphi|_{2}^{2}-M\left\|\psi\right\|_{1,\infty}|\varphi|_{2}\left\|\nabla\varphi\right\|+\lambda\left\|\nabla\varphi\right\|^{2}
ν2|φ|22+(λC(M,ψ1,))φ2.\displaystyle\geq\frac{\nu}{2}|\varphi|_{2}^{2}+(\lambda-C(M,\left\|\psi\right\|_{1,\infty}))\left\|\nabla\varphi\right\|^{2}.

Choose large enough λ>0\lambda>0 so that (λC(M,ψ1,))>0(\lambda-C(M,\left\|\psi\right\|_{1,\infty}))>0. Then with ν0=ν/2\nu_{0}=\nu/2

A(ψ;φ,φ)ν0|φ|22.A(\psi;\varphi,\varphi)\geq\nu_{0}|\varphi|_{2}^{2}. (4.3)

Thus, for a given ψ\psi, the Lax-Milgram theorem yields the existence of a unique ψ~hSh0\widetilde{\psi}_{h}\in S_{h}^{0}. Below, we discuss estimates of η=ψψ~h\eta=\psi-\widetilde{\psi}_{h}.

Lemma 4.1.

There holds for δ(1/2,1]\delta\in(1/2,1]

η0+η1+hδ|η|2Ch2δψ2+δ,\left\|\eta\right\|_{0}+\left\|\eta\right\|_{1}+h^{\delta}|\eta|_{2}\leq Ch^{2\delta}\left\|\psi\right\|_{2+\delta},

for δ(1,2)\delta\in(1,2)

η0+hη1+hδ|η|2Ch2δψ2+δ,\left\|\eta\right\|_{0}+h\left\|\eta\right\|_{1}+h^{\delta}|\eta|_{2}\leq Ch^{2\delta}\left\|\psi\right\|_{2+\delta},

and for δ2\delta\geq 2

ηjChmin(k+1,2+δ)jψ2+δ,j=0,1,2.\left\|\eta\right\|_{j}\leq Ch^{\min(k+1,2+\delta)-j}\left\|\psi\right\|_{2+\delta},\;j=0,1,2.
Proof.

From the coercivity (4.3), the boundedness (4.2), and the definition of η\eta (4.1), we arrive at

ν0|η|22A(ψ;η,η)=A(ψ;η,ψIhψ)M|η|2|ψIhψ|2,\nu_{0}|\eta|_{2}^{2}\leq A(\psi;\eta,\eta)=A(\psi;\eta,\psi-I_{h}\psi)\leq M|\eta|_{2}|\psi-I_{h}\psi|_{2},

and hence, using interpolation property (3.1), it follows for all δ>1/2\delta>1/2 that

|η|2C(ν,M)hmin(k+1,2+δ)2|ψ|2+δ.|\eta|_{2}\leq C(\nu,M)h^{\min(k+1,2+\delta)-2}|\psi|_{2+\delta}. (4.4)

We now appeal to the Aubin-Nitsche duality argument. For given gH1(Ω)g\in H^{-1}(\Omega), ΦH02(Ω)\Phi^{\star}\in H^{2}_{0}(\Omega) solves the adjoint problem

A(ψ;w,Φ)=w,gwH02(Ω).A(\psi;w,\Phi^{\star})=\left\langle w,g\right\rangle\forall w\in H^{2}_{0}(\Omega). (4.5)

with the following elliptic regularity for δ(1/2,1]\delta\in(1/2,1]

Φ2+δCregg1.\left\|\Phi^{\star}\right\|_{2+\delta}\leq C_{reg}\left\|g\right\|_{-1}. (4.6)

Setting w=ηw=\eta and g=Δηg=-\Delta\eta in (4.5) and it follows for δ(1/2,1]\delta\in(1/2,1]

η12\displaystyle\left\|\eta\right\|_{1}^{2} =A(ψ;η,ΦIhΦ)\displaystyle=A(\psi;\eta,\Phi^{\star}-I_{h}\Phi^{\star})
M|ψ|2|η|2|ΦIhΦ|2\displaystyle\leq M|\psi|_{2}|\eta|_{2}|\Phi^{\star}-I_{h}\Phi^{\star}|_{2}

Hence, a use of the elliptic regularity results for δ(1/2,1]\delta\in(1/2,1] with interpolation error estimate (3.1) yields

η1Chδ|ψ|2|η|2,\left\|\eta\right\|_{1}\leq Ch^{\delta}|\psi|_{2}|\eta|_{2},

and L2L^{2} estimate follows from ηη1.\|\eta\|\leq\|\eta\|_{1}.

In addition, assume that the adjoint problem satisfies the following elliptic regularity result for δ(1,2]\delta\in(1,2]

Φ2+δCreggδ2.\left\|\Phi^{\star}\right\|_{2+\delta}\leq C_{reg}\left\|g\right\|_{\delta-2}. (4.7)

In order to estimate in lower norm, we note that

η2δ=sup0gH2δ(Ω)|η,q|gδ2.\|\eta\|_{2-\delta}=\sup_{0\neq g\in H^{2-\delta}(\Omega)}\frac{|\left\langle\eta,q\right\rangle|}{\|g\|_{\delta-2}}. (4.8)

Choose w=ηw=\eta in (4.5) to obtain

η,g\displaystyle\left\langle\eta,g\right\rangle =A(ψ;η,ΦIhΦ)\displaystyle=A(\psi;\eta,\Phi^{\star}-I_{h}\Phi^{\star})
M|ψ|2|η|2|ΦIhΦ|2\displaystyle\leq M|\psi|_{2}|\eta|_{2}|\Phi^{\star}-I_{h}\Phi^{\star}|_{2} (4.9)
Chδ|ψ|2|η|2|Φ|2+δ\displaystyle\leq Ch^{\delta}|\psi|_{2}|\eta|_{2}|\Phi^{\star}|_{2+\delta}
Chδ|ψ|2|η|2gδ2.\displaystyle\leq Ch^{\delta}|\psi|_{2}|\eta|_{2}\left\|g\right\|_{\delta-2}.

A use of (4.8) in (4.9) shows for δ(1,2]\delta\in(1,2]

η2δChδ|η|2,\|\eta\|_{2-\delta}\leq Ch^{\delta}|\eta|_{2}, (4.10)

and the rest of the estimate follows. This completes the proof. ∎

A similar results hold for the estimate of tη\partial_{t}\eta.

Lemma 4.2.

There is a positive constant C>0C>0 such that for δ(1/2,1]\delta\in(1/2,1]

tη+hδ|η|2Ch2δ(ψ2+δ+tψ2+δ),\left\|\partial_{t}\eta\right\|+h^{\delta}|\eta|_{2}\leq Ch^{2\delta}(\left\|\psi\right\|_{2+\delta}+\left\|\partial_{t}\psi\right\|_{2+\delta}), (4.11)

for δ(1,2)\delta\in(1,2)

tη+htη1+hδ|η|2Ch2δ(ψ2+δ+tψ2+δ),\left\|\partial_{t}\eta\right\|+h\left\|\partial_{t}\eta\right\|_{1}+h^{\delta}|\eta|_{2}\leq Ch^{2\delta}(\left\|\psi\right\|_{2+\delta}+\left\|\partial_{t}\psi\right\|_{2+\delta}), (4.12)

and for δ2\delta\geq 2

tηjChmin(k+1,2+δ)j(ψ2+δ+tψ2+δ),j=0,1,2.\left\|\partial_{t}\eta\right\|_{j}\leq Ch^{\min(k+1,2+\delta)-j}(\left\|\psi\right\|_{2+\delta}+\left\|\partial_{t}\psi\right\|_{2+\delta}),\ j=0,1,2. (4.13)
Proof.

Differentiate (4.1) with respect to time to arrive at

A(ψ;tη,χ)=A(tψ;η,χ).A(\psi;\partial_{t}\eta,\chi)=-A(\partial_{t}\psi;\eta,\chi).

Now we repeat the argument in Lemma 4.1 to complete the rest of the proof. ∎

4.2 A priori error estimates.

In this subsection, optimal error estimates are derived.

Since (ψψh)(t)=η(t)ζ(t)(\psi-\psi_{h})(t)=\eta(t)-\zeta(t), triangle inequality yields

(ψψh)(t)η+ζ.\left\|\nabla(\psi-\psi_{h})(t)\right\|\leq\left\|\nabla\eta\right\|+\left\|\nabla\zeta\right\|.

As the estimate of η\|\nabla\eta\| is known from Lemma 4.1, it is enough to estimate ζ\|\nabla\zeta\|. From (2.1), (3.2) and the property (4.1), we obtain

(t(ζ),χ)\displaystyle(\partial_{t}(\nabla\zeta),\nabla\chi) +ν(Δζ,Δχ)+b(ψ;ζ,χ)+μb0(ζ,χ)\displaystyle+\nu(\Delta\zeta,\Delta\chi)+b(\psi;\zeta,\chi)+\mu b_{0}(\zeta,\chi) (4.14)
=(t(η),χ)λ(η,χ)+I1(χ),\displaystyle=(\partial_{t}(\nabla\eta),\nabla\chi)-\lambda(\nabla\eta,\nabla\chi)+I_{1}(\chi),

where

I1(χ)\displaystyle I_{1}(\chi) =b(ψ;ψh,χ)+b(ψ~h;ψ,χ)b(ψ;ψ,χ)b(ψh;ψh,χ)\displaystyle=b(\psi;\psi_{h},\chi)+b(\tilde{\psi}_{h};\psi,\chi)-b(\psi;\psi,\chi)-b(\psi_{h};\psi_{h},\chi)
=b(η;η,χ)+b(η;ζ,χ)b(ζ;ψh,χ)\displaystyle=-b(\eta;\eta,\chi)+b(\eta;\zeta,\chi)-b(\zeta;\psi_{h},\chi)
=b(η;η,χ)b(ζ;ψh,χ)\displaystyle=-b(\eta;\eta,\chi)-b(\zeta;\psi_{h},\chi)

Note (t(η),χ)=(tη,Δχ)(\partial_{t}(\nabla\eta),\nabla\chi)=(\partial_{t}\eta,-\Delta\chi) and (η,χ)=(η,Δχ)(\nabla\eta,\nabla\chi)=(\eta,-\Delta\chi) as χSh0\chi\in S_{h}^{0}. In the remainder of this paper, we denote f^(t)=eαtf(t)\hat{f}(t)=e^{\alpha t}f(t)

Lemma 4.3.

There holds

ζ(t)2Ce2αt(ζ(0)2+C0te2αs(tη2+η2)𝑑s)exp(C(M,ν)0t|ψ|22𝑑s).\left\|\nabla\zeta(t)\right\|^{2}\leq Ce^{-2\alpha t}\Big{(}\left\|\nabla\zeta(0)\right\|^{2}+C\int_{0}^{t}e^{2\alpha s}(\left\|\partial_{t}\eta\right\|^{2}+\left\|\eta\right\|^{2})\,ds\Big{)}\exp\big{(}{C(M,\nu)\int_{0}^{t}|\psi|_{2}^{2}\,ds}\big{)}. (4.15)
Proof.

Substitute χ=e2αtζ\chi=e^{2\alpha t}\zeta in (4.14) and use (η,χ)=(η,Δχ)(\nabla\eta,\nabla\chi)=(\eta,-\Delta\chi) with the Poincarè inequality and ζ^(t)=eαtζ(t)\hat{\zeta}(t)=e^{\alpha t}\zeta(t) to obtain

ddtζ^(t)2+2(ν2αλ1)|ζ^|222(eαttη+η^)|ζ^|2+2e2αtI1(ζ).\frac{d}{dt}\left\|\nabla\hat{\zeta}(t)\right\|^{2}+2(\nu-\frac{2\alpha}{\lambda_{1}})|\hat{\zeta}|_{2}^{2}\leq 2(e^{\alpha t}\left\|\partial_{t}\eta\right\|+\left\|\hat{\eta}\right\|)|\hat{\zeta}|_{2}+2e^{2\alpha t}I_{1}(\zeta). (4.16)

To estimate the last term on the right-hand side, apply the Ladyzhenskaya’s inequality with the Young’s inequality to arrive at

2e2αtI1(ζ)\displaystyle 2e^{2\alpha t}I_{1}(\zeta) =\displaystyle= 2eαt(b(ζ^;η^,ζ^)b(η^;η^,ζ^)b(ζ^;ψ^,ζ^))\displaystyle 2e^{-\alpha t}(b(\hat{\zeta};\hat{\eta},\hat{\zeta})-b(\hat{\eta};\hat{\eta},\hat{\zeta})-b(\hat{\zeta};\hat{\psi},\hat{\zeta})) (4.17)
\displaystyle\leq 2Meαt(|ζ^|23/2η^1/2|η^|21/2+|η^|23/2η^1/2|ζ^|2+|ζ^|23/2ψ^1/2|ψ^|21/2ζ^1/2)\displaystyle 2Me^{-\alpha t}(|\hat{\zeta}|_{2}^{3/2}\left\|\nabla\hat{\eta}\right\|^{1/2}|\hat{\eta}|_{2}^{1/2}+|\hat{\eta}|_{2}^{3/2}\left\|\nabla\hat{\eta}\right\|^{1/2}|\hat{\zeta}|_{2}+|\hat{\zeta}|_{2}^{3/2}\left\|\nabla\hat{\psi}\right\|^{1/2}|\hat{\psi}|_{2}^{1/2}\left\|\nabla\hat{\zeta}\right\|^{1/2})
\displaystyle\leq ν4|ζ^|22+C(M,ν)(e4αt(η^2|η^|22+|η^|23η^)+e2αtψ2|ψ^|22ζ^2).\displaystyle\frac{\nu}{4}|\hat{\zeta}|_{2}^{2}+C(M,\nu)\Big{(}e^{-4\alpha t}(\left\|\nabla\hat{\eta}\right\|^{2}|\hat{\eta}|_{2}^{2}+|\hat{\eta}|_{2}^{3}\left\|\nabla\hat{\eta}\right\|)+e^{-2\alpha t}\left\|\nabla\psi\right\|^{2}|\hat{\psi}|_{2}^{2}\left\|\nabla\hat{\zeta}\right\|^{2}\Big{)}.

Moreover, for the first term on the right hand side of (4.15), a use of the Young’s inequality shows

2(eαttη+η^)|ζ^|2ν4|ζ^|22+C(e2αttη2+η^)2).2(e^{\alpha t}\left\|\partial_{t}\eta\right\|+\left\|\hat{\eta}\right\|)|\hat{\zeta}|_{2}\leq\frac{\nu}{4}|\hat{\zeta}|_{2}^{2}+C\big{(}e^{2\alpha t}\left\|\partial_{t}\eta\right\|^{2}+\left\|\hat{\eta}\right\|)^{2}\big{)}. (4.18)

On substitution of (4.17) and (4.18) in (4.16), an application of the Gronwall Lemma yields

ζ^(t)2eC(M,ν)0te2αtψ2|ψ^(s)|22𝑑s(ζ(0)2+C(M,ν)0te2αs(tη2+η2)𝑑s).\left\|\nabla\hat{\zeta}(t)\right\|^{2}\leq e^{C(M,\nu)\int_{0}^{t}e^{-2\alpha t}\left\|\nabla\psi\right\|^{2}|\hat{\psi}(s)|_{2}^{2}\,ds}\left(\left\|\nabla\zeta(0)\right\|^{2}+C(M,\nu)\int_{0}^{t}e^{2\alpha s}(\left\|\partial_{t}\eta\right\|^{2}+\left\|\eta\right\|^{2})\,ds\right).

For the integral term appeared in the exponential, it follows using boundedness of ψ(s)\left\|\nabla\psi(s)\right\| that

0te2αsψ(s)2|ψ^|22𝑑sC0t|ψ(s)|22𝑑s\int_{0}^{t}e^{-2\alpha s}\left\|\nabla\psi(s)\right\|^{2}|\hat{\psi}|_{2}^{2}\,ds\leq C\int_{0}^{t}|\psi(s)|_{2}^{2}\,ds

This completes the rest of the proof. ∎

Finally, using triangle inequality with Lemma 4.3 and (4.1), we derive the main theorem on error analysis.

Theorem 4.4.

Let ψ\psi and ψh\psi_{h}, respectively, be the solution of (2.1) and (3.2). Then, there exists a positive constant CC independent of hh such that

(ψψh)(t)2\displaystyle\left\|\nabla(\psi-\psi_{h})(t)\right\|^{2} Ch2rψ(t)2+δ2\displaystyle\leq Ch^{2r}\left\|\psi(t)\right\|_{2+\delta}^{2}
+e2αt+C^h2r(ψ02+δ2+0te2αs(ψ2+δ2+tψ2+δ2)𝑑s),\displaystyle+e^{-2\alpha t+\hat{C}}h^{2r}\left(\left\|\psi_{0}\right\|_{2+\delta}^{2}+\int_{0}^{t}e^{2\alpha s}(\left\|\psi\right\|_{2+\delta}^{2}+\left\|\partial_{t}\psi\right\|_{2+\delta}^{2})\,ds\right),

provided ψh(0)Sh0\psi_{h}(0)\in S_{h}^{0} is chosen as an interpolant with property

ψ0ψh(0)1Chrψ02+δ.\left\|\psi_{0}-\psi_{h}(0)\right\|_{1}\leq Ch^{r}\left\|\psi_{0}\right\|_{2+\delta}.

Here,

r={2δ,if 1/2<δ<1,min(k+1,2δ)1,if 1δ<2,min(k+1,2+2δ)1,if 2δ,r=\left\{\begin{array}[]{ll}2\delta,&\textrm{if }1/2<\delta<1,\\ \min(k+1,2\delta)-1,&\textrm{if }1\leq\delta<2,\\ \min(k+1,2+2\delta)-1,&\textrm{if }2\geq\delta,\end{array}\right.

and

C^=C(M,ν)0t|ψ|22𝑑s.\hat{C}=C(M,\nu)\int_{0}^{t}|\psi|_{2}^{2}\,ds.

As a consequence of Lemma 4.3, if we choose ψh(0){\psi}_{h}(0) as elliptic projection at t=0t=0, then ζ(0)=0\zeta(0)=0. With higher regularity, that is, δ1\delta\geq 1, there holds the following superconvergence result:

ζ(t)2Ce2αt+C^h2(r+1)(0te2δs(tψ2+δ2+ψ2+δ2)𝑑s).\left\|\nabla\zeta(t)\right\|^{2}\leq Ce^{-2\alpha t+\hat{C}}h^{2(r+1)}\Big{(}\int_{0}^{t}e^{2\delta s}(\left\|\partial_{t}\psi\right\|_{2+\delta}^{2}+\left\|\psi\right\|_{2+\delta}^{2})\,ds\Big{)}. (4.19)

Application of the triangle inequality then yields the following optimal error estimate in L(0,T;L2).L^{\infty}(0,T;L^{2}).

Corollary 4.5.

Let ψ\psi and ψh\psi_{h}, respectively, be the solution of (2.1) and (3.2). Then, the following inequality holds for δ1,\delta\geq 1,

(ψψh)(t)2\displaystyle\left\|(\psi-\psi_{h})(t)\right\|^{2} Ch2(r+1)e2αt+C^(0te2αs(ψ2+δ2+tψ2+δ2)𝑑s),\displaystyle\leq Ch^{2(r+1)}e^{-2\alpha t+\hat{C}}\left(\int_{0}^{t}e^{2\alpha s}(\left\|\psi\right\|_{2+\delta}^{2}+\left\|\partial_{t}\psi\right\|_{2+\delta}^{2})\,ds\right),

provided ψh(0)Sh0\psi_{h}(0)\in S_{h}^{0} is chosen as the elliptic projection at t=0.t=0.

In addition, if we assume that the mesh is quasi-uniform and the error in the elliptic projection η\eta for δ1\delta\geq 1 satisfies

ηL(Ω)Chr+1ψW2+δ,(Ω).\left\|\eta\right\|_{L^{\infty}(\Omega)}\leq Ch^{r+1}\|\psi\|_{W^{2+\delta,\infty}(\Omega)}.

Then, a use of superconvergence result (4.19) with the discrete Sobolev inequality,

ζL(Ω)C|logh|1/2ζ,\left\|\zeta\right\|_{L^{\infty}(\Omega)}\leq C|\log h|^{1/2}\left\|\nabla\zeta\right\|,

shows the following maximum norm estimate for δ1\delta\geq 1

(ψψh)(t)L(Ω)2Ch2(r+1)e2αt+C^|logh|(ψW2+δ,(Ω)2+0te2αs(ψ2+δ2+tψ2+δ2)𝑑s).\left\|(\psi-\psi_{h})(t)\right\|^{2}_{L^{\infty}(\Omega)}\leq Ch^{2(r+1)}e^{-2\alpha t+\hat{C}}|\log h|\left(\|\psi\|_{W^{2+\delta,\infty}(\Omega)}^{2}+\int_{0}^{t}e^{2\alpha s}(\left\|\psi\right\|_{2+\delta}^{2}+\left\|\partial_{t}\psi\right\|_{2+\delta}^{2})\,ds\right).
Remark 4.6.

From Lemma 4.3, we arrive using the inverse inequality at optimal H2H^{2} estimate only for δ1\delta\geq 1 as

Δζ(t)Ch1ζ(t).\|\Delta\zeta(t)\|\leq Ch^{-1}\|\nabla\zeta(t)\|.

Therefore, a use of triangle inequality with estimate of η\eta in H2H^{2} norm from Lemma 4.1 shows for δ1\delta\geq 1

(ψψh)(t)22Ce2αt+C^h2r(ψ02+δ2+0te2αs(ψ2+δ2+tψ2+δ2)𝑑s).\left\|(\psi-\psi_{h})(t)\right\|^{2}_{2}\leq Ce^{-2\alpha t+\hat{C}}h^{2r}\left(\left\|\psi_{0}\right\|_{2+\delta}^{2}+\int_{0}^{t}e^{2\alpha s}(\left\|\psi\right\|_{2+\delta}^{2}+\left\|\partial_{t}\psi\right\|_{2+\delta}^{2})\,ds\right).
Remark 4.7.

When F=0F=0 or FF exponentially decays in time, the error decays exponentially in time. Moreover, if FL2(L2),F\in L^{2}(L^{2}), then from the regularity results, it is easy check that C^=C(M,ν)0t|ψ|22𝑑sC,\hat{C}=C(M,\nu)\int_{0}^{t}|\psi|_{2}^{2}\,ds\leq C, that is, C^\hat{C} becomes a constant, independent of time. Therefore, error analysis is valid uniformly in time. However, if FL(L2),F\in L^{\infty}(L^{2}), then C^Ct\hat{C}\leq C\;t and eCte^{Ct} term appears in the error analysis, making it local. Like in Navier-Stokes equations, it may be possible to prove the uniform validity of the error estimates with respect to time under the smallness assumption of the data.

5 Backward Euler Method

This section discusses a fully discrete scheme based on the backward Euler method applied to the semi-discrete problem and derives its convergence analysis.

Let Δt\Delta t be the time step and tn=nΔtt_{n}=n\Delta t, n=0,1,2,,Nn=0,1,2,\ldots,N. For a continuous function φ\varphi on time, let ¯tφ(tn)=φ(tn)φ(tn1)Δt\overline{\partial}_{t}\varphi(t_{n})=\frac{\varphi(t_{n})-\varphi(t_{n-1})}{\Delta t}. Then, the backward Euler scheme is to find ΨnSh0\Psi^{n}\in S_{h}^{0}, n=1,2,,Nn=1,2,\ldots,N such that

¯tΨn,χ+νa(Ψn,χ)+b(Ψn;Ψn,χ)+μb0(Ψn,χ)=μF,χχSh0\left\langle\nabla\overline{\partial}_{t}\Psi^{n},\nabla\chi\right\rangle+\nu a(\Psi^{n},\chi)+b(\Psi^{n};\Psi^{n},\chi)+\mu b_{0}(\Psi^{n},\chi)=\mu\left\langle F,\chi\right\rangle\quad\forall\chi\in S_{h}^{0} (5.1)

where Ψ0=ψ0,hSh0.\Psi^{0}=\psi_{0,h}\in S_{h}^{0}. Since Sh0S_{h}^{0} is finite dimensional, at each time level t=tnt=t_{n}, (5.1) leads to a system of nonlinear algebraic equations. Therefore, we need to discuss existence and uniqueness result for the fully discrete system.

5.1 Uniform a priori bounds.

This subsection is on a priori bounds of the discrete solution, which are valid uniformly in time.

Lemma 5.1.

With 0α<νλ140\leq\alpha<\frac{\nu\lambda_{1}}{4}, choose Δt>0\Delta t>0 so that 0<Δt<Δt00<\Delta t<\Delta t_{0} satisfying (νΔtλ14+1)>eαΔt(\frac{\nu\Delta t\lambda_{1}}{4}+1)>e^{\alpha\Delta t}. Then for N1N\geq 1

ΨN2+2βe2αtNΔtn=1Ne2αtnΔΨn2eαtNΨ02+eαΔt2αν(1e2αtN)F22,\left\|\nabla\Psi^{N}\right\|^{2}+2\beta^{*}e^{2\alpha t_{N}}\Delta t\sum_{n=1}^{N}e^{2\alpha t_{n}}\left\|\Delta\Psi^{n}\right\|^{2}\leq e^{-\alpha t_{N}}\left\|\nabla\Psi^{0}\right\|^{2}+\frac{e^{-\alpha\Delta t}}{2\alpha\nu}\big{(}1-e^{-2\alpha t_{N}}\big{)}\;\left\|F\right\|_{-2}^{2},

where β=(eαΔtν21eαΔtΔtλ1)>0.\beta^{*}=\big{(}e^{-\alpha\Delta t}\frac{\nu}{2}-\frac{1-e^{-\alpha\Delta t}}{\Delta t\lambda_{1}}\big{)}>0.

Proof.

Choose χ=e2αtnΨn\chi=e^{2\alpha t_{n}}\Psi^{n} in (5.1). Note that b(Ψn;Ψn,Ψn)=0b(\Psi^{n};\Psi^{n},\Psi^{n})=0, b0(Ψn,Ψn)=0b_{0}(\Psi^{n},\Psi^{n})=0 and

eαtn¯tΨn=eαΔt¯t(Ψ^n)eαΔt1ΔtΨ^n.e^{\alpha t_{n}}\overline{\partial}_{t}\Psi^{n}=e^{\alpha\Delta t}\overline{\partial}_{t}(\hat{\Psi}^{n})-\frac{e^{\alpha\Delta t}-1}{\Delta t}\hat{\Psi}^{n}. (5.2)

Then after multiplying by eαΔte^{-\alpha\Delta t} and with Ψ^n=eαtnΨn\hat{\Psi}^{n}=e^{\alpha t_{n}}\Psi^{n}, it follows that

(¯tΨ^n,Ψ^n)+νααΔta(Ψ^n,Ψ^n)(1eαΔtΔt)Ψ^n2=μeαΔt(eαtnF,Ψ^n).(\overline{\partial}_{t}\hat{\Psi}^{n},\hat{\Psi}^{n})+\nu\alpha^{-\alpha\Delta t}a(\hat{\Psi}^{n},\hat{\Psi}^{n})-\left(\frac{1-e^{-\alpha\Delta t}}{\Delta t}\right)\left\|\nabla\hat{\Psi}^{n}\right\|^{2}=\mu e^{-\alpha\Delta t}(e^{\alpha t_{n}}F,\hat{\Psi}^{n}).

Observe that

(¯tΨ^n,Ψ^n)12Δt¯tΨ^n2.(\overline{\partial}_{t}\nabla\hat{\Psi}^{n},\nabla\hat{\Psi}^{n})\geq\frac{1}{2\Delta t}\overline{\partial}_{t}\left\|\nabla\hat{\Psi}^{n}\right\|^{2}. (5.3)

Apply the Poincaré inequality to arrive at

12¯tΨ^n2+(eαΔtν1eαΔtΔt1λ1)|Ψ^n|22μeαΔt2νeαtnF22+ν2eαΔt|Ψ^n|22.\frac{1}{2}\overline{\partial}_{t}\left\|\nabla\hat{\Psi}^{n}\right\|^{2}+\big{(}e^{-\alpha\Delta t}\nu-\frac{1-e^{-\alpha\Delta t}}{\Delta t}\frac{1}{\lambda_{1}}\big{)}|\hat{\Psi}^{n}|_{2}^{2}\leq\frac{\mu e^{-\alpha\Delta t}}{2\nu}\left\|e^{\alpha t_{n}}F\right\|_{-2}^{2}+\frac{\nu}{2}e^{-\alpha\Delta t}|\hat{\Psi}^{n}|_{2}^{2}.

With β=(eαΔtν21eαΔtΔtλ1)>0\beta^{*}=\big{(}e^{-\alpha\Delta t}\frac{\nu}{2}-\frac{1-e^{-\alpha\Delta t}}{\Delta t\lambda_{1}}\big{)}>0, take summation with respect to nn up to NN, and use Δn=0Ne2αtn12α(e2αtN1).\Delta\sum_{n=0}^{N}e^{2\alpha t_{n}}\leq\frac{1}{2\alpha}(e^{2\alpha t_{N}}-1). Then, multiply the resulting equation by eαtNe^{-\alpha t_{N}} to obtain

ΨN2+2βeαtNn=1Ne2αtn|Ψn|22eαtNΨ02+eαΔt2αν(1e2αtN)F22.\left\|\nabla\Psi^{N}\right\|^{2}+2\beta^{*}e^{-\alpha t_{N}}\sum_{n=1}^{N}e^{2\alpha t_{n}}|\Psi^{n}|_{2}^{2}\leq e^{-\alpha t_{N}}\left\|\nabla\Psi^{0}\right\|^{2}+\frac{e^{\alpha\Delta t}}{2\alpha\nu}\big{(}1-e^{-2\alpha t_{N}}\big{)}\;\left\|F\right\|_{-2}^{2}.

This completes the rest of the proof. ∎

In order to estimate limN|ΔΨN|2μ2ν2F22\lim_{N\rightarrow\infty}|\Delta\Psi^{N}|^{2}\leq\frac{\mu^{2}}{\nu^{2}}\left\|F\right\|_{-2}^{2}, following Pany et al. [20], we shall apply the following counterpart of the L’Hospital rule. For a proof, see pp. 85–89 of [19].

Theorem 5.2.

(Stolz-Cesaro Theorem). Let {φn}n=0\{\varphi^{n}\}_{n=0}^{\infty} be a sequence of numbers, and let {wn}n=0N\{w^{n}\}_{n=0}^{N} be a strictly monotone and divergent sequence. If

limn(φnφn1wnwn1)=,\lim_{n\rightarrow\infty}\left(\frac{\varphi^{n}-\varphi^{n-1}}{w^{n}-w^{n-1}}\right)=\ell,

then

limn(φnwn)=.\lim_{n\rightarrow\infty}\left(\frac{\varphi^{n}}{w^{n}}\right)=\ell.

In the estimate of Lemma 5.1, now set φN=ν2eαΔtΔtn=0N|ΔΨn|22\varphi^{N}=\frac{\nu}{2}e^{-\alpha\Delta t}\Delta t\sum_{n=0}^{N}|\Delta\Psi^{n}|_{2}^{2} and wN=e2αtNw^{N}=e^{2\alpha t_{N}}. Then, an appeal to the Scholz-Cesaro theorem yields

ν2(1e2αΔt)eαΔtΔtlim supN|ΨN|22ΔtN2ν(1eαΔt)F22,\frac{\nu}{2(1-e^{-2\alpha\Delta t)}}e^{-\alpha\Delta t}\Delta t\limsup_{N\rightarrow\infty}|\Psi^{N}|_{2}^{2}\leq\Delta t\frac{N^{2}}{\nu(1-e^{-\alpha\Delta t})}\left\|F\right\|_{-2}^{2},

and hence,

lim supN|ΨN|22μ2ν2F22.\limsup_{N\rightarrow\infty}|\Psi^{N}|_{2}^{2}\leq\frac{\mu^{2}}{\nu^{2}}\left\|F\right\|_{-2}^{2}.

As a consequence, it is possible to find some large N0N_{0}\in\mathbb{N} so that for NN0N\geq N_{0}

|ΨN|2μ2νF2<C.|\Psi^{N}|_{2}\leq\frac{\mu}{2\nu}\left\|F\right\|_{-2}<C.

5.2 Wellposedness and existence of discrete attractor.

For its wellposedness, we appeal to the following variant of the Brouwer fixed point theory. For proof, see Kesavan [11].

Lemma 5.3.

Let XX be a finite dimensional Hilbert space with inner product (,)X(\cdot,\cdot)_{X} and norm X\left\|\cdot\right\|_{X}. Further, let \mathcal{F} be a continuous map from XX into itself such that ((χ),χ)>0(\mathcal{F}(\chi),\chi)>0 for all χX\chi\in X with χX=R>0\left\|\chi\right\|_{X}=R>0. Then, there exists χX\chi^{\star}\in X with χXR\left\|\chi^{\star}\right\|_{X}\leq R such that (χ)=0\mathcal{F}(\chi^{\star})=0.

Theorem 5.4.

Assume that Ψ0,,Ψn1\Psi^{0},\cdots,\Psi^{n-1} are given. Then there exists a unique solution Ψn\Psi^{n} of (5.1).

Proof.

In order to apply Lemma 5.3, set X=Sh0X=S_{h}^{0} and define \mathcal{F} as

((Φ),χ)\displaystyle(\mathcal{F}(\Phi),\chi) =(Φ,χ)+νΔta(Φ,χ)+Δtb(Φ;Φ,χ)\displaystyle=(\nabla\Phi,\nabla\chi)+\nu\Delta ta(\Phi,\chi)+\Delta tb(\Phi;\Phi,\chi) (5.4)
+μΔtb0(Φ,χ)μΔt(Fn,χ)(Ψn1,χ).\displaystyle\quad+\mu\Delta tb_{0}(\Phi,\chi)-\mu\Delta t(F^{n},\chi)-(\nabla\Psi^{n-1},\nabla\chi).

Choose χ=Φ\chi=\Phi in (5.4), then with b(Φ;Φ,Φ)=0b(\Phi;\Phi,\Phi)=0 and μ(xΦ,ϕ)=0\mu(\partial_{x}\Phi,\phi)=0, we arrive at

((Φ),Φ)\displaystyle(\mathcal{F}(\Phi),\Phi) Φ2+νΔt|Φ|22(μΔtFn1+Ψn1)Φ2\displaystyle\geq\left\|\nabla\Phi\right\|^{2}+\nu\Delta t|\Phi|_{2}^{2}-(\mu\Delta t\left\|F^{n}\right\|_{-1}+\left\|\nabla\Psi^{n-1}\right\|)\left\|\nabla\Phi\right\|_{2}
Φ(Φ(μΔtF1+Ψn1)).\displaystyle\geq\left\|\nabla\Phi\right\|\big{(}\left\|\nabla\Phi\right\|-(\mu\Delta t\left\|F\right\|_{-1}+\left\|\nabla\Psi^{n-1}\right\|)\big{)}.

Now choose Φ2(μF1+Ψn1)=R\left\|\nabla\Phi\right\|\geq 2(\mu\left\|F\right\|_{-1}+\left\|\nabla\Psi^{n-1}\right\|)=R so that ((Φ),Φ)>0(\mathcal{F}(\Phi),\Phi)>0. Therefore, an application of Lemma 5.3 yields existence of ΨnSh0\Psi^{n}\in S_{h}^{0} such that (Ψn)=0\mathcal{F}(\Psi^{n})=0. For uniqueness, let Ψ1n\Psi^{n}_{1} and Ψ2n\Psi^{n}_{2} be two solutions of (5.1). Setting Φn=Ψ1nΨ2n\Phi^{n}=\Psi^{n}_{1}-\Psi^{n}_{2}, it satisfies

(¯tΦn,χ)+νa(Φn,χ)+μb0(Φn,χ)=(b(Ψ1n;Ψ1n,χ)b(Ψ2n;Ψ2n,χ)).(\nabla\overline{\partial}_{t}\Phi^{n},\nabla\chi)+\nu a(\Phi^{n},\chi)+\mu b_{0}(\Phi^{n},\chi)=-\big{(}b(\Psi^{n}_{1};\Psi^{n}_{1},\chi)-b(\Psi^{n}_{2};\Psi^{n}_{2},\chi)\big{)}. (5.5)

Choose χ=Φn\chi=\Phi^{n} in (5.5), then we obtain

12¯tΦn2+ν|Φn|22b(Ψ1n;Ψ2n,Φn)b(Ψ1n;Ψ1n,Φn)=b(Ψ2n;Φn,Φn)b(Φn;ψ1n,Φn).\frac{1}{2}\overline{\partial}_{t}\left\|\nabla\Phi^{n}\right\|^{2}+\nu|\Phi^{n}|_{2}^{2}\leq b(\Psi_{1}^{n};\Psi_{2}^{n},\Phi^{n})-b(\Psi^{n}_{1};\Psi^{n}_{1},\Phi^{n})=-b(\Psi^{n}_{2};\Phi^{n},\Phi^{n})-b(\Phi^{n};\psi^{n}_{1},\Phi^{n}). (5.6)

Since b(Ψ2n;,)b(\Psi_{2}^{n};\cdot,\cdot) is skew-symmetric, it remains to estimate the last term on the right-hand side.

|b(Φn;Ψ1n,Φn)|\displaystyle|-b(\Phi^{n};\Psi^{n}_{1},\Phi^{n})| M|Φn|23/2Ψ1n1/2|Ψ1n|21/2Φn1/2\displaystyle\leq M|\Phi^{n}|_{2}^{3/2}\left\|\nabla\Psi_{1}^{n}\right\|^{1/2}|\Psi^{n}_{1}|_{2}^{1/2}\left\|\nabla\Phi^{n}\right\|^{1/2}
ν2|Φn|22+C(M,ν)Φn2|Ψ1n|22Φn2\displaystyle\leq\frac{\nu}{2}|\Phi^{n}|_{2}^{2}+C(M,\nu)\left\|\nabla\Phi^{n}\right\|^{2}|\Psi^{n}_{1}|_{2}^{2}\left\|\nabla\Phi^{n}\right\|^{2}
ν2|Φn|22+C(M,ν)|Ψ1n|22Φn2.\displaystyle\leq\frac{\nu}{2}|\Phi^{n}|_{2}^{2}+C(M,\nu)|\Psi^{n}_{1}|_{2}^{2}\left\|\nabla\Phi^{n}\right\|^{2}.

Here, we have used abap/p+bq/qab\leq a^{p}/p+b^{q}/q and boundedness of Ψ1n\left\|\nabla\Psi^{n}_{1}\right\|. On substitution, summation on nn from n=1n=1 to NN with Φ0=0\Phi^{0}=0 yields

(1CΔt|Ψ1N|22)ΦN2+νΔtn=1N|ΦN|22CΔtn=1N1|Ψ1n|22Φn2.(1-C\Delta t|\Psi_{1}^{N}|_{2}^{2})\left\|\nabla\Phi^{N}\right\|^{2}+\nu\Delta t\sum_{n=1}^{N}|\Phi^{N}|_{2}^{2}\leq C\Delta t\sum_{n=1}^{N-1}|\Psi_{1}^{n}|_{2}^{2}\left\|\nabla\Phi^{n}\right\|^{2}.

Choose NN large so that |ΦN|2C|\Phi^{N}|_{2}\leq C. Then, for small Δt\Delta t, (1CΔt)=1/2(1-C\Delta t)=1/2 and we now arrive at

ΦN2+2νΔtn=1N|Φn|22CΔtn=1N1|Ψ1n|22Φn2.\left\|\nabla\Phi^{N}\right\|^{2}+2\nu\Delta t\sum_{n=1}^{N}|\Phi^{n}|_{2}^{2}\leq C\Delta t\sum_{n=1}^{N-1}|\Psi_{1}^{n}|_{2}^{2}\left\|\Phi^{n}\right\|^{2}.

Apply the discrete Gronwall inequality to infer ΦN=0\left\|\nabla\Phi^{N}\right\|=0, that is ΦN=0\Phi^{N}=0 which implies uniqueness. ∎

Remark 5.5.

From Theorem 5.4, given Ψn1Sh0\Psi^{n-1}\in S_{h}^{0}, there is a unique solution ΨnSh0\Psi^{n}\in S_{h}^{0} which in turn, defines a map 𝒮n:Sh0Sh0\mathcal{S}^{n}:S_{h}^{0}\rightarrow S_{h}^{0} such that 𝒮n(Ψn1)=Ψn\mathcal{S}^{n}(\Psi^{n-1})=\Psi^{n} which is continuous.

As a consequence, we obtain the following result.

Corollary 5.6.

There exists a bounded absorbing set

Bρ0h(0):-{vSh0:vρ0}B^{h}_{\rho_{0}}(0)\coloneq\{v\in S_{h}^{0}:\left\|\nabla v\right\|\leq\rho_{0}\}

where

ρ02=e2αΔtανF22,\rho_{0}^{2}=\frac{e^{2\alpha\Delta t}}{\alpha\nu}\left\|F\right\|_{-2}^{2},

in the sense that for ρ>0\rho>0, there is tn(ρ)>0t_{n^{*}}(\rho)>0 such that for all tNtnt_{N}\geq t_{n^{*}},

𝒮N(tN)Bρh𝒮N(tN)Bρ0h.{\mathcal{S}}^{N}(t_{N})B^{h}_{\rho}\subset\mathcal{S}^{N}(t_{N})B^{h}_{\rho_{0}}.

The proof goes parallel to the continuous case. For simplicity, we indicate its proof briefly.

Proof.

We now claim that if Ψ0Bρ1(0)\Psi^{0}\in B_{\rho_{1}}(0) for some ρ1>ρ0/2>0\rho_{1}>\rho_{0}/2>0, then there exists tn=nΔtt_{n^{*}}=n^{*}\Delta t depending on ρ1\rho_{1} such that for tNnt_{N}\geq_{n^{*}}, the discrete solution ΨN\Psi^{N} lies in Bρ0(0)B_{\rho_{0}}(0). Observe from Lemma 5.1 that

ΨNe2αtNΨ0+ρ022.\left\|\nabla\Psi^{N}\right\|\leq e^{-2\alpha t_{N}}\left\|\nabla\Psi^{0}\right\|+\frac{\rho_{0}^{2}}{2}. (5.7)

To complete the first part of the proof, it is sufficient to show that

eαtNΨ0ρ022e^{-\alpha t_{N}}\left\|\nabla\Psi^{0}\right\|\leq\frac{\rho_{0}^{2}}{2}

and this holds provided there is tn=nΔt1αlog(ρ1ρ0)t_{n^{*}}=n^{*}\Delta t\geq\frac{1}{\alpha}\log\left(\frac{\rho_{1}}{\rho_{0}}\right). For ρ1<ρ0/2\rho_{1}<\rho_{0}/2, the result holds trivially. This completes the rest of the proof. ∎

5.3 A priori error analysis of the fully discrete scheme.

This subsection focuses on optimal error estimates of the fully discrete scheme.

Since ψ(tn)Ψn=(ψ(tn)ψh(tn))(Ψnψh(tn))\psi(t_{n})-\Psi^{n}=(\psi(t_{n})-\psi_{h}(t_{n}))-(\Psi^{n}-\psi_{h}(t_{n})) and the estimate of ψ(tn)ψh(tn)\psi(t_{n})-\psi_{h}(t_{n}) is known from Section 4, it is now enough to estimate 𝒆hn:=(Ψnψh(tn)).\bm{e}_{h}^{n}:=(\Psi^{n}-\psi_{h}(t_{n})). Now from the semi-discrete problem (3.2) and the fully discrete scheme (3.2), we obtain with ψh(tn)=ψhn\psi_{h}(t_{n})=\psi_{h}^{n} an equation in 𝒆hn\bm{e}_{h}^{n} for n=1,2,,n=1,2,\ldots, as

(¯t𝒆hn,χ)\displaystyle(\nabla\overline{\partial}_{t}\bm{e}_{h}^{n},\nabla\chi) +νa(𝒆hn,χ)=(τn,χ)\displaystyle+\nu a(\bm{e}_{h}^{n},\chi)=(\nabla\tau^{n},\nabla\chi) (5.8)
(b(ψhn;ψhn,χ)b(Ψn;Ψn,χ))μb0(𝒆hn,χ)χSh0,\displaystyle-\Big{(}b(\psi_{h}^{n};\psi_{h}^{n},\chi)-b(\Psi^{n};\Psi^{n},\chi)\Big{)}-\mu b_{0}(\bm{e}_{h}^{n},\chi)\quad\forall\chi\in S_{h}^{0},

where

τn=tψh(tn)¯tψhn=12Δttn1tn(ttn)t2ψh(t)dt.\tau^{n}=\partial_{t}\psi_{h}(t_{n})-\bar{\partial}_{t}\psi_{h}^{n}=\frac{1}{2\Delta t}\displaystyle{\int_{t_{n-1}}^{t_{n}}}(t-t_{n})\partial_{t}^{2}\psi_{h}(t)dt. (5.9)

Below, we state and prove the main theorem of this section.

Theorem 5.7.

Let 0α<νλ140\leq\alpha<\frac{\nu\lambda_{1}}{4}, and let Δt>0\Delta t>0 satisfies (νΔtλ14+1)>eαΔt(\frac{\nu\Delta t\lambda_{1}}{4}+1)>e^{\alpha\Delta t}. Then, there exists a positive constant CC, independent of Δt\Delta t, such that for n=1,2,n=1,2,\cdots

𝒆hn2+β1Δte2αtni=1ne2αti|𝒆hi|22C(tN)(Δt)2.\|\nabla\bm{e}_{h}^{n}\|^{2}+\beta_{1}\Delta te^{-2\alpha t_{n}}\sum_{i=1}^{n}e^{2\alpha t_{i}}|\nabla\bm{e}_{h}^{i}|_{2}^{2}\leq C(t_{N})(\Delta t)^{2}.
Proof.

Set χ=e2αtn𝒆hn\chi=e^{2\alpha t_{n}}\bm{e}_{h}^{n} in (5.8). We use (5.2) and (5.3) by replacing Ψn\Psi^{n} by 𝒆hn\bm{e}_{h}^{n} and skew-symmetricity of b0(,)b_{0}(\cdot,\cdot) to obtain

12¯t𝒆^hn2+(eαΔtν1eαΔtΔt1λ1)Δ𝒆^hn2\displaystyle\frac{1}{2}\overline{\partial}_{t}\left\|\nabla\hat{\bm{e}}_{h}^{n}\right\|^{2}+\big{(}e^{-\alpha\Delta t}\nu-\frac{1-e^{-\alpha\Delta t}}{\Delta t}\frac{1}{\lambda_{1}}\big{)}\|\Delta\hat{\bm{e}}_{h}^{n}\|^{2} (5.10)
eαΔtτ^n𝒆^hn+eαΔt|b(𝒆^hn;ψhn,𝒆^hn)|\displaystyle\;\;\;\;\;\;\leq e^{-\alpha\Delta t}\|\nabla\hat{\tau}^{n}\|\|\nabla\hat{\bm{e}}_{h}^{n}\|+e^{-\alpha\Delta t}|b(\hat{\bm{e}}_{h}^{n};\psi_{h}^{n},\hat{\bm{e}}_{h}^{n})|
CeαΔt(τ^nΔ𝒆^hn+Δ𝒆^hnψhnL4𝒆^hnL4)\displaystyle\;\;\;\;\;\;\leq Ce^{-\alpha\Delta t}\Big{(}\|\nabla\hat{\tau}^{n}\|\|\Delta\hat{\bm{e}}_{h}^{n}\|+\|\Delta\hat{\bm{e}}_{h}^{n}\|\|\nabla\psi^{n}_{h}\|_{L^{4}}\|\nabla\hat{\bm{e}}_{h}^{n}\|_{L^{4}}\Big{)}
CeαΔt(τ^nΔ𝒆^hn+Δ𝒆^hn3/2Δψhn1/2ψhn1/2𝒆^hn1/2)\displaystyle\;\;\;\;\;\;\leq Ce^{-\alpha\Delta t}\Big{(}\|\nabla\hat{\tau}^{n}\|\|\Delta\hat{\bm{e}}_{h}^{n}\|+\|\Delta\hat{\bm{e}}_{h}^{n}\|^{3/2}\|\Delta\psi_{h}^{n}\|^{1/2}\|\nabla\psi^{n}_{h}\|^{1/2}\|\nabla\hat{\bm{e}}_{h}^{n}\|^{1/2}\Big{)}
CeαΔt(τ^n2+Δψhn2ψhn2𝒆^hn2)+ν2eαΔtΔ𝒆^hn2\displaystyle\;\;\;\;\;\;\leq Ce^{-\alpha\Delta t}\Big{(}\|\nabla\hat{\tau}^{n}\|^{2}+\|\Delta\psi_{h}^{n}\|^{2}\|\nabla\psi^{n}_{h}\|^{2}\|\nabla\hat{\bm{e}}_{h}^{n}\|^{2}\Big{)}+\frac{\nu}{2}e^{-\alpha\Delta t}\|\Delta\hat{\bm{e}}_{h}^{n}\|^{2} (5.11)

where v^n=eαtnvn\hat{v}^{n}=e^{\alpha t_{n}}v^{n}. Here, we used the Poincaré inequality, generalized Hölder’s inequality and Young’s inequality as in Lemma 5.1. On summing up (5.10) from n=1n=1 to NN, we obtain with 𝒆h0=0\bm{e}_{h}^{0}=0

𝒆^hN2+2βΔtn=1NΔ𝒆^hn2\displaystyle\left\|\nabla\hat{\bm{e}}_{h}^{N}\right\|^{2}+2\beta^{\star}\Delta t\sum_{n=1}{N}\|\Delta\hat{\bm{e}}_{h}^{n}\|^{2} CΔtn=1Ne2αtn1τn2\displaystyle\leq C\Delta t\sum_{n=1}^{N}e^{2\alpha t_{n-1}}\|\nabla{\tau}^{n}\|^{2}
+CeαΔtΔtn=1NΔψhn2ψhn2𝒆^hn2.\displaystyle+Ce^{-\alpha\Delta t}\Delta t\sum_{n=1}^{N}\|\Delta\psi_{h}^{n}\|^{2}\|\nabla\psi^{n}_{h}\|^{2}\|\nabla\hat{\bm{e}}_{h}^{n}\|^{2}. (5.12)

From the definition (5.9), it follows that

e2αtn1τn21(Δt)2e2αtn1(tn1tnt2ψh(s)𝑑s)2Δt3tn1tne2αst2ψh(s)2𝑑s.e^{2\alpha t_{n-1}}\|\nabla{\tau}^{n}\|^{2}\leq\frac{1}{(\Delta t)^{2}}e^{2\alpha t_{n-1}}\Big{(}\int_{t_{n-1}}^{t_{n}}\|\nabla\partial^{2}_{t}\psi_{h}(s)\|\,ds\Big{)}^{2}\leq\frac{\Delta t}{3}\int_{t_{n-1}}^{t_{n}}e^{2\alpha s}\|\nabla\partial^{2}_{t}\psi_{h}(s)\|^{2}\,ds. (5.13)

Substitute (5.13) in (5.3) to arrive with smallness of Δt\Delta t at

𝒆^hN2+2βΔtn=1NΔ𝒆^hn2\displaystyle\left\|\nabla\hat{\bm{e}}_{h}^{N}\right\|^{2}+2\beta^{\star}\Delta t\sum_{n=1}{N}\|\Delta\hat{\bm{e}}_{h}^{n}\|^{2} C(Δt)20tNe2αst2ψh(s)2𝑑s\displaystyle\leq C(\Delta t)^{2}\int_{0}^{t_{N}}e^{2\alpha s}\|\nabla\partial^{2}_{t}\psi_{h}(s)\|^{2}\,ds
+CeαΔtΔtn=1N1Δψhn2ψhn2𝒆^hn2.\displaystyle+Ce^{-\alpha\Delta t}\Delta t\sum_{n=1}^{N-1}\|\Delta\psi_{h}^{n}\|^{2}\|\nabla\psi^{n}_{h}\|^{2}\|\nabla\hat{\bm{e}}_{h}^{n}\|^{2}.

An application of the Gronwall’s Lemma now yields

𝒆^hN2+2βΔtn=1NΔ𝒆^hn2\displaystyle\left\|\nabla\hat{\bm{e}}_{h}^{N}\right\|^{2}+2\beta^{\star}\Delta t\sum_{n=1}{N}\|\Delta\hat{\bm{e}}_{h}^{n}\|^{2}
C(Δt)2(0tNe2αst2ψh(s)2𝑑s)exp(Δtn=0N1Δψhn2ψhn2)\displaystyle\;\;\;\;\;\;\leq C(\Delta t)^{2}\Big{(}\int_{0}^{t_{N}}e^{2\alpha s}\|\partial^{2}_{t}\nabla\psi_{h}(s)\|^{2}\,ds\Big{)}\exp\Big{(}\Delta t\sum_{n=0}^{N-1}\|\Delta\psi_{h}^{n}\|^{2}\|\nabla\psi^{n}_{h}\|^{2}\Big{)}
C(Δt)2(0tNe2αst2ψh(s)2𝑑s)exp(0tNΔψh(s)2ψh(s)2𝑑s).\displaystyle\;\;\;\;\;\;\leq C(\Delta t)^{2}\Big{(}\int_{0}^{t_{N}}e^{2\alpha s}\|\nabla\partial^{2}_{t}\psi_{h}(s)\|^{2}\,ds\Big{)}\exp\Big{(}\int_{0}^{t_{N}}\|\Delta\psi_{h}(s)\|^{2}\|\nabla\psi_{h}(s)\|^{2}\,ds\Big{)}.

This completes the rest of the proof. ∎

6 Numerical Experiments

This section focusses on several numerical experiments on benchmark problems and then on their results confirming our theoretical findings.

For discrete conforming space, we choose Hsieh-Clough-Tocher (HCT) macro-element which is a piecewise cubic polynomial space on each sub-triangle.

6.1 Convergence rate

Since we consider the backward Euler method, the time discretization error yields 𝒪(Δt)\mathcal{O}(\Delta t). Therefore, the expected optimal error for a smooth function is, for s=0,1,2s=0,1,2,

ψ(T)ψhNsC(h4s+Δt).\|\psi(T)-\psi_{h}^{N}\|_{s}\leq C(h^{4-s}+\Delta t).

To verify convergence order of space discretization error, we compare error at the final time measured in L2L^{2}-, H1H^{1}-, and H2H^{2}-norm with varying hh and fixed Δt=103\Delta t=10^{-3}. Here, Δt\Delta t is chosen small so that the error from time discretization can be neglected. The tested solution is defined by

ψ=1et1e0.1sin(πx)2sin(πy)2\psi=\frac{1-e^{-t}}{1-e^{-0.1}}\sin(\pi x)^{2}sin(\pi y)^{2}

with ψ(0)0\psi(0)\equiv 0, ν=1.6667\nu=1.6667, and μ=103\mu=10^{3}. FF is chosen so that the solution satisfies (1.1). Convergence history with respect to the degrees of freedom is reported in Figure 1.

Refer to caption
Figure 1: Convergence history with respect to the degrees of freedom. Right triangles indicate the ideal convergence order with respect to hh.

We have ψ(T)ψhNj=𝒪(h4j)\|\psi(T)-\psi_{h}^{N}\|_{j}=\mathcal{O}(h^{4-j}) for j=0,1,2j=0,1,2 which comply with the results in Theorem 4.4.

6.2 Exponential decaying with no force

This subsection is on the verification of the exponential decaying property of the solution when F=0F=0. Consider a closed rectangular basin, Ω=(0,1)×(1,1)\Omega=(0,1)\times(-1,1). With initial condition ψ0=sin(πx)2sin(πy)2\psi_{0}=\sin(\pi x)^{2}\sin(\pi y)^{2}, we observe ψh(t)L2(Ω)\|\nabla\psi_{h}(t)\|_{L^{2}(\Omega)} for t=(0,0.1)t=(0,0.1) with various ν\nu and μ\mu. The results with h=27h=2^{-7} and Δt=103\Delta t=10^{-3} are reported in Figure 2.

Refer to caption
Refer to caption
Figure 2: History of ψh\|\nabla\psi_{h}\| with various μ\mu (left) and ν\nu (right) when F=0F=0.

As expected in Remark 2.11, the solution converges to 0 exponentially regardless of the choice of ν\nu and μ\mu. However, the rate of decay depends on ν\nu and μ\mu. Note that ν\nu is the vorticity diffusion coefficient and μ\mu is the convection speed. Therefore, with homogeneous boundary condition, we can expect that the solution converges to 0 faster, when ν\nu and μ\mu are large. The numerical results conform with this heuristic.

6.3 Attractor with time-independent force

Finally, we observe the dynamics of stream function when FF is given as a non-trivial time-independent function. For simplicity, we choose ψ0=0\psi_{0}=0 and F=sin(πy)F=\sin(\pi y) which is a simplified wind shear stress, see [6, 23].

Refer to caption
Refer to caption
Figure 3: History of ψh\|\nabla\psi_{h}\| with various μ\mu (left) and ν\nu (right) when F=sin(πy)F=\sin(\pi y).

In Figure 3, it is observed that the solution converges to a point attractor when ν\nu is relatively large, i.e., relatively small ReRe. On the other hand, when ν\nu is relatively small, the energy locally fluctuates and does not converge to a stationary solution. This indicates that solution transits from a laminar flow to a turbulent flow as ν\nu varies. Profiles of solution at t=1,2,3,4t=1,2,3,4 are depicted in Figures 46 for ν=1, 0.01, 0.0001\nu=1,\;0.01,\;0.0001, respectively, with μ=100\mu=100. The solution converges to a stationary solution when ν=1\nu=1 where the solution slightly skewed to the western boundary. Also, the solution is almost symmetric with respect to the line y=0y=0. For ν=0.01\nu=0.01, the solution oscillates and does not converge to a stationary solution. However, it still maintains symmetric behavior. When ν=0.0001\nu=0.0001, upper gyres and lower gyres are mixed and the solution shows chaotic behavior.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Streamfunction profiles at t=1,2,3,4t=1,2,3,4 with ν=1\nu=1 and μ=100\mu=100.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Streamfunction profiles at t=1,2,3,4t=1,2,3,4 with ν=0.01\nu=0.01 and μ=100\mu=100.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Streamfunction profiles at t=1,2,3,4t=1,2,3,4 with ν=0.0001\nu=0.0001 and μ=100\mu=100.

7 Conclusion

In this study, we introduce a family of C1C^{1}-conforming finite element method for the evolutionary surface QG equation. A priori estimates for the continuous solution are provided. The existence of a global attractor is established and remarks with some special cases, F=0F=0 or time-independent, are provided. The optimal convergence for C1C^{1}-conforming finite element method is derived, which also covers low regularity. Similarly to the continuous case, the finite element solution also converges to a discrete attractor as tt\rightarrow\infty. The optimal convergence with a smooth solution is verified numerically with HCT-element. The exponential decaying property with various choice of physical parameters is observed when F=0F=0. With non-zero time-independent FF, the solution shows stable behavior with the bounded energy. When ν\nu is between 10110^{-1} and 10210^{-2}, the energy fluctuates locally which shows that the solution becomes a turbulent flow rather than a laminar flow.

In the future, we extend our method to the multi-layer surface QG equations to cope with a vertically inhomogeneous flow. Nonconforming finite element methods will be also considered to avoid the complicate implementation of C1C^{1}-finite element. The theoretical findings in this study will result in the guidance of the future study.

References

  • [1] D. Adak, D. Mora, S. Natarajan and A. Silgado. A virtual element discretization for the time dependent Navier-Stokes equations in stream-function vorticity formulation. ESAIM: M2AN, 55: 2535–2566, 2021.
  • [2] J.-P. Aubin. Un théorm̀e de compacité. C. R. Acad. Sci. Paris., 256:5042–5044, 1963.
  • [3] I. A. Balushi, W. Jiang, G. Tsogtgerel, and T.-Y. Kim, A posteriori analysis of a B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng., 371:113317, 2020.
  • [4] C. Bernier. Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension. Adv. Math. Sci. Appl., 4(2):465–489, 1994.
  • [5] H. Blum, R. Rannacher, and R. Leis. On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci., 2(4):556–581, 1980.
  • [6] K. Bryan. A numerical investigation of a nonlinear model of a wind-driven ocean. AMS, 20(6):594–606, 1963.
  • [7] M. D. Chekroun, Y. Hong, and R. M. Temam. Enriched numerical scheme for singularly perturbed barotropic quasi-geostrophic equations. J. Comp. Phy., 416:109493, 2020.
  • [8] V. Dymnikov, Ch. Kazantsev, and E. Kazantsev. On the “genetic memory” of chaotic attractor of the barotropic ocean model. Chaos, Solitons and Fractals, 11:507–532, 2000.
  • [9] E. L. Foster, T. Iliescu, and D. Wells. A conforming finite element discretization of the stream function form of the unsteady quasi-geostrophic equations. IJNAM, 13(6):951–968, 2016.
  • [10] W. Jiang and T.-Y. Kim, Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries. Comput. Methods Appl. Mech. Eng., 299:144–160, 2016.
  • [11] S. Kesavan. Topics in functional analysis and applications. Wiley, 1989.
  • [12] D. Kim, T.-Y. Kim, E.-J. Park, and D.-w. Shin. Error estimates of B-spline based finite-element methods for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Engrg., 335:255–272, 2018.
  • [13] D. Kim and A. K. Pani and E.-J. Park. Morley finite element methods for the stationary quasi-geostrophic equation, Comput. Methods Appl. Mech. Engrg., 375:113639, 2021.
  • [14] T.-Y. Kim, T. Iliescu, and E. Fried, B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng., 286:168–191, 2015.
  • [15] T.-Y. Kim, E.-J. Park, and D.-w. Shin. A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Engrg., 300:225–244, 2016.
  • [16] R. C. Kirby and L. Mitschell. Code generation for generally mapped finite elements. ACM Trans. Math. Softw., 45(4):41, 2019.
  • [17] J. McWilliams. Fundamentals of Geophysical Fluid Dynamics Cambridge University Press, Cambridge, 2006.
  • [18] T. T. Medjo. Pullback attractors for the multi-layer quasi-geostrophic equations of the ocean. Nonlinear Anal. Real World Appl., 17:365–382, 2014.
  • [19] M. Muresan. A concrete approach to classical analysis. CMS Books in Mathematics, 2009.
  • [20] A. K. Pany, S. K. Paikray, S. Padhy, and A. K. Pani. Backward Euler schemes for the Kelvin-Voigt viscoelastic fluid flow model. IJNAM, 14:126–151, 2017.
  • [21] J. Pedlosky. Geophysical Fluid Dynamics. Springer Science & Business Media, New York, 2013.
  • [22] N. Rotundo, T.-Y. Kim, W. Jiang, L. Heltai, E. Fried, Error analysis of a B-spline based finite-element method for modeling wind-driven ocean circulation. J. Sci. Comput., 69(1):430–459, 2016.
  • [23] H. U. Sverdrup. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern pacific. Proc. Natl. Acad. Sci. U. S. A., 33(11):318–326, 1947.
  • [24] R. Temam. Attractors of the Dissipative Evolution Equation of the First Order in Time: Reaction–Diffusion Equations. Fluid Mechanics and Pattern Formation Equations, pages 82–178. Springer New York, New York, NY, 1997.
  • [25] G.K. Vallis. Atmosphere and Ocean Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, Cambridge, 2006.
  • [26] G. Veronis. Wind-driven ocean circulation — part 2. numerical solutions of the non-linear problem. Deep Sea Research and Oceanographic Abstracts, 13(1):31–55, 1966.