This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Finite Element Analysis of the Dirichlet Boundary Control Problem Governed by Linear Parabolic Equation

Thirupathi Gudi Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India [email protected] Gouranga Mallik Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India [email protected]  and  Ramesh Ch. Sau Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India [email protected]
Abstract.

A finite element analysis of a Dirichlet boundary control problem governed by the linear parabolic equation is presented in this article. The Dirichlet control is considered in a closed and convex subset of the energy space H1(Ω×(0,T)).H^{1}(\Omega\times(0,T)). We prove well-posedness and discuss some regularity results for the control problem. We derive the optimality system for the optimal control problem. The first order necessary optimality condition results in a simplified Signorini type problem for control variable. The space discretization of the state variable is done using conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. To discretize the control we use the conforming prismatic Lagrange finite elements. We derive an optimal order of convergence of error in control, state and adjoint state. The theoretical results are corroborated by some numerical tests.

Key words and phrases:
PDE-constrained optimization; Control-constraints; Finite element method; Error bounds; Evolution equation
1991 Mathematics Subject Classification:
65N30; 65N15; 65N12; 65K10

1. Introduction

The study of optimal control problem govern by partial differential equations (PDEs) is a significant area of research in applied mathematics. The optimal control problem consists of finding a control variable that minimizes a cost functional subject to a PDE. Due to the importance in applications, several numerical methods have been proposed to approximate the solutions. The finite element approximation of the optimal control problem started with the work of Falk [19] and Geveci [20]. A control can act in the interior of a domain, in this case, we call distributed, or on the boundary of a domain, we call boundary (Neumann or Dirichlet) control problem. We refer to [22, 28, 12, 15] for distributed control related problem, to [8, 7, 12, 15] for the Neumann boundary control problem, and to [23] for a variational discretization approach. The Dirichlet boundary control problem has been studied in [9, 10].

The Dirichlet boundary control problems are essential in the application areas, and various approaches are proposed in the literature for the same. One such is to seek control from L2(Γ)L^{2}(\Gamma)-space (see [10]). In this case the state equation has to be understood in a ultra weak sense, since the Dirichlet boundary data is only in L2(Γ)L^{2}(\Gamma). This ultra-weak formulation is easy to implement and typically yields optimal controls with low regularity. Especially, when the problem is posed on a polygonal domain, the control exhibits layer behaviour at the corner points. This is because it is determined by the normal derivative of the adjoint state. Another approach is to choose the control from the the energy space H1/2(Γ)H^{1/2}(\Gamma) (see [30]). With the help of a harmonic extension of the given boundary data, the Steklov-Poincaré operator was employed in [30] to determine the cost functional. By employing harmonic extension of the Dirichlet data, the Steklov-Poincaré operator turns Dirichlet data into Neumann data; nevertheless, numerical implementation of this sort of abstract operator might be challenging. In paper [9], Dirichlet control problem is transformed into a Robin boundary control problem through penalization. In [13], the authors consider unconstrained Dirichlet boundary control where the control in H1/2(Γ)H^{1/2}(\Gamma) is realized by a harmonic extension in H1(Ω)H^{1}(\Omega) which enables to consider cost functional in energy form. In this approach the authors choose the control from the energy space H1(Ω)H^{1}(\Omega) so that they do not need Steklov-Poincaré operator and hence this method is computationally very efficient. We refer [21] for an improved analysis of constrained Dirichlet boundary control.

In [24], a semi-smooth Newton method has been used to solve Dirichlet boundary control problem for parabolic PDE. The article [1, 5] investigates the Robin-type boundary conditions for parabolic Dirichlet boundary control problems using Robin penalization method. In this paper, we consider the following parabolic Dirichlet boundary control problem of tracking type, which may be regarded as prototype problem(based on energy approach) to study Dirichlet boundary control for time-dependent PDEs.

minJ(u,q)=12uudL2(I;L2(Ω))2+λ2|q|1,Ω×(0,T)2,\displaystyle\text{min}~{}J(u,q)=\frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}(I;L^{2}(\Omega))}^{2}+\frac{\lambda}{2}|q|^{2}_{1,\Omega\times(0,T)}, (1)

subject to PDE,

tuΔu\displaystyle\partial_{t}u-\Delta u =finΩ×(0,T),\displaystyle=f\quad\text{in}\;\Omega\times(0,T), (2a)
u\displaystyle u =qonΩ×(0,T),\displaystyle=q\quad\text{on}\;\;\partial\Omega\times(0,T), (2b)
u(x,0)\displaystyle u(x,0) =u0(x)inΩ,\displaystyle=u_{0}(x)\quad\text{in}\;\Omega, (2c)

with the control constraints

qaq(x,t)qbonΩ×(0,T).q_{a}\leq q(x,t)\leq q_{b}\quad\text{on}\;\partial\Omega\times(0,T).

The detailed description of the above problem will be discussed in the Section 2. To the authors’ knowledge, this is the first work to address the energy approach for solving the Dirichlet boundary control problem governed by linear parabolic equation. We prove existence and uniqueness of the solution of the problem (1), and discuss about the regularity of the optimal control, which is of particular interest. Also, one of the goal of this article is to consider the discretization of the optimality system based on a finite element approximation of the state, adjoint state and the control variable. To discretize the state and adjoint state equation, we use discontinuous finite elements for time discretization, and H1H^{1}-conforming finite elements for spatial discretization. In [3] this type of discretization is shown to allow for a natural translation of the optimality conditions from the continuous to the discrete level. This gives rise to exact computation of the derivatives required in the optimization algorithms on the discrete level. Since, we sought control from a closed convex subset of H1(Ω×(0,T))H^{1}(\Omega\times(0,T)), the optimal control satisfies a simplified Signorini problem in three dimensional domain Ω×(0,T)\Omega\times(0,T). To discretize the control we use the conforming prismatic Lagrange finite elements on three dimensional domain. For a period of fifteen years, the lack of order of convergence for the Signorini solution had been a common difficulty. Hild [16], derive the optimal order of convergence under minimal assumptions. Using the ideas from [16], we derive the optimal order convergence for the error in control.

The following is a breakdown of the rest of the article. The investigated Dirichlet boundary control problem, the primal boundary value problem, the reduced cost functional, and the related adjoint boundary value problem are all described in Section 2. The minimizer of the reduced cost functional is characterized as the unique solution of a variational inequality of the first kind. Section 3 discusses the finite element discretization of the variational inequality, as well as finite element approximations of both the primal and adjoint boundary value problems, and related error estimates. Some numerical results are finally given in Section 4.

2. Continuous Control Problem

In this section, we first introduce some notations and then discuss the mathematical formulation of the optimal control problem. Furthermore, we prove theoretical results on existence and uniqueness.

2.1. Notations and Preliminary

Let Ω\Omega be a bounded convex polygonal domain in 2.\mathbb{R}^{2}. The inner-product in L2(Ω)L^{2}(\Omega) space is denoted by (u,v):=Ωuv(u,v):=\int_{\Omega}uv with the norm v0,Ω:=(v,v)1/2\left\|v\right\|_{0,\Omega}:=(v,v)^{1/2}. Also, we denote the norm in the Hk(Ω)H^{k}(\Omega) space by vk,Ω\left\|v\right\|_{k,\Omega} for k1k\geq 1. Let I:=(0,T)I:=(0,T) be a time interval. We consider the Sobolev space L2(I;L2(Ω))L^{2}(I;L^{2}(\Omega)) equipped with the inner-product

(u,v)I=0TΩuv(u,v)_{I}=\int_{0}^{T}\int_{\Omega}uv

and the norm uI:=(u,u)I1/2\left\|u\right\|_{I}:=(u,u)_{I}^{1/2}. Let 0<s<10<s<1. Define the fractional Sobolev space

Hs(Ω):={uL2(Ω)|ΩΩ(u(x)u(y))2(xy)2s+2dxdy<},H^{s}(\Omega):=\{u\in L^{2}(\Omega)\,|\;\int_{\Omega}\int_{\Omega}\frac{(u(x)-u(y))^{2}}{(x-y)^{2s+2}}{\rm~{}dx}{\rm~{}dy}<\infty\},

equipped with the norm

us,Ω:=(u0,Ω2+ΩΩ(u(x)u(y))2(xy)2s+2dxdy)12.\left\|u\right\|_{s,\Omega}:=\bigg{(}\left\|u\right\|_{0,\Omega}^{2}+\int_{\Omega}\int_{\Omega}\frac{(u(x)-u(y))^{2}}{(x-y)^{2s+2}}{\rm~{}dx}{\rm~{}dy}\bigg{)}^{\frac{1}{2}}.

The fractional Sobolev space involving time is defined by

L2(I;Hs(Ω)):={u:IHs(Ω)measurable|Iu(t)s,Ω2dt<}.L^{2}(I;H^{s}(\Omega)):=\{u:I\rightarrow H^{s}(\Omega)\;\text{measurable}\;|\;\int_{I}\left\|u(t)\right\|^{2}_{s,\Omega}dt\;<\infty\}.

Prior to discussing the optimal control problem, we describe the problem setup for the linear parabolic problem defined in (2) as follows:

tuΔu\displaystyle\partial_{t}u-\Delta u =finΩ×(0,T),\displaystyle=f\quad\text{in}\;\Omega\times(0,T), (3a)
u\displaystyle u =qonΩ×(0,T),\displaystyle=q\quad\text{on}\;\;\partial\Omega\times(0,T), (3b)
u(x,0)\displaystyle u(x,0) =u0(x)inΩ,\displaystyle=u_{0}(x)\quad\text{in}\;\Omega, (3c)

where Ω2,\Omega\subset\mathbb{R}^{2}, be a bounded polygonal domain and (0,T)(0,T) be a time interval. Denote ΓD:=Ω×{0,T}\Gamma_{D}:=\Omega\times\{0,T\} and ΓC:=Ω×(0,T)\Gamma_{C}:=\partial\Omega\times(0,T). We take the interior force fL2(I;L2(Ω))f\in L^{2}(I;L^{2}(\Omega)) and the initial data u0H1(Ω)u_{0}\in H^{1}(\Omega). The Dirichlet data function qq is the control variable and it is chosen from the following admissible space:

Q={qH1(Ω×I)|q(x,t)=0onΓD}.\displaystyle Q=\{q\in H^{1}(\Omega\times I)\;|\;q(x,t)=0\;\text{on}\;\Gamma_{D}\}. (4)

For the time interval II, define the test and trial space

X:={w|wL2(I;H01(Ω))andtwL2(I;H1(Ω))}.\displaystyle X:=\{w\;|\;w\in L^{2}(I;H_{0}^{1}(\Omega))\;\text{and}\;\partial_{t}w\in L^{2}(I;H^{-1}(\Omega))\}.

For a given control qQ,q\in Q, the weak formulation of (3) is to find w(q)X,w(q)\in X, with u(x,0)=u0(x),u(x,0)=u_{0}(x), such that

(tw(q),v)I+(w(q),v)I=\displaystyle(\partial_{t}w(q),v)_{I}+(\nabla w(q),\nabla v)_{I}= (f,v)I(q,v)I(tq,v)IvX,\displaystyle(f,v)_{I}-(\nabla q,\nabla v)_{I}-(\partial_{t}q,v)_{I}\quad\forall v\in X, (5)

and set u(q):=w(q)+qX+Qu(q):=w(q)+q\in X+Q to be the weak solution of (3).

We recall the following result on existence, uniqueness (see [25, 36]) and regularity (see [18, 25]) for the state equation.

Proposition 2.1.

For a given control qQq\in Q, fL2(I;L2(Ω))f\in L^{2}(I;L^{2}(\Omega)) and u0H1(Ω),u_{0}\in H^{1}(\Omega), there exists a unique weak solution u(q):=w(q)+qX+Qu(q):=w(q)+q\in X+Q of the problem (3). Moreover, the solution exhibits the improved regularity u(q)Z+Qu(q)\in Z+Q and satisfies the stability estimate

tu(q)I+u(q)IfI+tqI+qI+u01,Ω,\displaystyle\left\|\partial_{t}u(q)\right\|_{I}+\left\|\nabla u(q)\right\|_{I}\leq\left\|f\right\|_{I}+\left\|\partial_{t}q\right\|_{I}+\left\|\nabla q\right\|_{I}+\left\|u_{0}\right\|_{1,\Omega}, (6)

where the space ZZ is defined by

Z:={w|wL2(I;H01(Ω))andtwL2(I;L2(Ω))}.\displaystyle Z:=\{w\;|\;w\in L^{2}(I;H_{0}^{1}(\Omega))\;\text{and}\;\partial_{t}w\in L^{2}(I;L^{2}(\Omega))\}.

2.2. The Dirichlet Control Problem

Consider the cost functional JJ defined in (1). The model control problem consists of finding (u¯(q¯),q¯)(X+Q)×Qad,(\bar{u}(\bar{q}),\bar{q})\in(X+Q)\times Q_{ad}, such that

J(u¯(q¯),q¯)=min(u(q),q)(X+Q)×QadJ(u(q),q),\displaystyle J(\bar{u}(\bar{q}),\bar{q})=\min_{(u(q),q)\in(X+Q)\times Q_{ad}}J(u(q),q), (7)

subject to u(q)=w(q)+qu(q)=w(q)+q satisfying (5). The admissible constrained set of control reads

Qad={qQ|qaq(x,t)qbonΓC},\displaystyle Q_{ad}=\{q\in Q\;|\;q_{a}\leq q(x,t)\leq q_{b}\quad\text{on}\;\Gamma_{C}\}, (8)

where qa,qbq_{a},q_{b}\in\mathbb{R} and for consistency assume qa0q_{a}\leq 0 and qb0,q_{b}\geq 0, so that the admissible set QadQ_{ad} is nonempty.

Theorem 2.2 (Existence and uniqueness of control).

There exists a unique solution of the control problem (7).

Proof.

The cost functional JJ is non negative. Set

α=inf(u(q),q)(X+Q)×QadJ(u(q),q).\alpha=\inf_{(u(q),q)\in(X+Q)\times Q_{ad}}J(u(q),q).

Then there exists a minimizing sequence (un(qn),qn)(u_{n}(q_{n}),q_{n}) such that, J(un(qn),qn)J(u_{n}(q_{n}),q_{n}) converges to α\alpha. For the notational simplicity we denote un(qn)u_{n}(q_{n}) by unu_{n}. Since the sequence J(un,qn)J(u_{n},q_{n}) is convergent, the components unudI\|u_{n}-u_{d}\|_{I} and |qn|1,Ω×I|q_{n}|_{1,\Omega\times I} are bounded. As qnQadq_{n}\in Q_{ad}, using the Poincaré inequality we conclude that the sequence qnq_{n} is bounded in QQ. Then there exists a subsequence of qnq_{n}, still indexed by nn to simplify the notation, and a function q¯\bar{q}, such that qnq_{n} converges to q¯\bar{q} weakly in QQ. It is clear that the set QadQ_{ad} is closed and convex, the function q¯Qad\bar{q}\in Q_{ad}. An a priori estimate of the problem (5) yields

twnI+wnIC(fI+|qn|1,Ω×I+u01,Ω),\displaystyle\left\|\partial_{t}w_{n}\right\|_{I}+\left\|\nabla w_{n}\right\|_{I}\leq C(\left\|f\right\|_{I}+|q_{n}|_{1,\Omega\times I}+\left\|u_{0}\right\|_{1,\Omega}), (9)

where un=wn+qnu_{n}=w_{n}+q_{n}. Using this a priori estimate and the boundedness of the sequence qnq_{n} we conclude that the sequence wnw_{n} is bounded in H01(Ω×I)H_{0}^{1}(\Omega\times I). We extract a subsequence, name it wnw_{n} and it converges weakly to w¯\bar{w} in H01(Ω×I)H_{0}^{1}(\Omega\times I). Now we show that w¯\bar{w} is the corresponding candidate for the control q¯\bar{q}. From (5), we have

(twn,v)I+(wn,v)I=\displaystyle(\partial_{t}w_{n},v)_{I}+(\nabla w_{n},\nabla v)_{I}= (f,v)I(qn,v)I(tqn,v)IvL2(I;H01(Ω)).\displaystyle(f,v)_{I}-(\nabla q_{n},\nabla v)_{I}-(\partial_{t}q_{n},v)_{I}\quad\forall v\in L^{2}(I;H_{0}^{1}(\Omega)). (10)

Using the above weak convergences in (10), we obtain

(tw¯,v)I+(w¯,v)I=\displaystyle(\partial_{t}\bar{w},v)_{I}+(\nabla\bar{w},\nabla v)_{I}= (f,v)I(q¯,v)I(tq¯,v)IvL2(I;H01(Ω)).\displaystyle(f,v)_{I}-(\nabla\bar{q},\nabla v)_{I}-(\partial_{t}\bar{q},v)_{I}\quad\forall v\in L^{2}(I;H_{0}^{1}(\Omega)).

Hence, u¯=w¯+q¯\bar{u}=\bar{w}+\bar{q} is the corresponding state for the control q¯\bar{q}. The sequence qnq_{n} converges to q¯\bar{q} weakly in QQ. Therefore, it converges strongly in L2(Ω×I)L^{2}(\Omega\times I). Now, wnw_{n} converges to w¯\bar{w} weakly in H01(Ω×I)H_{0}^{1}(\Omega\times I). Thus, it converges strongly in L2(Ω×I)L^{2}(\Omega\times I). So, wn+qn=unw_{n}+q_{n}=u_{n} converges strongly to w¯+q¯=u¯\bar{w}+\bar{q}=\bar{u} in L2(Ω×I)L^{2}(\Omega\times I). Using the weak lower semi continuity of the norm, we obtain |q¯|1,Ω×Ilim infn|qn|1,Ω×I|\bar{q}|_{1,\Omega\times I}\leq\liminf_{n\rightarrow\infty}|q_{n}|_{1,\Omega\times I}. Hence, we have

J(u¯,q¯)limn12unudI2+λ2lim infn|qn|1,Ω×I2=α.J(\bar{u},\bar{q})\leq\lim_{n\rightarrow\infty}\frac{1}{2}\|u_{n}-u_{d}\|_{I}^{2}+\frac{\lambda}{2}\liminf_{n\rightarrow\infty}|q_{n}|_{1,\Omega\times I}^{2}=\alpha.

This proves the existence of a control q¯\bar{q} such that J(u¯,q¯)=αJ(\bar{u},\bar{q})=\alpha. The uniqueness of the solution follows from the strict convexity of the cost functional. ∎

Proposition 2.3 (Continuous Optimality System).

The state, adjoint state, and control (u¯(q¯),ϕ¯(q¯),q¯)(X+Q)×X×Qad(\bar{u}(\bar{q}),\bar{\phi}(\bar{q}),\bar{q})\in(X+Q)\times X\times Q_{ad} satisfy the optimality system

u¯(q¯)=\displaystyle\bar{u}(\bar{q})= w¯(q¯)+q¯,w¯(q¯)X,\displaystyle\bar{w}(\bar{q})+\bar{q},\quad\bar{w}(\bar{q})\in X, (11a)
(tw¯(q¯),v)I+(w¯(q¯),v)I=\displaystyle(\partial_{t}\bar{w}(\bar{q}),v)_{I}+(\nabla\bar{w}(\bar{q}),\nabla v)_{I}= (f,v)I(q¯,v)I(tq¯,v)IvX,\displaystyle(f,v)_{I}-(\nabla\bar{q},\nabla v)_{I}-(\partial_{t}\bar{q},v)_{I}\quad\forall v\in X, (11b)
(tϕ¯(q¯),v)I+(ϕ¯(q¯),v)I=\displaystyle-(\partial_{t}\bar{\phi}(\bar{q}),v)_{I}+(\nabla\bar{\phi}(\bar{q}),\nabla v)_{I}= (u¯(q¯)ud,v)IvL2(I;H01(Ω)),\displaystyle(\bar{u}(\bar{q})-u_{d},v)_{I}\quad\forall v\in L^{2}(I;H_{0}^{1}(\Omega)), (11c)
λ(tq¯,t(pq¯))I+λ(q¯,(pq¯))I\displaystyle\lambda(\partial_{t}\bar{q},\partial_{t}(p-\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p-\bar{q}))_{I}\geq (ϕ¯(q¯),t(pq¯))I+(ϕ¯(q¯),(pq¯))I\displaystyle(\bar{\phi}(\bar{q}),\partial_{t}(p-\bar{q}))_{I}+(\nabla\bar{\phi}(\bar{q}),\nabla(p-\bar{q}))_{I}
(u¯(q¯)ud,pq¯)IpQad,\displaystyle-(\bar{u}(\bar{q})-u_{d},p-\bar{q})_{I}\quad\forall p\in Q_{ad}, (11d)

with u¯(x,0)=u0(x)\bar{u}(x,0)=u_{0}(x) and ϕ¯(q¯)(x,T)=0.\bar{\phi}(\bar{q})(x,T)=0.

Proof.

Consider the Lagrangian function

(w,ϕ,q)=12w+qudI2+λ2qI2+λ2tqI2Itwϕ\displaystyle\mathcal{L}(w,\phi,q)=\frac{1}{2}\left\|w+q-u_{d}\right\|_{I}^{2}+\frac{\lambda}{2}\left\|\nabla q\right\|_{I}^{2}+\frac{\lambda}{2}\left\|\partial_{t}q\right\|_{I}^{2}-\int_{I}\partial_{t}w\;\phi
Iwϕ+IfϕItqϕIqϕ.\displaystyle-\int_{I}\nabla w{\cdot}\nabla\phi+\int_{I}f\phi-\int_{I}\partial_{t}q\;\phi-\int_{I}\nabla q{\cdot}\nabla\phi. (12)

Differentiating \mathcal{L} with respect to ϕ\phi and ww at (w¯(q¯),ϕ¯(q¯),q¯)(\bar{w}(\bar{q}),\bar{\phi}(\bar{q}),\bar{q}) and equating to 0, we obtain state (11b) and adjoint state (11c) respectively. Now, differentiating \mathcal{L} with respect to qq at (w¯(q¯),ϕ¯(q¯),q¯)(\bar{w}(\bar{q}),\bar{\phi}(\bar{q}),\bar{q}) in the direction (pq¯),(p-\bar{q}), we get the following:

𝒟q(w¯(q¯),ϕ¯(q¯),q¯)(pq¯)=I(w¯(q¯)+q¯ud)(pq¯)+λIq¯(pq¯)\displaystyle\mathcal{D}_{q}\mathcal{L}(\bar{w}(\bar{q}),\bar{\phi}(\bar{q}),\bar{q})(p-\bar{q})=\int_{I}(\bar{w}(\bar{q})+\bar{q}-u_{d})(p-\bar{q})+\lambda\int_{I}\nabla\bar{q}{\cdot}\nabla(p-\bar{q})
+λItq¯t(pq¯)It(pq¯)ϕ¯(q¯)I(pq¯)ϕ¯(q¯).\displaystyle+\lambda\int_{I}\partial_{t}\bar{q}\;\partial_{t}(p-\bar{q})-\int_{I}\partial_{t}(p-\bar{q})\;\bar{\phi}(\bar{q})-\int_{I}\nabla(p-\bar{q}){\cdot}\nabla\bar{\phi}(\bar{q}). (13)

The first order necessary optimality condition 𝒟q(w¯(q¯),ϕ¯(q¯),q¯)(pq¯)0for allpQad\mathcal{D}_{q}\mathcal{L}(\bar{w}(\bar{q}),\bar{\phi}(\bar{q}),\bar{q})(p-\bar{q})\geq 0\;\text{for all}\;p\in Q_{ad} yields the inequality (11d). ∎

It is easy to prove from (11d) that the optimal control q¯\bar{q} solves the following Signorini problem:

λ(tt+Δ)q¯\displaystyle-\lambda(\partial_{tt}+\Delta)\bar{q} =0inΩ×(0,T),\displaystyle=0\quad\text{in}\quad\Omega\times(0,T), (14a)
qaq¯\displaystyle q_{a}\leq\bar{q} qbonΓC,\displaystyle\leq q_{b}\quad\text{on}\quad\Gamma_{C}, (14b)
q¯\displaystyle\bar{q} =0inΓD,\displaystyle=0\quad\text{in}\;\Gamma_{D}, (14c)
and further the following holds for almost every (x,t)ΓC(x,t)\in\Gamma_{C}:
ifqa<q¯(x,t)<qbthen(λq¯nϕ¯(q¯)n)(x,t)\displaystyle\text{if}\;q_{a}<\bar{q}(x,t)<q_{b}\quad\text{then}\quad\big{(}\lambda\frac{\partial\bar{q}}{\partial n}-\frac{\partial\bar{\phi}(\bar{q})}{\partial n}\big{)}(x,t) =0,\displaystyle=0, (14d)
ifqaq¯(x,t)<qbthen(λq¯nϕ¯(q¯)n)(x,t)\displaystyle\text{if}\;q_{a}\leq\bar{q}(x,t)<q_{b}\quad\text{then}\quad\big{(}\lambda\frac{\partial\bar{q}}{\partial n}-\frac{\partial\bar{\phi}(\bar{q})}{\partial n}\big{)}(x,t) 0,\displaystyle\geq 0, (14e)
ifqa<q¯(x,t)qbthen(λq¯nϕ¯(q¯)n)(x,t)\displaystyle\text{if}\;q_{a}<\bar{q}(x,t)\leq q_{b}\quad\text{then}\quad\big{(}\lambda\frac{\partial\bar{q}}{\partial n}-\frac{\partial\bar{\phi}(\bar{q})}{\partial n}\big{)}(x,t) 0.\displaystyle\leq 0. (14f)
Remark 2.4 (Regularity of Signorini problem).

The numerical analysis of any finite element method applied to the Signorini problem (14) requires the knowledge of the regularity of the solution q¯\bar{q}. The Signorini condition may generate some singular behavior at the neighborhood of ΓC\Gamma_{C}, see [29]. There are many factors that affect the regularity of the solution to the Signorini problem. Some of those factors are the regularity of the data, the mixed boundary conditions (e.g., Neumann-Dirichlet transitions), the corners in polygonal domains and the Signorini condition which generates singularities at contact-noncontact transition points. Let 𝐩\mathbf{p} be a contact-noncontact transition point in the interior of ΓC,\Gamma_{C}, then the solution of Signorini problem (14) q¯Hτ(V𝐩)\bar{q}\in H^{\tau}(V_{\mathbf{p}}) with τ<52\tau<\frac{5}{2} and V𝐩V_{\mathbf{p}} be an open neighborhood of 𝐩\mathbf{p} (see [2, subsection 2.3], [4, section 2] and [29]). Let 𝐩Γ¯CΓ¯D\mathbf{p}\in\bar{\Gamma}_{C}\cap\bar{\Gamma}_{D} and V𝐩V_{\mathbf{p}} be a neighborhood of 𝐩\mathbf{p} in Ω\Omega such that q¯\bar{q} vanishes on V𝐩ΓCV_{\mathbf{p}}\cap\Gamma_{C} then the elliptic regularity theory on convex domain yields q¯H2(V𝐩)\bar{q}\in H^{2}(V_{\mathbf{p}})(see [2, subsection 2.3] and [31]). Now if q¯\bar{q} does not vanish on V𝐩ΓC,V_{\mathbf{p}}\cap\Gamma_{C}, then 𝐩\mathbf{p} be a contact-noncontact type transition point and hence q¯Hτ(V𝐩)\bar{q}\in H^{\tau}(V_{\mathbf{p}}) with τ<5/2\tau<5/2 (see [2, subsection 2.3] and [31]). The best we can expect is to obtain q¯Hτ(VΓC)\bar{q}\in H^{\tau}(V_{\Gamma_{C}}) with τ2\tau\leq 2 and VΓCV_{\Gamma_{C}} is an open neighbourhood of ΓC\Gamma_{C} (see [29, 2]).

3. Discretization and error analysis

In this section, we consider finite element discretization of the optimal control problem (7). Also for the error analysis we assume that the solutions w¯(q¯),ϕ¯(q¯)H1(I,H01(Ω))L2(I,Hτ(Ω))\bar{w}(\bar{q}),\bar{\phi}(\bar{q})\in H^{1}(I,H^{1}_{0}(\Omega))\cap L^{2}(I,H^{\tau}(\Omega)) and q¯HDτ(Ω×I):={pHτ(Ω×I):p=0onΓD}\bar{q}\in H_{D}^{\tau}(\Omega\times I):=\{p\in H^{\tau}(\Omega\times I):p=0\;\text{on}\;\Gamma_{D}\} with 3/2<τ23/2<\tau\leq 2.

3.1. Discretization in time and space

In this subsection, we first discretize the time and then discretize the space.

Semi-discretization in time. Let I¯={0}I1I2IM\bar{I}=\{0\}\cup I_{1}\cup I_{2}\cup...\cup I_{M} be a partition of I¯=[0,T]\bar{I}=[0,T] with subintervals Im=(tm1,tm]I_{m}=(t_{m-1},t_{m}] of length km:=tmtm1k_{m}:=t_{m}-t_{m-1} and time points

0=t0<t1<<tM1<tM=T.\displaystyle 0=t_{0}<t_{1}<...<t_{M-1}<t_{M}=T. (15)

The time discretization parameter is defined by k=max1mMkmk=\max_{1\leq m\leq M}k_{m}. The semidiscrete test and trial space is defined by

Xk0:={vkL2(I,H01(Ω))|vk|Im𝒫0(Im,H01(Ω))form=1,2,3,,M},\displaystyle X_{k}^{0}:=\{v_{k}\in L^{2}(I,H_{0}^{1}(\Omega))\;|\;v_{k}|_{I_{m}}\in\mathcal{P}_{0}(I_{m},H_{0}^{1}(\Omega))\;\text{for}\;m=1,2,3,...,M\},

where, 𝒫0(Im,H01(Ω))\mathcal{P}_{0}(I_{m},H_{0}^{1}(\Omega)) denotes the space of constant polynomials defined on ImI_{m} with values in H01(Ω)H_{0}^{1}(\Omega). For u,vXk0u,v\in X_{k}^{0}, we use the notation

(u,v)Im=(u,v)L2(Im,L2(Ω))anduIm=uL2(Im,L2(Ω)).(u,v)_{I_{m}}=(u,v)_{L^{2}(I_{m},L^{2}(\Omega))}\quad\text{and}\quad\left\|u\right\|_{I_{m}}=\left\|u\right\|_{L^{2}(I_{m},L^{2}(\Omega))}.

For vkXk0,v_{k}\in X_{k}^{0}, we define the following notations:

vk,m+:=limt0+vk(tm+t),vk,m:=limt0+vk(tmt)=vk(tm),[[vk]]m:=vk,m+vk,m.v^{+}_{k,m}:=\lim_{t\rightarrow 0^{+}}v_{k}(t_{m}+t),\quad v^{-}_{k,m}:=\lim_{t\rightarrow 0^{+}}v_{k}(t_{m}-t)=v_{k}(t_{m}),\quad\left[\hskip-3.5pt\left[v_{k}\right]\hskip-3.5pt\right]_{m}:=v^{+}_{k,m}-v^{-}_{k,m}.

Define the bilinear form B:Xk0×Xk0B:X_{k}^{0}\times X_{k}^{0}\to\mathbb{R},

B(wk,vk):=m=1M(twk,vk)Im+(wk,vk)I+m=1M1([[wk]]m,vk,m+)+(wk,0+,vk,0+),\displaystyle B(w_{k},v_{k}):=\sum_{m=1}^{M}\big{(}\partial_{t}w_{k},v_{k}\big{)}_{I_{m}}+\big{(}\nabla w_{k},\nabla v_{k}\big{)}_{I}+\sum_{m=1}^{M-1}\big{(}\left[\hskip-3.5pt\left[w_{k}\right]\hskip-3.5pt\right]_{m},v^{+}_{k,m}\big{)}+\big{(}w^{+}_{k,0},v^{+}_{k,0}\big{)}, (16)

for wk,vkXk0w_{k},v_{k}\in X_{k}^{0}. The semi-discrete weak formulation of the state equation (5) reads: given qQadq\in Q_{ad}, find wk(q)Xk0w_{k}(q)\in X_{k}^{0} such that

B(wk(q),vk)\displaystyle B(w_{k}(q),v_{k}) =(f,vk)I+(u0,vk,0+)B(q,vk)vkXk0,\displaystyle=(f,v_{k})_{I}+(u_{0},v^{+}_{k,0})-B(q,v_{k})\quad\forall v_{k}\in X_{k}^{0}, (17)

and set uk(q)=wk(q)+qXk0+Qu_{k}(q)=w_{k}(q)+q\in X_{k}^{0}+Q to be the semi-discrete solution of (5).

Remark 3.1.

It is clear that the exact solution w(q)Xw(q)\in X of (5) satisfies

B(w(q),vk)\displaystyle B(w(q),v_{k}) =(f,vk)I+(u0,vk,0+)B(q,vk)vkXk0.\displaystyle=(f,v_{k})_{I}+(u_{0},v^{+}_{k,0})-B(q,v_{k})\quad\forall v_{k}\in X_{k}^{0}. (18)

This leads to the Galerkin orthogonality B(w(q)wk(q),vk)=0for allvkXk0B(w(q)-w_{k}(q),v_{k})=0\;\text{for all}\;v_{k}\in X_{k}^{0} and hence B(u(q)uk(q),vk)=0for allvkXk0B(u(q)-u_{k}(q),v_{k})=0\;\text{for all}\;v_{k}\in X_{k}^{0}.

A use of integration by parts in time in the bilinear form B(.,.)B(.,.) defined in (16) yields the equivalent form

B(wk,vk)=m=1M(wk,tvk)Im+(wk,vk)Im=1M1(wk,m[[vk]]m)+(wk,M,vk,M).\displaystyle B(w_{k},v_{k})=-\sum_{m=1}^{M}(w_{k},\partial_{t}v_{k})_{I_{m}}+(\nabla w_{k},\nabla v_{k})_{I}-\sum_{m=1}^{M-1}\big{(}w_{k,m}^{-}\left[\hskip-3.5pt\left[v_{k}\right]\hskip-3.5pt\right]_{m}\big{)}+\big{(}w^{-}_{k,M},v^{-}_{k,M}\big{)}. (19)

Discretization in space. Let 𝒯h\mathcal{T}_{h} be a shape-regular triangulation of Ω\Omega. Let hKh_{K} denote the diameter of the triangle K𝒯hK\in\mathcal{T}_{h} and define the space discretization parameter h=maxK𝒯hhKh=\max_{K\in\mathcal{T}_{h}}h_{K}. We consider the conforming finite element space:

Vh:={vhH01(Ω)|vh|K𝒫1(K)forK𝒯h}.\displaystyle V_{h}:=\{v_{h}\in H_{0}^{1}(\Omega)\;|\;v_{h}|_{K}\in\mathcal{P}_{1}(K)\;\text{for}\;K\in\mathcal{T}_{h}\}.

Moreover, we consider the fully discrete space-time finite element space

Xk,h0,1={vkhL2(I,Vh)|vkh|Im𝒫0(Im,Vh)}Xk0.\displaystyle X^{0,1}_{k,h}=\{v_{kh}\in L^{2}(I,V_{h})\;|\;v_{kh}|_{I_{m}}\in\mathcal{P}_{0}(I_{m},V_{h})\}\subseteq X_{k}^{0}.

The fully discrete (space-time discretized) state equation for given control qQadq\in Q_{ad} has the following form: Find wkh(q)Xk,h0,1w_{kh}(q)\in X_{k,h}^{0,1} such that

B(wkh(q),vkh)\displaystyle B(w_{kh}(q),v_{kh}) =(f,vkh)I+(u0,vkh,0+)B(q,vkh)vkhXk,h0,1,\displaystyle=(f,v_{kh})_{I}+(u_{0},v^{+}_{kh,0})-B(q,v_{kh})\quad\forall v_{kh}\in X^{0,1}_{k,h}, (20)

and set ukh(q):=wkh(q)+qu_{kh}(q):=w_{kh}(q)+q. Furthermore, the fully discrete adjoint state equation for given control qQadq\in Q_{ad} has the following form: Find ϕkh(q¯)Xk,h0,1\phi_{kh}(\bar{q})\in X^{0,1}_{k,h} such that

B(vkh,ϕkh(q),)=(ukh(q)ud,vkh)IvkhXk,h0,1.\displaystyle B(v_{kh},\phi_{kh}(q),)=\big{(}u_{kh}(q)-u_{d},v_{kh}\big{)}_{I}\quad\forall v_{kh}\in X^{0,1}_{k,h}. (21)

We state below the stability result for the fully discretized solutions of the state and adjoint state equations (see [26, Theorem 4.6 and Corollary 4.7]) as:

Lemma 3.2.

For qQq\in Q, let the solutions wkh(q)w_{kh}(q) and ϕkh(q)\phi_{kh}(q) be given by the discrete state equation (20) and adjoint equation (21), respectively. Then it holds that

wkh(q)I+wkh(q)I\displaystyle\left\|w_{kh}(q)\right\|_{I}+\left\|\nabla w_{kh}(q)\right\|_{I} C(fI+|q|1,Ω×I+Πhu00,Ω+Πhu00,Ω),\displaystyle\leq C(\left\|f\right\|_{I}+|q|_{1,\Omega\times I}+\left\|\Pi_{h}u_{0}\right\|_{0,\Omega}+\left\|\nabla\Pi_{h}u_{0}\right\|_{0,\Omega}), (22)
ϕkh(q)I+ϕkh(q)I\displaystyle\left\|\phi_{kh}(q)\right\|_{I}+\left\|\nabla\phi_{kh}(q)\right\|_{I} Cukh(q)udI,\displaystyle\leq C\left\|u_{kh}(q)-u_{d}\right\|_{I}, (23)

where Πh:H01(Ω)Vh\Pi_{h}:H^{1}_{0}(\Omega)\rightarrow V_{h} denotes the spatial L2L^{2}-projection.

3.2. Error estimates of uncontrolled state and adjoint state variables

This section is devoted to the derivation of a priori error estimations for the discrete solutions of the uncontrolled state and adjoint state equation. We introduce some auxiliary equations which are used to simplify our error analysis. For given control q¯Q,\bar{q}\in Q, let wkh(q¯)Xk,h0,1w_{kh}(\bar{q})\in X^{0,1}_{k,h} be the fully discrete solution of the following auxiliary state equation:

B(wkh(q¯),vkh)=(f,vkh)I+(u0,vkh,0+)B(q¯,vkh)vkhXk,h0,1,\displaystyle B(w_{kh}(\bar{q}),v_{kh})=(f,v_{kh})_{I}+(u_{0},v^{+}_{kh,0})-B(\bar{q},v_{kh})\quad\forall v_{kh}\in X^{0,1}_{k,h}, (24)

and set ukh(q¯):=wkh(q¯)+q¯u_{kh}(\bar{q}):=w_{kh}(\bar{q})+\bar{q}. Furthermore, for given u¯(q¯)L2(I,L2(Ω)),\bar{u}(\bar{q})\in L^{2}(I,L^{2}(\Omega)), let ϕkh(q¯)Xk,h0,1\phi_{kh}(\bar{q})\in X^{0,1}_{k,h} be the fully discrete solution of the following auxiliary adjoint state equation:

B(vkh,ϕkh(q¯),)=(u¯(q¯)ud,vkh)IvkhXk,h0,1.\displaystyle B(v_{kh},\phi_{kh}(\bar{q}),)=\big{(}\bar{u}(\bar{q})-u_{d},v_{kh}\big{)}_{I}\quad\forall v_{kh}\in X^{0,1}_{k,h}. (25)

3.2.1. Error estimates of uncontrolled state

For given fixed control q¯\bar{q} we derive the error between u¯(q¯)\bar{u}(\bar{q}) and ukh(q¯),u_{kh}(\bar{q}), where u¯(q¯)\bar{u}(\bar{q}) be the solution of the state equation (11a)-(11b) and ukh(q¯)u_{kh}(\bar{q}) be the solution of the fully discrete auxiliary state equation (24). Let uk(q¯)u_{k}(\bar{q}) be the solution of semi-discrete state equation (17) for the given control q¯\bar{q}. Since, u¯(q¯)\bar{u}(\bar{q}) and ukh(q¯)u_{kh}(\bar{q}) are state and auxiliary discrete state solution, by the splittings we have u¯(q¯)=w¯(q¯)+q¯\bar{u}(\bar{q})=\bar{w}(\bar{q})+\bar{q} and ukh(q¯)=wkh(q¯)+q¯u_{kh}(\bar{q})=w_{kh}(\bar{q})+\bar{q}. Now, we can write the total error

u¯(q¯)ukh(q¯)=w¯(q¯)wkh(q¯).\bar{u}(\bar{q})-u_{kh}(\bar{q})=\bar{w}(\bar{q})-w_{kh}(\bar{q}).

The influences of the space and time discretization is separated by the temporal part ek:=w¯(q¯)wk(q¯)e_{k}:=\bar{w}(\bar{q})-w_{k}(\bar{q}) and the spatial part eh:=wk(q¯)wkh(q¯)e_{h}:=w_{k}(\bar{q})-w_{kh}(\bar{q}), i.e.,

w¯(q¯)wkh(q¯)=ek+eh.\bar{w}(\bar{q})-w_{kh}(\bar{q})=e_{k}+e_{h}.

Our aim is to find the following energy error estimate of the state:

(u¯(q¯)ukh(q¯))I\displaystyle\left\|\nabla(\bar{u}(\bar{q})-u_{kh}(\bar{q}))\right\|_{I} =(w¯(q¯)wkh(q¯))IekI+ehI.\displaystyle=\left\|\nabla(\bar{w}(\bar{q})-w_{kh}(\bar{q}))\right\|_{I}\leq\left\|\nabla e_{k}\right\|_{I}+\left\|\nabla e_{h}\right\|_{I}. (26)
Theorem 3.3.

There holds,

ekICkw¯(q¯)H1(I;H01(Ω)),\displaystyle\left\|\nabla e_{k}\right\|_{I}\leq Ck\left\|\bar{w}(\bar{q})\right\|_{H^{1}(I;H_{0}^{1}(\Omega))},

where CC is a positive constant independent of the time step kk.

The proof follows from the following lemmas. Define the semi-discrete projection [26]

Ik:C(I,H01(Ω))Xk0\displaystyle I_{k}:C(I,H^{1}_{0}(\Omega))\rightarrow X^{0}_{k} (27)

by Iku|ImP0(Im,H01(Ω))I_{k}u|_{I_{m}}\in P_{0}(I_{m},H^{1}_{0}(\Omega)) and Iku(tm)=u(tm)I_{k}u(t_{m}^{-})=u(t_{m}^{-}) for m=1,2,3,,Mm=1,2,3,...,M. Introducing the projection we get,

ek=w¯(q¯)wk(q¯)=(w¯(q¯)Ikw¯(q¯))+(Ikw¯(q¯)wk(q¯))=ηk+ζk,e_{k}=\bar{w}(\bar{q})-w_{k}(\bar{q})=(\bar{w}(\bar{q})-I_{k}\bar{w}(\bar{q}))+(I_{k}\bar{w}(\bar{q})-w_{k}(\bar{q}))=\eta_{k}+\zeta_{k},

where ηk:=w¯(q¯)Ikw¯(q¯)\eta_{k}:=\bar{w}(\bar{q})-I_{k}\bar{w}(\bar{q}) and ζk:=Ikw¯(q¯)wk(q¯)\zeta_{k}:=I_{k}\bar{w}(\bar{q})-w_{k}(\bar{q}). Now, we need to prove the following results:

Lemma 3.4.

The projection error ηk=w¯(q¯)Ikw¯(q¯),\eta_{k}=\bar{w}(\bar{q})-I_{k}\bar{w}(\bar{q}), satisfies

B(ηk,ψ)=(ηk,ψ)IψXk0.\displaystyle B(\eta_{k},\psi)=(\nabla\eta_{k},\nabla\psi)_{I}\quad\forall\psi\in X^{0}_{k}.
Proof.

By means of (19), we have

B(ηk,ψ)=m=1M(ηk,tψ)Im+(ηk,ψ)Im=1M1(ηk,m[[ψ]]m)+(ηk,M,ψk,M).\displaystyle B(\eta_{k},\psi)=-\sum_{m=1}^{M}(\eta_{k},\partial_{t}\psi)_{I_{m}}+(\nabla\eta_{k},\nabla\psi)_{I}-\sum_{m=1}^{M-1}\big{(}\eta_{k,m}^{-}\left[\hskip-3.5pt\left[\psi\right]\hskip-3.5pt\right]_{m}\big{)}+\big{(}\eta^{-}_{k,M},\psi^{-}_{k,M}\big{)}. (28)

The term ηk,m\eta_{k,m}^{-} and ηk,M\eta_{k,M}^{-} vanishes, because of the definition of interpolation IkI_{k}. Since ψ\psi lies in the semi-discrete space Xk0X^{0}_{k}, the first term vanishes. The only remaining term is the second one. This completes the proof. ∎

Lemma 3.5.

The temporal error eke_{k} is estimated by the projection error ηk\eta_{k} as

ekICηkI.\left\|\nabla e_{k}\right\|_{I}\leq C\left\|\nabla\eta_{k}\right\|_{I}.
Proof.

Let w~kXk0\tilde{w}_{k}\in X^{0}_{k} be the solution of

B(v,w~k)=(v,ek)IvXk0,\displaystyle B(v,\tilde{w}_{k})=(\nabla v,\nabla e_{k})_{I}\quad\forall v\in X^{0}_{k}, (29)

with the stability estimate w~kICekI\left\|\nabla\tilde{w}_{k}\right\|_{I}\leq C\left\|\nabla e_{k}\right\|_{I}. By the Galerkin orthogonality, we have

B(w¯(q¯)wk(q¯),zk)\displaystyle B(\bar{w}(\bar{q})-w_{k}(\bar{q}),z_{k}) =0zkXk0,\displaystyle=0\quad z_{k}\in X^{0}_{k},
B(ζk+ηk,zk)\displaystyle B(\zeta_{k}+\eta_{k},z_{k}) =0zkXk0.\displaystyle=0\quad z_{k}\in X^{0}_{k}. (30)

Using above the stability estimate, Galerkin orthogonality (30), Lemma 3.4 and (29), we obtain the following estimate:

ekI2=\displaystyle\left\|\nabla e_{k}\right\|_{I}^{2}= (ek,ek)I=(ηk,ek)I+(ζk,ek)I\displaystyle(\nabla e_{k},\nabla e_{k})_{I}=(\nabla\eta_{k},\nabla e_{k})_{I}+(\nabla\zeta_{k},\nabla e_{k})_{I}
=(ηk,ek)I+B(ζk,w~k)=(ηk,ek)IB(ηk,w~k)\displaystyle=(\nabla\eta_{k},\nabla e_{k})_{I}+B(\zeta_{k},\tilde{w}_{k})=(\nabla\eta_{k},\nabla e_{k})_{I}-B(\eta_{k},\tilde{w}_{k})
=(ηk,ek)I(ηk,w~k)I\displaystyle=(\nabla\eta_{k},\nabla e_{k})_{I}-(\nabla\eta_{k},\nabla\tilde{w}_{k})_{I}
ηkIekI+CηkIekI.\displaystyle\leq\left\|\nabla\eta_{k}\right\|_{I}\left\|\nabla e_{k}\right\|_{I}+C\left\|\nabla\eta_{k}\right\|_{I}\left\|\nabla e_{k}\right\|_{I}. (31)

Hence, ekICηkI\left\|\nabla e_{k}\right\|_{I}\leq C\left\|\nabla\eta_{k}\right\|_{I}. ∎

The next lemma on interpolation estimation follows from [34].

Lemma 3.6.

The projection error ηk=w¯(q¯)Ikw¯(q¯)\eta_{k}=\bar{w}(\bar{q})-I_{k}\bar{w}(\bar{q}) has the following estimate:

ηkI=(w¯(q¯)Ikw¯(q¯))Ikw¯(q¯)H1(I;H1(Ω)).\displaystyle\left\|\nabla\eta_{k}\right\|_{I}=\left\|\nabla(\bar{w}(\bar{q})-I_{k}\bar{w}(\bar{q}))\right\|_{I}\leq k\left\|\bar{w}(\bar{q})\right\|_{H^{1}(I;H^{1}(\Omega))}.
Proof of Theorem 3.3:.

Using Lemma 3.5 and Lemma 3.6, the proof follows. ∎

Theorem 3.7.

Let wk(q¯)w_{k}(\bar{q}) be the semidiscretized solution of (17) and wkh(q¯)w_{kh}(\bar{q}) be the fully discretized solution of (20). Then the error eh=wk(q¯)wkh(q¯)e_{h}=w_{k}(\bar{q})-w_{kh}(\bar{q}) has the estimate

ehIChτ1wkL2(I;Hτ(Ω)),\displaystyle\left\|\nabla e_{h}\right\|_{I}\leq Ch^{\tau-1}\left\|w_{k}\right\|_{L^{2}(I;H^{\tau}(\Omega))},

where the constant CC is independent of the mesh size hh and the size of the time steps kk.

The proof is divided into several steps which are collected in the following lemmas. Define the projection

πh:Xk0Xk,h0,1\pi_{h}:X^{0}_{k}\rightarrow X^{0,1}_{k,h}

by means of the spatial L2L^{2}-projection Πh:H01(Ω)Vh\Pi_{h}:H^{1}_{0}(\Omega)\rightarrow V_{h} point-wise in time as (πhwk)(t)=Πhwk(t)(\pi_{h}w_{k})(t)=\Pi_{h}w_{k}(t). Introducing the projection πh\pi_{h} we get,

eh=(wk(q¯)πhwk(q¯))+(πhwk(q¯)wkh(q¯))=ηh+ζh,e_{h}=(w_{k}(\bar{q})-\pi_{h}w_{k}(\bar{q}))+(\pi_{h}w_{k}(\bar{q})-w_{kh}(\bar{q}))=\eta_{h}+\zeta_{h},

where ηh:=wk(q¯)πhwk(q¯)\eta_{h}:=w_{k}(\bar{q})-\pi_{h}w_{k}(\bar{q}) and ζh:=πhwk(q¯)wkh(q¯)\zeta_{h}:=\pi_{h}w_{k}(\bar{q})-w_{kh}(\bar{q}).

Lemma 3.8.

The projection error ηh\eta_{h} satisfies the following relation

B(ηh,ψ)=(ηh,ψ)IψXk,h0,1.\displaystyle B(\eta_{h},\psi)=(\nabla\eta_{h},\nabla\psi)_{I}\quad\forall\psi\in X^{0,1}_{k,h}.
Proof.

The proof follows by similar arguments of Lemma 3.4. ∎

Lemma 3.9.

The following boundedness property of the error ζh\zeta_{h} holds

ζhICηhI.\displaystyle\left\|\nabla\zeta_{h}\right\|_{I}\leq C\left\|\nabla\eta_{h}\right\|_{I}.
Proof.

For vXk0v\in X^{0}_{k}, the definition of BB in (16) reads

B(v,v)=m=1M(tv,v)Im+(v,v)I+m=1M1([[v]]m,vm+)+(v0+,v0+),\displaystyle B(v,v)=\sum_{m=1}^{M}\big{(}\partial_{t}v,v\big{)}_{I_{m}}+\big{(}\nabla v,\nabla v\big{)}_{I}+\sum_{m=1}^{M-1}\big{(}\left[\hskip-3.5pt\left[v\right]\hskip-3.5pt\right]_{m},v^{+}_{m}\big{)}+\big{(}v^{+}_{0},v^{+}_{0}\big{)}, (32)

and in (19) as

B(v,v)=m=1M(v,tv)Im+(v,v)Im=1M1(vm,[[v]]m)+(vM,vM).\displaystyle B(v,v)=-\sum_{m=1}^{M}\big{(}v,\partial_{t}v\big{)}_{I_{m}}+\big{(}\nabla v,\nabla v\big{)}_{I}-\sum_{m=1}^{M-1}\big{(}v^{-}_{m},\left[\hskip-3.5pt\left[v\right]\hskip-3.5pt\right]_{m}\big{)}+\big{(}v^{-}_{M},v^{-}_{M}\big{)}. (33)

Adding the above two equations (32) and (33), we get

B(v,v)(v,v)Ifor allvXk0.\displaystyle B(v,v)\geq\big{(}\nabla v,\nabla v\big{)}_{I}\;\text{for all}\quad v\in X^{0}_{k}. (34)

Choosing, v=ζhv=\zeta_{h} in (34) and utilizing the Galerkin orthogonality of the space discretization, we obtain

ζhI2B(ζh,ζh)=B(ηh,ζh)=(ηh,ζh)ηhIζhI.\left\|\nabla\zeta_{h}\right\|_{I}^{2}\leq B(\zeta_{h},\zeta_{h})=-B(\eta_{h},\zeta_{h})=-(\nabla\eta_{h},\nabla\zeta_{h})\leq\left\|\nabla\eta_{h}\right\|_{I}\left\|\nabla\zeta_{h}\right\|_{I}.

This establishes the desired result ζhIηhI\left\|\nabla\zeta_{h}\right\|_{I}\leq\left\|\nabla\eta_{h}\right\|_{I}. ∎

We state below the well-known estimate for the spatial projection πh\pi_{h} (see [26, subsection 5.2]) as:

Lemma 3.10.

The projection error ηh=wk(q¯)πhwk(q¯)\eta_{h}=w_{k}(\bar{q})-\pi_{h}w_{k}(\bar{q}) has the following estimate:

(wk(q¯)πhwk(q¯))IChτ1wkL2(I;Hτ(Ω)).\displaystyle\left\|\nabla(w_{k}(\bar{q})-\pi_{h}w_{k}(\bar{q}))\right\|_{I}\leq Ch^{\tau-1}\left\|w_{k}\right\|_{L^{2}(I;H^{\tau}(\Omega))}. (35)
Proof of Theorem 3.7:.

The splitting eh=ηh+ζhe_{h}=\eta_{h}+\zeta_{h} yields ehIηhI+ζhI\left\|\nabla e_{h}\right\|_{I}\leq\left\|\nabla\eta_{h}\right\|_{I}+\left\|\nabla\zeta_{h}\right\|_{I}. Using Lemma 3.9, we obtain ehICηhI\left\|\nabla e_{h}\right\|_{I}\leq C\left\|\nabla\eta_{h}\right\|_{I}. Finally, using Lemma 3.10, we get the desired result

ehIChτ1wkL2(I;Hτ(Ω)).\left\|\nabla e_{h}\right\|_{I}\leq Ch^{\tau-1}\left\|w_{k}\right\|_{L^{2}(I;H^{\tau}(\Omega))}.

The next theorem follows from Theorem 3.3 and 3.7.

Theorem 3.11.

The error estimation for the uncontrolled state variable is given by

(u¯(q¯)ukh(q¯))I=(w¯(q¯)wkh(q¯))IC(k+hτ1).\displaystyle\left\|\nabla(\bar{u}(\bar{q})-u_{kh}(\bar{q}))\right\|_{I}=\left\|\nabla(\bar{w}(\bar{q})-w_{kh}(\bar{q}))\right\|_{I}\leq C\big{(}k+h^{\tau-1}\big{)}.

Now, we derive the error estimate of the uncontrolled adjoin state i.e., for a given fixed control q¯\bar{q} we derive the error between ϕ¯(q¯)\bar{\phi}(\bar{q}) and ϕkh(q¯)\phi_{kh}(\bar{q}), where ϕ¯(q¯)\bar{\phi}(\bar{q}) be the solution of (11c) and ϕkh(q¯)\phi_{kh}(\bar{q}) be the solution of (21) for q=q¯q=\bar{q}.

Theorem 3.12.

There holds,

(ϕ¯(q¯)ϕkh(q¯))I\displaystyle\left\|\nabla(\bar{\phi}(\bar{q})-\phi_{kh}(\bar{q}))\right\|_{I} C(k+hτ1).\displaystyle\leq C(k+h^{\tau-1}).
Proof.

Let ϕ~k(q¯)Xk0\tilde{\phi}_{k}(\bar{q})\in X^{0}_{k} be the solution of the auxiliary problem:

B(vk,ϕ~k(q¯))=(vk,u¯(q¯)ud)IvkXk0.\displaystyle B(v_{k},\tilde{\phi}_{k}(\bar{q}))=(v_{k},\bar{u}(\bar{q})-u_{d})_{I}\quad\forall v_{k}\in X^{0}_{k}.

Introducing ϕ~k(q¯)\tilde{\phi}_{k}(\bar{q}) and applying the triangle inequality, we arrive at

(ϕ¯(q¯)ϕkh(q¯))I\displaystyle\left\|\nabla(\bar{\phi}(\bar{q})-\phi_{kh}(\bar{q}))\right\|_{I} (ϕ¯(q¯)ϕ~k(q¯))I+(ϕ~k(q¯)ϕkh(q¯))I.\displaystyle\leq\left\|\nabla(\bar{\phi}(\bar{q})-\tilde{\phi}_{k}(\bar{q}))\right\|_{I}+\left\|\nabla(\tilde{\phi}_{k}(\bar{q})-\phi_{kh}(\bar{q}))\right\|_{I}. (36)

For the first term of (36), we apply similar arguments of the proof of Theorem 3.3 to obtain

(ϕ¯(q¯)ϕ~k(q¯))ICk.\displaystyle\left\|\nabla(\bar{\phi}(\bar{q})-\tilde{\phi}_{k}(\bar{q}))\right\|_{I}\leq Ck. (37)

Using the stability result (23), Poincaré inequality, and Theorem 3.11 we obtain

(ϕ~k(q¯)ϕkh(q¯))IC(w¯(q¯)wkh(q¯))IChτ1.\displaystyle\left\|\nabla(\tilde{\phi}_{k}(\bar{q})-\phi_{kh}(\bar{q}))\right\|_{I}\leq C\left\|\nabla(\bar{w}(\bar{q})-w_{kh}(\bar{q}))\right\|_{I}\leq Ch^{\tau-1}. (38)

Putting the estimates (37) and (38) in (36), we get the required result

3.3. Discretization of the control variable

In this subsection, we describe the discretization of the control variable. Let QσQ_{\sigma} be an admissible discrete subspace of the control space QQ. One can consider different mesh for control variable than the mesh corresponding to state and adjoint variables, see [3]. However, for simplicity of notation we will use the same time-partitioning (15) and the same spatial mesh 𝒯h\mathcal{T}_{h} defined in subsection 3.1.

Let 𝒯σ\mathcal{T}_{\sigma} be a regular mesh of the domain Ω×(0,T)\Omega\times(0,T), consists of prism see [17, 14]. A typical prism is denoted by K×Im,K\times I_{m}, where K𝒯hK\in\mathcal{T}_{h} and ImI_{m} is a subinterval of II such that c1hK|Im|c2hKc_{1}h_{K}\leq|I_{m}|\leq c_{2}h_{K} for some fixed positive constants c1c_{1} and c2c_{2}. Using a spatial mesh 𝒯h\mathcal{T}_{h} we consider the following finite element space:

Qh={qhC(Ω¯)|qh|K𝒫1(K)forK𝒯h}.\displaystyle Q_{h}=\{q_{h}\in C(\bar{\Omega})\;|\;q_{h}|_{K}\in\mathcal{P}_{1}(K)\;\text{for}\;K\in\mathcal{T}_{h}\}.

Define a conforming 𝒫1\mathcal{P}_{1}-subspace QσQ_{\sigma} of QQ by,

Qσ={qσC(Ω¯×I¯)|qσ|K×Im𝒫1(K)𝒫1(Im),qσ(x,0)=qσ(x,T)=0,xΩ}.\displaystyle Q_{\sigma}=\{q_{\sigma}\in C(\bar{\Omega}\times\bar{I})\;|\;q_{\sigma}|_{K\times I_{m}}\in\mathcal{P}_{1}(K)\otimes\mathcal{P}_{1}(I_{m}),\;q_{\sigma}(x,0)=q_{\sigma}(x,T)=0,\;x\in\Omega\}. (39)

Another equivalent representation of QσQ_{\sigma} is the following:

Qσ={qσC(Ω¯×I¯)|qσ|Im𝒫1(Im,Qh),qσ(x,0)=qσ(x,T)=0,xΩ}.\displaystyle Q_{\sigma}=\{q_{\sigma}\in C(\bar{\Omega}\times\bar{I})\,|\,q_{\sigma}|_{I_{m}}\in\mathcal{P}_{1}(I_{m},Q_{h}),\;q_{\sigma}(x,0)=q_{\sigma}(x,T)=0,\;x\in\Omega\}. (40)

The discrete admissible control set,

Qadσ={qσQσ|qaqσ(pσ)qbfor allnodespσonΩ×(0,T)}.\displaystyle Q^{\sigma}_{ad}=\{q_{\sigma}\in Q_{\sigma}\,|\,q_{a}\leq q_{\sigma}(p_{\sigma})\leq q_{b}\quad\text{for all}\;\text{nodes}\;p_{\sigma}\;\text{on}\;\partial\Omega\times(0,T)\}. (41)

The fully discrete optimal control problem is given as follows:

MinimizeJ(ukh(qσ),qσ)subject to (20) and(ukh(qσ),qσ)(Xk,h0,1+Qσ)×Qadσ.\displaystyle\text{Minimize}\;J(u_{kh}(q_{\sigma}),q_{\sigma})\;\text{subject to \eqref{Eq:fully_disc_state} and}\;(u_{kh}(q_{\sigma}),q_{\sigma})\in(X^{0,1}_{k,h}+Q_{\sigma})\times Q^{\sigma}_{ad}. (42)

Here, the parameter σ\sigma collects the discretization parameters kk and hh i.e., σ=σ(k,h)\sigma=\sigma(k,h). The standard theory of optimal control problem [32, 35] can be employed to deduce the existence and uniqueness of the solution of the following discrete optimality system:

Proposition 3.13 (Fully discrete optimality system).

There exists a unique solution (u¯kh(q¯σ),q¯σ)(Xk,h0,1+Qσ)×Qadσ(\bar{u}_{kh}(\bar{q}_{\sigma}),\bar{q}_{\sigma})\in(X^{0,1}_{k,h}+Q_{\sigma})\times Q^{\sigma}_{ad} for the Dirichlet control problem (42)\eqref{Min:non_redu_control_disc}. Further, there exists a unique adjoint state ϕ¯kh(q¯σ)Xk,h0,1\bar{\phi}_{kh}(\bar{q}_{\sigma})\in X_{k,h}^{0,1} satisfies the following:

u¯kh(q¯σ)=\displaystyle\bar{u}_{kh}(\bar{q}_{\sigma})= w¯kh(q¯σ)+q¯σ,w¯kh(q¯σ)Xk,h0,1.\displaystyle\bar{w}_{kh}(\bar{q}_{\sigma})+\bar{q}_{\sigma},\quad\bar{w}_{kh}(\bar{q}_{\sigma})\in X_{k,h}^{0,1}. (43a)
B(w¯kh(q¯σ),vkh)\displaystyle B(\bar{w}_{kh}(\bar{q}_{\sigma}),v_{kh}) =(f,vkh)I+(u0,vkh,0+)B(q¯σ,vkh)vkhXk,h0,1.\displaystyle=(f,v_{kh})_{I}+(u_{0},v^{+}_{kh,0})-B(\bar{q}_{\sigma},v_{kh})\quad\forall v_{kh}\in X^{0,1}_{k,h}. (43b)
B(vkh,ϕ¯kh(q¯σ),)\displaystyle B(v_{kh},\bar{\phi}_{kh}(\bar{q}_{\sigma}),) =(u¯kh(q¯σ)ud,vkh)IvkhXk,h0,1.\displaystyle=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},v_{kh}\big{)}_{I}\quad\forall v_{kh}\in X^{0,1}_{k,h}. (43c)
λ(tq¯σ,t(pσq¯σ))I+\displaystyle\lambda(\partial_{t}\bar{q}_{\sigma},\partial_{t}(p_{\sigma}-\bar{q}_{\sigma}))_{I}+ λ(q¯σ,(pσq¯σ))I(t(pσq¯σ),ϕ¯kh(q¯σ))I\displaystyle\lambda(\nabla\bar{q}_{\sigma},\nabla(p_{\sigma}-\bar{q}_{\sigma}))_{I}\geq(\partial_{t}(p_{\sigma}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}
+(ϕ¯kh(q¯σ),(pσq¯σ))I(u¯kh(q¯σ)ud,pσq¯σ)I,\displaystyle+(\nabla\bar{\phi}_{kh}(\bar{q}_{\sigma}),\nabla(p_{\sigma}-\bar{q}_{\sigma}))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},p_{\sigma}-\bar{q}_{\sigma})_{I}, (43d)

for all pσQadσ.p_{\sigma}\in Q^{\sigma}_{ad}.

The next lemma is used for the derivation of error estimate below.

Lemma 3.14.

There holds,

(t(q¯σq¯),ϕ¯kh(q¯σ)ϕ¯kh(q¯))I+\displaystyle(\partial_{t}(\bar{q}_{\sigma}-\bar{q}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}))_{I}+ ((q¯σq¯),(ϕ¯kh(q¯σ)ϕ¯kh(q¯)))I\displaystyle(\nabla(\bar{q}_{\sigma}-\bar{q}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q})))_{I} (44)
=(u¯kh(q¯σ)u¯(q¯),wkh(q¯)w¯kh(q¯σ))I.\displaystyle=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma})\big{)}_{I}. (45)
Proof.

A subtraction of (43b) from (24) yields,

B(wkh(q¯)w¯kh(q¯σ),vkh)=B(q¯σq¯,vkh)vkhXk,h0,1.\displaystyle B(w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma}),v_{kh})=B(\bar{q}_{\sigma}-\bar{q},v_{kh})\quad\forall v_{kh}\in X^{0,1}_{k,h}. (46)

Also, subtracting, (25) from (43c) we get,

B(vkh,ϕ¯kh(q¯σ)ϕ¯kh(q¯),)=(u¯kh(q¯σ)u¯(q¯),vkh)IvkhXk,h0,1.\displaystyle B(v_{kh},\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}),)=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),v_{kh}\big{)}_{I}\quad\forall v_{kh}\in X^{0,1}_{k,h}. (47)

Choose, vkh=ϕ¯kh(q¯σ)ϕ¯kh(q¯)v_{kh}=\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}) in (46) we get,

B(wkh(q¯)w¯kh(q¯σ),ϕ¯kh(q¯σ)ϕ¯kh(q¯))=B(q¯σq¯,ϕ¯kh(q¯σ)ϕ¯kh(q¯)).\displaystyle B(w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}))=B(\bar{q}_{\sigma}-\bar{q},\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q})). (48)

Choose, vkh=wkh(q¯)w¯kh(q¯σ)v_{kh}=w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma}) in (47), we obtain

B(wkh(q¯)w¯kh(q¯σ),ϕ¯kh(q¯σ)ϕ¯kh(q¯),)=(u¯kh(q¯σ)u¯(q¯),wkh(q¯)w¯kh(q¯σ))I.\displaystyle B(w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}),)=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma})\big{)}_{I}. (49)

Now, equating (48) and (49), we have

B(q¯σq¯,ϕ¯kh(q¯σ)ϕ¯kh(q¯))=(u¯kh(q¯σ)u¯(q¯),wkh(q¯)w¯kh(q¯σ))I.\displaystyle B(\bar{q}_{\sigma}-\bar{q},\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}))=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma})\big{)}_{I}. (50)

Computing B(q¯σq¯,ϕ¯kh(q¯σ)ϕ¯kh(q¯)),B(\bar{q}_{\sigma}-\bar{q},\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q})), we have

(t(q¯σq¯),ϕ¯kh(q¯σ)ϕ¯kh(q¯))I+\displaystyle(\partial_{t}(\bar{q}_{\sigma}-\bar{q}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q}))_{I}+ ((q¯σq¯),(ϕ¯kh(q¯σ)ϕ¯kh(q¯)))I\displaystyle(\nabla(\bar{q}_{\sigma}-\bar{q}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}_{kh}(\bar{q})))_{I}
=(u¯kh(q¯σ)u¯(q¯),wkh(q¯)w¯kh(q¯σ))I.\displaystyle=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma})\big{)}_{I}.

Theorem 3.15 (Error estimation for control).

There holds,

λ|q¯q¯σ|1,Ω×I2+\displaystyle\lambda|\bar{q}-\bar{q}_{\sigma}|^{2}_{1,\Omega\times I}+ u¯(q¯)u¯kh(q¯σ)I2[λ(tq¯,t(pσq¯))I+λ(q¯,(pσq¯))I\displaystyle\left\|\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma})\right\|^{2}_{I}\leq\big{[}\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma}-\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}
(t(pσq¯),ϕ¯)I((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I]\displaystyle-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi})_{I}-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}\big{]}
+q¯pσ1,Ω×I2+(ϕ¯(q¯)ϕkh(q¯))I2+w¯(q¯)wkh(q¯)I2\displaystyle+\left\|\bar{q}-p_{\sigma}\right\|^{2}_{1,\Omega\times I}+\left\|\nabla(\bar{\phi}(\bar{q})-\phi_{kh}(\bar{q}))\right\|^{2}_{I}+\left\|\bar{w}(\bar{q})-w_{kh}(\bar{q})\right\|^{2}_{I} (51)

for all pσQadσp_{\sigma}\in Q^{\sigma}_{ad}.

Proof.

Choose, p=q¯σp=\bar{q}_{\sigma} in (11d), we get

λ(tq¯,t(q¯σq¯))I+\displaystyle\lambda(\partial_{t}\bar{q},\partial_{t}(\bar{q}_{\sigma}-\bar{q}))_{I}+ λ(q¯,(q¯σq¯))I(ϕ¯(q¯),t(q¯σq¯))I\displaystyle\lambda(\nabla\bar{q},\nabla(\bar{q}_{\sigma}-\bar{q}))_{I}\geq-(\bar{\phi}(\bar{q}),\partial_{t}(\bar{q}_{\sigma}-\bar{q}))_{I}
+(ϕ¯(q¯),(q¯σq¯))I(u¯(q¯)ud,q¯σq¯)I.\displaystyle+(\nabla\bar{\phi}(\bar{q}),\nabla(\bar{q}_{\sigma}-\bar{q}))_{I}-(\bar{u}(\bar{q})-u_{d},\bar{q}_{\sigma}-\bar{q})_{I}. (52)

Rearranging the terms for the discrete variational inequality (43d), we get

λ(tq¯σ,t(q¯q¯σ))I+\displaystyle\lambda(\partial_{t}\bar{q}_{\sigma},\partial_{t}(\bar{q}-\bar{q}_{\sigma}))_{I}+ λ(q¯σ,(q¯q¯σ))Iλ(tq¯σ,t(pσq¯))I\displaystyle\lambda(\nabla\bar{q}_{\sigma},\nabla(\bar{q}-\bar{q}_{\sigma}))_{I}\geq-\lambda(\partial_{t}\bar{q}_{\sigma},\partial_{t}(p_{\sigma}-\bar{q}))_{I}
λ(q¯σ,(pσq¯))I+(t(pσq¯),ϕ¯kh(q¯σ))I\displaystyle-\lambda(\nabla\bar{q}_{\sigma},\nabla(p_{\sigma}-\bar{q}))_{I}+(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}
+(t(q¯q¯σ),ϕ¯kh(q¯σ))I+((pσq¯),ϕ¯kh(q¯σ))I\displaystyle+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}+(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}
+((q¯q¯σ),ϕ¯kh(q¯σ))I(u¯kh(q¯σ)ud,pσq¯)I\displaystyle+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},p_{\sigma}-\bar{q})_{I}
(u¯kh(q¯σ)ud,q¯q¯σ)I\displaystyle-(\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},\bar{q}-\bar{q}_{\sigma})_{I} (53)

for all pσQadσp_{\sigma}\in Q^{\sigma}_{ad}. Adding (3.3) and (3.3), we get

λt(q¯q¯σ)I2\displaystyle-\lambda\left\|\partial_{t}(\bar{q}-\bar{q}_{\sigma})\right\|^{2}_{I}- λ(q¯q¯σ)I2λ(tq¯σ,t(q¯pσ))I+λ(q¯σ,(q¯pσ))I\displaystyle\lambda\left\|\nabla(\bar{q}-\bar{q}_{\sigma})\right\|^{2}_{I}\geq\lambda(\partial_{t}\bar{q}_{\sigma},\partial_{t}(\bar{q}-p_{\sigma}))_{I}+\lambda(\nabla\bar{q}_{\sigma},\nabla(\bar{q}-p_{\sigma}))_{I}
+(t(pσq¯),ϕ¯kh(q¯σ))I+(t(q¯q¯σ),ϕ¯kh(q¯σ))I\displaystyle+(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}
+((pσq¯),ϕ¯kh(q¯σ))I+((q¯q¯σ),ϕ¯kh(q¯σ))I\displaystyle+(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}
(u¯kh(q¯σ)ud,pσq¯)I(u¯kh(q¯σ)ud,q¯q¯σ)I\displaystyle-(\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},p_{\sigma}-\bar{q})_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},\bar{q}-\bar{q}_{\sigma})_{I}
[λ(tq¯,t(q¯pσ))I+λ(q¯,(q¯pσ))I\displaystyle\geq\big{[}\lambda(\partial_{t}\bar{q},\partial_{t}(\bar{q}-p_{\sigma}))_{I}+\lambda(\nabla\bar{q},\nabla(\bar{q}-p_{\sigma}))_{I}
+(t(pσq¯),ϕ¯(q¯))I+((pσq¯),ϕ¯(q¯))I\displaystyle+(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}+(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}
(u¯(q¯)ud,pσq¯)I]+λ(t(q¯σq¯),t(q¯pσ))I\displaystyle-(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}\big{]}+\lambda(\partial_{t}(\bar{q}_{\sigma}-\bar{q}),\partial_{t}(\bar{q}-p_{\sigma}))_{I}
+λ((q¯σq¯),(q¯pσ))I+(t(pσq¯),ϕ¯kh(q¯σ)ϕ¯(q¯))I\displaystyle+\lambda(\nabla(\bar{q}_{\sigma}-\bar{q}),\nabla(\bar{q}-p_{\sigma}))_{I}+(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q}))_{I}
+((pσq¯),(ϕ¯kh(q¯σ)ϕ¯(q¯)))I(u¯kh(q¯σ)u¯(q¯),pσq¯)I\displaystyle+(\nabla(p_{\sigma}-\bar{q}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q})))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),p_{\sigma}-\bar{q})_{I}
+((q¯q¯σ),(ϕ¯kh(q¯σ)ϕ¯(q¯)))I(u¯kh(q¯σ)u¯(q¯),q¯q¯σ)I\displaystyle+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q})))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),\bar{q}-\bar{q}_{\sigma})_{I}
+(t(q¯q¯σ),ϕ¯kh(q¯σ)ϕ¯(q¯))I\displaystyle+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q}))_{I} (54)

for all pσQadσp_{\sigma}\in Q^{\sigma}_{ad}. Now we need to do some manipulation on the last three terms in (54). Denote

E=((q¯q¯σ),(ϕ¯kh(q¯σ)ϕ¯(q¯)))I(u¯kh(q¯σ)u¯(q¯),q¯q¯σ)I\displaystyle E=(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q})))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),\bar{q}-\bar{q}_{\sigma})_{I}
+(t(q¯q¯σ),ϕ¯kh(q¯σ)ϕ¯(q¯))I.\displaystyle+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q}))_{I}. (55)

Introducing the auxiliary solution ϕkh(q¯)\phi_{kh}(\bar{q}) in the first, third term and modifying the second term in (3.3), we obtain

E=\displaystyle E= ((q¯q¯σ),(ϕ¯kh(q¯σ)ϕkh(q¯)))I+u¯kh(q¯σ)u¯(q¯)I2\displaystyle(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\phi_{kh}(\bar{q})))_{I}+\left\|\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q})\right\|^{2}_{I}
(u¯kh(q¯σ)u¯(q¯),w¯khq¯σw¯(q¯))I+(t(q¯q¯σ),ϕ¯kh(q¯σ)ϕkh(q¯))I\displaystyle-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),\bar{w}_{kh}\bar{q}_{\sigma}-\bar{w}(\bar{q}))_{I}+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\phi_{kh}(\bar{q}))_{I}
+((q¯q¯σ),(ϕkh(q¯)ϕ¯(q¯)))I\displaystyle+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\phi_{kh}(\bar{q})-\bar{\phi}(\bar{q})))_{I}
+(t(q¯q¯σ),ϕ¯kh(q¯σ)ϕkh(q¯))I.\displaystyle+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\phi_{kh}(\bar{q}))_{I}. (56)

Using the Lemma 3.14 in (56), we get

E=\displaystyle E= u¯kh(q¯σ)u¯(q¯)I2+((q¯q¯σ),(ϕkh(q¯)ϕ¯(q¯)))I\displaystyle\left\|\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q})\right\|^{2}_{I}+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\phi_{kh}(\bar{q})-\bar{\phi}(\bar{q})))_{I}
+(t(q¯q¯σ),ϕ¯kh(q¯σ)ϕkh(q¯))I(wkh(q¯)wkh(q¯σ),u¯kh(q¯σ)u¯(q¯))I\displaystyle+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\phi_{kh}(\bar{q}))_{I}-(w_{kh}(\bar{q})-w_{kh}(\bar{q}_{\sigma}),\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}))_{I}
(u¯kh(q¯σ)u¯(q¯),w¯kh(q¯σ)w¯(q¯))I.\displaystyle-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),\bar{w}_{kh}(\bar{q}_{\sigma})-\bar{w}(\bar{q}))_{I}.

Hence,

E=\displaystyle E= u¯kh(q¯σ)u¯(q¯)I2+((q¯q¯σ),(ϕkh(q¯)ϕ¯(q¯)))I\displaystyle\left\|\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q})\right\|^{2}_{I}+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\phi_{kh}(\bar{q})-\bar{\phi}(\bar{q})))_{I}
+(t(q¯q¯σ),ϕ¯kh(q¯σ)ϕkh(q¯))I(u¯kh(q¯σ)u¯(q¯),wkh(q¯)w¯(q¯))I.\displaystyle+(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\phi_{kh}(\bar{q}))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),w_{kh}(\bar{q})-\bar{w}(\bar{q}))_{I}. (57)

Using (3.3) in (54) and grouping the terms, we get

λt(q¯q¯σ)I2+\displaystyle\lambda\left\|\partial_{t}(\bar{q}-\bar{q}_{\sigma})\right\|^{2}_{I}+ λ(q¯q¯σ)I2+u¯kh(q¯σ)u¯(q¯)I2[λ(tq¯,t(pσq¯))I\displaystyle\lambda\left\|\nabla(\bar{q}-\bar{q}_{\sigma})\right\|^{2}_{I}+\left\|\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q})\right\|^{2}_{I}\leq\big{[}\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma}-\bar{q}))_{I}
+λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I((pσq¯),ϕ¯(q¯))I\displaystyle+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}
+(u¯(q¯)ud,pσq¯)I]+λ(t(q¯q¯σ),t(q¯pσ))I\displaystyle+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}\big{]}+\lambda(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\partial_{t}(\bar{q}-p_{\sigma}))_{I}
+λ((q¯q¯σ),(q¯pσ))I+(t(q¯pσ),ϕ¯kh(q¯σ)ϕ¯(q¯))I\displaystyle+\lambda(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\bar{q}-p_{\sigma}))_{I}+(\partial_{t}(\bar{q}-p_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q}))_{I}
+((q¯pσ),(ϕ¯kh(q¯σ)ϕ¯(q¯)))I+(u¯kh(q¯σ)u¯(q¯),pσq¯)I\displaystyle+(\nabla(\bar{q}-p_{\sigma}),\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q})))_{I}+(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),p_{\sigma}-\bar{q})_{I}
+((q¯q¯σ),(ϕ¯kh(q¯)ϕ¯(q¯)))I(t(q¯q¯σ),ϕ¯kh(q¯)ϕ¯(q¯))I\displaystyle+(\nabla(\bar{q}-\bar{q}_{\sigma}),\nabla(\bar{\phi}_{kh}(\bar{q})-\bar{\phi}(\bar{q})))_{I}-(\partial_{t}(\bar{q}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q})-\bar{\phi}(\bar{q}))_{I}
(u¯kh(q¯σ)u¯(q¯),wkh(q¯)q¯σ)I.\displaystyle-(\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q}),w_{kh}(\bar{q})-\bar{q}_{\sigma})_{I}. (58)

Using the stability estimate of the adjoint state equation, we get

(ϕ¯kh(q¯σ)ϕ¯(q¯))I\displaystyle\left\|\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\bar{\phi}(\bar{q}))\right\|_{I} (ϕ¯kh(q¯σ)ϕkh(q¯))I+(ϕkh(q¯)ϕ¯(q¯))I\displaystyle\leq\left\|\nabla(\bar{\phi}_{kh}(\bar{q}_{\sigma})-\phi_{kh}(\bar{q}))\right\|_{I}+\left\|\nabla(\phi_{kh}(\bar{q})-\bar{\phi}(\bar{q}))\right\|_{I}
u¯kh(q¯σ)u¯(q¯)I+(ϕkh(q¯)ϕ¯(q¯))I.\displaystyle\leq\left\|\bar{u}_{kh}(\bar{q}_{\sigma})-\bar{u}(\bar{q})\right\|_{I}+\left\|\nabla(\phi_{kh}(\bar{q})-\bar{\phi}(\bar{q}))\right\|_{I}. (59)

Applying the Cauchy–Schwarz inequality and putting (59) in the above equation (58) we obtain the desired estimate. ∎

Now we derive the convergence rates for the terms on the right-hand side of (3.15). We construct a suitable approximation pσp_{\sigma} for q¯\bar{q} through some interpolations which are described below. Let σ\mathcal{I}_{\sigma} be the Lagrange interpolation operator on the three dimensional prismatic elements. On a prismatic element Kσ:=K×ImK_{\sigma}:=K\times I_{m} with Im=(tm1,tm]I_{m}=(t_{m-1},t_{m}] define the local Lagrange interpolation operator Kσ\mathcal{I}_{K_{\sigma}} by the following:

Kσq¯(x,t)=i=13(j=12q¯(xi,tj)χj(t))ϕi(x)\displaystyle\mathcal{I}_{K_{\sigma}}\bar{q}(x,t)=\sum_{i=1}^{3}\Big{(}\sum_{j=1}^{2}\bar{q}(x_{i},t_{j})\chi_{j}(t)\Big{)}\phi_{i}(x) (60)

for (x,t)Kσ,(x,t)\in K_{\sigma}, and {χ1(t)=(tmt)/(tmtm1),χ2(t)=(ttm1)/(tmtm1)}\{\chi_{1}(t)=(t_{m}-t)/(t_{m}-t_{m-1}),\,\chi_{2}(t)=(t-t_{m-1})/(t_{m}-t_{m-1})\} temporal basis and {ϕi}i=13\{\phi_{i}\}_{i=1}^{3} spatial nodal basis. Let MσM_{\sigma} be the trace of the discrete control space QσQ_{\sigma} (see (39)) on ΓC\Gamma_{C}, and the discrete extension operator RσR_{\sigma} be a map from MσM_{\sigma} to QσQ_{\sigma}. In [6, 33], the discrete extension operator is obtained by combining a standard continuous extension operator with a local regularization operator. Now we define a quasi-interpolation operator 𝒥σ:W1,1(ΓC)Mσ\mathcal{J}_{\sigma}:W^{1,1}(\Gamma_{C})\rightarrow M_{\sigma} as follows. Let vW1,1(ΓC)v\in W^{1,1}(\Gamma_{C}). For interior nodes 𝐩\mathbf{p} in ΓC\Gamma_{C}, we choose the Chen–Nochetto operator (see [11]) which preserves local affine functions and positivity:

𝒥σv(𝐩)=1meas()v,\displaystyle\mathcal{J}_{\sigma}v(\mathbf{p})=\frac{1}{meas(\mathcal{B})}\int_{\mathcal{B}}v,

where \mathcal{B} is the largest open ball centered at 𝐩\mathbf{p} such that it is contained in the union of the elements containing 𝐩\mathbf{p}. For the boundary nodes 𝐩\mathbf{p} on Γ¯CΓ¯D,\bar{\Gamma}_{C}\cap\bar{\Gamma}_{D}, we set 𝒥σv(𝐩)=0\mathcal{J}_{\sigma}v(\mathbf{p})=0. For the other boundary nodes 𝐩\mathbf{p} on Γ¯C\bar{\Gamma}_{C} we set

𝒥σv(𝐩)=1meas(L)Lv,\displaystyle\mathcal{J}_{\sigma}v(\mathbf{p})=\frac{1}{meas(L)}\int_{L}v,

where LL is a small line segment symmetrically placed around 𝐩\mathbf{p}, and included in Γ¯C\bar{\Gamma}_{C}. This definition preserves both sign and affine functions. Also, we have the following estimate (see [37, Corollary 4.2.3] and [16]):

v𝒥σv0,KσΓCCvL1(KσΓC).\displaystyle\left\|v-\mathcal{J}_{\sigma}v\right\|_{0,K_{\sigma}\cap\Gamma_{C}}\leq C\left\|\nabla v\right\|_{L^{1}(K_{\sigma}\cap\Gamma_{C})}. (61)

Note that the estimate of the above type (61) can not be obtained for the Lagrange interpolation operator σ\mathcal{I}_{\sigma}. Moreover, 𝒥σ\mathcal{J}_{\sigma} obeys the same approximation properties as of the Lagrange interpolation. Now we choose the approximation pσp_{\sigma} for the control q¯\bar{q} as:

pσ=σq¯+σ(𝒥σ(q¯|ΓC)σ(q¯|ΓC))Qadσ.\displaystyle p_{\sigma}=\mathcal{I}_{\sigma}\bar{q}+\mathcal{R}_{\sigma}\big{(}\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\big{)}\in Q^{\sigma}_{ad}. (62)

To estimate the best approximation term in the bracket of (3.15), we introduce the following notations. Let KσK_{\sigma} be a prism which shares a face with Γ¯C\bar{\Gamma}_{C}. Define

SNC={(x,t)KσΓC:qa<q¯(x,t)<qb},S_{NC}=\{(x,t)\in K_{\sigma}\cap\Gamma_{C}:\;q_{a}<\bar{q}(x,t)<q_{b}\},

and

SC={(x,t)KσΓC:q¯(x,t)=qa}{(x,t)KσΓC:q¯(x,t)=qb}.S_{C}=\{(x,t)\in K_{\sigma}\cap\Gamma_{C}:\;\bar{q}(x,t)=q_{a}\}\cup\{(x,t)\in K_{\sigma}\cap\Gamma_{C}:\;\bar{q}(x,t)=q_{b}\}.

The sets SCS_{C} and SNCS_{NC} are measurable since qq is continuous on ΓC.\Gamma_{C}. We denote |SC||S_{C}| and |SNC||S_{NC}| are their measures. We state the following lemma, which will be useful in the error analysis. The proof of the following lemma follows from [16, Lemma 6].

Lemma 3.16.

Let σe\sigma_{e} be the diameter of the two dimensional trace element KσΓCK_{\sigma}\cap\Gamma_{C}, and |SC|>0|S_{C}|>0 and |SNC|>0|S_{NC}|>0. Then the following estimations hold for μn\mu_{n} and q¯\nabla\bar{q}:

μn0,KσΓC\displaystyle\left\|\mu_{n}\right\|_{0,K_{\sigma}\cap\Gamma_{C}} 1|SNC|1/2σeτ12|μn|τ32,KσΓC,\displaystyle\leq\frac{1}{|S_{NC}|^{1/2}}\;\sigma_{e}^{\tau-\frac{1}{2}}\;|\mu_{n}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}, (63)
μnL1(KσΓC)\displaystyle\left\|\mu_{n}\right\|_{L^{1}(K_{\sigma}\cap\Gamma_{C})} |SC|1/2|SNC|1/2σeτ12|μn|τ32,KσΓC,\displaystyle\leq\frac{|S_{C}|^{1/2}}{|S_{NC}|^{1/2}}\;\sigma_{e}^{\tau-\frac{1}{2}}\;|\mu_{n}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}, (64)
q¯0,KσΓC\displaystyle\left\|\nabla\bar{q}\right\|_{0,K_{\sigma}\cap\Gamma_{C}} 1|SC|1/2σeτ12|q¯|τ32,KσΓC,\displaystyle\leq\frac{1}{|S_{C}|^{1/2}}\;\sigma_{e}^{\tau-\frac{1}{2}}\;|\nabla\bar{q}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}, (65)
q¯L1(KσΓC)\displaystyle\left\|\nabla\bar{q}\right\|_{L^{1}(K_{\sigma}\cap\Gamma_{C})} |SNC|1/2|SC|1/2σeτ12|q¯|τ32,KσΓC,\displaystyle\leq\frac{|S_{NC}|^{1/2}}{|S_{C}|^{1/2}}\;\sigma_{e}^{\tau-\frac{1}{2}}\;|\nabla\bar{q}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}, (66)

where μn:=λq¯nϕ¯(q¯)n\mu_{n}:=\lambda\frac{\partial\bar{q}}{\partial n}-\frac{\partial\bar{\phi}(\bar{q})}{\partial n} and 3/2<τ23/2<\tau\leq 2.

Theorem 3.17.

For q¯Hτ(Ω×I)\bar{q}\in H^{\tau}(\Omega\times I) with 3/2<τ23/2<\tau\leq 2, it holds

|λ(tq¯,t(pσ\displaystyle|\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma} q¯))I+λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I\displaystyle-\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}
((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I|Cσe2(τ1).\displaystyle-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}|\leq C\sigma_{e}^{2(\tau-1)}.
Proof.

Integration by parts yields

λ(tq¯,t(pσ\displaystyle\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma}- q¯))I+λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I\displaystyle\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}
((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I=ΓCμn(pσq¯),\displaystyle-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}=\int_{\Gamma_{C}}\mu_{n}(p_{\sigma}-\bar{q}), (67)

where μn:=ρqnϕn\mu_{n}:=\rho\frac{\partial q}{\partial n}-\frac{\partial\phi}{\partial n}. Now putting pσ=σq¯+σ(𝒥σ(q¯|ΓC)σ(q¯|ΓC))p_{\sigma}=\mathcal{I}_{\sigma}\bar{q}+\mathcal{R}_{\sigma}\big{(}\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\big{)} in (3.3) and using the property of σ\mathcal{R}_{\sigma}, we obtain

ΓCμn(pσq¯)=ΓCμn(𝒥σq¯q¯)=Kσ𝒯σKσΓCμn(𝒥σq¯q¯)𝑑s.\displaystyle\int_{\Gamma_{C}}\mu_{n}(p_{\sigma}-\bar{q})=\int_{\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q}-\bar{q})=\sum_{K_{\sigma}\in\mathcal{T}_{\sigma}}\int_{K_{\sigma}\cap\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q}-\bar{q})ds. (68)

Therefore it remains to estimate the following:

KσΓCμn(𝒥σq¯q¯)𝑑sKσ𝒯σ.\int_{K_{\sigma}\cap\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q}-\bar{q})ds\quad\forall K_{\sigma}\in\mathcal{T}_{\sigma}. (69)

Let KσK_{\sigma} be a fixed prism sharing a face with the boundary ΓC\Gamma_{C} and σe\sigma_{e} be the diameter of the face KσΓCK_{\sigma}\cap\Gamma_{C} and obviously |SC|+|SNC|=mσe2,|S_{C}|+|S_{NC}|=\textit{m}\sigma_{e}^{2}, where m is a fixed positive constant. Then, two cases can arise:

  • (a)

    either |SC||S_{C}| or |SNC||S_{NC}| equals zero,

  • (b)

    both |SC||S_{C}| and |SNC||S_{NC}| are positive.

It can be observed that the integral term in (69) vanishes for the first case (a). For the second case (b), we derive two estimations for the same error term (69).

The estimation of (69) related to SNCS_{NC}: A use of Cauchy–Schwarz inequality, estimation for (63) in Lemma 3.16, and standard estimation for the interpolation 𝒥σ\mathcal{J}_{\sigma} lead to

KσΓCμn(𝒥σq¯q¯)𝑑s\displaystyle\int_{K_{\sigma}\cap\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q}-\bar{q})ds μn0,KσΓC𝒥σq¯q¯0,KσΓC\displaystyle\leq\left\|\mu_{n}\right\|_{0,K_{\sigma}\cap\Gamma_{C}}\left\|\mathcal{J}_{\sigma}\bar{q}-\bar{q}\right\|_{0,K_{\sigma}\cap\Gamma_{C}}
C1|SNC|12σeτ12|μn|τ32,KσΓCσeτ12|q¯|τ32,KσΓC\displaystyle\leq C\frac{1}{|S_{NC}|^{\frac{1}{2}}}\sigma_{e}^{\tau-\frac{1}{2}}|\mu_{n}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}\sigma_{e}^{\tau-\frac{1}{2}}|\nabla\bar{q}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}
C1|SNC|12σe2(τ12)(|μn|τ32,KσΓC2+|q¯|τ32,KσΓC2).\displaystyle\leq C\frac{1}{|S_{NC}|^{\frac{1}{2}}}\sigma_{e}^{2(\tau-\frac{1}{2})}\big{(}|\mu_{n}|^{2}_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}+|\nabla\bar{q}|^{2}_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}\big{)}. (70)

Estimation for (69) related to SCS_{C}: Using the estimation for 𝒥σ\mathcal{J}_{\sigma} in (61) and estimations (63) and (66), we obtain

KσΓCμn(𝒥σq¯\displaystyle\int_{K_{\sigma}\cap\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q} q¯)dsμn0,KσΓC𝒥σq¯q¯0,KσΓC\displaystyle-\bar{q})ds\leq\left\|\mu_{n}\right\|_{0,K_{\sigma}\cap\Gamma_{C}}\left\|\mathcal{J}_{\sigma}\bar{q}-\bar{q}\right\|_{0,K_{\sigma}\cap\Gamma_{C}}
C1|SNC|12σeτ12|μn|τ32,KσΓCq¯L1(KσΓC)\displaystyle\leq C\frac{1}{|S_{NC}|^{\frac{1}{2}}}\sigma_{e}^{\tau-\frac{1}{2}}|\mu_{n}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}\left\|\nabla\bar{q}\right\|_{L^{1}(K_{\sigma}\cap\Gamma_{C})}
C1|SNC|12σeτ12|μn|τ32,KσΓC|SNC|1/2|SC|1/2σeτ12|q¯|τ32,KσΓC\displaystyle\leq C\frac{1}{|S_{NC}|^{\frac{1}{2}}}\sigma_{e}^{\tau-\frac{1}{2}}|\mu_{n}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}\frac{|S_{NC}|^{1/2}}{|S_{C}|^{1/2}}\;\sigma_{e}^{\tau-\frac{1}{2}}\;|\nabla\bar{q}|_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}
C1|SC|12σe2(τ12)(|μn|τ32,KσΓC2+|q¯|τ32,KσΓC2).\displaystyle\leq C\frac{1}{|S_{C}|^{\frac{1}{2}}}\sigma_{e}^{2(\tau-\frac{1}{2})}\big{(}|\mu_{n}|^{2}_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}+|\nabla\bar{q}|^{2}_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}\big{)}. (71)

It is easy to observe that either |SNC||S_{NC}| or |SC||S_{C}| is greater than or equal to mσe2/2\textit{m}\sigma_{e}^{2}/2. Then, choosing the appropriate estimation (70) or (71), we obtain

KσΓCμn(𝒥σq¯q¯)𝑑sCσe2(τ1)(|μn|τ32,KσΓC2+|q¯|τ32,KσΓC2).\int_{K_{\sigma}\cap\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q}-\bar{q})ds\leq C\sigma_{e}^{2(\tau-1)}\big{(}|\mu_{n}|^{2}_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}+|\nabla\bar{q}|^{2}_{\tau-\frac{3}{2},K_{\sigma}\cap\Gamma_{C}}\big{)}.

Summing over all KσK_{\sigma} sharing a face with ΓC\Gamma_{C} and applying the trace theorem, we get

ΓCμn(𝒥σq¯q¯)𝑑sCσe2(τ1)(|μn|τ32,ΓC2+|q¯|τ32,ΓC2)σe2(τ1)q¯τ,Ω×I2.\int_{\Gamma_{C}}\mu_{n}(\mathcal{J}_{\sigma}\bar{q}-\bar{q})ds\leq C\sigma_{e}^{2(\tau-1)}\big{(}|\mu_{n}|^{2}_{\tau-\frac{3}{2},\Gamma_{C}}+|\nabla\bar{q}|^{2}_{\tau-\frac{3}{2},\Gamma_{C}}\big{)}\leq\sigma_{e}^{2(\tau-1)}\left\|\bar{q}\right\|^{2}_{\tau,\Omega\times I}.

This completes the proof. ∎

In the following theorem, we derive the energy error estimate for the control and L2L^{2}-error estimate of the state variable.

Theorem 3.18 (Error estimate of control variable).

There holds

λ|q¯q¯σ|1,Ω×I+\displaystyle\lambda|\bar{q}-\bar{q}_{\sigma}|_{1,\Omega\times I}+ u¯(q¯)u¯kh(q¯σ)IC(σeτ1+hτ1+k).\displaystyle\left\|\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma})\right\|_{I}\leq C(\sigma_{e}^{\tau-1}+h^{\tau-1}+k).
Proof.

Recall the result of Lemma 3.15:

λ|q¯q¯σ|1,Ω×I2+\displaystyle\lambda|\bar{q}-\bar{q}_{\sigma}|^{2}_{1,\Omega\times I}+ u¯(q¯)u¯kh(q¯σ)I2[λ(tq¯,t(pσq¯))I+λ(q¯,(pσq¯))I\displaystyle\left\|\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma})\right\|^{2}_{I}\leq\big{[}\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma}-\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}
(t(pσq¯),ϕ¯(q¯))I((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I]\displaystyle-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}\big{]}
+q¯q¯σ1,Ω×I2+(ϕkh(q¯)ϕ¯(q¯))I2+wkh(q¯)w¯(q¯)I2\displaystyle+\left\|\bar{q}-\bar{q}_{\sigma}\right\|^{2}_{1,\Omega\times I}+\left\|\nabla(\phi_{kh}(\bar{q})-\bar{\phi}(\bar{q}))\right\|^{2}_{I}+\left\|w_{kh}(\bar{q})-\bar{w}(\bar{q})\right\|^{2}_{I} (72)

for all pσQadσp_{\sigma}\in Q^{\sigma}_{ad}. From Theorem 3.17, we obtain an estimation for the first term of the above equation (72) as

|λ(tq¯,t(pσq¯))I\displaystyle|\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma}-\bar{q}))_{I} +λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I\displaystyle+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}
((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I|Cσe2(τ1).\displaystyle-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}|\leq C\sigma_{e}^{2(\tau-1)}. (73)

For the second term in the right hand side of (72), we take pσ=σq¯+σ(𝒥σ(q¯|ΓC)σ(q¯|ΓC))p_{\sigma}=\mathcal{I}_{\sigma}\bar{q}+\mathcal{R}_{\sigma}\big{(}\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\big{)}. The continuity of the extension operator σ\mathcal{R}_{\sigma} and an inverse inequality yield

q¯pσ1,Ω×I\displaystyle\left\|\bar{q}-p_{\sigma}\right\|_{1,\Omega\times I} q¯σq¯1,Ω×I+σ(𝒥σ(q¯|ΓC)σ(q¯|ΓC))1,Ω×I\displaystyle\leq\left\|\bar{q}-\mathcal{I}_{\sigma}\bar{q}\right\|_{1,\Omega\times I}+\left\|\mathcal{R}_{\sigma}\big{(}\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\big{)}\right\|_{1,\Omega\times I}
Cσeτ1q¯τ,Ω×I+C𝒥σ(q¯|ΓC)σ(q¯|ΓC)12,ΓC\displaystyle\leq C\sigma_{e}^{\tau-1}\left\|\bar{q}\right\|_{\tau,\Omega\times I}+C\left\|\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\right\|_{\frac{1}{2},\Gamma_{C}}
Cσeτ1q¯τ,Ω×I+Cσe12𝒥σ(q¯|ΓC)σ(q¯|ΓC)0,ΓC\displaystyle\leq C\sigma_{e}^{\tau-1}\left\|\bar{q}\right\|_{\tau,\Omega\times I}+C\sigma_{e}^{-\frac{1}{2}}\left\|\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\right\|_{0,\Gamma_{C}}
Cσeτ1q¯τ,Ω×I+Cσe12q¯|ΓC𝒥σ(q¯|ΓC)0,ΓC\displaystyle\leq C\sigma_{e}^{\tau-1}\left\|\bar{q}\right\|_{\tau,\Omega\times I}+C\sigma_{e}^{-\frac{1}{2}}\left\|\bar{q}|_{\Gamma_{C}}-\mathcal{J}_{\sigma}(\bar{q}|_{\Gamma_{C}})\right\|_{0,\Gamma_{C}}
+Cσe12q¯|ΓCσ(q¯|ΓC)0,ΓC\displaystyle\;\;+C\sigma_{e}^{-\frac{1}{2}}\left\|\bar{q}|_{\Gamma_{C}}-\mathcal{I}_{\sigma}(\bar{q}|_{\Gamma_{C}})\right\|_{0,\Gamma_{C}}
Cσeτ1q¯τ,Ω×I.\displaystyle\leq C\sigma_{e}^{\tau-1}\left\|\bar{q}\right\|_{\tau,\Omega\times I}. (74)

The above estimations (3.3), (3.3) and Theorems 3.12 & 3.11 lead to the required result. ∎

Theorem 3.19 (Error estimate of state variable).

There holds,

(u¯(q¯)u¯kh(q¯σ))I\displaystyle\left\|\nabla(\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I} C(σeτ1+hτ1+k).\displaystyle\leq C(\sigma_{e}^{\tau-1}+h^{\tau-1}+k).
Proof.

The triangle inequality gives

(u¯(q¯)u¯kh(q¯σ))I\displaystyle\left\|\nabla(\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I} (u¯(q¯)ukh(q¯))I+(ukh(q¯)u¯kh(q¯σ))I.\displaystyle\leq\left\|\nabla(\bar{u}(\bar{q})-u_{kh}(\bar{q}))\right\|_{I}+\left\|\nabla(u_{kh}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I}. (75)

For the first term of (75), we use the splitting u¯(q¯)=w¯(q¯)+q¯\bar{u}(\bar{q})=\bar{w}(\bar{q})+\bar{q} from the equation (11a) and ukh(q¯)=wkh(q¯)+q¯u_{kh}(\bar{q})=w_{kh}(\bar{q})+\bar{q} from the equation (20) to obtain

(u¯(q¯)ukh(q¯))I=(w¯(q¯)wkh(q¯))I.\displaystyle\left\|\nabla(\bar{u}(\bar{q})-u_{kh}(\bar{q}))\right\|_{I}=\left\|\nabla(\bar{w}(\bar{q})-w_{kh}(\bar{q}))\right\|_{I}. (76)

For the second term of (75), we use the splitting ukh(q¯)=wkh(q¯)+q¯u_{kh}(\bar{q})=w_{kh}(\bar{q})+\bar{q} from the equation (20) and u¯kh(q¯σ)=w¯kh(q¯σ)+q¯σ\bar{u}_{kh}(\bar{q}_{\sigma})=\bar{w}_{kh}(\bar{q}_{\sigma})+\bar{q}_{\sigma} from the equation (43b). Hence, we have

ukh(q¯)u¯kh(q¯σ)=wkh(q¯)w¯kh(q¯σ)+q¯q¯σ.\displaystyle u_{kh}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma})=w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma})+\bar{q}-\bar{q}_{\sigma}.

Using the stability estimate (22) of the fully discrete state equation, we obtain

(ukh(q¯)u¯kh(q¯σ))I\displaystyle\left\|\nabla(u_{kh}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I} (wkh(q¯)w¯kh(q¯σ))I+(q¯q¯σ)I\displaystyle\leq\left\|\nabla(w_{kh}(\bar{q})-\bar{w}_{kh}(\bar{q}_{\sigma}))\right\|_{I}+\left\|\nabla(\bar{q}-\bar{q}_{\sigma})\right\|_{I}
C|q¯q¯σ|1,Ω×I.\displaystyle\leq C|\bar{q}-\bar{q}_{\sigma}|_{1,\Omega\times I}. (77)

Putting (76) and (3.3) in (75), we get

(u¯(q¯)u¯kh(q¯σ))I\displaystyle\left\|\nabla(\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I} (w¯(q¯)wkh(q¯))I+|q¯q¯σ|1,Ω×I.\displaystyle\leq\left\|\nabla(\bar{w}(\bar{q})-w_{kh}(\bar{q}))\right\|_{I}+|\bar{q}-\bar{q}_{\sigma}|_{1,\Omega\times I}. (78)

The estimations for Theorem 3.11 and Theorem 3.18 lead to the required result. ∎

Theorem 3.20 (Error estimate of adjoint state).

Let ϕ¯(q¯)\bar{\phi}(\bar{q}) be the solution of (11c) and ϕ¯kh(q¯σ)\bar{\phi}_{kh}(\bar{q}_{\sigma}) be the solution of (43c). Then there holds,

(ϕ¯(q¯)ϕ¯kh(q¯σ))IC(k+hτ1+σeτ1).\displaystyle\left\|\nabla(\bar{\phi}(\bar{q})-\bar{\phi}_{kh}(\bar{q}_{\sigma}))\right\|_{I}\leq C(k+h^{\tau-1}+\sigma_{e}^{\tau-1}).
Proof.

Introducing the auxiliary solution ϕkh(q¯)\phi_{kh}(\bar{q}) satisfying (25), we obtain

(ϕ¯(q¯)ϕ¯kh(q¯σ))I\displaystyle\left\|\nabla(\bar{\phi}(\bar{q})-\bar{\phi}_{kh}(\bar{q}_{\sigma}))\right\|_{I} (ϕ¯(q¯)ϕkh(q¯))I+(ϕkh(q¯)ϕ¯kh(q¯σ))I.\displaystyle\leq\left\|\nabla(\bar{\phi}(\bar{q})-\phi_{kh}(\bar{q}))\right\|_{I}+\left\|\nabla(\phi_{kh}(\bar{q})-\bar{\phi}_{kh}(\bar{q}_{\sigma}))\right\|_{I}. (79)

For the second term of (79), we use the stability estimate of the discrete adjoint solution (23) to obtain

(ϕkh(q¯)ϕ¯kh(q¯σ))I\displaystyle\left\|\nabla(\phi_{kh}(\bar{q})-\bar{\phi}_{kh}(\bar{q}_{\sigma}))\right\|_{I} Cu¯(q¯)u¯kh(q¯σ)I.\displaystyle\leq C\left\|\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma})\right\|_{I}. (80)

The estimations for Theorem 3.12 and Theorem 3.18 lead to the required result. ∎

Remark 3.21.

Note that the optimal control q¯\bar{q} satisfies a simplified Signorini problem. The regularity of the solution of Signorini problem gets impaired due to many reasons, for example regularity of the data, the mixed boundary conditions (e.g., Neumann-Dirichlet transitions), the corners in polygonal domains and the Signorini condition which generates singularities at contact-noncontact transition points which we have discussed in the Remark 2.4. So, there is a possibility that the solution could be less regular i.e., q¯Hτ(Ω×I),\bar{q}\in H^{\tau}(\Omega\times I), where 1<τ3/21<\tau\leq 3/2. Then all the above a priori estimates hold true except the Theorem 3.17. It is clear that if the solutions have the above regularity then (3.3) is not true because the right hand side of (3.3) does not make sense. So, to estimate the term

λ(tq¯,t(pσq¯))I+\displaystyle\lambda(\partial_{t}\bar{q},\partial_{t}(p_{\sigma}-\bar{q}))_{I}+ λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I\displaystyle\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}
((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I,\displaystyle-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}, (81)

we use the following idea:

λ(tq¯,\displaystyle\lambda(\partial_{t}\bar{q}, t(pσq¯))I+λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I\displaystyle\partial_{t}(p_{\sigma}-\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}
((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I=μn,(pσq¯)ϵ,ΓC\displaystyle-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}=\langle\mu_{n},(p_{\sigma}-\bar{q})\rangle_{\epsilon,\Gamma_{C}}
μnHϵ(ΓC)pσq¯ϵ,ΓC,\displaystyle\leq\left\|\mu_{n}\right\|_{H^{\epsilon}(\Gamma_{C})^{\prime}}\left\|p_{\sigma}-\bar{q}\right\|_{\epsilon,\Gamma_{C}}, (82)

where ϵ=3/2τ\epsilon=3/2-\tau and Hϵ(ΓC)H^{\epsilon}(\Gamma_{C})^{\prime} denotes the dual of Hϵ(ΓC)H^{\epsilon}(\Gamma_{C}) (see [4]). Choosing pσ=σq¯,p_{\sigma}=\mathcal{I}_{\sigma}\bar{q}, we have q¯σq¯ϵ,ΓCCσ2τ2q¯τ,Ω\left\|\bar{q}-\mathcal{I}_{\sigma}\bar{q}\right\|_{\epsilon,\Gamma_{C}}\leq C\sigma^{2\tau-2}\left\|\bar{q}\right\|_{\tau,\Omega}. Using the trace estimate (discussed in Section 2), we have μnHϵ(ΓC)Cq¯τ,Ω\left\|\mu_{n}\right\|_{H^{\epsilon}(\Gamma_{C})^{\prime}}\leq C\left\|\bar{q}\right\|_{\tau,\Omega}. Putting all these estimates in (3.21), we have

|λ(tq¯,\displaystyle|\lambda(\partial_{t}\bar{q}, t(pσq¯))I+λ(q¯,(pσq¯))I(t(pσq¯),ϕ¯(q¯))I\displaystyle\partial_{t}(p_{\sigma}-\bar{q}))_{I}+\lambda(\nabla\bar{q},\nabla(p_{\sigma}-\bar{q}))_{I}-(\partial_{t}(p_{\sigma}-\bar{q}),\bar{\phi}(\bar{q}))_{I}
((pσq¯),ϕ¯(q¯))I+(u¯(q¯)ud,pσq¯)I|Cσ2τ2q¯τ,Ω2.\displaystyle-(\nabla(p_{\sigma}-\bar{q}),\nabla\bar{\phi}(\bar{q}))_{I}+(\bar{u}(\bar{q})-u_{d},p_{\sigma}-\bar{q})_{I}|\leq C\sigma^{2\tau-2}\left\|\bar{q}\right\|^{2}_{\tau,\Omega}. (83)

Thus, we have an optimal order (up to the regularity) of convergence of the term (3.3). Hence, all the error estimations (control, state and adjoint state) show the optimal order of convergence (up to the regularity of the solutions).

So, it is clear from the Remark 3.21 that our error analysis also works for the solutions with low regularity.

4. Numerical Experiments

In this section, we validate the a priori error estimates for the error in state, adjoint state and control variables numerically. We use primal-dual active set strategy (see [35]) in combination with conjugate gradient method (see, [27, 26]) to solve the optimal control problem. For the computations we construct a model problem with known solutions. In order to accomplish this, we consider the following cost functional J~\tilde{J} defined by

J~(u,q):=12uudI2+λ2|qqd|1,Ω×I2,wQ,pQad,\tilde{J}(u,q):=\frac{1}{2}\left\|u-u_{d}\right\|_{I}^{2}+\frac{\lambda}{2}|q-q_{d}|^{2}_{1,\Omega\times I},\quad w\in Q,\;p\in Q_{ad},

for some given function qdq_{d}. Then the minimization problem reads: Find (u,q)Q×Qad(u,q)\in Q\times Q_{ad} such that

J~(u¯(q¯),q¯)=min(u,q)Q×QadJ~(u,q)\tilde{J}(\bar{u}(\bar{q}),\bar{q})=\min_{(u,q)\in Q\times Q_{ad}}\tilde{J}(u,q)

subject to the condition that (u,q)(X+Q)×Qad(u,q)\in(X+Q)\times Q_{ad} satisfies the state equation (5). Then the discrete optimality system finds (u¯kh(q¯σ),ϕ¯kh(q¯σ),q¯σ)(Xk,h0,1+Qσ)×Xk,h0,1×Qadσ(\bar{u}_{kh}(\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma}),\bar{q}_{\sigma})\in(X^{0,1}_{k,h}+Q_{\sigma})\times X_{k,h}^{0,1}\times Q^{\sigma}_{ad} such that

u¯kh(q¯σ)=\displaystyle\bar{u}_{kh}(\bar{q}_{\sigma})= w¯kh(q¯σ)+q¯σw¯kh(q¯σ)Xk,h0,1\displaystyle\bar{w}_{kh}(\bar{q}_{\sigma})+\bar{q}_{\sigma}\quad\bar{w}_{kh}(\bar{q}_{\sigma})\in X_{k,h}^{0,1} (84a)
B(w¯kh(q¯σ),vkh)\displaystyle B(\bar{w}_{kh}(\bar{q}_{\sigma}),v_{kh}) =(f,vkh)I+(u0,vkh,0+)B(q¯σ,vkh)vkhXk,h0,1\displaystyle=(f,v_{kh})_{I}+(u_{0},v^{+}_{kh,0})-B(\bar{q}_{\sigma},v_{kh})\quad\forall v_{kh}\in X^{0,1}_{k,h} (84b)
B(vkh,ϕ¯kh(q¯σ),)\displaystyle B(v_{kh},\bar{\phi}_{kh}(\bar{q}_{\sigma}),) =(u¯kh(q¯σ)ud,vkh)IvkhXk,h0,1\displaystyle=\big{(}\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},v_{kh}\big{)}_{I}\quad\forall v_{kh}\in X^{0,1}_{k,h} (84c)
λ(tq¯σ,t(pσq¯σ))I\displaystyle\lambda(\partial_{t}\bar{q}_{\sigma},\partial_{t}(p_{\sigma}-\bar{q}_{\sigma}))_{I} +λ(q¯σ,(pσq¯σ))I(t(pσq¯σ),ϕ¯kh(q¯σ))I\displaystyle+\lambda(\nabla\bar{q}_{\sigma},\nabla(p_{\sigma}-\bar{q}_{\sigma}))_{I}\geq(\partial_{t}(p_{\sigma}-\bar{q}_{\sigma}),\bar{\phi}_{kh}(\bar{q}_{\sigma}))_{I}
+(ϕ¯kh(q¯σ),(pσq¯σ))I(u¯kh(q¯σ)ud,pσq¯σ)I\displaystyle+(\nabla\bar{\phi}_{kh}(\bar{q}_{\sigma}),\nabla(p_{\sigma}-\bar{q}_{\sigma}))_{I}-(\bar{u}_{kh}(\bar{q}_{\sigma})-u_{d},p_{\sigma}-\bar{q}_{\sigma})_{I}
+λ(tqd,t(pσq¯σ))I+λ(qd,(pσq¯σ))I,\displaystyle+\lambda(\partial_{t}q_{d},\partial_{t}(p_{\sigma}-\bar{q}_{\sigma}))_{I}+\lambda(\nabla q_{d},\nabla(p_{\sigma}-\bar{q}_{\sigma}))_{I}, (84d)

for all pσQadσp_{\sigma}\in Q^{\sigma}_{ad}

Example 4.1.

Let the computational domain be Ω×I:=(0,1)2×(0,1)\Omega\times I:=(0,1)^{2}\times(0,1), ΓC:=γC×(0,1)\Gamma_{C}:=\gamma_{C}\times(0,1), and ΓD:=(Ω×I)ΓC\Gamma_{D}:=\partial(\Omega\times I)\setminus\Gamma_{C} where γC:=(0,1)×{0}\gamma_{C}:=(0,1)\times\{0\}. We choose the exact solutions as follows:

u(x,y)\displaystyle u(x,y) =xexp(y)(1x)(1y)t(1t),\displaystyle=x\exp{(y)}\;(1-x)(1-y)t(1-t),
ϕ(x,y)\displaystyle\phi(x,y) =(x2x3)(y2y3)t(1t),\displaystyle=(x^{2}-x^{3})(y^{2}-y^{3})t(1-t),
q(x,y)\displaystyle q(x,y) =xexp(y)(1x)(1y)t(1t),\displaystyle=x\exp{(y)}\;(1-x)(1-y)t(1-t),

and set the data as

f\displaystyle f =tuΔu,\displaystyle=\partial_{t}u-\Delta u,
ud\displaystyle u_{d} =u+tϕ+Δϕ,\displaystyle=u+\partial_{t}\phi+\Delta\phi,
qd\displaystyle q_{d} =q,\displaystyle=q,
λ\displaystyle\lambda =103,qa=0,qb=0.8.\displaystyle=10^{-3},q_{a}=0,q_{b}=0.8.

In this numerical experiments, we consider a sequence of uniformly refined meshes. The spatial domain Ω\Omega is subdivided by regular triangular elements and the time interval is partitioned by equally spaced time steps. To discretize the state and adjoint state we use piecewise linear and continuous finite elements for spatial discretization and piecewise constant elements for temporal discretization. For the discretization of control we use linear prismatic Lagrange finite elements. We compute the errors in state, adjoint state, and control on the above mentioned uniformly refined meshes. The empirical convergence rate is defined by

rate():=log(e/e1)/log(μ/μ1),for=1,2,3,\texttt{rate}(\ell):=\log(e_{\ell}/e_{\ell-1})/\log(\mu_{\ell}/\mu_{\ell-1}),\quad\text{for}\;\ell=1,2,3,...

where ee_{\ell} and μ\mu_{\ell} denote respectively the error and the discretization parameter at \ell-th level. Let NN denote the number of sub-intervals for the time interval I¯\bar{I}. In Table 1, we have shown the rate of convergence of state and adjoint state in the energy norm with respect to the space parameter hh. Table 2 shows the rate of convergence of state and adjoint state in the L2L^{2}-norm with respect to the time parameter kk. In Table 3, we have shown rate of convergence of the control variable in the energy norm with respect to the control discretization parameter σ:=h2+k2\sigma:=\sqrt{h^{2}+k^{2}}.

Table 1. Errors and rates of convergence of state and adjoint state w.r.t. space parameter hh for Example 4.1.
NN hh (u¯(q¯)u¯kh(q¯σ))I\left\|\nabla(\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I} rate (ϕ¯(q¯)ϕ¯kh(q¯σ))I\left\|\nabla(\bar{\phi}(\bar{q})-\bar{\phi}_{kh}(\bar{q}_{\sigma}))\right\|_{I} rate
4 0.2500 0.02610199 ——– 0.00690363 ——
6 0.1250 0.01401513 0.8971 0.00341977 1.0134
12 0.0625 0.00707057 0.9870 0.00165730 1.0450
23 0.0312 0.00357310 0.9846 0.00081186 1.0295
46 0.0156 0.00178706 0.9995 0.00040030 1.0201
Table 2. Errors and rates of convergence of state and adjoint state w.r.t. time parameter kk for Example 4.1.
NN hh (u¯(q¯)u¯kh(q¯σ))I\left\|\nabla(\bar{u}(\bar{q})-\bar{u}_{kh}(\bar{q}_{\sigma}))\right\|_{I} rate (ϕ¯(q¯)ϕ¯kh(q¯σ))I\left\|\nabla(\bar{\phi}(\bar{q})-\bar{\phi}_{kh}(\bar{q}_{\sigma}))\right\|_{I} rate
4 0.2500 0.02610199 ——- 0.00690363 ——
6 0.1250 0.01401513 1.5337 0.00341977 1.7325
12 0.0625 0.00707057 0.9870 0.00165730 1.0450
23 0.0312 0.00357310 0.9870 0.00081186 1.0968
46 0.0156 0.00178706 0.9995 0.00040030 1.0968
Table 3. Errors and rates of convergence of control variable for Example 4.1.
NN σ\sigma |q¯q¯σ|1,Ω×I|\bar{q}-\bar{q}_{\sigma}|_{1,\Omega\times I} rate
4 0.3535 0.09476646 ——
6 0.2083 0.05263751 1.1117
12 0.1041 0.02631136 1.0004
23 0.0535 0.01342729 1.0004
46 0.0267 0.00671436 0.9998

Conclusions

We address the energy approach to solve the Dirichlet boundary control problem governed by the linear parabolic equation. Since we have chosen the control from a closed convex subset of H1(Ω×(0,T))H^{1}(\Omega\times(0,T)), the optimal control satisfies a simplified Signorini problem in three dimensional domain Ω×(0,T)\Omega\times(0,T). For the discretization, we use conforming prismatic Lagrange finite elements for the control. We derive the optimal order of convergence for the error in control, state, and adjoint state. Our numerical experiments confirm the theoretical results.

References

  • [1] N. Arada and J.-P. Raymond, Dirichlet boundary control of semilinear parabolic equations. I. Problems with no state constraints, Appl. Math. Optim. 45 (2002), no. 2, 125–143.
  • [2] S. Auliac, Z. Belhachmi, F. Ben Belgacem, and F. Hecht, Quadratic finite elements with non-matching grids for the unilateral boundary contact, ESAIM Math. Model. Numer. Anal. 47 (2013), no. 4, 1185–1203.
  • [3] Roland Becker, Dominik Meidner, and Boris Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods, Optim. Methods Softw. 22 (2007), no. 5, 813–833.
  • [4] Z. Belhachmi and F. Ben Belgacem, Quadratic finite element approximation of the Signorini problem, Math. Comp. 72 (2003), no. 241, 83–104.
  • [5] Faker Ben Belgacem, Christine Bernardi, and Henda El Fekih, Dirichlet boundary control for a parabolic equation with a final observation I: A space-time mixed formulation and penalization, Asymptot. Anal. 71 (2011), no. 1-2, 101–121.
  • [6] C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), no. 5, 1893–1916.
  • [7] Eduardo Casas and Vili Dhamo, Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations, Comput. Optim. Appl. 52 (2012), no. 3, 719–756.
  • [8] Eduardo Casas and Mariano Mateos, Error estimates for the numerical approximation of Neumann control problems, Comput. Optim. Appl. 39 (2008), no. 3, 265–295.
  • [9] Eduardo Casas, Mariano Mateos, and Jean-Pierre Raymond, Penalization of Dirichlet optimal control problems, ESAIM Control Optim. Calc. Var. 15 (2009), no. 4, 782–809.
  • [10] Eduardo Casas and Jean-Pierre Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim. 45 (2006), no. 5, 1586–1611.
  • [11] Zhiming Chen and Ricardo H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math. 84 (2000), no. 4, 527–548.
  • [12] Sudipto Chowdhury, Thirupathi Gudi, and A. K. Nandakumaran, A framework for the error analysis of discontinuous finite element methods for elliptic optimal control problems and applications to C0C^{0} IP methods, Numer. Funct. Anal. Optim. 36 (2015), no. 11, 1388–1419.
  • [13] by same author, Error bounds for a Dirichlet boundary control problem based on energy spaces, Math. Comp. 86 (2017), no. 305, 1103–1126.
  • [14] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978, Studies in Mathematics and its Applications, Vol. 4.
  • [15] Asha K. Dond, Thirupathi Gudi, and Ramesh Ch. Sau, An error analysis of discontinuous finite element methods for the optimal control problems governed by Stokes equation, Numer. Funct. Anal. Optim. 40 (2019), no. 4, 421–460.
  • [16] Guillaume Drouet and Patrick Hild, Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set, SIAM J. Numer. Anal. 53 (2015), no. 3, 1488–1507.
  • [17] Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, Springer-Verlag, New York, 2004.
  • [18] Lawrence C. Evans, Partial differential equations, second ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010.
  • [19] Richard S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl. 44 (1973), 28–47.
  • [20] Tunç Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numér. 13 (1979), no. 4, 313–328.
  • [21] Thirupathi Gudi and Ramesh Ch. Sau, Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem, ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 78, 19.
  • [22] Andreas Günther and Michael Hinze, Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls, Comput. Optim. Appl. 49 (2011), no. 3, 549–566.
  • [23] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl. 30 (2005), no. 1, 45–61.
  • [24] K. Kunisch and B. Vexler, Constrained Dirichlet boundary control in L2L^{2} for a class of evolution equations, SIAM J. Control Optim. 46 (2007), no. 5, 1726–1753.
  • [25] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. II, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth.
  • [26] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part i: Problems without control constraints, SIAM Journal on Control and Optimization 47 (2008), no. 3, 1150–1177.
  • [27] by same author, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part ii: Problems with control constraints, SIAM J. Control Optim. 47 (2008), no. 3, 1301–1329.
  • [28] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim. 43 (2004), no. 3, 970–985.
  • [29] Mohand Moussaoui and Khadidja Khodja, Régularité des solutions d’un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan, Comm. Partial Differential Equations 17 (1992), no. 5-6, 805–826.
  • [30] G. Of, T. X. Phan, and O. Steinbach, An energy space finite element approach for elliptic Dirichlet boundary control problems, Numer. Math. 129 (2015), no. 4, 723–748.
  • [31] Matthias Orlt and Anna-Margarete Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993), Lecture Notes in Pure and Appl. Math., Dekker, New York, 1995, pp. 185–201.
  • [32] Jean-Pierre Raymond, Optimal control of partial differential equations, lecture notes.
  • [33] L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493.
  • [34] Vidar Thomée, Galerkin finite element methods for parabolic problems, second ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006.
  • [35] Fredi Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels.
  • [36] Joseph Wloka, Partielle Differentialgleichungen, B. G. Teubner, Stuttgart, 1982, Sobolevräume und Randwertaufgaben. [Sobolev spaces and boundary value problems], Mathematische Leitfäden. [Mathematical Textbooks].
  • [37] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation.