This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Finding both, the continued fraction and the Laurent series expansion of golden ratio analogs in the field of formal power series

Roswitha Hofer Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria. e-mail: [email protected]
Abstract

The focus of this paper is on formal power series analogs of the golden ratio. We are interested in both their continued fractions expansions as well as their Laurent series expansions. Knowing both of them is for instance important for the study of Kronecker type sequences in the theory of uniform distribution.

Our approach studies the Hankel matrices that are determined using the coefficients of the Laurent series expansions.

We discover that both matrices in the 𝒰\mathcal{L}\mathcal{U} decomposition of these Hankel matrices can be described by a simple recursive algorithm based on the continued fraction coefficients of the golden ratio analogs.

The upper triangular factor 𝒰\mathcal{U} possesses several nice properties. First, its entries in the special case where the golden ratio analog is [0;X¯][0;\overline{X}] can be given by using the Catalan’s triangular numbers. Nicely, this relation together with our findings on the Hankel matrices are used to derive combinatorial identities involving Catalan’s triangular numbers. As a side product we obtain a description of the distribution of the Catalan numbers modulo a prime number.

Second, the upper triangular factor 𝒰\mathcal{U} is the columnwise composition of the Zeckendorf-type representations of the powers of XX. This Zeckendorf representation for polynomials is introduced in the style of the Zeckendorf representation of the natural numbers and it is based on the Fibonacci polynomials instead Fibonacci numbers.

Third, in case of positive characteristic, for each purely periodic golden ratio analog we detect a self-similar pattern in the upper triangular factor 𝒰\mathcal{U} of its Hankel matrix. We derive this pattern from a binomial type formula for two non-commutative matrices.

Finally, we exemplary show, how this self similar pattern in the upper triangular factor 𝒰\mathcal{U} of its Hankel matrix can be used to describe the Laurent series expansion of a golden ratio analog for which the continued fraction coefficients are given.

Keywords: golden ratio, formal power series, Fibonacci polynomials, Catalan’s triangular numbers, LU-decomposition of regular Hankel matrices
MSC2010: primary 11B39; secondary 11T99, 11C99.

1 Introduction and Motivation

We remember the golden ratio φ:=5+12\varphi:=\frac{\sqrt{5}+1}{2} as a root of the polynomial p[Y][Y]p[Y]\in\mathbb{Q}[Y]

p[Y]=Y2Y1p[Y]=Y^{2}-Y-1

and its fractional part {φ}=512=1/φ\{\varphi\}=\frac{\sqrt{5}-1}{2}=1/\varphi as a root of the polynomial p¯[Y][Y]\overline{p}[Y]\in\mathbb{Q}[Y]

p¯[Y]=Y2+Y1.\overline{p}[Y]=Y^{2}+Y-1.

It is well-known that both φ\varphi and 1/φ1/\varphi are quadratic irrationals in \mathbb{R} which is the completion field of \mathbb{Q} with respect to the absolute value |||\,\cdot\,|.

The golden ratio φ\varphi and its inverse 1/φ1/\varphi are in a certain sense optimal real numbers, namely their simple continued fraction coefficients have lowest possible absolute values 11, as φ=[1;1¯]\varphi=[1;\overline{1}] and 1/φ=[0;1¯]1/\varphi=[0;\overline{1}], and the latter is contained in the interval [0,1)[0,1).
Note that the nnth convergent to φ\varphi is Fn+1Fn\frac{F_{n+1}}{F_{n}} and to 1/φ1/\varphi is Fn1Fn\frac{F_{n-1}}{F_{n}}, where FnF_{n} denotes the nnth Fibonacci number. The sequence of Fibonacci numbers (Fn)n0(F_{n})_{n\geq 0} is recursively defined via Fn=Fn1+Fn2F_{n}=F_{n-1}+F_{n-2} where we choose the starting values F0=1F_{0}=1 and F1=0F_{-1}=0.

Now we use – in analogy to the number field \mathbb{Q} – the rational function field 𝕂=𝒌(X)\mathbb{K}=\boldsymbol{k}(X) where 𝒌\boldsymbol{k} is an arbitrary field, as for example \mathbb{Q} or a finite field 𝔽q\mathbb{F}_{q} with qq elements. And the pendant to the absolute value is the non-archimedean absolute value |||\,\cdot\,|_{\infty}, that is defined using the degree valuation ν\nu_{\infty} as follows.

For every f𝒌(X)f\in\boldsymbol{k}(X) we can find p(X),q(X)𝒌[X]p(X),\,q(X)\in\boldsymbol{k}[X] satisfying q(X)0q(X)\neq 0 such that f=p(X)q(X)f=\frac{p(X)}{q(X)}. We write q(X)=i=0raiXiq(X)=\sum_{i=0}^{r}a_{i}X^{i} with ai𝒌a_{i}\in\boldsymbol{k} and ar0a_{r}\neq 0. Then the degree deg(q(X))\deg(q(X)) of q(X)q(X) is well-known to be rr. We define deg(0):=\deg(0):=-\infty.
The degree valuation ν\nu_{\infty} of the rational function ff then is defined as

ν(f):=deg(p(X))deg(q(X))\nu_{\infty}(f):=\deg(p(X))-\deg(q(X))

and the corresponding non-archimedean absolute value

|f|:=eν(f),|f|_{\infty}:=e^{\nu_{\infty}(f)},

where ee is here the Euler number.

Now the completion field of 𝒌(X)\boldsymbol{k}(X) with respect to the absolute value |||\,\cdot\,|_{\infty} is the field of formal Laurent series (also called formal power series), denoted by 𝒌((X1))\boldsymbol{k}((X^{-1})). Each element L0L\neq 0 in 𝒌((X1))\boldsymbol{k}((X^{-1})) can be written as

L=i=uciXiL=\sum_{i=u}^{\infty}c_{i}X^{-i}

here ci𝒌c_{i}\in\boldsymbol{k} for all ii\in\mathbb{Z} and uu\in\mathbb{Z} such that cu0c_{u}\neq 0 and ci=0c_{i}=0 for all i<ui<u.

The degree evaluation ν(L)\nu_{\infty}(L) of LL is u-u and the absolute value |L||L|_{\infty} of LL is eue^{-u}.

In the following we list analogies between \mathbb{R} and 𝒌((X1))\boldsymbol{k}((X^{-1})) that are of use in this paper.

  1. 1.

    Let bb\in\mathbb{Z} satisfying b>1b>1. Then every real number α\alpha has a unique bb-adic expansion of the form

    [α]+i=1cibi[\alpha]+\sum_{i=1}^{\infty}c_{i}b^{-i}

    with ci{0,1,,b1}c_{i}\in\{0,1,\ldots,b-1\} and infinitely many cib1c_{i}\neq b-1, and [α][\alpha] is the integer part of α\alpha satisfying α[α][0,1)\alpha-[\alpha]\in[0,1). The latter magnitude is abbreviated to {α}\{\alpha\} and called the fractional part of α\alpha.

    The element X𝒌[X]X\in\boldsymbol{k}[X] satisfies |X|=e1>1|X|_{\infty}=e^{1}>1. Every nonzero element LL in 𝒌((X1))\boldsymbol{k}((X^{-1})), can be uniquely written as

    [L]+i=1ciXi[L]+\sum_{i=1}^{\infty}c_{i}X^{-i}

    with coefficients ci𝒌c_{i}\in\boldsymbol{k}, and [L]=i=0uciXi[L]=\sum_{i=0}^{-u}{c_{-i}}X^{i} is the polynomial part of LL contained in 𝒌[X]\boldsymbol{k}[X]. Note that the absolute value of |L[L]||L-[L]|_{\infty} is smaller than 11. The element (L[L])(L-[L]) is usually abbreviated to {L}\{L\} and called the fractional part of LL.

    The set of all possible fractional parts, that is

    {L𝒌((X1)):|L|<1},\{L\in\boldsymbol{k}((X^{-1})):|L|_{\infty}<1\},

    will be abbreviated to 𝒌((X1))¯\overline{\boldsymbol{k}((X^{-1}))} in the following.

    Note that this set can be alternatively given as

    {i=1ciXi:ci𝒌}.\left\{\sum_{i=1}^{\infty}c_{i}X^{-i}:c_{i}\in\boldsymbol{k}\right\}.

    The degree evaluation ν\nu_{\infty} of i=1ciXi0\sum_{i=1}^{\infty}c_{i}X^{-i}\neq 0 satisfies

    ν(i=1ciXi)=min({i:ci0}).\nu_{\infty}\left(\sum_{i=1}^{\infty}c_{i}X^{-i}\right)=-\min\left(\{i\in\mathbb{N}:c_{i}\neq 0\}\right).
  2. 2.

    Every real number α[0,1)\alpha\in[0,1) can be expressed in a continued fraction [0;a1,a2,a3,][0;a_{1},a_{2},a_{3},\ldots] satisfying aia_{i}\in\mathbb{N} for every ii\in\mathbb{N}.

    In analogy, every series L𝒌((X1))¯L\in\overline{\boldsymbol{k}((X^{-1}))} can be expressed in a continued fraction

    [0;A1(X),A2(X),A3(X),]=1A1(X)+1A2(X)+1A3(X)+[0;A_{1}(X),A_{2}(X),A_{3}(X),\ldots]=\cfrac{1}{A_{1}(X)+\cfrac{1}{A_{2}(X)+\cfrac{1}{A_{3}(X)+\ddots}}}

    with Ai(X)𝒌[X]A_{i}(X)\in\boldsymbol{k}[X] satisfying deg(Ai(X))1\deg(A_{i}(X))\geq 1 for every ii\in\mathbb{N}.

  3. 3.

    The nnth convergent αn\alpha_{n} to a non-rational α[0,1)\alpha\in[0,1) is the finite continued fraction [0;a1,a2,,an][0;a_{1},a_{2},\ldots,a_{n}] which can be written as pn/qnp_{n}/q_{n} with pn,qn0p_{n},q_{n}\in\mathbb{N}_{0}. Both recursively computed via qn=anqn1+qn2q_{n}=a_{n}q_{n-1}+q_{n-2} and pn=anpn1+pn2p_{n}=a_{n}p_{n-1}+p_{n-2} for every nn\in\mathbb{N} with starting values q1=0,p1=1,q0=1q_{-1}=0,\,p_{-1}=1,\,q_{0}=1, and p0=0p_{0}=0.
    Analogously, the nnth convergent Ln𝒌(X)L_{n}\in\boldsymbol{k}(X) to a non-rational L𝒌((X1))¯L\in\overline{\boldsymbol{k}((X^{-1}))} is the finite continued fraction [0;A1(X),A2(X),,An(X)][0;A_{1}(X),A_{2}(X),\ldots,A_{n}(X)] which can be written as Pn(X)/Qn(X)P_{n}(X)/Q_{n}(X) with Pn(X),Qn(X)𝒌[X]P_{n}(X),Q_{n}(X)\in\boldsymbol{k}[X]. Both recursively computed via Qn(X)=An(X)Qn1(X)+Qn2(X)Q_{n}(X)=A_{n}(X)Q_{n-1}(X)+Q_{n-2}(X) and Pn(X)=An(X)Pn1(X)+Pn2(X)P_{n}(X)=A_{n}(X)P_{n-1}(X)+P_{n-2}(X) for every nn\in\mathbb{N} with initial values Q1(X)=0,P1(X)=1,Q0(X)=1Q_{-1}(X)=0,\,P_{-1}(X)=1,\,Q_{0}(X)=1, and P0(X)=0P_{0}(X)=0.

  4. 4.

    Now an interesting fact is that the denominators qnq_{n} or Qn(X)Q_{n}(X) are best approximating in the sense that if

    |αp/q|<1/|q|2|\alpha-p/q|<1/|q|^{2}

    then p/qp/q is a convergent to α\alpha and if

    ν(LP(X)/Q(X))<2ν(1Q(X))=2deg(Q(X))\nu_{\infty}(L-P(X)/Q(X))<2\nu_{\infty}\left(\frac{1}{Q(X)}\right)=-2\deg(Q(X))

    then P(X)/Q(X)P(X)/Q(X) is a convergent to LL.

    Moreover, we note that deg(Qn)=i=1ndeg(Ai)=:dn\deg(Q_{n})=\sum_{i=1}^{n}\deg(A_{i})=:d_{n}, ν(LPn(X)/Qn(X))=dndn+1\nu_{\infty}(L-P_{n}(X)/Q_{n}(X))=-d_{n}-d_{n+1} and

    ν(Lv(X)/w(X))ν(LPn(X)/Qn(X))\nu_{\infty}(L-v(X)/w(X))\geq\nu_{\infty}(L-P_{n}(X)/Q_{n}(X))

    for all v(X),w(X)𝒌[X]v(X),w(X)\in\boldsymbol{k}[X] satisfying 0deg(w(X))<dn+10\leq\deg(w(X))<d_{n+1}.

  5. 5.

    Finally, we point out two further analogies between \mathbb{R} and the set of formal power series 𝒌((X1))\boldsymbol{k}((X^{-1})) in the case where 𝒌\boldsymbol{k} is a finite field. We have the following two classifications of α\alpha\in\mathbb{R}:

    • -

      α\alpha is a rational number if and only if for every integer b>1b>1, the bb-adic expansion of α\alpha is eventually periodic or finite.

    • -

      α\alpha is a quadratic irrational number if and only if the continued fraction expansion of α\alpha is infinite and ultimately periodic.

    In the case where the field 𝒌\boldsymbol{k} is finite, we have for L𝒌((X1))L\in\boldsymbol{k}((X^{-1})) that the condition L𝒌(X)L\in\boldsymbol{k}(X) is equivalent to that the series expansion i=uciXi\sum_{i=u}^{\infty}c_{i}X^{-i} is eventually periodic or finite. (See [7, Theorem 1.1])

    Moreover, in case of a finite field 𝒌\boldsymbol{k} we have for L𝒌((X1))𝒌(X)L\in\boldsymbol{k}((X^{-1}))\setminus\boldsymbol{k}(X), that the continued fraction expansion of LL is ultimately periodic if and only if it is quadratic over 𝒌(X)\boldsymbol{k}(X) (cf. e.g. [7, Theorem 3.1]).

    For results and discussions in the case where 𝒌\boldsymbol{k} is not finite, confer e.g. [10].

For more information on continued fractions in power series fields we refer to [7] and [10].

In this paper we introduce analogs of the reciprocal of the golden ratio 1/φ1/\varphi which possesses the “optimal” continued fraction expansion

[0;1¯]=11+11+11+11+,[0;\overline{1}]=\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\ddots}}}},

since all coefficient have lowest possible value 11. As there are more choices of partial quotients having lowest possible degree 11, we define a set of golden ratio analogs in 𝒌((X1))¯\overline{\boldsymbol{k}((X^{-1}))}.

Definition 1 (Set of golden ratio analogs).

We define the set Φ\Phi of golden ratios in 𝐤((X1))¯\overline{\boldsymbol{k}((X^{-1}))} as

Φ:={[0;u1X+v1,u2X+v2,u3X+v3,]|ui𝒌,vi𝒌 for all i}.\Phi:=\left\{[0;u_{1}X+v_{1},u_{2}X+v_{2},u_{3}X+v_{3},\ldots]\,\,|\,\,u_{i}\in\boldsymbol{k}^{*},v_{i}\in\boldsymbol{k}\mbox{ for all }i\in\mathbb{N}\right\}.

We are particularly interested in the formal power series representation of specific examples of golden ratio analogs, as e.g. [0;X¯][0;\overline{X}] over special fields 𝒌\boldsymbol{k}. We would like to point out that for real numbers in [0,1)[0,1) it is a non-trivial problem to determine both, the explicit bb-adic representation with a fixed base bb, say 22 or 1010, and its continued fraction coefficients. So far there are only a few examples, where we have information on both representations (see e.g. Shallit [11, 12]). We mention here the number investigated in [11].

Example 1 (Shallit).

Let b3b\geq 3 be an integer and σ:=k=0b2k\sigma:=\sum_{k=0}^{\infty}b^{-2^{k}}. Then Shallit [11] discovered a certain pattern in the continued fraction of σ\sigma as the limit of the following recursion, e.g., in the case where b=3b=3 the pattern can be described as follows: B(1)=[0;2,4],B(2)=[2,5,3,4]B(1)=[0;2,4],\,B(2)=[2,5,3,4], and for k2k\geq 2 with B(k)=[0;a1,a2,,an2,an1,an]B(k)=[0;a_{1},a_{2},\ldots,a_{n-2},a_{n-1},a_{n}] let

B(k+1)=[0;a1,a2,,an2,an1,an+1,an1,an1,an2,,a2,a1].B(k+1)=[0;a_{1},a_{2},\ldots,a_{n-2},a_{n-1},a_{n}+1,a_{n}-1,a_{n-1},a_{n-2},\ldots,a_{2},a_{1}].

Now σ\sigma in base 33 is limkB(k)\lim_{k\to\infty}B(k).
Note for b=4b=4 we may write 2σ2\sigma as k=122k+1\sum_{k=1}^{\infty}2^{-2^{k}+1}.

The question for the formal series expansion of golden ratio analogs is for instance relevant for the investigation of so-called Kronecker type sequences over 𝔽q((X1))\mathbb{F}_{q}((X^{-1})) where 𝔽q\mathbb{F}_{q} is the finite field with qq elements. Kronecker type sequences, that are introduced as an analogon to the ordinary Kronecker sequence ({nα})n0(\{n\alpha\})_{n\geq 0} with α\alpha\in\mathbb{R}, are actively investigated in the theory of uniform distribution (cf e.g.[5]). For the sake of completeness we give the definition of Kronecker type sequences.

Definition 2 (Kronecker type sequence).

Let 𝔽q\mathbb{F}_{q} be a finite field and L𝔽q((X1))¯L\in\overline{\mathbb{F}_{q}((X^{-1}))}. For n0n\in\mathbb{N}_{0}, the nnth element xnx_{n} of the Kronecker type sequence determined by LL is obtained by the following algorithm:

  1. 1.

    Expand nn in base qq, i.e. n=i=0niqin=\sum_{i=0}^{\infty}n_{i}q^{i} with ni{0,1,,q1}n_{i}\in\{0,1,\ldots,q-1\}, then associate nn with the polynomial n(X)𝔽q[X]n(X)\in\mathbb{F}_{q}[X] by setting

    n(X)=i=0η(ni)Xi,n(X)=\sum_{i=0}^{\infty}\eta(n_{i})X^{i},

    where η:{0,1,,q1}𝔽q\eta:\{0,1,\ldots,q-1\}\to\mathbb{F}_{q} is a fixed bijection that maps 0 to 0.

  2. 2.

    Compute the product n(X)Ln(X)L and take the series expansion of its fractional part,

    {n(X)L}=i=1uiXi.\{n(X)L\}=\sum_{i=1}^{\infty}u_{i}X^{-i}.
  3. 3.

    Finally, set

    xn=i=1η1(ui)qi,x_{n}=\sum_{i=1}^{\infty}\eta^{-1}(u_{i})q^{-i},

    which is always an element of the interval [0,1][0,1]. For short we write this sequence as ([{n(X)L}]q)n0([\{n(X)L\}]_{q})_{n\geq 0}.

Remark 1.

Note that we can also use the concept of an ×\mathbb{N}\times\mathbb{N} generating matrix L\mathcal{M}_{L} over 𝔽q\mathbb{F}_{q} and the digital method, that was introduced in [8], to define the Kronecker type sequence determined by LL. The digital method works as follows. Instead of a polynomial n(X)n(X) associate a vector n=(η(n0),η(n1),)T𝔽q\vec{n}=(\eta(n_{0}),\eta(n_{1}),\ldots)^{T}\in\mathbb{F}_{q}^{\mathbb{N}}. Define the generating matrix

L:=(mi,j)i1,j1𝔽q×\mathcal{M}_{L}:=(m_{i,j})_{i\geq 1,j\geq 1}\in\mathbb{F}_{q}^{\mathbb{N}\times\mathbb{N}}

with entries mi,j=:ci+j1m_{i,j}=:c_{i+j-1}, where the cic_{i} are the coefficients in the series expansion of L=i=1ciXiL=\sum_{i=1}^{\infty}c_{i}X^{-i}. Then, compute Ln=:yn=(yn,1,yn,2,)T𝔽q\mathcal{M}_{L}\cdot\vec{n}=:\vec{y}_{n}=(y_{n,1},y_{n,2},\ldots)^{T}\in\mathbb{F}_{q}^{\mathbb{N}}. Finally, set

xn=i=1η1(yn,i)qi.x_{n}=\sum_{i=1}^{\infty}\eta^{-1}(y_{n,i})q^{-i}.

Note that the generating matrix of any Kronecker type sequence is a Hankel matrix, since mi,j=mi+k,jkm_{i,j}=m_{i+k,j-k} for all i,j,ki,j,k\in\mathbb{N} satisfying k<jk<j. While the generating matrix L\mathcal{M}_{L} can be defined over an arbitrary field 𝒌\boldsymbol{k}, the construction algorithm of the sequence in [0,1)[0,1) relies on the finiteness of the field.

In the theory of uniform distribution the so-called L2L_{2}-discrepancy of Kronecker type sequences is of particular interest as the L2L_{2}-discrepancy of ordinary Kronecker sequences is well investigated (cf. for example [1]). The main method for investigating the distribution of Kronecker type sequences applies Walsh functions whereas for the ordinary Kronecker sequence ({αn})n0(\{\alpha n\})_{n\geq 0} trigonometric functions are used. For the Walsh function approach detailed information on the formal series coefficients is helpful. It is known that one-dimensional Kronecker type sequences ([{n(X)L}]q)n0([\{n(X)L\}]_{q})_{n\geq 0} are in a certain sense optimal if all continued fraction coefficients of LL have degree 11 (see e.g. [9, Theorem 4.48]). Therefore the series expansions of golden ratio analogs in 𝒌((X1))¯\overline{\boldsymbol{k}((X^{-1}))}, where 𝒌\boldsymbol{k} is a finite field, deserve particular attention.
As already noted in the abstract our approach studies the Hankel matrices that are the generating matrices of the Kronecker type sequences and which are defined using the coefficients of the Laurent series expansions.

Definition 3 (Hankel matrix associated with LL).

Let L𝐤((X1))¯L\in\overline{\boldsymbol{k}((X^{-1}))} with Laurent series expansion L=i=1ciXiL=\sum_{i=1}^{\infty}c_{i}X^{-i}. We define the Hankel matrix L=(mi,j)𝐤×\mathcal{M}_{L}=(m_{i,j})\in\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}} related to LL by setting mi,j=:ci+j1m_{i,j}=:c_{i+j-1} for all i,ji,j\in\mathbb{N}.

We call a matrix 𝒞𝒌×\mathcal{C}\in\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}} regular if for every kk\in\mathbb{N} its upper left k×kk\times k submatrix is regular.

In the following lemma we write down a basic property of Hankel matrices over finite fields, that is a consequence of [6, Corollary 1] and points out the relevance of the golden ratio analogs.

Lemma 1.

We denote the Hankel matrix 𝐤×\mathcal{M}\in\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}} as =(mi,j)i,j1\mathcal{M}=(m_{i,j})_{i,j\geq 1}. Then the following assertion are equivalent.

  1. 1.

    The Hankel matrix 𝒌×\mathcal{M}\in\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}} is regular.

  2. 2.

    The partial quotients in the continued fraction of L=j=1m1,jXjL=\sum_{j=1}^{\infty}m_{1,j}X^{-j} have all lowest possible degree 11.

Proof.

Note that each Laurent series defines a Hankel matrix and vice versa. Now from the definition of the quality parameter tt of the Kronecker type sequence, which is used in [6], it is easily checked that t=0t=0 if and only if the generating Hankel matrix is regular. Now [6, Corollary 1], which states t=0t=0 if and only if all continued fraction coefficients of LL have degree 11, completes the proof. ∎

In the rest of the paper we aim for explicit formulas for the coefficients in the series expansions of golden ratio analogs, in particular for the specific case where 𝒌\boldsymbol{k} is a finite field 𝔽q\mathbb{F}_{q}.

We start with the most basic example [0;X¯][0;\overline{X}] over 𝔽2\mathbb{F}_{2}.

Example 2.

Choose 𝒌\boldsymbol{k} as the binary field 𝔽2\mathbb{F}_{2} and L=[0;X¯]𝔽2((X1))L=[0;\overline{X}]\in\mathbb{F}_{2}((X^{-1})) satisfying L2+XL+1=0L^{2}+XL+1=0. Now because the field 𝔽2((X1))\mathbb{F}_{2}((X^{-1})) has characteristic 22 we can make a guess on the series expansion of LL and verify it by computing L2+XL+1L^{2}+XL+1. Now for

L:=n=1X2n+1,L:=\sum_{n=1}^{\infty}X^{-2^{n}+1},

we obtain

L2+XL+1=n=1X2n+1+2+n=1X2n+2+1=X0+1=0.L^{2}+XL+1=\sum_{n=1}^{\infty}X^{-2^{n+1}+2}+\sum_{n=1}^{\infty}X^{-2^{n}+2}+1=X^{0}+1=0.

Note that in the before last step we made an index shift and in every step we used the characteristic 22.

Remark 2.

We compare the series L=n=1X2n+1L=\sum_{n=1}^{\infty}X^{-2^{n}+1} with 2 times Shallit’s number σ\sigma in base 44, that was mentioned already in Example 1, 2σ=k=122k+12\sigma=\sum_{k=1}^{\infty}2^{-2^{k}+1}. Interestingly we have the same formula for the exponents, but with the difference, that the first number is a quadratic irrational over 𝔽2(X)\mathbb{F}_{2}(X) but the second is a transcendental real number (see [11]).

Note that over a more general field with characteristic greater than 22 or zero, squaring a series is not that trivial. It is ad hoc not clear how to find the expansion of [0;X¯][0;\overline{X}] over e.g. 𝔽p\mathbb{F}_{p} where pp is an odd prime number. The method developed in this paper is based on studying the associated Hankel matrices. As side products we discover plenty of interesting and astonishing results. Just to announce two of them. We give the unique ϕ𝒰ϕ\mathcal{L}_{\phi}\mathcal{U}_{\phi} decomposition of the Hankel matrix ϕ\mathcal{M}_{\phi} for any golden ratio analog ϕ\phi over 𝒌\boldsymbol{k}, where the columns of 𝒰ϕ\mathcal{U}_{\phi} and rows of ϕ\mathcal{L}_{\phi} follow easy to define recursions. We identify for specific examples of golden ratio analogs ϕ\phi nice patterns in 𝒰ϕ\mathcal{U}_{\phi}, that will give us a hint on the Laurent series expansion of ϕ\phi.

2 The 𝒰\mathcal{L}\mathcal{U} decompositions of the Hankel matrix associated with a golden ratio analog

Throughout this section 𝒌\boldsymbol{k} and ϕΦ𝒌((X1))¯\phi\in\Phi\subseteq\overline{\boldsymbol{k}((X^{-1}))} will be fixed. Thus the continued fraction [0;A1(X),A2(X),A3(X),][0;A_{1}(X),A_{2}(X),A_{3}(X),\ldots] of ϕ\phi satisfies deg(Ai(X))=1\deg(A_{i}(X))=1 for all ii\in\mathbb{N}.

We define the sequence of Fibonacci polynomials ϕ\mathcal{F}_{\phi} associated with ϕ\phi given by the denominators of the convergents to ϕ\phi.

Definition 4 (Fibonacci polynomials associated with ϕ\phi).

For each explicitly given

ϕ=[0;A1(X),A2(X),A3(X),]Φ\phi=[0;A_{1}(X),A_{2}(X),A_{3}(X),\ldots]\in\Phi

over a field 𝐤\boldsymbol{k} the sequence of Fibonacci Polynomials

ϕ:=(Fn(X))n0\mathcal{F}_{\phi}:=(F_{n}(X))_{n\geq 0}

in 𝐤[X]\boldsymbol{k}[X] is defined recursively by Fn(X)=An(X)Fn1(X)+Fn2(X)F_{n}(X)=A_{n}(X)F_{n-1}(X)+F_{n-2}(X) for nn\in\mathbb{N} and with initial values F1(X)=0F_{-1}(X)=0 and F0(X)=1F_{0}(X)=1.

Remark 3.

Often the notion “Fibonacci polynomials” is used for ϕ\mathcal{F}_{\phi} in the specific case where ϕ\phi is [0;X¯][0;\overline{X}].

We observe that all Fibonacci polynomials associated with ϕΦ\phi\in\Phi satisfy deg(Fn(X))=n\deg(F_{n}(X))=n for all n0n\in\mathbb{N}_{0}. Hence we are able to define a so-called “Zeckendorf representation” in 𝒌[X]\boldsymbol{k}[X]. We note that the sequence of Fibonacci numbers (Fn)n0(F_{n})_{n\geq 0} in 0\mathbb{N}_{0} can be used to represent any non-negative integers mm in terms of different Fibonacci numbers, i.e. m=i=1δiFim=\sum_{i=1}^{\infty}\delta_{i}F_{i} with δi{0,1}\delta_{i}\in\{0,1\} and only finitely many δi=1\delta_{i}=1. For the Zeckendorf representation we require, if δi=1\delta_{i}=1 then δi+1=0\delta_{i+1}=0. The latter guaranties the uniqueness of this representation.

Let ϕ:=(Fn(X))n0\mathcal{F}_{\phi}:=(F_{n}(X))_{n\geq 0} be the sequence of Fibonacci polynomials associated with ϕΦ\phi\in\Phi and (fn)n0(f_{n})_{n\geq 0} is the sequence of the leading coefficients in 𝒌\boldsymbol{k}, i.e., fn=lc(Fn(X))f_{n}={\rm lc}(F_{n}(X)).

Let P(X)𝒌[X]P(X)\in\boldsymbol{k}[X] with deg(P(X))=r0\deg(P(X))=r\in\mathbb{N}_{0}. Usually, P(X)P(X) is expressed in terms of powers of XX, i.e. P(X)=i=0rpiXiP(X)=\sum_{i=0}^{r}p_{i}X^{i} with pi𝒌p_{i}\in\boldsymbol{k} for i=0,,ri=0,\ldots,r and pr0p_{r}\neq 0. By the following greedy algorithm one can represent P(X)P(X) in terms of the Fibonacci polynomials, i.e.,

P(X)=i=0rziFi(X)P(X)=\sum_{i=0}^{r}z_{i}F_{i}(X)

with zi𝒌z_{i}\in\boldsymbol{k} and zr0z_{r}\neq 0.

Algorithm 1 (ϕ\phi-Zeckendorf representation).

Proceed as follows:

  • -

    Set P(X):=Pr(X)P(X):=P_{r}(X), zr=fr1prz_{r}=f_{r}^{-1}p_{r}, and Pr1(X):=Pr(X)zrFr(X)P_{r-1}(X):=P_{r}(X)-z_{r}F_{r}(X).

  • -

    For given Pi(X)P_{i}(X) with i{1,,r1}i\in\{1,\ldots,r-1\} proceed as follows: If deg(Pi)<i\deg(P_{i})<i set zi=0z_{i}=0 and Pi1=PiP_{i-1}=P_{i}, else express Pi(X)P_{i}(X) in terms of powers of XX and use its leading coefficient lc(Pi(X)){\rm lc}(P_{i}(X)) to define zi=fi1lc(Pi(X))z_{i}=f_{i}^{-1}{\rm lc}(P_{i}(X)) and set Pi1(X):=Pi(X)ziFi(X)P_{i-1}(X):=P_{i}(X)-z_{i}F_{i}(X)

  • -

    Finally set z0=f01P0z_{0}=f_{0}^{-1}P_{0}.

The following lemma points out an important advantage of the Zeckendorf representation of a polynomial n(X)n(X) in 𝒌[X]\boldsymbol{k}[X].

Lemma 2.

Let ϕΦ\phi\in\Phi and n(X)𝐤[X]{0}n(X)\in\boldsymbol{k}[X]\setminus\{0\} having associated ϕ\phi-Zeckendorf representation i=0rziFi(X)\sum_{i=0}^{r}z_{i}F_{i}(X). Then

ν({n(X)ϕ})=j1,\nu_{\infty}(\{n(X)\phi\})=-j-1,

where j{0,,r}j\in\{0,\ldots,r\} is minimal such that zj0z_{j}\neq 0.

Proof.

This follows from ν({Fi(X)ϕ})=deg(Fi+1(X))\nu_{\infty}(\{F_{i}(X)\phi\})=-\deg(F_{i+1}(X)) as Fi(X)F_{i}(X) is the denominator of the iith convergent to ϕ\phi and deg(Fi(X))=i\deg(F_{i}(X))=i for all i0i\in\mathbb{N}_{0} and ν\nu_{\infty} is a non-archimedean valuation, that says for a,b𝒌((X1))a,b\in\boldsymbol{k}((X^{-1})) with ν(a)ν(b)\nu_{\infty}(a)\neq\nu_{\infty}(b) we have ν(a+b)=max(ν(a),ν(b))\nu_{\infty}(a+b)=\max(\nu_{\infty}(a),\nu_{\infty}(b)). ∎

Next we define matrices associated to a golden ratio analog ϕ\phi based on its continued fraction coefficients.

Definition 5 (Matrices associated to ϕ\phi).

We introduce the tridiagonal matrix ϕ=(ai,j)i1,j1\mathcal{R}_{\phi}=(a_{i,j})_{i\geq 1,j\geq 1} associated to ϕ=[0;A1(X),A2(X),A3(X),]\phi=[0;A_{1}(X),A_{2}(X),A_{3}(X),\ldots] as the product ϕ𝒟ϕ\mathcal{B}_{\phi}\mathcal{D}_{\phi} of the two matrices ϕ,𝒟ϕ\mathcal{B}_{\phi},\,\mathcal{D}_{\phi}, that are defined as follows.

We write Ai(X)=uiX+viA_{i}(X)=u_{i}X+v_{i} with ui,vi𝐤u_{i},v_{i}\in\boldsymbol{k} and ui0u_{i}\neq 0 and define ϕ=(bi,j)i1,j1\mathcal{B}_{\phi}=(b_{i,j})_{i\geq 1,j\geq 1} over 𝐤\boldsymbol{k} by

bi,j={viif i=j1if i=j+11if i=j10else.b_{i,j}=\left\{\begin{array}[]{ll}-v_{i}&\quad\mbox{if }i=j\\ 1&\quad\mbox{if }i=j+1\\ -1&\quad\mbox{if }i=j-1\\ 0&\quad\mbox{else.}\end{array}\right.

And 𝒟ϕ\mathcal{D}_{\phi} is the non-singular diagonal matrix 𝒟ϕ=diag(u11,u21,u31,)\mathcal{D}_{\phi}={\rm diag}(u_{1}^{-1},u_{2}^{-1},u_{3}^{-1},\ldots).

Using the tridiagonal matrix ϕ\mathcal{R}_{\phi} we recursively construct two matrices 𝒰ϕ\mathcal{U}_{\phi} and ϕ\mathcal{L}_{\phi}.

The matrix 𝒰ϕ\mathcal{U}_{\phi} is obtained columnwise: define the first column as 𝐮1=(1,0,0,0,)T\boldsymbol{u}_{1}=(1,0,0,0,\ldots)^{T} and set 𝐮n+1=ϕ𝐮n\boldsymbol{u}_{n+1}=\mathcal{R}_{\phi}\boldsymbol{u}_{n} for nn\in\mathbb{N}. The matrix ϕ\mathcal{L}_{\phi} is obtained row by row, by setting 𝐥1=(1,0,0,0,)\boldsymbol{l}_{1}=(1,0,0,0,\ldots) and 𝐥n+1=𝐥nϕ\boldsymbol{l}_{n+1}=\boldsymbol{l}_{n}\mathcal{R}_{\phi} for nn\in\mathbb{N}.

Note that in the special case where 𝒌=𝔽2\boldsymbol{k}=\mathbb{F}_{2}, ϕT=ϕ\mathcal{R}_{\phi}^{T}=\mathcal{R}_{\phi} and as a consequence ϕT=𝒰ϕ\mathcal{L}_{\phi}^{T}=\mathcal{U}_{\phi}. In the following theorem we exhibit specific properties of ϕ\mathcal{L}_{\phi} and 𝒰ϕ\mathcal{U}_{\phi}.

Theorem 1.

We have

  1. 1.

    ϕ\mathcal{L}_{\phi} is a non-singular lower triangular matrix and 𝒰ϕ\mathcal{U}_{\phi} is a non-singular upper triangular matrix.

  2. 2.

    The nnth column of 𝒰ϕ\mathcal{U}_{\phi} collects the coefficients of the ϕ\phi-Zeckendorf representation of Xn1X^{n-1}, namely, if Xn1=i=0n1ziFi(X)X^{n-1}=\sum_{i=0}^{n-1}z_{i}F_{i}(X) then

    𝒖n=(z0,z1,z2,,zn1,0,)T.\boldsymbol{u}_{n}=(z_{0},z_{1},z_{2},\ldots,z_{n-1},0,\ldots)^{T}.
  3. 3.

    The product ϕ𝒰ϕ\mathcal{L}_{\phi}\mathcal{U}_{\phi} is a Hankel matrix.

  4. 4.

    The product u11ϕ𝒰ϕu_{1}^{-1}\mathcal{L}_{\phi}\mathcal{U}_{\phi} gives the generating matrix ϕ\mathcal{M}_{\phi} associated with ϕ\phi.

Proof.

The matrix ϕ\mathcal{R}_{\phi} is a tridiagonal matrix with nonzero entries to the left and to the right of the diagonal. Hence it is an easy consequence from the definition of 𝒰ϕ\mathcal{U}_{\phi} and ϕ\mathcal{L}_{\phi} that both have nonzero diagonal entries and are upper and lower resp. triangular matrices.
For the second item and for n=1n=1 we use X0=F0(X)X^{0}=F_{0}(X). Suppose for nn\in\mathbb{N} the nnth column 𝒖n\boldsymbol{u}_{n} satisfies 𝒖n=(z0,z1,z2,,zn1,0,)T\boldsymbol{u}_{n}=(z_{0},z_{1},z_{2},\ldots,z_{n-1},0,\ldots)^{T} where Xn1=i=0n1ziFi(X)X^{n-1}=\sum_{i=0}^{n-1}z_{i}F_{i}(X). Then

Xn\displaystyle X^{n} =Xi=0n1ziFi(X)\displaystyle=X\sum_{i=0}^{n-1}z_{i}F_{i}(X)
=i=0n1ziui+11((ui+1X+vi+1)Fi(X)+Fi1(X)Fi1(X)vi+1Fi(X))\displaystyle=\sum_{i=0}^{n-1}z_{i}u_{i+1}^{-1}\Big{(}(u_{i+1}X+v_{i+1})F_{i}(X)+F_{i-1}(X)-F_{i-1}(X)-v_{i+1}F_{i}(X)\Big{)}
=i=0n1ziui+11Fi+1(X)i=0n1ziui+11Fi1(X)i=0n1ziui+11vi+1Fi(X)\displaystyle=\sum_{i=0}^{n-1}z_{i}u_{i+1}^{-1}F_{i+1}(X)-\sum_{i=0}^{n-1}z_{i}u_{i+1}^{-1}F_{i-1}(X)-\sum_{i=0}^{n-1}z_{i}u_{i+1}^{-1}v_{i+1}F_{i}(X)
=i=1nzi1ui1Fi(X)i=1n2zi+1ui+21Fi(X)i=0n1ziui+11vi+1Fi(X).\displaystyle=\sum_{i=1}^{n}z_{i-1}u_{i}^{-1}F_{i}(X)-\sum_{i=-1}^{n-2}z_{i+1}u_{i+2}^{-1}F_{i}(X)-\sum_{i=0}^{n-1}z_{i}u_{i+1}^{-1}v_{i+1}F_{i}(X).

Hence the coefficient to Fi(X)F_{i}(X) in the ϕ\phi-Zeckendorf representation of XnX^{n} is ui1zi1ui+11vi+1ziui+21zi+1u_{i}^{-1}z_{i-1}-u_{i+1}^{-1}v_{i+1}z_{i}-u_{i+2}^{-1}z_{i+1}, this fits exactly the recursive definition of 𝒰ϕ\mathcal{U}_{\phi} based on ϕ\mathcal{R}_{\phi}.

The Hankel property of ϕ𝒰ϕ=:(ki,j)i1,j1\mathcal{L}_{\phi}\mathcal{U}_{\phi}=:(k_{i,j})_{i\geq 1,j\geq 1} follows from

ki,j\displaystyle k_{i,j} =(1,0,0,0,)ϕi1ϕj1(1,0,0,0,)T\displaystyle=(1,0,0,0,\ldots)\mathcal{R}_{\phi}^{i-1}\mathcal{R}_{\phi}^{j-1}(1,0,0,0,\ldots)^{T}
=(1,0,0,0,)ϕi1sϕj1+s(1,0,0,0,)T=kis,j+s\displaystyle=(1,0,0,0,\ldots)\mathcal{R}_{\phi}^{i-1-s}\mathcal{R}_{\phi}^{j-1+s}(1,0,0,0,\ldots)^{T}=k_{i-s,j+s}

for all admissible i,j,si,j,s.

It remains to prove the relation with ϕ\mathcal{M}_{\phi} that is by definition a Hankel matrix. Thus comparing the first rows is enough. We start with the first coefficient c1c_{1} of

ϕ=i=1ciXi.\phi=\sum_{i=1}^{\infty}c_{i}X^{-i}.

The first convergent to ϕ\phi is 1u1X+v1\frac{1}{u_{1}X+v_{1}}. The first entry of the first row of 𝒰ϕ\mathcal{U}_{\phi} is 11 and the second is u11v1-u_{1}^{-1}v_{1}. From the approximation property of the first convergent we derive

ν(ϕ1u1X+v1)=3.\nu_{\infty}\left(\phi-\frac{1}{u_{1}X+v_{1}}\right)=-3.

Hence the first two coefficients of the series expansions of ϕ\phi and 1u1X+v1\frac{1}{u_{1}X+v_{1}} coincide. Now we know, that

1u1X+v1=u11X111(v1u11X1)=u11X1i=0(v1u11X1)i\frac{1}{u_{1}X+v_{1}}=u_{1}^{-1}X^{-1}\frac{1}{1-(-v_{1}u_{1}^{-1}X^{-1})}=u_{1}^{-1}X^{-1}\sum_{i=0}^{\infty}(-v_{1}u_{1}^{-1}X^{-1})^{i}

hence the first coefficient c1c_{1} of ϕ\phi is u11u_{1}^{-1}.

For mm\in\mathbb{N} we write XmX^{m} in Zeckendorf representation Xm=i=0mzi(m)Fi(X)X^{m}=\sum_{i=0}^{m}z_{i}^{(m)}F_{i}(X). So the (m+1)(m+1)st entry of the first row of 𝒰ϕ\mathcal{U}_{\phi} is given by z0(m)z_{0}^{(m)}.
For the (m+1)(m+1)st entry of the first row of ϕ\mathcal{M}_{\phi}, or cm+1c_{m+1} resp., we use that cm+1𝒌c_{m+1}\in\boldsymbol{k} satisfies

ν({Xmϕcm+1X1})<1.\nu_{\infty}(\{X^{m}\phi-c_{m+1}X^{-1}\})<-1.

The latter is equivalent to

ν({Xmϕcm+1u1ϕ})<1\nu_{\infty}(\{X^{m}\phi-c_{m+1}u_{1}\phi\})<-1

since c1=u11c_{1}=u_{1}^{-1}. From Lemma 2 we know

ν({(Xmz0(m))ϕ})<1.\nu_{\infty}(\{(X^{m}-z_{0}^{(m)})\phi\})<-1.

Therefore cm+1u1=z0(m)c_{m+1}u_{1}=z_{0}^{(m)} and we obtain

cm+1=u11z0(m).c_{m+1}=u_{1}^{-1}z_{0}^{(m)}.

Theorem 1 shows that the powers of ϕ\mathcal{R}_{\phi}, whose upper left entries are related to the coefficients of ϕ\phi, and whose first columns determine the columns of 𝒰ϕ\mathcal{U}_{\phi}, attract attention for our main problem of finding the series expansion of golden ratio analogs.

3 The most basic golden ratio analog

We start with the special case φ=[0;X¯]𝒌((X1))\varphi=[0;\overline{X}]\in\boldsymbol{k}((X^{-1})). A well established formula for the Fibonacci Polynomials φ=(Fn(X))n0\mathcal{F}_{\varphi}=(F_{n}(X))_{n\geq 0} is the following. Here and later on, a coefficient l0l\in\mathbb{N}_{0} denotes i=1l\sum_{i=1}^{l}.

Lemma 3.

For φ=(Fn(X))n0\mathcal{F}_{\varphi}=(F_{n}(X))_{n\geq 0} and n0n\in\mathbb{N}_{0} we have

Fn(X)=m=0n/2(nmm)Xn2m.F_{n}(X)=\sum_{m=0}^{\lfloor n/2\rfloor}\binom{n-m}{m}X^{n-2m}.
Proof.

We check the formula for n=0n=0 and n=1n=1. Then n>1n>1 follows from induction. ∎

We also obtain a formula for the coefficients of the Zeckendorf representations of the powers of XX, that determine the entries in 𝒰φ\mathcal{U}_{\varphi}.

Lemma 4.

Let m0m\in\mathbb{N}_{0} and i=0mzi(m)Fi(X)\sum_{i=0}^{m}z_{i}^{(m)}F_{i}(X) be the φ\varphi-Zeckendorf representation of XmX^{m} with φ=[0;X¯]\varphi=[0;\overline{X}]. Then zm(m)=1z_{m}^{(m)}=1, zm2k(m)=(1)k((mk)(mk1))1z^{(m)}_{m-2k}=(-1)^{k}\left(\binom{m}{k}-\binom{m}{k-1}\right)\cdot 1 for k=1,,m/2k=1,\ldots,\lfloor m/2\rfloor and all other coefficients are 0. Therefore, we have

𝒰φ=(𝟏20(jl)(1)jl2((j1jl2)(j1jl21))1)l1,j1,\mathcal{U}_{\varphi}=\left(\boldsymbol{1}_{2\mathbb{N}_{0}}(j-l)(-1)^{\frac{j-l}{2}}\left(\binom{j-1}{\frac{j-l}{2}}-\binom{j-1}{\frac{j-l}{2}-1}\right)\cdot 1\right)_{l\geq 1,j\geq 1},

where (nk)=0\binom{n}{k}=0 whenever n<kn<k or k<0k<0 and 𝟏20(x)=1\boldsymbol{1}_{2\mathbb{N}_{0}}(x)=1 for even x0x\in\mathbb{N}_{0}, otherwise 𝟏20(x)=0\boldsymbol{1}_{2\mathbb{N}_{0}}(x)=0.

Proof.

The formula for 𝒰φ\mathcal{U}_{\varphi} is an immediate consequence of the formula for zi(m)z^{(m)}_{i} and Theorem 1 item 2. The statement on zi(m)z^{(m)}_{i} follows from induction on mm. ∎

Remark 4.

Let 𝒫φ\mathcal{P}_{\varphi} be the ×\mathbb{N}\times\mathbb{N} matrix over 𝒌\boldsymbol{k}, with the nnth column defined by the coefficients of Fn1(X)F_{n-1}(X) in terms of powers of XX. Then

𝒫φ=(𝟏20(li)(l+i21li2))i1,l1\mathcal{P}_{\varphi}=\left(\boldsymbol{1}_{2\mathbb{N}_{0}}(l-i)\binom{\frac{l+i}{2}-1}{\frac{l-i}{2}}\right)_{i\geq 1,l\geq 1}

Then 𝒫φ𝒰φ=𝒰φ𝒫φ=\mathcal{P}_{\varphi}\mathcal{U}_{\varphi}=\mathcal{U}_{\varphi}\mathcal{P}_{\varphi}=\mathcal{I}, the ×\mathbb{N}\times\mathbb{N} identity matrix over 𝒌\boldsymbol{k}. Hence, we obtain, as a side-product, the two combinatorial identities involving Catalans triangle numbers Bn,mB_{n,m} which we define as Bn,m:=(n1m)(n1m1)B_{n,m}:=\binom{n-1}{m}-\binom{n-1}{m-1},

r=0k(1)kr(i+rr)((i+2kkr)(i+2kkr1))=r=0k(1)kr(i+rr)Bi+2k+1,kr=0\sum_{r=0}^{k}(-1)^{k-r}\binom{i+r}{r}\left(\binom{i+2k}{k-r}-\binom{i+2k}{k-r-1}\right)=\sum_{r=0}^{k}(-1)^{k-r}\binom{i+r}{r}B_{i+2k+1,k-r}=0

and

r=0k(1)r((i+2rr)(i+2rr1))(i+k+rkr)=r=0k(1)rBi+2r+1,r(i+k+rkr)=0,\sum_{r=0}^{k}(-1)^{r}\left(\binom{i+2r}{r}-\binom{i+2r}{r-1}\right)\binom{i+k+r}{k-r}=\sum_{r=0}^{k}(-1)^{r}B_{i+2r+1,r}\binom{i+k+r}{k-r}=0,

for kk\in\mathbb{N} and i0i\in\mathbb{N}_{0}, from

l=ij𝟏20(jl)𝟏20(li)(l+i2li2)(1)jl2((jjl2)(jjl21))1=δi,j\sum_{l=i}^{j}\boldsymbol{1}_{2\mathbb{N}_{0}}(j-l)\boldsymbol{1}_{2\mathbb{N}_{0}}(l-i)\binom{\frac{l+i}{2}}{\frac{l-i}{2}}(-1)^{\frac{j-l}{2}}\left(\binom{j}{\frac{j-l}{2}}-\binom{j}{\frac{j-l}{2}-1}\right)\cdot 1=\delta_{i,j}

and

l=ij𝟏20(li)𝟏20(jl)(1)li2((lli2)(lli21))(j+l2jl2)1=δi,j.\sum_{l=i}^{j}\boldsymbol{1}_{2\mathbb{N}_{0}}(l-i)\boldsymbol{1}_{2\mathbb{N}_{0}}(j-l)(-1)^{\frac{l-i}{2}}\left(\binom{l}{\frac{l-i}{2}}-\binom{l}{\frac{l-i}{2}-1}\right)\binom{\frac{j+l}{2}}{\frac{j-l}{2}}\cdot 1=\delta_{i,j}.

Note that Catalan’s triangle numbers are also often defined differently by Cn,m:=(n+mm)(n+mm1)C_{n,m}:=\binom{n+m}{m}-\binom{n+m}{m-1}. Hence Bn,m=Cn1m,mB_{n,m}=C_{n-1-m,m}.

In the following we derive explicit formulas of the series expansion of the golden ratio analog φ\varphi.

We start with the basic example φ\varphi over 𝔽2\mathbb{F}_{2} or 𝔽q\mathbb{F}_{q} with characteristic 22. From Theorem 1 item 3 we obtain the series expansion i=1ciXi\sum_{i=1}^{\infty}c_{i}X^{-i} from the first row of 𝒰φ\mathcal{U}_{\varphi} in Lemma 4. Hence

ci=(𝟏20(i1)(1)i12((i1i12)(i1i121))(mod2))1.c_{i}=\left(\boldsymbol{1}_{2\mathbb{N}_{0}}(i-1)(-1)^{\frac{i-1}{2}}\left(\binom{i-1}{\frac{i-1}{2}}-\binom{i-1}{\frac{i-1}{2}-1}\right)\pmod{2}\right)\cdot 1.

Because of 𝟏20(i1)\boldsymbol{1}_{2\mathbb{N}_{0}}(i-1) we obtain c2n=0c_{2n}=0 for all nn\in\mathbb{N}, and for n0n\in\mathbb{N}_{0}, c2n+1=((1)n((2nn)(2nn))(mod2))1=((1)nCn(mod2))1c_{2n+1}=((-1)^{n}(\binom{2n}{n}-\binom{2n}{n})\pmod{2})\cdot 1=((-1)^{n}C_{n}\pmod{2})\cdot 1, where CnC_{n} is the nnth Catalan number, which can be defined via the Catalan’s triangle numbers by Cn:=B2n+1,n=(2nn)(2nn1)C_{n}:=B_{2n+1,n}=\binom{2n}{n}-\binom{2n}{n-1}.

We recall the Lucas Theorem for prime numbers pp, i.e.

(mn)i=0(mini)(modp)\binom{m}{n}\equiv\prod_{i=0}^{\infty}\binom{m_{i}}{n_{i}}\pmod{p}

with mi,nim_{i},\,n_{i} given via the pp-adic expansion of mm and nn.

We expand the even number 2n2n in base 22 and obtain

2n=j=1raj2j, and n=j=0r1aj+12j.2n=\sum_{j=1}^{r}a_{j}2^{j},\,\mbox{ and }n=\sum_{j=0}^{r-1}a_{j+1}2^{j}.

Thus

(2nn)=(ar0)j=1r(aj1aj)0(mod2).\binom{2n}{n}=\binom{a_{r}}{0}\prod_{j=1}^{r}\binom{a_{j-1}}{a_{j}}\equiv 0\pmod{2}.

For (2nn1)\binom{2n}{n-1} we write 2n=j=lraj2j2n=\sum_{j=l}^{r}a_{j}2^{j} with al=1a_{l}=1, then n1n-1 is

j=lr1aj+12j+2l11.\sum_{j=l}^{r-1}a_{j+1}2^{j}+2^{l-1}-1.

Now

(2nn1)(ar0)j=lr1(ajaj+1)u=0l2(01)(mod2).\binom{2n}{n-1}\equiv\binom{a_{r}}{0}\prod_{j=l}^{r-1}\binom{a_{j}}{a_{j+1}}\prod_{u=0}^{l-2}\binom{0}{1}\pmod{2}.

This is only nonzero if l=1l=1 and al=al+1==ar1=ar=1a_{l}=a_{l+1}=\ldots=a_{r-1}=a_{r}=1. So c2n+1=1c_{2n+1}=1 iff 2n=2r+122n=2^{r+1}-2 or 2n+1=2r+112n+1=2^{r+1}-1 with rr\in\mathbb{N}. Adding the index i=1=20+1=211i=1=2\cdot 0+1=2^{1}-1 we obtain again the series given in Example 2

L=n=1X(2n1)L=\sum_{n=1}^{\infty}X^{-(2^{n}-1)}

in characteristic 22.

For a general finite field with characteristic pp other than 22, this simple method above, does not work, as the pp-adic expansions of 2n2n and nn are not that simply related. For the general case we at least obtain the formula for the series expansion of φ\varphi involving the Catalan numbers.

Proposition 1.

For φ=[0;X¯]=i=1ciXi\varphi=[0;\overline{X}]=\sum_{i=1}^{\infty}c_{i}X^{-i} over 𝔽q\mathbb{F}_{q} with characteristic pp we have c2r=0c_{2r}=0 for rr\in\mathbb{N}. And for r0r\in\mathbb{N}_{0} we have

c2r+1=((1)r((2rr)(2rr1))(modp))1=((1)rCr(modp))1c_{2r+1}=\big{(}(-1)^{r}\left(\binom{2r}{r}-\binom{2r}{r-1}\right)\pmod{p}\big{)}\cdot 1=\big{(}(-1)^{r}C_{r}\pmod{p}\big{)}\cdot 1

where CrC_{r} is the rrth Catalan number, satisfying Cr=(2rr)(2rr1)=1r+1(2rr)=j=0r(rj)2=k=2rr+kkC_{r}=\binom{2r}{r}-\binom{2r}{r-1}=\frac{1}{r+1}\binom{2r}{r}=\sum_{j=0}^{r}\binom{r}{j}^{2}=\prod_{k=2}^{r}\frac{r+k}{k}.

Remark 5.

Proposition 1 and φ2+φX1=0\varphi^{2}+\varphi X-1=0 imply the well-known recurrence relation for the Catalan numbers,

i=0nCiCni=Cn+1.\sum_{i=0}^{n}C_{i}C_{n-i}=C_{n+1}.

The distribution of the Catalan numbers modulo pp follows specific regularities that are worked out above for modulus 22. In moduli 2, 3, 52,\,3,\,5, and 77, these regularities are given in Figure 1. One aim of this paper is a nice formula for the series expansion of φ\varphi over a finite field, which we found already for characteristic 22.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: The sequence ((1)nCn)n0((-1)^{n}C_{n})_{n\geq 0} modulo 22, 33, 55, and 77.

One way to describe the pattern modulo pp is to exploit the Lucas Theorem together with the base pp expansion of 2n2n and nn. An alternative approach is the investigation of a certain fractal structure in 𝒰φ\mathcal{U}_{\varphi} via searching for pattern in φl\mathcal{R}_{\varphi}^{l}. An advantage of the second approach is, that we can do this for more general ϕΦ\phi\in\Phi.
Let us consider the first approach before we work on the second one in Section 4. Obviously, the question whether multiplication of nn with 22 causes at least one carry in the pp-adic expansion of nn or not is crucial for the first approach.

Lemma 5.

Let pp be an odd prime number and n0n\in\mathbb{N}_{0} with unique pp-adic expansion n=i=0aipin=\sum_{i=0}^{\infty}a_{i}p^{i} where ai{0,1,,p1}a_{i}\in\{0,1,\ldots,p-1\}.

For the case where a0p1a_{0}\neq p-1, we have

Cn(modp)0 if and only if ai{0,1,,(p1)/2}C_{n}\pmod{p}\neq 0\quad\mbox{ if and only if }\quad a_{i}\in\{0,1,\ldots,\lfloor(p-1)/2\rfloor\}

for all i0i\in\mathbb{N}_{0}.

For a0=p1a_{0}=p-1, let ll\in\mathbb{N} be maximal such that a0=a1==al1=p1a_{0}=a_{1}=\ldots=a_{l-1}=p-1. Then with nl:=i=0ai+lpin_{l}:=\sum_{i=0}^{\infty}a_{i+l}p^{i}, we have

Cn(1)(2nl+1)Cnl(modp).C_{n}\equiv(-1)(2n_{l}+1)C_{n_{l}}\pmod{p}.
Proof.

We see that for any m{1}m\in\mathbb{N}\setminus\{1\}

2a(modm)={2aa if a{0,1,,(m1)/2}2am<a if a{m/2,,m1}.\displaystyle 2a\pmod{m}=\left\{\begin{array}[]{ll}2a\geq a&\mbox{ if }a\in\{0,1,\ldots,\lfloor(m-1)/2\rfloor\}\\ 2a-m<a&\mbox{ if }a\in\{\lceil m/2\rceil,\ldots,m-1\}.\end{array}\right. (3)

The case of a0p1a_{0}\neq p-1 follows directly from the Lucas Theorem together with (3), the trivial fact that n+10(modp)n+1\neq 0\pmod{p}, and Cn=1n+1(2nn)C_{n}=\frac{1}{n+1}\binom{2n}{n}.
For a0=p1a_{0}=p-1 we have (2nn)0(modp)\binom{2n}{n}\equiv 0\pmod{p} and we focus on (2nn1)-\binom{2n}{n-1} since Cn=(2nn)(2nn1)C_{n}=\binom{2n}{n}-\binom{2n}{n-1}. Note that

(2nn1)=(2pn1+p+p2pn1+p2)(2n1+1n1)(modp)\binom{2n}{n-1}=\binom{2pn_{1}+p+p-2}{pn_{1}+p-2}\equiv\binom{2n_{1}+1}{n_{1}}\pmod{p}

and that (2n1+1n1)=(2n1+1)Cn1\binom{2n_{1}+1}{n_{1}}=(2n_{1}+1)C_{n_{1}}. Hence Cn(1)(2n1+1)Cn1(modp)C_{n}\equiv(-1)(2n_{1}+1)C_{n_{1}}\pmod{p}.
For a1=p1a_{1}=p-1 use Cn1(2n2+1)Cn2(modp)C_{n_{1}}\equiv-(2n_{2}+1)C_{n_{2}}\pmod{p} with n2=i=0ai+2pin_{2}=\sum_{i=0}^{\infty}a_{i+2}p^{i}, and (2n1+1)1(modp)(2n_{1}+1)\equiv-1\pmod{p}. This step is repeated till we use Cnl1(2nl+1)Cnl(modp)C_{n_{l-1}}\equiv-(2n_{l}+1)C_{n_{l}}\pmod{p}. ∎

This can be used to compute the series expansion of φ\varphi for different odd prime characteristics.

Example 3.

Let p=3p=3. We see that we can build the series expansion φ=i=0aiX2i1\varphi=\sum_{i=0}^{\infty}a_{i}X^{-2i-1} by starting with a0=1,a1=2a_{0}=1,\,a_{1}=2. Then use Step 11, followed by Step 22 etc.
We describe “Step kk” with kk\in\mathbb{N}: For i=3k1i=3^{k}-1 set ai=2a_{i}=2 and repeat the first 3k13^{k}-1 values of the coefficients a0,,a3k2a_{0},\ldots,a_{3^{k}-2}, those are followed up by 3k3^{k} zeroes. Start Step k+1k+1.
The values a0=1,a1=2a_{0}=1,\,a_{1}=2 are easily checked. Then a3k1=2a_{3^{k}-1}=2 follows from C3k1=(1)C0C_{3^{k}-1}=(-1)C_{0}, C0=1C_{0}=1, and (1)3k1=1(-1)^{3^{k}-1}=1. Repeating the coefficients a0,,a3k2a_{0},\ldots,a_{3^{k}-2} follows from the fact that for 3k+n3^{k}+n with n=3k1+rn=3^{k-1}+r or n=rn=r for r{0,1,,3k11}r\in\{0,1,\ldots,3^{k-1}-1\} we have C3k+n2n+13k+n+1Cn(mod3)C_{3^{k}+n}\equiv 2\frac{n+1}{3^{k}+n+1}C_{n}\pmod{3} and (1)3k=(1)(-1)^{3^{k}}=(-1). The block of following 3k3^{k} zeroes is a consequence of the fact that here at least one digit in the base 33 expansion of nln_{l} is 22.

Similarly one could determine a pattern in the Laurent series expansion for φ=[0;X¯]\varphi=[0;\overline{X}] for any prime number characteristic p5p\geq 5.

4 Fractal structures in 𝒰\mathcal{U} for specific golden ratio analogs showing patterns for their series expansions

We start with the definition of operations on matrices that will be frequently used in this section.

Let \mathcal{I} denote the identity matrix in 𝒌×\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}}. For uu\in\mathbb{N} and 𝒌×\mathcal{M}\in\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}}, let []u[\mathcal{M}]_{u} denote the upper left u×uu\times u submatrix of \mathcal{M}.

We introduce the operators

,:𝒌×𝒌×,\oplus,\,\ominus:\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}}\to\boldsymbol{k}^{\mathbb{N}\times\mathbb{N}},

for =(mi,j)i1,j1\mathcal{M}=(m_{i,j})_{i\geq 1,j\geq 1} by setting

((M))i,j=mi1,j if i>1 and 0 else ,(\oplus(M))_{i,j}=m_{i-1,j}\mbox{ if }i>1\mbox{ and }0\mbox{ else },

and

((M))i,j=mi+1,j.(\ominus(M))_{i,j}=m_{i+1,j}.

For finite l×ll\times l matrices []l[\mathcal{M}]_{l}, ([]l)\oplus([\mathcal{M}]_{l}) is defined equally but ([]l)i,j:=mi+1,j\ominus([\mathcal{M}]_{l})_{i,j}:=m_{i+1,j} if i{1,2,,l1}i\in\{1,2,\ldots,l-1\} and 0 if i=li=l.

Note that ()()=(())\oplus(\mathcal{I})\cdot\oplus(\mathcal{I})=\oplus(\oplus(\mathcal{I})) and ()()=(())\ominus(\mathcal{I})\cdot\ominus(\mathcal{I})=\ominus(\ominus(\mathcal{I})).

We set

k(M):=k(M) and k(M)=k(M).\oplus^{-k}(M):=\ominus^{k}(M)\mbox{ and }\ominus^{-k}(M)=\oplus^{k}(M).

We define the entry in the iith row and jjth column of the llth antidiagonal Matrix 𝒥l𝔽q×\mathcal{J}_{l}\in\mathbb{F}_{q}^{\mathbb{N}\times\mathbb{N}} as 11 if i+j=l+1i+j=l+1 and 0 else.

We define the entries of the llth alternating antidiagonal matrix 𝒥l(a)𝔽q×\mathcal{J}^{(a)}_{l}\in\mathbb{F}_{q}^{\mathbb{N}\times\mathbb{N}} as (1)i1(-1)^{i-1} if i+j=l+1i+j=l+1 and 0 else.

4.1 The case of characteristic 22

We start again with the special case of characteristic 22. Then we obtain for ϕ=[0;X+v1,X+v2,]\phi=[0;X+v_{1},X+v_{2},\ldots]

ϕ=diag(v1,v2,)+()+().\mathcal{R}_{\phi}={\rm diag}(v_{1},v_{2},\ldots)+\oplus(\mathcal{I})+\ominus({\mathcal{I}}).
Theorem 2.

Let 𝒰φ\mathcal{U}_{\varphi} be the matrix determined by φ=[0;X¯]\varphi=[0;\overline{X}] and 𝒰φ¯\mathcal{U}_{\overline{\varphi}} the one determined by φ¯=[0;X+1¯]\overline{\varphi}=[0;\overline{X+1}] in characteristic 22. We have in both matrices a fractal structure, namely,

[𝒰φ]2k=([𝒰φ]2k1([𝒥2k1]2k1)[𝒰φ]2k10[𝒰φ]2k1)[\mathcal{U}_{\varphi}]_{2^{k}}=\begin{pmatrix}[\mathcal{U}_{\varphi}]_{2^{k-1}}&\ominus([\mathcal{J}_{2^{k-1}}]_{2^{k-1}})\cdot[\mathcal{U}_{\varphi}]_{2^{k-1}}\\ 0&[\mathcal{U}_{\varphi}]_{2^{k-1}}\end{pmatrix}

and

[𝒰φ¯]2k=([𝒰φ¯]2k1([]2k1+([𝒥2k1]2k1))[𝒰φ¯]2k10[𝒰φ¯]2k1)[\mathcal{U}_{\overline{\varphi}}]_{2^{k}}=\begin{pmatrix}[\mathcal{U}_{\overline{\varphi}}]_{2^{k-1}}&([\mathcal{I}]_{2^{k-1}}+\ominus([\mathcal{J}_{2^{k-1}}]_{2^{k-1}}))[\mathcal{U}_{\overline{\varphi}}]_{2^{k-1}}\\ 0&[\mathcal{U}_{\overline{\varphi}}]_{2^{k-1}}\end{pmatrix}

for k>1k>1 with the initial values [𝒰φ]2=(1001)[\mathcal{U}_{\varphi}]_{2}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix} and [𝒰φ¯]2=(1101)[\mathcal{U}_{\overline{\varphi}}]_{2}=\begin{pmatrix}1&1\\ 0&1\end{pmatrix}.

Proof.

Note that from the definition of 𝒰ϕ\mathcal{U}_{\phi}, the right blocks in [𝒰ϕ]2k[\mathcal{U}_{\phi}]_{2^{k}} are determined by the left via

(([𝒰ϕ]2k10)[ϕ]2k2k1([𝒰ϕ]2k10).\begin{pmatrix}([\mathcal{U}_{\phi}]_{2^{k-1}}\\ 0\end{pmatrix}\mapsto[\mathcal{R}_{\phi}]_{2^{k}}^{2^{k-1}}\cdot\begin{pmatrix}[\mathcal{U}_{\phi}]_{2^{k-1}}\\ 0\end{pmatrix}.

The second structure in 𝒰φ¯\mathcal{U}_{\overline{\varphi}} follows from the one in 𝒰φ\mathcal{U}_{{\varphi}} together with the fact that ([φ]2k+[]2k)2=[φ]2k2+[]2k([\mathcal{R}_{\varphi}]_{2^{k}}+[\mathcal{I}]_{2^{k}})^{2}=[\mathcal{R}_{\varphi}]_{2^{k}}^{2}+[\mathcal{I}]_{2^{k}} in characteristic 22.

In the following we concentrate on φ\mathcal{R}_{\varphi} and we prove the specific of form

[φ]2k2k1=(([𝒥2k1]2k1)[]2k1[]2k1([𝒥2k1]2k1)).[\mathcal{R}_{\varphi}]_{2^{k}}^{2^{k-1}}=\begin{pmatrix}\ominus([\mathcal{J}_{2^{k-1}}]_{2^{k-1}})&[\mathcal{I}]_{2^{k-1}}\\ [\mathcal{I}]_{2^{k-1}}&\oplus([\mathcal{J}_{2^{k-1}}]_{2^{k-1}})\end{pmatrix}.

Using [φ]2k=[()]2k+[()]2k[\mathcal{R}_{\varphi}]_{2^{k}}=[\oplus(\mathcal{I})]_{2^{k}}+[\ominus(\mathcal{I})]_{2^{k}} we observe

([()]2k+[()]2k)2=[2()]2k+[2()]2k+[()]2k[()]2k+[()]2k[()]2k([\oplus(\mathcal{I})]_{2^{k}}+[\ominus(\mathcal{I})]_{2^{k}})^{2}=[\oplus^{2}(\mathcal{I})]_{2^{k}}+[\ominus^{2}(\mathcal{I})]_{2^{k}}+[\oplus(\mathcal{I})]_{2^{k}}\cdot[\ominus(\mathcal{I})]_{2^{k}}+[\ominus(\mathcal{I})]_{2^{k}}\cdot[\oplus(\mathcal{I})]_{2^{k}}

and

[()]2k[()]2k+[()]2k[()]2k=(1000000000000001)=:Q2.[\oplus(\mathcal{I})]_{2^{k}}\cdot[\ominus(\mathcal{I})]_{2^{k}}+[\ominus(\mathcal{I})]_{2^{k}}\cdot[\oplus(\mathcal{I})]_{2^{k}}=\begin{pmatrix}1&0&\ldots&0&0\\ 0&0&\ldots&0&0\\ \vdots&\vdots&&\vdots&\vdots\\ 0&0&\ldots&0&0\\ 0&0&\ldots&0&1\end{pmatrix}=:Q_{2}.

Then

([2()]2k+[2()]2k+Q2)2([\oplus^{2}(\mathcal{I})]_{2^{k}}+[\ominus^{2}(\mathcal{I})]_{2^{k}}+Q_{2})^{2}
=[22()]2k+[22()]2k+=[\oplus^{2^{2}}(\mathcal{I})]_{2^{k}}+[\ominus^{2^{2}}(\mathcal{I})]_{2^{k}}+
+[2()]2kQ2+Q2[2()]2k+[2()]2kQ2+Q2[2()]2k+[2()]2k[2()]2k+[2()]2k[2()]2k+Q22+[\oplus^{2}(\mathcal{I})]_{2^{k}}Q_{2}+Q_{2}[\ominus^{2}(\mathcal{I})]_{2^{k}}+[\ominus^{2}(\mathcal{I})]_{2^{k}}Q_{2}+Q_{2}[\oplus^{2}(\mathcal{I})]_{2^{k}}+[\oplus^{2}(\mathcal{I})]_{2^{k}}[\ominus^{2}(\mathcal{I})]_{2^{k}}+[\ominus^{2}(\mathcal{I})]_{2^{k}}[\oplus^{2}(\mathcal{I})]_{2^{k}}+Q_{2}^{2}

and

[2()]2kQ2+Q2[2()]2k+[2()]2kQ2+Q2[2()]2k+[2()]2k[2()]2k+[2()]2k[2()]2k+Q22[\oplus^{2}(\mathcal{I})]_{2^{k}}Q_{2}+Q_{2}[\ominus^{2}(\mathcal{I})]_{2^{k}}+[\ominus^{2}(\mathcal{I})]_{2^{k}}Q_{2}+Q_{2}[\oplus^{2}(\mathcal{I})]_{2^{k}}+[\oplus^{2}(\mathcal{I})]_{2^{k}}[\ominus^{2}(\mathcal{I})]_{2^{k}}+[\ominus^{2}(\mathcal{I})]_{2^{k}}[\oplus^{2}(\mathcal{I})]_{2^{k}}+Q_{2}^{2}
=(001000010000100000000001000010000100)=:Q22.\quad\quad\quad\quad\quad\quad\quad\quad\quad=\begin{pmatrix}0&0&1&\ldots&0&0&0\\ 0&1&0&\ldots&0&0&0\\ 1&0&0&\ldots&0&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots&\vdots\\ 0&0&0&\ldots&0&0&1\\ 0&0&0&\ldots&0&1&0\\ 0&0&0&\ldots&1&0&0\end{pmatrix}=:Q_{2^{2}}.

By induction on ll we derive that Q2lQ_{2^{l}} for l<kl<k is the zero matrix except of its upper-left and lower-right 2l1×2l12^{l}-1\times 2^{l}-1 submatrices that are antidiagonal matrices. ∎

Remark 6.

Note that the fractal structure in 𝒰φ\mathcal{U}_{\varphi} given in the lemma above once again proves

φ=[0;X¯]=n=1X2n+1.\varphi=[0;\overline{X}]=\sum_{n=1}^{\infty}X^{-2^{n}+1}.

From the fractal structure of 𝒰φ¯\mathcal{U}_{\overline{\varphi}} one may derive

φ¯=[0;X+1¯]=n=1ν2(2n)(X2n+1+X2n)\overline{\varphi}=[0;\overline{X+1}]=\sum_{n=1}^{\infty}\nu_{2}(2n)(X^{-2n+1}+X^{-2n})

where ν2(n):=max{l0:2l|n}\nu_{2}(n):=\max\{l\in\mathbb{N}_{0}:2^{l}|n\}.
Similarly, one may derive a formula for the Laurent series expansion of ϕ=[0;X,X+1¯]\phi=[0;\overline{X,X+1}] or [0;X+1,X¯][0;\overline{X+1,X}].

4.2 The case of characteristic p>2p>2

In the last part of this section, we aim for a generalization of the above lemma for odd characteristic pp and ϕu,v=[0;uX+v¯]\phi_{u,v}=[0;\overline{uX+v}] and

ϕu,v=u1(v).\mathcal{R}_{\phi_{u,v}}=u^{-1}(\oplus{\mathcal{I}}-\ominus{\mathcal{I}}-v\mathcal{I}).

Then the special case [0;X¯][0;\overline{X}] is given by ϕ1,0\phi_{1,0} and ϕ1,0=()\mathcal{R}_{\phi_{1,0}}=(\oplus{\mathcal{I}}-\ominus{\mathcal{I}}).

In the following we search for a pattern in [ϕu,v]pkpk1l[\mathcal{R}_{\phi_{u,v}}]^{p^{k-1}l}_{p^{k}}, with l{1,,p1}l\in\{1,\ldots,p-1\} and kk\in\mathbb{N} that together with Theorem 1 gives insight to the Laurent series expansion of ϕu,v\phi_{u,v}. The main difficulty is that ()\ominus(\mathcal{I}) and ()\oplus(\mathcal{I}) do not commute, as

=()()()()=:(1)()\mathcal{I}=\ominus(\mathcal{I})\oplus(\mathcal{I})\neq\oplus(\mathcal{I})\cdot\ominus(\mathcal{I})=:\partial^{(1)}(\mathcal{I})

where (n):𝔽q×𝔽q×\partial^{(n)}:\mathbb{F}_{q}^{\mathbb{N}\times\mathbb{N}}\to\mathbb{F}_{q}^{\mathbb{N}\times\mathbb{N}} with nn\in\mathbb{N} denotes the nnth flattening-operator, that sets all nonzero entries in the first nn rows in a matrix in 𝔽q×\mathbb{F}_{q}^{\mathbb{N}\times\mathbb{N}} equal to zero.

We begin with binomial type theorem for (()())m\left(\oplus(\mathcal{I})-\ominus(\mathcal{I})\right)^{m}.

Theorem 3.

For every mm\in\mathbb{N} we have

(()())m=r=0m(mr)(1)r(m2r)()+(1)ml=0m/21(ml)(1)l𝒥m12l(a).\Big{(}\oplus(\mathcal{I})-\ominus(\mathcal{I})\Big{)}^{m}=\sum_{r=0}^{m}\binom{m}{r}(-1)^{r}\oplus^{(m-2r)}(\mathcal{I})\,+\,(-1)^{m}\sum_{l=0}^{\lfloor m/2\rfloor-1}\binom{m}{l}(-1)^{l}\mathcal{J}^{(a)}_{m-1-2l}.
Proof.

We check the formula for m=1m=1. For m>1m>1 we use induction on mm. We observe for kk\in\mathbb{N} three equalities that will help for the proof

k()()=\displaystyle\oplus^{k}(\mathcal{I})\cdot\ominus(\mathcal{I})= k1()k1()𝒥1(a)\displaystyle\oplus^{k-1}(\mathcal{I})-\oplus^{k-1}(\mathcal{I})\cdot\mathcal{J}^{(a)}_{1}
𝒥k(a)()=\displaystyle\mathcal{J}^{(a)}_{k}\cdot\oplus(\mathcal{I})= 𝒥k1(a)\displaystyle\mathcal{J}^{(a)}_{k-1}
𝒥k(a)(1)()=\displaystyle\mathcal{J}^{(a)}_{k}\cdot(-1)\ominus(\mathcal{I})= (1)𝒥k+1(a)+(1)kk()𝒥1(a)\displaystyle(-1)\mathcal{J}^{(a)}_{k+1}+(-1)^{k}\oplus^{k}(\mathcal{I})\cdot\mathcal{J}^{(a)}_{1}

Let m>1m>1. Then we use the induction hypothesis for m1m-1.

(()())m\displaystyle\Big{(}\oplus(\mathcal{I})-\ominus(\mathcal{I})\Big{)}^{m}
=\displaystyle= (()())m1(()())\displaystyle\left(\oplus(\mathcal{I})-\ominus(\mathcal{I})\right)^{m-1}\left(\oplus(\mathcal{I})-\ominus(\mathcal{I})\right)
=\displaystyle= (r=0m1(m1r)(1)r(m12(r))()+(1)m1l=0(m1)/21(m1l)(1)l𝒥m22(l)(a))\displaystyle\left(\sum_{r=0}^{m-1}\binom{m-1}{r}(-1)^{r}\oplus^{(m-1-2(r))}(\mathcal{I})\,+\,(-1)^{m-1}\sum_{l=0}^{\lfloor(m-1)/2\rfloor-1}\binom{m-1}{l}(-1)^{l}\mathcal{J}^{(a)}_{m-2-2(l)}\right)
(()()).\displaystyle\quad\cdot\Big{(}\oplus(\mathcal{I})-\ominus(\mathcal{I})\Big{)}.

It is easily checked that

r=0m1(m1r)(1)r(m12r)()(()())\sum_{r=0}^{m-1}\binom{m-1}{r}(-1)^{r}\oplus^{(m-1-2r)}(\mathcal{I})\cdot\Big{(}\oplus(\mathcal{I})-\ominus(\mathcal{I})\Big{)}

equals

r=0m(mr)(1)r(m2r)()+r=0(m1)/21(m1r)(1)rm2(r+1)()𝒥1(a).\sum_{r=0}^{m}\binom{m}{r}(-1)^{r}\oplus^{(m-2r)}(\mathcal{I})+\sum_{r=0}^{\lfloor(m-1)/2\rfloor-1}\binom{m-1}{r}(-1)^{r}\oplus^{m-2(r+1)}(\mathcal{I})\mathcal{J}^{(a)}_{1}.

It remains to rewrite

(1)m1l=0(m1)/21(m1l)(1)l𝒥m22l(a)(()())(-1)^{m-1}\sum_{l=0}^{\lfloor(m-1)/2\rfloor-1}\binom{m-1}{l}(-1)^{l}\mathcal{J}^{(a)}_{m-2-2l}\big{(}\oplus(\mathcal{I})-\ominus(\mathcal{I})\big{)}

in the form

(1)m1l=0(m1)/21(m1l)(1)l𝒥m12(l+1)(a)+(1)m1l=0(m1)/21(m1l)(1)l+1𝒥m12l(a)(-1)^{m-1}\sum_{l=0}^{\lfloor(m-1)/2\rfloor-1}\binom{m-1}{l}(-1)^{l}\mathcal{J}^{(a)}_{m-1-2(l+1)}+(-1)^{m-1}\sum_{l=0}^{\lfloor(m-1)/2\rfloor-1}\binom{m-1}{l}(-1)^{l+1}\mathcal{J}^{(a)}_{m-1-2l}
+(1)m1l=0(m1)/21(m1l)(1)l(1)m22lm2(l+1)()𝒥1(a).+(-1)^{m-1}\sum_{l=0}^{\lfloor(m-1)/2\rfloor-1}\binom{m-1}{l}(-1)^{l}(-1)^{m-2-2l}\oplus^{m-2(l+1)}(\mathcal{I})\mathcal{J}^{(a)}_{1}.

Merging the first two sums and adding the result above yields the desired equality.

From Theorem 3 and the Lucas Theorem we derive the following corollary for finite fields.

Corollary 1.

Let p>2p>2 be the characteristic of 𝔽q\mathbb{F}_{q}. For kk\in\mathbb{N} we have

(()())pk=pk()pk()𝒥pk1(a).\left(\oplus(\mathcal{I})-\ominus(\mathcal{I})\right)^{p^{k}}=\oplus^{p^{k}}(\mathcal{I})-\ominus^{p^{k}}(\mathcal{I})-\mathcal{J}^{(a)}_{p^{k}-1}.

Furthermore, for even l{1,,p1}l\in\{1,\ldots,p-1\} we have

(()())pkl=i=0l(li)(1)ipk(l2i)()+i=0l/21(li)(1)i𝒥pk(l2i)1(a).\left(\oplus(\mathcal{I})-\ominus(\mathcal{I})\right)^{p^{k}l}=\sum_{i=0}^{l}\binom{l}{i}(-1)^{i}\oplus^{p^{k}(l-2i)}(\mathcal{I})+\sum_{i=0}^{l/2-1}\binom{l}{i}(-1)^{i}\mathcal{J}^{(a)}_{p^{k}(l-2i)-1}.

For odd l{1,,p1}l\in\{1,\ldots,p-1\}, we have

(()())pkl=i=0l(li)(1)ipk(l2i)()i=0(l1)/21(li)(1)i𝒥pk(l2i)1(a).\left(\oplus(\mathcal{I})-\ominus(\mathcal{I})\right)^{p^{k}l}=\sum_{i=0}^{l}\binom{l}{i}(-1)^{i}\oplus^{p^{k}(l-2i)}(\mathcal{I})-\sum_{i=0}^{(l-1)/2-1}\binom{l}{i}(-1)^{i}\mathcal{J}^{(a)}_{p^{k}(l-2i)-1}.

From the fact that for any a𝔽pa\in\mathbb{F}^{\ast}_{p} we have apk1=1a^{p^{k}-1}=1, the fact that

ϕu,v=u1(()()ϕ1,0v)\mathcal{R}_{\phi_{u,v}}=u^{-1}\left(\underbrace{\oplus(\mathcal{I})-\ominus(\mathcal{I})}_{\mathcal{R}_{\phi_{1,0}}}-v\mathcal{I}\right)

where v-v\mathcal{I} and ϕ1,0\mathcal{R}_{\phi_{1,0}} commute, we might derive a generalization of Corollary 1 above.

Corollary 2.

Set 𝔽p\mathbb{F}_{p} with characteristic p>2p>2. For kk\in\mathbb{N} we have

ϕu,vpk=u1ϕ1,0pk+u1v\mathcal{R}_{\phi_{u,v}}^{p^{k}}=u^{-1}\mathcal{R}_{{\phi}_{1,0}}^{p^{k}}+u^{-1}v\mathcal{I}

and for l{1,,p1}l\in\{1,\ldots,p-1\} we have

ϕu,vpkl=uli=0l(li)uiviϕ1,0pkli\mathcal{R}_{\phi_{u,v}}^{p^{k}l}=u^{-l}\sum_{i=0}^{l}\binom{l}{i}u^{-i}v^{i}\mathcal{R}_{{\phi}_{1,0}}^{p^{k}l-i}

over 𝔽p\mathbb{F}_{p}.

We now exemplary apply the above Corollaries 1 and 2 to the question for a recursive structure in [𝒰ϕu,v]pk[\mathcal{U}_{\phi_{u,v}}]_{p^{k}} that is a consequence of the specific forms of powers of ϕu,v\mathcal{R}_{\phi_{u,v}} and that explains the recursive structure of the Laurent series expansion of ϕu,v=[0;uX+v¯]\phi_{u,v}=[0;\overline{uX+v}].
Note that Definition 5 gives us a specific dependence between [𝒰ϕu,v]pk1[\mathcal{U}_{\phi_{u,v}}]_{p^{k-1}} and [𝒰ϕu,v]pk[\mathcal{U}_{\phi_{u,v}}]_{p^{k}} (confer also proof of Theorem 2). The binomial type Theorem 3 generalizes the formula for [φ]2k2k1[\mathcal{R}_{\varphi}]_{2^{k}}^{2^{k-1}} which is given in the proof of Theorem 2.

Example 4 (p=3p=3).

We regard ϕ1,0\phi_{1,0} over 𝔽3\mathbb{F}_{3}. Then Figure 2 shows [𝒰ϕ1,0]34[\mathcal{U}_{\phi_{1,0}}]_{3^{4}}, [𝒰ϕ1,0]33[\mathcal{U}_{\phi_{1,0}}]_{3^{3}}, and [ϕ1,0132]33[\mathcal{R}_{\phi_{1,0}}^{1\cdot 3^{2}}]_{3^{3}} as well as [ϕ1,0232]33[\mathcal{R}_{\phi_{1,0}}^{2\cdot 3^{2}}]_{3^{3}}. Those matrices show up the self similar structure in 𝒰ϕ1,0\mathcal{U}_{\phi_{1,0}}. The first 99 columns of [𝒰ϕ1,0]33[\mathcal{U}_{\phi_{1,0}}]_{3^{3}} multiplied from the left with [ϕ1,0132]33[\mathcal{R}_{\phi_{1,0}}^{1\cdot 3^{2}}]_{3^{3}} give the next 99 columns. The first 99 columns of [𝒰ϕ1,0]33[\mathcal{U}_{\phi_{1,0}}]_{3^{3}} multiplied from the left with [ϕ1,0232]33[\mathcal{R}_{\phi_{1,0}}^{2\cdot 3^{2}}]_{3^{3}} give the last 99 columns of [𝒰ϕ1,0]33[\mathcal{U}_{\phi_{1,0}}]_{3^{3}}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: [𝒰ϕ1,0]34,[𝒰ϕ1,0]33,[ϕ1,0132]33[\mathcal{U}_{\phi_{1,0}}]_{3^{4}},\,[\mathcal{U}_{\phi_{1,0}}]_{3^{3}},\,[\mathcal{R}_{\phi_{1,0}}^{1\cdot 3^{2}}]_{3^{3}}, and [ϕ1,0233]33[\mathcal{R}_{\phi_{1,0}}^{2\cdot 3^{3}}]_{3^{3}}.

Moreover, the self similar structure re-explains the series expansion of ϕ1,0=r=0crXr1\phi_{1,0}=\sum_{r=0}^{\infty}c_{r}X^{-r-1} over 𝔽3\mathbb{F}_{3} described in Example 3. The values (c0,c1,c2)=(1,0,2)(c_{0},c_{1},c_{2})=(1,0,2) are given in the first row of [𝒰ϕ1,0]3[\mathcal{U}_{\phi_{1,0}}]_{3}. The next string of length 33 is (0,2,0)(0,2,0) the first row of [𝒥31(a)]3[𝒰ϕ1,0]3-[\mathcal{J}^{(a)}_{3-1}]_{3}\cdot[\mathcal{U}_{\phi_{1,0}}]_{3} as [𝒥31(a)]3-[\mathcal{J}^{(a)}_{3-1}]_{3} is the upper left 3×33\times 3 part of [ϕ1,0132]32[\mathcal{R}_{\phi_{1,0}}^{1\cdot 3^{2}}]_{3^{2}}. The next string of length 33 is (1,0,2)(1,0,2) the first row of []3[𝒰ϕ1,0]3[\mathcal{I}]_{3}\cdot[\mathcal{U}_{\phi_{1,0}}]_{3}. The next string of length 99 is then given by the first row of [𝒥91(a)]9[𝒰ϕ1,0]9-[\mathcal{J}^{(a)}_{9-1}]_{9}\cdot[\mathcal{U}_{\phi_{1,0}}]_{9}, i.e. (0,0,0,0,0,0,0,2,0)(0,0,0,0,0,0,0,2,0), etc.

Example 5 (p=5p=5).

Figure 3 gives the relevant matrices over 𝔽5\mathbb{F}_{5} that give rise to the stepwise series expansion of ϕ1,0=r=0crXr1\phi_{1,0}=\sum_{r=0}^{\infty}c_{r}X^{-r-1} over 𝔽5\mathbb{F}_{5}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: [𝒰ϕ1,0]53,[𝒰ϕ1,0]52,[ϕ1,015]52[\mathcal{U}_{\phi_{1,0}}]_{5^{3}},\,[\mathcal{U}_{\phi_{1,0}}]_{5^{2}},\,[\mathcal{R}_{\phi_{1,0}}^{1\cdot 5}]_{5^{2}}, [ϕ1,025]52[\mathcal{R}_{\phi_{1,0}}^{2\cdot 5}]_{5^{2}}, [ϕ1,035]52[\mathcal{R}_{\phi_{1,0}}^{3\cdot 5}]_{5^{2}}, and [ϕ1,045]52[\mathcal{R}_{\phi_{1,0}}^{4\cdot 5}]_{5^{2}}.

Hence the starting string of coefficients is (1,0,4,0,2)(1,0,4,0,2), that is followed up by (0,0,0,4,0)(0,0,0,4,0), 3(1,0,4,0,2)3\cdot(1,0,4,0,2), 3(0,0,0,4,0)3\cdot(0,0,0,4,0) and 1(1,0,4,0,2)1\cdot(1,0,4,0,2). etc.

Note that from the similar recursive generation of ϕ\mathcal{L}_{\phi} compared to the one of 𝒰ϕ\mathcal{U}_{\phi} in Definition 5 we may derive a slightly different self similar structure in ϕ\mathcal{L}_{\phi}.

We mentioned already that the Hankel matrices ϕ\mathcal{M}_{\phi} are the generating matrices of the Kronecker type sequences associated with ϕ\phi. We would like to remark here that the powers of the so-called Pascal matrices appear as generating matrices of the Faure sequences [3]. Pascal matrices possess nice self similar structures and their entries are defined using binomial coefficients, P=((j1i1)(modp)1)i1,j1P=(\binom{j-1}{i-1}\pmod{p}\cdot 1)_{i\geq 1,j\geq 1}, while the entries of the matrix 𝒰ϕ0,1\mathcal{U}_{\phi_{0,1}} are determined by Catalan’s triangular numbers modulo pp. Figure 4 shows this Pascal matrix versus our matrix 𝒰ϕ0,1\mathcal{U}_{\phi_{0,1}} for p=2,p=3,p=4p=2,\,p=3,\,p=4.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Upper left square submatrices of PP and 𝒰ϕ1,0\mathcal{U}_{\phi_{1,0}} for p=2p=2, p=3p=3, and p=5p=5.

5 Discussions

The content of this paper can be viewed as the starting point of various future investigations.

One is the study of the L2L_{2} discrepancy of the Kronecker type sequences generated by a Hankel matrix ϕ\mathcal{M}_{\phi} associated with a golden ratio analog ϕ\phi. The main question is whether it is growing of optimal order logN/N\sqrt{\log N}/N in NN or not. This study of the L2L_{2} discrepancy was the starting point of the investigations in this paper.

A further interesting problem is to generalize at least some of the results in this paper to more general L𝒌((X1))L\in\boldsymbol{k}((X^{-1})).

We mentioned already that the boundedness of the degrees of the continued fractions coefficients of LL is linked to regularities of the Hankel matrices, which control the distribution quality of the Kronecker type sequences associated to LL. An interesting aspect is that the study of the multi-dimensional Kronecker type sequences is therefore linked to the multidimensional Diophantine approximation in the field of power series which is an active area of research (see exemplary [2] and the references therein) . Moreover, sequences which are constructed via the digital method and have excellent distribution properties are also actively studied (see exemplary [4] and the references therein). An exciting aspect is whether similar links can be discovered in the multidimensional situations that might enrich both research fields, the one of multi-dimensional Diophantine approximation in the field of power series and the one of distribution properties of digital sequences.

Acknowledgments

The author is supported by the Austrian Science Fund (FWF), Project F5505-N26, which is a part of the Special Research Program Quasi-Monte Carlo Methods: Theory and Applications.

References

  • [1] Bilyk D.: The L2L_{2} discrepancy of irrational lattices. Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Math. and Stat. 65, Springer, 2013.
  • [2] Bugeaud, Y. and Zhang, Z.: On homogeneous and inhomogeneous Diophantine approximation over the fields of formal power series. Pacific J. Math. 302 (2019), no. 2, 453–480.
  • [3] Faure, H.: Discrépance des suites associées à un système de numération (en dimension s). Acta Arith. 41 (1982), 337–351.
  • [4] Hofer, R.: Kronecker-Halton sequences in 𝔽p((X1))\mathbb{F}_{p}((X^{-1})). Finite Fields Appl. 50 (2018), 154–177.
  • [5] Larcher G. and Niederreiter H.: Kronecker-type sequences and nonarchimedean Diophantine approximations of formal Laurent series. Transactions of the American Mathematical Society 347 (1995), no. 6, 2051–2073.
  • [6] Larcher G. and Niederreiter H.: Generalized (t,s)(t,s)-sequences, Kronecker-type sequences, and Diophantine approximations. Acta Arith. 63 (1993), 379–396.
  • [7] Lasjaunias, A.: A survey of Diophantine approximation in fields of power series. Monatsh. Math. 130 (2000), no. 3, 211–229.
  • [8] Niederreiter H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273–337.
  • [9] Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol.63, SIAM, Philadelphia, 1992.
  • [10] Schmidt. W.M.: On continued fractions and Diophantine approximation in power series fields. Acta Arith. 95 (2000), no. 2, 139–166.
  • [11] Shallit, J.: Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), no. 2, 209–217.
  • [12] Shallit, J.: Simple continued fractions for some irrational numbers. II. J. Number Theory 14 (1982), no. 2, 228–231.

Authors’ Address:

Roswitha Hofer:
Institute of Financial Mathematics and Applied Number Theory,
University of Linz
Altenbergerstr. 69
A-4040 Linz
Austria
E-mail: [email protected]